
Intel® Fortran Compiler Classic and
Intel® Fortran Compiler Developer
Guide and Reference

Contents

Chapter 1: Intel® Fortran Compiler Classic and Intel® Fortran
Compiler Developer Guide and Reference

Intel® Fortran Compiler Classic and Intel® Fortran Compiler Introduction 10
Get Help and Support .. 11
Related Information... 12

Compiler Setup ... 13
Use the Command Line .. 13

Specify Component Locations ... 13
Invoke the Compiler .. 15
Use the Command Line on Windows .. 18
Run Fortran Applications from the Command Line........................ 19
File Extensions ... 19
Use Makefiles for Compilation ... 21

Use Microsoft Visual Studio... 22
Use Microsoft Visual Studio* Solution Explorer 23
Create a New Project... 23
Perform Common Tasks with Microsoft Visual Studio* 24
Select a Version of the Intel® Fortran Compiler 25
Use Visual Studio* IDE Automation Objects 25
Specify Fortran File Extensions ... 30
Understand Solutions, Projects, and Configurations 30
Navigate Programmatic Components in a Fortran File................... 31
Specify Path, Library, and Include Directories.............................. 32
Set Compiler Options in the Microsoft Visual Studio* IDE

Property Pages ... 32
Supported Build Macros ... 33
Use Manifests ... 35
Use Intel® Libraries with Microsoft Visual Studio* 35
Use Source Editor Enhancements in Microsoft Visual Studio* 35
Create the Executable Program... 37
Convert and Copy Projects ... 38
About Fortran Project Types.. 40
Dialog Box Help .. 50

Compiler Reference ... 53
Compiler Limits... 53
Compiler Options .. 55

Alphabetical Option List ... 57
General Rules for Compiler Options ... 75
What Appears in the Compiler Option Descriptions 77
Optimization Options ... 77
Advanced Optimization Options... 89
Code Generation Options ... 137
Offload Compilation, OpenMP*, and Parallel Processing Options... 168
Interprocedural Optimization Options....................................... 218
Profile Guided Optimization Options... 228
Optimization Report Options... 246
Floating-Point Options ... 265
Inlining Options .. 311

Intel® Fortran Compiler Classic and Intel® Fortran Compiler Developer Guide and Reference

2

Output, Debug, and Precompiled Header Options 324
Preprocessor Options... 355
Component Control Options.. 370
Language Options ... 373
Data Options .. 408
Compiler Diagnostic Options... 446
Compatibility Options .. 460
Linking or Linker Options ... 473
Miscellaneous Options ... 507
Deprecated and Removed Compiler Options.............................. 524
Display Option Information... 533
Alternate Compiler Options... 533

Floating-Point Operations ... 538
Programming Tradeoffs in Floating-Point Applications................. 538
Floating-Point Optimizations ... 540
Subnormal Numbers.. 542
Floating-Point Environment .. 543
Set the FTZ and DAZ Flags... 543
Check the Floating-Point Stack State 544
Tuning Performance... 545

Libraries .. 547
Create Libraries .. 547
Call Library Routines ... 549
Comparison of Intel® Fortran Compiler and Windows API Routines 550
Specify Consistent Library Types on Windows............................ 551
Redistribute Libraries When Deploying Applications.................... 552
Resolve References to Shared Libraries 552
Redistributable Library Considerations 554
Store Object Code in Static Libraries.. 556
Store Routines in Shareable Libraries....................................... 556
Use Windows API Routines ... 556
Math Libraries .. 559

Data and I/O .. 561
Data Representation.. 561
Fortran I/O .. 567

Mixed-Language Programming .. 608
Standard Fortran and C Interoperability 609
Use Standard Fortran Interoperability Syntax for Existing Fortran

Extensions ... 611
Standard Tools for Interoperability .. 612
Platform Specifics ... 628
Implementation Specifics ... 634
Legacy Extensions... 638

Error Handling .. 642
Build Process Errors .. 643
Runtime Errors ... 646

Language Reference .. 713
New Features for ifx and ifort.. 715
New Features for ifx Only ... 716
Language Reference Conventions .. 721
Program Elements and Source Forms... 723

Program Units .. 723
Statements .. 723
Keywords... 725
Names .. 726

Contents

3

Character Sets.. 726
Source Forms ... 727

Data Types, Constants, and Variables... 735
Intrinsic Data Types .. 736
Derived Data Types ... 750
Binary, Octal, Hexadecimal, and Hollerith Constants 765
Enumerations and Enumerators .. 769
Variables ... 770

Expressions and Assignment Statements.. 795
Expressions.. 795
Assignments .. 805

Specification Statements.. 814
Type Declarations.. 816
Effects of Equivalency and Interaction with COMMON Statements 828

Dynamic Allocation.. 833
Effects of Allocation... 833
Effects of Deallocation ... 836

Execution Control.. 838
Program Termination ... 840
Branch Statements Overview.. 840
Effects of DO Constructs .. 842
Image Control Statements ... 846

Program Units and Procedures .. 848
Main Program... 850
Procedure Characteristics... 850
Modules and Module Procedures.. 851
Intrinsic Modules .. 853
Block Data Program Units Overview... 869
Functions, Subroutines, and Statement Functions...................... 869
External Procedures .. 874
Internal Procedures... 874
Argument Association in Procedures .. 875
Procedure Interfaces ... 887
Interoperability of Procedures and Procedure Interfaces 892
Procedure Pointers .. 893

Intrinsic Procedures... 894
Argument Keywords in Intrinsic Procedures 896
Overview of Atomic Subroutines.. 897
Overview of Collective Subroutines.. 897
Overview of Bit Functions... 898
Categories and Lists of Intrinsic Procedures 900

Data Transfer I/O Statements ... 918
Records and Files.. 918
Components of Data Transfer Statements................................. 919
Forms for READ Statements ... 930
Forms for WRITE Statements.. 945
User-Defined Derived-Type I/O ... 952

I/O Formatting.. 963
Format Specifications .. 964
Data Edit Descriptors... 968
Control Edit Descriptors ... 989
Character String Edit Descriptors ...1000
Nested and Group Repeat Specifications..................................1002
Variable Format Expressions..1002
Print Formatted Records ...1004

Intel® Fortran Compiler Classic and Intel® Fortran Compiler Developer Guide and Reference

4

Interaction Between Format Specifications and I/O Lists............1005
File Operation I/O Statements..1007

INQUIRE Statement Specifiers ...1012
OPEN Statement Specifiers..1026

Compilation Control Lines and Statements.......................................1049
Directive Enhanced Compilation ...1049

Syntax Rules for Compiler Directives1049
General Compiler Directives ..1050
OpenMP* Fortran Compiler Directives1054
Equivalent Compiler Options..1067

Scope and Association ..1068
Scope...1068
Unambiguous Generic Procedure References............................1071
Resolve Procedure References ...1072
Association ...1074

Deleted and Obsolescent Language Features....................................1085
Deleted Language Features in the Fortran Standard..................1085
Obsolescent Language Features in the Fortran Standard............1087

Additional Language Features ..1088
FORTRAN 66 Interpretation of the EXTERNAL Statement1089
Alternative Syntax for the PARAMETER Statement1090
Alternative Syntax for Binary, Octal, and Hexadecimal Constants1091
Alternative Syntax for a Record Specifier.................................1091
Alternative Syntax for the DELETE Statement1091
Alternative Form for Namelist External Records1092
Record Structures ..1092

Additional Character Sets ..1097
Character and Key Code Charts for Windows*..........................1098
ASCII Character Set for Linux* ..1102

Data Representation Models ..1104
Model for Integer Data ...1105
Model for Real Data..1106
Model for Bit Data ..1107

Library Modules and Runtime Library Routines1108
Runtime Library Routines ..1108

Summary of Language Extensions ..1117
Source Forms ..1117
Names ...1117
Character Sets...1117
Intrinsic Data Types ...1117
Constants ...1117
Expressions and Assignment ...1117
Specification Statements...1118
Execution Control...1118
Compilation Control Lines and Statements...............................1118
Built-In Functions...1118
I/O Statements ...1118
I/O Formatting ..1118
File Operation Statements...1119
Compiler Directives ..1119
Intrinsic Procedures ...1120
Additional Language Features ..1122
Runtime Library Routines ..1123

A to Z Reference ..1123
Language Summary Tables..1124

Contents

5

A to B ..1181
C to D ..1279
E to F ...1419
G...1505
H to I ...1538
J to L ...1646
M to N..1676
O to P ..1724
Q to R ..1788
S ...1832
T to Z...1916
POSIX* Library Routines ...2010
Automation Server and Component Object Model Library

Routines ...2093
National Language Support Library Routines............................2107
QuickWin Library Routines...2133
Graphics Library Routines..2169
Serial Port I/O Library Routines..2253
Dialog Library Routines...2271

Glossary ...2287
Glossary A ..2287
Glossary B ..2290
Glossary C ..2291
Glossary D ..2294
Glossary E ..2297
Glossary F...2298
Glossary G ..2300
Glossary H ..2300
Glossary I ...2301
Glossary K ..2302
Glossary L...2303
Glossary M..2304
Glossary N ..2305
Glossary O ..2306
Glossary P ..2307
Glossary Q ..2309
Glossary R ..2309
Glossary S ..2311
Glossary T ..2315
Glossary U ..2316
Glossary V ..2316
Glossary W ...2317
Glossary Z ..2317

Compilation ...2317
Supported Environment Variables...2317
Use Other Methods to Set Environment Variables2353
Files Associated with Intel® Fortran Applications2354
Compile and Link Multithreaded Programs2356
Ahead of Time Compilation..2357
Linking Tools and Options..2362
Use Configuration Files ...2364
Use Response Files ...2365
Create Fortran Executables..2365
Link Debug Information ..2365
Debugging ..2366

Intel® Fortran Compiler Classic and Intel® Fortran Compiler Developer Guide and Reference

6

Prepare Your Program for Debugging2366
Use Breakpoints in the Microsoft Debugger..............................2368
Debug the Squares Example with Microsoft Debugger2371
View Fortran Data Types in the Microsoft Debugger2375
View the Call Stack in the Microsoft Debugger..........................2377
Locate Unaligned Data..2377
Debug a Program that Encounters a Signal or Exception............2378
Debugging and Optimizations ..2378
Debug Mixed-Language Programs ..2380
Debug Multithreaded Programs ..2381
Use Remote Debugging...2381

Program Structure..2384
Use Module Files ..2384
Use Include Files..2387
Advantages of Internal Procedures ...2387
Implications for Array Copies ...2388

Optimization and Programming ..2389
OpenMP* Support ..2389

Add OpenMP* Support..2390
Parallel Processing Model ..2392
Control Thread Allocation ..2394
OpenMP* Library Support ...2396
OpenMP* Contexts...2441
OpenMP* Advanced Issues..2445
OpenMP* Implementation-Defined Behaviors...........................2447
OpenMP* Examples..2448

Coarrays ...2450
Use Coarrays...2450
Debug a Coarray Application..2453

Automatic Parallelization ...2454
Enable Auto-Parallelization ...2457
Program with Auto-Parallelization...2458
Enable Further Loop Parallelization for Multicore Platforms.........2459

Vectorization ...2461
Automatic Vectorization ..2461
Explicit Vector Programming ...2478

Profile-Guided Optimization ...2487
Profile an Application with Instrumentation..............................2489
Profile-Guided Optimization Report ...2491
PGO Tools ...2491

High-Level Optimization ..2517
Interprocedural Optimization ...2517

Use Interprocedural Optimization ...2520
Performance and Large Program Considerations2521
Request Compiler Reports with the xi* Tools2523
Inline Expansion of Functions ..2525
Inlining Report ..2528

Fortran Language Extensions ...2531
Support for 64-bit Architecture on Linux2531
Traceback ...2532
Allocate Common Blocks ...2538
Generate Listing and Map Files ..2540
Create Shared Libraries ..2541
Specify Alternative Tools and Locations2541
Temporary Files Created by the Compiler or Linker2542

Contents

7

Use the Intel® Fortran COM Server on Windows........................2542
Use the Intel® Fortran Module Wizard (COM Client) on Windows .2557
IFPORT Portability Library ...2566

fpp Preprocessing...2566
fpp Preprocessor Directives ...2569
Predefined Preprocessor Symbols...2573
Fortran Preprocessor Options...2578

Methods to Optimize Code Size ..2580
National Language Support Routines...2585

Compatibility and Portability ..2587
Fortran Language Standards..2587
Conformance, Compatibility, and Fortran Features2589
Minimize Operating System-Specific Information2597
Store and Represent Data ...2597
Data Portability ..2597

Format Data for Transportability...2597
Supported Native and Non-Native Numeric Formats..................2598
Port Non-Native Data ...2601
Specify the Data Format ...2601

Notices and Disclaimers...2608

Intel® Fortran Compiler Classic and Intel® Fortran Compiler Developer Guide and Reference

8

Intel® Fortran Compiler Classic
and Intel® Fortran Compiler
Developer Guide and Reference 1
This document is for version 2021.13 of Intel® Fortran Compiler Classic (ifort) and version 2024.2 of Intel®
Fortran Compiler (ifx).

Attention
Intel® Fortran Compiler Classic (ifort) is now deprecated and will be discontinued in October 2024.
Intel recommends that customers transition now to using the LLVM-based Intel® Fortran Compiler
(ifx) for continued Windows* and Linux* support, new language support, new language features, and
optimizations.

For the latest information on transitioning from ifort to ifx, see the Porting Guide for ifort Users to
ifx.

This developer guide provides information about Intel® Fortran Compiler Classic (ifort) and its runtime
environment, and about Intel® Fortran Compiler (ifx), which is a new compiler based on the Intel Fortran
Compiler Classic (ifort) frontend and runtime libraries, uses LLVM backend technology.

Refer to the Intel® Fortran Compiler product page and the Release Notes for more information about features,
specifications, and downloads.

Use this guide to learn about:

• Compiler Setup: How to invoke the compiler on the command line or from within an IDE.
• Compiler Options: Information about options you can use to affect optimization, code generation, and

more.
• Language Reference: Information on language syntax and semantics, on adherence to various Fortran

standards, and on extensions to those standards.
• OpenMP* Support: Details about compiler support for OpenMP 5.2 and some OpenMP Version 6.0 TR12

features.
• Fortran Language Extensions: Information on using additional implementation features, including

creating a Component Object Model server, generating listing and map files, and more.
• Mixed-Language Programming: Information about Fortran and C interoperable procedures and data

types, as well as various specifics of mixed-language programming.
• Runtime Error Messages: Information about the errors processed by the Intel® Fortran runtime library

(RTL).

For more information, refer to Introducing the Intel® Fortran Compiler Classic and Intel® Fortran Compiler.

Notices and Important Information
• In this document, you may see features labeled as experimental. An experimental feature is one that

requires further testing and possible refinement. Depending on testing results, such features may be fully
defined and implemented or they may be removed in a future release.

• Support for 32-bit targets is deprecated in ifort and may be removed in a future release. ifx does not
support 32-bit targets.

• macOS is no longer supported for Intel® Fortran Compiler Classic (ifort).

Starting with the 2024.0 release, macOS is no longer supported in Intel® oneAPI Toolkits and components.

Intel® Fortran Compiler Classic and Intel® Fortran Compiler Developer Guide and Reference 1

9

https://www.intel.com/content/www/us/en/developer/articles/guide/porting-guide-for-ifort-to-ifx.html
https://www.intel.com/content/www/us/en/developer/articles/guide/porting-guide-for-ifort-to-ifx.html
https://www.intel.com/content/www/us/en/developer/tools/oneapi/fortran-compiler.html
https://www.intel.com/content/www/us/en/developer/articles/release-notes/fortran-compiler-release-notes.html

Using the Compiler Documentation
• Context Sensitive/F1 Help: To use the Context Sensitive/F1 Help feature, visit the Download

Documentation: Intel® Compiler (Current and Previous) page and follow the provided instructions.
• Download Previous Versions of the Developer Guide and Reference :Visit the Download

Documentation: Intel® Compiler (Current and Previous) page to download PDF or FAR HTML versions of
previous compiler documentation.

NOTE
For the best search experience, use a Google Chrome* browser to view your downloaded copy of the
Intel Fortran Compiler Developer Guide and Reference.

If you use Mozilla Firefox*, you may encounter an issue where the Search tab does not work. As a
workaround, you can use the Contents and Index tabs or a third-party search tool to find your
content.

Intel® Fortran Compiler Classic and Intel® Fortran Compiler
Introduction
Unless specified otherwise, assume the information in this document applies to all supported architectures
and all operating systems.

Architecture Support
The compiler supports Intel® 64 architecture.

OS Support
Compiler applications can run on the following operating systems:

• Linux operating systems for Intel® 64 architecture-based systems.
• Windows operating systems for Intel® 64 architecture-based systems.

You can use the compiler in the command-line or in a supported Integrated Development Environment (IDE):

• Microsoft Visual Studio* (Windows only)

The Intel Fortran Compiler (ifx) is a new compiler based on the Intel Fortran Compiler Classic (ifort) front-
end and runtime libraries, using LLVM back-end technology. ifx supports features of the Fortran 2018
language, most of OpenMP* 5.2 and some OpenMP Version 6.0 TR12 directives and offloading features.

ifx is binary (.o/.obj) and module (.mod) file compatible; binaries and libraries generated with ifort can
be linked with binaries and libraries built with ifx, and .mod files generated with one compiler can be used
by the other. Both compilers use the ifort runtime libraries. ifx supports GPU offloading, which ifort does
not support. Fortran users that are uninterested in GPU offloading should continue to use ifort.

Standards Support
The compiler uses the latest standards including Fortran 2018, some Fortran 2023, most of OpenMP 5.2, and
some OpenMP 6.0 TR12 features.

Refer to the Conformance, Compatibility, and Fortran Features for more information.

Feature Requirements
This table lists dependent features and their corresponding required products. For certain compiler options,
the compilation may fail if the option is specified but the required product is not installed. In this case,
remove the option from the command line and recompile.

 1 Intel® Fortran Compiler Classic and Intel® Fortran Compiler Developer Guide and Reference

10

https://www.intel.com/content/www/us/en/developer/articles/guide/download-documentation-intel-compiler-current-and-previous.html
https://www.intel.com/content/www/us/en/developer/articles/guide/download-documentation-intel-compiler-current-and-previous.html
https://www.intel.com/content/www/us/en/developer/articles/guide/download-documentation-intel-compiler-current-and-previous.html
https://www.intel.com/content/www/us/en/developer/articles/guide/download-documentation-intel-compiler-current-and-previous.html

Feature Requirement

-mkl, -qmkl, -qmkl-ilp64, /Qmkl and /Qmkl-
ilp64 options

Intel® oneAPI Math Kernel Library (oneMKL) install.

Thread Checking Intel® Inspector install.

NOTE Intel® Inspector has been deprecated. See
Intel® Inspector End of Life Announcement for more
information.

Trace Analyzing and Collecting Intel® Trace Analyzer and Collector install.

Compiler options related to this feature may require
a set-up script. For further information, see the
product documentation.

NOTE Intel® Trace Analyzer and Collector has been
deprecated. See Intel® Trace Analyzer and Collector
End of Life Announcement for more information.

See the Release Notes for complete information on supported architectures, operating systems, and IDEs for
this release.

Product and Performance Information

Performance varies by use, configuration and other factors. Learn more at www.Intel.com/
PerformanceIndex.

Notice revision #20201201

Get Help and Support

Intel® Software Documentation
You can find product documentation for many released products at the Explore Our Documentation page. Or
you can visit the Intel® Fortran Compiler main page and scroll to the Documentation and Code Samples
section for all available documentation.

NOTE
On Windows, documentation is available from within the version of Microsoft Visual Studio. You must
install the documentation on your local system. To use the feature, visit the Download Documentation:
Intel® Compiler (Current and Previous) page and follow the instructions provided there. From the Help
menu, choose Intel Compilers and Libraries to view the installed user and reference
documentation.

Product Website and Support
To find product information, register your product, or contact Intel, visit the Get Help page and the Support
page to access a wide range of self-help resources. These pages contain comprehensive product information,
including:

• Links to Get Started, Documentation, Individual Support, and Registration.
• Links to information such as white papers, articles, and user forums.

Intel® Fortran Compiler Classic and Intel® Fortran Compiler Developer Guide and Reference 1

11

https://www.intel.com/content/www/us/en/developer/articles/tool/oneapi-standalone-components.html#onemkl
https://www.intel.com/content/www/us/en/developer/articles/tool/oneapi-standalone-components.html#inspector
https://www.intel.com/content/www/us/en/developer/articles/technical/inspector-deprecation.html
https://www.intel.com/content/www/us/en/developer/articles/tool/oneapi-standalone-components.html#trace
https://www.intel.com/content/www/us/en/developer/articles/technical/trace-analyzer-deprecation.html
https://www.intel.com/content/www/us/en/developer/articles/technical/trace-analyzer-deprecation.html
https://www.intel.com/PerformanceIndex
https://www.intel.com/PerformanceIndex
https://www.intel.com/content/www/us/en/resources-documentation/developer.html
https://www.intel.com/content/www/us/en/developer/tools/oneapi/fortran-compiler.html#gs.gpl0mm
https://www.intel.com/content/www/us/en/developer/articles/guide/download-documentation-intel-compiler-current-and-previous.html
https://www.intel.com/content/www/us/en/developer/articles/guide/download-documentation-intel-compiler-current-and-previous.html
https://www.intel.com/content/www/us/en/developer/get-help/overview.html
https://www.intel.com/content/www/us/en/developer/tools/oneapi/support.html
https://www.intel.com/content/www/us/en/developer/tools/oneapi/support.html

• Links to product information.
• Links to news and events.

Online Service Center
Each purchase of an Intel® Software Development Product includes a year of support services, which includes
priority customer support at our Online Service Center. Visit the Online Service Center to create and manage
your support and warranty requests.

NOTE To access support, you must register your product at the Intel Registration Center.

Release Notes
For detailed information on system requirements, late changes to the products, supported architectures,
operating systems, and Integrated Development Environments (IDE) see the Release Notes for the product.

Forums
You can find helpful information in the Intel Software user forums. You can also submit questions to the
forums. To see the list of the available forums, go to the Software Development Tools forum for general
information, or visit a specific forum for:

• Intel® Fortran Compilers

Related Information

Additional Product Information
For additional technical product information including programs, tools, and documentation, visit the
Development Tools page.

For additional product and programming information:

• Get Started with the Intel® Fortran Compiler Classic and Intel® Fortran Compiler
• Intel® Fortran Compiler main page
• Intel® Guides and Tutorials
• Intel® Intrinsics Guide
• Intel® oneAPI Programming Guide
• Intel® Technical Articles and How-Tos

Reference and Tutorial Information
The following commercially published documents provide reference or tutorial information about Fortran:

• Introduction to Programming with Fortran with coverage of Fortran 90, 95, 2003, 2008 and 77, by I.D.
Chivers and J. Sleightholme; published by Springer, ISBN 9780857292322

• The Fortran 2003 Handbook: The Complete Syntax, Features and Procedures, by Adams, J.C., Brainerd,
W.S., Hendrickson, R.A., Maine, R.E., Martin, J.T., Smith, B.T., published by Springer Verlag, ISBN
9781846283789

• Fortran 95/2003 For Scientists and Engineers, by Chapman S.J., published by McGraw- Hill, ISBN
0073191574

• Modern Fortran Explained: Incorporating Fortran 2018, by Metcalf M., Reid J. and Cohen M., 2018,
published by Oxford University Press, ISBN-13: 978-0198811886

• Modern Fortran Explained: Incorporating Fortran 2023, by Metcalf M., Reid J., Cohen M., and Bader, R.
2024, published by Oxford University Press, ISBN-13: 978-0198876588

 1 Intel® Fortran Compiler Classic and Intel® Fortran Compiler Developer Guide and Reference

12

https://supporttickets.intel.com/servicecenter
https://lemcenter.intel.com/
https://www.intel.com/content/www/us/en/developer/articles/release-notes/oneapi-fortran-compiler-release-notes.html
https://community.intel.com/t5/Software-Development-Tools/ct-p/software-dev-tools
https://community.intel.com/t5/Intel-Fortran-Compiler/bd-p/fortran-compiler
https://www.intel.com/content/www/us/en/developer/tools/overview.html
https://www.intel.com/content/www/us/en/develop/documentation/get-started-with-fortran-compiler/top.html
https://www.intel.com/content/www/us/en/developer/tools/oneapi/fortran-compiler.html#gs.gpl0mm
https://www.intel.com/content/www/us/en/developer/topic-technology/open/guides-tutorials.html
https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html
https://www.intel.com/content/www/us/en/develop/documentation/oneapi-programming-guide/top.html
https://www.intel.com/content/www/us/en/developer/tools/oneapi/tech-articles-how-to/overview.html

• Parallel Programming with Co-arrays, by Robert W. Numrich, published by Hall/CRC Computational
Science, ISBN-13 978-0367571092

Intel does not endorse these books or recommend them over other books on the same subjects.

Compiler Setup
You can use the Intel® Fortran Compiler from the command line or Microsoft Visual Studio.

These IDEs are described in further detail in their corresponding sections.

Use the Command Line
This section provides information about the Command Line Interface (CLI).

Specify Component Locations
Before you invoke the compiler, you must set certain environment variables that define the location of
compiler-related components. Environment variables should be set for each terminal session before you
invoke the compiler. If you do not set the variables, the compiler can behave unpredictably. The compiler
includes environment configuration scripts to configure your build and development environment variables:

• On Linux, the file is a shell script called setvars.sh.
• On Windows, the file is a batch file called setvars.bat.

Set Environment Variables for CLI Development

NOTE
The Unified Directory Layout was implemented in 2024.0. If you have multiple toolkit versions
installed, the Unified layout ensures that your development environment contains the correct
component versions for each installed version of the toolkit.

The directory layout used before 2024.0, the Component Directory Layout, is still supported on new
and existing installations.

For detailed information about the Unified layout, including how to initialize the environment and
advantages with the Unified layout, refer to Use the setvars and oneapi-vars Scripts with Linux.

Compiler environment variables must first be configured if using the compiler from a Command Line
Interface (CLI). Environment variables are set up with a script called setvars in the Component Directory
Layout or oneapi-vars in the Unified Directory Layout. By default, changes to your environment made by
sourcing the setvars.sh or oneapi-vars.sh script apply only to the terminal session in which the
environment script was sourced. You must source the script for each new terminal session.

Detailed instructions on using the setvars.sh or oneapi-vars.sh script are found in Use the setvars and
oneapi-vars Scripts with Linux.

Optionally use one-time setup for setvars.sh as described in Use Modulefiles with Linux*.

Linux
Set the environment variables before using the compiler by sourcing the shell script setvars.sh. Depending
on the shell, you can use the source command or a . (dot) to source the shell script, according to the
following rules for a .sh script:

Intel® Fortran Compiler Classic and Intel® Fortran Compiler Developer Guide and Reference 1

13

https://www.intel.com/content/www/us/en/docs/oneapi/programming-guide/current/use-the-setvars-and-oneapi-vars-scripts-with-linux.html
https://www.intel.com/content/www/us/en/docs/oneapi/programming-guide/current/use-the-setvars-and-oneapi-vars-scripts-with-linux.html
https://www.intel.com/content/www/us/en/docs/oneapi/programming-guide/current/use-the-setvars-and-oneapi-vars-scripts-with-linux.html
https://www.intel.com/content/www/us/en/docs/oneapi/programming-guide/current/use-environment-modulefiles-with-linux.html

Using source:

source /<install-dir>/setvars.sh <arg1> <arg2> … <argn>
Example:

source /opt/intel/oneapi/setvars.sh intel64
Using . (dot):

. /<install-dir>/setvars.sh <arg1> <arg2> … <argn>
Example:

. /opt/intel/oneapi/setvars.sh intel64
Use source /<install-dir>/setvars.sh --help for more setvars usage information.

The compiler environment script file accepts an optional target architecture argument <arg>:

• intel64: Generate code and use libraries for Intel® 64 architecture-based targets.
• --include-intel-llvm: Adds the Intel Compiler's clang binaries folder (bin-llvm) to the PATH.

If you want the setvars.sh script to run automatically in all of your terminal sessions, add the source
setvars.sh command to your startup file. For example, inside your .bash_profile entry for Intel® 64
architecture targets.

If the proper environment variables are not set, errors similar to the following may appear when attempting
to execute a compiled program:

./a.out: error while loading shared libraries:
libimf.so: cannot open shared object file: No such file or directory

Windows
Under normal circumstances, you do not need to run the setvars.bat batch file. The terminal shortcuts in
the Windows Start menu, Intel oneAPI command prompt for <target architecture> for Visual Studio
<year>, set these variables automatically.

For additional information, see Use the Command Line on Windows.

You need to run the setvars batch file if a command line is opened without using one of the provided
Command Prompt menu items in the Start menu, or if you want to use the compiler from a script of your
own.

The setvars batch file inserts DLL directories used by the compiler and libraries at the beginning of the
existing Path. Because these directories appear first, they are searched before any directories that were part
of the original Path provided by Windows (and other applications). This is especially important if the original
Path includes directories with files that have the same names as those added by the compiler and libraries.

The setvars batch file takes multiple optional arguments; the following two arguments are recognized for
compiler and library initialization:

<install-dir>\setvars.bat [<arg1>] [<arg2>]
Where <arg1> is optional and can be:

• intel64: Generate code and use libraries for Intel® 64 architecture (host and target).
• --include-intel-llvm: Adds the Intel Compiler's clang binaries folder (bin-llvm) to the PATH.

The <arg2> is optional. If specified, it is one of the following:

• vs2022: Microsoft Visual Studio 2022
• vs2019: Microsoft Visual Studio 2019

 1 Intel® Fortran Compiler Classic and Intel® Fortran Compiler Developer Guide and Reference

14

If you have more than one edition of Visual Studio installed on your system (example: 2022 Professional and
2022 Enterprise), the automatic search for an installation uses the following precedence (within a specific
year):

• Professional
• Enterprise
• Community

The preferred edition can be specified using the VS20??INSTALLDIR environment variables
(VS2022INSTALLDIR, VS2019INSTALLDIR, etc.).

If <arg1> is not specified, the script uses the intel64 argument by default. If <arg2> is not specified, the
script uses the highest installed version of Microsoft Visual Studio detected during the installation procedure.

See Also
oneAPI Development Environment Setup

Configure Your CPU or GPU System

Invoke the Compiler

Requirements Before Using the Command Line
You may need to set certain environment variables before using the command line. For more information,
see Specify the Location of Compiler Components.

Compiler Drivers
The Intel® Fortran Compiler Classic and Intel® Fortran Compiler each have a driver:

Compiler Notes Linux Driver Windows Driver

Intel® Fortran
Compiler Classic

A Fortran compiler
with full Fortran
2018 support.

ifort ifort

Intel® Fortran
Compiler

A Fortran compiler
based on the Intel
Fortran Compiler
Classic (ifort)
front-end and
runtime libraries,
using LLVM back-
end technology.

ifx ifx

Use the Compiler from the Command Line
Invoke the compiler on the using the ifort or ifx command. This page uses ifx as an example.

The syntax of the ifx command is:

ifx [option]input_file
The ifx command can compile and link projects in one step, or can compile them and then link them as a
separate step.

In most cases, a single ifx command invokes the compiler and linker. You can also use ld (Linux) or link
(Windows) to build libraries of object modules. These commands provide syntax instructions at the command
line if you request it with the -help (Linux), or the /help or /? (Windows) options.

Intel® Fortran Compiler Classic and Intel® Fortran Compiler Developer Guide and Reference 1

15

https://www.intel.com/content/www/us/en/docs/oneapi/programming-guide/current/oneapi-development-environment-setup.html
https://www.intel.com/content/www/us/en/docs/oneapi-base-toolkit/get-started-guide-linux/current/before-you-begin.html

The ifx command automatically references the appropriate runtime libraries when it invokes the linker. To
link one or more object files created by the compiler, you should use the ifx command instead of the link
command.

The ifx command invokes a driver program that is the user interface to the compiler and linker. It accepts a
list of command options and file names and directs processing for each file. The driver program does the
following:

• Calls the compiler to process Fortran files.
• Passes the linker options to the linker.
• Passes object files created by the compiler to the linker.
• Passes libraries to the linker.
• Calls the linker or librarian to create the executable or library file.

Because the compiler driver calls other software components, they may return error messages. For instance,
the linker may return a message if it cannot resolve a global reference. The watch option can help clarify
which component is generating an error.

For a complete listing of compiler options, see the Alphabetical Option List.

Windows systems support characters in Unicode (multibyte) format. The compiler processes the file names
containing Unicode characters.

Syntax Rules
The following rules apply when specifying ifx on the command line:

Argument Description

options An option is specified by one or more letters preceded by a hyphen (-) for Linux or a
slash (/) for Windows. (You can use a hyphen (-) instead of a slash (/) for
Windows, but it is not the preferred method.)

Options cannot be combined with a single slash or hyphen; you must specify the
slash or hyphen for each option specified. For example: /1 /c is correct, but /1c is
not.

Options can take arguments in the form of file names, strings, letters, and numbers.
If a string includes spaces, they must be enclosed in quotation marks.

Some options take arguments in the form of file names, strings, letters, or numbers.
Except where otherwise noted, a space between the option and its argument(s) can
be entered or combined. For a complete listing of compiler options, see the Compiler
Options reference.

Some compiler options are case-sensitive. For example, c and C are two different
options.

Option names can be abbreviated, enter as many characters as are needed to
identify the option.

Compiler options remain in effect for the whole compilation unless overridden by a
compiler directive.

Certain options accept one or more keyword arguments following the option name
on Windows. To specify multiple keywords, you typically specify the option multiple
times. However, some options allow comma-separated keywords. For example:

• Options that use a colon can use an equal sign (=) instead.

 1 Intel® Fortran Compiler Classic and Intel® Fortran Compiler Developer Guide and Reference

16

Argument Description

• Standard output and standard error can be redirected to a file, avoiding
displaying excess text, which slows down execution. Scrolling text in a terminal
window on a workstation can cause an I/O bottleneck (increased elapsed time)
and use more CPU time. See the examples in the next section.

Options on the command line apply to all files. In the following example, the -c and
-nowarn options apply to both files x.f and y.f:

ifx -c x.f -nowarn y.f

input file(s) Multiple input_files can be specified, using a space as a delimiter. When a file is not
in PATH or working directory, specify the directory path before the file name. The file
name extension specifies the type of file. See Understanding File Extensions.

Xlinker (Linux)
or /link
(Windows)

Unless specified with certain options, the command line compiles and links the files
you specify. To compile without linking, specify the c option.

All compiler options must precede the /link (Windows) options. -Xlinker can be
used anywhere on the command line, only single options/files can be specified after
-Xlinker. Options that appear following -Xlinker or /link are passed directly to
the linker.

Examples of the ifx Command
This command compiles x.for, links, and creates an executable file. This command generates a temporary
object file, which is deleted after linking:

ifx x.for
This command compiles x.for and generates the object file x.o (Linux) or x.obj (Windows). The c option
prevents linking (it does not link the object file into an executable file):

Linux

ifx -c x.for
Windows

ifx x.for /c
This command links x.o or x.obj into an executable file. This command automatically links with the default
libraries:

Linux

ifx x.o
Windows

ifx x.obj
This command compiles a.for, b.for, and c.for, creating three temporary object files, then linking the
object files into an executable file named a.out (Linux) or a.exe (Windows).

ifx a.for b.for c.for
Compile the source files that define modules before the files that reference the modules (in USE statements)
when using modules and compile multiple files.

Intel® Fortran Compiler Classic and Intel® Fortran Compiler Developer Guide and Reference 1

17

When you use a single ifx command, the order in which files are placed on the command line is significant.
For example, if the free-form source file moddef.f90 defines the modules referenced by the file
projmain.f90, use the following syntax:

ifx moddef.f90 projmain.f90
To specify a particular name for the executable file, specify the option -o (Linux) or /exe (Windows):

Linux

ifx x.for -o myprog.out
Windows

ifx x.for /exe:myprog.exe
To redirect output to a file and then display the program output (Linux only):

myprog > results.lis
more results.lis

To place standard output into file one.out and standard error into file two.out (Windows only):

ifx filenames /options 1>one.out 2>two.out
To place standard output and standard error into a single file both.out (Windows):

ifx filenames /options 1>both.out 2>&1

Other Methods for Using the Command Line to Invoke the Compiler
• Using makefiles from the Command Line: Use makefiles to specify a number of files with various

paths and to save this information for multiple compilations. For more information on using makefiles, see
Use Makefiles to Compile Your Application.

• Using the devenv Command from the Command Line (Windows only): Use devenv to set various
options for the IDE, and to build, clean, and debug projects from the command line. For more information
on the devenv command, see the devenv description in the Microsoft Visual Studio documentation.

• Using a Batch File from the Command Line: Create and use a .bat file to execute the compiler with a
desired set of options instead of retyping the command each time you need to recompile.

See Also
Specify the Location of Compiler Components
Understand File Extensions
Use Microsoft Visual Studio
Use Makefiles to Compile Your Application
watch compiler option

Use the Command Line on Windows

The compiler provides a shortcut to access the command line with the appropriate environment variables
already set.

To invoke the compiler from the command line:

1. Open the Windows Start menu.
2. Scroll down the list of apps (programs) in the Start menu and find the Intel oneAPI 2021 folder.
3. Left click on the folder name and select your component. The command prompts shown are dependent

on the versions of Microsoft Visual Studio you have installed on your machine.
4. Right click on the command prompt icon to pin it to your taskbar. This step is optional.
5. The command line opens.

You can use any command recognized by the Windows command prompt, plus some additional commands.

 1 Intel® Fortran Compiler Classic and Intel® Fortran Compiler Developer Guide and Reference

18

Because the command line runs within the context of Windows, you can easily switch between the command
line and other applications for Windows or have multiple instances of the command line open simultaneously.

When you are finished working in a command line, use the exit command to close and end the session.

Run Fortran Applications from the Command Line
For programs run from the command line, the operating system searches directories listed in the PATH
environment variable to find the requested executable file.

The program can also be run by specifying the complete path of the executable file. On Windows, any DLLs
you are using must be in the same directory as the executable or in one specified in the path.

Multithreaded Programs
If the program is multithreaded, each thread starts on whichever processor is available at the time. On a
computer with one processor, the threads all run in parallel, but not simultaneously; the single processor
switches among them. On a computer with multiple processors, the threads can run simultaneously.

Use the -fpscomp filesfromcmd Option
If you specify the -fpscomp option with keyword filesfromcmd, the command line that executes the
program can include additional file names to satisfy OPEN statements in the program for which the file name
field (FILE specifier) has been left blank. The first file name on the command line is used for the first OPEN
statement executed, the second file name for the second OPEN statement, and so on.

Each file name on the command line must be separated from the names around it by one or more spaces, or
tab characters. You can enclose each name in quotation marks ("<filename>"), but this is not required
unless the argument contains spaces or tabs. A null argument consists of an empty set of quotation marks
with no file name enclosed ("").

The following example runs the program MYPROG.EXE from the command line:

MYPROG "" OUTPUT.DAT
Because the first file name argument is null, the first OPEN statement with a blank file name field produces
the following message:

File name missing or blank - please enter file name
UNIT number ?

The number is the unit number specified in the OPEN statement. The file name OUTPUT.DAT is used for the
second OPEN statement executed. If additional OPEN statements with blank file name fields are executed, you
will be prompted to add more file names.

Instead of using the -fpscomp option with keyword filesfromcmd, you can:

• Call the GETARG library routine to return the specified command-line argument. To execute the program in
the Microsoft Visual Studio IDE, provide the command-line arguments to be passed to the program using
Project > Properties. Choose the Debugging category and enter the arguments in the Command
Arguments text box.

• On Windows, call the GetOpenFileName Windows API routine to request the file name using a dialog box.

See Also
fpscomp compiler option

File Extensions

Input File Extensions
The Intel® Fortran Compiler interprets the type of each input file by the file name extension.

Intel® Fortran Compiler Classic and Intel® Fortran Compiler Developer Guide and Reference 1

19

The file extension determines if a file gets passed to the compiler or to the linker. The following types of files
are used with the compiler:

• Files passed to the compiler: .f90, .for, .f, .fpp, .i, .i90, .ftn
Typical Fortran source files have a file extension of .f90, .for, and .f. When editing your source files,
you need to choose the source form, either free-source form or fixed-source form (or a variant of fixed
form called tab form). You can use a compiler option to specify the source form used by the source files
(see the description for the free or fixed compiler option) or you can use specific file extensions when
creating or renaming your files. For example, the compiler assumes that files with an extension of:

• .f90 or .i90 are free-form source files.
• .f, .for, .ftn, or .i are fixed-form (or tab-form) files.

• Files passed to the linker: .a, .lib, .obj, .o, .exe, .res, .rbj, .def, .dll
The most common file extensions and their interpretations are:

File Name (OS
Agnostic)

File Name for
Linux

File Name for
Windows

Interpretation Action

file.a file.lib Object library Passed to the
linker.

file.f
file.for
file.ftn
file.i

Fortran fixed-form
source

Compiled by the
Intel® Fortran
Compiler.

file.fpp On Linux, the file
names have the
following
uppercase
extensions:

file.FPP
file.F
file.FOR
file.FTN

Fortran fixed-form
source

Automatically
preprocessed by
the Intel® Fortran
preprocessor fpp;
then compiled by
the Intel® Fortran
Compiler.

file.f90
file.i90

Fortran free-form
source

Compiled by the
Intel® Fortran
Compiler.

file.F90 Fortran free-form
source

Automatically
preprocessed by
the Intel® Fortran
preprocessor fpp;
then compiled by
the Intel® Fortran
Compiler.

file.s file.asm Assembly file Passed to the
assembler.

file.o file.obj Compiled object
file

Passed to the
linker.

 1 Intel® Fortran Compiler Classic and Intel® Fortran Compiler Developer Guide and Reference

20

When you compile from the command line, you can use the compiler configuration file to specify default
directories for input libraries. To specify additional directories for input files, temporary files, libraries, and for
the files used by the assembler and the linker, use compiler options that specify output file and directory
names.

Output File Extensions on Windows
On Windows operating systems, many compiler options allow you to specify the name of the output file being
created. These compiler options are summarized in the table below.

If you specify only a file name without an extension, a default extension is added for the file.

Compiler Option Default File Extension

/Fafile .ASM

/dll:file .DLL

/exe:file .EXE

/map:file .MAP

See Also
Invoke the Compiler

Use Makefiles for Compilation
This topic describes the use of makefiles to compile your application. You can use makefiles to specify a
number of files with various paths, and to save this information for multiple compilations.

Linux
To run make from the command line using the compiler, make sure that /usr/bin and /usr/local/bin are
in your PATH environment variable.

If you use the C shell, you can edit your .cshrc file and add the following:

setenv PATH /usr/bin:/usr/local/bin:$PATH
Then you can compile using the following syntax:

make -f yourmakefile
Where -f is the make command option to specify a particular makefile name.

Windows
To use a makefile to compile your source files, use the nmake command. For example, if your project is
your_project.mak, you can use the following syntax:

Example:

nmake /f [makefile_name.mak] FPP=[compiler_name] LINK32=[linker_name]
For example:

nmake /f your_project.mak FPP=ifx LINK32=xilink

Argument Description

/f The nmake option to specify a makefile.

Intel® Fortran Compiler Classic and Intel® Fortran Compiler Developer Guide and Reference 1

21

Argument Description

your_project.mak The makefile used to generate object and executable files.

FPP The preprocessor/compiler that generates object and executable files.
(The name of this macro may be different for your makefile.)

LINK32 The linker that is used.

The nmake command creates object files (.obj) and executable files () from the information specified in the
your_project.mak makefile.

Generate Build Dependencies for Compilation
Use the gen-dep compiler option to generate build dependencies for compilation.

Build dependencies include a list of all files included with INCLUDE statements and .mod files accessed with
USE statements. The resulting output can be used to create a makefile to with the appropriate dependencies
resolved.

Consider a source file that contains the following:

 module b
 include 'gendep001b.inc'
 end module b

 program gendep001
 use b
 a_global = b_global
end

When you compile the source using the gen-dep option, the following output is produced:

 b.mod : \
 gendep001.f90
gendep001.obj : \
 gendep001.f90 gendep001b.inc

This output indicates that the generated file, b.mod, depends on the source file, gendep001.f90. Similarly,
the generated file, gendep001.obj, depends on the files, gendpe001.f90 and gendep001b.inc.

Use Microsoft Visual Studio
You can use the Intel® Fortran Compiler within the Microsoft Visual Studio integrated development
environment (IDE) to develop Fortran applications, including static library (.LIB), dynamic link library
(.DLL), and main executable (.EXE) applications. This environment makes it easy to create, debug, and
execute programs. You can build your source code into several types of programs and libraries, using the IDE
or from the command line.

The IDE offers these major advantages:

• Makes application development quicker and easier by providing a visual development environment.
• Provides integration with the native Microsoft Visual Studio debugger.
• Makes other IDE tools available.

See Also
Performing Common Tasks with Microsoft Visual Studio
Using Microsoft Visual Studio Solution Explorer
Using Breakpoints in the Debugger

 1 Intel® Fortran Compiler Classic and Intel® Fortran Compiler Developer Guide and Reference

22

Use Microsoft Visual Studio* Solution Explorer
Creating a Fortran project in Microsoft Visual Studio* causes a screen to appear. This screen shows an open
Solution named Console1 and a Project named Console1. You will see that the source file
Console1.f90 is open. The left pane shows the file, Console1.f90, which is opened in the default
language-sensitive integrated development environment text editor. The text editor uses different colors to
identify the following:

• Source comments (green)
• Fortran standard language elements (blue)
• Other language text (black)
• Sample name (red)

Solution Explorer View
The right pane shows the Solution Explorer view, which lets you view different aspects of your solution,
such as the source files. The tabs displayed in Solution Explorer vary depending upon the products
installed, and the files associated with the current solution. To display the Solution Explorer view, select
View > Solution Explorer. To display the Properties view, select View > Properties Window.

To edit a file listed in the Solution Explorer, either double-click its file name or select File > Open and
specify the file.

The Output window displays compilation and linker messages. To display the Output window, select View >
Output. The Output window also links to the build log, if the Generate Build logs option is enabled in
either:

• Tools > Options > Intel Compilers and Libraries > IFORT Intel Fortran Classic > General for
ifort
-OR-

• Tools > Options > Intel Compilers and Libraries > IFX Intel Fortran > General for ifx

Create a New Project

The following steps show how to invoke the compiler from within Microsoft Visual Studio*. Exact steps may
vary depending on the version of Microsoft Visual Studio in use.

Step 1: Build a Binary

1. Launch Microsoft Visual Studio.
2. Select File > New > Project.
3. In the New Project window, select a project type under Fortran.

NOTE Set Fortran as the language in the Language drop down.

4. Select a template and click OK.
5. Select Build > Build Solution

The results of the compilation display in the Output window.

Step 2: Set Build Configurations

1. Right click on Project in Solution Explorer > Properties
2. Locate Fortran in the list and expand the heading.
3. Walk through the available properties to select your configuration.

The project and its files appear in the Solution Explorer view. For a COM Server project, you will see a
second page with additional user options.

Intel® Fortran Compiler Classic and Intel® Fortran Compiler Developer Guide and Reference 1

23

Add an Existing File to the Project
1. If not already open, open the project (use the File menu).
2. Select Project > Add > Existing Item.
3. In the Add Existing Item dialog box that appears, select the Fortran files to be added to the project.

Add a New File to the Project
1. If not already open, open the project (use the File menu).
2. Select Project > Add > New Item.
3. In the Add New Item dialog box that appears, choose the type of file.
4. Specify the file name. Click Open. The file name appears in the Solution Explorer view.
5. Use the Microsoft Visual Studio editor to type in source code. Be sure to save your work when you are

finished.

Organize Existing Source Code
If you have existing source code, you should organize it into directories before creating a project, although it
is easy to move files and edit your project definitions if you should later decide to reorganize your files.

Work with Fortran Modules
If your program uses Fortran modules, you do not need to explicitly add them to your project; they appear
as dependencies (.MOD files).

A module file is a precompiled, binary version of a module definition, stored as a .mod file. When you change
the source definition of a module, you can update the .mod file before you rebuild your project. To do this,
compile the corresponding source file separately by selecting the file in the Solution Explorer window and
selecting Build > Compile. If the module source file is part of your project, you do not need to compile the
file separately. When you build your project, the Intel® Fortran Compiler determines what files need to be
compiled.

To control the placement of module files in directories, use Project > Properties > Fortran > Output
Files > Module Path in the IDE or the compiler option module:path on the command line. The location you
specify is automatically searched for .mod files.

To control the search for module files in directories, select one of the following:

• In the IDE:

• Project > Properties > Fortran > Preprocessor > Default Include and Use Path
• Project > Properties > Fortran > Preprocessor > Ignore Standard Include Path

• On the Command Line:

• X and assume:[no]source_include compiler options.

For a newly created project (or any other project), the IDE scans the file list for sources that define modules
and compiles them before compiling the program units that use them. The IDE automatically scans the
added project files for modules specified in USE statements, as well as any INCLUDE statements. It scans the
source files for all tools used in building the project.

See Also
Understand Project Types
I compiler option
X compiler option
assume compiler option

Perform Common Tasks with Microsoft Visual Studio*
This topic outlines the basic steps for using the Intel® Fortran Compiler with Microsoft Visual Studio*.

 1 Intel® Fortran Compiler Classic and Intel® Fortran Compiler Developer Guide and Reference

24

Build and Run a Fortran Project
• To build the application, select Build > Build Solution. Any errors will be displayed in the Output

window. Double-click a message to go to the line in error.
• To run without debugging, select Debug > Start Without Debugging. The console window will remain

open after the program exits until you press Enter.
• To run under the debugger, first set a breakpoint at the first executable line of the program by clicking in

the gray column to the left of the source line. Then select Debug > Start Debugging. If the program
exits normally, the console window will be closed automatically.

Convert Compaq* Visual Fortran Projects
For information on converting projects from Compaq* Visual Fortran to Intel® Fortran, see Convert and Copy
Projects.

See Also
Creating a New Project
Convert and Copy Projects

Select a Version of the Intel® Fortran Compiler
If you have more than one version of the Intel® Fortran Compiler installed, you can choose which version to
be used when building applications. You can also select different versions for different target platforms and
the version of the compiler you are using. The target platform you select determines the compiler versions
that appear in the Selected compiler drop-down box.

To select the compiler version:

1. Select Tools > Options > Intel Compilers and Libraries > IFORT Intel Fortran Classic >
Compilers for ifort or Tools > Options > Intel Compilers and Libraries > IFX Intel Fortran >
Compilers for ifx.

2. Select a compiler from Selected compiler. Click OK.

Use Visual Studio* IDE Automation Objects
This topic briefly describes the Automation interfaces provided by Intel® Fortran. Automation interfaces are
programmable objects used to access underlying IDE components and projects to provide experienced
developers with a means of automating common tasks and allow a finer degree of control over the IDE and
the Fortran projects being used within it.

You can use the Visual Studio* Object Browser (View > Object Browser) to view an object and its
associated properties. Open the following in the browser: Browse > Edit Custom Component Set > .NET
 > Microsoft.VisualStudio.VFProject.

NOTE
The objects listed here are provided as an advanced feature for developers who are already familiar
with using Automation objects and the Visual Studio* object model.

Object Description

IVFCollection Contains the functionality that can be exercised on a collections object.

VFConfiguration Programmatically accesses the properties in the General property page of a
project's Property Pages dialog box. This object also allows access to the tools used
to build this configuration.

VFCustomBuildTool Programmatically accesses the properties in the Custom Build Step property page
in a project's Property Pages dialog box.

Intel® Fortran Compiler Classic and Intel® Fortran Compiler Developer Guide and Reference 1

25

VFDebugSettings Contains properties that allow the user to programmatically manipulate the settings
in the Debug property page.

VFFile Describes the operations that can take place on a file in the active project.

VFFileConfiguration Contains build information about a file (VFFile object), including such things as what
tool is attached to the file for that configuration.

VFFilter Exposes the functionality on a folder in Solution Explorer for an Intel® Fortran
project.

VFFortranCompiler
Tool

Exposes the functionality of the IFORT tool.

VFFortranCompiler
Version

Provides access to properties relating to the Intel® Fortran Compiler version.

VFLibrarianTool Exposes the functionality of the LIB tool.

VFLinkerTool Exposes the functionality of the LINK tool.

VFManifestTool Programmatically accesses the properties in the Manifest Tool folder of a project's
Property Pages dialog box.

VFMidlTool Programmatically accesses the properties in the MIDL folder of a project's Property
Pages dialog box.

VFPlatform Provides access to properties relating to supported platforms.

VFPreBuildEventTo
ol

Programmatically accesses the properties on the Pre-Build Event property page, in
the Build Events folder in a project's Property Pages dialog box.

VFPreLinkEventToo
l

Programmatically accesses the properties on the PreLink Event property page, in
the Build Events folder in a project's Property Pages dialog box.

VFPostBuildEventT
ool

Programmatically accesses the properties on the Post-Build Event property page,
in the Build Events folder in a project's Property Pages dialog box.

VFProject Exposes the properties on an Intel® Fortran project

VFResourceCompil
erTool

Programmatically accesses the properties in the Resources folder in a project's
Property Pages dialog box.

The following example, written in Visual Basic*, demonstrates how to use automation objects to modify the
list of available platforms and versions in the Visual Studio* IDE Configuration Manager:

Imports System
Imports EnvDTE
Imports EnvDTE80
Imports System.Diagnostics
Imports Microsoft.VisualStudio.VFProject
Imports System.Collections
Public Module MultiPV
 ' Create a Console application before executing this module
 ' Module demonstrates Multi Platform & Multi Version Automation Support
 ' Variable definition
 Dim Prj As Project ' VS project
 Dim VFPrj As VFProject ' Intel VF project
 Dim o As Object ' Object
 Sub run()
 ' Get the Project
 Prj = DTE.Solution.Projects.Item(1)
 '

 1 Intel® Fortran Compiler Classic and Intel® Fortran Compiler Developer Guide and Reference

26

 ' Get Intel VF project
 VFPrj = Prj.Object
 '
 ' Get list of Supported platforms
 Dim pList As ArrayList = New ArrayList() ' list of platforms
 Dim cList As ArrayList = New ArrayList() ' lost of compilers
 Dim i As Integer
 pList = getSupportedPlatforms()
 For i = 0 To pList.Count - 1
 cList = getCompilers(pList.Item(i))
 printCompilers(pList.Item(i), cList)
 Next
 '
 ' Add configurations - x64
 For i = 0 To pList.Count - 1
 If pList.Item(i) <> "Win32" Then
 addConfiguration(pList.Item(i))
 End If
 Next
 Dim cfgsList As ArrayList = New ArrayList() ' list of configurations
 cfgsList = getAllConfigurations()
 '
 ' Set compiler
 For i = 0 To pList.Count - 1
 Dim pNm As String
 Dim cvList As ArrayList = New ArrayList()
 pNm = pList.Item(i)
 cList = getCompilers(pNm)
 cvList = getCompilerVersions(pNm)
 Dim j As Integer
 For j = 0 To cvList.Count - 1
 Dim cv As String = cvList.Item(j)
 If SetCmplrForPlatform(pNm, cv) Then
 setActiveCfg(pNm)
 SolutionRebuild()
 Dim sOut As String = GetOutput()
 Dim scv As String = CheckCompiler(sOut)
 MsgBox(pNm + " " + cv + " " + scv)
 End If
 Next
 Next
 End Sub
 ' get context from Output window
 Function GetOutput() As String
 Dim win As Window
 Dim w As OutputWindow
 Dim wp As OutputWindowPane
 Dim td As TextDocument
 win = DTE.Windows.Item(Constants.vsWindowKindOutput)
 w = win.Object
 Dim i As Integer
 For i = 1 To w.OutputWindowPanes.Count
 wp = w.OutputWindowPanes.Item(i)
 If wp.Name = "Build" Then
 td = wp.TextDocument
 td.Selection.SelectAll()
 Dim ts As TextSelection = td.Selection
 GetOutput = ts.Text

Intel® Fortran Compiler Classic and Intel® Fortran Compiler Developer Guide and Reference 1

27

 Exit Function
 End If
 Next
 End Function
 Function CheckCompiler(ByVal log As String) As String
 Dim s As String
 Dim beg_ As Integer
 Dim end_ As Integer
 beg_ = log.IndexOf("Compiling with")
 beg_ = log.IndexOf("Intel", beg_)
 end_ = log.IndexOf("]", beg_)
 s = log.Substring(beg_, end_ - beg_ + 1)
 CheckCompiler = s
 End Function
 Function SetCmplrForPlatform(ByVal plNm As String, ByVal vers As String) As Boolean
 Dim pl As VFPlatform
 Dim cll As IVFCollection
 Dim cvs As IVFCollection
 Dim cv As VFFortranCompilerVersion
 Dim maj As String
 Dim min As String
 Dim ind As Integer
 Try
 ind = vers.IndexOf(".")
 maj = vers.Substring(0, ind)
 min = vers.Substring(ind + 1)
 cll = VFPrj.Platforms
 pl = cll.Item(plNm)
 If pl Is Nothing Then
 MsgBox("Platform " + plNm + " not exist")
 Exit Function
 End If
 cvs = pl.FortranCompilerVersions
 Dim j As Integer
 For j = 1 To cvs.Count
 cv = cvs.Item(j)
 If cv.MajorVersion.ToString() = maj And cv.MinorVersion.ToString() = min Then
 pl.SelectedFortranCompilerVersion = cv
 SetCmplrForPlatform = True
 Exit Function
 End If
 Next
 MsgBox("Compiler version " + maj + "." + min + " not exist for platform " + plNm)
 SetCmplrForPlatform = False
 Catch ex As Exception
 SetCmplrForPlatform = False
 End Try
 End Function
 Function getSupportedPlatforms() As ArrayList
 Dim list As ArrayList = New ArrayList()
 Dim pl As VFPlatform
 Dim pls As IVFCollection
 pls = VFPrj.Platforms
 Dim i As Integer
 For i = 1 To pls.Count
 pl = pls.Item(i)
 list.Add(pl.Name)
 Next

 1 Intel® Fortran Compiler Classic and Intel® Fortran Compiler Developer Guide and Reference

28

 getSupportedPlatforms = list
 End Function
 Function getCompilers(ByVal plNm As String) As ArrayList
 Dim list As ArrayList = New ArrayList()
 Dim pl As VFPlatform
 Dim pls As IVFCollection
 Dim cvs As IVFCollection
 Dim cv As VFFortranCompilerVersion
 Dim j As Integer
 pls = VFPrj.Platforms
 pl = pls.Item(plNm)
 cvs = pl.FortranCompilerVersions
 For j = 1 To cvs.Count
 cv = cvs.Item(j)
 list.Add(cv.DisplayName)
 Next
 getCompilers = list
 End Function
 Function getCompilerVersions(ByVal plNm As String) As ArrayList
 Dim list As ArrayList = New ArrayList()
 Dim pl As VFPlatform
 Dim pls As IVFCollection
 Dim cvs As IVFCollection
 Dim cv As VFFortranCompilerVersion
 pls = VFPrj.Platforms
 pl = pls.Item(plNm)
 cvs = pl.FortranCompilerVersions
 Dim j As Integer
 For j = 1 To cvs.Count
 cv = cvs.Item(j)
 Dim vers As String
 vers = cv.MajorVersion.ToString() + "." + cv.MinorVersion.ToString()
 list.Add(vers)
 Next
 getCompilerVersions = list
 End Function
 Sub printCompilers(ByVal plNm As String, ByVal list As ArrayList)
 Dim s As String
 s = "Platform " + plNm + Chr(13)
 Dim i As Integer
 For i = 0 To list.Count - 1
 s += " " + list.Item(i) + Chr(13)
 Next
 MsgBox(s)
 End Sub
 Sub addConfiguration(ByVal cfgNm As String)
 Dim cM As ConfigurationManager
 cM = Prj.ConfigurationManager
 cM.AddPlatform(cfgNm, "Win32", True)
 End Sub
 Function getAllConfigurations() As ArrayList
 Dim list As ArrayList = New ArrayList()
 Dim cM As ConfigurationManager
 Dim i As Integer
 Dim c As Configuration
 cM = Prj.ConfigurationManager
 For i = 1 To cM.Count
 c = cM.Item(i)

Intel® Fortran Compiler Classic and Intel® Fortran Compiler Developer Guide and Reference 1

29

 list.Add(c.ConfigurationName + "|" + c.PlatformName)
 Next
 getAllConfigurations = list
 End Function
 Sub setActiveCfg(ByVal pNm As String)
 Dim scs As SolutionConfigurations = DTE.Solution.SolutionBuild.SolutionConfigurations
 Dim i As Integer
 Dim j As Integer
 For i = 1 To scs.Count
 Dim sc As SolutionConfiguration
 Dim sctxs As SolutionContexts
 sc = scs.Item(i)
 sctxs = sc.SolutionContexts
 For j = 1 To sctxs.Count
 Dim sctx As SolutionContext = sctxs.Item(j)
 If sctx.ConfigurationName = "Debug" And sctx.PlatformName = pNm Then
 sc.Activate()
 Exit Sub
 End If
 Next
 Next
 End Sub
 Sub SolutionRebuild()
 DTE.Solution.SolutionBuild.Clean(True)
 DTE.Solution.SolutionBuild.Build(True)
 End Sub
End Module

Specify Fortran File Extensions
You can specify additional Fortran free format and fixed format file extensions to be recognized as valid file
extensions within the IDE. The IDE treats these additional extensions as compilable Fortran source files. You
can also remove or modify existing extensions.

When you add a new extension, the IDE checks the registry to determine whether the extension is already
associated with a language, tool, or file format. If there is such an association, a message informs you of this
and you will not be allowed to add the extension.

Specify Fortran File Extensions
To specify the Fortran file extensions:

1. Open Tools > Options.
2. In the left pane, go to Intel Compilers and Libraries > IFORT Intel Fortran Classic > General for

ifort or Intel Compilers and Libraries > IFX Intel Fortran > General for ifx.
3. Specify one or more Fortran File Extensions, each beginning with a period and separated by semi-

colons. You can specify extensions for both Free Format Extensions and Fixed Format Extensions.
Click OK.

These new settings take effect the next time you start Microsoft Visual Studio*.

Understand Solutions, Projects, and Configurations
The Microsoft Visual Studio* IDE consists of one or more projects contained within a solution. A solution can
contain multiple projects. If you have several Fortran applications that do different calculations but are
related, you can store all the individual projects in a single solution. Along with a solution file (.sln), the IDE
creates a solution user options (.suo) file for storing IDE customization.

The following table summarizes the files created by Microsoft Visual Studio when a new project is created:

 1 Intel® Fortran Compiler Classic and Intel® Fortran Compiler Developer Guide and Reference

30

File Extension Description

Project
Solution file

.sln Stores solution information, including the projects and items in the
solution and their locations on disk.

Project file .vfproj
.vcxproj

Contains information used to build a single project or sub-project.

Solution
options file

.suo Contains IDE customization for the solution, based on the selected
options.

Caution

• Directly modifying these files with a text editor is not supported.
• Before opening Compaq* Visual Fortran 6.0 projects or Intel® Fortran 7.x projects in Microsoft

Visual Studio, review the guidelines listed in Convert and Copy Projects.

Each project can specify one or more configurations to build from its source files. A configuration specifies
such information as the type of application to build, the platform it runs on, and the tool settings to use when
building. Having multiple configurations extends the scope of a project, but maintains a consistent source
code base to work with.

Microsoft Visual Studio automatically creates Debug and Release (also known as Retail) configurations
when a new project is started. The default configuration is the Debug configuration. To specify the current
configuration, select Configuration Manager from the Build menu.

Specify build options in the Project > Properties dialog box, for one of the following:

• For all configurations (project-wide).
• For certain configurations (per configuration).
• For certain files (per file).

For example, specify compiler optimizations for all general configurations, but turn them off for certain
configurations or certain files.

Once the files in the project are specified and the configurations for your project build are set, including the
tool settings, build the project with the commands on the Build menu.

NOTE For a multiple-project solution, make sure that the executable project is designated as the
startup project (shown in bold in the Solution Explorer view). To modify the startup project, right-
click on the project and select Set as StartUp Project.

See Also
Convert and Copy Projects

Navigate Programmatic Components in a Fortran File

You can quickly navigate the code of the file currently open in the source editor using the Tree Navigation
Window. The Tree Navigation Window displays the following components of the file as nested, selectable
nodes in a tree:

• Programs
• Modules
• Subroutines with signature
• Functions with signature
• Types
• Interfaces

Nodes at each nested level are sorted alphabetically.

Intel® Fortran Compiler Classic and Intel® Fortran Compiler Developer Guide and Reference 1

31

Any changes you make to a file, such as adding or deleting a component or changing a signature, are
immediately reflected in the tree.

To navigate a file:

1. Select View > Other Windows > Tree Navigation Window.
The Tree Navigation Window tab appears near the Solution Explorer tab. When no Fortran project
is opened, the Tree Navigation Window is empty. When you open a Fortran file in the source editor,
all components of the file appear in the window.

2. Select a node in the tree to view the corresponding component in the source editor.
The cursor appears at the correct location in the file.

Specify Path, Library, and Include Directories
You can specify directories that the Microsoft Visual Studio* project system should search for certain types of
files.

To set path, library, and include directories for your Intel® Fortran project environment on a particular
machine:

1. Select Tools > Options.
2. In the left pane, select Intel Compilers and Libraries > IFORT Intel Fortran Classic > Compilers

for ifort or Intel Compilers and Libraries > IFX Intel Fortran > Compilers for ifx.
3. In the right pane, specify directories where the Microsoft Visual Studio* project system should look for

files:

• Executables: The directories to be searched for executable files. (Works like the PATH environment
variable.)

• Libraries: The directories to be searched for libraries. (Works like the LIB environment variable.)
• Includes: The directories to be searched for include files. (Works like the INCLUDE environment

variable.) You can use macros like $(VSInstallDir) in directory names. For list of supported
macros, see Supported Build Macros.

4. Click OK.

Use the Reset buttons to restore original installation settings for Executables, Libraries, and Includes fields.
Reset restores initial settings for the currently selected compiler.

NOTE If you specify devenv or useenv on the command line to start the IDE, the IDE uses the PATH,
INCLUDE, and LIB environment variables as defined for that command line when performing a build. It
uses these values instead of the values defined in Tools > Options.
For more information on the devenv command, see the devenv description in the Microsoft Visual
Studio* documentation.

For more information on environment variables, see Supported Environment Variables.

See Also
Supported Environment Variables

Supported Build Macros

Set Compiler Options in the Microsoft Visual Studio* IDE Property Pages
To set compilation and related options for the current project:

1. Select the project name in the Solution Explorer view.
2. In the Project menu, select Properties.

The Intel® Fortran Compiler lets you specify compiler options for individual source files by selecting the file
name and clicking View > Property Pages.

 1 Intel® Fortran Compiler Classic and Intel® Fortran Compiler Developer Guide and Reference

32

NOTE For convenience, context-sensitive pop-up menus containing commonly used menu options are
available by right-clicking on an item (for example, a file name or solution) in the IDE.

Display the Options
To display the Fortran Compiler option categories, click the Fortran folder in the left pane to display the
compiler option categories. The compiler options are found in the General category in the right pane. The
selected option within the General category is Suppress Startup Banner, with a default value of Yes. The
corresponding command line compiler option is nologo, as shown in the Help text at the bottom of the right
pane.

NOTE Option values that are different from the compiler defaults are displayed in bold.

Change Option Settings
To change the setting for a compiler option:

1. Select a category and then click the desired option. Click the button at the right of an option line to
display the available settings or display a dialog box. Available settings may include <inherit from
project defaults>, which resets the option value to the compiler default.

2. Select the desired setting and click OK.

To change the configuration (such as from Debug to Release), do one of the following:

• Select a different configuration in the Configuration: drop-down box in the upper-left of the window.
• Click the Configuration Manager button in the upper-right of the window and reset the configuration in

the dialog box that appears.

Fortran Option Categories
The Intel® Fortran Compiler options available from the IDE are grouped in categories. Some options appear in
multiple categories. Available options in each category may vary, depending on the platform you have
selected in the Platform box at the top of the dialog box. Options not listed in one of the categories can be
typed into the Command Line category window.

Command Line Category
The Command Line category contains the Additional Options field where you can type in an option as you
would from the command line. The IDE will process them as part of the Property Pages options for the
particular project. For instance, you can use the Command Line category to type in miscellaneous Intel®
Fortran Compiler options that are not represented in any of the listed categories. The option you specify in
the Command Line category takes precedence and overrides the equivalent setting in another category.

Supported Build Macros
The Intel® Fortran Compiler supports certain build macros for use in the Property Pages dialog boxes
associated with a project. Use these macros where character strings are accepted. The macro names are not
case-sensitive.

The following table lists macros supported by Visual Studio* that are also supported by the Intel® Fortran
Compiler.

Macro Name Format

Configuration name $(ConfigurationName)

Intel® Fortran Compiler Classic and Intel® Fortran Compiler Developer Guide and Reference 1

33

Macro Name Format

Platform name $(PlatformName)

Intermediate directory $(IntDir)

Output directory $(OutDir)

Input directory $(InputDir)

Input path $(InputPath)

Input name $(InputName)

Input filename $(InputFileName)

Input file extension $(InputExt)

Inherit properties $(Inherit)

Do not inherit properties $(NoInherit)

Project directory $(ProjectDir)

Project path $(ProjectPath)

Project name $(ProjectName)

Project filename $(ProjectFileName)

Project file extension $(ProjectExt)

Solution directory $(SolutionDir)

Solution path $(SolutionPath)

Solution name $(SolutionName)

Solution filename $(SolutionFileName)

Solution file extension $(SolutionExt)

Target directory $(TargetDir)

Target path $(TargetPath)

Target name $(TargetName)

Target filename $(TargetFileName)

Target file extension $(TargetExt)

Visual Studio* installation
directory

$(VSInstallDir)

Visual C++* installation
directory

$(VCInstallDir)

.NET Framework directory $(FrameworkDir)

.NET Framework version $(FrameworkVersion)

.NET Framework SDK
Directory

$(FrameworkSDKDir)

 1 Intel® Fortran Compiler Classic and Intel® Fortran Compiler Developer Guide and Reference

34

The Intel® Fortran Compiler also supports the following macros (not supported by Visual Studio*).

Macro Name Format

Intel® Fortran IDE installation directory $(IFIDEInstallDir)

For additional information on using build macros, see the Microsoft MSDN* online documentation.

Use Manifests
The Intel® Compiler supports manifests, a Microsoft Visual Studio* feature. Manifests describe runtime
dependencies of a built application. A manifest file can be embedded in the assembly, which is the default
behavior, or can be a separate standalone file. You can use the Manifest Tool property pages, which are
accessed through Project > Properties, to change project settings that affect the manifest.

NOTE
In earlier releases, manifest files were embedded in the assembly, and were not able to be accessed or
changed.

Use Intel® Libraries with Microsoft Visual Studio*

You can use the compiler with Intel® oneAPI Math Kernel Library (oneMKL), which may be included as a part
of the product. Use the property pages to select the project configuration.

To specify oneMKL, select Project > Properties. In the Configuration Properties, select Configuration
Properties > Fortran > Libraries > Use Intel Math Kernel Library, then do the following:

To use oneMKL in your project, change the Use oneMKL property settings as follows:

• No: Disable use of oneMKL libraries.
• Parallel: Use parallel oneMKL libraries.
• Sequential: Use sequential oneMKL libraries.
• Cluster: Use cluster libraries.

For more information, see the Intel® oneAPI Math Kernel Library documentation.

Product and Performance Information

Performance varies by use, configuration and other factors. Learn more at www.Intel.com/
PerformanceIndex.

Notice revision #20201201

Use Source Editor Enhancements in Microsoft Visual Studio*
A number of Fortran source editor enhancements are available in Microsoft Visual Studio*.

Modules and Procedures Navigation Bar
A two-part navigation bar, located above the source editor pane, lets you navigate to a specific module (left
part) and procedure (right part). To enable the navigation bar, choose Navigation Bar in Tools >
Options > Text Editor > Fortran > General.

Source Editor Pane
Smart indenting: Smart indenting automatically indents block constructs (such as IF and DO) and left
justifies the corresponding end statement. To enable smart indenting, select it in Tools > Options > Text
Editor > Fortran > Tabs.

Intel® Fortran Compiler Classic and Intel® Fortran Compiler Developer Guide and Reference 1

35

https://www.intel.com/PerformanceIndex
https://www.intel.com/PerformanceIndex

Code snippet insertion: Code snippet insertion lets you insert a prototype construct (such as DO, WHILE,
or MODULE) from a list. Use the right-click context menu Snippet > Insert Snippet... option to display the
list and insert a snippet.

Delimiter matching: Delimiter (brace) matching lets you jump to a matching statement in a block construct
(IF...THEN...END IF, DO...END DO). Use Ctrl] to jump. To enable delimiter matching, use Automatic
delimiter highlighting in Tools > Options > Text Editor > General.

Call/Callers graph: Call/Caller information can be collected and shown visually in a graph that indicates the
call stacks that lead to a unit of code. To enable Call/Callers graph information, change Collect Call/Callers
graph information to True in Tools > Options > Text Editor > Fortran > Advanced > Browsing/
Navigation.

Fortran Editor Options Page
Use Tools > Options > Text Editor > Fortran > Advanced to view the Fortran Advanced Options page.
Browsing/Navigation Section

Collect Object Browser information: Choose this option to enable the display of procedures in your
project in a hierarchical tree. Once enabled, you can use View > Object Browser to display your
procedures.

NOTE If the procedures in your project do not show when browsing in My Solution, you can right-
click the message (No information. Try browsing a different component set.) and select View
Containers as a possible solution.

Disable Database: Choose this option to disable creation of the code browsing database. This may help
increase performance on slow machines. If you disable the database, all features that rely on code browsing
information will not work.

Enable Find all References: Choose this option to enable display of the location(s) in your code where a
symbol is referenced. When this option is enabled, you can use the right-click context menu Find All
References option to display a list of references to the selected symbol. Double-click a reference to find that
reference.

Enable Go To Definition: Choose this option to enable quick navigation to an object definition. When this
option is enabled, you can use the right-click context menu Go to Definition option to locate where the
selected object was declared, opening the associated source file if required. (If you have also enabled Scan
system includes, any objects declared in system modules such as IFWINTY cause the associated source for
that module to be opened.)

Scan system includes: Choose this option to scan system include files. This option is used with one or
more of the following options: Collect Object Browser Information, Enable Find All References,
Enable Go To Definition.
Intrinsics Section

Enable Intrinsic Parameter Info: Choose this option to enable the display of intrinsic function and
subroutine parameter information. When this option is enabled, you can type a name of an intrinsic
procedure, followed by an open parenthesis, and information about the procedure and its arguments
appears.

Enable Intrinsic Quick Info: Choose this option to enable the display of additional information when the
cursor is moved over an intrinsic function or subroutine name.
Miscellaneous Section

 1 Intel® Fortran Compiler Classic and Intel® Fortran Compiler Developer Guide and Reference

36

Enumerate Comment Tasks: Choose this option to enable the display of a list of tasks consisting of source
files containing comments. Comments take the form of the ! character, followed by a token such as TO DO.
Valid tokens are listed in Tools > Options > Environment > Task List. When this option is enabled, you
can select Comments from the task list using View > Task List. Double-click a comment in the list to jump
to its location.

Highlight Matching Tokens: Choose this option to allow identifier highlighting and block delimiter
matching. When enabled, this option highlights all references to the identifier under the cursor.
Outlining Section

Enable Outlining: Choose this option to allow the collapsing of whole program units. When this option is
enabled, you can click the minus (-) or plus (+) symbols for PROGRAM, SUBROUTINE, FUNCTION, MODULE,
and BLOCK DATA statements.

Outline Statement Blocks: Choose this option to allow collapsing of block constructs such as IF and DO.
You must also choose Enable Outlining.

Create the Executable Program
When you are ready to create an executable image of your application, use the options on the Build menu.
You can:

• Compile a file without linking.
• Build a project or solution.
• Rebuild a project or solution.
• Batch build several configurations of a project.
• Clean a project or solution (which deletes all files created during the Build).
• Select the active solution and configuration.
• Edit the project configuration.

When you have completed your project definition, you can build the executable program.

When you select Build <projectname> from the Build menu (or Build toolbar), the integrated
development environment (IDE) automatically updates dependencies, compiles and links all files in your
project. When you build a project, the IDE processes only the files in the project that have changed since the
last build and those files dependent on the changed files. The following example illustrates this.

NOTE To define the build order of projects, right-click on the solution and choose Properties >
Project Dependencies.

Example: Assume you have multiple projects (A, B, and C) in a solution with the following defined
dependencies:

• A depends on B
• B depends on C

If you build A, the build process verifies that B is up-to-date. During verification of B, C is also verified that it
is likewise up-to-date. When either, or both, are determined to be out of date, the appropriate build
operations will occur to update them. When C and B produce .lib or .dll output, the output of C is linked
into B and the output of B is linked into A.

The Rebuild <project name> option forces a new compilation of all source files listed for the project.

You either can choose to build a single project, the current project, or multiple project configurations (using
the Batch Build... option) in one operation. You can also choose to build the entire solution.

You can execute your program from the IDE using Debug > Start Without Debugging (Ctrl and F5) or
Debug > Start (F5). You can also execute your program from the command line prompt.

Compile Files in a Project
You can select and compile individual files in any project in your solution. To do this, select the file in the
Solution Explorer view. Then, do one of the following:

Intel® Fortran Compiler Classic and Intel® Fortran Compiler Developer Guide and Reference 1

37

• Select Compile from the Build menu (or Build toolbar).
• Right-click to display the pop-up menu and select Compile.

You can also use Compile from the Build menu (or Build toolbar) options when the source window is active
and has input focus.

Compilation Errors
When the compiler encounters an error in a file, compilation stops and the error is reported. You can change
this default behavior and allow compilation to continue despite an error in the current file. When you do this,
an error in the current file will cause the compiler to begin compiling the next file.

To enable Continue on errors behavior:

1. In Tools > Options > Intel Compilers and Libraries > IFORT Intel Fortran Classic for ifort or
Tools > Options > Intel Compilers and Libraries > IFX Intel Fortran for ifx, select the General
category.

2. Check Continue on errors and click OK.

To set the maximum number of errors to encounter before compilation stops, choose Configuration
Properties > Fortran > Diagnostics > Error Limit.

Convert and Copy Projects

Convert Projects
In general, you can open projects created by older versions of Intel® Fortran and use them directly. If the
projects were created in older versions of Microsoft Visual Studio*, the solution file is converted first and
then any non-Fortran projects it contains. Projects created in newer versions of Intel® Fortran might not be
usable in older versions.

Projects created in Compaq* Visual Fortran 6.0 or later can usually be converted to Intel® Fortran as follows:

1. Open the Microsoft Visual Studio 6 workspace file (.dsw) in a newer version of Microsoft Visual Studio.
The project is converted to the new format.

2. Right click on the solution and select Extract Compaq Visual Fortran Project Items. This option
is available only if your installation of Microsoft Visual Studio includes Microsoft Visual C++ (MSVC).

Some general conversion principles apply:

• It is good practice to make a backup copy of the project before starting conversions.
• Intel® Fortran projects are created and built in a particular version of Microsoft Visual Studio. If you open

the project in a later version, you will be prompted to convert the solution. Once converted, a solution
cannot be used in its previous environment.

• Compaq Visual Fortran 6.x projects can be converted to Intel® Fortran projects in Microsoft Visual Studio
2017, 2019, or 2022 environments. Fortran-only projects are simpler to convert.

NOTE Support for Microsoft Visual Studio 2017 is deprecated as of the Intel® oneAPI 2022.1 release,
and will be removed in a future release.

• Project conversion support is provided for Compaq Visual Fortran Version 6.x only. Compaq Visual Fortran
projects created with earlier versions may not convert correctly.

• Fortran source files, resource files, and MIDL files lose any custom build step information when converted
from Compaq Visual Fortran to Intel® Fortran. For other file types, custom build steps are propagated
during the project's conversion.

• Conversion of Fortran and C/C++ mixed language projects results in the creation of two separate projects
(a Fortran project and a C/C++ project) in a single solution.

 1 Intel® Fortran Compiler Classic and Intel® Fortran Compiler Developer Guide and Reference

38

• Intel® Fortran projects that are created with a point release (for instance, 2022.x) are typically backward
compatible to the first release of that number (in this case, 2022.0). Projects are not backward-
compatible between major release numbers.

Copy Projects
You need to follow certain procedures to move a project's location if you copy a project to:

• Another disk or directory location on the same system.
• Another system where the Intel® Fortran Compiler is installed.

If you upgrade your operating system version on your current system, you should delete the *.SUO and
*.NCB files in each main project directory before you open solutions with the new operating system.

It is good practice to clean a solution before moving and copying project files. To do this, select Clean in the
Build menu.

Copy an Existing Intel® Fortran Project to Another Disk or System
1. Copy all project files to the new location. You do not need to copy the subdirectories created for each

configuration. Keep the directory hierarchy intact by copying the entire project tree to the new
computer. For example, if a project resides in the folder \MyProjects\Projapp on one computer, you
can copy the contents of that directory, and all subdirectories, to the \MyProjects\Projapp directory
on another computer.

2. Delete the following files from the main directory at the new location. These files are disk- and
computer-specific and should not be retained:

• *.SUO files
• *.NCB files (if present)

3. If you copied the subdirectories associated with each configuration (for example, Debug and Release),
delete the contents of subdirectories at the new location. The files contained in these subdirectories are
disk- and computer-specific files and should not be retained. For example, Intel® Fortran module (.MOD)
files contained in these subdirectories should be recreated by the compiler, especially if a newer version
of Intel® Fortran has been installed.

NOTE The internal structure of module files can change between Intel® Fortran releases.

If you copied the project files to the same system or a system running the same platform and major
Intel® Fortran version, do the following steps to remove most or all of the files in the configuration
subdirectory:

1.Open the appropriate solution. In the File menu, either select Open Solution or select Recent
Solutions. If you use Open Solution, select the appropriate .SLN file.
2.Select Clean in the Build menu.
3.Repeat the previous two steps for other configurations whose subdirectories have been copied.

4. If possible, after copying a project, verify that you can open the project at its new location using the
same Fortran version that it was created in. This ensures that the project has been moved successfully
and minimizes the chance of conversion problems. If you open the project with a later version of
Fortran, the project will be converted and you will not be able to convert the project back. For this
reason, making an archive copy of the project files before you start is recommended.

5. View the existing configurations. To view the existing configurations associated with the project, open
the solution and view available configurations using the drop-down box at the top of the screen.

6. Check and reset project options.

Because not all settings are transportable across different disks and systems, you should verify your
project settings on the new platform. To verify your project settings:

a. From the Project menu, choose Properties. The Project Property Pages dialog box appears.

Intel® Fortran Compiler Classic and Intel® Fortran Compiler Developer Guide and Reference 1

39

b. Configure settings as desired. Pay special attention to the following items:

• General: Review the directories for intermediate and output files. If you moved the project to
a different system, be aware that any absolute directory paths (such as C:\TEMP or \Myproj
\TEMP) will most likely need to be changed. Instead, use relative path directory names
(without a leading back slash), such as Debug

• Custom Build Step: Review for any custom commands that might change between platforms.
• Pre-build, Pre-link, and Post-build Steps in Build Events: Review for any custom

commands that may have changed.
7. Check your source code for directory paths referenced in INCLUDE or similar statements. Microsoft

Visual Studio* provides a multi-file search capability called Find in Files, available from the Edit
menu.

About Fortran Project Types
This section provides information about Fortran project types.

Understand Project Types

When you create a project in Visual Studio*, you must choose a project type. You need to create a project
for each binary executable file to be created. For example, the main Fortran program and a Fortran dynamic-
link library (DLL) would each reside in the same solution as separate projects.

The project type specifies what to generate and determines some of the options that the visual development
environment sets by default for the project. It determines, for instance, the options that the compiler uses to
compile the source files, the static libraries that the linker uses to build the project, and the default locations
for output files.

When you select a project type, an Application wizard (AppWizard) is launched, which guides you through
project set-up. The AppWizard supplies default settings for both the Release and Debug Configurations of
the project. For more information about configurations, see Understand Solutions Projects and
Configurations.

The following table lists the available Intel® Fortran Compiler project types. The first four projects listed are
main project types, requiring main programs. The last two are library projects, without main programs.

Project Type Key Features

Use Fortran
Console
Application
Projects (.EXE)

Single window main projects without graphics (resembles character-cell
applications). Requires no special programming expertise.

Use Fortran
Standard Graphics
Application
Projects (.EXE)

Single window main projects with graphics. The programming complexity is simple
to moderate, depending on the graphics and user interaction used.

Use Fortran
QuickWin
Application
Projects (.EXE)

Multiple window main projects with graphics. The programming complexity is simple
to moderate, depending on the graphics and user interaction used.

Use Fortran
Windowing
Application
Projects (.EXE)

Multiple window main projects with full graphical interface and access to all
Windows* API routines. Requires advanced programming expertise and knowledge
of the Call Windows API Routines.

Use Fortran Static
Library Projects
(.LIB)

Library routines to link into .EXE files.

 1 Intel® Fortran Compiler Classic and Intel® Fortran Compiler Developer Guide and Reference

40

Project Type Key Features

Use Fortran
Dynamic-Link
Library Projects
(.DLL)

Library routines to associate during execution.

Use the Fortran COM
Server (.DLL) Fortran in-process COM server

If you need to use the command line to build your project, you can:

• Use the command line compiler options to specify the project type (see Specify Project Types with ifort
Command Options).

• Create the application from the command line (see Invoke the Intel® Fortran Compiler).

See Also
Understand Solutions Projects and Configurations

Create Fortran Applications that Use Windows* OS Features

Specify Project Types with ifort Command Options

This section provides the ifort command-line options that correspond to Microsoft Visual Studio* project
types.

Create Main Project Types
The first four projects described below are main project types, requiring main programs. You can create any
of the following project types with the ifort command:

• To create console application projects, you do not need to specify any options. (If you link separately,
specify the link option /subsystem:console.) A console application is the default project type created.

• To create standard graphics application projects, specify the libs option with keyword qwins (also sets
certain linker options).

• To create QuickWin application projects, specify the libs option with keyword qwin (also sets certain
linker options).

• To create windowing application projects, specify the winapp option (also sets certain linker options).

Create Library Project Types
The following project types are library projects, without main programs. You can create them with the ifort
command:

• To create dynamic-link library (DLL) projects, specify the dll option (which sets the libs option with
keyword dll).

• To create static library projects:

• If your application does not call any QuickWin or standard graphics routines, specify the libs option
with keyword static and c options to create the object files.

• If your application calls QuickWin routines, specify the libs option with keyword qwin and c options
to create the object files.

• If your application calls standard graphics routines, specify the libs option with keyword qwins and
c options to create the object files.

• Use the LIB command to create the library.

See Also
Understand Project Types
Use Fortran Console Application Projects

Intel® Fortran Compiler Classic and Intel® Fortran Compiler Developer Guide and Reference 1

41

Use Fortran Standard Graphics Application Projects
Use Fortran QuickWin Application Projects
Use Fortran Windowing Application Projects
Use Fortran Dynamic-Link Library Projects
Use Fortran Static Library Projects

Use Fortran Console Application Projects

A Fortran Console application (.EXE) is a character-based Intel® Fortran program that does not require
screen graphics output.

Fortran Console projects operate in a single window and let you interact with your program through normal
read and write commands. Console applications are better suited to problems that require pure numerical
processing rather than graphical output or a graphical user interface. This type of application is also more
transportable to other platforms than the other types of application.

Fortran Console applications can be faster than Fortran Standard Graphics or Fortran QuickWin graphics
applications, because of the resources required to display graphical output (see Use the Console).

Any graphics routine that your program calls will produce no output, but will return error codes. A program
will not automatically exit if such an error occurs, so your code should be written to handle this condition.

With a Fortran Console project, you cannot use the QuickWin functions. However, you can use single- or
multi-threaded static libraries, DLLs, and dialog boxes.

As with all Windows* command consoles, you can toggle between console viewing modes by pressing ALT
and ENTER.

To create a console application from the IDE:

1. Select the Console Application project type.
2. Select from two templates: Empty project or Main program code, which includes sample code.

See Also
Use the Console

Use Fortran Standard Graphics Application Projects

A Fortran standard graphics application (.EXE) is an Intel® Fortran QuickWin program with graphics that runs
in a single QuickWin window. A standard graphics (QuickWin single window, sometimes called single
document) application looks similar to an MS-DOS* program when manipulating the graphics hardware
directly, without Windows*.

A Fortran standard graphics application allows graphics output (such as drawing lines and basic shapes) and
other screen functions, such as clearing the screen. Standard Graphics is a subset of QuickWin. You can use
all of the QuickWin graphics functions in these projects. You can use dialog boxes with all other project types.

You can select displayed text either as a bitmap or as text. Windows provides APIs for loading and unloading
bitmap files. Standard graphics applications should be written as multithreaded applications.

Fortran standard graphics (QuickWin single window) applications are normally presented in full-screen mode.
The single window can be either full-screen or have window borders and controls available. You can change
between these two modes by using ALT and ENTER.

If the resolution selected matches the screen size, the application covers the entire screen; otherwise, scroll
bars are present to resize the window. You cannot open additional windows in a standard graphics
application. Standard graphics applications have neither a menu bar at the top of the window, nor a status
bar at the bottom.

Fortran standard graphics applications are appropriate for problems that:

• Require numerical processing and some graphics.
• Do not require a sophisticated user interface.

 1 Intel® Fortran Compiler Classic and Intel® Fortran Compiler Developer Guide and Reference

42

Create a Standard Graphics Application with the Microsoft Visual Studio* IDE
1. Select the QuickWin Application project type.
2. Select the Standard Graphics Application template.

When you select the Fortran standard graphics project type, the IDE includes the QuickWin library
automatically, which lets you use the graphics functions. When building from the command line, you must
specify the libs option with keyword qwins. You cannot use the runtime functions meant for multiple-
window projects if you are building a standard graphics project. You cannot make a standard graphics
application a DLL.

See Also
Create Fortran Applications that Use Windows* Features

Use Fortran QuickWin Application Projects

Fortran QuickWin graphics applications (.EXE) are multi-threaded and are more versatile than standard
graphics (QuickWin single window) applications because you can open multiple windows while your project is
executing. This multiple window capability is also referred to as multiple-document interface or MDI. Multiple
windows can be used in a variety of ways. For example, you might want to generate several graphic plots
and be able to switch between them while also having a window for controlling the execution of your
program. These windows can be full screen or reduced in size and can be placed in various parts of the
screen.

QuickWin library routines let you build applications with a simplified version of the Windows* interface using
Intel® Fortran. The QuickWin library provides a rich set of Windows* features, but it does not include the
complete Windows* Applications Programming Interface (API). If you need additional capabilities, you must
set up a Windows* application to call the Windows* API directly rather than using QuickWin to build your
program.

Applications that use a multiple-document interface (MDI) have a menu bar at the top of the window and a
status bar at the bottom. The QuickWin library provides a default set of menus and menu items that you can
customize with the QuickWin APIs. An application that uses MDI creates many "child" windows within an
outer application window. The user area in an MDI application is a child window that appears in the space
between the menu bar and status bar of the application window. Your application can have more than one
child window open at a time.

Fortran QuickWin applications can use the IFLOGM module to access functions to control dialog boxes. These
functions allow you to display, initialize, and communicate with special dialog boxes in your application. They
are a subset of Windows* API functions, which Windows* applications can call directly.

NOTE QuickWin applications are only supported with ifort.

To create a QuickWin application in Visual Studio*:

1. Select the QuickWin Application project type.
2. Select the QuickWin Application template in the right pane.

When you select the Fortran QuickWin project type, the IDE includes the QuickWin library automatically,
which lets you use the graphics functions.

When building from the command line, you must specify the libs compiler option with keyword qwin to
indicate a QuickWin application.

A QuickWin application covers the entire screen if the resolution selected matches the screen size; otherwise,
the window will contain scroll bars.

You cannot make a Fortran QuickWin application a DLL.

See Also
Create Fortran Applications that Use Windows* Features

Intel® Fortran Compiler Classic and Intel® Fortran Compiler Developer Guide and Reference 1

43

Use Fortran Windowing Application Projects

Fortran Windowing applications (.EXE) are main programs that you create when you choose the Fortran
Windowing Application project type. This type of project lets you call the Windows* APIs directly from Intel®
Fortran. This provides full access to the Windows* APIs, giving you a larger (and different) set of functions to
work with than QuickWin.

Although you can call some of the Windows* APIs from the other project types, Fortran Windowing
applications allow you to use the full set of API routines and use certain system features not available for the
other project types.

The IFWIN module contains interfaces to the most common Windows APIs. If you include the USE IFWIN
statement in your program, the most common Windows* API Routines are available to you. The IFWIN
module gives you access to a full range of routines including window management, graphic device interface,
system services, multimedia, and remote procedure calls.

Window management routines give your application the means to create and manage a user interface. You
can create windows to display output or prompt for input. Graphics Device Interface (GDI) functions provide
ways for you to generate graphical output for displays, printers, and other devices. Windows* system
functions allow you to manage and monitor resources such as memory, access to files, directories, and I/O
devices. System service functions provide features that your application can use to handle special conditions
such as errors, event logging, and exception handling.

Using multimedia functions, your application can create documents and presentations that incorporate music,
sound effects, and video clips as well as text and graphics. Multimedia functions provide services for audio,
video, file I/O, media control, joystick, and timers.

Remote Procedure Calls (RPC) gives you the means to carry out distributed computing, letting applications
tap the resources of computers on a network. A distributed application runs as a process in one address
space and makes procedure calls that execute in an address space on another computer. You can create
distributed applications using RPC, each consisting of a client that presents information to the user and a
server that stores, retrieves, and manipulates data as well as handling computing tasks. Shared databases
and remote file servers are examples of distributed applications.

See Also
Call Windows* API Routines
Create Fortran Applications that Use Windows* OS Features

Use Fortran Static Library Projects

Fortran static libraries (.LIB) are blocks of code compiled and kept separate from the main part of your
program. The Fortran static library is one of the Fortran project types.

To create a static library from the integrated development environment (IDE), select the Static Library
project type. To create a static library from the command line, use the c option to suppress linking and use
the LIB command.

NOTE
When compiling a static library from the command line, include the c option to suppress linking.
Without this option, the compiler generates an error because the library does not contain a main
program.

When you create a static library, you are asked to specify whether you want to prevent the insertion of link
directives for default libraries. By default, this checkbox is selected, which means insertion of link directives
is prevented. Select this option if you plan to use this static library with other Fortran projects. The option
prevents the static library from specifying a version of the Fortran runtime library. When the static library is
linked with another Fortran project, the Fortran runtime library choice in the other Fortran project is used for
the static library as well.

You may decide against selecting this option if you plan to use this static library with C/C++ projects. If you
do select it, you need to explicitly name the Fortran runtime library to use in the Linker Additional
Dependencies property. You can change your selection after creating the project using the Fortran Disable
Default Library Search Rules property.

 1 Intel® Fortran Compiler Classic and Intel® Fortran Compiler Developer Guide and Reference

44

A static library is a collection of source and object code defined in the Solution Explorer window. The
source code is compiled when you build the project. The object code is assembled into a .LIB file without
going through a linking process. The name of the project is used as the name of the library file by default.
Static libraries offer important advantages in organizing large programs and in sharing routines between
several programs. These libraries contain only subprograms, not main programs. A static library file has
a .LIB extension and contains object code.

When you associate a static library with a program, any necessary routines are linked from the library into
your executable program when it is built. Static libraries are usually kept in their own directories. If you use a
static library, only those routines actually needed by the program are incorporated into the executable image
(.EXE). This means that your executable image will be smaller than if you included all the routines in the
library in your executable image. The Linker determines which routines to include.

Because applications built with a static library all contain the same version of the routines in the library, you
can use static libraries to help keep applications current. When you revise the routines in a static library, you
can easily update all the applications that use it by relinking the applications.

If you have a library of substantial size, you should maintain it in a dedicated directory. Projects using the
library access it during linking.

When you link a project that uses the library, selected object code from the library is linked into that project's
executable code to satisfy calls to external procedures. Unnecessary object files are not included.

To debug a static library, you must use a main program that calls the library routines. Both the main program
and the static library should have been compiled using the debug option. After compiling and linking is
completed, open the Debug menu and choose Go to reach breakpoints, or use the step controls on the
Debug toolbar.

Use Static Libraries
To add static libraries to a main project in the IDE, use the Add Existing Item... option in the Project
menu. You can enter the path and library name with a .LIB extension in the dialog box that appears. If you
are using a makefile, you must add the library by editing the makefile for the main project. If you are
building your project from the command line, add the library name with a .LIB extension and include the
path specification if necessary.

Use Fortran Dynamic-Link Library Projects

A dynamic-link library (.DLL) is a source-code library that is compiled and linked to a unit independently of
the applications that use it. A DLL shares its code and data address space with a calling application. A DLL
contains only subprograms, not main programs.

A DLL offers the organizational advantages of a static library, but with the advantage of a smaller executable
file at the expense of a slightly more complex interface. Object code from a DLL is not included in your
program's executable file, but is associated as needed in a dynamic manner while the program is executing.
More than one program can access a DLL at a time.

When routines in a DLL are called, the routines are loaded into memory at runtime, as they are needed. This
is most useful when several applications use a common group of routines. By storing these common routines
in a DLL, you reduce the size of each application that calls the DLL. In addition, you can update the routines
in the DLL without having to rebuild any of the applications that call the DLL.

With Intel® Fortran, you can use DLLs in two ways:

1. You can build a DLL with your own routines. In Visual Studio*, select Dynamic-link Library as your
project type. From the command line, use the DLL option with the ifort command.

2. You can build applications with the runtime library stored in a separate DLL instead of in the main
application file. In the integrated development environment, open a solution and do the following:

• From the Project menu, select Properties to display the project properties dialog box.
• Click the Fortran folder.
• Select the Libraries category.
• In the Runtime Library option, select an option ending with "DLL."

Intel® Fortran Compiler Classic and Intel® Fortran Compiler Developer Guide and Reference 1

45

From the command line, use the libs compiler option with keyword dll to build applications with the
runtime library stored in a separate DLL.

See Also
Create Fortran Applications that Use Windows* OS Features

Use the Console

On Windows* OS, a console window allows input and output of characters (not graphics).

For example, data written (explicitly or implicitly) by Fortran WRITE (or other) statements to Fortran logical
unit 6 display characters on a console window. Similarly, data read by Fortran READ (or other) statements to
unit 5 accept keyboard character input.

The console consists of two components:

• The actual console window that shows the characters on the screen.
• The console buffer that contains the characters to be displayed.

If the console screen buffer is larger than the console window, scroll bars are automatically provided. The
size of the console screen buffer must be larger (or equal to) the size of the console window. If the buffer is
smaller than the size of the console window, an error occurs. For applications that need to display more than
a few hundred lines of text, the ability to scroll quickly through the text is important.

Fortran Console applications automatically provide a console. Fortran QuickWin (and Fortran Standard
Graphics) applications do not provide a console, but display output and accept input from Fortran statements
by using the program window.

The following Fortran Project Types provide an application console window:

Project Type Description of Console Provided

Fortran
Console

Provides a console window intended to be used for character-cell applications that use
text only.

When running a Fortran Console application from the command prompt, the existing
console environment is used. When you run the application from Windows* or Developer
Studio* (by selecting Start Without Debugging in the Debug menu), a new console
environment is created.

Basic console use is described in Code Samples of Console Use.

Fortran
QuickWin or
Fortran
Standard
Graphics

Does not provide a console, but output to unit 6 and input to unit 5 are directed to the
application program window, which can handle both text and graphics. Because the
program window must handle both text and graphics, it is not as efficient as the console
for just text-only use. A Fortran QuickWin or Fortran Standard Graphics program window
(or child window) provides a console-like window.

See Console Use for Fortran QuickWin and Fortran Standard Graphics Applications.

Fortran
Windows

Does not provide a console window, but the user can create a console by using Windows*
API routines. See Console Use for Fortran Windows* Applications and Fortran DLL
Applications.

Fortran DLL Does not provide a console window, but the user can create a console by using Win32
routines. See Console Use for Fortran Windows* Applications and Fortran DLL
Applications.

Fortran Static
Library

Depends upon the project type of the main application that references the object code in
the library (see above project types).

In addition to the Windows* API routines mentioned below, there are other routines related to console use
described in the Microsoft Platform SDK* documentation.

 1 Intel® Fortran Compiler Classic and Intel® Fortran Compiler Developer Guide and Reference

46

Console Use for Fortran QuickWin and Fortran Standard Graphics Applications
For a Fortran QuickWin or Fortran Standard Graphics application, because the default program window
handles both graphics and text, the use of a QuickWin window may not be very efficient:

• QuickWin windows use lots of memory and therefore have size limitations.
• They can be slow to scroll.

Although you can access the console window using WRITE and READ (or other) statements, applications that
require display of substantial lines of text, consider creating a DLL that creates a separate console window for
efficiency. The DLL application needs to call Windows* API routines to allocate the console, display text,
accept keyed input, and free the console resources.

Basic use of a console is described in Code Samples of Console Use.

Console Use for Fortran Windows Applications and Fortran DLL Applications
With a Fortran Windows* or Fortran DLL application, attempting to write to the console using WRITE and
READ (or other) statements before a console is created results in a runtime error (such as error performing
WRITE).

A console created by a Fortran DLL is distinct from any application console window associated with the main
application. A Fortran DLL application has neither a console nor an application window created for it, so it
must create (allocate) its own console using Windows* API routines. When used with a Fortran QuickWin or
Fortran Standard Graphics application main program, the Fortran DLL can provide its main application with a
very efficient console window for text-only use.

Like a Fortran DLL application, a Fortran Windows application has neither a console nor an application
window created for it, so it must create its own console using Windows* API routines. After allocating a
console in a Fortran DLL, the handle identifier returned by the GetStdHandle Windows* API routine refers
to the actual console the DLL creates.

When the Fortran Windows application does create a console window, it is very efficient for text-only use.
The handle identifier returned by the GetStdHandle Call Windows* API Routines refers to the actual console
the Fortran Windows application creates.

For information about creating a console, see Allocate and Deallocate a Console below.

Code Samples for Console Use
The following sections shows sample code for using a console:

• Allocate and Deallocate a Console for Fortran Windows* and DLL Applications.
• Extend the Size of the Console Window and Console Buffer for console use in any project type.
• Write and Read Characters at a Cursor Position for console use in any project type.

Allocate and Deallocate a Console
To create a console, you use the AllocConsole routine. When you are done with the console, free its
resources with a FreeConsole routine. For example, the following code allocates the console, enlarges the
buffer size, writes to the screen, waits for any key to be pressed, and deallocates the console:

program test
! The following USE statement provides Fortran interfaces to Windows routines
 USE IFWIN
! Begin data declarations
 integer lines,length
 logical status
 integer * 8 fhandle
 Type(T_COORD) wpos
! Set buffer size variables
 length = 80

Intel® Fortran Compiler Classic and Intel® Fortran Compiler Developer Guide and Reference 1

47

 lines = 90
! Begin executable code
! Allocate a console
 status = AllocConsole() ! get a console window of the currently set size
 fhandle = GetStdHandle(STD_OUTPUT_HANDLE)
 wpos.x = length ! must be >= currently set console window line length
 wpos.y = lines ! must be >= currently set console window number of lines
 ! Set a console buffer bigger than the console window. This provides
 ! scroll bars on the console window to scroll through the console buffer
 status = SetConsoleScreenBufferSize(fhandle, wpos)
 ! Write to the screen as needed. Add a READ to pause before deallocation
 write (*,*) "This is the console output! It might display instructions or data "
 write (*,*) " "
 write (*,*) "Press any key when done viewing "
 read (*,*)
! Deallocate the console to free its resources.
 status = FreeConsole()
end program test

Calling Windows* API routines is described in Call Windows* API Routines.

If you are using a DLL, your DLL code will need to create subprograms and export their symbols to the main
program.

Basic use of a console is described in Extend the Size of the Console Window and Console Buffer and Write
and Read Characters at a Cursor Position.

Extend the Size of the Console Window and Console Buffer
When you execute a Fortran Console application, the console is already allocated. You can specify the size of
the console window, size of the console buffer, and the location of the cursor. If needed, you can extend the
size of the console buffer and console window by using the following Windows* API routines:

1. You first need to obtain the handle of the console window using the GetStdHandle routine. For
example:

! USE statements to include routine interfaces
use ifqwin
use ifport
use ifcore
use ifwin
! Data declarations
integer fhandle
logical lstat
! Executable code
fhandle = GetStdHandle(STD_OUTPUT_HANDLE)
! ...

2. If needed, you can obtain the size of the:

• Console window by using the GetConsoleWindowInfo routine.
• Console buffer by using the GetConsoleScreenBufferInfo routine.

For example:

! USE statements to include routine interfaces
use ifqwin
use ifport
use ifcore
use ifwin
! Data declarations
integer fhandle

 1 Intel® Fortran Compiler Classic and Intel® Fortran Compiler Developer Guide and Reference

48

logical lstat
Type(T_CONSOLE_SCREEN_BUFFER_INFO) conbuf
type (T_COORD) dwSize
type (T_SMALL_RECT) srWindow
fhandle = GetStdHandle(STD_OUTPUT_HANDLE)
! Executable code to get console buffer size
lstat = GetConsoleScreenBufferInfo(fhandle, conbuf)
write (*,*) " "
write (*,*) "Window coordinates= ", conbuf.srWindow
write (*,*) "Buffer size= ", conbuf.dwSize
! ...

3. To set the size of the console window and buffer, use the SetConsoleWindowInfo and
SetConsoleScreenBufferSize routines with the fhandle value returned previously:

! USE statements to include routine interfaces
use ifqwin
use ifport
use ifcore
use ifwin
! Data declarations
integer nlines, ncols
logical lstat
Type(T_COORD) wpos
Type(T_SMALL_RECT) sr
Type(T_CONSOLE_SCREEN_BUFFER_INFO) cinfo
! Executable code to set console window size
sr.top = 0
sr.left = 0
sr.bottom = 40 ! <= console buffer height
 -1
sr.right = 60 ! <=
 console buffer width -1
lstat = SetConsoleWindowInfo(fhandle, .TRUE., sr)
! Executable code to set console buffer size
nlines = 100
ncols = 80
wpos.x = ncols ! columns >= console window width
wpos.y = nlines ! lines >= console window height
lstat = SetConsoleScreenBufferSize(fhandle, wpos)
! ...

Write and Read Characters at a Cursor Position
You can position the cursor as needed using the SetConsoleCursorPosition routine before you write
characters to the screen:

 ! Use previous data declarations
 ! Position and write two lines
 wpos.x = 5 ! 6 characters from left
 wpos.y = 5 ! 6 lines down
 lstat = SetConsoleCursorPosition(fhandle, wpos)
 write(*,*) 'Six across Six down'
 ! ...

You read from the screen at an appropriate place, but usually you should set the cursor relative to the
starting screen location:

 ! Use previous and the following data declaration
 CHARACTER(Len=50) charin
 ! Go back to beginning position of screen

Intel® Fortran Compiler Classic and Intel® Fortran Compiler Developer Guide and Reference 1

49

 wpos.x = 0 ! 0 characters from left
 wpos.y = 0 ! 0 lines down
 lstat = SetConsoleCursorPosition(fhandle, wpos)
 ! Position character input at start of line 11
 wpos.x = 0 ! first character from left
 wpos.y = 10 ! 11 lines down
 lstat = SetConsoleCursorPosition(fhandle, wpos)
 read(*,*) charin
 ! ...

For console I/O, you can use Windows* OS routines WriteConsoleLine and ReadConsoleLine instead of
Fortran WRITE and READ statements.

See Also
Understand Project Types
Call Windows* API Routines
Use the Console
Code Samples of Console Use
Console Use for Fortran QuickWin and Fortran Standard Graphics Applications
Console Use for Fortran Windows* Applications and Fortran DLL Applications
Allocate and Deallocate a Console
Extend the Size of the Console Window and Console Buffer
Write and Read Characters at a Cursor Position

Create Fortran Applications That Use Windows Features

A separate document is available that details the process of creating features, titled Use Intel® Fortran to
Create and Build Windows-Based Applications.

The document covers:

• Create Fortran Windowing Applications: Windows-based applications use the Windows interface,
complete with tool bars, pull-down menus, dialog boxes, and other features. You can include data entry
and mouse control in your application and allow for interaction with programs written in other languages
or commercial programs such as Microsoft Excel.

• Create and Using Fortran DLLs: A dynamic-link library (DLL) contains one or more subprogram
procedures (functions or subroutines) that are compiled, linked, and stored separately from the
applications using them. Because the functions or subroutines are separate from the applications using
them, they can be shared or replaced easily.

• Use QuickWin: The Intel® Fortran QuickWin runtime library helps you turn graphics programs into simple
Windows applications. Though the full capability of Windows is not available through QuickWin, QuickWin
is simpler to learn and to use. QuickWin applications support pixel-based graphics, real-coordinate
graphics, text windows, character fonts, user-defined menus, mouse events, and editing (select/copy/
paste) of text, graphics, or both.

• Use Dialog Boxes for Application Controls: Dialog boxes are a user-friendly way to solicit application
control. As your application executes, you can make a dialog box appear on the screen. You can click a
dialog box control to enter data or choose what happens next. Using the dialog routines provided with
Intel® Fortran, you can add dialog boxes to your application. These routines define dialog boxes and their
controls (scroll bars, buttons, etc.), and call your subroutines to respond to user selections.

See Also
Intel® Software Documentation Library

Dialog Box Help
This section provides information about access to dialog boxes and information about compilers, libraries,
and converter dialog boxes.

 1 Intel® Fortran Compiler Classic and Intel® Fortran Compiler Developer Guide and Reference

50

https://www.intel.com/content/www/us/en/docs/fortran-compiler/developer-reference-build-windows-applications/15-0/overview.html
https://www.intel.com/content/www/us/en/docs/fortran-compiler/developer-reference-build-windows-applications/15-0/overview.html
https://www.intel.com/content/www/us/en/resources-documentation/developer.html

Options: General dialog box

To access the General page, click Tools > Options and then select Intel Compilers and Libraries >
IFORT Intel Fortran Classic > General for ifort or Intel Compilers and Libraries > IFX Intel
Fortran > General for ifx. Use this page to specify Fortran File Extensions and Build Options.

Build Options
Continue on Errors: Check this box to allow compilation to continue regardless of an error in the current
file. The compiler will begin compiling the next file. (To set the maximum number of errors to encounter
before compilation stops, choose Configuration Properties > Fortran > Diagnostics > Error Limit).

Generate Build Logs: Check this box to generate build logs.

Show Environment in Log: Check this box to show environment variable settings in the log file.

Fortran File Extensions
You can specify additional Fortran free format and fixed format file extensions to be recognized as valid file
extensions within the IDE. The IDE treats these additional extensions as compilable Fortran source files. You
can also remove or modify existing extensions that appear in the list.

When you add a new extension, the IDE checks the registry to determine whether the extension is already
associated with a language, tool, or file format. If there is such an association, a message informs you of this
and you will not be allowed to add the extension.

Headers: Specify one or more file extensions for header files, each beginning with a period and separated by
semicolons.

Sources: Specify one or more file extensions for source files, each beginning with a period and separated by
semicolons.

Click OK to save your changes.

Options: Compilers dialog box

To access the Compilers page:

1. Open Tools > Options.
2. In the left pane, select Intel Compilers and Libraries > IFORT Intel Fortran Classic > Compilers

for ifort or Intel Compilers and Libraries > IFX Intel Fortran > Compilers for ifx.

Compiler Selection for IFORT Intel Fortran Classic
Tabs Win32 and x64: Select Win32 or x64 target platforms.

Selected compiler: Selects the compiler version. The default value is <Latest>.

NOTE The compiler details are shown in the two boxes directly below.

Executables: Specifies the directory location for executable files. You may specify this setting for each
selected compiler.

Includes: Specifies the directory location for included files. You may specify this setting for each selected
compiler.

Libraries: Specifies the directory location for libraries. You may specify this setting for each selected
compiler.

Default options: Sets the default options for a selected compiler You may specify this setting for each
selected compiler.

Reset...: Resets the settings for the compiler.

Intel® Fortran Compiler Classic and Intel® Fortran Compiler Developer Guide and Reference 1

51

Compiler Selection for IFX Intel Fortran
Selected compiler: Selects the compiler version. The default value is <Latest>.

NOTE The compiler details are shown in the two boxes directly below.

Executables: Specifies the directory location for executable files. You may specify this setting for each
selected compiler.

Includes: Specifies the directory location for included files. You may specify this setting for each selected
compiler.

Libraries: Specifies the directory location for libraries. You may specify this setting for each selected
compiler.

Default options: Sets the default options for a selected compiler You may specify this setting for each
selected compiler.

Reset...: Resets the settings for the compiler.

See Also
Selecting the Compiler Version
Specifying Path, Library, and Include Directories

Options: Advanced dialog box

To access the Advanced page, expand the Tools > Options > Text Editor > Fortran nodes and select
Advanced. Here you can specify advanced options for text editing.

Browsing/Navigation Section
Collect Call/Callers graph information: Choose this option to enable or disable information collection for
the Call/Callers graph. Once enabled, you can right-click on a member name in the Code Editor, then click
Call Browser to view the member's call hierarchy.

Collect Object Browser information: Choose this option to enable the display of procedures in your
project in a hierarchical tree. Once enabled, you can use View > Object Browser to display your
procedures.

Disable Database: Choose this option to disable creation of the code browsing database. This may help
increase performance on slow machines. When you disable the database, all features that rely on code
browsing information do not work.

Enable Database Saving/Loading: Choose this option to save collected data to a file on disk so that all
source browsing features are available immediately when you open the project. When this option is disabled,
the code browsing database is generated via background source parsing, so many features that rely on code
browsing information do not work until this process completes. Saving and loading the database requires
some additional time when saving and loading the project.

Enable Find All References: Choose this option to enable display of the location(s) in your code where a
symbol is referenced. When this option is enabled, you can use the right-click context menu Find All
References option to display a list of references to the selected symbol. Double-click on a reference to find
that reference.

Enable Go To Definition: Choose this option to enable quick navigation to an object definition. When this
option is enabled, you can use the right-click context menu Go to Definition option to locate where the
selected object was declared, opening the associated source file if required. (If you have also enabled Scan
system includes, any objects declared in system modules such as IFWINTY cause the associated source for
that module to be opened.)

 1 Intel® Fortran Compiler Classic and Intel® Fortran Compiler Developer Guide and Reference

52

Scan system includes: Choose this option to scan system include files. This option is used with one or
more of the following options: Collect Object Browser Information, Enable Find All References,
Enable Go To Definition.

Intrinsics Section
Enable Intrinsic Parameter Info: Choose this option to enable the display of intrinsic function and
subroutine parameter information. When this option is enabled, you can type a name of an intrinsic
procedure, followed by an open parenthesis, and information about the procedure and its arguments
appears.

Enable Intrinsic Quick Info: Choose this option to enable the display of additional information when the
mouse pointer is moved over an intrinsic function or subroutine name.

Miscellaneous Section
Enumerate Comment Tasks: Choose this option to enable the display of a list of tasks consisting of source
files containing comments. Comments take the form of the ! character, followed by a token such as TO DO.
Valid tokens are those listed in Tools > Options > Environment > Task List. When this option is enabled,
you can select Comments from the task list using either:

• View > Task List for Microsoft Visual Studio* 2017/2019

-OR-
• View > Other Windows > Task List for Microsoft Visual Studio 2022

You can double-click on a comment in the list to jump to its location.

Highlight Matching Tokens: Choose this option to allow identifier highlighting and block delimiter
matching. When enabled, this option highlights all references to the identifier under the cursor.

Outlining Section
Enable Outlining: Choose this option to allow the collapsing of whole program units. When this option is
enabled, you can click the minus (-) or plus (+) symbols for PROGRAM, SUBROUTINE, FUNCTION, MODULE,
and BLOCK DATA statements.

Outline Statement Blocks: Choose this option to allow collapsing of block constructs such as IF and DO.
You must also choose Enable Outlining.

Compiler Reference
This section contains compiler reference information. For example, it contains information about compiler
options, compiler limits, and libraries.

Compiler Limits
The amount of data storage, the size of arrays, and the total size of executable programs are limited only by
the amount of process virtual address space available, as determined by system parameters.

The table below shows the limits to the size and complexity of a single Intel® Fortran program unit and to
individual statements contained within it:

Language Element Limit

Actual number of arguments per CALL or
function reference

Limited only by memory constraints

Intel® Fortran Compiler Classic and Intel® Fortran Compiler Developer Guide and Reference 1

53

Language Element Limit

Arguments in a function reference in a
specification expression

255

Array dimensions 31

(The Fortran 2018 standard supports a maximum array
dimension of 15.)

Array elements per dimension 2**31-1 on systems using IA-32 architecture

2**63-1 on systems using Intel® 64 architecture

Limited by current memory configuration.

Character lengths 2**31-1 on systems using IA-32 architecture

2**63-1 on systems using Intel® 64 architecture

Constants: character and Hollerith 7198

Constants: characters read in list-
directed I/O

2048 characters

Continuation lines Free-format lines can contain up to 10,000 characters. A
statement in either fixed or free format can contain up to
1,000,000 characters. Longer lines may reduce the number of
allowed continuations, subject to the limit on lexical tokens per
statement.

Data and I/O implied DO nesting 31

DO, CASE, FORALL, WHERE, and block
IF statement nesting (combined)

512

DO loop index variable 9,223,372,036,854,775,807= 2**63-1

Format group nesting 8

Fortran source line length fixed format: 72 (or 132 if /extend_source is in effect)
characters

free format: 10,000 characters

INCLUDE file nesting 20 levels

Labels in computed or assigned GOTO
list

Limited only by memory constraints

Lexical tokens per statement 41,000

Named common blocks Limited only by memory constraints

Nesting of array constructor implied DOs 31

Nesting of input/output implied DOs 31

Nesting of interface blocks Limited only by memory constraints

Nesting of DO, IF, or CASE constructs Limited only by memory constraints

Nesting of parenthesized formats Limited only by memory constraints

Number of arguments to MIN and MAX Limited only by memory constraints

Number of digits in a numeric constant Limited by statement length

 1 Intel® Fortran Compiler Classic and Intel® Fortran Compiler Developer Guide and Reference

54

Language Element Limit

Parentheses nesting in expressions Limited only by memory constraints

Structure nesting 30

Symbolic name length 63 characters

Width field for a numeric edit descriptor 2**15-1 on systems using IA-32 architecture

2**31-1 on systems using Intel® 64 architecture

For limits of other edit descriptor fields, see Forms for Data
Edit Descriptors.

For more information on memory limits for large data objects, see:

• The AUTOMATIC statement
• The /F compiler option
• The heap-array compiler option
• The product Release Notes

See Also
Forms for Data Edit Descriptors

Compiler Options
This compiler supports many compiler options you can use in your applications.

The LLVM-based Intel® Fortran Compiler (ifx) supports many Intel® Fortran Compiler Classic compiler options,
but full implementation is not yet available. Implementation will be improved in future releases.

NOTE
macOS is no longer supported for Intel® Fortran Compiler Classic (ifort).

In this section, we provide the following:

• An alphabetical list of compiler options that includes their short descriptions
• Lists of deprecated and removed options
• General rules for compiler options and the conventions we use when referring to options
• Details about what appears in the compiler option descriptions
• A description of each compiler option. The descriptions appear under the option's functional category.

Within each category, the options are listed in alphabetical order.

Several Clang compiler options are supported for the ifx compiler, such as some of the -fprofile options.
We do not document these options. For more information about Clang options, see the Clang documentation.

Note that for ifx, the Clang -fprofile options replace the functionality of the [Q]prof options that are only
supported for ifort.

For details about new functionality, such as new compiler options, see the Release Notes for the product.

Conventions Used for Compiler Options
The following conventions are used to describe compiler options.

compiler option name shortcuts The following conventions are used as shortcuts
when referencing compiler option names in
descriptions:

• No initial – or /

Intel® Fortran Compiler Classic and Intel® Fortran Compiler Developer Guide and Reference 1

55

https://clang.llvm.org/docs/UsersManual.html

This shortcut is used for option names that are
the same for Linux and Windows except for the
initial character.

For example, Fa denotes:

• Linux: -Fa
• Windows: /Fa

• [Q]option-name

This shortcut is used for option names that only
differ because the Windows form starts with a Q.

For example, [Q]ipo denotes:

• Linux: -ipo
• Windows: /Qipo

• [q or Q]option-name

This shortcut is used for option names that only
differ because the Linux form starts with a q and
the Windows form starts with a Q.

For example, [q or Q]opt-report denotes:

• Linux: -qopt-report
• Windows: /Qopt-report

More dissimilar compiler option names are shown in
full.

/option or

-option
A slash before an option name indicates the option
is available on Windows. A dash before an option
name indicates the option is available on Linux
systems. For example:

• Linux : -help
• Windows: /help

NOTE If an option is available on all supported
operating systems, no slash or dash appears in
the general description of the option. The slash
and dash will only appear where the option
syntax is described.

/option:argument or

-option=argument
Indicates that an option requires an argument
(parameter). For example, you must specify an
argument for the following options:

• Linux: -mtune=processor
• Windows: /tune:processor

/option:keyword or

-option=keyword
Indicates that an option requires one of the
keyword values.

/option[:keyword] or

-option[=keyword]

Indicates that the option can be used alone or with
an optional keyword.

 1 Intel® Fortran Compiler Classic and Intel® Fortran Compiler Developer Guide and Reference

56

option[n] or

option[:n] or

option[=n]

Indicates that the option can be used alone or with
an optional value. For example, in -unroll[=n],
the n can be omitted or a valid value can be
specified for n.

option[-] Indicates that a trailing hyphen disables the option.
For example, /Qglobal_hoist- disables the
Windows option /Qglobal_hoist.

[no]option or

[no-]option
Indicates that no or no- preceding an option
disables the option. For example:

In the Linux option -[no-]global_hoist,
-global_hoist enables the option, while
-no-global_hoist disables it.

In the Windows
option /[no]traceback, /traceback enables the
option, while /notraceback disables it.

In some options, the no appears later in the option
name. For example, -fno-common disables the
-fcommon option.

Alphabetical Option List
The following table lists current compiler options in alphabetical order.

NOTE
Several Clang compiler options are supported for the ifx compiler, such as some of the -fprofile
options. We do not document these options. For more information about Clang options, see the Clang
documentation.

Note that for ifx, the Clang -fprofile options replace the functionality of the [Q]prof options that
are only supported for ifort.

4Nportlib, 4Yportlib Determines whether the compiler links to the library of portability
routines.

align Tells the compiler how to align certain data items.

allow Determines whether the compiler allows certain behaviors.

altparam Allows alternate syntax (without parentheses) for PARAMETER
statements.

ansi-alias, Qansi-alias Tells the compiler to assume certain rules of the Fortran standard
regarding aliasing and array bounds.

arch Tells the compiler which features it may target, including which
instruction sets it may generate.

assume Tells the compiler to make certain assumptions.

auto Causes all local, non-SAVEd variables to be allocated to the runtime
stack.

Intel® Fortran Compiler Classic and Intel® Fortran Compiler Developer Guide and Reference 1

57

https://clang.llvm.org/docs/ClangCommandLineReference.html
https://clang.llvm.org/docs/ClangCommandLineReference.html

auto-scalar, Qauto-scalar Causes scalar variables of intrinsic types INTEGER, REAL, COMPLEX, and
LOGICAL that do not have the SAVE attribute to be allocated to the
runtime stack.

ax, Qax Tells the compiler to generate multiple, feature-specific auto-dispatch
code paths for Intel® processors if there is a performance benefit.

B Specifies a directory that can be used to find include files, libraries, and
executables.

Bdynamic Enables dynamic linking of libraries at runtime.

bigobj Increases the number of sections that an object file can contain. This
feature is only available for ifort.

bintext Places a text string into the object file (.obj) being generated by the
compiler. This feature is only available for ifort.

Bstatic Enables static linking of a user's library.

Bsymbolic Binds references to all global symbols in a program to the definitions
within a user's shared library.

Bsymbolic-functions Binds references to all global function symbols in a program to the
definitions within a user's shared library.

c Causes the compiler to generate an object only and not link.

ccdefault Specifies the type of carriage control used when a file is displayed at a
terminal screen.

check Checks for certain conditions at runtime.

coarray, Qcoarray Enables the coarray feature.

coarray-config-file, Qcoarray-
config-file

Specifies the name of a Message Passing Interface (MPI) configuration
file.

coarray-num-images,
Qcoarray-num-images

Specifies the default number of images that can be used to run a coarray
executable.

complex-limited-range,
Qcomplex-limited-range

Determines whether the use of basic algebraic expansions of some
arithmetic operations involving data of type COMPLEX is enabled. This
feature is only available for ifort.

convert Specifies the format of unformatted files containing numeric data.

cxxlib Determines whether the compiler links using the C++ runtime libraries
provided by gcc.

D Defines a symbol name that can be associated with an optional value.

dbglibs Tells the linker to search for unresolved references in a debug runtime
library.

debug (Linux*) Enables or disables generation of debugging information.

debug (Windows*) Enables or disables generation of debugging information.

debug-parameters Tells the compiler to generate debug information for PARAMETERs used in
a program.

device-math-lib Enables or disables certain device libraries.

diag, Qdiag Controls the display of diagnostic information during compilation.

 1 Intel® Fortran Compiler Classic and Intel® Fortran Compiler Developer Guide and Reference

58

diag-dump, Qdiag-dump Tells the compiler to print all enabled diagnostic messages.

diag-error-limit, Qdiag-error-
limit

Specifies the maximum number of errors allowed before compilation
stops.

diag-file, Qdiag-file Causes the results of diagnostic analysis to be output to a file.

diag-file-append, Qdiag-file-
append

Causes the results of diagnostic analysis to be appended to a file.

diag-id-numbers, Qdiag-id-
numbers

Determines whether the compiler displays diagnostic messages by using
their ID number values.

d-lines, Qd-lines Compiles debug statements.

dll Specifies that a program should be linked as a dynamic-link (DLL) library.

double-size Specifies the default KIND for DOUBLE PRECISION and DOUBLE COMPLEX
declarations, constants, functions, and intrinsics.

dryrun Specifies that driver tool commands should be shown but not executed.

dumpmachine Displays the target machine and operating system configuration.

dynamic-linker Specifies a dynamic linker other than the default.

dyncom, Qdyncom Enables dynamic allocation of common blocks at runtime.

E Causes the preprocessor to send output to stdout.

EP Causes the preprocessor to send output to stdout, omitting #line
directives.

exe Specifies the name for a built program or dynamic-link library.

extend-source Specifies the length of the statement field in a fixed-form source file.

extfor Specifies file extensions to be processed by the compiler as Fortran files.

extfpp Specifies file extensions to be recognized as a file to be preprocessed by
the Fortran preprocessor.

extlnk Specifies file extensions to be passed directly to the linker.

F (Windows*) Specifies the stack reserve amount for the program.

f66 Tells the compiler to apply FORTRAN 66 semantics.

f77rtl Tells the compiler to use the runtime behavior of FORTRAN 77.

Fa Specifies that an assembly listing file should be generated.

FA (ifx only) Produces an assembly listing without source or machine code
annotations. This description is only for ifx.

FA (ifort only) Specifies the contents of an assembly listing file. This description is only
for ifort.

falias, Oa Specifies whether or not a procedure call may have hidden aliases of local
variables not supplied as actual arguments.

falign-functions, Qfnalign Tells the compiler to align procedures on an optimal byte boundary.

falign-loops, Qalign-loops Aligns loops to a power-of-two byte boundary. This feature is only
available for ifort.

Intel® Fortran Compiler Classic and Intel® Fortran Compiler Developer Guide and Reference 1

59

falign-stack Tells the compiler the stack alignment to use on entry to routines. This
option is deprecated and will be removed in a future release. This feature
is only available for ifort.

fast Maximizes speed across the entire program.

fast-transcendentals, Qfast-
transcendentals

Enables the compiler to replace calls to transcendental functions with
faster but less precise implementations. This feature is only available for
ifort.

fasynchronous-unwind-tables Determines whether unwind information is precise at an instruction
boundary or at a call boundary.

fcf-protection, Qcf-protection Enables Intel® Control-Flow Enforcement Technology (Intel® CET)
protection, which defends your program from certain attacks that exploit
vulnerabilities. This option offers preliminary support for Intel® CET.

fcode-asm Produces an assembly listing with machine code annotations. This feature
is only available for ifort.

fcommon Determines whether the compiler treats common symbols as global
definitions.

Fd Lets you specify a name for a program database (PDB) file created by the
compiler. This feature is only available for ifort.

feliminate-unused-debug-
types, Qeliminate-unused-
debug-types

Controls the debug information emitted for types declared in a
compilation unit. This feature is only available for ifort.

fexceptions Enables exception handling table generation.

ffat-lto-objects Determines whether a fat link-time optimization (LTO) object, containing
both intermediate language and object code, is generated during an
interprocedural optimization compilation (-c –ipo). This feature is only
available for ifort.

ffnalias, Ow Determines whether aliasing is assumed within functions. This feature is
only available for ifort.

ffp-accuracy Lets you specify the required accuracy (precision) for floating-point
operations and library calls. This feature is only available for ifx.

fimf-absolute-error, Qimf-
absolute-error

Defines the maximum allowable absolute error for math library function
results.

fimf-accuracy-bits, Qimf-
accuracy-bits

Defines the relative error for math library function results, including
division and square root.

fimf-arch-consistency, Qimf-
arch-consistency

Ensures that the math library functions produce consistent results across
different microarchitectural implementations of the same architecture.

fimf-domain-exclusion, Qimf-
domain-exclusion

Indicates the input arguments domain on which math functions must
provide correct results.

fimf-force-dynamic-target,
Qimf-force-dynamic-target

Instructs the compiler to use runtime dispatch in calls to math functions.
This feature is only available for ifort.

fimf-max-error, Qimf-max-
error

Defines the maximum allowable relative error for math library function
results, including division and square root.

fimf-precision, Qimf-precision Lets you specify a level of accuracy (precision) that the compiler should
use when determining which math library functions to use.

 1 Intel® Fortran Compiler Classic and Intel® Fortran Compiler Developer Guide and Reference

60

fimf-use-svml, Qimf-use-svml Instructs the compiler to use the Short Vector Math Library (SVML) rather
than the Intel® Fortran Compiler Classic and Intel® Fortran Compiler Math
Library (LIBM) to implement math library functions.

finline Tells the compiler to inline functions declared with !DIR$ ATTRIBUTES
FORCEINLINE.

finline-functions Enables function inlining for single file compilation.

finline-limit Lets you specify the maximum size of a function to be inlined. This
feature is only available for ifort.

finstrument-functions,
Qinstrument-functions

Determines whether routine entry and exit points are instrumented.

fiopenmp, Qiopenmp Enables recognition of OpenMP* features and tells the parallelizer to
generate multi-threaded code based on OpenMP* directives. Provides the
ability to offload to a GPU when -fopenmp-targets (or /Qopenmp-targets)
is also specified. This feature is only available for ifx.

fixed Specifies source files are in fixed format.

fkeep-static-consts , Qkeep-
static-consts

Tells the compiler to preserve allocation of variables that are not
referenced in the source. This feature is only available for ifort.

flink-huge-device-code Tells the compiler to place device code later in the linked binary. This is to
prevent 32-bit PC-relative relocations between surrounding Executable
and Linkable Format (ELF) sections when the device code is larger than
2GB. This feature is only available for ifx.

fltconsistency Enables improved floating-point consistency.

flto Enables whole program link time optimization (LTO). This feature is only
available for ifx.

fma, Qfma Determines whether the compiler generates fused multiply-add (FMA)
instructions if such instructions exist on the target processor.

fmaintain-32-byte-stack-
align, Qmaintain-32-byte-
stack-align

Tells the compiler to realign the stack to 32-byte if stack alignment is
uncertain for functions with external linkage, and retain 32-byte
alignment for other functions. This feature is only available for ifx.

fmath-errno Tells the compiler that errno can be reliably tested after calls to standard
math library functions.

fmerge-constants Determines whether the compiler and linker attempt to merge identical
constants (string constants and floating-point constants) across
compilation units. This feature is only available for ifort.

fmerge-debug-strings Causes the compiler to pool strings used in debugging information.

fminshared Specifies that a compilation unit is a component of a main program and
should not be linked as part of a shareable object. This feature is only
available for ifort.

fmpc-privatize Enables or disables privatization of all static data for the MultiProcessor
Computing environment (MPC) unified parallel runtime. This feature is
only available for ifort.

fnsplit, Qfnsplit Enables function splitting. This feature is only available for ifort.

fomit-frame-pointer Determines whether EBP is used as a general-purpose register in
optimizations.

Intel® Fortran Compiler Classic and Intel® Fortran Compiler Developer Guide and Reference 1

61

fopenmp, Qopenmp Enables recognition of OpenMP* features and tells the parallelizer to
generate multi-threaded code based on OpenMP* directives.

fopenmp-concurrent-host-
device-compile, Qopenmp-
concurrent-host-device-
compile

Enables parallel compilation of host and target compilation steps when
performing OpenMP* offload compilations. This is an experimental
feature. This feature is only available for ifx.

fopenmp-declare-target-
scalar-defaultmap, Qopenmp-
declare-target-scalar-
defaultmap

Determines which implicit data-mapping/sharing rules are applied for a
scalar variable referenced in a TARGET directive. This feature is only
available for ifx.

fopenmp-default-allocator,
Qopenmp-default-allocator

Tells the compiler that all ALLOCATE statements should be treated as
though there were an explicit OpenMP ALLOCATE directive that preceded
them. This feature is only available for ifx.

fopenmp-device-code-split,
Qopenmp-device-code-split

Enables parallel compilation of SPIR-V* kernels for OpenMP offload
Ahead-Of-Time compilation. This feature is only available for ifx.

fopenmp-device-lib Enables or disables certain device libraries for an OpenMP* target.

fopenmp-do-concurrent-
maptype-modifier, Qopenmp-
do-concurrent-maptype-
modifier

Lets you specify the data movement for variables referenced inside the
DO CONCURRENT region when it is auto-offloaded. This feature is only
available for ifx.

fopenmp-max-parallel-link-
jobs, Qopenmp-max-parallel-
link-jobs

Determines the maximum number of parallel actions to be performed
during device linking steps, where applicable. This feature is only
available for ifx.

fopenmp-target-buffers,
Qopenmp-target-buffers

Enables a way to overcome the problem where some OpenMP* offload
SPIR-V* devices produce incorrect code when a target object is larger
than 4GB. This feature is only available for ifx.

fopenmp-target-default-sub-
group-size, Qopenmp-target-
default-sub-group-size

Lets you specify a default sub-group size globally for single program
multiple data (SPMD) kernels that are generated for OpenMP* target
constructs when offloading to SPIR64-based devices. This feature is only
available for ifx.

fopenmp-target-do-
concurrent, Qopenmp-target-
do-concurrent

Determines whether a DO CONCURRENT construct is automatically
converted into an OpenMP* TARGET region. This feature is only available
for ifx.

fopenmp-target-loopopt,
Qopenmp-target-loopopt

Enables the loop optimizer and auto-vectorization for OpenMP* offloading
device compilation when option O2 or higher is set or specified. This
feature is only available for ifx.

fopenmp-target-simd,
Qopenmp-target-simd

Enables OpenMP* SIMD loop vectorization for OpenMP offloading device
compilation when option level O2 or higher is set or specified. This
feature is only available for ifx.

fopenmp-targets, Qopenmp-
targets

Enables offloading to a specified GPU target if OpenMP* features have
been enabled. This feature is only available for ifx.

foptimize-sibling-calls Determines whether the compiler optimizes tail recursive calls.

fortlib Tells the C/C++ compiler driver to link to the Fortran libraries. This option
is primarily used by C/C++ for mixed-language programming.

fpconstant Tells the compiler that single-precision constants assigned to double-
precision variables should be evaluated in double precision.

 1 Intel® Fortran Compiler Classic and Intel® Fortran Compiler Developer Guide and Reference

62

fpe Allows some control over floating-point exception handling for the main
program at runtime.

fpe-all Allows some control over floating-point exception handling for each
routine in a program at runtime.

fpic Determines whether the compiler generates position-independent code.

fpie Tells the compiler to generate position-independent code. The generated
code can only be linked into executables.

fp-model, fp Controls the semantics of floating-point calculations.

fpp Runs the Fortran preprocessor on source files before compilation.

fpp-name Lets you specify an alternate preprocessor to use with Fortran.

fp-port, Qfp-port Rounds floating-point results after floating-point operations. This feature
is only available for ifort.

fpreview-breaking-changes Lets a user tell the compiler that they are willing to give up backward
compatibility guarantees and lets the compiler enable new backward
breaking changes that will appear in the next major release. This feature
is only available for ifx.

fprofile-ml-use Enables the use of a pre-trained machine learning model to predict
branch execution probabilities driving profile-guided optimizations. This
feature is only available for ifx.

fprotect-parens, Qprotect-
parens

Determines whether the optimizer honors parentheses when floating-
point expressions are evaluated.

fpscomp Controls whether certain aspects of the runtime system and semantic
language features within the compiler are compatible with Intel® Fortran
or Microsoft* Fortran PowerStation.

fp-speculation, Qfp-
speculation

Tells the compiler the mode in which to speculate on floating-point
operations.

fp-stack-check, Qfp-stack-
check

Tells the compiler to generate extra code after every function call to
ensure that the floating-point stack is in the expected state. This feature
is only available for ifort.

free Specifies source files are in free format.

fsanitize Enables the specified code sanitizer to detect certain issues at runtime.
This feature is only available for ifx.

fsource-asm Produces an assembly listing with source code annotations. This feature is
only available for ifort.

fstack-protector Enables or disables stack overflow security checks for certain (or all)
routines.

fstack-security-check Determines whether the compiler generates code that detects some
buffer overruns.

fstrict-overflow, Qstrict-
overflow

Determines whether strict overflow is enabled for signed addition,
subtraction, and multiplication wrap arounds using twos-complement
representation. This feature is only available for ifx.

fsycl Enables linking Fortran object files with DPC++ SYCL-based object files.
This feature is only available for ifx.

Intel® Fortran Compiler Classic and Intel® Fortran Compiler Developer Guide and Reference 1

63

fsycl-dead-args-optimization Enables elimination of DPC++ dead kernel arguments. This feature is
only available for ifx.

fsycl-device-code-split Specifies a SYCL* device code module assembly. This feature is only
available for ifx.

fsycl-device-lib Enables or disables certain device libraries for a SYCL* target. This
feature is only available for ifx.

fsycl-instrument-device-code Enables or disables linking of the Instrumentation and Tracing Technology
(ITT) device libraries for VTune™. This feature is only available for ifx.

fsycl-link-huge-device-code Tells the compiler to place device code later in the linked binary. This is to
prevent 32-bit PC-relative relocations between surrounding Executable
and Linkable Format (ELF) sections when the device code is larger than
2GB. This is a deprecated option that will be removed in a future release.
This feature is only available for ifx.

fsycl-targets Tells the compiler to generate code for specified device targets. This
option is only valid for linking against SYCL-based objects. This feature is
only available for ifx.

ftarget-compile-fast Tells the compiler to perform less aggressive optimizations to reduce
compilation time at the expense of generating less optimal target code.
This is an experimental feature.This feature is only available for ifx.

ftarget-register-alloc-mode Specifies a register allocation mode for specific hardware for use by
supported target backends. This feature is only available for ifx.

ftrapuv, Qtrapuv Initializes stack local variables to an unusual value to aid error detection.

ftz, Qftz Flushes subnormal results to zero.

fuse-ld Tells the compiler to use a different linker instead of the default linker,
which is ld on Linux and link on Windows.

fvec-peel-loops, Qvec-peel-
loops

Enables peel loop vectorization. This feature is only available for ifx.

fvec-remainder-loops, Qvec-
remainder-loops

Enables remainder loop vectorization. This feature is only available for ifx.

fvec-with-mask, Qvec-with-
mask

Enables vectorization for short trip-count loops with masking. This feature
is only available for ifx.

fverbose-asm Produces an assembly listing with compiler comments, including options
and version information.

fvisibility Specifies the default visibility for global symbols or the visibility for
symbols in a file.

fzero-initialized-in-bss, Qzero-
initialized-in-bss

Determines whether the compiler places in the DATA section any
variables explicitly initialized with zeros.

g Tells the compiler to generate a level of debugging information in the
object file.

gcc-name Lets you specify the name of the GCC compiler that should be used to set
up the link-time environment, including the location of standard libraries.

gdwarf Lets you specify a DWARF Version format when generating debug
information.

 1 Intel® Fortran Compiler Classic and Intel® Fortran Compiler Developer Guide and Reference

64

Ge Enables stack-checking for all functions. This is a deprecated option. The
replacement option is /Gs0.

gen-dep Tells the compiler to generate build dependencies for the current
compilation.

gen-depformat Specifies the form for the output generated when option gen-dep is
specified.

gen-depshow Determines whether certain features are excluded from dependency
analysis. Currently, it only applies to intrinsic modules.

gen-interfaces Tells the compiler to generate an interface block for each routine in a
source file.

GF Enables read-only string-pooling optimization.

global-hoist, Qglobal-hoist Enables certain optimizations that can move memory loads to a point
earlier in the program execution than where they appear in the source.

grecord-gcc-switches Causes the command line options that were used to invoke the compiler
to be appended to the DW_AT_producer attribute in DWARF debugging
information. This feature is only available for ifort.

GS Determines whether the compiler generates code that detects some
buffer overruns.

Gs Lets you control the threshold at which the stack checking routine is
called or not called.

gsplit-dwarf Creates a separate object file containing DWARF debug information.

guard Enables the control flow protection mechanism.

gxx-name Lets you specify the name of the g++ compiler that should be used to set
up the link-time environment, including the location of standard libraries.

heap-arrays Puts automatic arrays and arrays created for temporary computations on
the heap instead of the stack.

help Displays all supported compiler options or supported compiler options
within a specified category of options.

homeparams Tells the compiler to store parameters passed in registers to the stack.
This feature is only available for ifort.

hotpatch Tells the compiler to prepare a routine for hotpatching. This feature is
only available for ifort.

I Specifies an additional directory for the include path.

idirafter Adds a directory to the second include file search path.

iface Specifies the default calling convention and argument-passing convention
for an application.

init, Qinit Lets you initialize a class of variables to zero or to various numeric
exceptional values.

inline Specifies the level of inline function expansion.

inline-factor, Qinline-factor Specifies the percentage multiplier that should be applied to all inlining
options that define upper limits. This feature is only available for ifort.

Intel® Fortran Compiler Classic and Intel® Fortran Compiler Developer Guide and Reference 1

65

inline-forceinline, Qinline-
forceinline

Instructs the compiler to force inlining of functions suggested for inlining
whenever the compiler is capable doing so. This feature is only available
for ifort.

inline-level, Ob Specifies the level of inline function expansion.

inline-max-per-compile,
Qinline-max-per-compile

Specifies the maximum number of times inlining may be applied to an
entire compilation unit. This feature is only available for ifort.

inline-max-per-routine,
Qinline-max-per-routine

Specifies the maximum number of times the inliner may inline into a
particular routine. This feature is only available for ifort.

inline-max-size, Qinline-max-
size

Specifies the lower limit for the size of what the inliner considers to be a
large routine. This feature is only available for ifort.

inline-max-total-size, Qinline-
max-total-size

Specifies how much larger a routine can normally grow when inline
expansion is performed. This feature is only available for ifort.

inline-min-caller-growth,
Qinline-min-caller-growth

Lets you specify a procedure size n for which procedures of size <= n do
not contribute to the estimated growth of the caller when inlined. This
feature is only available for ifort.

inline-min-size, Qinline-min-
size

Specifies the upper limit for the size of what the inliner considers to be a
small routine. This feature is only available for ifort.

intconstant Tells the compiler to use FORTRAN 77 semantics to determine the kind
parameter for integer constants.

integer-size Specifies the default KIND for integer and logical variables.

intel-freestanding Lets you compile in the absence of a gcc environment.

intel-freestanding-target-os Lets you specify the target operating system for compilation.

ip, Qip Determines whether additional interprocedural optimizations for single-
file compilation are enabled. This feature is only available for ifort.

ip-no-inlining, Qip-no-inlining Disables full and partial inlining enabled by interprocedural optimization
options. This feature is only available for ifort.

ip-no-pinlining, Qip-no-
pinlining

Disables partial inlining enabled by interprocedural optimization options.
This feature is only available for ifort.

ipo, Qipo Enables interprocedural optimization between files.

ipo-c, Qipo-c Tells the compiler to optimize across multiple files and generate a single
object file. This feature is only available for ifort.

ipo-jobs, Qipo-jobs Specifies the number of commands (jobs) to be executed simultaneously
during the link phase of Interprocedural Optimization (IPO). This feature
is only available for ifort.

ipo-S, Qipo-S Tells the compiler to optimize across multiple files and generate a single
assembly file. This feature is only available for ifort.

ipo-separate, Qipo-separate Tells the compiler to generate one object file for every source file. This
feature is only available for ifort.

isystem Specifies a directory to add to the start of the system include path.

l Tells the linker to search for a specified library when linking.

L Tells the linker to search for libraries in a specified directory before
searching the standard directories.

 1 Intel® Fortran Compiler Classic and Intel® Fortran Compiler Developer Guide and Reference

66

libdir Controls whether linker options for search libraries are included in object
files generated by the compiler.

libs Tells the compiler which type of runtime library to link to.

list Tells the compiler to create a listing of the source file.

list-line-len Specifies the line length for the listing generated when option list is
specified.

list-page-len Specifies the page length for the listing generated when option list is
specified.

logo Displays the compiler version information.

m Tells the compiler which features it may target, including which
instruction set architecture (ISA) it may generate.

m32, m64 , Qm32 , Qm64 Tells the compiler to generate code for a specific architecture. Option m32
(and /Qm32) is deprecated and will be removed in a future release. 32-
bit options are only available for ifort.

m80387 Specifies whether the compiler can use x87 instructions.

map Tells the linker to generate a link map file.

map-opts, Qmap-opts Maps one or more compiler options to their equivalent on a different
operating system. This feature is only available for ifort.

march Tells the compiler to generate code for processors that support certain
features.

masm Tells the compiler to generate the assembler output file using a selected
dialect.

mauto-arch, Qauto-arch Tells the compiler to generate multiple, feature-specific auto-dispatch
code paths for x86 architecture processors if there is a performance
benefit.

mbranches-within-32B-
boundaries, Qbranches-
within-32B-boundaries

Tells the compiler to align branches and fused branches on 32-byte
boundaries for better performance.

mcmodel Tells the compiler to use a specific memory model to generate code and
store data.

mconditional-branch,
Qconditional-branch

Lets you identify and fix code that may be vulnerable to speculative
execution side-channel attacks, which can leak your secure data as a
result of bad speculation of a conditional branch direction. This feature is
only available for ifort.

MD Tells the linker to search for unresolved references in a multithreaded,
dynamic-link runtime library.

minstruction, Qinstruction Determines whether MOVBE instructions are generated for certain Intel®
processors. This feature is only available for ifort.

mno-gather, Qgather- Disables the generation of gather instructions in auto-vectorization. This
feature is only available for ifx.

mno-scatter, Qscatter- Disables the generation of scatter instructions in auto-vectorization. This
feature is only available for ifx.

module Specifies the directory where module files should be placed when created
and where they should be searched for.

Intel® Fortran Compiler Classic and Intel® Fortran Compiler Developer Guide and Reference 1

67

momit-leaf-frame-pointer Determines whether the frame pointer is omitted or kept in leaf functions.

mp1, Qprec Improves floating-point precision and consistency. This feature is only
available for ifort.

mstringop-inline-threshold,
Qstringop-inline-threshold

Tells the compiler to not inline calls to buffer manipulation functions such
as memcpy and memset when the number of bytes the functions handle
are known at compile time and greater than the specified value. This
feature is only available for ifort.

mstringop-strategy,
Qstringop-strategy

Lets you override the internal decision heuristic for the particular
algorithm used when implementing buffer manipulation functions such as
memcpy and memset. This feature is only available for ifort.

MT Tells the linker to search for unresolved references in a multithreaded,
static runtime library.

mtune, tune Performs optimizations for specific processors but does not cause
extended instruction sets to be used (unlike -march).

multiple-processes , MP Creates multiple processes that can be used to compile large numbers of
source files at the same time.

names Specifies how source code identifiers and external names are interpreted.

no-bss-init, Qnobss-init Tells the compiler to place in the DATA section any uninitialized variables
and explicitly zero-initialized variables. This option is deprecated and will
be removed in a future release. This feature is only available for ifort.

nodefaultlibs Prevents the compiler from using standard libraries when linking.

nofor-main Specifies that the main program is not written in Fortran.

no-intel-lib, Qno-intel-lib Disables linking to specified Intel® libraries, or to all Intel® libraries.

nolib-inline Disables inline expansion of standard library or intrinsic functions.

nolibsycl Disables linking of the SYCL* runtime library. This feature is only
available for ifx.

nostartfiles Prevents the compiler from using standard startup files when linking.

nostdlib Prevents the compiler from using standard libraries and startup files when
linking.

O Specifies the code optimization for applications.

o Specifies the name for an output file.

object Specifies the name for an object file.

Od Disables all optimizations.

Ofast Sets certain aggressive options to improve the speed of your application.

Os Enables optimizations that do not increase code size; it produces smaller
code size than O2.

Ot Enables all speed optimizations.

p Compiles and links for function profiling with gprof(1). This feature is only
available for ifort.

pad, Qpad Enables the changing of the variable and array memory layout.

pad-source, Qpad-source Specifies padding for fixed-form source records.

 1 Intel® Fortran Compiler Classic and Intel® Fortran Compiler Developer Guide and Reference

68

par-affinity, Qpar-affinity Specifies thread affinity. This feature is only available for ifort.

parallel, Qparallel (ifort only) Tells the auto-parallelizer to generate multithreaded code for loops that
can be safely executed in parallel. This description is only for ifort.

parallel, Qparallel (ifx only) Tells the compiler to attempt to generate multithreaded code for DO
CONCURRENT loops. This description is only for ifx.

parallel-source-info,
Qparallel-source-info

Enables or disables source location emission when OpenMP* or auto-
parallelism code is generated.

par-num-threads, Qpar-num-
threads

Specifies the number of threads to use in a parallel region. This feature is
only available for ifort.

par-runtime-control, Qpar-
runtime-control

Generates code to perform runtime checks for loops that have symbolic
loop bounds. This feature is only available for ifort.

par-schedule, Qpar-schedule Lets you specify a scheduling algorithm for loop iterations. This feature is
only available for ifort.

par-threshold, Qpar-threshold Sets a threshold for the auto-parallelization of loops. This feature is only
available for ifort.

pc, Qpc Enables control of floating-point significand precision.

pdbfile Lets you specify the name for a program database (PDB) file created by
the linker. This feature is only available for ifort.

pie Determines whether the compiler generates position-independent code
that will be linked into an executable.

prec-div, Qprec-div Improves precision of floating-point divides.

prec-sqrt, Qprec-sqrt Improves precision of square root implementations. This feature is only
available for ifort.

preprocess-only Causes the Fortran preprocessor to send output to a file.

print-multi-lib Prints information about where system libraries should be found.

prof-data-order, Qprof-data-
order

Enables or disables data ordering if profiling information is enabled. This
feature is only available for ifort.

prof-dir, Qprof-dir Specifies a directory for profiling information output files. This feature is
only available for ifort.

prof-file, Qprof-file Specifies an alternate file name for the profiling summary files. This
feature is only available for ifort.

prof-func-groups Enables or disables function grouping if profiling information is enabled.
This feature is only available for ifort.

prof-func-order, Qprof-func-
order

Enables or disables function ordering if profiling information is enabled.
This feature is only available for ifort.

prof-gen, Qprof-gen Produces an instrumented object file that can be used in profile guided
optimization. This feature is only available for ifort.

prof-hotness-threshold,
Qprof-hotness-threshold

Lets you set the hotness threshold for function grouping and function
ordering. This feature is only available for ifort.

prof-src-dir, Qprof-src-dir Determines whether directory information of the source file under
compilation is considered when looking up profile data records. This
feature is only available for ifort.

Intel® Fortran Compiler Classic and Intel® Fortran Compiler Developer Guide and Reference 1

69

prof-src-root, Qprof-src-root Lets you use relative directory paths when looking up profile data and
specifies a directory as the base. This feature is only available for ifort.

prof-src-root-cwd, Qprof-src-
root-cwd

Lets you use relative directory paths when looking up profile data and
specifies the current working directory as the base. This feature is only
available for ifort.

prof-use, Qprof-use Enables the use of profiling information during optimization. This feature
is only available for ifort.

prof-value-profiling, Qprof-
value-profiling

Controls which values are value profiled. This feature is only available for
ifort.

pthread Tells the compiler to use pthreads library for multithreading support.

Qcov-dir Specifies a directory for profiling information output files that can be used
with the codecov or tselect tool. This feature is only available for ifort.

Qcov-file Specifies an alternate file name for the profiling summary files that can
be used with the codecov or tselect tool. This feature is only available for
ifort.

Qcov-gen Produces an instrumented object file that can be used with the codecov
or tselect tool. This feature is only available for ifort.

Qinline-dllimport Determines whether dllimport functions are inlined. This feature is only
available for ifort.

Qinstall Specifies the root directory where the compiler installation was
performed.

Qlocation Specifies the directory for supporting tools.

qmkl, Qmkl Tells the compiler to link to certain libraries in the Intel® oneAPI Math
Kernel Library (oneMKL). On Windows systems, you must specify this
option at compile time.

qmkl-ilp64, Qmkl-ilp64 Tells the compiler to link to the ILP64-specific version of the Intel® oneAPI
Math Kernel Library (oneMKL). On Windows systems, you must specify
this option at compile time.

qmkl-sycl-impl, Qmkl-sycl-
impl

Lets you link to one or more specific Intel® oneAPI Math Kernel (oneMKL)
SYCL libraries. This feature is only available for ifx

qopenmp, Qopenmp You can substitute the option named -qopenmp for option -fopenmp or -
fiopenmp (ifx), and you can substitute the option named /Qopenmp for
option /Qiopenmp (ifx).

qopenmp-lib, Qopenmp-lib Lets you specify an OpenMP* runtime library to use for linking. This
feature is only available for ifort.

qopenmp-link Controls whether the compiler links to static or dynamic OpenMP*
runtime libraries.

qopenmp-simd, Qopenmp-
simd

Enables or disables OpenMP* SIMD compilation.

qopenmp-stubs, Qopenmp-
stubs

Enables compilation of OpenMP* programs in sequential mode.

qopenmp-threadprivate,
Qopenmp-threadprivate

Lets you specify an OpenMP* threadprivate implementation.

 1 Intel® Fortran Compiler Classic and Intel® Fortran Compiler Developer Guide and Reference

70

qopt-args-in-regs, Qopt-args-
in-regs

Determines whether calls to routines are optimized by passing arguments
in registers instead of on the stack. This option is deprecated and will be
removed in a future release. This feature is only available for ifort.

qopt-assume-safe-padding,
Qopt-assume-safe-padding

Determines whether the compiler assumes that variables and dynamically
allocated memory are padded past the end of the object. This feature is
only available for ifort.

qopt-block-factor, Qopt-block-
factor

Lets you specify a loop blocking factor. This feature is only available for
ifort.

qopt-dynamic-align, Qopt-
dynamic-align

Enables or disables dynamic data alignment optimizations.

qopt-for-throughput, Qopt-
for-throughput

Determines how the compiler optimizes for throughput depending on
whether the program is to run in single-job or multi-job mode. This
feature is only available for ifx.

Qoption Passes options to a specified tool.

qopt-jump-tables, Qopt-
jump-tables

Enables or disables generation of jump tables for switch statements. This
feature is only available for ifort.

qopt-malloc-options Lets you specify an alternate algorithm for malloc(). This feature is only
available for ifort.

qopt-matmul, Qopt-matmul Enables or disables a compiler-generated Matrix Multiply (matmul) library
call.

qopt-mem-layout-trans,
Qopt-mem-layout-trans

Controls the level of memory layout transformations performed by the
compiler.

qopt-multiple-gather-scatter-
by-shuffles, Qopt-multiple-
gather-scatter-by-shuffles

Enables or disables the optimization for multiple adjacent gather/scatter
type vector memory references.

qopt-multi-version-
aggressive, Qopt-multi-
version-aggressive

Tells the compiler to use aggressive multi-versioning to check for pointer
aliasing and scalar replacement. This feature is only available for ifort.

qopt-prefetch, Qopt-prefetch Enables or disables prefetch insertion optimization.

qopt-prefetch-distance, Qopt-
prefetch-distance (ifort only)

Specifies the prefetch distance to be used for compiler-generated
prefetches inside loops. This description is only for ifort.

qopt-prefetch-distance, Qopt-
prefetch-distance (ifx only)

Specifies the prefetch distance to be used for compiler-generated
prefetches inside loops. This description is only for ifx.

qopt-prefetch-issue-excl-hint,
Qopt-prefetch-issue-excl-hint

Supports the prefetchW instruction in Intel® microarchitecture code name
Broadwell and later. This feature is only available for ifort.

qopt-prefetch-loads-only, /
Qopt-prefetch-loads-only

Specifies that the compiler should only prefetch for loads inside the loop
and ignore the stores, if any. This feature is only available for ifx.

qopt-ra-region-strategy,
Qopt-ra-region-strategy

Selects the method that the register allocator uses to partition each
routine into regions. This feature is only available for ifort.

qopt-report, Qopt-report (ifort
only)

Tells the compiler to generate an optimization report. This description is
only for ifort.

qopt-report, Qopt-report (ifx
only)

Enables the generation of a YAML file that includes optimization
transformation information. This description is only for ifx.

Intel® Fortran Compiler Classic and Intel® Fortran Compiler Developer Guide and Reference 1

71

qopt-report-annotate, Qopt-
report-annotate

Enables the annotated source listing feature and specifies its format. This
feature is only available for ifort.

qopt-report-annotate-
position, Qopt-report-
annotate-position

Enables the annotated source listing feature and specifies the site where
optimization messages appear in the annotated source in inlined cases of
loop optimizations. This feature is only available for ifort.

qopt-report-embed, Qopt-
report-embed

Determines whether special loop information annotations will be
embedded in the object file and/or the assembly file when it is generated.
This feature is only available for ifort.

qopt-report-file, Qopt-report-
file

Specifies whether the output for the generated optimization report goes
to a file, stderr, or stdout.

qopt-report-filter, Qopt-
report-filter

Tells the compiler to find the indicated parts of your application, and
generate optimization reports for those parts of your application. This
feature is only available for ifort.

qopt-report-format, Qopt-
report-format

Specifies the format for an optimization report. This feature is only
available for ifort.

qopt-report-help, Qopt-
report-help

Displays the optimizer phases available for report generation and a short
description of what is reported at each level. This feature is only available
for ifort.

qopt-report-names, Qopt-
report-names

Specifies whether mangled or unmangled names should appear in the
optimization report. This feature is only available for ifort.

qopt-report-per-object, Qopt-
report-per-object

Tells the compiler that optimization report information should be
generated in a separate file for each object. This feature is only available
for ifort.

qopt-report-phase, Qopt-
report-phase

Specifies one or more optimizer phases for which optimization reports are
generated. This feature is only available for ifort.

qopt-report-routine, Qopt-
report-routine

Tells the compiler to generate an optimization report for each of the
routines whose names contain the specified substring. This feature is only
available for ifort.

qopt-report-stdout, Qopt-
report-stdout

Specifies that the generated report should go to stdout.

qopt-streaming-stores, Qopt-
streaming-stores

Enables generation of streaming stores for optimization.

qopt-subscript-in-range,
Qopt-subscript-in-range

Determines whether the compiler assumes that there are no "large"
integers being used or being computed inside loops. This feature is only
available for ifort.

qopt-zmm-usage, Qopt-zmm-
usage

Defines a level of zmm registers usage.

qoverride-limits, Qoverride-
limits

Lets you override certain internal compiler limits that are intended to
prevent excessive memory usage or compile times for very large,
complex compilation units.

Qpar-adjust-stack Tells the compiler to generate code to adjust the stack size for a fiber-
based main thread. This feature is only available for ifort.

Qpatchable-addresses Tells the compiler to generate code such that references to statically
assigned addresses can be patched. This feature is only available for ifort.

Qsfalign Specifies stack alignment for functions. This option is deprecated and will
be removed in a future release. This feature is only available for ifort.

 1 Intel® Fortran Compiler Classic and Intel® Fortran Compiler Developer Guide and Reference

72

qsimd-honor-fp-model,
Qsimd-honor-fp-model

Tells the compiler to obey the selected floating-point model when
vectorizing SIMD loops. This feature is only available for ifort.

qsimd-serialize-fp-reduction,
Qsimd-serialize-fp-reduction

Tells the compiler to serialize floating-point reduction when vectorizing
SIMD loops. This feature is only available for ifort.

Quse-msasm-symbols Tells the compiler to use a dollar sign ("$") when producing symbol
names. This feature is only available for ifort.

Qvc Specifies which version of Microsoft Visual C++* (MSVC) or Microsoft
Visual Studio* that the compiler should link to. This feature is only
available for ifort.

rcd, Qrcd Enables fast float-to-integer conversions. This is a deprecated option.
There is no replacement option. This feature is only available for ifort.

real-size Specifies the default KIND for real and complex declarations, constants,
functions, and intrinsics.

recursive Tells the compiler that all routines should be compiled for possible
recursive execution.

reentrancy Tells the compiler to generate reentrant code to support a multithreaded
application.

S Causes the compiler to compile to an assembly file only and not link.

safe-cray-ptr, Qsafe-cray-ptr Tells the compiler that Cray* pointers do not alias other variables.

save, Qsave Causes variables to be placed in static memory.

save-temps , Qsave-temps Tells the compiler to save intermediate files created during compilation.

scalar-rep, Qscalar-rep Enables or disables the scalar replacement optimization done by the
compiler as part of loop transformations. This feature is only available for
ifort.

shared Tells the compiler to produce a dynamic shared object instead of an
executable.

shared-intel Causes Intel-provided libraries to be linked in dynamically.

shared-libgcc Links the GNU libgcc library dynamically.

show Controls the contents of the listing generated when option list is specified.

simd, Qsimd Enables or disables compiler interpretation of SIMD directives. This
feature is only available for ifort.

sox Tells the compiler to save the compilation options and version number in
the executable file. It also lets you choose whether to include lists of
certain routines.

stand Tells the compiler to issue compile-time messages for nonstandard
language elements.

standard-realloc-lhs Determines whether the compiler uses the current Fortran Standard rules
or the old Fortran 2003 rules when interpreting assignment statements.

standard-semantics Determines whether the current Fortran Standard behavior of the
compiler is fully implemented.

static Prevents linking with shared libraries.

static-intel Causes Intel-provided libraries to be linked in statically.

Intel® Fortran Compiler Classic and Intel® Fortran Compiler Developer Guide and Reference 1

73

static-libgcc Links the GNU libgcc library statically.

static-libstdc++ Links the GNU libstdc++ library statically.

syntax-only Tells the compiler to check only for correct syntax.

sysroot Specifies the root directory where headers and libraries are located.

T Tells the linker to read link commands from a file.

tcollect, Qtcollect Inserts instrumentation probes calling the Intel® Trace Collector API. This
feature is only available for ifort.

tcollect-filter, Qtcollect-filter Lets you enable or disable the instrumentation of specified functions. You
must also specify option [Q]tcollect. This feature is only available for ifort.

Tf Tells the compiler to compile the file as a Fortran source file.

threads Tells the linker to search for unresolved references in a multithreaded
runtime library.

traceback Tells the compiler to generate extra information in the object file to
provide source file traceback information when a severe error occurs at
runtime.

U Undefines any definition currently in effect for the specified symbol .

u (Windows*) Undefines all previously defined preprocessor values.

undef Disables all predefined symbols .

unroll, Qunroll Tells the compiler the maximum number of times to unroll loops.

unroll-aggressive, Qunroll-
aggressive

Determines whether the compiler uses more aggressive unrolling for
certain loops. This feature is only available for ifort.

use-asm, Quse-asm Tells the compiler to produce objects through the assembler. This is a
deprecated option. There is no replacement option. This feature is only
available for ifort.

v Specifies that driver tool commands should be displayed and executed.

vec, Qvec Enables or disables vectorization.

vec-guard-write, Qvec-guard-
write

Tells the compiler to perform a conditional check in a vectorized loop. This
feature is only available for ifort.

vec-threshold, Qvec-threshold Sets a threshold for the vectorization of loops.

vecabi, Qvecabi (ifort only) Determines which vector function application binary interface (ABI) the
compiler uses to create or call vector functions. This description is only
for ifort.

vecabi, Qvecabi (ifx only) Determines which vector function application binary interface (ABI) the
compiler uses to create or call vector functions. This description is only
for ifx.

vms Causes the runtime system to behave like HP* Fortran on OpenVMS*
Alpha systems and VAX* systems (VAX FORTRAN*).

Wa Passes options to the assembler for processing.

warn Specifies diagnostic messages to be issued by the compiler.

watch Tells the compiler to display certain information to the console output
window.

 1 Intel® Fortran Compiler Classic and Intel® Fortran Compiler Developer Guide and Reference

74

WB Turns a compile-time bounds check into a warning.

what Tells the compiler to display its detailed version string.

winapp Tells the compiler to create a graphics or Fortran Windows application and
link against the most commonly used libraries.

Winline Warns when a function that is declared as inline is not inlined. This
feature is only available for ifort.

Wl, link Passes options to the linker for processing.

Wp Passes options to the preprocessor.

wrap-margin Provides a way to disable the right margin wrapping that occurs in
Fortran list-directed output.

X Removes standard directories from the include file search path.

x, Qx Tells the compiler which processor features it may target, including which
instruction sets and optimizations it may generate.

xHost, QxHost Tells the compiler to generate instructions for the highest instruction set
available on the compilation host processor.

Xlinker Passes a linker option directly to the linker.

Xopenmp-target Enables options to be passed to the specified tool in the device
compilation tool chain for the OpenMP* target. This feature is only
available for ifx.

Xsycl-target Enables options to be passed to the specified tool in the device
compilation tool chain for the SYCL* target. This feature is only available
for ifx.

zero, Qzero Initializes to zero variables of intrinsic type INTEGER, REAL, COMPLEX, or
LOGICAL that are not yet initialized. This is a deprecated option. The
replacement option is /Qinit:[no]zero or -init=[no]zero.

Zi, Z7 Tells the compiler to generate full debugging information in either an
object (.obj) file or a project database (PDB) file.

Zo Enables or disables generation of enhanced debugging information for
optimized code. This feature is only available for ifort.

General Rules for Compiler Options
This section describes general rules for compiler options and it contains information about how we refer to
compiler option names in descriptions.

• Compiler options may be case sensitive, and may have different meanings depending on their case. For
example, option c prevents linking, but option C checks for certain conditions at runtime.

• Options specified on the command line apply to all files named on the command line.
• Options can take arguments in the form of file names, strings, letters, or numbers. If a string includes

spaces, the string must be enclosed in quotation marks.
• Compiler options can appear in any order.
• Unless you specify certain options, the command line will both compile and link the files you specify.
• You can abbreviate some option names, entering as many characters as are needed to uniquely identify

the option.
• Certain options accept one or more keyword arguments following the option name. For example,

architecture option x option accepts several keywords.
• To specify multiple keywords, you typically specify the option multiple times.

Intel® Fortran Compiler Classic and Intel® Fortran Compiler Developer Guide and Reference 1

75

• To disable an option, specify the negative form of the option if one exists.
• If there are enabling and disabling versions of an option on the command line, the last one on the

command line takes precedence.
• Compiler options remain in effect for the whole compilation unless overridden by a compiler directive.
• Linux

You cannot combine options with a single dash. For example, this form is incorrect: -Ec; this form is
correct: -E -c

• Windows

You cannot combine options with a single slash. For example: This form is incorrect: /Ec; this form is
correct: /E /c

• All compiler options must precede /link options, if any, on the command line.
• Compiler options remain in effect for the whole compilation unless overridden by a compiler directive.
• You can sometimes use a comma to separate keywords. For example, the following is valid:

ifx /warn:usage,declarations test.f90
• You can disable one or more optimization options by specifying option /Od last on the command line.

NOTE
The /Od option is part of a mutually-exclusive group of options that includes /Od, /O1, /O2, /O3,
and /Ox. The last of any of these options specified on the command line will override the previous
options from this group.

How We Refer to Compiler Option Names in Descriptions
Within documentation, compiler option names that are very different are spelled out in full.

However, many compiler option names are very similar except for initial characters. For these options, we
use the following shortcuts when referencing their names in descriptions:

• No initial – or /

This shortcut is used for option names that are the same for Linux and Windows except for the initial
character.

For example, Fa denotes:

• Linux: -Fa
• Windows: /Fa

• [Q]option-name

This shortcut is used for option names that only differ because the Windows form starts with a Q.

For example, [Q]ipo denotes:

• Linux: -ipo
• Windows: /Qipo

• [q or Q]option-name

This shortcut is used for option names that only differ because the Linux form starts with a q and the
Windows form starts with a Q.

For example, [q or Q]opt-report denotes:

• Linux: -qopt-report
• Windows: /Qopt-report

 1 Intel® Fortran Compiler Classic and Intel® Fortran Compiler Developer Guide and Reference

76

What Appears in the Compiler Option Descriptions
This section contains details about what appears in the option descriptions.

Following sections include individual descriptions of all the current compiler options. The option descriptions
are arranged by functional category. Within each category, the option names are listed in alphabetical order.

Each option description contains the following information:

• The primary name for the option and a short description of the option.
• Syntax: This section shows the syntax on Linux systems and the syntax on Windows systems. If the

option is not valid on a particular operating system, it will specify None.
• Arguments: This section shows any arguments (parameters) that are related to the option. If the option

has no arguments, it will specify None.
• Default: This section shows the default setting for the option.
• Description: This section shows the full description of the option. It may also include further information

on any applicable arguments.
• IDE Equivalent: This section shows information related to the Intel® Integrated Development Environment

(Intel® IDE) Property Pages on Linux and Windows systems. It shows on which Property Page the option
appears, and under what category it's listed. The Windows IDE is Microsoft Visual Studio .NET. If the
option has no IDE equivalent, it will specify None. Note that in this release, there is no IDE support for
Fortran on Linux.

• Alternate Options (does not apply to SYCL): This section lists any options that are synonyms for the
described option. If there are no alternate option names, it will show None. Some alternate option names
are deprecated and may be removed in future releases. Many options have an older spelling where
underscores ("_") instead of hyphens ("-") connect the main option names. The older spelling is a valid
alternate option name.

Some option descriptions may also have the following:

• Example (or Examples): This section shows one or more examples that demonstrate the option.
• See Also: This section shows where you can get further information on the option or it shows related

options.

Optimization Options
This section contains descriptions for compiler options that pertain to optimization. They are listed in
alphabetical order.

falias, Oa
Specifies whether or not a procedure call may have
hidden aliases of local variables not supplied as actual
arguments.

Syntax

Linux OS:

-falias
-fno-alias
Windows OS:

/Oa
/Oa-

Arguments

None

Intel® Fortran Compiler Classic and Intel® Fortran Compiler Developer Guide and Reference 1

77

Default

-fno-alias
or /Oa-

Procedure calls do not alias local variables.

Description

This option specifies whether or not the compiler can assume that during a procedure call, local variables in
the caller that are not present in the actual argument list and not visible by host association, are not
referenced or redefined due to hidden aliasing. The Fortran standard generally prohibits such aliasing.

If you specify -falias (Linux*) or /Oa (Windows*), aliasing during a procedure call is assumed; this can
possibly affect performance.

If you specify -fno-alias or /Oa- (the default), aliasing during a procedure call is not assumed.

IDE Equivalent

None

Alternate Options

None

See Also
ffnalias compiler option

fast
Maximizes speed across the entire program.

Syntax

Linux OS:

-fast
Windows OS:

/fast

Arguments

None

Default

OFF The optimizations that maximize speed are not enabled.

Description

This option maximizes speed across the entire program.

Linux

On ifx, it sets the following options:

-ipo, -O3, -static, -fp-model fast

On ifort, it sets the following options:

-ipo, -O3, -no-prec-div,-static, -fp-model fast=2, and -xHost

Windows

On ifx, it sets the following options:

 1 Intel® Fortran Compiler Classic and Intel® Fortran Compiler Developer Guide and Reference

78

/O3, /Qipo, /fp:fast

On ifort, it sets the following options:

/O3, /Qipo, /Qprec-div-, /fp:fast=2, and /QxHost

On ifort, when option fast is specified, you can override the [Q]xHost option setting by specifying a
different processor-specific [Q]x option on the command line. However, the last option specified on the
command line takes precedence.

For example (all are ifort examples):

Linux

If you specify option -fast -xSSE3, option -xSSE3 takes effect. However, if you specify -xSSE3 -fast,
option -xHost takes effect.

Windows

If you specify option /fast /QxSSE3, option/QxSSE3 takes effect. However, if you specify /QxSSE3 /fast,
option /QxHost takes effect.

On ifort, for implications on non-Intel processors, refer to the [Q]xHost documentation.

NOTE
Option fast sets some aggressive optimizations that may not be appropriate for all
applications. The resulting executable may not run on processor types different from the one
on which you compile. You should make sure that you understand the individual
optimization options that are enabled by option fast.

NOTE
This option only applies to host compilation. When offloading is enabled, it does not impact
device-specific compilation. Offloading can only be enabled when using ifx.

Product and Performance Information

Performance varies by use, configuration and other factors. Learn more at www.Intel.com/
PerformanceIndex.

Notice revision #20201201

IDE Equivalent

None

Alternate Options

None

See Also
fp-model, fp compiler option
xHost, QxHost
 compiler option

x, Qx
 compiler option

Intel® Fortran Compiler Classic and Intel® Fortran Compiler Developer Guide and Reference 1

79

https://www.intel.com/PerformanceIndex
https://www.intel.com/PerformanceIndex

ffnalias, Ow
Determines whether aliasing is assumed within
functions. This feature is only available for ifort.

Syntax

Linux OS:

-ffnalias
-fno-fnalias
Windows OS:

/Ow
/Ow-

Arguments

None

Default

-ffnalias
or /Ow

Aliasing is assumed within functions.

Description

This option determines whether aliasing is assumed within functions.

If you specify -fno-fnalias or /Ow-, aliasing is not assumed within functions, but it is assumed across
calls.

If you specify -ffnalias or /Ow, aliasing is assumed within functions.

IDE Equivalent

None

Alternate Options

None

See Also
falias compiler option

foptimize-sibling-calls
Determines whether the compiler optimizes tail
recursive calls.

Syntax

Linux OS:

-foptimize-sibling-calls
-fno-optimize-sibling-calls
Windows OS:

None

Arguments

None

 1 Intel® Fortran Compiler Classic and Intel® Fortran Compiler Developer Guide and Reference

80

Default

-foptimize-sibling-calls The compiler optimizes tail recursive calls.

Description

This option determines whether the compiler optimizes tail recursive calls. It enables conversion of tail
recursion into loops.

If you do not want to optimize tail recursive calls, specify -fno-optimize-sibling-calls.

Tail recursion is a special form of recursion that doesn't use stack space. In tail recursion, a recursive call is
converted to a GOTO statement that returns to the beginning of the function. In this case, the return value of
the recursive call is only used to be returned. It is not used in another expression. The recursive function is
converted into a loop, which prevents modification of the stack space used.

IDE Equivalent

None

Alternate Options

None

fprotect-parens, Qprotect-parens
Determines whether the optimizer honors parentheses
when floating-point expressions are evaluated.

Syntax

Linux OS:

-fprotect-parens
-fno-protect-parens
Windows OS:

/Qprotect-parens
/Qprotect-parens-

Arguments

None

Default

-fno-protect-parens
or /Qprotect-parens-

Parentheses are ignored when determining the order of expression
evaluation.

Description

This option determines whether the optimizer honors parentheses when determining the order of floating-
point expression evaluation.

When option -fprotect-parens (Linux*) or /Qprotect-parens (Windows*) is specified, the optimizer will
maintain the order of evaluation imposed by parentheses in the code.

When option -fno-protect-parens (Linux*) or /Qprotect-parens- (Windows*) is specified, the
optimizer may reorder floating-point expressions without regard for parentheses if it produces faster
executing code.

Intel® Fortran Compiler Classic and Intel® Fortran Compiler Developer Guide and Reference 1

81

IDE Equivalent

None

Alternate Options

Linux: -assume protect_parens
Windows: /assume:protect_parens

Example
Consider the following expression:

A+(B+C)
By default, the parentheses are ignored and the compiler is free to re-order the floating-point operations
based on the optimization level, the setting of option -fp-model (Linux*) or /fp (Windows*), etc. to
produce faster code. Code that is sensitive to the order of operations may produce different results (such as
with some floating-point computations).

However, if -fprotect-parens (Linux*) or /Qprotect-parens (Windows*) is specified, parentheses
around floating-point expressions (including complex floating-point and decimal floating-point) are honored
and the expression will be interpreted following the normal precedence rules, that is, B+C will be computed
first and then added to A.

This may produce slower code than when parentheses are ignored. If floating-point sensitivity is a specific
concern, you should use option -fp-model precise (Linux*) or /fp:precise (Windows*) to ensure
precision because it controls all optimizations that may affect precision.

See Also
fp-model, fp compiler option

GF
Enables read-only string-pooling optimization.

Syntax

Linux OS:

None
Windows OS:

/GF

Arguments

None

Default

OFF Read/write string-pooling optimization is enabled.

Description

This option enables read only string-pooling optimization.

IDE Equivalent

None

 1 Intel® Fortran Compiler Classic and Intel® Fortran Compiler Developer Guide and Reference

82

Alternate Options

None

nolib-inline
Disables inline expansion of standard library or
intrinsic functions.

Syntax

Linux OS:

-nolib-inline
Windows OS:

None

Arguments

None

Default

OFF The compiler inlines many standard library and intrinsic functions.

Description

This option disables inline expansion of standard library or intrinsic functions. It prevents the unexpected
results that can arise from inline expansion of these functions.

NOTE
This option only applies to host compilation. When offloading is enabled, it does not impact
device-specific compilation. Offloading can only be enabled when using ifx.

IDE Equivalent

None

Alternate Options

None

O
Specifies the code optimization for applications.

Syntax

Linux OS:

-O[n]
Windows OS:

/O[n]

Intel® Fortran Compiler Classic and Intel® Fortran Compiler Developer Guide and Reference 1

83

Arguments

n Is the optimization level. Possible values are 1, 2, or 3. On Linux*
systems, you can also specify 0.

Default

O2 Optimizes for code speed.

However, on Linux* systems, if option -g is specified, the default is -O0 unless option -O2 (or
higher) is also explicitly specified in the command line.

Description

This option specifies the code optimization for applications.

Option Description

O (Linux*) This is the same as specifying O2.

O0 (Linux) Disables all optimizations.

This option may set other options. This is determined by the compiler,
depending on which operating system and architecture you are using. The
options that are set may change from release to release.

This option causes certain warn options to be ignored. This is the default
if you specify option -debug (with no keyword).

O1 Enables optimizations for speed and disables some optimizations that
increase code size and affect speed.
To limit code size, this option:

• Enables global optimization; this includes data-flow analysis, code
motion, strength reduction and test replacement, split-lifetime
analysis, and instruction scheduling.

This option may set other options. This is determined by the compiler,
depending on which operating system and architecture you are using. The
options that are set may change from release to release.

The O1 option may improve performance for applications with very large
code size, many branches, and execution time not dominated by code
within loops.

O2 Enables optimizations for speed. This is the generally recommended
optimization level.
Vectorization is enabled at O2 and higher levels.

On ifort systems using IA-32 architecture: Some basic loop optimizations
such as Distribution, Predicate Opt, Interchange, multi-versioning, and
scalar replacements are performed.

This option also enables:

• Inlining of intrinsics
• Intra-file interprocedural optimization, which includes:

• inlining
• constant propagation
• forward substitution

 1 Intel® Fortran Compiler Classic and Intel® Fortran Compiler Developer Guide and Reference

84

Option Description

• routine attribute propagation
• variable address-taken analysis
• dead static function elimination
• removal of unreferenced variables

• The following capabilities for performance gain:

• constant propagation
• copy propagation
• dead-code elimination
• global register allocation
• global instruction scheduling and control speculation
• loop unrolling
• optimized code selection
• partial redundancy elimination
• strength reduction/induction variable simplification
• variable renaming
• exception handling optimizations
• tail recursions
• peephole optimizations
• structure assignment lowering and optimizations
• dead store elimination

This option may set other options, especially options that optimize for
code speed. This is determined by the compiler, depending on which
operating system and architecture you are using. The options that are set
may change from release to release.

On Windows* systems, this option is the same as the Ox option.

On Linux systems, the -debug inline-debug-info option will be
enabled by default if you compile with optimizations (option -O2 or
higher) and debugging is enabled (option -g).

Many routines in the shared libraries are more highly optimized for Intel®
microprocessors than for non-Intel microprocessors.

O3 Performs O2 optimizations and enables more aggressive loop
transformations such as Fusion, Block-Unroll-and-Jam, and collapsing IF
statements.

This option may set other options. This is determined by the compiler,
depending on which operating system and architecture you are using. The
options that are set may change from release to release.

When O3 is used with options -ax or -x (Linux) or with options /Qax
or /Qx (Windows), the compiler performs more aggressive data
dependency analysis than for O2, which may result in longer compilation
times.

The O3 optimizations may not cause higher performance unless loop and
memory access transformations take place. The optimizations may slow
down code in some cases compared to O2 optimizations.

The O3 option is recommended for applications that have loops that
heavily use floating-point calculations and process large data sets.

Intel® Fortran Compiler Classic and Intel® Fortran Compiler Developer Guide and Reference 1

85

Option Description

Many routines in the shared libraries are more highly optimized for Intel®
microprocessors than for non-Intel microprocessors.

The last O option specified on the command line takes precedence over any others.

IDE Equivalent

Windows

Visual Studio: General > Optimization (/Od, /O1, /O2, /O3, /fast)

Optimization > Optimization (/Od, /O1, /O2, /O3, /fast)

Alternate Options

O2 Linux: None
Windows: /Ox

See Also
Od compiler option
fltconsistency compiler option
fast compiler option

Od
Disables all optimizations.

Syntax

Linux OS:

None
Windows OS:

/Od

Arguments

None

Default

OFF The compiler performs default optimizations.

Description

This option disables all optimizations. It can be used for selective optimizations, such as a combination of /Od
and /Ob1 (disables all optimizations, but enables inlining).

This option also causes certain /warn options to be ignored.

ifort only: On IA-32 architecture, this option sets the /Oy- option.

IDE Equivalent

Windows

Visual Studio: Optimization > Optimization

 1 Intel® Fortran Compiler Classic and Intel® Fortran Compiler Developer Guide and Reference

86

Alternate Options

Linux: -O0
Windows: /optimize:0

See Also
O compiler option (see O0)

Ofast
Sets certain aggressive options to improve the speed
of your application.

Syntax

Linux OS:

-Ofast
Windows OS:

None

Arguments

None

Default

OFF The aggressive optimizations that improve speed are not enabled.

Description

This option improves the speed of your application.

It sets compiler options -O3, -no-prec-div, and -fp-model fast=2.

This option is provided for compatibility with gcc.

NOTE
This option only applies to host compilation. When offloading is enabled, it does not impact
device-specific compilation. Offloading can only be enabled when using ifx.

IDE Equivalent

None

Alternate Options

None

See Also
O compiler option
prec-div, Qprec-div compiler option
fast compiler option
fp-model, fp compiler option

Intel® Fortran Compiler Classic and Intel® Fortran Compiler Developer Guide and Reference 1

87

Os
Enables optimizations that do not increase code size;
it produces smaller code size than O2.

Syntax

Linux OS:

-Os
Windows OS:

/Os

Arguments

None

Default

OFF Optimizations are made for code speed. However, if O1 is specified, Os is the default.

Description

This option enables optimizations that do not increase code size; it produces smaller code size than O2. It
disables some optimizations that increase code size for a small speed benefit.

This option tells the compiler to favor transformations that reduce code size over transformations that
produce maximum performance.

IDE Equivalent

Visual Studio

Visual Studio: Optimization > Favor Size or Speed

Alternate Options

None

See Also
O compiler option
Ot compiler option

Ot
Enables all speed optimizations.

Syntax

Linux OS:

None
Windows OS:

/Ot

Arguments

None

 1 Intel® Fortran Compiler Classic and Intel® Fortran Compiler Developer Guide and Reference

88

Default

/Ot Optimizations are made for code speed.

If Od is specified, all optimizations are disabled. If O1 is specified, Os is the default.

Description

This option enables all speed optimizations.

IDE Equivalent

Windows

Visual Studio: Optimization > Favor Size or Speed (/Ot, /Os)

Alternate Options

None

See Also
O compiler option
Os compiler option

Advanced Optimization Options
This section contains descriptions for compiler options that pertain to advanced optimization. They are listed
in alphabetical order.

ansi-alias, Qansi-alias
Tells the compiler to assume certain rules of the
Fortran standard regarding aliasing and array bounds.

Syntax

Linux OS:

-ansi-alias
-no-ansi-alias

Windows OS:

/Qansi-alias
/Qansi-alias-

Arguments

None

Default

-ansi-alias
or /Qansi-alias

Programs adhere to the Fortran standard's rules regarding aliasing and
array bounds.

Description

This option tells the compiler to assume certain rules of the Fortran standard regarding aliasing and array
bounds.

It tells the compiler to assume that the program adheres to the following rules of the Fortran standard:

Intel® Fortran Compiler Classic and Intel® Fortran Compiler Developer Guide and Reference 1

89

• Arrays cannot be accessed outside of declared bounds.
• A dummy argument may have its definition status changed only through that dummy argument, unless it

has the TARGET attribute.

This option is similar to option assume nodummy_aliases with the additional restriction on array bounds.

If -no-ansi-alias (Linux*) or /Qansi-alias- (Windows*) is specified, the compiler assumes that the
program might not follow the Fortran standard's rules regarding dummy argument aliasing and array
bounds; this can possibly affect performance.

IDE Equivalent

None

Alternate Options

None

See Also
assume compiler option, setting [no]dummy_aliases

coarray, Qcoarray
Enables the coarray feature.

Syntax

Linux OS:

-coarray[=keyword]
Windows OS:

/Qcoarray[:keyword]

Arguments

keyword Specifies the memory system where the coarrays will be implemented. Possible values are:

shared Indicates that multiple images will be created. This is the default.

single Indicates a configuration where the image does not contain self-
replication code. This results in an executable with a single running
image.

This configuration can be useful for debugging purposes, even though
there are no inter-image interactions.

Default

OFF Coarrays are not enabled unless you specify this option.

Description

This option enables the coarray features first introduced in the Fortran 2008 Standard. It enables any coarray
syntax in your program. If this option is not specified, coarray syntax is rejected.

It also tells the driver to link against appropriate libraries, and to create the appropriate executables.

Keywords can be specified multiple times; however, if keyword single is specified anywhere on the
command line, it takes precedence.

 1 Intel® Fortran Compiler Classic and Intel® Fortran Compiler Developer Guide and Reference

90

You can specify option [Q]coarray-num-images to specify the default number of images that can be used
to run a coarray executable. If you do not specify that option, you get the number of execution units on the
current system.

You can specify the [Q]coarray-config-file option to specify the name of a Message Passing Interface
(MPI) configuration file.

Options [Q]coarray-num-images and [Q]coarray-config-file are valid for all keyword values.

NOTE
Coarrays are only supported on 64-bit architectures.

IDE Equivalent

Windows

Visual Studio: Language > Enable Coarrays

Alternate Options

None

Examples
The following command runs a coarray program using n images:

/Qcoarray /Qcoarray-num-images:n ! Windows systems
-coarray -coarray-num-images=n ! Linux systems

The following command runs a coarray program using the MPI configuration file specified by filename:

/Qcoarray /Qcoarray-config-file:filename ! Windows systems
-coarray -coarray-config-file=filename ! Linux systems

The following command illustrates precedence:

Linux* systems:

-coarray=single –coarray=shared ! single takes precedence; single always takes
precedence

Windows* systems:

/Qcoarray:single /Qcoarray:shared ! single takes precedence; single always takes
precedence

See Also
coarray-num-images, Qcoarray-num-images compiler option
coarray-config-file, Qcoarray-config-file compiler option
Coarrays
Using Coarrays

coarray-config-file, Qcoarray-config-file
Specifies the name of a Message Passing Interface
(MPI) configuration file.

Intel® Fortran Compiler Classic and Intel® Fortran Compiler Developer Guide and Reference 1

91

Syntax

Linux OS:

-coarray-config-file=filename
Windows OS:

/Qcoarray-config-file:filename

Arguments

filename Is the name of the MPI configuration file. You can specify a path.

Default

OFF When coarrays are enabled, the compiler uses default settings for MPI.

Description

This option specifies the name of a Message Passing Interface (MPI) configuration file. This file is used by the
compiler when coarrays are processed; it configures the MPI for multi-node operations.

This option has no affect unless you also specify the [Q]coarray option, which is required to create the
coarray executable.

Note that when a setting is specified in environment variable FOR_COARRAY_CONFIG_FILE, it overrides the
compiler option setting.

IDE Equivalent

Windows

Visual Studio: Language > MPI Configuration File

Alternate Options

None

See Also
coarray, Qcoarray compiler option

coarray-num-images, Qcoarray-num-images
Specifies the default number of images that can be
used to run a coarray executable.

Syntax

Linux OS:

-coarray-num-images=n
Windows OS:

/Qcoarray-num-images:n

Arguments

n Is the default number of images. The limit is determined from the system
configuration.

 1 Intel® Fortran Compiler Classic and Intel® Fortran Compiler Developer Guide and Reference

92

Default

OFF The number of images is determined at runtime.

Description

This option specifies the default number of images that can be used to run a coarray executable.

This option has no affect unless you also specify the [Q]coarray option. This option is required to create the
coarray executable.

You can specify option [Q]coarray-num-images to specify the default number of images that can be used
to run a coarray executable. If you do not specify that option, you get the number of execution units on the
current system.

Note that when a setting is specified in environment variable FOR_COARRAY_NUM_IMAGES, it overrides the
compiler option setting.

IDE Equivalent

Windows

Visual Studio: Language > Coarray Images

Alternate Options

None

See Also
coarray, Qcoarray compiler option

complex-limited-range, Qcomplex-limited-range
Determines whether the use of basic algebraic
expansions of some arithmetic operations involving
data of type COMPLEX is enabled. This feature is only
available for ifort.

Syntax

Linux OS:

-complex-limited-range
-no-complex-limited-range
Windows OS:

/Qcomplex-limited-range
/Qcomplex-limited-range-

Arguments

None

Default

-no-complex-limited-range
or /Qcomplex-limited-range-

Basic algebraic expansions of some arithmetic operations
involving data of type COMPLEX are disabled.

Intel® Fortran Compiler Classic and Intel® Fortran Compiler Developer Guide and Reference 1

93

Description

This option determines whether the use of basic algebraic expansions of some arithmetic operations involving
data of type COMPLEX is enabled.

When the option is enabled, this can cause performance improvements in programs that use a lot of
COMPLEX arithmetic. However, values at the extremes of the exponent range may not compute correctly.

IDE Equivalent

Windows

Visual Studio: Floating point > Limit COMPLEX Range

Alternate Options

None

fvec-peel-loops, Qvec-peel-loops
Enables peel loop vectorization. This feature is only
available for ifx.

Syntax

Linux OS:

-fvec-peel-loops
-fno-vec-peel-loops
Windows OS:

/Qvec-peel-loops
/Qvec-peel-loops-

Arguments

None

Default

-fno-vec-peel-loops
or /Qvec-peel-loops-

No peel loop vectorization occurs.

Description

This option enables vectorization of peeling loops created during loop vectorization. It causes the compiler to
perform additional steps to vectorize a peel loop that was created to improve alignment of memory
references in the main vectorized loop.

The peel loop can be vectorized only when the masked mode of vectorization is enabled by specifying option
-fvec-with-mask or /Qvec-with-mask.

The vectorization of a peel loop cannot be enforced because the compiler uses the cost model to determine
whether it should be done.

IDE Equivalent

None

Alternate Options

None

 1 Intel® Fortran Compiler Classic and Intel® Fortran Compiler Developer Guide and Reference

94

See Also
fvec-with-mask, Qvec-with-mask compiler option
fvec-remainder-loops, Qvec-remainder-loops compiler option

fvec-remainder-loops, Qvec-remainder-loops
Enables remainder loop vectorization. This feature is
only available for ifx.

Syntax

Linux OS:

-fvec-remainder-loops
-fno-vec-remainder-loops

Windows OS:

/Qvec-remainder-loops
/Qvec-remainder-loops-

Arguments

None

Default

-fno-vec-remainder-loops
or /Qvec-remainder-loops-

No remainder loop vectorization occurs.

Description

This option enables vectorization of remainder loops created during loop vectorization. It causes the compiler
to perform additional steps to vectorize the remainder loop that was created for the vectorized main loop.

The compiler uses the cost model to determine vector factor and mode of vectorization for remainder loops.

The vectorization of remainder can be enforced using !DIR$ VECTOR VECREMAINDER on the loop.

IDE Equivalent

None

Alternate Options

None

See Also
fvec-vec-peel-loops, Qvec-peel-loops compiler option
fvec-with-mask, Qvec-with-mask compiler option
VECTOR directive

fvec-with-mask, Qvec-with-mask
Enables vectorization for short trip-count loops with
masking. This feature is only available for ifx.

Syntax

Linux OS:

-fvec-with-mask

Intel® Fortran Compiler Classic and Intel® Fortran Compiler Developer Guide and Reference 1

95

-fno-vec-with-mask
Windows OS:

/Qvec-with-mask
/Qvec-with-mask-

Arguments

None

Default

-fno-vec-with-mask
or /Qvec-with-mask-

No vectorization for short trip-count loops with masking occurs.

Description

This option enables a special mode of vectorization, which is applicable for loops with small number of
iterations known at compile time. The peeling and remainder loops created during vectorization also fit into
this category.

In this mode, the compiler uses a vector factor that is the lowest power-of-two integer greater than the
known (maximum) number of loop iterations. Usually, such vectorized loops have one iteration with most of
operations masked.

IDE Equivalent

None

Alternate Options

None

See Also
fvec-vec-peel-loops, Qvec-peel-loops compiler option
fvec-remainder-loops, Qvec-remainder-loops compiler option

heap-arrays
Puts automatic arrays and arrays created for
temporary computations on the heap instead of the
stack.

Syntax

Linux OS:

-heap-arrays [size]
-no-heap-arrays
Windows OS:

/heap-arrays[:size]
/heap-arrays-

Arguments

size Is an integer value representing the size of the arrays in kilobytes. Arrays smaller than size are
put on the stack.

 1 Intel® Fortran Compiler Classic and Intel® Fortran Compiler Developer Guide and Reference

96

Default

-no-heap-arrays
or /heap-arrays-

The compiler puts automatic arrays and temporary arrays in the stack storage
area.

Description

This option puts automatic arrays and arrays created for temporary computations on the heap instead of the
stack.

If size is specified:

• Automatic (temporary) arrays that have a compile-time size greater than the value specified for size are
put on the heap, rather than on the stack. If the compiler cannot determine the size at compile time, it
puts the automatic array on the heap.

• The value is only used when the total size of the temporary array or automatic array can be determined at
compile time, using compile-time constants.

Any arrays known at compile-time to be larger than size are allocated on the heap instead of the stack. For
example, if 10 is specified for size:

• All automatic and temporary arrays equal to or larger than 10 KB are put on the heap.
• All automatic and temporary arrays smaller than 10 KB are put on the stack.

If size is omitted, and the size of the temporary array or automatic array cannot be determined at compile
time, it is assumed that the total size is greater than size and the array is allocated on the heap.

Linux

You can use the shell command unlimit to increase the size of the runtime stack before execution.

Windows

You can use compiler option /F to tell the linker to increase the size of the runtime stack to allow for large
objects on the stack.

IDE Equivalent

Windows

Visual Studio: Optimization > Heap Arrays

Alternate Options

None

Example
In Fortran, an automatic array gets its size from a runtime expression. In the following example, array X is
affected by the heap-array option; array Y is not:

RECURSIVE SUBROUTINE F(N)
INTEGER :: N
REAL :: X (N) ! an automatic array
REAL :: Y (1000) ! an explicit-shape local array on the stack

Temporary arrays are often created before making a routine call, or when an array operation detects overlap.
In the following example, the array assignment uses a temporary intermediate array because there is clearly
an overlap between the right-hand side and the left-hand side of the assignment:

integer a(10000)
a(2:) = a(1:ubound(a,dim=1)-1)

If you specify the heap-arrays option and omit size, the compiler creates the temporary array on the heap.

Intel® Fortran Compiler Classic and Intel® Fortran Compiler Developer Guide and Reference 1

97

If you specify the heap-arrays option with size 50, the compiler creates the temporary array on the stack.
This is because the size of the temporary intermediate array can be determined at compile time (40Kb), and
it's size is less than the size value.

In the following example, a contiguous array is created from the array slice declaration and passed on:

call somesub(a(1:10000:2))
If you specify the heap-arrays option and omit size, the compiler creates the temporary array on the heap.

If you specify the heap-arrays option with size 25, the compiler creates the temporary array on the stack.
This is because the size of the temporary intermediate array at compile time is only 20Kb.

See Also
F compiler option

mno-gather, Qgather-
Disables the generation of gather instructions in auto-
vectorization. This feature is only available for ifx.

Syntax

Linux OS:

-mno-gather
Windows OS:

/Qgather-

Arguments

None

Default

OFF Gather instructions are enabled in auto-vectorization.

Description

This option disables the generation of gather instructions in auto-vectorization.

NOTE
This option only applies to host compilation. When offloading is enabled, it does not impact
device-specific compilation. Offloading can only be enabled when using ifx.

IDE Equivalent

None

Alternate Options

None

Examples
The following shows examples of using this option:

Linux

ifx -c -mno-gather -mno-scatter t.f90

 1 Intel® Fortran Compiler Classic and Intel® Fortran Compiler Developer Guide and Reference

98

Windows

ifx /c /Qgather- t.f90

See Also
mno-scatter, Qscatter- compiler option

mno-scatter, Qscatter-
Disables the generation of scatter instructions in auto-
vectorization. This feature is only available for ifx.

Syntax

Linux OS:

-mno-scatter
Windows OS:

/Qscatter-

Arguments

None

Default

OFF Scatter instructions are enabled in auto-vectorization.

Description

This option disables the generation of scatter instructions in auto-vectorization.

NOTE
This option only applies to host compilation. When offloading is enabled, it does not impact
device-specific compilation. Offloading can only be enabled when using ifx.

IDE Equivalent

None

Alternate Options

None

Examples
The following shows examples of using this option:

Linux

ifx -c -mno-scatter t.f90
Windows

ifx /c /Qscatter- t.f90

See Also
mno-gather, Qgather- compiler option

Intel® Fortran Compiler Classic and Intel® Fortran Compiler Developer Guide and Reference 1

99

pad, Qpad
Enables the changing of the variable and array
memory layout.

Syntax

Linux OS:

-pad
-nopad
Windows OS:

/Qpad
/Qpad-

Arguments

None

Default

-nopad or /Qpad- Variable and array memory layout is performed by default methods.

Description

This option enables the changing of the variable and array memory layout.

This option is effectively not different from the align option when applied to structures and derived types.
However, the scope of pad is greater because it applies also to common blocks, derived types, sequence
types, and structures.

IDE Equivalent

None

Alternate Options

None

See Also
align compiler option

qmkl, Qmkl
Tells the compiler to link to certain libraries in the
Intel® oneAPI Math Kernel Library (oneMKL). On
Windows systems, you must specify this option at
compile time.

Syntax

Linux OS:

-qmkl[=lib]
Windows OS:

/Qmkl[:lib]

 1 Intel® Fortran Compiler Classic and Intel® Fortran Compiler Developer Guide and Reference

100

Arguments

lib Indicates which oneMKL library files should be linked. Possible values are:

parallel Tells the compiler to link using the threaded libraries in
oneMKL. This is the default if the option is specified with no
lib.

sequential Tells the compiler to link using the sequential libraries in
oneMKL.

cluster Tells the compiler to link using the cluster-specific libraries
and the sequential libraries in oneMKL.

Default

OFF The compiler does not link to the oneMKL library.

Description

This option tells the compiler to link to certain libraries in the Intel® oneAPI Math Kernel Library (oneMKL).

On Linux* systems, dynamic linking is the default when you specify -qmkl.

On C++ systems, to link with oneMKL statically, you must specify:

-qmkl -static-intel
On Windows* systems, static linking is the default when you specify /Qmkl. To link with oneMKL dynamically,
you must specify:

/Qmkl /libs:dll or /Qmkl /MD
If both option -qmkl (or /Qmkl) and -qmkl-ilp64 (or /Qmkl-ilp64) are specified on the command line, the
rightmost specified option takes precedence.

For more information about using oneMKL libraries, see the article titled: Intel® oneAPI Math Kernel Library
Link Line Advisor.

NOTE
If you specify options [q or Q]mkl and -fsycl on the command line, you link to the
combined oneMKL* SYCL library.

To link to a specific oneMKL SYCL library, specify options [q or Q]mkl, -fsycl, and
[q or Q]mkl-sycl-impl.

NOTE
On Windows* systems, this option adds directives to the compiled code, which the linker
then reads without further input from the driver. You do not need to specify a separate link
command.

On Linux* systems, the driver must add the library names explicitly to the link command. You must
use option -qmkl to perform the link to pull in the dependent libraries.

Intel® Fortran Compiler Classic and Intel® Fortran Compiler Developer Guide and Reference 1

101

https://www.intel.com/content/www/us/en/developer/tools/oneapi/onemkl-link-line-advisor.html
https://www.intel.com/content/www/us/en/developer/tools/oneapi/onemkl-link-line-advisor.html

IDE Equivalent

Visual Studio

Visual Studio: Libraries > Intel® oneAPI Math Kernel Library

Alternate Options

Linux on ifort: -mkl (this is a deprecated option)

See Also
qmkl-ilp64, Qmkl-ilp64 compiler option
qmkl-sycl-impl, Qmkl-sycl-impl compiler option
static-intel compiler option
MD compiler option
libs compiler option

qmkl-ilp64, Qmkl-ilp64
Tells the compiler to link to the ILP64-specific version
of the Intel® oneAPI Math Kernel Library (oneMKL). On
Windows systems, you must specify this option at
compile time.

Syntax

Linux OS:

-qmkl-ilp64[=lib]
Windows OS:

/Qmkl-ilp64[:lib]

Arguments

lib Indicates which ILP64-specific oneMKL library files should be linked. Possible values are:

parallel Tells the compiler to link using the threaded libraries in
oneMKL. This is the default if the option is specified with no
lib.

sequential Tells the compiler to link using the sequential libraries in
oneMKL.

cluster Tells the compiler to link using the cluster-specific libraries
and the sequential libraries in oneMKL.

Default

OFF The compiler does not link to the oneMKL library.

Description

This option tells the compiler to link to the ILP64-specific version of the Intel® oneAPI Math Kernel Library
(oneMKL).

If both option -qmkl-ilp64 (or /Qmkl-ilp64) and -qmkl (or /Qmkl) are specified on the command line, the
rightmost specified option takes precedence.

 1 Intel® Fortran Compiler Classic and Intel® Fortran Compiler Developer Guide and Reference

102

For more information about using oneMKL libraries, see the article titled: Intel® oneAPI Math Kernel Library
Link Line Advisor.

Linux

Dynamic linking is the default when you specify -qmkl-ilp64.

On C++ systems, to link with oneMKL statically, you must specify:

-qmkl-ilp64 -static-intel
The driver must add the library names explicitly to the link command. You must use option -qmkl-ilp64 to
perform the link to pull in the dependent libraries.

Windows

Static linking is the default when you specify /Qmkl-ilp64. To link with oneMKL dynamically, you must
specify:

/Qmkl-ilp64 /libs:dll or /Qmkl-ilp64 /MD
This option adds directives to the compiled code, which the linker then reads without further input from the
driver. You do not need to specify a separate link command.

IDE Equivalent

Visual Studio

Visual Studio: Libraries > Use ILP64 interfaces

Alternate Options

None

See Also
qmkl compiler option
static-intel compiler option
MD compiler option
libs compiler option

qmkl-sycl-impl, Qmkl-sycl-impl
Lets you link to one or more specific Intel® oneAPI
Math Kernel (oneMKL) SYCL libraries. This feature is
only available for ifx.

Syntax

Linux OS:

-qmkl-sycl-impl=arg[, arg,...]
Windows OS:

/Qmkl-sycl-impl:arg[, arg,...]

Arguments

arg Tells the compiler which oneMKL* SYCL-specific library to link to. Possible values are:

blas Links to the BLAS SYCL library.

dft Links to the Discrete Fourier Transform (DFT) SYCL library.

Intel® Fortran Compiler Classic and Intel® Fortran Compiler Developer Guide and Reference 1

103

https://www.intel.com/content/www/us/en/developer/tools/oneapi/onemkl-link-line-advisor.html
https://www.intel.com/content/www/us/en/developer/tools/oneapi/onemkl-link-line-advisor.html

lapack Links to the LAPACK SYCL library.

rng Links to the Random Number Generator (RNG) SYCL
library.

sparse Links to the Sparse BLAS SYCL library.

stats Links to the Summary Statistic SYCL library.

vm Links to the Vector Mathematics (VM) SYCL library.

Default

OFF You must specify this option to link to a specific oneMKL* SYCL library.

Description

This option lets you link to one or more specific Intel® oneAPI Math Kernel (oneMKL) SYCL libraries.

It is not supported for static linking.

NOTE
When using this option, you must also specify option -fsycl and -qmkl (Linux) or /Qmkl
(Windows).

For information about available SYCL drivers, refer to Invoke the Compiler.

IDE Equivalent

None

Alternate Options

None

Examples
The following shows examples of using this option:

ifx -fsycl -qmkl -qmkl-sycl-impl=blas file.o // Linux
ifx /fsycl /Qmkl /Qmkl-sycl-impl:blas file.obj // Windows

If you do not also specify option -fsycl and [q or Q]mkl, you will see a diagnostic warning. For example,
the following commands will produce such a diagnostic on Linux systems:

ifx -qmkl -qmkl-sycl-impl=blas file.o
ifx -fsycl -qmkl-sycl-impl=blas file.o

See Also
qmkl, Qmkl compiler option

qopt-args-in-regs, Qopt-args-in-regs
Determines whether calls to routines are optimized by
passing arguments in registers instead of on the
stack. This is a deprecated option that may be
removed in a future release. This feature is only
available for ifort.

 1 Intel® Fortran Compiler Classic and Intel® Fortran Compiler Developer Guide and Reference

104

Architecture Restrictions

Only available on IA-32 architecture. IA-32 support has been deprecated, and will be removed in a future
release.

Syntax

Linux OS:

-qopt-args-in-regs[=keyword]
Windows OS:

/Qopt-args-in-regs[:keyword]

Arguments

keyword Specifies whether the optimization should be performed and under what conditions. Possible
values are:

none The optimization is not performed. No arguments are passed in registers. They are
put on the stack.

seen Causes arguments to be passed in registers when they are passed to routines
whose definition can be seen in the same compilation unit.

all Causes arguments to be passed in registers, whether they are passed to routines
whose definition can be seen in the same compilation unit, or not. This value is
only available on Linux* systems.

Default

-qopt-args-in-regs=seen
or /Qopt-args-in-regs:seen

Arguments are passed in registers when they are passed to routines
whose definition is seen in the same compilation unit.

Description

This option determines whether calls to routines are optimized by passing arguments in registers instead of
on the stack. It also indicates the conditions when the optimization will be performed.

This is a deprecated option that may be removed in a future release. There is no replacement option.

This option can improve performance for Application Binary Interfaces (ABIs) that require arguments to be
passed in memory and compiled without interprocedural optimization (IPO).

Note that on Linux* systems, if all is specified, a small overhead may be paid when calling "unseen"
routines that have not been compiled with the same option. This is because the call will need to go through a
"thunk" to ensure that arguments are placed back on the stack where the callee expects them.

IDE Equivalent

None

Alternate Options

None

Intel® Fortran Compiler Classic and Intel® Fortran Compiler Developer Guide and Reference 1

105

qopt-assume-safe-padding, Qopt-assume-safe-padding
Determines whether the compiler assumes that
variables and dynamically allocated memory are
padded past the end of the object. This feature is only
available for ifort.

Architecture Restrictions

Only available on all architectures that support Intel® Advanced Vector Extensions 512 (Intel® AVX-512)
Foundation instructions

Syntax

Linux OS:

-qopt-assume-safe-padding
-qno-opt-assume-safe-padding
Windows OS:

/Qopt-assume-safe-padding
/Qopt-assume-safe-padding-

Arguments

None

Default

-qno-opt-assume-safe-padding
or /Qopt-assume-safe-padding-

The compiler will not assume that variables and dynamically allocated
memory are padded past the end of the object. It will adhere to the
sizes specified in your program.

Description

This option determines whether the compiler assumes that variables and dynamically allocated memory are
padded past the end of the object.

When you specify option [q or Q]opt-assume-safe-padding, the compiler assumes that variables and
dynamically allocated memory are padded. This means that code can access up to 64 bytes beyond what is
specified in your program.

The compiler does not add any padding for static and automatic objects when this option is used, but it
assumes that code can access up to 64 bytes beyond the end of the object, wherever the object appears in
the program. To satisfy this assumption, you must increase the size of static and automatic objects in your
program when you use this option.

This option may improve performance of memory operations.

IDE Equivalent

None

Alternate Options

None

qopt-block-factor, Qopt-block-factor
Lets you specify a loop blocking factor. This feature is
only available for ifort.

 1 Intel® Fortran Compiler Classic and Intel® Fortran Compiler Developer Guide and Reference

106

Syntax

Linux OS:

-qopt-block-factor=n
Windows OS:

/Qopt-block-factor:n

Arguments

n Is the blocking factor. It must be an integer. The compiler may ignore
the blocking factor if the value is 0 or 1.

Default

OFF The compiler uses default heuristics for loop blocking.

Description

This option lets you specify a loop blocking factor.

IDE Equivalent

None

Alternate Options

None

qopt-dynamic-align, Qopt-dynamic-align
Enables or disables dynamic data alignment
optimizations.

Syntax

Linux OS:

-qopt-dynamic-align
-qno-opt-dynamic-align
Windows OS:

/Qopt-dynamic-align
/Qopt-dynamic-align-

Arguments

None

Default

ifort: -qopt-dynamic-align
or /Qopt-dynamic-align

The compiler may generate code dynamically
dependent on alignment. It may do optimizations
based on data location for the best performance. The
result of execution on some algorithms may depend
on data layout.

Intel® Fortran Compiler Classic and Intel® Fortran Compiler Developer Guide and Reference 1

107

ifx: -qno-opt-dynamic-align
or /Qopt-dynamic-align-

The compiler does not generate code dynamically
dependent on alignment.

Description

This option enables or disables dynamic data alignment optimizations.

If you specify -qno-opt-dynamic-align or /Qopt-dynamic-align-, the compiler generates no code
dynamically dependent on alignment. It will not do any optimizations based on data location and results will
depend on the data values themselves.

When you specify [q or Q]opt-dynamic-align, the compiler may implement conditional optimizations
based on dynamic alignment of the input data. These dynamic alignment optimizations may result in
different bitwise results for aligned and unaligned data with the same values.

Dynamic alignment optimizations can improve the performance of some vectorized code, especially for long
trip count loops, but there is an associated cost of increased code size and compile time. Disabling such
optimizations can improve the performance of some other vectorized code. It may also improve bitwise
reproducibility of results, factoring out data location from possible sources of discrepancy.

IDE Equivalent

None

Alternate Options

None

qopt-for-throughput, Qopt-for-throughput
Determines how the compiler optimizes for throughput
depending on whether the program is to run in single-
job or multi-job mode. This feature is only available
for ifx.

Syntax

Linux OS:

-qopt-for-throughput=value
Windows OS:

/Qopt-for-throughput:value

Arguments

value Is one of the values "multi-job" or "single-job".

Default

OFF If this option is not specified, the compiler will not optimize for throughput performance.

Description

This option determines whether throughput performance optimization occurs for a program that is run as a
single job or one that is run in a multiple job environment.

The memory optimizations for a single job versus multiple jobs can be tuned in different ways by the
compiler. For example, the cost model for loop tiling and prefetching are different for a single job versus
multiple jobs. When a single job is running, more memory is available and the tunings will be different.

 1 Intel® Fortran Compiler Classic and Intel® Fortran Compiler Developer Guide and Reference

108

IDE Equivalent

None

Alternate Options

None

qopt-jump-tables, Qopt-jump-tables
Enables or disables generation of jump tables for
switch statements. This feature is only available for
ifort.

Syntax

Linux OS:

-qopt-jump-tables=keyword
-qno-opt-jump-tables
Windows OS:

/Qopt-jump-tables:keyword
/Qopt-jump-tables-

Arguments

keyword Is the instruction for generating jump tables. Possible values are:

never Tells the compiler to never generate jump tables. All switch
statements are implemented as chains of if-then-elses.
This is the same as specifying -qno-opt-jump-tables
(Linux*) or /Qopt-jump-tables- (Windows*).

default The compiler uses default heuristics to determine when to
generate jump tables.

large Tells the compiler to generate jump tables up to a certain
pre-defined size (64K entries).

n Must be an integer. Tells the compiler to generate jump
tables up to n entries in size.

Default

-qopt-jump-tables=default
or /Qopt-jump-tables:default

The compiler uses default heuristics to determine
when to generate jump tables for switch statements.

Description

This option enables or disables generation of jump tables for switch statements. When the option is enabled,
it may improve performance for programs with large switch statements.

IDE Equivalent

None

Alternate Options

None

Intel® Fortran Compiler Classic and Intel® Fortran Compiler Developer Guide and Reference 1

109

qopt-malloc-options
Lets you specify an alternate algorithm for malloc().
This feature is only available for ifort.

Syntax

Linux OS:

-qopt-malloc-options=n
Windows OS:

None

Arguments

n Specifies the algorithm to use for malloc(). Possible values are:

0 Tells the compiler to use the default
algorithm for malloc(). This is the default.

1 Causes the following adjustments to the
malloc() algorithm: M_MMAP_MAX=2 and
M_TRIM_THRESHOLD=0x10000000.

2 Causes the following adjustments to the
malloc() algorithm: M_MMAP_MAX=2 and
M_TRIM_THRESHOLD=0x40000000.

3 Causes the following adjustments to the
malloc() algorithm: M_MMAP_MAX=0 and
M_TRIM_THRESHOLD=-1.

4 Causes the following adjustments to the
malloc() algorithm: M_MMAP_MAX=0,
M_TRIM_THRESHOLD=-1,
M_TOP_PAD=4096.

Default

-qopt-malloc-options=0 The compiler uses the default algorithm when malloc() is called.
No call is made to mallopt().

Description

This option lets you specify an alternate algorithm for malloc().

If you specify a non-zero value for n, it causes alternate configuration parameters to be set for how malloc()
allocates and frees memory. It tells the compiler to insert calls to mallopt() to adjust these parameters to
malloc() for dynamic memory allocation. This may improve speed.

IDE Equivalent

None

Alternate Options

None

See Also
malloc(3) man page

 1 Intel® Fortran Compiler Classic and Intel® Fortran Compiler Developer Guide and Reference

110

mallopt function (defined in malloc.h)

qopt-matmul, Qopt-matmul
Enables or disables a compiler-generated Matrix
Multiply (matmul) library call.

Syntax

Linux OS:

-qopt-matmul
-qno-opt-matmul
Windows OS:

/Qopt-matmul
/Qopt-matmul-

Arguments

None

Default

-qno-opt-matmul
or /Qopt-matmul-

The matmul library call optimization does not occur unless this option is
enabled or certain other compiler options are specified (see below).

Description

This option enables or disables a compiler-generated Matrix Multiply (MATMUL) library call.

The [q or Q]opt-matmul option tells the compiler to identify matrix multiplication loop nests (if any) and
replace them with a matmul library call for improved performance. The resulting executable may improve
performance on Intel® microprocessors.

NOTE
This option is dependent upon the OpenMP* library. If your product does not support
OpenMP, this option will have no effect.

This option has no effect unless option O2 or higher is set.

NOTE
Many routines in the MATMUL library are more highly optimized for Intel® microprocessors
than for non-Intel microprocessors.

IDE Equivalent

Visual Studio

Visual Studio: Optimization > Enable Matrix Multiply Library Call

Alternate Options

None

See Also
O compiler option

Intel® Fortran Compiler Classic and Intel® Fortran Compiler Developer Guide and Reference 1

111

qopt-mem-layout-trans, Qopt-mem-layout-trans
Controls the level of memory layout transformations
performed by the compiler.

Syntax

Linux OS:

-qopt-mem-layout-trans[=n]
-qno-opt-mem-layout-trans
Windows OS:

/Qopt-mem-layout-trans[:n]
/Qopt-mem-layout-trans-

Arguments

n Is the level of memory layout transformations. Possible values are:

0 Disables memory layout transformations.

This is the same as specifying
-qno-opt-mem-layout-trans (Linux*)
or /Qopt-mem-layout-trans- (Windows*).

1 Enables basic memory layout transformations.

2 Enables more memory layout transformations. This is the
same as specifying [q or Q]opt-mem-layout-trans with
no argument.

3 Enables more memory layout transformations like copy-in/
copy-out of structures for a region of code. This setting
should only be used when targeting systems that have
more than 4GB of physical memory per core.

4 Enables more aggressive memory layout transformations.
This setting should only be used when targeting systems
that have more than 4GB of physical memory per core.

Default

-qopt-mem-layout-trans=0
or /Qopt-mem-layout-trans:0

No memory layout transformations are performed.

Description

This option controls the level of memory layout transformations performed by the compiler. This option can
improve cache reuse and cache locality.

Product and Performance Information

Performance varies by use, configuration and other factors. Learn more at www.Intel.com/
PerformanceIndex.

Notice revision #20201201

 1 Intel® Fortran Compiler Classic and Intel® Fortran Compiler Developer Guide and Reference

112

https://www.intel.com/PerformanceIndex
https://www.intel.com/PerformanceIndex

IDE Equivalent

None

Alternate Options

None

qopt-multi-version-aggressive, Qopt-multi-version-aggressive
Tells the compiler to use aggressive multi-versioning
to check for pointer aliasing and scalar replacement.
This feature is only available for ifort.

Syntax

Linux OS:

-qopt-multi-version-aggressive
-qno-opt-multi-version-aggressive
Windows OS:

/Qopt-multi-version-aggressive
/Qopt-multi-version-aggressive-

Arguments

None

Default

-qno-opt-multi-version-aggressive
or /Qopt-multi-version-aggressive-

The compiler uses default heuristics when checking
for pointer aliasing and scalar replacement.

Description

This option tells the compiler to use aggressive multi-versioning to check for pointer aliasing and scalar
replacement. This option may improve performance.

The performance can be affected by certain options, such as /arch or /Qx (Windows*) or -m or -x (Linux*).

IDE Equivalent

None

Alternate Options

None

qopt-multiple-gather-scatter-by-shuffles, Qopt-multiple-gather-scatter-by-shuffles
Enables or disables the optimization for multiple
adjacent gather/scatter type vector memory
references.

Syntax

Linux OS:

-qopt-multiple-gather-scatter-by-shuffles
-qno-opt-multiple-gather-scatter-by-shuffles

Intel® Fortran Compiler Classic and Intel® Fortran Compiler Developer Guide and Reference 1

113

Windows OS:

/Qopt-multiple-gather-scatter-by-shuffles
/Qopt-multiple-gather-scatter-by-shuffles-

Arguments

None

Default

varies When this option is not specified, the compiler uses default heuristics for
optimization.

Description

This option controls the optimization for multiple adjacent gather/scatter type vector memory references.
This optimization hint is useful for performance tuning. It tries to generate more optimal software sequences
using shuffles.

If you specify this option, the compiler will apply the optimization heuristics. If you specify
-qno-opt-multiple-gather-scatter-by-shuffles
or /Qopt-multiple-gather-scatter-by-shuffles-, the compiler will not apply the optimization.

NOTE
Optimization is affected by optimization compiler options, such as [Q]x, -march (Linux*),
and /arch (Windows*).

To override the effect of this option (or the default) per loop basis, you can use directive VECTOR
[NO]MULTIPLE_GATHER_SCATTER_BY_SHUFFLE.

Product and Performance Information

Performance varies by use, configuration and other factors. Learn more at www.Intel.com/
PerformanceIndex.

Notice revision #20201201

IDE Equivalent

None

Alternate Options

None

See Also
VECTOR directive
x, Qx compiler option
march compiler option
arch compiler option

qopt-prefetch, Qopt-prefetch
Enables or disables prefetch insertion optimization.

 1 Intel® Fortran Compiler Classic and Intel® Fortran Compiler Developer Guide and Reference

114

https://www.intel.com/PerformanceIndex
https://www.intel.com/PerformanceIndex

Syntax

Linux OS:

-qopt-prefetch[=n]
-qno-opt-prefetch
Windows OS:

/Qopt-prefetch[:n]
/Qopt-prefetch-

Arguments

n Is the level of software prefetching optimization desired. Possible
values are:

0 Disables software prefetching. This is the
same as specifying -qno-opt-prefetch
(Linux*) or /Qopt-prefetch- (Windows*).

1 to 5 Enables different levels of software
prefetching. If you do not specify a value for
n, the default is -qopt-prefetch=2
or /Qopt-prefetch:2. Use lower values to
reduce the amount of prefetching.

Default

ifort: -qno-opt-prefetch
or /Qopt-prefetch-

Prefetch insertion optimization is disabled.

ifx: varies The default can change depending on certain option
settings.

If you specify option -qno-opt-prefetch
(or /Qopt-prefetch-), or you specify option O0 or
O1 explicitly or implicitly, prefetch insertion
optimization is disabled.

If you specify option O2 or above explicitly or
implicitly, the default is option -qopt-prefetch=2
(or /Qopt-prefetch:2).

Description

This option enables or disables prefetch insertion optimization. The goal of prefetching is to reduce cache
misses by providing hints to the processor about when data should be loaded into the cache.

This option enables prefetching when higher optimization levels are specified.

IDE Equivalent

Visual Studio

Visual Studio: Optimization > Prefetch Insertion

Intel® Fortran Compiler Classic and Intel® Fortran Compiler Developer Guide and Reference 1

115

Alternate Options

None

See Also
qopt-prefetch-distance, Qopt-prefetch-distance compiler option (ifort)
qopt-prefetch-distance, Qopt-prefetch-distance compiler option (ifx)

qopt-prefetch-distance, Qopt-prefetch-distance (ifort only)
Specifies the prefetch distance to be used for
compiler-generated prefetches inside loops. This
description is only for ifort.

Syntax

Linux OS:

-qopt-prefetch-distance=n1[, n2]
Windows OS:

/Qopt-prefetch-distance:n1[, n2]

Arguments

n1, n2 Is the prefetch distance in terms of the number of (possibly
vectorized) iterations. Possible values are non-negative numbers >=0.

n2 is optional.

n1 = 0 turns off all compiler issued prefetches from memory to L2. n2
= 0 turns off all compiler issued prefetches from L2 to L1. If n2 is
specified and n1 > 0, n1 should be >= n2.

Default

OFF The compiler uses default heuristics to determine the prefetch distance.

Description

This option specifies the prefetch distance to be used for compiler-generated prefetches inside loops. The unit
(n1 and optionally n2) is the number of iterations. If the loop is vectorized by the compiler, the unit is the
number of vectorized iterations.

The value of n1 will be used as the distance for prefetches from memory to L2 (for example, the vprefetch1
instruction). If n2 is specified, it will be used as the distance for prefetches from L2 to L1 (for example, the
vprefetch0 instruction).

This option is ignored if option -qopt-prefetch=0 (Linux*) or /Qopt-prefetch:0 (Windows*) is specified.

IDE Equivalent

None

Alternate Options

None

Example
Consider the following Linux* examples:

-qopt-prefetch-distance=64,32

 1 Intel® Fortran Compiler Classic and Intel® Fortran Compiler Developer Guide and Reference

116

The above causes the compiler to use a distance of 64 iterations for memory to L2 prefetches, and a distance
of 32 iterations for L2 to L1 prefetches.

-qopt-prefetch-distance=24
The above causes the compiler to use a distance of 24 iterations for memory to L2 prefetches. The distance
for L2 to L1 prefetches will be determined by the compiler.

-qopt-prefetch-distance=0,4
The above turns off all memory to L2 prefetches inserted by the compiler inside loops. The compiler will use
a distance of 4 iterations for L2 to L1 prefetches.

-qopt-prefetch-distance=16,0
The above causes the compiler to use a distance of 16 iterations for memory to L2 prefetches. No L2 to L1
loop prefetches are issued by the compiler.

See Also
qopt-prefetch, Qopt-prefetch compiler option
PREFETCH directive

qopt-prefetch-distance, Qopt-prefetch-distance (ifx only)
Specifies the prefetch distance to be used for
compiler-generated prefetches inside loops. This
description is only for ifx.

Syntax

Linux OS:

-qopt-prefetch-distance=n
Windows OS:

/Qopt-prefetch-distance:n

Arguments

n Is the prefetch distance in terms of the number of (possibly-
vectorized) iterations. Possible values are non-negative numbers >=0.

n = 0 turns off all compiler issued prefetches from memory to L1.

Default

OFF The compiler uses default heuristics to determine the prefetch distance.

Description

This option specifies the prefetch distance to be used for compiler-generated prefetches inside loops. The unit
n is the number of iterations. If the loop is vectorized by the compiler, the unit is the number of vectorized
iterations.

The value of n will be used as the distance for prefetches from memory to L1 (for example, the vprefetch0
instruction).

Linux

This option is ignored if option -qopt-prefetch=0 or option -qno-opt-prefetch is specified.

Windows

This option is ignored if option /Qopt-prefetch=0 or option /Qopt-prefetch- is specified.

Intel® Fortran Compiler Classic and Intel® Fortran Compiler Developer Guide and Reference 1

117

IDE Equivalent

None

Alternate Options

None

Examples
Consider the following Linux examples:

-qopt-prefetch-distance=24
The above causes the compiler to use a distance of 24 iterations for memory to L1 prefetches.

-qopt-prefetch-distance=0
The above turns off all memory to L1 prefetches inserted by the compiler inside loops.

-qopt-prefetch-distance=16
The above causes the compiler to use a distance of 16 iterations for memory to L1 prefetches.

See Also
qopt-prefetch, Qopt-prefetch compiler option
PREFETCH directive

qopt-prefetch-issue-excl-hint, Qopt-prefetch-issue-excl-hint
Supports the prefetchW instruction in Intel®
microarchitecture code name Broadwell and later. This
feature is only available for ifort.

Syntax

Linux OS:

-qopt-prefetch-issue-excl-hint
Windows OS:

/Qopt-prefetch-issue-excl-hint

Arguments

None

Default

OFF The compiler does not support the PREFETCHW
instruction for this microarchitecture.

Description

This option supports the PREFETCHW instruction in Intel® microarchitecture code name Broadwell and later.

When you specify this option, you must also specify option [q or Q]opt-prefetch.

The prefetch instruction is merely a hint and does not affect program behavior. If executed, this instruction
moves data closer to the processor and invalidates any other cached copy in anticipation of the line being
written to in the future.

IDE Equivalent

None

 1 Intel® Fortran Compiler Classic and Intel® Fortran Compiler Developer Guide and Reference

118

Alternate Options

None

See Also
qopt-prefetch/Qopt-prefetch compiler option

qopt-prefetch-loads-only, Qopt-prefetch-loads-only
Specifies that the compiler should only prefetch for
loads inside the loop and ignore the stores, if any.
This feature is only available for ifx.

Syntax

Linux OS:

-qopt-prefetch-loads-only
Windows OS:

/Qopt-prefetch-loads-only

Arguments

None

Default

OFF The compiler prefetches for both loads and stores.

Description

This option specifies that the compiler should only prefetch for loads inside the loop and ignore the stores, if
any.

Linux

This option is ignored if option -qopt-prefetch=0 or option -qno-opt-prefetch is specified.

Windows

This option is ignored if option /Qopt-prefetch=0 or option /Qopt-prefetch- is specified.

NOTE
This option only applies to host compilation. When offloading is enabled, it does not impact
device-specific compilation.

IDE Equivalent

None

Alternate Options

None

See Also
qopt-prefetch, Qopt-prefetch compiler option

Intel® Fortran Compiler Classic and Intel® Fortran Compiler Developer Guide and Reference 1

119

qopt-ra-region-strategy, Qopt-ra-region-strategy
Selects the method that the register allocator uses to
partition each routine into regions. This feature is only
available for ifort.

Syntax

Linux OS:

-qopt-ra-region-strategy[=keyword]
Windows OS:

/Qopt-ra-region-strategy[:keyword]

Arguments

keyword Is the method used for partitioning. Possible values are:

routine Creates a single region for each routine.

block Partitions each routine into one region per
basic block.

trace Partitions each routine into one region per
trace.

loop Partitions each routine into one region per
loop.

default The compiler determines which method is
used for partitioning.

Default

-qopt-ra-region-strategy=default
or /Qopt-ra-region-strategy:default

The compiler determines which method is used for
partitioning. This is also the default if keyword is not
specified.

Description

This option selects the method that the register allocator uses to partition each routine into regions.

When setting default is in effect, the compiler attempts to optimize the tradeoff between compile-time
performance and generated code performance.

This option is only relevant when optimizations are enabled (option O1 or higher).

IDE Equivalent

None

Alternate Options

None

See Also
O compiler option

 1 Intel® Fortran Compiler Classic and Intel® Fortran Compiler Developer Guide and Reference

120

qopt-streaming-stores, Qopt-streaming-stores
Enables generation of streaming stores for
optimization.

Syntax

Linux OS:

-qopt-streaming-stores=keyword
-qno-opt-streaming-stores
Windows OS:

/Qopt-streaming-stores:keyword
/Qopt-streaming-stores-

Arguments

keyword Specifies whether streaming stores are generated. Possible values are:

always Enables generation of streaming stores for
optimization. The compiler optimizes under
the assumption that the application is
memory bound.

When this option setting is specified, it is
your responsibility to also insert any memory
barriers (fences) as required to ensure
correct memory ordering within a thread or
across threads. See the Examples section for
one way to do this.

never Disables generation of streaming stores for
optimization. Normal stores are performed.

This setting has the same effect as
specifying -qno-opt-streaming-stores
or /Qopt-streaming-stores-.

auto Lets the compiler decide which instructions
to use.

Default

-qopt-streaming-stores=auto
or /Qopt-streaming-stores:auto

The compiler decides whether to use streaming stores
or normal stores.

Description

This option enables generation of streaming stores for optimization. This method stores data with
instructions that use a non-temporal buffer, which minimizes memory hierarchy pollution.

This option may be useful for applications that can benefit from streaming stores.

IDE Equivalent

None

Intel® Fortran Compiler Classic and Intel® Fortran Compiler Developer Guide and Reference 1

121

Alternate Options

None

Example
The following example shows one way to insert memory barriers (fences) when specifying
-qopt-streaming-stores=always or /Qopt-streaming-stores:always. It uses the procedure interface
for_sfence from the module IFCORE, which maps to the C/C++ function _mm_sfence:

program main
 implicit none

 INTEGER, PARAMETER :: dp = selected_real_kind(15, 307)
 integer, parameter :: k5 = selected_int_kind(5)
 integer, parameter :: k15 = selected_int_kind(15)
 integer (kind=k5), parameter :: i5 = 10
 integer (kind=k15) :: i15
 integer (kind=k15) :: sizeof
 REAL (KIND=dp) :: a(i5)
 REAL (KIND=dp) :: b(i5)
 REAL (KIND=dp) :: c(i5)

 sizeof = size(a)
 call sub1(a,b,c,sizeof,sizeof,sizeof)

 contains

 subroutine sub1(a, b, c, lent, n1, n2)
 use IFCORE, only : for_sfence
 integer (kind=k15) lent, n1, n2, i, j
 REAL (KIND=dp) a(lent), b(lent), c(lent), d(lent)
 !$omp parallel do
 do j = 1, n1
 a(j) = 1.0 *j
 b(j) = 2.0 * j*j
 c(j) = 3.0 *j * j*j
 enddo
 !$omp end parallel do
 call for_sfence()
 !$omp parallel do
 do i = 1, n2
 a(i) = a(i) + b(i) * c(i)
 write(*,*)a(i)
 enddo
 !$omp end parallel do
 end subroutine

 end

See Also
ax, Qax compiler option
x, Qx compiler option

qopt-subscript-in-range, Qopt-subscript-in-range
Determines whether the compiler assumes that there
are no "large" integers being used or being computed
inside loops. This feature is only available for ifort.

 1 Intel® Fortran Compiler Classic and Intel® Fortran Compiler Developer Guide and Reference

122

Syntax

Linux OS:

-qopt-subscript-in-range
-qno-opt-subscript-in-range
Windows OS:

/Qopt-subscript-in-range
/Qopt-subscript-in-range-

Arguments

None

Default

-qno-opt-subscript-in-range
or /Qopt-subscript-in-range-

The compiler assumes there are "large" integers being used or being
computed within loops.

Description

This option determines whether the compiler assumes that there are no "large" integers being used or being
computed inside loops.

If you specify [q or Q]opt-subscript-in-range, the compiler assumes that there are no "large" integers
being used or being computed inside loops. A "large" integer is typically > 231.

This feature can enable more loop transformations.

IDE Equivalent

None

Alternate Options

None

Example
The following example shows how these options can be useful. Variable m is declared as type
integer(kind=8) (64-bits) and all other variables inside the subscript are declared as type integer(kind=4)
(32-bits):

A[i + j + (n + k) * m]

qopt-zmm-usage, Qopt-zmm-usage
Defines a level of zmm registers usage.

Syntax

Linux OS:

-qopt-zmm-usage=keyword
Windows OS:

/Qopt-zmm-usage:keyword

Intel® Fortran Compiler Classic and Intel® Fortran Compiler Developer Guide and Reference 1

123

Arguments

keyword Specifies the level of zmm registers usage. Possible values are:

low Tells the compiler that the compiled program is unlikely to
benefit from zmm registers usage. It specifies that the
compiler should avoid using zmm registers unless it can
prove the gain from their usage.

high Tells the compiler to generate zmm code without
restrictions.

Default

varies The default is low when you specify [Q]xCORE-AVX512.

The default is high when you specify [Q]xCOMMON-AVX512.

Description

This option may provide better code optimization for Intel® processors that are on the Intel®
microarchitecture formerly code-named Skylake.

This option defines a level of zmm registers usage. The low setting causes the compiler to generate code
with zmm registers very carefully, only when the gain from their usage is proven. The high setting causes
the compiler to use much less restrictive heuristics for zmm code generation.

It is not always easy to predict whether the high or the low setting will yield better performance. Programs
that enjoy high performance gains from the use of xmm or ymm registers may expect performance
improvement by moving to use zmm registers. However, some programs that use zmm registers may not
gain as much or may even lose performance. We recommend that you try both option values to measure the
performance of your programs.

This option is ignored if you do not specify an option that enables Intel® AVX-512, such as [Q]xCORE-AVX512
or option [Q]xCOMMON-AVX512.

This option has no effect on loops that use directive SIMD SIMDLEN(n) or on functions that are generated by
vector specifications specific to CORE-AVX512.

IDE Equivalent

None

Alternate Options

None

See Also
x, Qx compiler option
SIMD Directive for OpenMP clause SIMDLEN

qoverride-limits, Qoverride-limits
Lets you override certain internal compiler limits that
are intended to prevent excessive memory usage or
compile times for very large, complex compilation
units.

 1 Intel® Fortran Compiler Classic and Intel® Fortran Compiler Developer Guide and Reference

124

Syntax

Linux OS:

-qoverride-limits
Windows OS:

/Qoverride-limits

Arguments

None

Default

OFF Certain internal compiler limits are not overridden. These limits are determined by default
heuristics.

Description

This option provides a way to override certain internal compiler limits that are intended to prevent excessive
memory usage or compile times for very large, complex compilation units.

If this option is not used and your program exceeds one of these internal compiler limits, some optimizations
will be skipped to reduce the memory footprint and compile time. If you chose to create an optimization
report by specifying [q or Q]opt-report, you may see a related diagnostic remark as part of the report.

Specifying this option may substantially increase compile time and/or memory usage.

NOTE
If you use this option, it is your responsibility to ensure that sufficient memory is available.
If there is not sufficient available memory, the compilation may fail.

This option should only be used where there is a specific need; it is not recommended for
inexperienced users.

IDE Equivalent

None

Alternate Options

None

reentrancy
Tells the compiler to generate reentrant code to
support a multithreaded application.

Syntax

Linux OS:

-reentrancy keyword
-noreentrancy
Windows OS:

/reentrancy:keyword
/noreentrancy

Intel® Fortran Compiler Classic and Intel® Fortran Compiler Developer Guide and Reference 1

125

Arguments

keyword Specifies details about the program. Possible values are:

none Tells the runtime library (RTL) that the program does not rely on
threaded or asynchronous reentrancy. The RTL will not guard against
such interrupts inside its own critical regions. This is the same as
specifying noreentrancy.

async Tells the runtime library (RTL) that the program may contain
asynchronous (AST) handlers that could call the RTL. This causes the
RTL to guard against AST interrupts inside its own critical regions.

threaded Tells the runtime library (RTL) that the program is multithreaded, such
as programs using the POSIX threads library. This causes the RTL to use
thread locking to guard its own critical regions.

Default

threaded The compiler tells the runtime library (RTL) that the program is multithreaded.

Description

This option tells the compiler to generate reentrant code to support a multithreaded application.

If you do not specify a keyword for reentrancy, it is the same as specifying reentrancy threaded.

To ensure that a threadsafe and/or reentrant runtime library is linked and correctly initialized, option
reentrancy threaded should also be used for the link step and for the compilation of the main routine.

Note that if option threads is specified, it sets option reentrancy threaded, since multithreaded code
must be reentrant.

IDE Equivalent

Windows

Visual Studio: Code Generation > Generate Reentrant Code

Alternate Options

None

See Also
threads compiler option

safe-cray-ptr, Qsafe-cray-ptr
Tells the compiler that Cray* pointers do not alias
other variables.

Syntax

Linux OS:

-safe-cray-ptr
Windows OS:

/Qsafe-cray-ptr

 1 Intel® Fortran Compiler Classic and Intel® Fortran Compiler Developer Guide and Reference

126

Arguments

None

Default

OFF The compiler assumes that Cray pointers alias other variables.

Description

This option tells the compiler that Cray pointers do not alias (that is, do not specify sharing memory with)
other variables.

IDE Equivalent

Windows

Visual Studio: Data > Assume CRAY Pointers Do Not Share Memory Locations (/Qsafe-cray-ptr)

Alternate Options

None

Example
Consider the following:

pointer (pb, b)
pb = getstorage()
do i = 1, n
b(i) = a(i) + 1
enddo

By default, the compiler assumes that b and a are aliased. To prevent such an assumption, specify the
-safe-cray-ptr (Linux*) or /Qsafe-cray-ptr (Windows*) option, and the compiler will treat b(i) and a(i)
as independent of each other.

However, if the variables are intended to be aliased with Cray pointers, using the option produces incorrect
results. In the following example, you should not use the option:

pointer (pb, b)
pb = loc(a(2))
do i=1, n
b(i) = a(i) +1
enddo

scalar-rep, Qscalar-rep
Enables or disables the scalar replacement
optimization done by the compiler as part of loop
transformations. This feature is only available for ifort.

Syntax

Linux OS:

-scalar-rep
-no-scalar-rep
Windows OS:

/Qscalar-rep
/Qscalar-rep-

Intel® Fortran Compiler Classic and Intel® Fortran Compiler Developer Guide and Reference 1

127

Arguments

None

Default

-scalar-rep
or /Qscalar-rep

Scalar replacement is performed during loop transformation at optimization levels of
O2 and above.

Description

This option enables or disables the scalar replacement optimization done by the compiler as part of loop
transformations. This option takes effect only if you specify an optimization level of O2 or higher.

IDE Equivalent

None

Alternate Options

None

See Also
O compiler option

simd, Qsimd
Enables or disables compiler interpretation of SIMD
directives.This feature is only available for ifort.

Syntax

Linux OS:

-simd
-no-simd
Windows OS:

/Qsimd
/Qsimd-

Arguments

None

Default

-simd
or /Qsimd

SIMD directives are enabled.

Description

This option enables or disables compiler interpretation of SIMD directives.

To disable interpretation of SIMD directives, specify -no-simd (Linux*) or /Qsimd- (Windows*). Note that
the compiler may still vectorize loops based on its own heuristics (leading to generation of SIMD instructions)
even when -no-simd (or /Qsimd-) is specified.

 1 Intel® Fortran Compiler Classic and Intel® Fortran Compiler Developer Guide and Reference

128

To disable all compiler vectorization, use the "-no-vec -no-simd" (Linux*) or "/Qvec- /Qsimd-"
(Windows*) compiler options. The option -no-vec (and /Qvec-) disables all auto-vectorization, including
vectorization of array notation statements. The option -no-simd (and /Qsimd-) disables vectorization of
loops that have SIMD directives.

NOTE
If you specify option -mia32 (Linux*) or option /arch:IA32 (Windows*), SIMD directives are
disabled by default and vector instructions cannot be used. Therefore, you cannot explicitly
enable SIMD directives by specifying option [Q]simd.

IDE Equivalent

None

Alternate Options

None

See Also
vec, Qvec compiler option
SIMD Directive

unroll, Qunroll
Tells the compiler the maximum number of times to
unroll loops.

Syntax

Linux OS:

-unroll[=n]
Windows OS:

/Qunroll[:n]

Arguments

n Is the maximum number of times a loop can be unrolled. To disable loop enrolling, specify 0.

Default

-unroll
or /Qunroll

The compiler uses default heuristics when unrolling loops.

Description

This option tells the compiler the maximum number of times to unroll loops.

If you do not specify n, the optimizer determines how many times loops can be unrolled.

IDE Equivalent

Windows

Visual Studio: Optimization > Loop Unroll Count

Intel® Fortran Compiler Classic and Intel® Fortran Compiler Developer Guide and Reference 1

129

Alternate Options

Linux: -funroll-loops
Windows: /unroll (this is a deprecated option)

unroll-aggressive, Qunroll-aggressive
Determines whether the compiler uses more
aggressive unrolling for certain loops. This feature is
only available for ifort.

Syntax

Linux OS:

-unroll-aggressive
-no-unroll-aggressive
Windows OS:

/Qunroll-aggressive
/Qunroll-aggressive-

Arguments

None

Default

-no-unroll-aggressive
or /Qunroll-aggressive-

The compiler uses default heuristics when unrolling loops.

Description

This option determines whether the compiler uses more aggressive unrolling for certain loops. The positive
form of the option may improve performance.

This option enables aggressive, complete unrolling for loops with small constant trip counts.

IDE Equivalent

None

Alternate Options

None

vec, Qvec
Enables or disables loop vectorization.

Syntax

Linux OS:

-vec
-no-vec
Windows OS:

/Qvec
/Qvec-

 1 Intel® Fortran Compiler Classic and Intel® Fortran Compiler Developer Guide and Reference

130

Arguments

None

Default

-vec
or /Qvec

Loop vectorization is enabled if option O2 or higher is in effect.

Description

This option enables or disables loop vectorization.

To disable loop vectorization, specify -no-vec (Linux*) or /Qvec- (Windows*).

On ifort:

• To disable interpretation of SIMD directives, specify -no-simd (Linux*) or /Qsimd- (Windows*).
• To disable all compiler vectorization, use the "-no-vec -no-simd" (Linux*) or "/Qvec- /Qsimd-"

(Windows*) compiler options. The option -no-vec (and /Qvec-) disables all auto-vectorization, including
vectorization of array notation statements. The option -no-simd (and /Qsimd-) disables vectorization of
loops that have SIMD directives.

NOTE
Using this option enables vectorization at default optimization levels for both Intel®
microprocessors and non-Intel microprocessors. Vectorization may call library routines that
can result in additional performance gain on Intel microprocessors than on non-Intel
microprocessors.

On ifort, the vectorization can also be affected by certain options, such as /arch (Windows), -m
(Linux), or [Q]x.

NOTE
This option only applies to host compilation. When offloading is enabled, it does not impact
device-specific compilation. Offloading can only be enabled when using ifx.

IDE Equivalent

None

Alternate Options

None

See Also
simd, Qsimd compiler option
ax, Qax compiler option
x, Qx compiler option
vec-guard-write, Qvec-guard-write compiler option
vec-threshold, Qvec-threshold compiler option

vec-guard-write, Qvec-guard-write
Tells the compiler to perform a conditional check in a
vectorized loop. This feature is only available for ifort.

Intel® Fortran Compiler Classic and Intel® Fortran Compiler Developer Guide and Reference 1

131

Syntax

Linux OS:

-vec-guard-write
-no-vec-guard-write
Windows OS:

/Qvec-guard-write
/Qvec-guard-write-

Arguments

None

Default

-vec-guard-write
or /Qvec-guard-write

The compiler performs a conditional check in a vectorized loop.

Description

This option tells the compiler to perform a conditional check in a vectorized loop. This checking avoids
unnecessary stores and may improve performance.

IDE Equivalent

None

Alternate Options

None

vec-threshold, Qvec-threshold
Sets a threshold for the vectorization of loops.

Syntax

Linux OS:

-vec-threshold[n]
Windows OS:

/Qvec-threshold[[:]n]

Arguments

n Is an integer whose value is the threshold for the vectorization of
loops. Possible values are 0 through 100.

If n is 0, loops get vectorized always, regardless of computation work
volume.

If n is 100, loops get vectorized when performance gains are predicted
based on the compiler analysis data. Loops get vectorized only if
profitable vector-level parallel execution is almost certain.

 1 Intel® Fortran Compiler Classic and Intel® Fortran Compiler Developer Guide and Reference

132

The intermediate 1 to 99 values represent the percentage probability
for profitable speed-up. For example, n=50 directs the compiler to
vectorize only if there is a 50% probability of the code speeding up if
executed in vector form.

Default

-vec-threshold100
or /Qvec-threshold100

Loops get vectorized only if profitable vector-level parallel execution is
almost certain. This is also the default if you do not specify n.

Description

This option sets a threshold for the vectorization of loops based on the probability of profitable execution of
the vectorized loop in parallel.

This option is useful for loops whose computation work volume cannot be determined at compile-time. The
threshold is usually relevant when the loop trip count is unknown at compile-time.

The compiler applies a heuristic that tries to balance the overhead of creating multiple threads versus the
amount of work available to be shared amongst the threads.

NOTE
This option only applies to host compilation. When offloading is enabled, it does not impact
device-specific compilation. Offloading can only be enabled when using ifx.

IDE Equivalent

Windows

Visual Studio: Optimization > Threshold For Vectorization

Alternate Options

None

vecabi, Qvecabi (ifort only)
Determines which vector function application binary
interface (ABI) the compiler uses to create or call
vector functions. This description is only for ifort.

Syntax

Linux OS:

-vecabi=keyword
Windows OS:

/Qvecabi:keyword

Arguments

keyword Specifies which vector function ABI to use. Possible values are:

compat Tells the compiler to use the compatibility vector
function ABI. This ABI includes Intel®-specific features.

Intel® Fortran Compiler Classic and Intel® Fortran Compiler Developer Guide and Reference 1

133

cmdtarget Tells the compiler to generate an extended set of vector
functions. The option is very similar to setting compat.
However, for compat, only one vector function is
created, while for cmdtarget, several vector functions
are created for each vector specification. Vector
variants are created for targets specified by compiler
options [Q]x and/or [Q]ax. No change is made to the
source code.

gcc Tells the compiler to use the gcc vector function ABI.
Use this setting only in cases when you want to link
with modules compiled by gcc. This setting is not
available on Windows* systems.

legacy (ifort only) Tells the compiler to use the legacy vector function ABI.
Use this setting if you need to keep the generated
vector function binary backward compatible with the
vectorized binary generated by older versions of the
Intel® compilers (V13.1 or older).

Default

compat The compiler uses the compatibility vector function ABI.

Description

This option determines which vector function application binary interface (ABI) the compiler uses to create or
call vector functions.

NOTE
To avoid possible link-time and runtime errors, use identical [Q]vecabi settings when
compiling all files in an application that define or use vector functions, including libraries. If
setting cmdtarget is specified, options [Q]x and/or [Q]ax must have identical values.

Be careful using setting cmdtarget with libraries or program modules/routines with vector function
definitions that cannot be recompiled. In such cases, setting cmdtarget may cause link errors.

On Linux* systems, since the default is compat, you must specify legacy if you need to keep the generated
vector function binary backward compatible with the vectorized binary generated by the previous version of
Intel® compilers.

When cmdtarget is specified, the additional vector function versions are created by copying each vector
specification and changing target processor in the copy. The number of vector functions is determined by the
settings specified in options [Q]x and/or [Q]ax.

For example, suppose we have the following function declaration:

interface
integer function foo(a)
!dir$ attributes vector:(processor(core_2_duo_sse4_1)) :: foo
 integer a
end function
end interface

and the following options are specified: -axAVX,CORE-AVX2.

 1 Intel® Fortran Compiler Classic and Intel® Fortran Compiler Developer Guide and Reference

134

The following table shows the different results for the above declaration and option specifications when
setting compat or setting Intel® SSE2 cmdtarget is used:

compat cmdtarget

One vector version is created for Intel® SSE4.1 (by
vector function specification).

Four vector versions are created for the following
targets:

• Intel® SSE2 (default because no -x option is
used)

• Intel® SSE4.1 (by vector function specification)
• Intel® AVX (by the first -ax option value)
• Intel® AVX2 (by the second -ax option value)

For more information about the Intel®-compatible vector functions ABI, see the downloadable PDF titled
Vector Function Application Binary Interface.

For more information about the GCC vector functions ABI, see the item Libmvec - vector math library
document in the GLIBC wiki at sourceware.org.

Product and Performance Information

Performance varies by use, configuration and other factors. Learn more at www.Intel.com/
PerformanceIndex.

Notice revision #20201201

IDE Equivalent

None

Alternate Options

None

vecabi, Qvecabi (ifx only)
Determines which vector function application binary
interface (ABI) the compiler uses to create or call
vector functions. This description is only for ifx.

Syntax

Linux OS:

-vecabi=keyword

Windows OS:

/Qvecabi:keyword

Arguments

keyword Specifies which vector function ABI to use. Possible values are:

cmdtarget Tells the compiler to generate an extended set of vector
functions. Vector variants are created for all targets
specified by compiler options [Q]x and/or [Q]ax. No
change needs to be made to the source code.

gcc Tells the compiler to use the gcc vector function ABI.

Intel® Fortran Compiler Classic and Intel® Fortran Compiler Developer Guide and Reference 1

135

https://intel.com/content/www/us/en/develop/download/vector-simd-function-abi.html
https://sourceware.org/
https://www.intel.com/PerformanceIndex
https://www.intel.com/PerformanceIndex

Default

gcc The compiler uses the gcc-compatible vector function ABI.

Description

This option determines which vector function application binary interface (ABI) the compiler uses to create or
call vector functions.

All files in an application that define or use vector functions must make identical use of -vecabi=cmdtarget
(and /Qvecabi:cmdtarget); otherwise, link-time or runtime errors may occur. For all files where
-vecabi=cmdtarget (or /Qvecabi:cmdtarget) is specified, options [Q]x and/or [Q]ax must have
identical values.

Similarly, link errors may occur if you attempt to link code compiled with -vecabi=cmdtarget
(or /Qvecabi:cmdtarget) with libraries or other program modules/routines that contain vector function
definitions that have not or cannot be recompiled.

When cmdtarget is specified, the additional vector function versions are created by copying each vector
specification and changing target processor in the copy. The number of vector functions is determined by the
settings specified in options [Q]x and/or [Q]ax.

For example, suppose we have the following function declaration:

function foo(a)
 !$omp declare simd processor(core_2_duo_sse4_1)
 implicit none
 integer, intent(in) :: a
 integer :: foo
end function foo

and the following options are specified: -axAVX, CORE-AVX2.

The following table shows the different results for the above declaration and option specifications when
setting gcc or setting cmdtarget is used:

gcc cmdtarget

A vector version is created for each of the following
targets:

• Intel® SSE2
• Intel® AVX
• Intel® AVX2
• Intel® AVX512

These variants are always created independently of
target options.

A vector version is created for each of the following
targets:

• Intel® SSE2 (default because no -x option is
used)

• Intel® SSE4.1 (by vector function specification)
• Intel® AVX2 (by the ax option value)

NOTE
To avoid possible link-time and runtime errors, use identical [Q]vecabi settings when
compiling all files in an application that define or use vector functions, including libraries. If
setting cmdtarget is specified, options [Q]x and/or [Q]ax must have identical values.

For more information about the Intel®-compatible vector functions ABI, see the downloadable PDF titled
Vector Function Application Binary Interface.

For more information about the GCC vector functions ABI, see the item Libmvec - vector math library
document in the GLIBC wiki at sourceware.org.

 1 Intel® Fortran Compiler Classic and Intel® Fortran Compiler Developer Guide and Reference

136

https://intel.com/content/www/us/en/develop/download/vector-simd-function-abi.html
https://sourceware.org/

Product and Performance Information

Performance varies by use, configuration and other factors. Learn more at www.Intel.com/
PerformanceIndex.

Notice revision #20201201

IDE Equivalent

None

Alternate Options

None

Code Generation Options
This section contains descriptions for compiler options that pertain to code generation. They are listed in
alphabetical order.

arch
Tells the compiler which features it may target,
including which instruction sets it may generate.

Syntax

Linux OS:

-arch code
Windows OS:

/arch:code

Arguments

code Indicates to the compiler a feature set that it may target, including which instruction sets it
may generate. Possible values are:

ALDERLAKE
AMBERLAKE
BROADWELL
CANNONLAKE
CASCADELAKE
COFFEELAKE
COOPERLAKE
GOLDMONT
GOLDMONT-PLUS
HASWELL
ICELAKE-CLIENT (or ICELAKE)
ICELAKE-SERVER
IVYBRIDGE
KABYLAKE
ROCKETLAKE
SANDYBRIDGE
SAPPHIRERAPIDS
SILVERMONT

May generate instructions for processors that support the
specified Intel® processor or microarchitecture code name.

Keyword ICELAKE is deprecated and may be removed in a
future release.

Intel® Fortran Compiler Classic and Intel® Fortran Compiler Developer Guide and Reference 1

137

https://www.intel.com/PerformanceIndex
https://www.intel.com/PerformanceIndex

SKYLAKE
SKYLAKE-AVX512
TIGERLAKE
TREMONT
WHISKEYLAKE
CORE-AVX2 May generate Intel® Advanced Vector Extensions 2 (Intel®

AVX2), Intel® AVX, SSE4.2, SSE4.1, SSE3, SSE2, SSE, and
SSSE3 instructions.

CORE-AVX-I May generate the RDRND instruction, Intel® Advanced
Vector Extensions (Intel® AVX), Intel® SSE4.2, SSE4.1,
SSE3, SSE2, SSE, and SSSE3 instructions.

AVX2 May generate Intel® Advanced Vector Extensions 2 (Intel®
AVX2), Intel® AVX, Intel® SSE4.2, SSE4.1, SSE3, SSE2,
SSE, and SSSE3 instructions.

AVX May generate Intel® Advanced Vector Extensions (Intel®
AVX), Intel® SSE4.2, SSE4.1, SSE3, SSE2, SSE, and SSSE3
instructions.

SSE4.2 May generate Intel® SSE4.2, SSE4.1, SSE3, SSE2, SSE,
and SSSE3 instructions.

SSE4.1 May generate Intel® SSE4.1, SSE3, SSE2, SSE, and SSSE3
instructions.

SSSE3 May generate SSSE3 instructions and Intel® SSE3, SSE2,
and SSE instructions.

SSE3 May generate Intel® SSE3, SSE2, and SSE instructions.

SSE2 (ifort only) May generate Intel® SSE2 and SSE instructions.

SSE (ifort only) This setting has been deprecated. It is the same as
specifying ia32.

IA32 (ifort only) Generates x86/x87 generic code that is compatible with
IA-32 architecture. Disables any default extended
instruction settings, and any previously set extended
instruction settings. It also disables all feature-specific
optimizations and instructions.

This value is only available on IA-32 architecture. IA-32
support is deprecated; it will be removed in a future
release.

Default

varies If option arch is not specified, the default target architecture supports
Intel® SSE2 instructions.

Description

This option tells the compiler which features it may target, including which instruction sets it may generate.

 1 Intel® Fortran Compiler Classic and Intel® Fortran Compiler Developer Guide and Reference

138

Code generated with these options should execute on any compatible, non-Intel processor with support for
the corresponding instruction set.

NOTE
This option only applies to host compilation. When offloading is enabled, it does not impact
device-specific compilation. Offloading can only be enabled when using ifx.

NOTE
ifx only generates 64-bit objects.

IDE Equivalent

Visual Studio

Visual Studio: Code Generation > Enable Enhanced Instruction Set

Alternate Options

None

See Also
x, Qx compiler option
xHost, QxHost compiler option
ax, Qax compiler option
arch compiler option
march compiler option
m compiler option

ax, Qax
Tells the compiler to generate multiple, feature-
specific auto-dispatch code paths for Intel® processors
if there is a performance benefit.

Syntax

Linux OS:

-axcode
Windows OS:

/Qaxcode

Arguments

code Indicates to the compiler a feature set that it may target, including which instruction sets it
may generate. The following descriptions refer to Intel® Streaming SIMD Extensions (Intel®
SSE) and Supplemental Streaming SIMD Extensions (SSSE). Possible values are:

ALDERLAKE
AMBERLAKE
BROADWELL
CANNONLAKE
CASCADELAKE

May generate instructions for processors that support the
specified Intel® processor or microarchitecture code name.

Keyword ICELAKE is deprecated and may be removed in a
future release.

Intel® Fortran Compiler Classic and Intel® Fortran Compiler Developer Guide and Reference 1

139

COFFEELAKE
COOPERLAKE
GOLDMONT
GOLDMONT-PLUS
HASWELL
ICELAKE-CLIENT (or ICELAKE)
ICELAKE-SERVER
IVYBRIDGE
KABYLAKE
ROCKETLAKE
SANDYBRIDGE
SAPPHIRERAPIDS
SILVERMONT
SKYLAKE
SKYLAKE-AVX512
TIGERLAKE
TREMONT
WHISKEYLAKE
COMMON-AVX512 May generate Intel® Advanced Vector Extensions 512

(Intel® AVX-512) Foundation instructions, Intel® AVX-512
Conflict Detection Instructions (CDI), as well as the
instructions enabled with CORE-AVX2.

CORE-AVX512 May generate Intel® Advanced Vector Extensions 512
(Intel® AVX-512) Foundation instructions, Intel® AVX-512
Conflict Detection Instructions (CDI), Intel® AVX-512
Doubleword and Quadword Instructions (DQI), Intel®
AVX-512 Byte and Word Instructions (BWI) and Intel®
AVX-512 Vector Length extensions, as well as the
instructions enabled with CORE-AVX2.

CORE-AVX2 May generate Intel® Advanced Vector Extensions 2 (Intel®
AVX2), Intel® AVX, SSE4.2, SSE4.1, SSE3, SSE2, SSE, and
SSSE3 instructions for Intel® processors.

CORE-AVX-I May generate the RDRND instruction, Intel® Advanced
Vector Extensions (Intel® AVX), Intel® SSE4.2, SSE4.1,
SSE3, SSE2, SSE, and SSSE3 instructions for Intel®
processors.

AVX May generate Intel® Advanced Vector Extensions (Intel®
AVX), Intel® SSE4.2, SSE4.1, SSE3, SSE2, SSE, and SSSE3
instructions for Intel® processors.

SSE4.2 May generate Intel® SSE4.2, SSE4.1, SSE3, SSE2, SSE,
and SSSE3 instructions for Intel processors.

SSE4.1 May generate Intel® SSE4.1, SSE3, SSE2, SSE, and SSSE3
instructions for Intel® processors.

SSSE3 May generate SSSE3 instructions and Intel® SSE3, SSE2,
and SSE instructions for Intel® processors.

 1 Intel® Fortran Compiler Classic and Intel® Fortran Compiler Developer Guide and Reference

140

SSE3 May generate Intel® SSE3, SSE2, and SSE instructions for
Intel® processors.

SSE2 (ifort only) May generate Intel® SSE2 and SSE instructions for Intel®
processors.

You can specify more than one code value. When specifying more than one code value, each value must be
separated with a comma. See the Examples section below.

Default

OFF No auto-dispatch code is generated. Feature-specific code is generated and is controlled by the
setting of the following compiler options:

• Linux*: -march and -x
• Windows*: /arch and /Qx

Description

This option tells the compiler to generate multiple, feature-specific auto-dispatch code paths for Intel®
processors if there is a performance benefit. It also generates a baseline code path. The Intel feature-specific
auto-dispatch path is usually more optimized than the baseline path. Other options, such as O3, control how
much optimization is performed on the baseline path.

The baseline code path is determined by the architecture specified by options -march or -x (Linux*) or
options /arch or /Qx (Windows*). While there are defaults for the [Q]x option that depend on the operating
system being used, you can specify an architecture and optimization level for the baseline code that is higher
or lower than the default. The specified architecture becomes the effective minimum architecture for the
baseline code path.

If you specify both the [Q]ax and [Q]x options, the baseline code will only execute on Intel® processors
compatible with the setting specified for the [Q]x.

If you specify both the -ax and -march options (Linux) or the /Qax and /arch options (Windows), the
baseline code will execute on non-Intel® processors compatible with the setting specified for the -march
or /arch option.

A Non-Intel® baseline and an Intel® baseline have the same set of optimizations enabled, and the default for
both is SSE4.2 for x86-based architectures.

The [Q]ax option tells the compiler to find opportunities to generate separate versions of functions that take
advantage of features of the specified instruction features.

If the compiler finds such an opportunity, it first checks whether generating a feature-specific version of a
function is likely to result in a performance gain. If this is the case, the compiler generates both a feature-
specific version of a function and a baseline version of the function. At runtime, one of the versions is chosen
to execute, depending on the Intel® processor in use. In this way, the program can benefit from performance
gains on more advanced Intel processors, while still working properly on older processors and non-Intel
processors. A non-Intel processor always executes the baseline code path.

You can use more than one of the feature values by combining them. For example, you can specify
-axSSE4.1,SSSE3 (Linux) or /QaxSSE4.1,SSSE3 (Windows).

NOTE
This option only applies to host compilation. When offloading is enabled, it does not impact
device-specific compilation. Offloading can only be enabled when using ifx.

Intel® Fortran Compiler Classic and Intel® Fortran Compiler Developer Guide and Reference 1

141

NOTE
When using the ifx compiler, if you experience any program failure when using option -ax
during this release, please remove the option to see if that solves the problem. If that action
solved the problem, please report a bug.

NOTE
ifx only generates 64-bit objects.

IDE Equivalent

Visual Studio

Visual Studio: Code Generation > Add Processor-Optimized Code Path

Alternate Options

None

Examples
The following shows an example of how to specify this option:

ifx -axSKYLAKE file.cpp ! Linux* systems
ifx /QaxSKYLAKE file.cpp ! Windows* systems

The following shows an example of how to specify more than one code value:

ifx -axSKYLAKE,BROADWELL file.cpp ! Linux* systems
ifx /QaxBROADWELL,SKYLAKE file.cpp ! Windows* systems

Note that the comma-separated list must have no spaces between the names.

See Also
x, Qx compiler option
xHost, QxHost compiler option
march compiler option
arch compiler option
m compiler option

fasynchronous-unwind-tables
Determines whether unwind information is precise at
an instruction boundary or at a call boundary.

Syntax

Linux OS:

-fasynchronous-unwind-tables
-fno-asynchronous-unwind-tables

Windows OS:

None

Arguments

None

 1 Intel® Fortran Compiler Classic and Intel® Fortran Compiler Developer Guide and Reference

142

Default

Intel® 64 architecture:
-fasynchronous-unwind-tables

The unwind table generated is precise at an instruction boundary,
enabling accurate unwinding at any instruction.

IA-32 architecture (ifort only):
-fno-asynchronous-unwind-tables

The unwind table generated is precise at call boundaries only.

Description

This option determines whether unwind information is precise at an instruction boundary or at a call
boundary. The compiler generates an unwind table in DWARF2 or DWARF3 format, depending on which
format is supported on your system.

If -fno-asynchronous-unwind-tables is specified, the unwind table is precise at call boundaries only. In
this case, the compiler will avoid creating unwind tables for routines such as the following:

• A C++ routine that does not declare objects with destructors and does not contain calls to routines that
might throw an exception.

• A C/C++ or Fortran routine compiled without -fexceptions and without -traceback.
• A C/C++ or Fortran routine compiled with -fexceptions that does not contain calls to routines that

might throw an exception.

IDE Equivalent

None

Alternate Options

None

See Also
fexceptions compiler option

fcf-protection, Qcf-protection
Enables Intel® Control-Flow Enforcement Technology
(Intel® CET) protection, which defends your program
from certain attacks that exploit vulnerabilities. This
option offers preliminary support for Intel® CET.

Syntax

Linux OS:

-fcf-protection[=keyword]
Windows OS:

/Qcf-protection[:keyword]

Arguments

keyword Specifies the level of protection the compiler should perform. Possible values are:

return Enables shadow stack protection. This keyword
is only available for ifx, and only on Linux.

branch Enables endbranch (EB) generation. This
keyword is only available for ifx, and only on
Linux.

Intel® Fortran Compiler Classic and Intel® Fortran Compiler Developer Guide and Reference 1

143

shadow_stack Enables shadow stack protection. On ifx, this
keyword is only available for Windows.

branch_tracking Enables endbranch (EB) generation. On ifx, this
keyword is only available for Windows.

full Enables shadow stack protection and endbranch
(EB) generation.

This is the same as specifying this compiler
option with no keyword.

none Disables Intel® CET protection.

Default

-fcf-protection=none
or /Qcf-protection:none

No Control-flow Enforcement protection is performed.

Description

This option enables Intel® CET protection, which defends your program from certain attacks that exploit
vulnerabilities.

Intel® CET protections are enforced on processors that support Intel® CET. They are ignored on processors
that do not support Intel® CET, so they are safe to use in programs that might run on a variety of processors.

Shadow stack protection helps to protect your program from return-oriented programming (ROP). Return-
oriented programming (ROP) is a technique to exploit computer security defenses such as non-executable
memory and code signing by gaining control of the call stack to modify program control flow and then
execute certain machine instruction sequences.

Endbranch (EB) generation helps to protect your program from call/jump-oriented programming (COP/JOP).
Jump-oriented programming (JOP) is a variant of ROP that uses indirect jumps and calls to emulate return
instructions. Call-oriented programming (COP) is a variant of ROP that employs indirect calls.

NOTE
This option only applies to host compilation. When offloading is enabled, it does not impact
device-specific compilation. Offloading can only be enabled when using ifx.

IDE Equivalent

None

Alternate Options

Linux: -qcf-protection
Windows: None

fexceptions
Enables exception handling table generation.

Syntax

Linux OS:

-fexceptions

 1 Intel® Fortran Compiler Classic and Intel® Fortran Compiler Developer Guide and Reference

144

-fno-exceptions

Windows OS:

None

Arguments

None

Default

-fno-exceptions Exception handling table generation is disabled.

Description

This option enables C++ exception handling table generation, preventing Fortran routines in mixed-language
applications from interfering with exception handling between C++ routines.

The -fno-exceptions option disables C++ exception handling table generation, resulting in smaller code.
When this option is used, any use of C++ exception handling constructs (such as try blocks and throw
statements) when a Fortran routine is in the call chain will produce an error.

IDE Equivalent

None

Alternate Options

None

fomit-frame-pointer
Determines whether EBP is used as a general-purpose
register in optimizations.

Syntax

Linux OS:

-fomit-frame-pointer
-fno-omit-frame-pointer

Windows OS:

None

Arguments

None

Default

-fomit-frame-pointer EBP is used as a general-purpose register in optimizations.

However, the default can change depending on the following:

If option -O0 or -g is specified, the default is -fno-omit-frame-pointer.

Description

These options determine whether EBP is used as a general-purpose register in optimizations. Option
-fomit-frame-pointer allows this use. Option -fno-omit-frame-pointer disallows it.

Intel® Fortran Compiler Classic and Intel® Fortran Compiler Developer Guide and Reference 1

145

Some debuggers expect EBP to be used as a stack frame pointer, and cannot produce a stack backtrace
unless this is so. The -fno-omit-frame-pointer option directs the compiler to generate code that
maintains and uses EBP as a stack frame pointer for all functions so that a debugger can still produce a stack
backtrace without doing the following:

• For -fno-omit-frame-pointer: turning off optimizations with -O0
The -fno-omit-frame-pointer option is set when you specify option -O0 or the -g option. The
-fomit-frame-pointer option is set when you specify option -O1, -O2, or -O3.

On ifort, using the -fno-omit-frame-pointer option reduces the number of available general-purpose
registers by 1, and can result in slightly less efficient code.

IDE Equivalent

Windows

Visual Studio: Optimization > Omit Frame Pointers

Alternate Options

Linux: -fp (this is a deprecated option)

Windows: None

See Also
momit-leaf-frame-pointer compiler option

guard
Enables the control flow protection mechanism.

Syntax

Linux OS:

None
Windows OS:

/guard:keyword

Arguments

keyword Specifies the control flow protection mechanism. Possible values are:

cf[-] Tells the compiler to analyze control flow of valid targets for indirect calls and to insert
code to verify the targets at runtime.

To explicitly disable this option, specify /guard:cf-.

Default

OFF The control flow protection mechanism is disabled.

Description

This option enables the control flow protection mechanism. It tells the compiler to analyze control flow of
valid targets for indirect calls and inserts a call to a checking routine before each indirect call to verify the
target of the given indirect call.

The /guard:cf option must be passed to both the compiler and linker.

 1 Intel® Fortran Compiler Classic and Intel® Fortran Compiler Developer Guide and Reference

146

Code compiled using /guard:cf can be linked to libraries and object files that are not compiled using the
option.

This option has been added for Microsoft compatibility. It uses the Microsoft implementation.

NOTE
This option only applies to host compilation. When offloading is enabled, it does not impact
device-specific compilation. Offloading can only be enabled when using ifx.

IDE Equivalent

None

Alternate Options

None

hotpatch
Tells the compiler to prepare a routine for
hotpatching. This feature is only available for ifort.

Syntax

Linux OS:

-hotpatch[=n]
Windows OS:

/hotpatch[:n]

Arguments

n An integer specifying the number of bytes the compiler should add
before the function entry point.

Default

OFF The compiler does not prepare routines for hotpatching.

Description

This option tells the compiler to prepare a routine for hotpatching. The compiler inserts nop padding around
function entry points so that the resulting image is hot patchable.

Specifically, the compiler adds nop bytes after each function entry point and enough nop bytes before the
function entry point to fit a direct jump instruction on the target architecture.

If n is specified, it overrides the default number of bytes that the compiler adds before the function entry
point.

IDE Equivalent

None

Alternate Options

None

Intel® Fortran Compiler Classic and Intel® Fortran Compiler Developer Guide and Reference 1

147

m, Qm
Tells the compiler which instruction set extensions
based on CPUID bits it may generate.

Syntax

Linux OS:

-mcode
Windows OS:

/Qmcode (ifx)
None (ifort)

Arguments

code Indicates the instruction set extensions based on CPUID bits that the compiler may
generate.

ifx: Many of the Clang settings for option -m are supported. For more information on Clang
settings for -m, see the Clang documentation.

ifort: Many of the gcc settings for option -m are supported. For more information on gcc
settings for -m, see the gcc documentation.

Default

varies If option arch is not specified, the default target architecture supports
Intel® SSE2 instructions.

Description

This option tells the compiler which instruction set extensions based on CPUID bits it may generate.

Code generated with these options should execute on any compatible, non-Intel processor with support for
the corresponding instruction set.

NOTE
Options -m and /Qm enable specific sets of instructions based on CPUID bits. If you want to
enable all instructions supported by a named microarchitecture, you should use option
-march (Linux) or /arch (Windows).

NOTE
This option only applies to host compilation. When offloading is enabled, it does not impact
device-specific compilation. Offloading can only be enabled when using ifx.

IDE Equivalent

None

Alternate Options

None

 1 Intel® Fortran Compiler Classic and Intel® Fortran Compiler Developer Guide and Reference

148

https://clang.llvm.org/docs/ClangCommandLineReference.html#x86
https://gcc.gnu.org/onlinedocs/gcc/x86-Options.html

See Also
x, Qx compiler option
xHost, QxHost compiler option
ax, Qax compiler option
arch compiler option
march compiler option

m32, m64, Qm32, Qm64
Tells the compiler to generate code for a specific
architecture. Option m32 (and Qm32) is deprecated
and will be removed in a future release. 32-bit options
are only available for ifort.

Syntax

Linux OS:

-m32 (ifort only)
-m64

Windows OS:

/Qm32 (ifort only)
/Qm64

Arguments

None

Default

ifort: OFF The compiler's behavior depends on the host system.

On ifx:
-m64
or /Qm64

The compiler generates code for Intel® 64 architecture.

Description

These options tell the compiler to generate code for a specific architecture.

Option Description

-m32 or /Qm32 Tells the compiler to generate code for IA-32
architecture. IA-32 support is deprecated and will
be removed in a future release. 32-bit options are
only available for ifort.

-m64 or /Qm64 Tells the compiler to generate code for Intel® 64
architecture.

On Linux* systems, these options are provided for compatibility with gcc.

NOTE
This option only applies to host compilation. When offloading is enabled, it does not impact
device-specific compilation. Offloading can only be enabled when using ifx.

Intel® Fortran Compiler Classic and Intel® Fortran Compiler Developer Guide and Reference 1

149

IDE Equivalent

None

Alternate Options

None

m80387
Specifies whether the compiler can use x87
instructions.

Syntax

Linux OS:

-m80387
-mno-80387
Windows OS:

None

Arguments

None

Default

-m80387 The compiler may use x87 instructions.

Description

This option specifies whether the compiler can use x87 instructions.

If you specify option -mno-80387, it prevents the compiler from using x87 instructions. If the compiler is
forced to generate x87 instructions, it issues an error message.

NOTE
This option only applies to host compilation. When offloading is enabled, it does not impact
device-specific compilation. Offloading can only be enabled when using ifx.

IDE Equivalent

None

Alternate Options

-m[no-]x87

march
Tells the compiler to generate code using the CPU
feature set of a specific processor as the baseline.

Syntax

Linux OS:

-march=processor

 1 Intel® Fortran Compiler Classic and Intel® Fortran Compiler Developer Guide and Reference

150

Windows OS:

None

Arguments

processor Tells the compiler which CPU features it can use. Possible values are:

nocona, core2, penryn,
bonnell, atom,
silvermont, slm,
goldmont, goldmont-plus,
tremont, gracemont,
nehalem, corei7,
westmere, sandybridge,
corei7-avx, ivybridge,
core-avx-i, haswell,
core-avx2, broadwell,
common-avx512, skylake,
skylake-avx512, skx,
cascadelake, cooperlake,
cannonlake, icelake-
client, rocketlake,
icelake-server,
tigerlake,
sapphirerapids,
alderlake, raptorlake,
meteorlake, sierraforest,
grandridge,
graniterapids,
emeraldrapids

Generates code using the CPU feature set of the specified
Intel® processor or microarchitecture code name.

Keywords amberlake, coffeelake, icelake,
kabylake, and whiskeylake are only available for ifort.

Note that keyword icelake is deprecated and may be
removed in a future release.

x86-64 Generates code for a generic CPU with 64-bit extensions.

x86-64-v2 Generates code for Intel® SSE4.3, SSE4.2, SSE4.1, SSE3,
SSE2, SSE, and SSSE3.

x86-64-v3 Generates code for Intel® Advanced Vector Extensions 2
(Intel® AVX2), Intel® AVX, Intel® SSE4.3, SSE4.2, SSE4.1,
SSE3, SSE2, SSE, and SSSE3.

x86-64-v4 Generates code for Intel® Advanced Vector Extensions 512
(Intel® AVX-512) Foundation instructions, Intel® AVX-512
Conflict Detection Instructions (CDI), Intel® AVX-512
Doubleword and Quadword Instructions (DQI), Intel®
AVX-512 Byte and Word Instructions (BWI) and Intel®
AVX-512 Vector Length Extensions (VLE).

Default

OFF If option -march is not specified, the compiler may generate Intel® SSE2 and SSE
instructions.

Intel® Fortran Compiler Classic and Intel® Fortran Compiler Developer Guide and Reference 1

151

Description

This option tells the compiler to generate code using the CPU feature set of a specific processor as the
baseline.

NOTE
This option only applies to host compilation. When offloading is enabled, it does not impact
device-specific compilation. Offloading can only be enabled when using ifx.

NOTE
ifx does not support compilation for 32-bit architectures; only processor values for 64-bit
instruction sets can be specified for ifx.

Product and Performance Information

Performance varies by use, configuration and other factors. Learn more at www.Intel.com/
PerformanceIndex.

Notice revision #20201201

IDE Equivalent

None

Alternate Options

None

See Also
xHost, QxHost compiler option
x, Qx compiler option
ax, Qax compiler option
arch compiler option
minstruction, Qinstruction compiler option
m compiler option

masm
Tells the compiler to generate the assembler output
file using a selected dialect.

Syntax

Linux OS:

-masm=dialect
Windows OS:

None

Arguments

dialect Is the dialect to use for the assembler output file. Possible values are:

 1 Intel® Fortran Compiler Classic and Intel® Fortran Compiler Developer Guide and Reference

152

https://www.intel.com/PerformanceIndex
https://www.intel.com/PerformanceIndex

att Tells the compiler to generate the assembler
output file using AT&T* syntax.

intel Tells the compiler to generate the assembler
output file using Intel syntax.

Default

-masm=att The compiler generates the assembler output file using AT&T* syntax.

Description

This option tells the compiler to generate the assembler output file using a selected dialect.

NOTE
This option only applies to host compilation. When offloading is enabled, it does not impact
device-specific compilation. Offloading can only be enabled when using ifx.

IDE Equivalent

None

Alternate Options

None

mauto-arch, Qauto-arch
Tells the compiler to generate multiple, feature-
specific auto-dispatch code paths for x86 architecture
processors if there is a performance benefit.

Syntax

Linux OS:

-mauto-arch=value
Windows OS:

/Qauto-arch:value

Arguments

value Is any setting you can specify for option [Q]ax.

Default

OFF No additional execution path is generated.

Description

This option tells the compiler to generate multiple, feature-specific auto-dispatch code paths for x86
architecture processors if there is a performance benefit. It also generates a baseline code path.

This option cannot be used together with any options that may require Intel-specific optimizations (such as
[Q]x or [Q]ax).

Intel® Fortran Compiler Classic and Intel® Fortran Compiler Developer Guide and Reference 1

153

NOTE
This option only applies to host compilation. When offloading is enabled, it does not impact
device-specific compilation. Offloading can only be enabled when using ifx.

IDE Equivalent

None

Alternate Options

None

See Also
ax, Qax compiler option

mbranches-within-32B-boundaries, Qbranches-within-32B-boundaries
Tells the compiler to align branches and fused
branches on 32-byte boundaries for better
performance.

Syntax

Linux OS:

-mbranches-within-32B-boundaries
-mno-branches-within-32B-boundaries
Windows OS:

/Qbranches-within-32B-boundaries
/Qbranches-within-32B-boundaries-

Arguments

None

Default

-mno-branches-within-32B-boundaries
or /Qbranches-within-32B-boundaries-

Branches and fused branches are not aligned on 32-
byte boundaries.

Description

This option tells the compiler to align branches and fused branches on 32-byte boundaries for better
performance.

NOTE
When you use this option, it may affect binary utilities usage experience, such as
debugability.

NOTE
This option only applies to host compilation. When offloading is enabled, it does not impact
device-specific compilation. Offloading can only be enabled when using ifx.

 1 Intel® Fortran Compiler Classic and Intel® Fortran Compiler Developer Guide and Reference

154

IDE Equivalent

None

Alternate Options

None

mconditional-branch, Qconditional-branch
Lets you identify and fix code that may be vulnerable
to speculative execution side-channel attacks, which
can leak your secure data as a result of bad
speculation of a conditional branch direction. This
feature is only available for ifort.

Syntax

Linux OS:

-mconditional-branch=keyword
Windows OS:

/Qconditional-branch:keyword

Arguments

keyword Tells the compiler the action to take. Possible values are:

keep Tells the compiler to not attempt any vulnerable code detection
or fixing. This is equivalent to not specifying the
-mconditional-branch option.

pattern-report Tells the compiler to perform a search of vulnerable code
patterns in the compilation and report all occurrences to
stderr.

pattern-fix Tells the compiler to perform a search of vulnerable code
patterns in the compilation and generate code to ensure that
the identified data accesses are not executed speculatively. It
will also report any fixed patterns to stderr.

This setting does not guarantee total mitigation, it only fixes
cases where all components of the vulnerability can be seen or
determined by the compiler. The pattern detection will be more
complete if advanced optimization options are specified or are
in effect, such as option O3 and option -ipo (or /Qipo).

all-fix Tells the compiler to fix all of the vulnerable code so that it is
either not executed speculatively, or there is no observable
side-channel created from their speculative execution. Since it
is a complete mitigation against Spectre variant 1 attacks, this
setting will have the most runtime performance cost.

In contrast to the pattern-fix setting, the compiler will not
attempt to identify the exact conditional branches that may
have led to the mis-speculated execution.

all-fix-lfence This is the same as specifying setting all-fix.

Intel® Fortran Compiler Classic and Intel® Fortran Compiler Developer Guide and Reference 1

155

all-fix-cmov Tells the compiler to treat any path where speculative
execution of a memory load creates vulnerability (if
mispredicted). The compiler automatically adds mitigation
code along any vulnerable paths found, but it uses a different
method then the one used for all-fix (or all-fix-lfence).

This method uses CMOVcc instruction execution, which
constrains speculative execution. Thus, it is used for keeping
track of the predicate value, which is updated on each
conditional branch.

To prevent Spectre v.1 attack, each memory load that is
potentially vulnerable is bitwise ORed with the predicate to
mask out the loaded value if the code is on a mispredicted
path.

This is analogous to the Clang compiler's option to do
Speculative Load Hardening.

This setting is only supported on Intel® 64 architecture-based
systems.

Default

-mconditional-branch=keep
and /Qconditional-branch:keep

The compiler does not attempt any vulnerable code
detection or fixing.

Description

This option lets you identify code that may be vulnerable to speculative execution side-channel attacks,
which can leak your secure data as a result of bad speculation of a conditional branch direction. Depending
on the setting you choose, vulnerabilities may be detected and code may be generated to attempt to mitigate
the security risk.

IDE Equivalent

Visual Studio

Visual Studio: Code Generation > Spectre Variant 1 Mitigation

Alternate Options

None

minstruction, Qinstruction
Determines whether MOVBE instructions are
generated for certain Intel® processors. This feature is
only available for ifort.

Syntax

Linux OS:

-minstruction=[no]movbe
Windows OS:

/Qinstruction:[no]movbe

 1 Intel® Fortran Compiler Classic and Intel® Fortran Compiler Developer Guide and Reference

156

Arguments

None

Default

–minstruction=nomovbe
or/Qinstruction:nomovbe

The compiler does not generate MOVBE instructions
for Intel Atom® processors.

Description

This option determines whether MOVBE instructions are generated for Intel Atom® processors. To use this
option, you must also specify [Q]xATOM_SSSE3 or [Q]xATOM_SSE4.2.

If -minstruction=movbe or /Qinstruction:movbe is specified, the following occurs:

• MOVBE instructions are generated that are specific to the Intel Atom® processor.
• Generated executables can only be run on Intel Atom® processors or processors that support

Supplemental Streaming SIMD Extensions 3 (Intel® SSSE3) or Intel® Streaming SIMD Extensions 4.2
(Intel® SSE4.2) and MOVBE.

If -minstruction=nomovbe or /Qinstruction:nomovbe is specified, the following occurs:

• The compiler optimizes code for the Intel Atom® processor, but it does not generate MOVBE instructions.
• Generated executables can be run on non-Intel Atom® processors that support Intel® SSE3 or Intel®

SSE4.2.

IDE Equivalent

None

Alternate Options

None

See Also
x, Qx compiler option

momit-leaf-frame-pointer
Determines whether the frame pointer is omitted or
kept in leaf functions.

Syntax

Linux OS:

-momit-leaf-frame-pointer
-mno-omit-leaf-frame-pointer
Windows OS:

None

Arguments

None

Intel® Fortran Compiler Classic and Intel® Fortran Compiler Developer Guide and Reference 1

157

Default

Varies If you specify option -fomit-frame-pointer (or it is set by default), the default is
-momit-leaf-frame-pointer. If you specify option -fno-omit-frame-pointer, the default is
-mno-omit-leaf-frame-pointer.

Description

This option determines whether the frame pointer is omitted or kept in leaf functions. It is related to option
-f[no-]omit-frame-pointer and the setting for that option has an effect on this option.

Consider the following option combinations:

Option Combination Result

-fomit-frame-pointer -momit-leaf-frame-pointer
or

-fomit-frame-pointer -mno-omit-leaf-frame-pointer

Both combinations are the same as
specifying -fomit-frame-pointer.
Frame pointers are omitted for all
routines.

-fno-omit-frame-pointer -momit-leaf-frame-pointer In this case, the frame pointer is
omitted for leaf routines, but other
routines will keep the frame pointer.

This is the intended effect of option
-momit-leaf-frame-pointer.

-fno-omit-frame-pointer -mno-omit-leaf-frame-pointer In this case,
-mno-omit-leaf-frame-pointer is
ignored since
-fno-omit-frame-pointer retains
frame pointers in all routines .

This combination is the same as
specifying
-fno-omit-frame-pointer.

This option is provided for compatibility with gcc.

NOTE
This option only applies to host compilation. When offloading is enabled, it does not impact
device-specific compilation. Offloading can only be enabled when using ifx.

IDE Equivalent

None

Alternate Options

None

See Also
fomit-frame-pointer compiler option

 1 Intel® Fortran Compiler Classic and Intel® Fortran Compiler Developer Guide and Reference

158

mstringop-inline-threshold, Qstringop-inline-threshold
Tells the compiler to not inline calls to buffer
manipulation functions such as memcpy and memset
when the number of bytes the functions handle are
known at compile time and greater than the specified
value. This feature is only available for ifort.

Syntax

Linux OS:

-mstringop-inline-threshold=val
Windows OS:

/Qstringop-inline-threshold:val

Arguments

val Is a positive 32-bit integer. If the size is greater than val, the compiler
will never inline it.

Default

OFF The compiler uses its own heuristics to determine the default.

Description

This option tells the compiler to not inline calls to buffer manipulation functions such as memcpy and memset
when the number of bytes the functions handle are known at compile time and greater than the specified val.

IDE Equivalent

None

Alternate Options

None

See Also
mstringop-strategy, Qstringop-strategy compiler option

mstringop-strategy, Qstringop-strategy
Lets you override the internal decision heuristic for the
particular algorithm used when implementing buffer
manipulation functions such as memcpy and memset.
This feature is only available for ifort.

Syntax

Linux OS:

-mstringop-strategy=alg
Windows OS:

/Qstringop-strategy:alg

Arguments

alg Specifies the algorithm to use. Possible values are:

Intel® Fortran Compiler Classic and Intel® Fortran Compiler Developer Guide and Reference 1

159

const_size_loop Tells the compiler to expand the string operations into an inline
loop when the size is known at compile time and it is not
greater than threshold value. Otherwise, the compiler uses its
own heuristics to decide how to implement the string
operation.

libcall Tells the compiler to use a library call when implementing
string operations.

rep Tells the compiler to use its own heuristics to decide what form
of rep movs | stos to use when inlining string operations.

Default

varies If optimization option Os is specified, the default is rep. Otherwise, the default is
const_size_loop.

Description

This option lets you override the internal decision heuristic for the particular algorithm used when
implementing buffer manipulation functions such as memcpy and memset.

This option may have no effect on compiler-generated string functions, for example, a call to memcpy
generated by the compiler to implement an array copy or structure copy.

IDE Equivalent

None

Alternate Options

None

See Also
mstringop-inline-threshold, Qstringop-inline-threshold compiler option
Os compiler option

mtune, tune
Performs optimizations for specific processors but
does not cause extended instruction sets to be used
(unlike -march).

Syntax

Linux OS:

-mtune=processor
Windows OS:

/tune:processor

Arguments

processor Is the processor for which the compiler should perform optimizations. Possible values
are:

generic Optimizes code for the compiler's default behavior.

 1 Intel® Fortran Compiler Classic and Intel® Fortran Compiler Developer Guide and Reference

160

alderlake
amberlake
broadwell
cannonlake
cascadelake
coffeelake
cooperlake
goldmont
goldmont-plus
haswell
icelake-client (or
icelake)
icelake-server
ivybridge
kabylake
rocketlake
sandybridge
sapphirerapids
silvermont
skylake
skylake-avx512
tigerlake
tremont
whiskeylake

Optimizes code for processors that support the
specified Intel® processor or microarchitecture code
name.

Keywords amberlake, coffeelake, icelake,
kabylake, and whiskeylake are only available for
ifort.

Keywords icelake-client and icelake are
deprecated and may be removed in a future release.

core-avx2 Optimizes code for processors that support Intel®
Advanced Vector Extensions 2 (Intel® AVX2), Intel®
AVX, SSE4.2, SSE4.1, SSE3, SSE2, SSE, and SSSE3
instructions.

core-avx-i Optimizes code for processors that support the RDRND
instruction, Intel® Advanced Vector Extensions (Intel®
AVX), Intel® SSE4.2, SSE4.1, SSE3, SSE2, SSE, and
SSSE3 instructions.

corei7-avx Optimizes code for processors that support Intel®
Advanced Vector Extensions (Intel® AVX), Intel®
SSE4.2, SSE4.1, SSE3, SSE2, SSE, and SSSE3
instructions.

corei7 Optimizes code for processors that support Intel® SSE4
Efficient Accelerated String and Text Processing
instructions. May also generate code for Intel® SSE4
Vectorizing Compiler and Media Accelerator, Intel®
SSE3, SSE2, SSE, and SSSE3 instructions.

atom Optimizes code for processors that support MOVBE
instructions, depending on the setting of option
-minstruction (Linux) or /Qinstruction
(Windows). May also generate code for SSSE3
instructions and Intel® SSE3, SSE2, and SSE
instructions.

Intel® Fortran Compiler Classic and Intel® Fortran Compiler Developer Guide and Reference 1

161

core2 Optimizes for the Intel® Core™2 processor family,
including support for MMX™, Intel® SSE, SSE2, SSE3,
and SSSE3 instruction sets.

Default

generic Code is generated for the compiler's default behavior.

Description

This option performs optimizations for specific processors but does not cause extended instruction sets to be
used (unlike -march).

The resulting executable is backwards compatible and generated code is optimized for specific processors.
For example, code generated with -mtune=core2 or /tune:core2 runs correctly on 4th Generation Intel®
Core™ processors, but it might not run as fast as if it had been generated using -mtune=haswell
or /tune:haswell.

Code generated with -mtune=haswell (/tune:haswell) or -mtune=core-avx2 (/tune:core-avx2) will
also run correctly on Intel® Core™2 processors, but it might not run as fast as if it had been generated using
-mtune=core2 or /tune:core2.

This is in contrast to code generated with -march=core-avx2 or /arch:core-avx2, which will not run
correctly on older processors such as Intel® Core™2 processors.

NOTE
This option only applies to host compilation. When offloading is enabled, it does not impact
device-specific compilation. Offloading can only be enabled when using ifx.

NOTE
ifx does not support compilation for 32-bit architectures; only processor values for 64-bit
instruction sets can be specified for ifx.

Product and Performance Information

Performance varies by use, configuration and other factors. Learn more at www.Intel.com/
PerformanceIndex.

Notice revision #20201201

IDE Equivalent

Windows

Visual Studio: Code Generation >Intel Processor Microarchitecture-Specific Optimization

Alternate Options

None

See Also
march compiler option

 1 Intel® Fortran Compiler Classic and Intel® Fortran Compiler Developer Guide and Reference

162

https://www.intel.com/PerformanceIndex
https://www.intel.com/PerformanceIndex

Qpatchable-addresses
Tells the compiler to generate code such that
references to statically assigned addresses can be
patched. This feature is only available for ifort.

Architecture Restrictions

Only available on Intel® 64 architecture

Syntax

Linux OS:

None
Windows OS:

/Qpatchable-addresses

Arguments

None

Default

OFF The compiler does not generate patchable addresses.

Description

This option tells the compiler to generate code such that references to statically assigned addresses can be
patched with arbitrary 64-bit addresses.

Normally, the Windows* system compiler that runs on Intel® 64 architecture uses 32-bit relative addressing
to reference statically allocated code and data. That assumes the code or data is within 2GB of the access
point, an assumption that is enforced by the Windows object format.

However, in some patching systems, it is useful to have the ability to replace a global address with some
other arbitrary 64-bit address, one that might not be within 2GB of the access point.

This option causes the compiler to avoid 32-bit relative addressing in favor of 64-bit direct addressing so that
the addresses can be patched in place without additional code modifications. This option causes code size to
increase, and since 32-bit relative addressing is usually more efficient than 64-bit direct addressing, you may
see a performance impact.

IDE Equivalent

None

Alternate Options

None

x, Qx
Tells the compiler which processor features it may
target, including which instruction sets and
optimizations it may generate.

Syntax

Linux OS:

-xcode

Intel® Fortran Compiler Classic and Intel® Fortran Compiler Developer Guide and Reference 1

163

Windows OS:

/Qxcode

Arguments

code Specifies a feature set that the compiler can target, including which instruction sets and
optimizations it may generate. Possible values are:

ALDERLAKE
AMBERLAKE
BROADWELL
CANNONLAKE
CASCADELAKE
COFFEELAKE
COOPERLAKE
GOLDMONT
GOLDMONT-PLUS
HASWELL
ICELAKE-CLIENT (or ICELAKE)
ICELAKE-SERVER
IVYBRIDGE
KABYLAKE
ROCKETLAKE
SANDYBRIDGE
SAPPHIRERAPIDS
SILVERMONT
SKYLAKE
SKYLAKE-AVX512
TIGERLAKE
TREMONT
WHISKEYLAKE

May generate instructions for processors that support the
specified Intel® processor or microarchitecture code name.
Optimizes for the specified Intel® processor or
microarchitecture code name.

Keyword ICELAKE is deprecated and may be removed in a
future release.

COMMON-AVX512 May generate Intel® Advanced Vector Extensions 512
(Intel® AVX-512) Foundation instructions, Intel® AVX-512
Conflict Detection Instructions (CDI), as well as the
instructions enabled with CORE-AVX2. Optimizes for Intel®
processors that support Intel® AVX-512 instructions.

CORE-AVX512 May generate Intel® Advanced Vector Extensions 512
(Intel® AVX-512) Foundation instructions, Intel® AVX-512
Conflict Detection Instructions (CDI), Intel® AVX-512
Doubleword and Quadword Instructions (DQI), Intel®
AVX-512 Byte and Word Instructions (BWI) and Intel®
AVX-512 Vector Length Extensions (VLE), as well as the
instructions enabled with CORE-AVX2. Optimizes for Intel®
processors that support Intel® AVX-512 instructions.

CORE-AVX2 May generate Intel® Advanced Vector Extensions 2 (Intel®
AVX2), Intel® AVX, SSE4.2, SSE4.1, SSE3, SSE2, SSE, and
SSSE3 instructions for Intel® processors. Optimizes for
Intel® processors that support Intel® AVX2 instructions.

 1 Intel® Fortran Compiler Classic and Intel® Fortran Compiler Developer Guide and Reference

164

CORE-AVX-I May generate the RDRND instruction, Intel® Advanced
Vector Extensions (Intel® AVX), Intel® SSE4.2, SSE4.1,
SSE3, SSE2, SSE, and SSSE3 instructions for Intel®
processors. Optimizes for Intel® processors that support
the RDRND instruction.

AVX May generate Intel® Advanced Vector Extensions (Intel®
AVX), Intel® SSE4.2, SSE4.1, SSE3, SSE2, SSE, and SSSE3
instructions for Intel® processors. Optimizes for Intel
processors that support Intel® AVX instructions.

SSE4.2 May generate Intel® SSE4 Efficient Accelerated String and
Text Processing instructions, Intel® SSE4 Vectorizing
Compiler and Media Accelerator, and Intel® SSE3, SSE2,
SSE, and SSSE3 instructions for Intel® processors.
Optimizes for Intel processors that support Intel® SSE4.2
instructions.

SSE4.1 May generate Intel® SSE4 Vectorizing Compiler and Media
Accelerator instructions for Intel® processors. May generate
Intel® SSE4.1, SSE3, SSE2, SSE, and SSSE3 instructions
for Intel processors that support Intel® SSE4.1 instructions.

ATOM_SSE4.2 May generate MOVBE instructions for Intel® processors,
depending on the setting of option -minstruction (Linux)
or /Qinstruction (Windows). May also generate Intel®
SSE4.2, SSE3, SSE2, and SSE instructions for Intel
processors. Optimizes for Intel Atom® processors that
support Intel® SSE4.2 and MOVBE instructions.

This keyword is only available on Windows and Linux
systems.

ATOM_SSSE3 May generate MOVBE instructions for Intel® processors,
depending on the setting of option -minstruction (Linux)
or /Qinstruction (Windows). May also generate SSSE3,
Intel® SSE3, SSE2, and SSE instructions for Intel
processors. Optimizes for Intel Atom® processors that
support Intel® SSE3 and MOVBE instructions.

This keyword is only available on Windows and Linux
systems.

SSSE3 May generate SSSE3 and Intel® SSE3, SSE2, and SSE
instructions for Intel® processors. Optimizes for Intel
processors that support SSSE3 instructions.

SSE3 May generate Intel® SSE3, SSE2, and SSE instructions for
Intel® processors. Optimizes for Intel processors that
support Intel® SSE3 instructions.

SSE2 (ifort only) May generate Intel® SSE2 and SSE instructions for Intel®
processors. Optimizes for Intel processors that support
Intel® SSE2 instructions.

You can also specify a Host. For more information, see option [Q]xHost.

Intel® Fortran Compiler Classic and Intel® Fortran Compiler Developer Guide and Reference 1

165

Default

OFF If option -x or -march is not specified (Linux), or if option /Qx
or /arch is not specified (Windows), the default target architecture
supports Intel® SSE2 instructions.

Description

This option tells the compiler which processor features it may target, including which instruction sets and
optimizations it may generate.

The resulting executables created from these option code values can only be run on Intel® processors that
support the indicated instruction set.

Do not use code values to create binaries that will execute on a processor that is not compatible with the
targeted processor. The resulting program may fail with an illegal instruction exception or display other
unexpected behavior.

Compiling the main program with any of the code values produces binaries that display a fatal runtime error
if they are executed on unsupported processors, including all non-Intel processors.

Compiler options -march (Linux) and /arch (Windows) produce binaries that can be run on processors not
made by Intel that implement the same capabilities as the corresponding Intel® processors.

The -x and /Qx options enable additional optimizations not enabled with options -march or /arch (nor with
options -ax and /Qax).

Linux

Options -x and -march are mutually exclusive. If both are specified, the compiler uses the last one specified
and generates a warning.

Windows

Options /Qx and /arch are mutually exclusive. If both are specified, the compiler uses the last one specified
and generates a warning.

NOTE
All settings (except SSE2) do a CPU check. However, if you specify option -O0 (Linux) or
option /Od (Windows), no CPU check is performed.

NOTE
This option only applies to host compilation. When offloading is enabled, it does not impact
device-specific compilation. Offloading can only be enabled when using ifx.

NOTE
ifx does not support compilation for 32-bit architectures; only code values for 64-bit
instruction sets may be specified for ifx.

Product and Performance Information

Performance varies by use, configuration and other factors. Learn more at www.Intel.com/
PerformanceIndex.

 1 Intel® Fortran Compiler Classic and Intel® Fortran Compiler Developer Guide and Reference

166

https://www.intel.com/PerformanceIndex
https://www.intel.com/PerformanceIndex

Product and Performance Information

Notice revision #20201201

IDE Equivalent

Visual Studio

Visual Studio: Code Generation > Intel Processor-Specific Optimization

Alternate Options

None

See Also
xHost, QxHost compiler option
ax, Qax compiler option
arch compiler option
march compiler option
minstruction, Qinstruction compiler option
m compiler option

xHost, QxHost
Tells the compiler to generate instructions for the
highest instruction set available on the compilation
host processor.

Syntax

Linux OS:

-xHost
Windows OS:

/QxHost

Arguments

None

Default

OFF If option -x or -march is not specified (Linux), or if option /Qx
or /arch is not specified (Windows), the default target architecture
supports Intel® SSE2 instructions.

Description

This option tells the compiler to generate instructions for the highest instruction set available on the
compilation host processor.

The instructions generated by this compiler option differ depending on the compilation host processor.

For more information on other settings for option [Q]x, see that option description.

Intel® Fortran Compiler Classic and Intel® Fortran Compiler Developer Guide and Reference 1

167

NOTE
This option only applies to host compilation. When offloading is enabled, it does not impact
device-specific compilation. Offloading can only be enabled when using ifx.

NOTE
ifx does not support compilation for 32-bit architectures; only 64-bit instruction set names
may be specified for ifx.

Product and Performance Information

Performance varies by use, configuration and other factors. Learn more at www.Intel.com/
PerformanceIndex.

Notice revision #20201201

IDE Equivalent

Visual Studio

Visual Studio: Code Generation > Intel Processor-Specific Optimization

Alternate Options

None

See Also
x, Qx compiler option
ax, Qax compiler option
m compiler option
arch compiler option

Offload Compilation, OpenMP*, and Parallel Processing Options
This section contains descriptions for compiler options that pertain to offload compilation, OpenMP*, or
parallel processing. They are listed in alphabetical order.

device-math-lib
Enables or disables certain device libraries.

Syntax

Linux OS:

-device-math-lib=library
-no-device-math-lib=library
Windows OS:

/device-math-lib:library
/no-device-math-lib:library

Arguments

library Possible values are:

 1 Intel® Fortran Compiler Classic and Intel® Fortran Compiler Developer Guide and Reference

168

https://www.intel.com/PerformanceIndex
https://www.intel.com/PerformanceIndex

fp32 Links the fp32 device math library.

fp64 Links the fp64 device math library.

To link more than one library, include a comma between the library names.

For example, if you want to link both the fp32 and fp64 device libraries, specify: fp32,
fp64

Default

fp32, fp64 Both the fp32 and fp64 device libraries are linked.

Description

This option enables or disables certain device libraries.

This is a deprecated option that may be removed in a future release. There is no replacement option.

IDE Equivalent

None

Alternate Options

None

See Also
fopenmp-device-lib compiler option
fsycl-device-lib compiler option

fiopenmp, Qiopenmp
Enables recognition of OpenMP* features and tells the
parallelizer to generate multi-threaded code based on
OpenMP* directives. Provides the ability to offload to a
GPU when -fopenmp-targets (or /Qopenmp-targets) is
also specified. This feature is only available for ifx.

Syntax

Linux OS:

-fiopenmp
Windows OS:

/Qiopenmp

Arguments

None

Default

OFF No OpenMP* multi-threaded code is generated by the compiler.

Description

This option enables recognition of OpenMP* features and tells the parallelizer to generate multi-threaded
code based on OpenMP* directives. The code can be executed in parallel on both uniprocessor and
multiprocessor systems.

Intel® Fortran Compiler Classic and Intel® Fortran Compiler Developer Guide and Reference 1

169

This option sets option auto.

This option works with any optimization level. Specifying no optimization (-O0 on Linux* or /Od on
Windows*) helps to debug OpenMP applications.

To ensure that a threadsafe and/or reentrant runtime library is linked and correctly initialized, the same
option should also be used for the link step and for the compilation of the main routine.

NOTE
If you want to offload to a GPU target, you need to specify -fiopenmp (or /Qiopenmp) along
with option -fopenmp-targets (or /Qopenmp-targets).

Product and Performance Information

Performance varies by use, configuration and other factors. Learn more at www.Intel.com/
PerformanceIndex.

Notice revision #20201201

IDE Equivalent

Visual Studio

Visual Studio: Language > OpenMP Support

Alternate Options

Linux: -qopenmp
Windows: /Qopenmp

See Also
fopenmp, Qopenmp compiler option
auto compiler option
fopenmp-targets, Qopenmp-targets compiler option

flink-huge-device-code
Tells the compiler to place device code later in the
linked binary. This is to prevent 32-bit PC-relative
relocations between surrounding Executable and
Linkable Format (ELF) sections when the device code
is larger than 2GB. This feature is only available for
ifx.

Syntax

Linux OS:

-flink-huge-device-code
-fno-link-huge-device-code
Windows OS:

None

Arguments

None

 1 Intel® Fortran Compiler Classic and Intel® Fortran Compiler Developer Guide and Reference

170

https://www.intel.com/PerformanceIndex
https://www.intel.com/PerformanceIndex

Default

fno-link-huge-device-code No change is made to the linked binary.

Description

This option tells the compiler to place device code later in the linked binary. This is to prevent 32-bit PC-
relative relocations between surrounding Executable and Linkable Format (ELF) sections when the device
code is larger than 2GB.

This option impacts the host link for a full offload compilation. It does not impact device compilation directly,
but it is only useful when offloading is performed.

NOTE
When using this option, you must also specify option -fsycl or option -fopenmp-targets.

NOTE
This option only takes effect if a link action needs to be executed. For example, it will not
have any effect if certain other options are specified, such as -c or -E.

IDE Equivalent

None

Alternate Options

None

Example
The following shows an example of using this option:

ifx -fsycl -flink-huge-device-code c.o b.o -o b.out

fmpc-privatize
Enables or disables privatization of all static data for
the MultiProcessor Computing environment (MPC)
unified parallel runtime. This feature is only available
for ifort.

Architecture Restrictions

Only available on Intel® 64 architecture

Syntax

Linux OS:

-fmpc-privatize
-fno-mpc-privatize
Windows OS:

None

Arguments

None

Intel® Fortran Compiler Classic and Intel® Fortran Compiler Developer Guide and Reference 1

171

Default

-fno-mpc-privatize The privatization of all static data for the MPC unified parallel runtime
is disabled.

Description

This option enables or disables privatization of all static data for the MultiProcessor Computing environment
(MPC) unified parallel runtime.

Option -fmpc-privatize causes calls to extended thread-local-storage (TLS) resolution, runtime routines
that are not supported on standard Linux* distributions.

This option requires installation of the MPC unified parallel runtime. For more information, see http://
mpc.hpcframework.com/.

IDE Equivalent

None

Alternate Options

None

fopenmp, Qopenmp
Enables recognition of OpenMP* features and tells the
parallelizer to generate multi-threaded code based on
OpenMP* directives.

Syntax

Linux OS:

-fopenmp
-fno-openmp
Windows OS:

/Qopenmp
/Qopenmp-

Arguments

None

Default

OFF No OpenMP* multi-threaded code is generated by the compiler.

Description

This option enables recognition of OpenMP* features and tells the parallelizer to generate multi-threaded
code based on OpenMP* directives. The code can be executed in parallel on both uniprocessor and
multiprocessor systems.

This option sets option auto.

This option works with any optimization level. Specifying no optimization (-O0 on Linux* or /Od on
Windows*) helps to debug OpenMP applications.

To ensure that a threadsafe and/or reentrant runtime library is linked and correctly initialized, the same
option should also be used for the link step and for the compilation of the main routine

 1 Intel® Fortran Compiler Classic and Intel® Fortran Compiler Developer Guide and Reference

172

http://mpc.hpcframework.com/
http://mpc.hpcframework.com/

Caution
Files compiled with option -fopenmp or /Qopenmp should also be linked with the same option,
or the link step may fail.

NOTE
Options that use OpenMP* API are available for both Intel® microprocessors and non-Intel
microprocessors, but these options may perform additional optimizations on Intel®
microprocessors than they perform on non-Intel microprocessors.

The list of major, user-visible OpenMP constructs and features that may perform differently on Intel®
microprocessors versus non-Intel microprocessors include: locks (internal and user visible), the
SINGLE construct, barriers (explicit and implicit), parallel loop scheduling, reductions, memory
allocation, thread affinity, and binding.

Product and Performance Information

Performance varies by use, configuration and other factors. Learn more at www.Intel.com/
PerformanceIndex.

Notice revision #20201201

IDE Equivalent

Visual Studio

Visual Studio: Language > Process OpenMP Directives

Alternate Options

Linux: -qopenmp
Windows: /Qopenmp

Examples
The following enables OpenMP parallelization of OpenMP constructs such as PARALLEL and LOOP (ifx):

ifx -fopenmp foo.f90

See Also
fiopenmp, Qiopenmp compiler option
auto compiler option
fopenmp-targets, Qopenmp-targets compiler option

fopenmp-concurrent-host-device-compile, Qopenmp-concurrent-host-device-compile
Enables parallel compilation of host and target
compilation steps when performing OpenMP offload
compilations. This is an experimental feature.This
feature is only available for ifx.

Syntax

Linux OS:

-fopenmp-concurrent-host-device-compile

Intel® Fortran Compiler Classic and Intel® Fortran Compiler Developer Guide and Reference 1

173

https://www.intel.com/PerformanceIndex
https://www.intel.com/PerformanceIndex

Windows OS:

/Qopenmp-concurrent-host-device-compile

Arguments

None

Default

OFF No parallel compilation of host and target compilation steps occurs when OpenMP offload
compilations are performed.

Description

This option enables parallel compilation of host and target compilation steps when performing OpenMP
offload compilations. It is an experimental feature.

It parallelizes the compilation steps that create the host and target binaries only, and it may improve
compilation times.

IDE Equivalent

None

Alternate Options

None

fopenmp-declare-target-scalar-defaultmap, Qopenmp-declare-target-scalar-defaultmap
Determines which implicit data-mapping/sharing rules
are applied for a scalar variable referenced in a
TARGET directive. This feature is only available for ifx.

Syntax

Linux OS:

-fopenmp-declare-target-scalar-defaultmap=keyword
Windows OS:

/Qopenmp-declare-target-scalar-defaultmap:keyword

Arguments

keyword Is the rule to be applied for a scalar variable referenced in a TARGET directive. Possible
values are:

default Specifies that the compiler should apply implicit data-mapping/sharing
rules according to the OpenMP* specification.

Thus, when a scalar variable referenced in a TARGET construct appears
in a TO clause in a DECLARE TARGET directive, and the TARGET
construct's clauses do not define explicit data-mapping/sharing for this
variable, then the compiler should treat it as if it had appeared in a MAP
clause with a map-type of TOFROM.

 1 Intel® Fortran Compiler Classic and Intel® Fortran Compiler Developer Guide and Reference

174

firstprivate Specifies that when a scalar variable referenced in a TARGET construct
appears in a TO clause in a DECLARE TARGET directive, and the TARGET
construct's clauses do not define explicit data-mapping/sharing for this
variable, then the scalar variable is not mapped, but instead has an
implicit data-sharing attribute of FIRSTPRIVATE.

Default

-fopenmp-declare-target-scalar-defaultmap=default
or
/Qopenmp-declare-target-scalar-defaultmap:default

The compiler applies implicit data-mapping/
sharing rules according to OpenMP
specification.

Description

This option determines which implicit data-mapping/sharing rules are applied for a scalar variable referenced
in a TARGET directive, when that scalar variable appears in a DECLARE TARGET directive that has a TO
clause.

It tells the compiler to assume that a scalar DECLARE TARGET variable with implicit data-mapping/sharing
referenced in a TARGET construct has the same value before the TARGET construct (in the host environment)
and at the beginning the target region (in the device environment). This may enable some optimizations in
the host code invoking the target region for execution.

The option only affects data-mapping/sharing rules for scalar variables referenced in a TARGET construct that
do not appear in one of the TARGET clauses MAP, IS_DEVICE_PTR, or HAS_DEVICE_ADDR.

For more information about implicit data-mapping/sharing rules, see the OpenMP 5.2 specification. For
example, see section 5.8.1 in that specification.

IDE Equivalent

None

Alternate Options

None

Examples
Consider the following:

module data
 integer :: N
 !$omp declare target(N)
end module data
...
program main
 use data
 !$omp target teams distribute parallel do
 do i = 1, N
...
 enddo

Specifying -fopenmp-declare-target-scalar-defaultmap=firstprivate
(or /Qopenmp-declare-target-scalar-defaultmap:firstprivate) or an explicit "FIRSTPRIVATE(N)"
lets the compiler generate efficient host code that issues the most appropriate number of teams and threads
to execute the iterations of the DISTRIBUTE PARALLEL DO loop, assuming that N does not change its value
between the beginning of the TARGET region and the beginning of the DISTRIBUTE PARALLEL DO region.

Intel® Fortran Compiler Classic and Intel® Fortran Compiler Developer Guide and Reference 1

175

https://www.openmp.org/specifications/

If the compiler option (or "FIRSTPRIVATE(N)") is not specified, then the value of N in the host code (before
the TARGET construct) may be different from the value of N in the DO statement. To compute the right
number of teams/threads on the host, the value of N must be transferred from the device to the host, which
may result in a performance penalty.

The option may not behave correctly for all OpenMP programs. In particular, it may behave incorrectly for
programs that allow different values of the same DECLARE TARGET scalar variables on entry to TARGET
regions.

For example, consider the following:

module data
 integer :: x = 0 ! host 'x' is 0, target 'x' is 0
 !$omp declare target(x)
end module data
program main
 use data
 x = -1

 ! host 'x' is -1, target 'x' is 0
 !$omp target
 x = 1
 !$omp end target

 ! host 'x' is -1, target 'x' is 1
 !$omp target
 print *, 'target: ', x, ' == 1'
 !$omp end target

 !$omp target update from(x)

 ! host 'x' is 1, target 'x' is 1
 print *, 'host: ', x, ' == 1'
end program main

The following is the correct output for the above code:

target: 1 == 1
host: 1 == 1

However, this is the output when option -fopenmp-declare-target-scalar-defaultmap=firstprivate
(or /Qopenmp-declare-target-scalar-defaultmap:firstprivate) is specified:

target: -1 == 1
host: 0 == 1

target: -1 == 1

host: 0 == 1

See Also
TARGET directive

See Also
DECLARE TARGET

fopenmp-default-allocator, Qopenmp-default-allocator
Tells the compiler that all ALLOCATE statements
should be treated as though there were an explicit
OpenMP ALLOCATE directive that preceded them. This
feature is only available for ifx.

 1 Intel® Fortran Compiler Classic and Intel® Fortran Compiler Developer Guide and Reference

176

Syntax

Linux OS:

-fopenmp-default-allocator[=keyword]
Windows OS:

/Qopenmp-default-allocator[:keyword]

Arguments

keyword Is an allocation specification. It can be any of the
following:

omp_default_mem Tells the compiler to
follow standard
allocation behavior.
This is the default if no
keyword is specified.

omp_high_bw_mem Tells the compiler to
allocate into high-
bandwidth memory, if
available. If there is no
high-bandwidth
memory, default
memory will be used.

omp_target_shared_mem Tells the compiler to
allocate into memory
shared between CPU/
GPU.

Default

OFF If this option is not specified, the compiler follows standard allocation behavior for ALLOCATE
statements.

Description

This option tells the compiler that all Fortran ALLOCATE statements should be treated as though there were
an explicit OpenMP ALLOCATE directive (!$OMP ALLOCATE) that preceded them. It provides an allocation
shortcut.

Only keyword omp_target_shared_mem requires you to also specify an OpenMP-enabling option, such as
[q or Q]openmp. The other possible keywords do not require an OpenMP-enabling option.

Caution
When allocating large amounts of memory into target-shared memory, you may experience
running-out-of-memory issues.

IDE Equivalent

None

Intel® Fortran Compiler Classic and Intel® Fortran Compiler Developer Guide and Reference 1

177

Alternate Options

None

See Also
ALLOCATE directive for OpenMP

fopenmp-device-code-split, Qopenmp-device-code-split
Enables parallel compilation of SPIR-V* kernels for
OpenMP offload Ahead-Of-Time compilation. This
feature is only available for ifx.

Syntax

Linux OS:

-fopenmp-device-code-split=[triple=]per_kernel
Windows OS:

/Qopenmp-device-code-split:[triple=]per_kernel

Arguments

triple Is a target device name, such as spir64, spir64_gen, etc.. If triple is
specified, code splitting will only be applied for that specific target.

per_kernel Creates a separate device code module for each SYCL* kernel. Each
device code module will contain a kernel and all its dependencies,
such as called functions and used variables.

Default

OFF No device code splitting of SPIR-V* kernels occurs for
OpenMP offload Ahead-Of-Time compilation.

Description

This option enables parallel compilation of SPIR-V* kernels for OpenMP offload Ahead-Of-Time compilation.

To specify the maximum number of parallel actions to perform, use option
-fopenmp-max-parallel-link-jobs (Linux) or /Qopenmp-max-parallel-link-jobs (Windows).

NOTE
When OpenMP offloading is enabled, this option only applies to device-specific compilation.

IDE Equivalent

None

Alternate Options

None

Example
The following shows an example of using this option.

 1 Intel® Fortran Compiler Classic and Intel® Fortran Compiler Developer Guide and Reference

178

Linux

ifx -fiopenmp -fopenmp-targets=spir64_x86_64 -fopenmp-device-code-split=per_kernel -fopenmp-max-
parallel-link-jobs=4 file.for

Windows

ifx /Qiopenmp /Qopenmp-targets:spir64_x86_64 /Qopenmp-device-code-split:per_kernel /Qopenmp-max-
parallel-link-jobs:4 file.for

See Also
fopenmp-max-parallel-link-jobs, Qopenmp-max-parallel-link-jobs compiler option

fopenmp-device-lib
Enables or disables certain device libraries for an
OpenMP* target.

Syntax

Linux OS:

-fopenmp-device-lib=library[,library,...]
-fno-openmp-device-lib=library[,library,...]
Windows OS:

-fopenmp-device-lib=library[,library,...]
-fno-openmp-device-lib=library[,library,...]

Arguments

library Possible values are:

libm-fp32 Enables linking to the fp32 device math
library.

libm-fp64 Enables linking to the fp64 device math
library.

libc Enables linking to the C library.

all Enables linking to libraries libm-fp32, libm-
fp-64, and libc.

To link more than one library, include a comma between the library
names. For example, if you want to link both the libm-fp32 device
library and the C library, specify: libm-fp32,libc.

Do not add spaces between library names.

Note that if you specify "all", it supersedes any additional value you
may specify.

Default

OFF Disables linking to device libraries for this target.

Description

This option enables or disables certain device libraries for an OpenMP* target.

Intel® Fortran Compiler Classic and Intel® Fortran Compiler Developer Guide and Reference 1

179

If you specify fno-openmp-device-lib=library, linking to the specified library is disabled for the
OpenMP* target.

NOTE
When OpenMP* offloading is enabled, this option only applies to device-specific compilation.
Offloading can only be enabled when using ifx.

IDE Equivalent

Windows

Visual Studio: Linker > General > Enable linking of the device libraries for OpenMP offload

Linker > General > Disable linking of the device libraries for OpenMP offload

Alternate Options

None

fopenmp-do-concurrent-maptype-modifier, Qopenmp-do-concurrent-maptype-modifier
Lets you specify the data movement for variables
referenced inside the DO CONCURRENT region when it
is auto-offloaded. This feature is only available for ifx.

Syntax

Linux OS:

-fopenmp-do-concurrent-maptype-modifier[=modifier]
Windows OS:

/Qopenmp-do-concurrent-maptype-modifier [=modifier]

Arguments

modifier Specifies the data movement to be applied to the
TOFROM maptype that is used when offloading a DO
CONCURRENT region. It can be any of the following:

always Tells the compiler that
data must be moved to
and from the device.

present Tells the compiler that
data has already been
moved to the device
and no further
movement is required.

none Tells the compiler that
if the runtime cannot
determine whether the
data is already present,
move it to the device

 1 Intel® Fortran Compiler Classic and Intel® Fortran Compiler Developer Guide and Reference

180

and then back. This is
the default if modifier
is not specified.

Default

TOFROM When you do not specify this option, no modifier is specified, or none is specified, TOFROM is
used when offloading a DO CONCURRENT region.

Description

This option lets you specify the data movement for variables referenced inside the DO CONCURRENT region
when it is auto-offloaded.

This option is ignored if you do not also specify both of the following options in the command line:

• -fopenmp-targets (Linux) or /Qopenmp-targets (Windows)
• -fopenmp-target-do-concurrent (Linux) or /Qopenmp-target-do-concurrent (Windows)

IDE Equivalent

None

Alternate Options

None

Example
Consider the following program (named test.f90) on a Linux system:

 program do_conc_omp_hybrid
 implicit none

 integer :: i
 integer, dimension(10) :: x, y

 x = 1
 y = 0

 !$omp target data map(to: x) map(from: y)
 x = 2

 do concurrent (i = 1:10)
 y(i) = x(i) + 1
 enddo

 !$omp end target data

 print *, y
 end program do_conc_omp_hybrid

Previously, there was no control for data movement and the compiler would move the X and Y data to and
from the device by default, despite the fact that the user had already mapped it.

However, if you specify option -fopenmp-do-concurrent-maptype-modifier, you have more control over
the movement.

Intel® Fortran Compiler Classic and Intel® Fortran Compiler Developer Guide and Reference 1

181

For example, if you specify the following command, the compiler is told that the data for X and Y has already
been moved to the device and no further movement is required:

ifx -fiopenmp -fopenmp-targets=spir64 -fopenmp-target-do-concurrent -fopenmp-do-concurrent-
maptype-modifier=present test.f90

See Also
fopenmp-targets, Qopenmp-targets compiler option
fopenmp-target-do-concurrent, Qopenmp-target-do-concurrent compiler option
DO CONCURRENT

fopenmp-max-parallel-link-jobs, Qopenmp-max-parallel-link-jobs
Determines the maximum number of parallel actions
to be performed during device linking steps, where
applicable. This feature is only available for ifx.

Syntax

Linux OS:

-fopenmp-max-parallel-link-jobs=num
Windows OS:

/Qopenmp-max-parallel-link-jobs:num

Arguments

num Is the maximum number of parallel actions to perform.

Default

OFF Parallelization of device linking steps is disabled.

Description

This option determines the maximum number of parallel actions to be performed during device linking steps,
where applicable.

This option is useful when you specify option -fopenmp-device-code-split (Linux)
or /Qopenmp-device-code-split (Windows) and want to control the number of parallel actions performed.

NOTE
When OpenMP offloading is enabled, this option only applies to device-specific compilation.

IDE Equivalent

None

Alternate Options

None

See Also
fopenmp-device-code-split, Qopenmp-device-code-split compiler option

 1 Intel® Fortran Compiler Classic and Intel® Fortran Compiler Developer Guide and Reference

182

fopenmp-target-buffers, Qopenmp-target-buffers
Enables a way to overcome the problem where some
OpenMP* offload SPIR-V* devices produce incorrect
code when a target object is larger than 4GB. This
feature is only available for ifx.

Syntax

Linux OS:

-fopenmp-target-buffers=keyword
Windows OS:

/Qopenmp-target-buffers:keyword

Arguments

keyword Possible values are:

default Tells the compiler to use default heuristics. This may produce incorrect
code on some OpenMP* offload SPIR-V* devices when a target object is
larger than 4GB.

4GB Tells the compiler to generate code to prevent the issue described by
default. OpenMP* offload programs that access target objects of size
larger than 4GB in target code require this option.

This setting applies to the following:

• Target objects declared in OpenMP* target regions or inside OpenMP*
declare target functions

• Target objects that exist in the OpenMP* device data environment
• Objects that are mapped and/or allocated by means of OpenMP* APIs

(such as omp_target_alloc)

Default

default If you do not specify this option, the compiler may produce incorrect code on some OpenMP*
offload SPIR-V* devices when a target object is larger than 4GB.

Description

This option enables a way to overcome the problem where some OpenMP* offload SPIR-V* devices produce
incorrect code when a target object is larger than 4GB (4294959104 bytes).

However, note that when -fopenmp-target-buffers=4GB (or /Qopenmp-target-buffers:4GB) is
specified on Intel® GPUs, there may be a decrease in performance.

To use this option, you must also specify option -fopenmp-targets (Linux*) or /Qopenmp-targets
(Windows*).

NOTE
This option may have no effect for some OpenMP* offload SPIR-V* devices, and for
OpenMP* offload targets different from SPIR*.

Intel® Fortran Compiler Classic and Intel® Fortran Compiler Developer Guide and Reference 1

183

NOTE
When OpenMP* offloading is enabled, this option only applies to device-specific compilation.

IDE Equivalent

Windows

Visual Studio: Code Generation > Specify buffer size for OpenMP offload kernel access limitations
(ifx only)

Alternate Options

None

See Also
fopenmp-targets, Qopenmp-targets compiler option

fopenmp-target-default-sub-group-size, Qopenmp-target-default-sub-group-size
Lets you specify a default sub-group size globally for
single program multiple data (SPMD) kernels that are
generated for OpenMP* target constructs when
offloading to SPIR64-based devices. This feature is
only available for ifx.

Syntax

Linux OS:

-fopenmp-target-default-sub-group-size=val
Windows OS:

/Qopenmp-target-default-sub-group-size:val

Arguments

val Specifies the default fallback value.

The supported values are dependent on which sub-group sizes are
supported on the hardware that the program is running on. For
example, on PonteVecchio (PVC) devices, the supported values are 16
and 32.

Default

OFF The compiler uses default heuristics when
determining global simd length for kernels unless a
compiler option specifies otherwise.

Description

This option lets you specify a default sub-group size globally for single program multiple data (SPMD) kernels
that are generated for OpenMP target constructs when offloading to SPIR64-based devices.

This option is ignored for SIMD kernels; that is, when you also specify option -fopenmp-target-simd
(Linux) or /Qopenmp-target-simd (Windows).

To use option -fopenmp-target-default-sub-group-size
or /Qopenmp-target-default-sub-group-size, you must also specify option
-fopenmp-targets=spir64 (Linux) or option /Qopenmp-targets:spir64 (Windows).

 1 Intel® Fortran Compiler Classic and Intel® Fortran Compiler Developer Guide and Reference

184

NOTE
When OpenMP offloading is enabled, this option only applies to device-specific compilation.

IDE Equivalent

None

Alternate Options

None

See Also
fopenmp-targets, Qopenmp-targets compiler option
fopenmp-target-simd, Qopenmp-target-simd compiler option

fopenmp-target-do-concurrent, Qopenmp-target-do-concurrent
Determines whether a DO CONCURRENT construct is
automatically converted into an OpenMP* TARGET
region. This feature is only available for ifx.

Syntax

Linux OS:

-fopenmp-target-do-concurrent
-fno-openmp-target-do-concurrent
Windows OS:

/Qopenmp-target-do-concurrent
/Qopenmp-target-do-concurrent-

Arguments

None

Default

varies The default is ON only if you have specified option -fopenmp-targets
(or /Qopenmp-targets); otherwise, the default is OFF.

Description

This option determines whether a DO CONCURRENT construct is automatically converted (offloaded) into an
OpenMP* TARGET region. This option works in combination with OpenMP* offloading options.

The DO CONCURRENT construct is automatically converted if you specify the following:

Linux

-fopenmp-target-do-concurrent -fiopenmp -fopenmp-targets=spir64
Windows

/Qopenmp-target-do-concurrent /Qiopenmp /Qopenmp-targets:spir64

Intel® Fortran Compiler Classic and Intel® Fortran Compiler Developer Guide and Reference 1

185

NOTE
Option -fopenmp-target-do-concurrent and /Qopenmp-target-do-concurrent must be
specified for both the host and target compilation steps.

IDE Equivalent

None

Alternate Options

None

See Also
DO CONCURRENT

fopenmp-target-loopopt, Qopenmp-target-loopopt
Enables the loop optimizer and auto-vectorization for
OpenMP* offloading device compilation when option
O2 or higher is set or specified. This feature is only
available for ifx.

Syntax

Linux OS:

-fopenmp-target-loopopt
Windows OS:

/Qopenmp-target-loopopt

Arguments

None

Default

OFF The compiler uses default heuristics for optimization.

Description

This option enables the loop optimizer and auto-vectorization for OpenMP* offloading device compilation
when option O2 or higher is set or specified.

This option is only valid for SPIR64-based devices.

NOTE
When OpenMP offloading is enabled, this option only applies to device-specific compilation.

IDE Equivalent

None

Alternate Options

None

 1 Intel® Fortran Compiler Classic and Intel® Fortran Compiler Developer Guide and Reference

186

fopenmp-target-simd, Qopenmp-target-simd
Enables OpenMP* SIMD loop vectorization for OpenMP
offloading device compilation when option level O2 or
higher is set or specified. This feature is only available
for ifx.

Syntax

Linux OS:

-fopenmp-target-simd
Windows OS:

/Qopenmp-target-simd

Arguments

None

Default

OFF The compiler uses default heuristics for SIMD loop vectorization.

Description

This option enables OpenMP* SIMD loop vectorization for OpenMP offloading device compilation when option
level O2 or higher is set or specified.

This option is ignored unless OpenMP offloading is enabled, and it is only valid for SPIR64-based devices.

NOTE
When OpenMP offloading is enabled, this option only applies to device-specific compilation.

IDE Equivalent

None

Alternate Options

None

fopenmp-targets, Qopenmp-targets
Enables offloading to a specified GPU target if
OpenMP* features have been enabled. This feature is
only available for ifx.

Syntax

Linux OS:

-fopenmp-targets=triple
Windows OS:

/Qopenmp-targets:triple

Intel® Fortran Compiler Classic and Intel® Fortran Compiler Developer Guide and Reference 1

187

Arguments

triple Is a target triple device name. The following triplets
are supported.

spir64 Tells the compiler to
enable offloading to
SPIR64-based devices.

spir64_x86_64 Tells the compiler to
enable offloading to
Intel® CPUs.

spir64_gen Tells the compiler to
enable offloading to
Intel® Processor
Graphics.

For example, when you specify spir64, the compiler
generates an x86 + SPIR64 (64-bit Standard Portable
Intermediate Representation) fat binary for Intel® GPU
devices.

Default

OFF If this option is not specified, no fat binaries are created.

Description

This option enables offloading to a specified GPU target if OpenMP* features have been enabled.

To use this option, you must enable recognition of OpenMP* features by specifying one of the following
options:

Linux

• -qopenmp
• -fiopenmp (ifx only)
• -fopenmp
Windows

• /Qopenmp
• /Qiopenmp (ifx only)

The following shows an example:

 ifx -qopenmp -fopenmp-targets=spir64 matmul_offload.cpp -o matmul
When you specify -fopenmp-targets or /Qopenmp-targets, C++ exception handling is disabled for target
compilations.

Linux

For host compilations, if you want to disable C++ exception handling, you must specify option
-fno-exceptions.

 1 Intel® Fortran Compiler Classic and Intel® Fortran Compiler Developer Guide and Reference

188

Caution
Files compiled with option -fopenmp-targets or /Qopenmp-targets should also be linked with
the same option, or the link step may fail.

NOTE
When OpenMP* offloading is enabled, this option only applies to device-specific compilation.

IDE Equivalent

Windows

Visual Studio: Code Generation > Enable OpenMP Offloading

Alternate Options

None

See Also
fiopenmp, Qiopenmp compiler option
qopenmp, Qopenmp compiler option

fsycl
Enables linking Fortran object files with SYCL-based
object files. This feature is only available for ifx.

Syntax

Linux OS:

-fsycl
Windows OS:

-fsycl

Arguments

None

Default

OFF Fortran object files are not linked with SYCL object files.

Description

This option enables linking Fortran object files with SYCL-based object files.

NOTE
This option is only valid when using ifx to link your executable.

IDE Equivalent

None

Intel® Fortran Compiler Classic and Intel® Fortran Compiler Developer Guide and Reference 1

189

Alternate Options

None

fsycl-dead-args-optimization
Enables elimination of SYCL dead kernel arguments.
This feature is only available for ifx.

Syntax

Linux OS:

-fsycl-dead-args-optimization
-fno-sycl-dead-args-optimization
Windows OS:

-fsycl-dead-args-optimization
-fno-sycl-dead-args-optimization

Arguments

None

Default

OFF SYCL dead kernel arguments are not eliminated. This default may change in the future.

Description

This option enables elimination of SYCL dead kernel arguments. This optimization can improve performance.

NOTE
When using this option, you must also specify option -fsycl.

If you specify -fno-sycl-dead-args-optimization, this optimization is disabled.

For information about available SYCL drivers, refer to Invoke the Compiler.

NOTE
When SYCL offloading is enabled, this option only applies to device-specific compilation.

IDE Equivalent

None

Alternate Options

None

fsycl-device-code-split
Specifies a SYCL* device code module assembly. This
feature is only available for ifx.

 1 Intel® Fortran Compiler Classic and Intel® Fortran Compiler Developer Guide and Reference

190

Syntax

Linux OS:

-fsycl-device-code-split[=value]
Windows OS:

-fsycl-device-code-split[=value]

Arguments

value Can be only one of the following:

per_kernel Creates a separate device code module for
each SYCL* kernel. Each device code module
will contain a kernel and all its dependencies,
such as called functions and used variables.

per_source Creates a separate device code module for
each source (translation unit).

Each device code module will contain a
collection of kernels grouped on per-source
basis and all their dependencies, such as all
used variables and called functions, including
the SYCL_EXTERNAL macro-marked
functions from other translation units.

off Creates a single module for all kernels.

auto The compiler will use a heuristic to select the
best way of splitting device code. This is the
same as specifying
fsycl-device-code-split with no value.

Default

auto This is the default whether you do not specify the compiler option or you do specify the compiler
option, but omit a value. The compiler will use a heuristic to select the best way of splitting device
code.

Description

This option specifies a SYCL* device code module assembly.

NOTE
When using this option, you must also specify option -fsycl.

For information about available SYCL drivers, refer to Invoke the Compiler.

NOTE
When SYCL offloading is enabled, this option only applies to device-specific compilation.

Intel® Fortran Compiler Classic and Intel® Fortran Compiler Developer Guide and Reference 1

191

IDE Equivalent

None

Alternate Options

None

fsycl-device-lib
Enables or disables certain device libraries for a SYCL*
target. This feature is only available for ifx.

Syntax

Linux OS:

-fsycl-device-lib=library[,library,...]
-fno-sycl-device-lib=library[,library,...]
Windows OS:

-fsycl-device-lib=library[,library,...]
-fsycl-device-lib=library[,library,...]

Arguments

library Possible values are:

libm-fp32 Enables linking to the fp32 device math
library.

libm-fp64 Enables linking to the fp64 device math
library.

libc Enables linking to the C library.

all Enables linking to libraries libm-fp32, libm-
fp-64, and libc.

To link more than one library, include a comma between the library
names. For example, if you want to link both the libm-fp32 device
library and the C library, specify: libm-fp32,libc.

Do not add spaces between library names.

Note that if you specify "all", it supersedes any additional value you
may specify.

Default

OFF Disables linking to device libraries for this target.

Description

This option enables or disables certain device libraries for a SYCL* target.

NOTE
When using this option, you must also specify option -fsycl.

 1 Intel® Fortran Compiler Classic and Intel® Fortran Compiler Developer Guide and Reference

192

If you specify fno-sycl-device-lib=library, linking to the specified library is disabled for the SYCL*
target.

For information about available SYCL drivers, refer to Invoke the Compiler.

NOTE
When SYCL offloading is enabled, this option only applies to device-specific compilation.

IDE Equivalent

None

Alternate Options

None

fsycl-instrument-device-code
Enables or disables linking of the Instrumentation and
Tracing Technology (ITT) device libraries for VTune™.
This feature is only available for ifx.

Syntax

Linux OS:

-fsycl-instrument-device-code
-fno-sycl-instrument-device-code
Windows OS:

-fsycl-instrument-device-code
-fno-sycl-instrument-device-code

Arguments

None

Default

ON The device libraries needed for Instrumentation and Tracing Technology (ITT) are enabled.

Description

This option enables or disables linking of the Instrumentation and Tracing Technology (ITT) device libraries
for VTune™. This provides annotations to intercept various events inside kernels generated by Just in Time
(JIT) compilation.

NOTE
When using this option, you must also specify option -fsycl.

If you specify -fno-sycl-instrument-device-code, no linking occurs to the Instrumentation and Tracing
Technology (ITT) device libraries.

For information about available SYCL drivers, refer to Invoke the Compiler.

Intel® Fortran Compiler Classic and Intel® Fortran Compiler Developer Guide and Reference 1

193

NOTE
When SYCL offloading is enabled, this option only applies to device-specific compilation.

IDE Equivalent

None

Alternate Options

None

fsycl-link-huge-device-code
Tells the compiler to place device code later in the
linked binary. This is to prevent 32-bit PC-relative
relocations between surrounding Executable and
Linkable Format (ELF) sections when the device code
is larger than 2GB. This is a deprecated option that
will be removed in a future release. This feature is
only available for ifx.

Syntax

Linux OS:

-fsycl-link-huge-device-code
-fno-sycl-link-huge-device-code
Windows OS:

None

Arguments

None

Default

fno-sycl-link-huge-device-code No change is made to the linked binary.

Description

This option tells the compiler to place device code later in the linked binary. This is to prevent 32-bit PC-
relative relocations between surrounding Executable and Linkable Format (ELF) sections when the device
code is larger than 2GB.

This option impacts the host link for a full offload compilation. It does not impact device compilation directly,
but it is only useful when offloading is performed.

NOTE
When using this option, you must also specify option -fsycl.

NOTE
This option only takes effect if a link action needs to be executed. For example, it will not
have any effect if certain other options are specified, such as -c or -E.

 1 Intel® Fortran Compiler Classic and Intel® Fortran Compiler Developer Guide and Reference

194

IDE Equivalent

None

Alternate Options

None

Example
The following shows an example of using this option:

ifx -fsycl -fsycl-link-huge-device-code c.o b.o -o b.out

See Also
flink-huge-device-code compiler option

fsycl-targets
Tells the compiler to generate code for specified
device targets. This description is only for ifx. This
option is only valid for linking against SYCL-based
objects.

Syntax

Linux OS:

-fsycl-targets=T1,...,Tn
Windows OS:

-fsycl-targets=T1,...,Tn

Arguments

T Is a target triple device name. If you specify more than one T, they must be separated by
commas. The following triplets are supported:

spir64 Tells the compiler to use default heuristics
for SPIR64-based devices. This is the
default. You can also specify this value as
spir64-unknown-unknown.

spir64_x86_64 Tells the compiler to generate code for
Intel® CPUs. You can also specify this value
as spir64_x86_64-unknown-unknown.

spir64_gen Tells the compiler to generate code for
Intel® Processor Graphics. You can also
specify this value as spir64_gen-unknown-
unknown.

Default

spir64 The compiler will use default heuristics for
SPIR64-based devices.

Description

This option tells the compiler to generate code for specified device targets. It is only valid for linking against
SYCL-based objects.

Intel® Fortran Compiler Classic and Intel® Fortran Compiler Developer Guide and Reference 1

195

Normally, option -fsycl-targets is specified when linking an application, in which case the Ahead of Time
(AOT) compiled device binaries are embedded within the application's fat executable.

NOTE
The long syntax values that include -sycldevice, such as spir64-unknown-unknown-
sycldevice, are still supported, but they are deprecated.

NOTE
When using this option, you must also specify option -fsycl.

For information about available SYCL drivers, refer to Invoke the Compiler.

NOTE
When SYCL offloading is enabled, this option only applies to device-specific compilation.

IDE Equivalent

None

Alternate Options

None

See Also
fsycl compiler option

ftarget-compile-fast
Tells the compiler to perform less aggressive
optimizations to reduce compilation time at the
expense of generating less optimal target code. This is
an experimental feature.This feature is only available
for ifx.

Syntax

Linux OS:

-ftarget-compile-fast

Windows OS:

/ftarget-compile-fast

Arguments

None

Default

OFF Less aggressive optimizations to reduce compilation time are not performed.

Description

This option tells the compiler to perform less aggressive optimizations to reduce compilation time at the
expense of generating less optimal target code. This is an experimental feature.

 1 Intel® Fortran Compiler Classic and Intel® Fortran Compiler Developer Guide and Reference

196

It may be useful to specify this option in these cases:

• When you are in a development period and want a fast turnaround time while testing
• When you are specifying options O2 or O3 for a product with Just-in-Time (JIT) compilation, and both

compile-time and execution performance are important

This option is not recommended when you are specifying options O2 or O3 for a product with Ahead-of-Time
(AOT) compilation, where long but one-time compilation may be tolerable in order to achieve the best
performance.

NOTE
This compiler option is not recommended if you plan to ship object files as part of a final
product.

NOTE
This option only applies to host compilation. When offloading is enabled, it does not impact
device-specific compilation. Offloading can only be enabled when using ifx.

IDE Equivalent

None

Alternate Options

None

Examples
The following shows examples of using this option:

Linux

ifx -fiopenmp -fopenmp-targets=spir64 -ftarget-compile-fast foo.F90 -o a.out
Windows

ifx /Qiopenmp /Qopenmp-targets=spir64 /ftarget-compile-fast foo.F90 /object:a.out

ftarget-register-alloc-mode, Qtarget-register-alloc-mode
Specifies a register allocation mode for specific
hardware for use by supported target backends. This
feature is only available for ifx.

Syntax

Linux OS:

-ftarget-register-alloc-mode=device-name:reg-mode[, device-name:reg-mode][,...]

Windows OS:

/Qtarget-register-alloc-mode:device-name:reg-mode[, device-name:reg-mode][,...]

Arguments

device-name Is the device name. Currently, you can only specify the following:

pvc Indicates a Ponte Vecchio (PVC) device.

Intel® Fortran Compiler Classic and Intel® Fortran Compiler Developer Guide and Reference 1

197

More devices may be added in the future.

reg-mode Is the register allocation mode. It can be any of the following:

default Tells the target backend to not impose any specification
when choosing a register allocation mode.

small Tells the target backend to select small register allocation
mode (for PVC, this means to use the 128 register file).

large Tells the target backend to select large register allocation
mode (for PVC, this means to use the 256 register file).

auto Tells the target backend to use internal heuristics to select
a register allocation mode based on kernel analysis.

Default

The following is the default behavior on PVC hardware:

Linux:
-ftarget-register-alloc-mode=pvc:auto

Tells the target backend to use internal heuristics to select a register allocation mode
based on kernel analysis.

Windows:
/Qtarget-register-alloc-mode=pvc:default

Tells the target backend to not impose any specification when choosing a register
allocation mode.

Description

This option specifies a register allocation mode for specific hardware for use by supported target backends.
Currently, it has no effect if you are targeting hardware other than Ponte Vecchio (PVC).

Caution
When compiling a SYCL program or an OMP-offload program for PVC or if the program will
run on PVC, you should not specify the register allocation mode using IGC (Intel Graphics
Compiler) options such as -ze-opt-large-register-file in the -Xs high-level option. You
should instead use option -ftarget-register-alloc-mode (Linux)
or /Qtarget-register-alloc-mode (Windows).

However, when you are targeting other hardware, you should use the IGC option.

For information about available SYCL drivers, refer to Invoke the Compiler.

NOTE
When SYCL offloading is enabled, this option only applies to device-specific compilation.

IDE Equivalent

None

Alternate Options

None

Examples
The following shows examples of using this option:

 1 Intel® Fortran Compiler Classic and Intel® Fortran Compiler Developer Guide and Reference

198

Linux

ifx -fiopenmp -fopenmp-targets=spir64 -ftarget-register-alloc-mode=pvc:large a.for
ifx -fiopenmp -ftarget-register-alloc-mode=pvc:large -fopenmp-targets =spir64_gen -Xs "-device
pvc"

Windows

ifx /Qiopenmp /Qopenmp-targets:spir64 /Qtarget-register-alloc-mode:pvc:large a.for
ifx /Qiopenmp /Qtarget-register-alloc-mode:pvc:large /Qopenmp-targets =spir64_gen -Xs "-device
pvc"

nolibsycl
Disables linking of the SYCL* runtime library. This
feature is only available for ifx.

Syntax

Linux OS:

-nolibsycl
Windows OS:

-nolibsycl

Arguments

None

Default

OFF The SYCL* runtime library is linked.

Description

This option disables linking of the SYCL* runtime library.

This option is only effective if you have specified option -fsycl.

NOTE
This option only applies to host compilation. When offloading is enabled, it does not impact
device-specific compilation. Offloading can only be enabled when using ifx.

IDE Equivalent

None

Alternate Options

None

par-affinity, Qpar-affinity
Specifies thread affinity. This feature is only available
for ifort.

Intel® Fortran Compiler Classic and Intel® Fortran Compiler Developer Guide and Reference 1

199

Syntax

Linux OS:

-par-affinity=[modifier,...]type[,permute][,offset]
Windows OS:

/Qpar-affinity:[modifier,...]type[,permute][,offset]

Arguments

modifier Is one of the following values: granularity={fine|thread|core|
tile}, [no]respect, [no]verbose, [no]warnings,
proclist=proc_list. The default is granularity=core, respect,
and noverbose. For information on value proclist, see Thread
Affinity Interface.

type Indicates the thread affinity. This argument is required and must be
one of the following values: compact, disabled, explicit, none,
scatter, logical, physical. The default is none. Values logical
and physical are deprecated. Use compact and scatter,
respectively, with no permute value.

permute Is a positive integer. You cannot use this argument with type setting
explicit, none, or disabled. The default is 0.

offset Is a positive integer. You cannot use this argument with type setting
explicit, none, or disabled. The default is 0.

Default

OFF The thread affinity is determined by the runtime environment.

Description

This option specifies thread affinity, which binds threads to physical processing units. It has the same effect
as environment variable KMP_AFFINITY.

This option overrides the environment variable when both are specified.

This option only has an effect if the following is true:

• You have specified option [Q]parallel or option [q or Q]openmp (or both).
• You are compiling the main program.

NOTE
This option may behave differently on Intel® microprocessors than on non-Intel
microprocessors.

IDE Equivalent

None

Alternate Options

None

 1 Intel® Fortran Compiler Classic and Intel® Fortran Compiler Developer Guide and Reference

200

See Also
parallel, Qparallel compiler option
qopt-report, Qopt-report compiler option (ifort)

par-num-threads, Qpar-num-threads
Specifies the number of threads to use in a parallel
region. This feature is only available for ifort.

Syntax

Linux OS:

-par-num-threads=n
Windows OS:

/Qpar-num-threads:n

Arguments

n Is the number of threads to use. It must be a positive integer.

Default

OFF The number of threads to use is determined by the runtime environment.

Description

This option specifies the number of threads to use in a parallel region. It has the same effect as environment
variable OMP_NUM_THREADS.

This option overrides the environment variable when both are specified.

This option only has an effect if the following is true:

• You have specified option [Q]parallel or option [q or Q]openmp (or both).
• You are compiling the main program.

IDE Equivalent

None

Alternate Options

None

See Also
parallel, Qparallel compiler option
qopt-report, Qopt-report compiler option (ifort)

par-runtime-control, Qpar-runtime-control
Generates code to perform runtime checks for loops
that have symbolic loop bounds. This feature is only
available for ifort.

Syntax

Linux OS:

-par-runtime-control[n]
-no-par-runtime-control

Intel® Fortran Compiler Classic and Intel® Fortran Compiler Developer Guide and Reference 1

201

Windows OS:

/Qpar-runtime-control[n]
/Qpar-runtime-control-

Arguments

n Is a value denoting what kind of runtime checking to perform. Possible
values are:

0 Performs no runtime check based on auto-
parallelization. This is the same as specifying
-no-par-runtime-control (Linux*)
or /Qpar-runtime-control- (Windows*).

1 Generates runtime check code under
conservative mode. This is the default if you
do not specify n.

2 Generates runtime check code under
heuristic mode.

3 Generates runtime check code under
aggressive mode.

Default

-no-par-runtime-control
or /Qpar-runtime-control-

The compiler uses default heuristics when checking loops.

Description

This option generates code to perform runtime checks for loops that have symbolic loop bounds.

If the granularity of a loop is greater than the parallelization threshold, the loop will be executed in parallel.

If you do not specify this option, the compiler may not parallelize loops with symbolic loop bounds if the
compile-time granularity estimation of a loop can not ensure it is beneficial to parallelize the loop.

NOTE
This option may behave differently on Intel® microprocessors than on non-Intel
microprocessors.

IDE Equivalent

None

Alternate Options

None

par-schedule, Qpar-schedule
Lets you specify a scheduling algorithm for loop
iterations. This feature is only available for ifort.

 1 Intel® Fortran Compiler Classic and Intel® Fortran Compiler Developer Guide and Reference

202

Syntax

Linux OS:

-par-schedule-keyword[=n]
Windows OS:

/Qpar-schedule-keyword[[:]n]

Arguments

keyword Specifies the scheduling algorithm or tuning method. Possible values are:

auto Lets the compiler or runtime system determine the
scheduling algorithm.

static Divides iterations into contiguous pieces.

static-balanced Divides iterations into even-sized chunks.

static-steal Divides iterations into even-sized chunks, but allows
threads to steal parts of chunks from neighboring threads.

dynamic Gets a set of iterations dynamically.

guided Specifies a minimum number of iterations.

guided-analytical Divides iterations by using exponential distribution or
dynamic distribution.

runtime Defers the scheduling decision until runtime.

n Is the size of the chunk or the number of iterations for each chunk.
This setting can only be specified for static, dynamic, and guided. For
more information, see the descriptions of each keyword below.

Default

static-balanced Iterations are divided into even-sized chunks and the chunks are assigned
to the threads in the team in a round-robin fashion in the order of the
thread number.

Description

This option lets you specify a scheduling algorithm for loop iterations. It specifies how iterations are to be
divided among the threads of the team.

This option is only useful when specified with option [Q]parallel.

This option affects performance tuning and can provide better performance during auto-parallelization. It
does nothing if it is used with option [q or Q]openmp.

Option Description

[Q]par-schedule-auto Lets the compiler or runtime system determine the
scheduling algorithm. Any possible mapping may
occur for iterations to threads in the team.

Intel® Fortran Compiler Classic and Intel® Fortran Compiler Developer Guide and Reference 1

203

Option Description

[Q]par-schedule-static Divides iterations into contiguous pieces (chunks) of
size n. The chunks are assigned to threads in the
team in a round-robin fashion in the order of the
thread number. Note that the last chunk to be
assigned may have a smaller number of iterations.

If no n is specified, the iteration space is divided
into chunks that are approximately equal in size,
and each thread is assigned at most one chunk.

[Q]par-schedule-static-balanced Divides iterations into even-sized chunks. The
chunks are assigned to the threads in the team in a
round-robin fashion in the order of the thread
number.

[Q]par-schedule-static-steal Divides iterations into even-sized chunks, but when
a thread completes its chunk, it can steal parts of
chunks assigned to neighboring threads.

Each thread keeps track of L and U, which
represent the lower and upper bounds of its chunks
respectively. Iterations are executed starting from
the lower bound, and simultaneously, L is updated
to represent the new lower bound.

[Q]par-schedule-dynamic Can be used to get a set of iterations dynamically.
Assigns iterations to threads in chunks as the
threads request them. The thread executes the
chunk of iterations, then requests another chunk,
until no chunks remain to be assigned.

As each thread finishes a piece of the iteration
space, it dynamically gets the next set of iterations.
Each chunk contains n iterations, except for the last
chunk to be assigned, which may have fewer
iterations. If no n is specified, the default is 1.

[Q]par-schedule-guided Can be used to specify a minimum number of
iterations. Assigns iterations to threads in chunks as
the threads request them. The thread executes the
chunk of iterations, then requests another chunk,
until no chunks remain to be assigned.

For a chunk of size 1, the size of each chunk is
proportional to the number of unassigned iterations
divided by the number of threads, decreasing to 1.

For an n with value k (greater than 1), the size of
each chunk is determined in the same way with the
restriction that the chunks do not contain fewer
than k iterations (except for the last chunk to be
assigned, which may have fewer than k iterations).
If no n is specified, the default is 1.

 1 Intel® Fortran Compiler Classic and Intel® Fortran Compiler Developer Guide and Reference

204

Option Description

[Q]par-schedule-guided-analytical Divides iterations by using exponential distribution
or dynamic distribution. The method depends on
runtime implementation. Loop bounds are
calculated with faster synchronization and chunks
are dynamically dispatched at runtime by threads in
the team.

[Q]par-schedule-runtime Defers the scheduling decision until runtime. The
scheduling algorithm and chunk size are then taken
from the setting of environment variable
OMP_SCHEDULE.

NOTE
This option may behave differently on Intel® microprocessors than on non-Intel
microprocessors.

IDE Equivalent

None

Alternate Options

None

par-threshold, Qpar-threshold
Sets a threshold for the auto-parallelization of loops.
This feature is only available for ifort.

Syntax

Linux OS:

-par-threshold[n]
Windows OS:

/Qpar-threshold[[:]n]

Arguments

n Is an integer whose value is the threshold for the auto-parallelization
of loops. Possible values are 0 through 100.

If n is 0, loops get auto-parallelized always, regardless of computation
work volume.

If n is 100, loops get auto-parallelized when performance gains are
predicted based on the compiler analysis data. Loops get auto-
parallelized only if profitable parallel execution is almost certain.

The intermediate 1 to 99 values represent the percentage probability
for profitable speed-up. For example, n=50 directs the compiler to
parallelize only if there is a 50% probability of the code speeding up if
executed in parallel.

Intel® Fortran Compiler Classic and Intel® Fortran Compiler Developer Guide and Reference 1

205

Default

-par-threshold100
or /Qpar-threshold100

Loops get auto-parallelized only if profitable parallel execution is almost
certain. This is also the default if you do not specify n.

Description

This option sets a threshold for the auto-parallelization of loops based on the probability of profitable
execution of the loop in parallel. To use this option, you must also specify option [Q]parallel.

This option is useful for loops whose computation work volume cannot be determined at compile-time. The
threshold is usually relevant when the loop trip count is unknown at compile-time.

The compiler applies a heuristic that tries to balance the overhead of creating multiple threads versus the
amount of work available to be shared amongst the threads.

NOTE
This option may behave differently on Intel® microprocessors than on non-Intel
microprocessors.

IDE Equivalent

Windows

Visual Studio: Optimization > Threshold For Auto-Parallelization

Alternate Options

None

parallel, Qparallel (ifort only)
Tells the auto-parallelizer to generate multithreaded
code for loops that can be safely executed in parallel.

Syntax

Linux OS:

-parallel
Windows OS:

/Qparallel(or /Qpar)

Arguments

None

Default

OFF Multithreaded code is not generated for loops that can be safely executed in parallel.

Description

This option tells the auto-parallelizer to generate multithreaded code for loops that can be safely executed in
parallel.

To use this option, you must also specify option O2 or O3.

On ifort, this option sets option [q or Q]opt-matmul if option O3 is also specified.

 1 Intel® Fortran Compiler Classic and Intel® Fortran Compiler Developer Guide and Reference

206

NOTE
Using this option enables parallelization for both Intel® microprocessors and non-Intel
microprocessors. The resulting executable may get additional performance gain on Intel
microprocessors than on non-Intel microprocessors. The parallelization can also be affected
by certain options, such as /arch or /Qx (Windows*) or -m or -x (Linux*).

Product and Performance Information

Performance varies by use, configuration and other factors. Learn more at www.Intel.com/
PerformanceIndex.

Notice revision #20201201

IDE Equivalent

Visual Studio

Visual Studio: Optimization > Parallelization

Alternate Options

None

See Also
qopt-report, Qopt-report compiler option (ifort)
par-affinity, Qpar-affinity compiler option
par-num-threads, Qpar-num-threads compiler option
par-runtime-control, Qpar-runtime-control compiler option
par-schedule, Qpar-schedule compiler option
qopt-matmul, Qopt-matmul compiler option
O compiler option

parallel, Qparallel (ifx only)
Tells the compiler to attempt to generate
multithreaded code for DO CONCURRENT loops.

Syntax

Linux OS:

-parallel
Windows OS:

/Qparallel(or /Qpar)

Arguments

None

Default

OFF Multithreaded code is not generated for loops that can be safely executed in parallel

Description

This option tells the compiler to attempt to generate multithreaded code for DO CONCURRENT loops.

Intel® Fortran Compiler Classic and Intel® Fortran Compiler Developer Guide and Reference 1

207

https://www.intel.com/PerformanceIndex
https://www.intel.com/PerformanceIndex

To attempt to create a multithreaded parallel version of the loop, the compiler will insert an OpenMP*
PARALLEL DO directive before each DO CONCURRENT loop.

To use this option, you must also specify option O2 or O3.

IDE Equivalent

None

Alternate Options

None

See Also
qopt-report, Qopt-report compiler option (ifx)
O compiler option
DO CONCURRENT

parallel-source-info, Qparallel-source-info
Enables or disables source location emission when
OpenMP* or auto-parallelism code is generated.

Syntax

Linux OS:

-parallel-source-info[=n]
-no-parallel-source-info

Windows OS:

/Qparallel-source-info
/Qparallel-source-info-[:n]

Arguments

n Is the level of source location emission. Possible values are:

0 Disables the emission of source location
information when OpenMP* code or auto-
parallelism code is generated. This is the
same as specifying
-no-parallel-source-info (Linux*)
or /Qparallel-source-info- (Windows*).

1 Tells the compiler to emit routine name and
line information. This is the same as
specifying [Q]parallel-source-info with
no n.

2 Tells the compiler to emit path, file, routine
name, and line information.

Default

-parallel-source-info=1
or
/Qparallel-source-info:1

When OpenMP* code or auto-parallelism code is generated, the routine
name and line information is emitted.

 1 Intel® Fortran Compiler Classic and Intel® Fortran Compiler Developer Guide and Reference

208

Description

This option enables or disables source location emission when OpenMP code or auto-parallelism code is
generated. It also lets you set the level of emission.

IDE Equivalent

None

Alternate Options

None

qopenmp, Qopenmp
You can substitute the option named -qopenmp for
option -fopenmp or -fiopenmp (ifx), and you can
substitute the option named /Qopenmp for option /
Qiopenmp (ifx).

Note that when you specify ifx option -fiopenmp (or /Qiopenmp), it provides the ability to offload to a GPU
when -fopenmp-targets (or /Qopenmp-targets) is also specified.

For more information, see fopenmp, Qopenmp and fiopenmp, Qiopenmp.

qopenmp-lib, Qopenmp-lib
Lets you specify an OpenMP* runtime library to use
for linking. This feature is only available for ifort.

Syntax

Linux OS:

-qopenmp-lib=type
Windows OS:

/Qopenmp-lib:type

Arguments

type Specifies the type of library to use; it implies compatibility levels. Currently, the only
possible value is:

compat Tells the compiler to use the compatibility OpenMP*
runtime library (libiomp). This setting provides
compatibility with object files created using Microsoft* and
GNU* compilers.

Default

-qopenmp-lib=compat
or /Qopenmp-lib:compat

The compiler uses the compatibility OpenMP* runtime library
(libiomp).

Description

This option lets you specify an OpenMP* runtime library to use for linking.

The compatibility OpenMP runtime libraries are compatible with object files created using the Microsoft*
OpenMP runtime library (vcomp) or the GNU OpenMP runtime library (libgomp).

Intel® Fortran Compiler Classic and Intel® Fortran Compiler Developer Guide and Reference 1

209

To use the compatibility OpenMP runtime library, compile and link your application using the compat setting
for option [q or Q]openmp-lib. To use this option, you must also specify one of the following compiler
options:

• Linux* systems: -qopenmp or -qopenmp-stubs
• Windows* systems: /Qopenmp or /Qopenmp-stubs
Linux

The compatibility Intel OpenMP* runtime library lets you combine OpenMP* object files compiled with the
GNU* gcc or gfortran compilers with similar OpenMP* object files compiled with the Intel® C, Intel® C++, or
Intel® Fortran Compiler. The linking phase results in a single, coherent copy of the runtime library.

This option is processed by the compiler driver command that initiates linking, adding library names explicitly
to the link command.

You cannot link object files generated by the Intel® Fortran compiler to object files compiled by the GNU
Fortran compiler, regardless of the presence or absence of the [Q]openmp compiler option. This is because
the Fortran runtime libraries are incompatible.

Windows

The compatibility OpenMP* runtime library lets you combine OpenMP* object files compiled with the
Microsoft* C/C++ compiler with OpenMP* object files compiled with the Intel® C, Intel® C++, or Intel®
Fortran compilers. The linking phase results in a single, coherent copy of the runtime library.

This option is processed by the compiler, which adds directives to the compiled object file that are processed
by the linker.

NOTE The compatibility OpenMP runtime library is not compatible with object files created
using versions of the Intel compilers earlier than 10.0.

IDE Equivalent

None

Alternate Options

None

See Also
qopenmp, Qopenmp compiler option
qopenmp-stubs, Qopenmp-stubs compiler option

qopenmp-link
Controls whether the compiler links to static or
dynamic OpenMP* runtime libraries.

Syntax

Linux OS:

-qopenmp-link=library
Windows OS:

None

 1 Intel® Fortran Compiler Classic and Intel® Fortran Compiler Developer Guide and Reference

210

Arguments

library Specifies the OpenMP library to use. Possible values are:

static Tells the compiler to link to static OpenMP
runtime libraries. Note that static OpenMP
libraries are deprecated.

dynamic Tells the compiler to link to dynamic OpenMP
runtime libraries.

Default

-qopenmp-link=dynamic The compiler links to dynamic OpenMP* runtime libraries.
However, if Linux* option -static is specified, the compiler
links to static OpenMP runtime libraries.

Description

This option controls whether the compiler links to static or dynamic OpenMP* runtime libraries.

To link to the static OpenMP runtime library (RTL) and create a purely static executable, you must specify
-qopenmp-link=static. However, we strongly recommend you use the default setting,
-qopenmp-link=dynamic.

Option -qopenmp-link=dynamic cannot be used in conjunction with option -static. If you try to specify
both options together, an error will be displayed.

NOTE
Compiler options -static-intel and -shared-intel (Linux*) have no effect on which
OpenMP runtime library is linked.

NOTE
On Linux systems, the OpenMP runtime library depends on using libpthread and libc (libgcc
when compiled with gcc). Libpthread and libc (libgcc) must both be static or both be
dynamic.

If both libpthread and libc (libgcc) are static, then the static version of the OpenMP runtime should be
used. If both libpthread and libc (libgcc) are dynamic, then either the static or dynamic version of the
OpenMP time may be used.

NOTE
This option only applies to host compilation. When offloading is enabled, it does not impact
device-specific compilation. Offloading can only be enabled when using ifx.

IDE Equivalent

None

Alternate Options

None

Intel® Fortran Compiler Classic and Intel® Fortran Compiler Developer Guide and Reference 1

211

qopenmp-simd, Qopenmp-simd
Enables or disables OpenMP* SIMD compilation.

Syntax

Linux OS:

-qopenmp-simd
-qno-openmp-simd
Windows OS:

/Qopenmp-simd
/Qopenmp-simd-

Arguments

None

Default

-qopenmp-simd or /Qopenmp-simd OpenMP* SIMD compilation is enabled if the following option is
in effect:

• ifort: O2 or higher
• ifx: O1 or higher

OpenMP* SIMD compilation is always disabled at this
optimization level:

• ifort: levels O1 or lower
• ifx: O0
When OpenMP* SIMD compilation is in effect because of the
setting of option O, the OpenMP SIMD compilation can only be
disabled by specifying option -qno-openmp-simd
or /Qopenmp-simd-.

OpenMP SIMD compilation is not disabled by specifying option
-qno-openmp or /Qopenmp-.

Description

This option enables or disables OpenMP* SIMD compilation.

You can use this option if you want to enable or disable the SIMD support with no impact on other OpenMP
features. In this case, no OpenMP runtime library is needed to link and the compiler does not need to
generate OpenMP runtime initialization code.

When you specify [q or Q]openmp, it implies [q or Q]openmp-simd.

If you specify this option with the [q or Q]openmp option, it can impact other OpenMP features.

IDE Equivalent

None

Alternate Options

ifort: None

On ifx:

 1 Intel® Fortran Compiler Classic and Intel® Fortran Compiler Developer Guide and Reference

212

Linux: -fopenmp-simd and -fiopenmp-simd

Windows: /Qiopenmp-simd

Example
The lines in the following example are equivalent to specifying only [q or Q]openmp-simd. In this case,
only SIMD support is provided, the OpenMP* library is not linked, and only the !$OMP directives related to
SIMD are processed:

Linux

-qno-openmp -qopenmp-simd
Windows

/Qopenmp- /Qopenmp-simd
In the following example, SIMD support is provided, the OpenMP library is linked, and OpenMP runtime
initialization code is generated:

Linux

-qopenmp -qopenmp-simd
Windows

/Qopenmp /Qopenmp-simd

See Also
qopenmp, Qopenmp compiler option
O compiler option
DECLARE SIMD
SIMD Directive for OpenMP

qopenmp-stubs, Qopenmp-stubs
Enables compilation of OpenMP* programs in
sequential mode.

Syntax

Linux OS:

-qopenmp-stubs
Windows OS:

/Qopenmp-stubs

Arguments

None

Default

OFF The library of OpenMP* function stubs is not linked.

Description

This option enables compilation of OpenMP* programs in sequential mode. The OpenMP directives are
ignored and a stub OpenMP library is linked.

Intel® Fortran Compiler Classic and Intel® Fortran Compiler Developer Guide and Reference 1

213

NOTE
This option only applies to host compilation. When offloading is enabled, it does not impact
device-specific compilation. Offloading can only be enabled when using ifx.

IDE Equivalent

Windows

Visual Studio: Language > Process OpenMP Directives

Alternate Options

None

See Also
qopenmp, Qopenmp compiler option

qopenmp-threadprivate, Qopenmp-threadprivate
Lets you specify an OpenMP* threadprivate
implementation.

Syntax

Linux OS:

-qopenmp-threadprivate=type
Windows OS:

/Qopenmp-threadprivate:type

Arguments

type Specifies the type of threadprivate implementation. Possible values
are:

legacy Tells the compiler to use the legacy OpenMP*
threadprivate implementation used in the
previous releases of the Intel® compiler. This
setting does not provide compatibility with
the implementation used by other compilers.

compat Tells the compiler to use the compatibility
OpenMP* threadprivate implementation
based on applying the thread-local attribute
to each threadprivate variable. This setting
provides compatibility with the
implementation provided by the Microsoft*
and GNU* compilers.

Default

ifort: -qopenmp-threadprivate=legacy
or /Qopenmp-threadprivate:legacy

The compiler uses the legacy OpenMP* threadprivate
implementation used in the previous releases of the Intel
compiler.

 1 Intel® Fortran Compiler Classic and Intel® Fortran Compiler Developer Guide and Reference

214

ifx: -qopenmp-threadprivate=compat
or /Qopenmp-threadprivate:compat

The compiler uses the compatibility OpenMP* threadprivate
implementation.

Description

This option lets you specify an OpenMP* threadprivate implementation.

The threadprivate implementation of the legacy OpenMP runtime library may not be compatible with object
files created using OpenMP runtime libraries supported in other compilers.

To use this option, you must also specify one of the following compiler options:

• Linux* systems: -qopenmp or -qopenmp-stubs
• Windows* systems: /Qopenmp or /Qopenmp-stubs
The value specified for this option is independent of the value used for the [q or Q]openmp-lib option.

NOTE
On Windows* systems, if you specify option /Qopenmp-threadprivate:compat, the compiler
does not generate threadsafe code for common blocks in an !$OMP THREADPRIVATE
directive unless at least one element in the common block is explicitly initialized.

IDE Equivalent

None

Alternate Options

None

See Also
qopenmp, Qopenmp compiler option
qopenmp-stubs, Qopenmp-stubs compiler option

Qpar-adjust-stack
Tells the compiler to generate code to adjust the stack
size for a fiber-based main thread. This feature is only
available for ifort.

Syntax

Linux OS:

None
Windows OS:

/Qpar-adjust-stack:n

Arguments

n Is the stack size (in bytes) for the fiber-based main thread. It must be
a number equal to or greater than zero.

Default

/Qpar-adjust-stack:0 No adjustment is made to the main thread stack size.

Intel® Fortran Compiler Classic and Intel® Fortran Compiler Developer Guide and Reference 1

215

Description

This option tells the compiler to generate code to adjust the stack size for a fiber-based main thread. This
can reduce the stack size of threads.

For this option to be effective, you must also specify option /Qparallel.

IDE Equivalent

None

Alternate Options

None

See Also
parallel, Qparallel compiler option

Xopenmp-target
Enables options to be passed to the specified tool in
the device compilation tool chain for the OpenMP*
target. This feature is only available for ifx.

Syntax

Linux OS:

-Xopenmp-target-tool=T "options"
Windows OS:

-Xopenmp-target-tool=T "options"

Arguments

tool Can be one of the following:

frontend Indicates the frontend + middle end of the Standard
Portable Intermediate Representation (SPIR-V*)-based
device compiler for target triple T.

The middle end is the part of a SPIR-V*-based device
compiler that generates SPIR-V*. This SPIR-V* is then
passed by the compiler driver to the backend of target T.

backend Indicates Ahead of Time (AOT) compilation for target triple
T and Just in Time (JIT) compilation for target T at
runtime.

linker Indicates the device code linker for target triple T.

Some targets may have frontend and backend in one component; in that case, options are
merged.

T Is the target triple device.

options Are the options you want to pass to tool.

Default

OFF No options are passed to a tool.

 1 Intel® Fortran Compiler Classic and Intel® Fortran Compiler Developer Guide and Reference

216

Description

This option enables options to be passed to the specified tool in the device compilation tool chain for the
OpenMP target.

NOTE
When OpenMP* offloading is enabled, this option only applies to device-specific compilation.

IDE Equivalent

None

Alternate Options

None

Xsycl-target
Enables options to be passed to the specified tool in
the device compilation tool chain for the SYCL* target.
This feature is only available for ifx.

Syntax

Linux OS:

-Xsycl-target-tool=T "options"
Windows OS:

-Xsycl-target-tool=T "options"

Arguments

tool Can be one of the following:

frontend Indicates the frontend + middle end of the Standard
Portable Intermediate Representation (SPIR-V*)-based
device compiler for target triple T.

The middle end is the part of a SPIR-V*-based device
compiler that generates SPIR-V*. This SPIR-V* is then
passed by the compiler driver to the backend of target T.

backend Indicates Ahead of Time (AOT) compilation for target triple
T and Just in Time (JIT) compilation for target T at
runtime.

linker Indicates the device code linker for target triple T.

Some targets may have frontend and backend in one component; in that case, options are
merged.

T Is the target triple device.

options Are the options you want to pass to tool.

Default

OFF No options are passed to a tool.

Intel® Fortran Compiler Classic and Intel® Fortran Compiler Developer Guide and Reference 1

217

Description

This option enables options to be passed to the specified tool in the device compilation tool chain for the
SYCL target.

NOTE
When SYCL offloading is enabled, this option only applies to device-specific compilation.

IDE Equivalent

None

Alternate Options

None

Interprocedural Optimization Options
This section contains descriptions for compiler options that pertain to interprocedural optimization. They are
listed in alphabetical order.

Caution
Files compiled with any of these options should also be linked with the same option, or the link step
may fail.

ffat-lto-objects
Determines whether a fat link-time optimization (LTO)
object, containing both intermediate language and
object code, is generated during an interprocedural
optimization compilation (-c –ipo). This feature is only
available for ifort.

Syntax

Linux OS:

-ffat-lto-objects
-fno-fat-lto-objects
Windows OS:

None

Arguments

None

Default

-ffat-lto-objects When -c -ipo is specified, the compiler generates a fat link-time
optimization (LTO) object that has both a true object and a discardable
intermediate language section.

Description

This option determines whether a fat link time optimization (LTO) object, containing both intermediate
language and object code, is generated during an interprocedural optimization compilation (-c -ipo).

 1 Intel® Fortran Compiler Classic and Intel® Fortran Compiler Developer Guide and Reference

218

During an interprocedural optimization compilation (-c -ipo), the following occurs:

• If you specify -ffat-lto-objects, the compiler generates a fat link-time optimization (LTO) object that
has both a true object and a discardable intermediate language section. This enables both link-time
optimization (LTO) linking and normal linking.

• If you specify -fno-fat-lto-objects, the compiler generates a fat link-time optimization (LTO) object
that only has a discardable intermediate language section; no true object is generated. This option may
improve compilation time.

Note that these files will be inserted into archives in the form in which they were created.

Caution
Files compiled with option -ffat-lto-objects should also be linked with the same option, or
the link step may fail.

This option is provided for compatibility with gcc. For more information about this option, see the gcc
documentation.

NOTE
Intel's intermediate language representation is not compatible with gcc's intermediate
language representation.

IDE Equivalent

None

Alternate Options

None

See Also
ipo, Qipo compiler option

flto
Enables whole program link time optimization (LTO).
This feature is only available for ifx.

Syntax

Linux OS:

-flto[=arg]
-fno-lto
Windows OS:

-flto[=arg]
-fno-lto

Arguments

arg Is the link time optimization to perform. Possible values are:

Intel® Fortran Compiler Classic and Intel® Fortran Compiler Developer Guide and Reference 1

219

full Tells the compiler to merge all input into a
single module before performing link time
optimization (LTO).

This is the default if you specify -flto with
no argument.

thin Tells the compiler to read the information
from a summary and then do LTO in parallel.
This form of LTO (also called ThinLTO) is
scalable and incremental.

For more information about thin LTO, see
https://clang.llvm.org/docs/ThinLTO.html.

Default

-fno-lto No link time optimization is performed.

Description

This option enables whole program link time optimization (LTO).

If you specify option -fno-lto, it disables whole program link time optimization.

If you specify -flto or -flto=full, compilation time may increase because of the additional optimizations.

Linux:

You can specify option -ipo as an alias for -flto. -ipo is equivalent to -flto.

If you want to specify a non-default linker, you must also specify option fuse-ld. Otherwise, the default
linker ld will be used.

Windows:

You can specify /Qipo as an alias for -flto.

/Qipo is the same as -flto during the compile step. During the link step, the compiler automatically adds
-fuse-ld=lld so the proper linker (lld) will be picked up to perform the expected optimizations. This
automatic inclusion is only performed for /Qipo; it is not performed for -flto on Windows.

Caution
Files compiled with option -flto should also be linked with the same option, or the link step
may fail.

NOTE
This option only applies to host compilation. When offloading is enabled, it does not impact
device-specific compilation.

IDE Equivalent

None

Alternate Options

None

 1 Intel® Fortran Compiler Classic and Intel® Fortran Compiler Developer Guide and Reference

220

https://clang.llvm.org/docs/ThinLTO.html

See Also
ipo, Qipo compiler option
fuse-ld compiler option

ip, Qip
Determines whether additional interprocedural
optimizations for single-file compilation are enabled.
This feature is only available for ifort.

Syntax

Linux OS:

-ip
-no-ip
Windows OS:

/Qip
/Qip-

Arguments

None

Default

OFF Some limited interprocedural optimizations occur, including inline function expansion for calls to
functions defined within the current source file. These optimizations are a subset of full intra-file
interprocedural optimizations. Note that this setting is not the same as -no-ip (Linux*) or /Qip-
(Windows*).

Description

This option determines whether additional interprocedural optimizations for single-file compilation are
enabled.

The [Q]ip option enables additional interprocedural optimizations for single-file compilation.

Options -no-ip (Linux) and /Qip- (Windows) may not disable inlining. To ensure that inlining of user-
defined functions is disabled, specify -inline-level=0or -fno-inline (Linux), or specify /Ob0 (Windows).

Caution
Files compiled with option -ip or /Qip should also be linked with the same option, or the link
step may fail.

IDE Equivalent

Windows

Visual Studio: Optimization > Interprocedural Optimization

Alternate Options

None

See Also
finline-functions compiler option

Intel® Fortran Compiler Classic and Intel® Fortran Compiler Developer Guide and Reference 1

221

ip-no-inlining, Qip-no-inlining
Disables full and partial inlining enabled by
interprocedural optimization options. This feature is
only available for ifort.

Syntax

Linux OS:

-ip-no-inlining
Windows OS:

/Qip-no-inlining

Arguments

None

Default

OFF Inlining enabled by interprocedural optimization options is performed.

Description

This option disables full and partial inlining enabled by the following interprocedural optimization options:

• On Linux* systems: -ip or -ipo
• On Windows* systems: /Qip, /Qipo, or /Ob2
It has no effect on other interprocedural optimizations.

On Windows systems, this option also has no effect on user-directed inlining specified by option /Ob1.

Caution
Files compiled with option -ip-no-inlining or /Qip-no-inlining should also be linked with
the same option, or the link step may fail.

IDE Equivalent

None

Alternate Options

None

ip-no-pinlining, Qip-no-pinlining
Disables partial inlining enabled by interprocedural
optimization options. This feature is only available for
ifort.

Syntax

Linux OS:

-ip-no-pinlining
Windows OS:

/Qip-no-pinlining

 1 Intel® Fortran Compiler Classic and Intel® Fortran Compiler Developer Guide and Reference

222

Arguments

None

Default

OFF Inlining enabled by interprocedural optimization options is performed.

Description

This option disables partial inlining enabled by the following interprocedural optimization options:

• On Linux* systems: -ip or -ipo
• On Windows* systems: /Qip or /Qipo
It has no effect on other interprocedural optimizations.

Caution
Files compiled with option -ip-no-pinlining or /Qip-no-pinlining should also be linked
with the same option, or the link step may fail.

IDE Equivalent

None

Alternate Options

None

ipo, Qipo
Enables interprocedural optimization between files.

Syntax

Linux OS:

-ipo
-ipo[n] (ifort only)
-no-ipo
Windows OS:

/Qipo
/Qipo[n] (ifort only)
/Qipo-

Arguments

ifx: None

ifort: n Is an optional integer that specifies the number of object files the
compiler should create. The integer must be greater than or equal to
0.

Intel® Fortran Compiler Classic and Intel® Fortran Compiler Developer Guide and Reference 1

223

Default

-no-ipo or /Qipo- Multifile interprocedural optimization is not enabled.

Description

This option enables interprocedural optimization between files. This is also called multifile interprocedural
optimization (multifile IPO) or Whole Program Optimization (WPO).

ifx:

When you specify this option, the compiler performs inline function expansion and other interprocedural
optimizations for calls to functions defined in separate files.

ifort:

If you do not specify n, the default is 0. Otherwise:

• If n is 0, the compiler decides whether to create one or more object files based on an estimate of the size
of the application. It generates one object file for small applications, and two or more object files for large
applications.

• If n is greater than 0, the compiler generates n object files, unless n exceeds the number of source files
(m), in which case the compiler generates only m object files.

Linux

On ifx, option -ipo automatically sets option -flto.

Windows

On ifx, option/Qipo automatically sets option -fuse-ld=lld.

NOTE
On ifx, when you specify option [Q]ipo with option [q or Q]opt-report, an optimization
report will be generated during the compilation step for each of the files that are compiled,
and for the link time compilation. Files generated during the compilation step are named
<file-name>.optrpt. The file generated during the link step is called ipo_out.optprt.

On ifort, when you specify option [Q]ipo with option [q or Q]opt-report, an optimization report
will be generated at link time. After linking, you will see a report named ipo_out.optrpt in the folder
where you linked all of the object files.

Caution
Files compiled with option -ipo or /Qipo should also be linked with the same option, or the
link step may fail.

NOTE
This option only applies to host compilation. When offloading is enabled, it does not impact
device-specific compilation. Offloading can only be enabled when using ifx.

IDE Equivalent

Windows

Visual Studio: Optimization > Interprocedural Optimization

 1 Intel® Fortran Compiler Classic and Intel® Fortran Compiler Developer Guide and Reference

224

General > Whole Program Optimization

Alternate Options

None

See Also
flto compiler option
fuse-ld compiler option

ipo-c, Qipo-c
Tells the compiler to optimize across multiple files and
generate a single object file. This feature is only
available for ifort.

Syntax

Linux OS:

-ipo-c
Windows OS:

/Qipo-c

Arguments

None

Default

OFF The compiler does not generate a multifile object file.

Description

This option tells the compiler to optimize across multiple files and generate a single object file (named
ipo_out.o on Linux* systems; ipo_out.obj on Windows* systems).

It performs the same optimizations as the [Q]ipo option, but compilation stops before the final link stage,
leaving an optimized object file that can be used in further link steps.

Caution
Files compiled with option -ipo-c or /Qipo-c should also be linked with the same option, or
the link step may fail.

IDE Equivalent

None

Alternate Options

None

See Also
ipo, Qipo compiler option

Intel® Fortran Compiler Classic and Intel® Fortran Compiler Developer Guide and Reference 1

225

ipo-jobs, Qipo-jobs
Specifies the number of commands (jobs) to be
executed simultaneously during the link phase of
Interprocedural Optimization (IPO). This feature is
only available for ifort.

Syntax

Linux OS:

-ipo-jobsn
Windows OS:

/Qipo-jobs:n

Arguments

n Is the number of commands (jobs) to run simultaneously. The number
must be greater than or equal to 1.

Default

-ipo-jobs1
or /Qipo-jobs:1

One command (job) is executed in an interprocedural optimization parallel
build.

Description

This option specifies the number of commands (jobs) to be executed simultaneously during the link phase of
Interprocedural Optimization (IPO). It should only be used if the link-time compilation is generating more
than one object. In this case, each object is generated by a separate compilation, which can be done in
parallel.

This option can be affected by the following compiler options:

• [Q]ipo when applications are large enough that the compiler decides to generate multiple object files.
• [Q]ipon when n is greater than 1.
• [Q]ipo-separate

Caution
Be careful when using this option. On a multi-processor system with lots of memory, it can
speed application build time. However, if n is greater than the number of processors, or if
there is not enough memory to avoid thrashing, this option can increase application build
time.

Caution
Files compiled with option -ipo-jobs or /Qipo-jobs should also be linked with the same
option, or the link step may fail.

IDE Equivalent

None

Alternate Options

None

 1 Intel® Fortran Compiler Classic and Intel® Fortran Compiler Developer Guide and Reference

226

See Also
ipo, Qipo compiler option
ipo-separate, Qipo-separate compiler option

ipo-S, Qipo-S
Tells the compiler to optimize across multiple files and
generate a single assembly file. This feature is only
available for ifort.

Syntax

Linux OS:

-ipo-S

Windows OS:

/Qipo-S

Arguments

None

Default

OFF The compiler does not generate a multifile assembly file.

Description

This option tells the compiler to optimize across multiple files and generate a single assembly file (named
ipo_out.s on Linux* systems; ipo_out.asm on Windows* systems).

It performs the same optimizations as the [Q]ipo option, but compilation stops before the final link stage,
leaving an optimized assembly file that can be used in further link steps.

Caution
Files compiled with option -ipo-S or /Qipo-S should also be linked with the same option, or
the link step may fail.

IDE Equivalent

None

Alternate Options

None

See Also
ipo, Qipo compiler option

ipo-separate, Qipo-separate
Tells the compiler to generate one object file for every
source file. This feature is only available for ifort.

Syntax

Linux OS:

-ipo-separate

Intel® Fortran Compiler Classic and Intel® Fortran Compiler Developer Guide and Reference 1

227

Windows OS:

/Qipo-separate

Arguments

None

Default

OFF The compiler decides whether to create one or more object files.

Description

This option tells the compiler to generate one object file for every source file. It overrides any [Q]ipo option
specification.

Caution
Files compiled with option -ipo-separate or /Qipo-separate should also be linked with the
same option, or the link step may fail.

IDE Equivalent

None

Alternate Options

None

See Also
ipo, Qipo compiler option

Profile Guided Optimization Options
This section contains descriptions for compiler options that pertain to profile-guided optimization. They are
listed in alphabetical order.

To view some examples, see Profile-Guided Optimization.

finstrument-functions, Qinstrument-functions
Determines whether routine entry and exit points are
instrumented.

Syntax

Linux OS:

-finstrument-functions
-fno-instrument-functions
Windows OS:

/Qinstrument-functions
/Qinstrument-functions-

Arguments

None

 1 Intel® Fortran Compiler Classic and Intel® Fortran Compiler Developer Guide and Reference

228

Default

-fno-instrument-functions
or /Qinstrument-functions-

Routine entry and exit points are not instrumented.

Description

This option determines whether routine entry and exit points are instrumented. It may increase execution
time.

The following profiling functions are called with the address of the current routine and the address of where
the routine was called (its "call site"):

• This function is called upon routine entry:

•void __cyg_profile_func_enter (void *this_fn,
void *call_site);

• This function is called upon routine exit:

•void __cyg_profile_func_exit (void *this_fn,
void *call_site);

These functions can be used to gather more information, such as profiling information or timing information.
Note that it is the user's responsibility to provide these profiling functions.

If you specify -finstrument-functions (Linux*) or /Qinstrument-functions (Windows*), routine
inlining is disabled. If you specify -fno-instrument-functions or /Qinstrument-functions-, inlining is
not disabled.

This option is provided for compatibility with gcc.

IDE Equivalent

None

Alternate Options

None

fnsplit, Qfnsplit
Enables function splitting. This feature is only
available for ifort.

Syntax

Linux OS:

-fnsplit[=n]
-no-fnsplit
Windows OS:

/Qfnsplit[:n]
/Qfnsplit-

Arguments

n Is an optional positive integer indicating the threshold number.

Intel® Fortran Compiler Classic and Intel® Fortran Compiler Developer Guide and Reference 1

229

The blocks can be placed into a different code segment if they are only
reachable via a conditional branch whose taken probability is less than
the specified n. Branch taken probability is heuristically calculated by
the compiler and can be observed in assembly listings.

The range for n is 0 <= n <= 100.

Default

OFF Function splitting is not enabled. However, function grouping is still
enabled.

Description

This option enables function splitting. If you specify [Q]fnsplit with no n, you must also specify option
[Q]prof-use, or the option will have no effect and no function splitting will occur.

If you specify n, function splitting is enabled and you do not need to specify option [Q]prof-use.

To disable function splitting when you use option [Q]prof-use, specify /Qfnsplit- (Windows*) or
-no-fnsplit (Linux*).

NOTE
Function splitting is generally not supported when exception handling is turned on for C/C+
+ routines in the stack of called routines. See also -fexceptions (Linux*).

IDE Equivalent

None

Alternate Options

Linux: -freorder-blocks-and-partition (a gcc option)

Windows: None

fprofile-ml-use
Enables the use of a pre-trained machine learning
model to predict branch execution probabilities driving
profile-guided optimizations. This feature is only
available for ifx.

Syntax

Linux OS:

-fprofile-ml-use
Windows OS:

/fprofile-ml-use

Arguments

None

 1 Intel® Fortran Compiler Classic and Intel® Fortran Compiler Developer Guide and Reference

230

Default

OFF The compiler follows default static heuristics for profile-guided optimizations.

Description

This option enables the use of a pre-trained machine learning model to predict branch execution probabilities
driving profile-guided optimizations.

It replaces the default static heuristics in the compiler and serves as a single-pass proxy to get the
performance gains from the true 2-pass profiling methods by instrumentation/sampling.

NOTE
This option only applies to host compilation. When offloading is enabled, it does not impact
device-specific compilation.

IDE Equivalent

Visual Studio

Visual Studio: Fortran -> Optimization > Use Pre-trained Machine Learning Model for Profile Guided
Optimizations

Alternate Options

None

Examples
The following shows examples of using this option:

Linux

ifx -c -fprofile-ml-use t.f90
Windows

ifx /c /fprofile-ml-use t.f90

p
Compiles and links for function profiling with gprof(1).
This feature is only available for ifort.

Syntax

Linux OS:

-p
Windows OS:

None

Arguments

None

Default

OFF Files are compiled and linked without profiling.

Intel® Fortran Compiler Classic and Intel® Fortran Compiler Developer Guide and Reference 1

231

Description

This option compiles and links for function profiling with gprof(1).

When you specify this option, inlining is disabled. However, you can override this by specifying directive
FORCEINLINE, or a compiler option such as [Q]inline-forceinline.

IDE Equivalent

None

Alternate Options

Linux: -pg,-qp (this is a deprecated option)

Windows: None

prof-data-order, Qprof-data-order
Enables or disables data ordering if profiling
information is enabled. This feature is only available
for ifort.

Syntax

Linux OS:

-prof-data-order
-no-prof-data-order
Windows OS:

/Qprof-data-order
/Qprof-data-order-

Arguments

None

Default

-no-prof-data-order
or /Qprof-data-order-

Data ordering is disabled.

Description

This option enables or disables data ordering if profiling information is enabled. It controls the use of profiling
information to order static program data items.

For this option to be effective, you must do the following:

• For instrumentation compilation, you must specify option [Q]prof-gen setting globdata.
• For feedback compilation, you must specify the [Q]prof-use option. You must not use multi-file

optimization by specifying options such as [Q]ipo or [Q]ipo-c.

IDE Equivalent

None

Alternate Options

None

 1 Intel® Fortran Compiler Classic and Intel® Fortran Compiler Developer Guide and Reference

232

See Also
prof-gen, Qprof-gen compiler option
prof-use, Qprof-use compiler option
prof-func-order, Qprof-func-order compiler option

prof-dir, Qprof-dir
Specifies a directory for profiling information output
files. This feature is only available for ifort.

Syntax

Linux OS:

-prof-dir dir
Windows OS:

/Qprof-dir:dir

Arguments

dir Is the name of the directory. You can specify a relative pathname or
an absolute pathname.

Default

OFF Profiling output files are placed in the directory where the program is compiled.

Description

This option specifies a directory for profiling information output files (*.dyn and *.dpi). The specified
directory must already exist.

You should specify this option using the same directory name for both instrumentation and feedback
compilations. If you move the .dyn files, you need to specify the new path.

Option /Qprof-dir is equivalent to option /Qcov-dir. If you specify both options, the last option specified
on the command line takes precedence.

IDE Equivalent

Windows

Visual Studio: Output Files > Profile Directory

Alternate Options

None

prof-file, Qprof-file
Specifies an alternate file name for the profiling
summary files. This feature is only available for ifort.

Syntax

Linux OS:

-prof-file filename
Windows OS:

/Qprof-file:filename

Intel® Fortran Compiler Classic and Intel® Fortran Compiler Developer Guide and Reference 1

233

Arguments

filename Is the name of the profiling summary file.

Default

OFF The profiling summary files have the file name pgopti.*

Description

This option specifies an alternate file name for the profiling summary files. The filename is used as the base
name for files created by different profiling passes.

If you add this option to profmerge, the .dpi file will be named filename.dpi instead of pgopti.dpi.

If you specify this option with option [Q]prof-use, the .dpi file will be named filename.dpi instead of
pgopti.dpi.

Option /Qprof-file is equivalent to option /Qcov-file. If you specify both options, the last option
specified on the command line takes precedence.

NOTE
When you use option [Q]prof-file, you can only specify a file name. If you want to specify
a path (relative or absolute) for filename, you must also use option [Q]prof-dir.

IDE Equivalent

None

Alternate Options

None

See Also
prof-gen, Qprof-gen compiler option
prof-use, Qprof-use compiler option
prof-dir, Qprof-dir compiler option

prof-func-groups
Enables or disables function grouping if profiling
information is enabled. This feature is only available
for ifort.

Syntax

Linux OS:

-prof-func-groups
-no-prof-func-groups
Windows OS:

None

Arguments

None

 1 Intel® Fortran Compiler Classic and Intel® Fortran Compiler Developer Guide and Reference

234

Default

-no-prof-func-groups Function grouping is disabled.

Description

This option enables or disables function grouping if profiling information is enabled.

A "function grouping" is a profiling optimization in which entire routines are placed either in the cold code
section or the hot code section.

If profiling information is enabled by option -prof-use, option -prof-func-groups is set and function
grouping is enabled. However, if you explicitly enable -prof-func-order, function ordering is performed
instead of function grouping.

If you want to disable function grouping when profiling information is enabled, specify
-no-prof-func-groups.

To set the hotness threshold for function grouping, use option -prof-hotness-threshold.

IDE Equivalent

None

See Also
prof-use, Qprof-use compiler option
prof-func-order, Qprof-func-order
 compiler option
prof-hotness-threshold, Qprof-hotness-threshold
 compiler option

prof-func-order, Qprof-func-order
Enables or disables function ordering if profiling
information is enabled. This feature is only available
for ifort.

Syntax

Linux OS:

-prof-func-order
-no-prof-func-order

Windows OS:

/Qprof-func-order
/Qprof-func-order-

Arguments

None

Default

-no-prof-func-order
or /Qprof-func-order-

Function ordering is disabled.

Description

This option enables or disables function ordering if profiling information is enabled.

Intel® Fortran Compiler Classic and Intel® Fortran Compiler Developer Guide and Reference 1

235

For this option to be effective, you must do the following:

• For instrumentation compilation, you must specify option [Q]prof-gen setting srcpos.
• For feedback compilation, you must specify [Q]prof-use. You must not use multi-file optimization by

specifying options such as [Q]ipo or [Q]ipo-c.

If you enable profiling information by specifying option [Q]prof-use, option [Q]prof-func-groups is set
and function grouping is enabled. However, if you explicitly enable the [Q]prof-func-order option, function
ordering is performed instead of function grouping.

On Linux* systems, this option is only available for Linux linker 2.15.94.0.1, or higher.

To set the hotness threshold for function grouping and function ordering, use option
[Q]prof-hotness-threshold.

IDE Equivalent

None

Alternate Options

None

Example
The following example shows how to use this option on a Windows system:

ifort /Qprof-gen:globdata file1.f90 file2.f90 /exe:instrumented.exe
 ./instrumented.exe
ifort /Qprof-use /Qprof-func-order file1.f90 file2.f90 /exe:feedback.exe

The following example shows how to use this option on a Linux system:

ifort -prof-gen:globdata file1.f90 file2.f90 -o instrumented
 ./instrumented.exe
ifort -prof-use -prof-func-order file1.f90 file2.f90 -o feedback

See Also
prof-hotness-threshold, Qprof-hotness-threshold compiler option
prof-gen, Qprof-gen compiler option
prof-use, Qprof-use compiler option
prof-data-order, Qprof-data-order compiler option
prof-func-groups compiler option

prof-gen, Qprof-gen
Produces an instrumented object file that can be used
in profile guided optimization. This feature is only
available for ifort.

Syntax

Linux OS:

-prof-gen[=keyword[, keyword],...]
-no-prof-gen
Windows OS:

/Qprof-gen[:keyword[,keyword],...]
/Qprof-gen-

 1 Intel® Fortran Compiler Classic and Intel® Fortran Compiler Developer Guide and Reference

236

Arguments

keyword Specifies details for the instrumented file. Possible values are:

default Produces an instrumented object file. This is
the same as specifying the [Q]prof-gen
option with no keyword.

srcpos Produces an instrumented object file that
includes extra source position information.

globdata Produces an instrumented object file that
includes information for global data layout.

[no]threadsafe Produces an instrumented object file that
includes the collection of PGO data on
applications that use a high level of
parallelism. If [Q]prof-gen is specified with
no keyword, the default is nothreadsafe.

Default

-no-prof-gen or /Qprof-gen- Profile generation is disabled.

Description

This option produces an instrumented object file that can be used in profile guided optimization. It gets the
execution count of each basic block.

You can specify more than one setting for [Q]prof-gen. For example, you can specify the following:

-prof-gen=srcpos -prof-gen=threadsafe (Linux*)
-prof-gen=srcpos, threadsafe (this is equivalent to the above)
/Qprof-gen:srcpos /Qprof-gen:threadsafe (Windows*)
/Qprof-gen:srcpos, threadsafe (this is equivalent to the above)

If you specify keyword srcpos or globdata, a static profile information file (.spi) is created. These settings
may increase the time needed to do a parallel build using -prof-gen, because of contention writing the .spi
file.

These options are used in phase 1 of the Profile Guided Optimizer (PGO) to instruct the compiler to produce
instrumented code in your object files in preparation for instrumented execution.

When the [Q]prof-gen option is used to produce an instrumented binary file for profile generation, some
optimizations are disabled. Those optimizations are not disabled for any subsequent profile-guided
compilation with option [Q]prof-use that makes use of the generated profiles.

IDE Equivalent

None

Alternate Options

None

See Also
prof-use, Qprof-use compiler option
Profile an Application with Instrumentation

Intel® Fortran Compiler Classic and Intel® Fortran Compiler Developer Guide and Reference 1

237

prof-hotness-threshold, Qprof-hotness-threshold
Lets you set the hotness threshold for function
grouping and function ordering. This feature is only
available for ifort.

Syntax

Linux OS:

-prof-hotness-threshold=n
Windows OS:

/Qprof-hotness-threshold:n

Arguments

n Is the hotness threshold. n is a percentage having a value between 0
and 100 inclusive. If you specify 0, there will be no hotness threshold
setting in effect for function grouping and function ordering.

Default

OFF The compiler's default hotness threshold setting of 10 percent is in effect for function
grouping and function ordering.

Description

This option lets you set the hotness threshold for function grouping and function ordering.

The "hotness threshold" is the percentage of functions in the application that should be placed in the
application's hot region. The hot region is the most frequently executed part of the application. By grouping
these functions together into one hot region, they have a greater probability of remaining resident in the
instruction cache. This can enhance the application's performance.

For this option to take effect, you must specify option [Q]prof-use and one of the following:

• On Linux systems: -prof-func-groups or -prof-func-order
• On Windows systems: /Qprof-func-order

IDE Equivalent

None

Alternate Options

None

See Also
prof-use, Qprof-use compiler option
prof-func-groups compiler option
prof-func-order, Qprof-func-order compiler option

prof-src-dir, Qprof-src-dir
Determines whether directory information of the
source file under compilation is considered when
looking up profile data records. This feature is only
available for ifort.

 1 Intel® Fortran Compiler Classic and Intel® Fortran Compiler Developer Guide and Reference

238

Syntax

Linux OS:

-prof-src-dir
-no-prof-src-dir
Windows OS:

/Qprof-src-dir
/Qprof-src-dir-

Arguments

None

Default

[Q]prof-src-dir Directory information is used when looking up profile data records in
the .dpi file.

Description

This option determines whether directory information of the source file under compilation is considered when
looking up profile data records in the .dpi file. To use this option, you must also specify the [Q]prof-use
option.

If the option is enabled, directory information is considered when looking up the profile data records within
the .dpi file. You can specify directory information by using one of the following options:

• Linux: -prof-src-root or -prof-src-root-cwd
• Windows: /Qprof-src-root or /Qprof-src-root-cwd
If the option is disabled, directory information is ignored and only the name of the file is used to find the
profile data record.

Note that option [Q]prof-src-dir controls how the names of the user's source files get represented within
the .dyn or .dpi files. Option [Q]prof-dir specifies the location of the .dyn or the .dpi files.

IDE Equivalent

None

Alternate Options

None

See Also
prof-use, Qprof-use compiler option
prof-src-root, Qprof-src-root compiler option
prof-src-root-cwd, Qprof-src-root-cwd compiler option

prof-src-root, Qprof-src-root
Lets you use relative directory paths when looking up
profile data and specifies a directory as the base. This
feature is only available for ifort.

Intel® Fortran Compiler Classic and Intel® Fortran Compiler Developer Guide and Reference 1

239

Syntax

Linux OS:

-prof-src-root=dir

Windows OS:

/Qprof-src-root:dir

Arguments

dir Is the base for the relative paths.

Default

OFF The setting of relevant options determines the path used when looking up profile data records.

Description

This option lets you use relative directory paths when looking up profile data in .dpi files. It lets you specify a
directory as the base. The paths are relative to a base directory specified during the [Q]prof-gen
compilation phase.

This option is available during the following phases of compilation:

• Linux* systems: -prof-gen and -prof-use phases
• Windows* systems: /Qprof-gen and /Qprof-use phases

When this option is specified during the [Q]prof-gen phase, it stores information into the .dyn or .dpi file.
Then, when .dyn files are merged together or the .dpi file is loaded, only the directory information below the
root directory is used for forming the lookup key.

When this option is specified during the [Q]prof-use phase, it specifies a root directory that replaces the
root directory specified at the [Q]prof-gen phase for forming the lookup keys.

To be effective, this option or option [Q]prof-src-root-cwd must be specified during the [Q]prof-gen
phase. In addition, if one of these options is not specified, absolute paths are used in the .dpi file.

IDE Equivalent

None

Alternate Options

None

Example
Consider the initial [Q]prof-gen compilation of the source file c:\user1\feature_foo\myproject\common
\glob.f90 shown below:

Linux*: icc -prof-gen -prof-src-root=c:\user1\feature_foo\myproject -c common\glob.c
Windows*: ifort /Qprof-gen /Qprof-src-root=c:\user1\feature_foo\myproject -c common\glob.f90
Linux*: ifort -prof-gen -prof-src-root=c:\user1\feature_foo\myproject -c common\glob.f90

For the [Q]prof-use phase, the file glob.f90 could be moved into the directory c:\user2\feature_bar
\myproject\common\glob.f90 and profile information would be found from the .dpi when using the following:

Windows*: ifort /Qprof-use /Qprof-src-root=c:\user2\feature_bar\myproject -c common\glob.f90
Linux*: ifort -prof-use -prof-src-root=c:\user2\feature_bar\myproject -c common\glob.f90

 1 Intel® Fortran Compiler Classic and Intel® Fortran Compiler Developer Guide and Reference

240

If you do not use option [Q]prof-src-root during the [Q]prof-gen phase, by default, the [Q]prof-use
compilation can only find the profile data if the file is compiled in the c:\user1\feature_foo\my_project
\common directory.

See Also
prof-gen, Qprof-gen compiler option
prof-use, Qprof-use compiler option
prof-src-dir, Qprof-src-dir compiler option
prof-src-root-cwd, Qprof-src-root-cwd compiler option

prof-src-root-cwd, Qprof-src-root-cwd
Lets you use relative directory paths when looking up
profile data and specifies the current working directory
as the base. This feature is only available for ifort.

Syntax

Linux OS:

-prof-src-root-cwd
Windows OS:

/Qprof-src-root-cwd

Arguments

None

Default

OFF The setting of relevant options determines the path used when looking up profile data records.

Description

This option lets you use relative directory paths when looking up profile data in .dpi files. It specifies the
current working directory as the base. To use this option, you must also specify option [Q]prof-use.

This option is available during the following phases of compilation:

• Linux* systems: -prof-gen and -prof-use phases
• Windows* systems: /Qprof-gen and /Qprof-use phases

When this option is specified during the [Q]prof-gen phase, it stores information into the .dyn or .dpi file.
Then, when .dyn files are merged together or the .dpi file is loaded, only the directory information below the
root directory is used for forming the lookup key.

When this option is specified during the [Q]prof-use phase, it specifies a root directory that replaces the
root directory specified at the [Q]prof-gen phase for forming the lookup keys.

To be effective, this option or option [Q]prof-src-root must be specified during the [Q]prof-gen phase.
In addition, if one of these options is not specified, absolute paths are used in the .dpi file.

IDE Equivalent

None

Alternate Options

None

Intel® Fortran Compiler Classic and Intel® Fortran Compiler Developer Guide and Reference 1

241

See Also
prof-gen, Qprof-gen compiler option
prof-use, Qprof-use compiler option
prof-src-dir, Qprof-src-dir compiler option
prof-src-root, Qprof-src-root compiler option

prof-use, Qprof-use
Enables the use of profiling information during
optimization. This feature is only available for ifort.

Syntax

Linux OS:

-prof-use[=keyword]
-no-prof-use
Windows OS:

/Qprof-use[:keyword]
/Qprof-use-

Arguments

keyword Specifies additional instructions. Possible values are:

weighted Tells the profmerge utility to apply a weighting to
the .dyn file values when creating the .dpi file to
normalize the data counts when the training runs have
differentexecution durations. This argument only has an
effect when the compiler invokes the profmerge utility
to create the .dpi file. This argument does not have an
effect if the .dpi file was previously created without
weighting.

[no]merge Enables or disables automatic invocation of the
profmerge utility. The default is merge. Note that you
cannot specify both weighted and nomerge. If you try
to specify both values, a warning will be displayed and
nomerge takes precedence.

default Enables the use of profiling information during
optimization. The profmerge utility is invoked by
default. This value is the same as specifying
[Q]prof-use with no argument.

Default

-no-prof-use or /Qprof-use- Profiling information is not used during optimization.

Description

This option enables the use of profiling information (including function splitting and function grouping) during
optimization. It enables option /Qfnsplit (Windows*) and -fnsplit (Linux*) .

This option instructs the compiler to produce a profile-optimized executable and it merges available profiling
output files into a pgopti.dpi file.

 1 Intel® Fortran Compiler Classic and Intel® Fortran Compiler Developer Guide and Reference

242

Note that there is no way to turn off function grouping if you enable it using this option.

To set the hotness threshold for function grouping and function ordering, use option
[Q]prof-hotness-threshold.

IDE Equivalent

None

Alternate Options

None

See Also
prof-hotness-threshold, Qprof-hotness-threshold compiler option
prof-gen, Qprof-gen compiler option
Profile an Application with Instrumentation

prof-value-profiling, Qprof-value-profiling
Controls which values are value profiled. This feature
is only available for ifort.

Syntax

Linux OS:

-prof-value-profiling[=keyword]
Windows OS:

/Qprof-value-profiling[:keyword]

Arguments

keyword Controls which type of value profiling is performed. Possible values are:

none Prevents all types of value profiling.

nodivide Prevents value profiling of non-compile time constants used in division or
remainder operations.

noindcall Prevents value profiling of function addresses at indirect call sites.

all Enables all types of value profiling.

You can specify more than one keyword, but they must be separated by commas.

Default

all All value profile types are enabled and value profiling is performed.

Description

This option controls which features are value profiled.

If this option is specified with option [Q]prof-gen, it turns off instrumentation of operations of the specified
type. This also prevents feedback of values for the operations.

If this option is specified with option [Q]prof-use, it turns off feedback of values collected of the specified
type.

If you specify level 2 or higher for option[q or Q]opt-report, the value profiling specialization information
will be reported within the PGO optimization report.

Intel® Fortran Compiler Classic and Intel® Fortran Compiler Developer Guide and Reference 1

243

IDE Equivalent

None

Alternate Options

None

See Also
prof-gen, Qprof-gen compiler option
prof-use, Qprof-use compiler option
qopt-report, Qopt-report compiler option (ifort)

Qcov-dir
Specifies a directory for profiling information output
files that can be used with the codecov or tselect tool.
This feature is only available for ifort.

Syntax

Linux OS:

None
Windows OS:

/Qcov-dir:dir

Arguments

dir Is the name of the directory.

Default

OFF Profiling output files are placed in the directory where the program is compiled.

Description

This option specifies a directory for profiling information output files (*.dyn and *.dpi) that can be used with
the code-coverage tool (codecov) or the test prioritization tool (tselect). The specified directory must already
exist.

You should specify this option using the same directory name for both instrumentation and feedback
compilations. If you move the .dyn files, you need to specify the new path.

Option /Qcov-dir is equivalent to option /Qprof-dir. If you specify both options, the last option specified
on the command line takes precedence.

IDE Equivalent

None

Alternate Options

None

See Also
Qcov-gen compiler option
Qcov-file compiler option

 1 Intel® Fortran Compiler Classic and Intel® Fortran Compiler Developer Guide and Reference

244

Qcov-file
Specifies an alternate file name for the profiling
summary files that can be used with the codecov or
tselect tool. This feature is only available for ifort.

Syntax

Linux OS:

None
Windows OS:

/Qcov-file:filename

Arguments

filename Is the name of the profiling summary file.

Default

OFF The profiling summary files have the file name pgopti.*.

Description

This option specifies an alternate file name for the profiling summary files. The file name can be used with
the code-coverage tool (codecov) or the test prioritization tool (tselect).

The filename is used as the base name for the set of files created by different profiling passes.

If you specify this option with option /Qcov-gen, the .spi and .spl files will be named filename.spi and
filename.spl instead of pgopti.spi and pgopti.spl.

Option /Qcov-file is equivalent to option /Qprof-file. If you specify both options, the last option
specified on the command line takes precedence.

IDE Equivalent

None

Alternate Options

None

See Also
Qcov-gen compiler option
Qcov-dir compiler option

Qcov-gen
Produces an instrumented object file that can be used
with the codecov or tselect tool. This feature is only
available for ifort.

Syntax

Linux OS:

None
Windows OS:

/Qcov-gen
/Qcov-gen-

Intel® Fortran Compiler Classic and Intel® Fortran Compiler Developer Guide and Reference 1

245

Arguments

None

Default

/Qcov-gen- The instrumented object file is not produced.

Description

This option produces an instrumented object file that can be used with the code-coverage tool (codecov) or
the test prioritization tool (tselect). The instrumented code is included in the object file in preparation for
instrumented execution.

This option also creates a static profile information file (.spi) that can be used with the codecov or tselect
tool.

Option /Qcov-gen should be used to minimize the instrumentation overhead if you are interested in using
the instrumentation only for code coverage. You should use /Qprof-gen:srcpos if you intend to use the
collected data for code coverage and profile feedback.

IDE Equivalent

None

Alternate Options

None

See Also
Qcov-dir compiler option
Qcov-file compiler option

Optimization Report Options
This section contains descriptions for compiler options that pertain to optimization reports. They are listed in
alphabetical order.

qopt-report, Qopt-report (ifort only)
Tells the compiler to generate an optimization report.
This description is only for ifort.

Syntax

Linux OS:

-qopt-report[=n]
Windows OS:

/Qopt-report[:n]

Arguments

n (Optional) Indicates the level of detail in the report. You can specify
values 0 through 5.

If you specify zero, no report is generated.

 1 Intel® Fortran Compiler Classic and Intel® Fortran Compiler Developer Guide and Reference

246

For levels n=1 through n=5, each level includes all the information of
the previous level, as well as potentially some additional information.
Level 5 produces the greatest level of detail. If you do not specify n,
the default is level 2, which produces a medium level of detail.

Default

OFF No optimization report is generated.

Description

This option tells the compiler to generate a collection of optimization report files, one per object; this is the
same output produced by option [q or Q]opt-report-per-object.

If you prefer another form of output, you can specify option [q or Q]opt-report-file.

If you specify a level (n) higher than 5, a warning will be displayed and you will get a level 5 report.

When optimization reporting is enabled, the default is -qopt-report-phase=all (Linux*)
or /Qopt-report-phase:all (Windows*).

For a description of the information that each n level provides, see the Example section in option
[q or Q]opt-report-phase.

IDE Equivalent

Visual Studio

Visual Studio: Diagnostics > Optimization Diagnostic Level

Alternate Options

None

Example
If you only want reports about certain diagnostics, you can use this option with option
[q or Q]opt-report-phase. The phase you specify determines which diagnostics you will receive.

For example, the following examples show how to get reports about certain specific diagnostics.

To get this specific report Specify

Auto-parallelizer diagnostics Linux*: -qopt-report -qopt-report-phase=par
Windows*:
/Qopt-report /Qopt-report-phase:par

OpenMP parallelizer diagnostics Linux*:
-qopt-report -qopt-report-phase=openmp
Windows*:
/Qopt-report /Qopt-report-phase:openmp

Vectorizer diagnostics Linux*: -qopt-report -qopt-report-phase=vec
Windows*:
/Qopt-report /Qopt-report-phase:vec

See Also
qopt-report-file, Qopt-report-file compiler option
qopt-report-per-object, Qopt-report-per-object compiler option

Intel® Fortran Compiler Classic and Intel® Fortran Compiler Developer Guide and Reference 1

247

qopt-report-phase, Qopt-report-phase compiler option

qopt-report, Qopt-report (ifx only)
Enables the generation of a YAML file that includes
optimization transformation information. This feature
is only available for ifx.

Syntax

Linux OS:

-qopt-report[=arg]
Windows OS:

/Qopt-report[=arg]

Arguments

arg Determines the level of detail in the report. Possible values are:

0 Disables generation of an optimization report. This is the default when
the option is not specified.

1 or min Tells the compiler to create a report with minimum details.

2 or med Tells the compiler to create a report with medium details. This is the
default if you do not specify arg.

3 or max Tells the compiler to create a report with maximum details.

Levels 1, 2, and 3 (min, med, and max) include all the information of the previous level, as
well as potentially some additional information.

Default

OFF No optimization report is generated.

Description

This option enables the generation of a YAML file that includes optimization transformation information.

The YAML-formatted file provides the optimization information for the source file being compiled. For
example:

ifx -fiopenmp -qopt-report foo.f
This command will generate a file called foo.opt.yaml containing the optimization report messages.

Use opt-viewer.py (from llvm/tools/opt-viewer) to create html files from the YAML file.

You can use any web-browser to open the html file to see the opt-report messages displayed inline with the
original. For example:

Firefox html/foo.f.html source code
Note that the YAML file is used to drive the community llvm-opt-report tool.

NOTE
This option only applies to host compilation. When offloading is enabled, it does not impact
device-specific compilation. Offloading can only be enabled when using ifx.

 1 Intel® Fortran Compiler Classic and Intel® Fortran Compiler Developer Guide and Reference

248

IDE Equivalent

None

Alternate Options

None

See Also
qopt-report-file, Qopt-report-file compiler option

qopt-report-annotate, Qopt-report-annotate
Enables the annotated source listing feature and
specifies its format. This feature is only available for
ifort.

Syntax

Linux OS:

-qopt-report-annotate[=keyword]

Windows OS:

/Qopt-report-annotate[:keyword]

Arguments

keyword Specifies the format for the annotated source listing. You can specify one of the following:

text Indicates that the listing should be in text format. This is the default if you do not
specify keyword.

html Indicates that the listing should be in html format.

Default

OFF No annotated source listing is generated

Description

This option enables the annotated source listing feature and specifies its format. The feature annotates
source files with compiler optimization reports.

By default, one annotated source file is output per object. The annotated file is written to the same directory
where the object files are generated. If the object file is a temporary file and an executable is generated,
annotated files are placed in the directory where the executable is placed. You cannot generate annotated
files to a directory of your choosing.

However, you can output annotated listings to stdout, stderr, or to a file if you also specify option
[q or Q]opt-report-file.

By default, this option sets option [q or Q]opt-report with default level 2.

The following shows the file extension and listing details for the two possible keywords.

Format Listing Details

text The annotated source listing has an .annot extension. It includes line numbers and
compiler diagnostics placed after correspondent lines. IPO footnotes are inserted at
the end of annotated file.

Intel® Fortran Compiler Classic and Intel® Fortran Compiler Developer Guide and Reference 1

249

Format Listing Details

html The annotated source listing has an .annot.html extension. It includes line numbers
and compiler diagnostics placed after correspondent lines (as the text format does).
It also provides hyperlinks in compiler messages and quick navigation with the
routine list. IPO footnotes are displayed as tooltips.

IDE Equivalent

None

Alternate Options

None

See Also
qopt-report, Qopt-report compiler option (ifort)
qopt-report-file, Qopt-report-file compiler option
qopt-report-annotate-position, Qopt-report-annotate-position compiler option

qopt-report-annotate-position, Qopt-report-annotate-position
Enables the annotated source listing feature and
specifies the site where optimization messages appear
in the annotated source in inlined cases of loop
optimizations. This feature is only available for ifort.

Syntax

Linux OS:

-qopt-report-annotate-position=keyword

Windows OS:

/Qopt-report-annotate-position:keyword

Arguments

keyword Specifies the site where optimization messages appear in the annotated source. You can specify
one of the following:

caller Indicates that the messages should appear in the caller site.

callee Indicates that the messages should appear in the callee site.

both Indicates that the messages should appear in both the caller and the callee sites.

Default

OFF No annotated source listing is generated

Description

This option enables the annotated source listing feature and specifies the site where optimization messages
appear in the annotated source in inlined cases of loop optimizations.

This option enables option [q or Q]opt-report-annotate if it is not explicitly specified.

If annotated source listing is enabled and this option is not passed to compiler, loop optimizations are placed
in caller position by default.

 1 Intel® Fortran Compiler Classic and Intel® Fortran Compiler Developer Guide and Reference

250

IDE Equivalent

None

Alternate Options

None

See Also
qopt-report, Qopt-report compiler option (ifort)
qopt-report-annotate, Qopt-report-annotate compiler option

qopt-report-embed, Qopt-report-embed
Determines whether special loop information
annotations will be embedded in the object file and/or
the assembly file when it is generated. This feature is
only available for ifort.

Syntax

Linux OS:

-qopt-report-embed
-qno-opt-report-embed

Windows OS:

/Qopt-report-embed
/Qopt-report-embed-

Arguments

None

Default

OFF When an assembly file is being generated, special loop information annotations will not be
embedded in the assembly file.

However, if option -g (Linux*) or /Zi (Windows*) is specified, special loop information
annotations will be embedded in the assembly file unless option -qno-opt-report-embed
(Linux) or /Qopt-report-embed- (Windows) is specified.

Description

This option determines whether special loop information annotations will be embedded in the object file
and/or the assembly file when it is generated. Specify the positive form of the option to include the
annotations in the assembly file.

If an object file (or executable) is being generated, the annotations will be embedded in the object file (or
executable).

If you use this option, you do not have to specify option [q or Q]opt-report.

Alternate Options

None

See Also
qopt-report, Qopt-report compiler option (ifort)

Intel® Fortran Compiler Classic and Intel® Fortran Compiler Developer Guide and Reference 1

251

qopt-report-file, Qopt-report-file
Specifies whether the output for the generated
optimization report goes to a file, stderr, or stdout.

Syntax

Linux OS:

-qopt-report-file=keyword
Windows OS:

/Qopt-report-file:keyword

Arguments

keyword Specifies where the output for the report goes. You can specify one of the following:

filename Specifies the name of the file where the generated report should go.

stderr Indicates that the generated report should go to stderr.

stdout Indicates that the generated report should go to stdout.

On ifx, this setting can also be specified as -qopt-report-stdout
(Linux) or /Qopt-report-stdout (Windows).

Default

OFF No optimization report is generated.

Description

This option specifies whether the output for the generated optimization report goes to a file, stderr, or stdout.

If you use this option, you do not have to specify option [q or Q]opt-report.

When optimization reporting is enabled on ifort, the default is -qopt-report-phase=all (Linux*)
or /Qopt-report-phase:all (Windows*).

Specifying -qopt-report-file=stdout (Linux) or /Qopt-report-file:stdout (Windows) is the same as
specifying option -qopt-report-stdout (Linux) or /qopt-report-stdout (Windows).

NOTE
This option only applies to host compilation. When offloading is enabled, it does not impact
device-specific compilation. Offloading can only be enabled when using ifx.

IDE Equivalent

Visual Studio

Visual Studio: Diagnostics > Emit Optimization Diagnostics to File

Diagnostics > Optimization Diagnostic File

Alternate Options

None

See Also
qopt-report, Qopt-report compiler option (ifort)

 1 Intel® Fortran Compiler Classic and Intel® Fortran Compiler Developer Guide and Reference

252

qopt-report, Qopt-report compiler option (ifx)

qopt-report-filter, Qopt-report-filter
Tells the compiler to find the indicated parts of your
application, and generate optimization reports for
those parts of your application. This feature is only
available for ifort.

Syntax

Linux OS:

-qopt-report-filter=string
Windows OS:

/Qopt-report-filter:string

Arguments

string Is the information to search for. The string must appear within quotes. It can take one or
more of the following forms:

filename
filename, routine
filename, range [, range]...
filename, routine, range [, range]...

If you specify more than one of the above forms in a string, a semicolon must appear
between each form. If you specify more than one range in a string, a comma must appear
between each range. Optional blanks can follow each parameter in the forms above and
they can also follow each form in a string.

filename Specifies the name of a file to be found. It can include a
path.

If you do not specify a path, the compiler looks for the
filename in the current working directory.

routine Specifies the name of a routine to be found. You can
include an identifying argument.

The name, including any argument, must be enclosed in
single quotes.

The compiler tries to uniquely identify the routine that
corresponds to the specified routine name.

It may select multiple routines to analyze, especially if
more than one routine has the specified routine name, so
the routine cannot be uniquely identified.

range Specifies a range of line numbers to be found in the file or
routine specified. The range must be specified in integers
in the form:

first_line_number-last_line_number

The hyphen between the line numbers is required.

Intel® Fortran Compiler Classic and Intel® Fortran Compiler Developer Guide and Reference 1

253

Default

OFF No optimization report is generated.

Description

This option tells the compiler to find the indicated parts of your application, and generate optimization
reports for those parts of your application. Optimization reports will only be generated for the routines that
contain the specified string.

On Linux*, if you specify both -qopt-report-routine=string1 and -qopt-report-filter=string2, it is
treated as -qopt-report-filter=string1;string2. On Windows*, if you specify
both /Qopt-report-routine:string1 and /Qopt-report-filter:string2, it is treated
as/Qopt-report-filter:string1;string2.

If you use this option, you do not have to specify option [q or Q]opt-report.

When optimization reporting is enabled, the default is -qopt-report-phase=all (Linux*)
or /Qopt-report-phase:all (Windows*).

IDE Equivalent

None

Alternate Options

None

See Also
qopt-report, Qopt-report compiler option (ifort)

qopt-report-format, Qopt-report-format
Specifies the format for an optimization report. This
feature is only available for ifort.

Syntax

Linux OS:

-qopt-report-format=keyword
Windows OS:

/Qopt-report-format:keyword

Arguments

keyword Specifies the format for the report. You can specify one of the following:

text Indicates that the report should be in text format.

vs Indicates that the report should be in Visual Studio* (IDE) format. The Visual Studio
IDE uses the information to visualize the optimization report in the context of your
program source code.

Default

OFF No optimization report is generated.

 1 Intel® Fortran Compiler Classic and Intel® Fortran Compiler Developer Guide and Reference

254

Description

This option specifies the format for an optimization report. If you use this option, you must specify either
text or vs.

If you do not specify this option and another option causes an optimization report to be generated, the
default format is text.

If the [q or Q]opt-report-file option is also specified, it will affect where the output goes:

• If filename is specified, output goes to the specified file.
• If stdout is specified, output goes to stdout.
• If stderr is specified, output goes to stderr.

If you use this option, you do not have to specify option [q or Q]opt-report.

When optimization reporting is enabled, the default is -qopt-report-phase=all (Linux*)
or /Qopt-report-phase:all (Windows*).

IDE Equivalent

None

Alternate Options

None

See Also
qopt-report, Qopt-report compiler option (ifort)
qopt-report-file, Qopt-report-file compiler option

qopt-report-help, Qopt-report-help
Displays the optimizer phases available for report
generation and a short description of what is reported
at each level. This feature is only available for ifort.

Syntax

Linux OS:

-qopt-report-help
Windows OS:

/Qopt-report-help

Arguments

None

Default

OFF No optimization report is generated.

Description

This option displays the optimizer phases available for report generation using [q or Q]opt-report-phase,
and a short description of what is reported at each level. No compilation is performed.

To indicate where output should go, you can specify one of the following options:

• [q or Q]opt-report-file

Intel® Fortran Compiler Classic and Intel® Fortran Compiler Developer Guide and Reference 1

255

• [q or Q]opt-report-per-object
If you use this option, you do not have to specify option [q or Q]opt-report.

IDE Equivalent

None

Alternate Options

None

See Also
qopt-report, Qopt-report compiler option (ifort)
qopt-report-phase, Qopt-report-phase compiler option
qopt-report-file, Qopt-report-file compiler option
qopt-report-per-object, Qopt-report-per-object compiler option

qopt-report-names, Qopt-report-names
Specifies whether mangled or unmangled names
should appear in the optimization report. This feature
is only available for ifort.

Syntax

Linux OS:

-qopt-report-names=keyword

Windows OS:

/Qopt-report-names:keyword

Arguments

keyword Specifies the form for the names. You can specify one of the following:

mangled Indicates that the optimization report should contain mangled
names.

unmangled Indicates that the optimization report should contain unmangled
names.

Default

OFF No optimization report is generated.

Description

This option specifies whether mangled or unmangled names should appear in the optimization report. If you
use this option, you must specify either mangled or unmangled.

If this option is not specified, unmangled names are used by default.

If you specify mangled, encoding (also known as decoration) is added to names in the optimization report.
This is appropriate when you want to match annotations with the assembly listing.

If you specify unmangled, no encoding (or decoration) is added to names in the optimization report. This is
appropriate when you want to match annotations with the source listing.

If you use this option, you do not have to specify option [q or Q]opt-report.

 1 Intel® Fortran Compiler Classic and Intel® Fortran Compiler Developer Guide and Reference

256

When optimization reporting is enabled, the default is -qopt-report-phase=all (Linux*)
or /Qopt-report-phase:all (Windows*).

IDE Equivalent

None

Alternate Options

None

qopt-report-per-object, Qopt-report-per-object
Tells the compiler that optimization report information
should be generated in a separate file for each object.
This feature is only available for ifort.

Syntax

Linux OS:

-qopt-report-per-object
Windows OS:

/Qopt-report-per-object

Arguments

None

Default

OFF No optimization report is generated.

Description

This option tells the compiler that optimization report information should be generated in a separate file for
each object.

If you specify this option for a single-file compilation, a file with a .optrpt extension is produced for every
object file or assembly file that is generated by the compiler. For a multifile Interprocedural Optimization
(IPO) compilation, one file is produced for each of the N true objects generated in the compilation. If only
one true object file is generated, the optimization report file generated is called ipo_out.optrpt. If multiple
true object files are generated (N>1), the names used are ipo_out1.optprt, ipo_out2.optrpt, …
ipo_outN.optrpt.

The .optrpt files are written to the target directory of the compilation process. If an object or assembly file is
explicitly generated, the corresponding .optrpt file is written to the same directory where the object file is
generated. If the object file is just a temporary file and an executable is generated, the corresponding .optrpt
files are placed in the directory in which the executable is placed.

If you use this option, you do not have to specify option [q or Q]opt-report.

When optimization reporting is enabled, the default is -qopt-report-phase=all (Linux*)
or /Qopt-report-phase:all (Windows*).

IDE Equivalent

None

Alternate Options

None

Intel® Fortran Compiler Classic and Intel® Fortran Compiler Developer Guide and Reference 1

257

See Also
qopt-report, Qopt-report compiler option

qopt-report-phase, Qopt-report-phase
Specifies one or more optimizer phases for which
optimization reports are generated. This feature is
only available for ifort.

Syntax

Linux OS:

-qopt-report-phase[=list]
Windows OS:

/Qopt-report-phase[:list]

Arguments

list (Optional) Specifies one or more phases to generate reports for. If you
specify more than one phase, they must be separated with commas.
The values you can specify are:

cg The phase for code generation

ipo The phase for Interprocedural Optimization

loop The phase for loop nest optimization

openmp The phase for OpenMP*

par The phase for auto-parallelization

pgo The phase for Profile Guided optimization

tcollect The phase for trace collection

vec The phase for vectorization

all All optimizer phases. This is the default if
you do not specify list.

Default

OFF No optimization report is generated.

Description

This option specifies one or more optimizer phases for which optimization reports are generated.

For certain phases, you also need to specify other options:

• If you specify phase cg, you must also specify option O1, O2 (default), or O3.
• If you specify phase ipo, you must also specify option [Q]ipo.
• If you specify phase loop, you must also specify option O2 (default) or O3.
• If you specify phase openmp, you must also specify option [q or Q]openmp.
• If you specify phase par, you must also specify option [Q]parallel.
• If you specify phase pgo, you must also specify option [Q]prof-use.
• If you specify phase tcollect, you must also specify option [Q]tcollect.

 1 Intel® Fortran Compiler Classic and Intel® Fortran Compiler Developer Guide and Reference

258

• If you specify phase vec, you must also specify option O2 (default) or O3. If you are interested in explicit
vectorization by OpenMP* SIMD, you must also specify option [q or Q]openmp.

To find all phase possibilities, specify option [q or Q]opt-report-help.

If you use this option, you do not have to specify option [q or Q]opt-report.

However, if you want to get more details for each phase, specify option [q or Q]opt-report=n along with
this option and indicate the level of detail you want by specifying an appropriate value for n. (See also the
Example section below.)

When optimization reporting is enabled, the default is -qopt-report-phase=all (Linux*)
or /Qopt-report-phase:all (Windows*).

IDE Equivalent

Visual Studio

Visual Studio: Diagnostics > Optimization Diagnostic Phase

Alternate Options

None

Example
The following shows examples of the details you may receive when you specify one of the optimizer phases
and a particular level (n) for option [q or Q]opt-report. Note that details may change in future releases.

Optimizer phase The level specified in
option[q or Q]opt-report

Description

cg 1 Generates a list of which
intrinsics were lowered and which
memcall optimizations were
performed.

ipo 1 For each compiled routine,
generates a list of the routines
that were inlined into the routine,
called directly by the routine, and
whose calls were deleted.

2 Generates level 1 details, values
for important inlining command
line options, and a list of the
routines that were discovered to
be dead and eliminated.

3 Generates level 2 details, whole
program information, the sizes of
inlined routines, and the reasons
routines were not inlined.

4 Generates level 3 details, detailed
footnotes on the reasons why
routines are not inlined, and what
action the user can take to get
them inlined.

Intel® Fortran Compiler Classic and Intel® Fortran Compiler Developer Guide and Reference 1

259

Optimizer phase The level specified in
option[q or Q]opt-report

Description

loop 1 Reports high-level details about
which optimizations have been
performed on the loop nests
(along with the line number).
Most of the loop optimizations
(like fusion, unroll, unroll & jam,
collapsing, rerolling etc) only
support this level of detail.

2 Generates level 1 details, and
provides more detail on the
metrics and types of references
(like prefetch distance, indirect
prefetches etc) used in
optimizations. Only a few
optimizations (like prefetching,
loop classification framework etc)
support these extra details.

openmp 1 Reports loops, regions, sections,
and tasks successfully
parallelized.

2 Generates level 1 details, and
messages indicating successful
handling of MASKED constructs,
SINGLE constructs, CRITICAL
constructs, ORDERED constructs,
ATOMIC directives, and so forth.

par 1 Reports which loops were
parallelized.

2 Generates level 1 details, and
reports which loops were not
parallelized along with a short
reason.

3 Generates level 2 details, and
prints the memory locations that
are categorized as private,
shared, reduction, etc..

4 For this phase, this is the same
as specifying level 3.

5 Generates level 4 details, and
dependency edges that inhibit
parallelization.

pgo 1 During profile feedback,
generates report status of
feedback (such as, profile used,

 1 Intel® Fortran Compiler Classic and Intel® Fortran Compiler Developer Guide and Reference

260

Optimizer phase The level specified in
option[q or Q]opt-report

Description

no profile available, or unable to
use profile) for each routine
compiled.

2 Generates level 1 details, and
reports which value profile
specializations took place for
indirect calls and arithmetic
operations.

3 Generates level 2 details, and
reports which indirect calls had
profile data, but did not meet the
internal threshold limits for the
percentage or execution count.

tcollect 1 Generates a list of routines and
whether each was selected for
trace collection.

vec 1 Reports which loops were
vectorized.

2 Generates level 1 details and
reports which loops were not
vectorized along with short
reason.

3 Generates level 2 details, and
vectorizer loop summary
information.

4 Generates level 3 details, and
greater detail about vectorized
and non-vectorized loops.

5 Generates level 4 details, and
details about any proven or
assumed data dependences.

See Also
qopt-report, Qopt-report compiler option (ifort)
qopt-report-help, Qopt-report-help compiler option

qopt-report-routine, Qopt-report-routine
Tells the compiler to generate an optimization report
for each of the routines whose names contain the
specified substring. This feature is only available for
ifort.

Syntax

Linux OS:

-qopt-report-routine=substring

Intel® Fortran Compiler Classic and Intel® Fortran Compiler Developer Guide and Reference 1

261

Windows OS:

/Qopt-report-routine:substring

Arguments

substring Is the text (string) to look for.

Default

OFF No optimization report is generated.

Description

This option tells the compiler to generate an optimization report for each of the routines whose names
contain the specified substring.

You can also specify a sequence of substrings separated by commas. If you do this, the compiler will
generate an optimization report for each of the routines whose name contains one or more of these
substrings.

If you use this option, you do not have to specify option [q or Q]opt-report.

When optimization reporting is enabled, the default is -qopt-report-phase=all (Linux*)
or /Qopt-report-phase:all (Windows*).

IDE Equivalent

Visual Studio

Visual Studio: Diagnostics > Optimization Diagnostic Routine

Alternate Options

None

qopt-report-stdout, Qopt-report-stdout
Specifies that the generated report should go to
stdout.

Syntax

Linux OS:

-qopt-report-stdout
Windows OS:

/Qopt-report-stdout

Arguments

None

Default

OFF No optimization report is generated.

Description

This option specifies that the output for the generated optimization report goes to stdout. It is the same as
specifying -qopt-report-file=stdout (Linux) or /Qopt-report-file:stdout (Windows).

 1 Intel® Fortran Compiler Classic and Intel® Fortran Compiler Developer Guide and Reference

262

If you use this option, you do not have to specify option [q or Q]opt-report.

NOTE
This option only applies to host compilation. When offloading is enabled, it does not impact
device-specific compilation. Offloading can only be enabled when using ifx.

IDE Equivalent

None

Alternate Options

None

See Also
qopt-report, Qopt-report compiler option (ifort)
qopt-report, Qopt-report compiler option (ifx)

tcollect, Qtcollect
Inserts instrumentation probes calling the Intel® Trace
Collector API. This feature is only available for ifort.

Syntax

Linux OS:

-tcollect[lib]
Windows OS:

/Qtcollect[:lib]

Arguments

lib Is one of the Intel® Trace Collector libraries; for example, VT, VTcs,
VTmc, or VTfs. If you do not specify lib, the default library is VT.

Default

OFF Instrumentation probes are not inserted into compiled applications.

Description

This option inserts instrumentation probes calling the Intel® Trace Collector API.

This trace analyzing/collecting feature requires installation of another product. For more information, see the
Feature Requirements section.

This option provides a flexible and convenient way of instrumenting functions of a compiled application. For
every function, the entry and exit points are instrumented at compile time to let the Intel® Trace Collector
record functions beyond the default MPI calls. For non-MPI applications (for example, threaded or serial), you
must ensure that the Intel® Trace Collector is properly initialized (VT_initialize/VT_init).

Caution
Be careful with full instrumentation because this feature can produce very large trace files.

Intel® Fortran Compiler Classic and Intel® Fortran Compiler Developer Guide and Reference 1

263

IDE Equivalent

None

Alternate Options

None

See Also
tcollect-filter, Qtcollect-filter compiler option

tcollect-filter, Qtcollect-filter
Lets you enable or disable the instrumentation of
specified functions. You must also specify option
[Q]tcollect. This feature is only available for ifort.

Syntax

Linux OS:

-tcollect-filter filename
Windows OS:

/Qtcollect-filter:filename

Arguments

filename Is a configuration file that lists filters, one per line. Each filter consists
of a regular expression string and a switch. Strings with leading or
trailing white spaces must be quoted. Other strings do not have to be
quoted. The switch value can be ON, on, OFF, or off.

Default

OFF Functions are not instrumented. However, if option -tcollect (Linux) or /Qtcollect (Windows)
is specified, the filter setting is ".* ON" and all functions get instrumented.

Description

This option lets you enable or disable the instrumentation of specified functions.

To get instrumentation with a specified filter (or filters), you must specify both option [Q]tcollect and
option [Q]tcollect-filter.

During instrumentation, the regular expressions in the file are matched against the function names. The
switch specifies whether matching functions are to be instrumented or not. Multiple filters are evaluated from
top to bottom with increasing precedence.

The names of the functions to match against are formatted as follows:

• The source file name is followed by a colon-separated function name. Source file names should contain
the full path, if available. For example:

/home/joe/src/file.f:FOO_bar
• Classes and function names are separated by double colons. For example:

/home/joe/src/file.fpp:app::foo::bar
You can use option [q or Q]opt-report to get a full list of file and function names that the compiler
recognizes from the compilation unit. This list can be used as the basis for filtering in the configuration file.

 1 Intel® Fortran Compiler Classic and Intel® Fortran Compiler Developer Guide and Reference

264

This trace analyzing/collecting feature requires installation of another product. For more information, see
Feature Requirements.

IDE Equivalent

None

Alternate Options

None

Consider the following filters in a configuration file:

'.*' OFF '.*vector.*' ON
The above filters cause instrumentation of only those functions having the string 'vector' in their names. No
other function will be instrumented. Note that reversing the order of the two filters will prevent
instrumentation of all functions.

To get a list of the file or routine strings that can be matched by the regular expression filters, generate an
optimization report with tcollect information. For example:

Linux

Linux: ifort -tcollect -qopt-report -qopt-report-phase=tcollect
Windows

Windows: ifort /Qtcollect /Qopt-report /Qopt-report-phase:tcollect

See Also
tcollect, Qtcollect compiler option
qopt-report, Qopt-report compiler option (ifort)

Floating-Point Options
This section contains descriptions for compiler options that pertain to floating-point calculations. They are
listed in alphabetical order.

fast-transcendentals, Qfast-transcendentals
Enables the compiler to replace calls to transcendental
functions with faster but less precise implementations.
This feature is only available for ifort.

Syntax

Linux OS:

-fast-transcendentals
-no-fast-transcendentals
Windows OS:

/Qfast-transcendentals
/Qfast-transcendentals-

Arguments

None

Intel® Fortran Compiler Classic and Intel® Fortran Compiler Developer Guide and Reference 1

265

Default

depends on the setting of
-fp-model (Linux*) or /fp
(Windows*)

If you do not specify option -[no-]fast-transcendentals or option /
Qfast-transcendentals[-]:

• The default is ON if option -fp-model fast or /fp:fast is specified or
is in effect.

• The default is OFF if a value-safe setting is specified for -fp-model
or /fp (such as "precise", "source", etc.).

Description

This option enables the compiler to replace calls to transcendental functions with implementations that may
be faster but less precise.

It allows the compiler to perform certain optimizations on transcendental functions, such as replacing
individual calls to sine in a loop with a single call to a less precise vectorized sine library routine. These
optimizations can cause numerical differences that would not otherwise exist if you are also compiling with a
value-safe option such as -fp-model precise (Linux*) or /fp:precise (Windows).

For example, you may get different results if you specify option O0 versus option O2, or you may get different
results from calling the same function with the same input at different points in your program. If these kinds
of numerical differences are problematic, consider using option -fimf-use-svml (Linux*)
or /Qimf-use-svml (Windows) as an alternative. When used with a value-safe option such as
-fp-model precise or /fp:precise, option -fimf-use-svml or /Qimf-use-svml provides many of the
positive performance benefits of [Q]fast-transcendentals without negatively affecting numeric
consistency. For more details, see the description of option -fimf-use-svml and /Qimf-use-svml.

This option does not affect explicit Short Vector Math Library (SVML) intrinsics. It only affects scalar calls to
the standard math library routines.

You cannot use option -fast-transcendentals with option -fp-model strict and you cannot use
option /Qfast-transcendentals with option /fp:strict.

This option determines the setting for the maximum allowable relative error for math library function results
(max-error) if none of the following options are specified:

• -fimf-accuracy-bits (Linux*) or /Qimf-accuracy-bits (Windows*)
• -fimf-max-error (Linux) or /Qimf-max-error (Windows)
• -fimf-precision (Linux) or /Qimf-precision (Windows)

This option enables extra optimization that only applies to Intel® processors.

Product and Performance Information

Performance varies by use, configuration and other factors. Learn more at www.Intel.com/
PerformanceIndex.

Notice revision #20201201

IDE Equivalent

None

Alternate Options

None

See Also
fp-model, fp compiler option

 1 Intel® Fortran Compiler Classic and Intel® Fortran Compiler Developer Guide and Reference

266

https://www.intel.com/PerformanceIndex
https://www.intel.com/PerformanceIndex

fimf-use-svml, Qimf-use-svml compiler option
fimf-accuracy-bits, Qimf-accuracy-bits compiler option
fimf-max-error, Qimf-max-error compiler option
fimf-precision, Qimf-precision compiler option

ffp-accuracy, Qfp-accuracy
Lets you specify the required accuracy (precision) for
floating-point operations and library calls. This feature
is only available for ifx.

Syntax

Linux OS:

-ffp-accuracy=value
Windows OS:

/Qfp-accuracy:value

Arguments

value Is the accuracy that the compiler should use. Possible values are:

high Sets a maximum error of 1 ulp.

medium Sets a maximum error of 4 ulp.

low Sets a maximum error to 11-bits of accuracy for single-precision routines
(~8192 ulp) and 26-bits of accuracy for double-precision routines.

sycl Determined by the OpenCL specification for math function accuracy:
https://registry.khronos.org/OpenCL/specs/3.0-unified/html/
OpenCL_C.html#relative-error-as-ulps.

cuda Determined by the CUDA standard: https://docs.nvidia.com/cuda/cuda-
c-programming-guide/#mathematical-functions-appendix.

Default

OFF If option ffp-accuracy or Qfp-accuracy is not specified:

• On the host, the accuracy for floating-point operations and library calls is determined by the
setting of option -fp-model (Linux*) and option /fp (Windows*).

• On offload devices, the default accuracy is device-dependent.

Description

This option lets you specify the required accuracy (precision) for floating-point operations and library calls.

The accuracy requirements are applied to host code and, if used, to OpenMP and SYCL device code. The
option is only supported for CPU Ahead of Time (AOT) compilation with SYCL and OpenMP.

Caution
This option is not compatible with the fimf-* and Qimf-* options. If this option is used with
any of those options, an error will be reported.

Intel® Fortran Compiler Classic and Intel® Fortran Compiler Developer Guide and Reference 1

267

https://registry.khronos.org/OpenCL/specs/3.0-unified/html/OpenCL_C.html#relative-error-as-ulps
https://registry.khronos.org/OpenCL/specs/3.0-unified/html/OpenCL_C.html#relative-error-as-ulps
https://docs.nvidia.com/cuda/cuda-c-programming-guide/#mathematical-functions-appendix
https://docs.nvidia.com/cuda/cuda-c-programming-guide/#mathematical-functions-appendix

IDE Equivalent

None

Alternate Options

None

See Also
fp-model, fp compiler option

fimf-absolute-error, Qimf-absolute-error
Defines the maximum allowable absolute error for
math library function results.

Syntax

Linux OS:

-fimf-absolute-error=value[:funclist]
Windows OS:

/Qimf-absolute-error:value[:funclist]

Arguments

value Is a positive, floating-point number. Errors in math library function results may exceed
the maximum relative error (max-error) setting if the absolute-error is less than or
equal to value.

The format for the number is [digits] [.digits] [{ e | E }[sign]digits]

funclist Is an optional list of one or more math library functions to which the attribute should
be applied. Do not specify the standard Fortran name of the math function; you must
specify the actual math library name. If you specify more than one function, they must
be separated with commas.

Precision-specific variants like sin and sinf are considered different functions, so you
would need to use -fimf-absolute-error=0.00001:sin,sinf
(or /Qimf-absolute-error:0.00001:sin,sinf) to specify the maximum allowable
absolute error for both the single-precision and double-precision sine functions.

You also can specify the symbol /f to denote single-precision divides, symbol / to
denote double-precision divides, symbol /l to denote extended-precision divides, and
symbol /q to denote quad-precision divides. For example you can specify
-fimf-absolute-error=0.00001:/ or /Qimf-absolute-error: 0.00001:/.

Default

Zero ("0") An absolute-error setting of 0 means that the function is bound by the relative error
setting. This is the default behavior.

Description

This option defines the maximum allowable absolute error for math library function results.

This option can improve runtime performance, but it may decrease the accuracy of results.

This option only affects functions that have zero as a possible return value, such as log, sin, asin, etc.

 1 Intel® Fortran Compiler Classic and Intel® Fortran Compiler Developer Guide and Reference

268

The relative error requirements for a particular function are determined by options that set the maximum
relative error (max-error) and precision. The return value from a function must have a relative error less
than the max-error value, or an absolute error less than the absolute-error value.

If you need to define the accuracy for a math function of a certain precision, specify the function name of the
precision that you need. For example, if you want double precision, you can specify :sin; if you want single
precision, you can specify :sinf, as in -fimf-absolute-error=0.00001:sin
or /Qimf-absolute-error:0.00001:sin, or -fimf-absolute-error=0.00001:sqrtf
or /Qimf-absolute-error:0.00001:sqrtf.

If you do not specify any function names, then the setting applies to all functions (and to all precisions).
However, as soon as you specify an individual function name, the setting applies only to the function of
corresponding precision. So, for example, sinf applies only to the single-precision sine function, sin applies
only to the double-precision sine function, sinl applies only to the extended-precision sine function, etc.

NOTE
Many routines in libraries LIBM (Math Library) and SVML (Short Vector Math Library) are
more highly optimized for Intel® microprocessors than for non-Intel microprocessors.

NOTE
The standard Fortran names for the various math intrinsic functions do not match the math
library names of the math intrinsic functions. You must find the actual math library name
that is generated for the relevant Fortran math intrinsic.

One way to do this is to generate assembly code by using one of the following options:

Linux

-S
Windows

/Fa or /S
The assembly code will show the actual math library name.

For example, if you create a program that contains a call to SIN(x) where x is declared as
REAL(KIND=4) and then use option S to produce assembly code for the program, the assembly code
will show a call to sinf.

To define the maximum allowable absolute error for the single-precision sine function, you should
specify:

Linux

-fimf-absolute-error=sinf
Windows

/Qimf-absolute-error:sinf

NOTE
This option only applies to host compilation. When offloading is enabled, it does not impact
device-specific compilation. Offloading can only be enabled when using ifx.

Intel® Fortran Compiler Classic and Intel® Fortran Compiler Developer Guide and Reference 1

269

Product and Performance Information

Performance varies by use, configuration and other factors. Learn more at www.Intel.com/
PerformanceIndex.

Notice revision #20201201

IDE Equivalent

None

Alternate Options

None

See Also
fimf-accuracy-bits, Qimf-accuracy-bits compiler option
fimf-arch-consistency, Qimf-arch-consistency compiler option
fimf-domain-exclusion, Qimf-domain-exclusion compiler option
fimf-max-error, Qimf-max-error compiler option
fimf-precision, Qimf-precision compiler option
fimf-use-svml_Qimf-use-svml compiler option

fimf-accuracy-bits, Qimf-accuracy-bits
Defines the relative error for math library function
results, including division and square root.

Syntax

Linux OS:

-fimf-accuracy-bits=bits[:funclist]
Windows OS:

/Qimf-accuracy-bits:bits[:funclist]

Arguments

bits Is a positive, floating-point number indicating the number of correct bits the compiler
should use.

The format for the number is [digits] [.digits] [{ e | E }[sign]digits].

funclist Is an optional list of one or more math library functions to which the attribute should
be applied. Do not specify the standard Fortran name of the math function; you must
specify the actual math library name. If you specify more than one function, they must
be separated with commas.

Precision-specific variants like sin and sinf are considered different functions, so you
would need to use -fimf-accuracy-bits=23:sin,sinf
(or /Qimf-accuracy-bits:23:sin,sinf) to specify the relative error for both the
single-precision and double-precision sine functions.

You also can specify the symbol /f to denote single-precision divides, symbol / to
denote double-precision divides, symbol /l to denote extended-precision divides, and
symbol /q to denote quad-precision divides. For example you can specify
-fimf-accuracy-bits=10.0:/f or /Qimf-accuracy-bits:10.0:/f.

 1 Intel® Fortran Compiler Classic and Intel® Fortran Compiler Developer Guide and Reference

270

https://www.intel.com/PerformanceIndex
https://www.intel.com/PerformanceIndex

Default

-fimf-precision=medium or /Qimf-
precision:medium

The compiler uses medium precision when calling math library
functions. Note that other options can affect precision; see below
for details.

Description

This option defines the relative error, measured by the number of correct bits, for math library function
results.

The following formula is used to convert bits into ulps: ulps = 2p-1-bits, where p is the number of the target
format mantissa bits (24, 53, and 113 for single, double, and quad precision, respectively).

This option can affect runtime performance and the accuracy of results.

If you need to define the accuracy for a math function of a certain precision, specify the function name of the
precision that you need. For example, if you want double precision, you can specify :sin; if you want single
precision, you can specify :sinf, as in the following:

Linux

• -fimf-accuracy-bits=23:sinf,cosf,logf
• -fimf-accuracy-bits=52:sqrt,/,trunc
• -fimf-accuracy-bits=10:powf
Windows

• /Qimf-accuracy-bits:23:sinf,cosf,logf
• /Qimf-accuracy-bits:52:sqrt,/,trunc
• /Qimf-accuracy-bits:10:powf
If you do not specify any function names, then the setting applies to all functions (and to all precisions).
However, as soon as you specify an individual function name, the setting applies only to the function of
corresponding precision. So, for example, sinf applies only to the single-precision sine function, sin applies
only to the double-precision sine function, sinl applies only to the extended-precision sine function, etc.

There are three options you can use to express the maximum relative error. They are as follows:

Linux

• -fimf-precision
• -fimf-max-error
• -fimf-accuracy-bits
Windows

• /Qimf-precision
• /Qimf-max-error
• /Qimf-accuracy-bits
If more than one of these options are specified, the default value for the maximum relative error is
determined by the last one specified on the command line.

If none of the above options are specified, the default values for the maximum relative error are determined
by the setting of the following options:

• [Q]fast-transcendentals (ifort only)
• [Q]prec-div
• [Q]prec-sqrt (ifort only)
• -fp-model (Linux) or /fp (Windows)

Intel® Fortran Compiler Classic and Intel® Fortran Compiler Developer Guide and Reference 1

271

NOTE
Many routines in libraries LIBM (Math Library) and SVML (Short Vector Math Library) are
more highly optimized for Intel® microprocessors than for non-Intel microprocessors.

NOTE
The standard Fortran names for the various math intrinsic functions do not match the math
library names of the math intrinsic functions. You must find the actual math library name
that is generated for the relevant Fortran math intrinsic.

One way to do this is to generate assembly code by using one of the following options:

Linux

-S
Windows

/Fa or /S
The assembly code will show the actual math library name.

For example, if you create a program that contains a call to SIN(x) where x is declared as
REAL(KIND=4) and then use option S to produce assembly code for the program, the assembly code
will show a call to sinf.

To request the relative error for the single-precision sine function, you should specify:

Linux

-fimf-accuracy-bits=sinf
Windows

/Qimf-accuracy-bits:sinf

NOTE
This option only applies to host compilation. When offloading is enabled, it does not impact
device-specific compilation. Offloading can only be enabled when using ifx.

Product and Performance Information

Performance varies by use, configuration and other factors. Learn more at www.Intel.com/
PerformanceIndex.

Notice revision #20201201

IDE Equivalent

None

Alternate Options

None

See Also
fimf-absolute-error, Qimf-absolute-error compiler option
fimf-arch-consistency, Qimf-arch-consistency compiler option
fimf-domain-exclusion, Qimf-domain-exclusion compiler option

 1 Intel® Fortran Compiler Classic and Intel® Fortran Compiler Developer Guide and Reference

272

https://www.intel.com/PerformanceIndex
https://www.intel.com/PerformanceIndex

fimf-max-error, Qimf-max-error compiler option
fimf-precision, Qimf-precision compiler option
fimf-use-svml_Qimf-use-svml compiler option

fimf-arch-consistency, Qimf-arch-consistency
Ensures that the math library functions produce
consistent results across different microarchitectural
implementations of the same architecture.

Syntax

Linux OS:

-fimf-arch-consistency=value[:funclist]
Windows OS:

/Qimf-arch-consistency:value[:funclist]

Arguments

value Is one of the logical values "true" or "false".

funclist Is an optional list of one or more math library functions to which the
attribute should be applied. Do not specify the standard Fortran name
of the math function; you must specify the actual math library name.
If you specify more than one function, they must be separated with
commas.

Precision-specific variants like sin and sinf are considered different
functions, so you would need to use
-fimf-arch-consistency=true:sin,sinf
(or /Qimf-arch-consistency:true:sin,sinf) to specify consistent
results for both the single-precision and double-precision sine
functions.

You also can specify the symbol /f to denote single-precision divides,
symbol / to denote double-precision divides, symbol /l to denote
extended-precision divides, and symbol /q to denote quad-precision
divides. For example you can specify
-fimf-arch-consistency=true:/
or /Qimf-arch-consistency:true:/.

Default

false Implementations of some math library functions may produce slightly different results on
implementations of the same architecture.

Description

This option ensures that the math library functions produce consistent results across different
microarchitectural implementations of the same architecture (for example, across different microarchitectural
implementations of Intel® 64 architecture). Consistency is only guaranteed for a single binary. Consistency is
not guaranteed across different architectures.

If you need to define the accuracy for a math function of a certain precision, specify the function name of the
precision that you need. For example:

Linux

Intel® Fortran Compiler Classic and Intel® Fortran Compiler Developer Guide and Reference 1

273

If you want double precision, you can specify :sin; if you want single precision, you can specify :sinf, as in
-fimf-arch-consistency=true:sin or -fimf-arch-consistency=false:sqrtf.

Windows

If you want double precision, you can specify :sin; if you want single precision, you can specify :sinf, as
in /Qimf-arch-consistency:true:sin or /Qimf-arch-consistency:false:sqrtf.

If you do not specify any function names, then the setting applies to all functions (and to all precisions).
However, as soon as you specify an individual function name, the setting applies only to the function of
corresponding precision. So, for example, sinf applies only to the single-precision sine function, sin applies
only to the double-precision sine function, sinl applies only to the extended-precision sine function, etc.

The -fimf-arch-consistency (Linux*) and /Qimf-arch-consistency (Windows*) option may decrease
runtime performance, but the option will provide bit-wise consistent results on all Intel® processors and
compatible, non-Intel processors, regardless of micro-architecture. This option may not provide bit-wise
consistent results between different architectures.

NOTE
Many routines in libraries LIBM (Math Library) and SVML (Short Vector Math Library) are
more highly optimized for Intel® microprocessors than for non-Intel microprocessors.

NOTE
The standard Fortran names for the various math intrinsic functions do not match the math
library names of the math intrinsic functions. You must find the actual math library name
that is generated for the relevant Fortran math intrinsic.

One way to do this is to generate assembly code by using one of the following options:

Linux

-S
Windows

/Fa or /S
The assembly code will show the actual math library name.

For example, if you create a program that contains a call to SIN(x) where x is declared as
REAL(KIND=4) and then use option S to produce assembly code for the program, the assembly code
will show a call to sinf.

To ensure consistent results for the single-precision sine function, you should specify:

Linux

-fimf-arch-consistency=sinf
Windows

/Qimf-arch-consistency:sinf

NOTE
This option only applies to host compilation. When offloading is enabled, it does not impact
device-specific compilation. Offloading can only be enabled when using ifx.

 1 Intel® Fortran Compiler Classic and Intel® Fortran Compiler Developer Guide and Reference

274

Product and Performance Information

Performance varies by use, configuration and other factors. Learn more at www.Intel.com/
PerformanceIndex.

Notice revision #20201201

IDE Equivalent

None

Alternate Options

None

See Also
fimf-absolute-error, Qimf-absolute-error compiler option
fimf-accuracy-bits, Qimf-accuracy-bits compiler option
fimf-domain-exclusion, Qimf-domain-exclusion compiler option
fimf-max-error, Qimf-max-error compiler option
fimf-precision, Qimf-precision compiler option
fimf-use-svml_Qimf-use-svml compiler option

fimf-domain-exclusion, Qimf-domain-exclusion
Indicates the input arguments domain on which math
functions must provide correct results.

Syntax

Linux OS:

-fimf-domain-exclusion=classlist[:funclist]
Windows OS:

/Qimf-domain-exclusion:classlist[:funclist]

Arguments

classlist Is one of the following:

• One or more of the following floating-point value classes you can exclude from the
function domain without affecting the correctness of your program. The supported
class names are:

extremes This class is for values which do not lie within the
usual domain of arguments for a given function.

nans This means "x=Nan".

infinities This means "x=infinities".

denormals This means "x=denormal".

zeros This means "x=0".

Each classlist element corresponds to a power of two. The exclusion attribute is the
logical or of the associated powers of two (that is, a bitmask).

Intel® Fortran Compiler Classic and Intel® Fortran Compiler Developer Guide and Reference 1

275

https://www.intel.com/PerformanceIndex
https://www.intel.com/PerformanceIndex

The following shows the current mapping from classlist mnemonics to numerical
values:

extremes 1

nans 2

infinities 4

denormals 8

zeros 16

none 0

all 31

common 15

other combinations bitwise OR of the used values

You must specify the integer value that corresponds to the class that you want to
exclude.

Note that on excluded values, unexpected results may occur.
• One of the following short-hand tokens:

none This means that none of the supported classes are
excluded from the domain. To indicate this token,
specify 0, as in -fimf-domain-exclusion=0
(or /Qimf-domain-exclusion:0).

all This means that all of the supported classes are
excluded from the domain. To indicate this token,
specify 31, as in -fimf-domain-exclusion=31
(or /Qimf-domain-exclusion:31).

common This is the same as specifying
extremes,nans,infinities,subnormals. To indicate this
token, specify 15 (1 + 2+ 4 + 8), as in
-fimf-domain-exclusion=15
(or /Qimf-domain-exclusion:15)

funclist Is an optional list of one or more math library functions to which the attribute should
be applied. Do not specify the standard Fortran name of the math function; you must
specify the actual math library name. If you specify more than one function, they must
be separated with commas.

Precision-specific variants like sin and sinf are considered different functions, so you
would need to use -fimf-domain-exclusion=4:sin,sinf
(or /Qimf-domain-exclusion:4:sin,sinf) to specify infinities for both the single-
precision and double-precision sine functions.

You also can specify the symbol /f to denote single-precision divides, symbol / to
denote double-precision divides, symbol /l to denote extended-precision divides, and
symbol /q to denote quad-precision divides. For example, you can specify:

-fimf-domain-exclusion=4 or /Qimf-domain-exclusion:4
-fimf-domain-exclusion=5:/,powf or /Qimf-domain-exclusion:5:/,powf

 1 Intel® Fortran Compiler Classic and Intel® Fortran Compiler Developer Guide and Reference

276

-fimf-domain-exclusion=23:log,logf,/,sin,cosf
or /Qimf-domain-exclusion:23:log,logf,/,sin,cosf
If you don't specify argument funclist, the domain restrictions apply to all math library
functions.

Default

Zero ("0") The compiler uses default heuristics when calling math library functions.

Description

This option indicates the input arguments domain on which math functions must provide correct results. It
specifies that your program will function correctly if the functions specified in funclist do not produce
standard conforming results on the number classes.

This option can affect runtime performance and the accuracy of results. As more classes are excluded, faster
code sequences can be used.

If you need to define the accuracy for a math function of a certain precision, specify the function name of the
precision that you need. For example, if you want double precision, you can specify :sin; if you want single
precision, you can specify :sinf, as in -fimf-domain-exclusion=subnormals:sin
or /Qimf-domain-exclusion:subnormals:sin, or -fimf-domain-exclusion=extremes:sqrtf
or /Qimf-domain-exclusion:extremes:sqrtf.

If you do not specify any function names, then the setting applies to all functions (and to all precisions).
However, as soon as you specify an individual function name, the setting applies only to the function of
corresponding precision. So, for example, sinf applies only to the single-precision sine function, sin applies
only to the double-precision sine function, sinl applies only to the extended-precision sine function, etc.

NOTE
Many routines in libraries LIBM (Math Library) and SVML (Short Vector Math Library) are
more highly optimized for Intel® microprocessors than for non-Intel microprocessors.

Intel® Fortran Compiler Classic and Intel® Fortran Compiler Developer Guide and Reference 1

277

NOTE
The standard Fortran names for the various math intrinsic functions do not match the math
library names of the math intrinsic functions. You must find the actual math library name
that is generated for the relevant Fortran math intrinsic.

One way to do this is to generate assembly code by using one of the following options:

Linux

-S
Windows

/Fa or /S
The assembly code will show the actual math library name.

For example, if you create a program that contains a call to SIN(x) where x is declared as
REAL(KIND=4) and then use option S to produce assembly code for the program, the assembly code
will show a call to sinf.

To indicate the input arguments domain for the single-precision sine function, you should specify:

Linux

-fimf-domain-exclusion=sinf
Windows

/Qimf-domain-exclusion:sinf

NOTE
This option only applies to host compilation. When offloading is enabled, it does not impact
device-specific compilation. Offloading can only be enabled when using ifx.

Product and Performance Information

Performance varies by use, configuration and other factors. Learn more at www.Intel.com/
PerformanceIndex.

Notice revision #20201201

IDE Equivalent

None

Alternate Options

None

Examples
Consider the following single-precision sequence for function exp2f:

Operation: y = exp2f(x)

Accuracy: 1.014 ulp

Instructions: 4 (2 without fix-up)

 1 Intel® Fortran Compiler Classic and Intel® Fortran Compiler Developer Guide and Reference

278

https://www.intel.com/PerformanceIndex
https://www.intel.com/PerformanceIndex

The following shows the 2-instruction sequence without the fix-up:

vcvtfxpntps2dq zmm1 {k1}, zmm0, 0x50 // zmm1 <-- rndToInt(2^24 * x)
vexp223ps zmm1 {k1}, zmm1 // zmm1 <-- exp2(x)

However, the above 2-instruction sequence will not correctly process NaNs. To process Nans correctly, the
following fix-up must be included following the above instruction sequence:

vpxord zmm2, zmm2, zmm2 // zmm2 <-- 0
vfixupnanps zmm1 {k1}, zmm0, zmm2 {aaaa} // zmm1 <-- QNaN(x) if x is NaN <F>

If the vfixupnanps instruction is not included, the sequence correctly processes any arguments except NaN
values. For example, the following options generate the 2-instruction sequence:

-fimf-domain-exclusion=2:exp2f <- NaNs are excluded (2 corresponds to NaNs)
-fimf-domain-exclusion=6:exp2f <- NaNs and infinities are excluded (4 corresponds to
infinities; 2 + 4 = 6)
-fimf-domain-exclusion=7:exp2f <- NaNs, infinities, and extremes are excluded (1
corresponds to extremes; 2 + 4 + 1 = 7)
-fimf-domain-exclusion=15:exp2f <- NaNs, infinities, extremes, and subnormals are excluded
(8 corresponds to subnormals; 2 + 4 + 1 + 8=15)

If the vfixupnanps instruction is included, the sequence correctly processes any arguments including NaN
values. For example, the following options generate the 4-instruction sequence:

-fimf-domain-exclusion=1:exp2f <- only extremes are excluded (1 corresponds to extremes)
-fimf-domain-exclusion=4:exp2f <- only infinities are excluded (4 corresponds to infinities)
-fimf-domain-exclusion=8:exp2f <- only subnormals are excluded (8 corresponds to subnormals)
-fimf-domain-exclusion=13:exp2f <- only extremes, infinities and subnormals are excluded (1
+ 4 + 8 = 13)

See Also
fimf-absolute-error, Qimf-absolute-error compiler option
fimf-accuracy-bits, Qimf-accuracy-bits compiler option
fimf-arch-consistency, Qimf-arch-consistency compiler option
fimf-max-error, Qimf-max-error compiler option
fimf-precision, Qimf-precision compiler option
fimf-use-svml_Qimf-use-svml compiler option

fimf-force-dynamic-target, Qimf-force-dynamic-target
Instructs the compiler to use runtime dispatch in calls
to math functions. This feature is only available for
ifort.

Syntax

Linux OS:

-fimf-force-dynamic-target[=funclist]
Windows OS:

/Qimf-force-dynamic-target[:funclist]

Intel® Fortran Compiler Classic and Intel® Fortran Compiler Developer Guide and Reference 1

279

Arguments

funclist Is an optional list of one or more math library functions to which the
attribute should be applied. Do not specify the standard Fortran name
of the math function; you must specify the actual math library name.
If you specify more than one function, they must be separated with
commas.

Precision-specific variants like sin and sinf are considered different
functions, so you would need to use
-fimf-dynamic-target=sin,sinf
(or /Qimf-dynamic-target:sin,sinf) to specify runtime dispatch
for both the single-precision and double-precision sine functions.

You also can specify the symbol /f to denote single-precision divides,
symbol / to denote double-precision divides, symbol /l to denote
extended-precision divides, and symbol /q to denote quad-precision
divides. For example, you can specify -fimf-dynamic-target=/
or /Qimf-dynamic-target:/.

Default

OFF Runtime dispatch is not forced in math libraries calls. The compiler can choose to call a CPU-
specific version of a math function if one is available.

Description

This option instructs the compiler to use runtime dispatch in calls to math functions. When this option set to
ON, it lets you force runtime dispatch in math libraries calls.

By default, when this option is set to OFF, the compiler often optimizes math library calls using the target
CPU architecture-specific information available at compile time through the [Q]x and arch compiler options.

If you want to target multiple CPU families with a single application or you prefer to choose a target CPU at
runtime, you can force runtime dispatch in math libraries by using this option.

 1 Intel® Fortran Compiler Classic and Intel® Fortran Compiler Developer Guide and Reference

280

NOTE
The standard Fortran names for the various math intrinsic functions do not match the math
library names of the math intrinsic functions. You must find the actual math library name
that is generated for the relevant Fortran math intrinsic.

One way to do this is to generate assembly code by using one of the following options:

Linux

-S
Windows

/Fa or /S
The assembly code will show the actual math library name.

For example, if you create a program that contains a call to SIN(x) where x is declared as
REAL(KIND=4) and then use option S to produce assembly code for the program, the assembly code
will show a call to sinf.

To use runtime dispatch in calls to the single-precision sine function, you should specify:

Linux

-fimf-force-dynamic-target=sinf
Windows

/Qimf-force-dynamic-target:sinf

Product and Performance Information

Performance varies by use, configuration and other factors. Learn more at www.Intel.com/
PerformanceIndex.

Notice revision #20201201

IDE Equivalent

None

Alternate Options

None

See Also
x, Qx compiler option
arch compiler option
mtune, tune compiler option

fimf-max-error, Qimf-max-error
Defines the maximum allowable relative error for
math library function results, including division and
square root.

Syntax

Linux OS:

-fimf-max-error=ulps[:funclist]

Intel® Fortran Compiler Classic and Intel® Fortran Compiler Developer Guide and Reference 1

281

https://www.intel.com/PerformanceIndex
https://www.intel.com/PerformanceIndex

Windows OS:

/Qimf-max-error:ulps[:funclist]

Arguments

ulps Is a positive, floating-point number indicating the maximum allowable
relative error the compiler should use.

The format for the number is [digits] [.digits] [{ e | E }[sign]digits].

funclist Is an optional list of one or more math library functions to which the
attribute should be applied. Do not specify the standard Fortran name
of the math function; you must specify the actual math library name.
If you specify more than one function, they must be separated with
commas.

Precision-specific variants like sin and sinf are considered different
functions, so you would need to use
-fimf-max-error=4.0:sin,sinf
(or /Qimf-max-error=4.0:sin,sinf) to specify the maximum
allowable relative error for both the single-precision and double-
precision sine functions.

You also can specify the symbol /f to denote single-precision divides,
symbol / to denote double-precision divides, symbol /l to denote
extended-precision divides, and symbol /q to denote quad-precision
divides. For example you can specify -fimf-max-error=4.0:/
or /Qimf-max-error:4.0:/.

Default

-fimf-precision=medium or /Qimf-
precision:medium

The compiler uses medium precision when calling math library
functions. Note that other options can affect precision; see below
for details.

Description

This option defines the maximum allowable relative error, measured in ulps, for math library function results.

This option can affect runtime performance and the accuracy of results.

If you need to define the accuracy for a math function of a certain precision, specify the function name of the
precision that you need. For example, if you want double precision, you can specify :sin; if you want single
precision, you can specify :sinf, as in -fimf-max-error=4.0:sin or /Qimf-max-error:4.0:sin, or
-fimf-max-error=4.0:sqrtf or /Qimf-max-error:4.0:sqrtf.

If you do not specify any function names, then the setting applies to all functions (and to all precisions).
However, as soon as you specify an individual function name, the setting applies only to the function of
corresponding precision. So, for example, sinf applies only to the single-precision sine function, sin applies
only to the double-precision sine function, sinl applies only to the extended-precision sine function, etc.

There are three options you can use to express the maximum relative error. They are as follows:

Linux

• -fimf-precision
• -fimf-max-error
• -fimf-accuracy-bits
Windows

 1 Intel® Fortran Compiler Classic and Intel® Fortran Compiler Developer Guide and Reference

282

• /Qimf-precision
• /Qimf-max-error
• /Qimf-accuracy-bits
If more than one of these options are specified, the default value for the maximum relative error is
determined by the last one specified on the command line.

If none of the above options are specified, the default values for the maximum relative error are determined
by the setting of the following options:

• [Q]fast-transcendentals (ifort only)
• [Q]prec-div
• [Q]prec-sqrt (ifort only)
• -fp-model (Linux) or /fp (Windows)

NOTE
Many routines in libraries LIBM (Math Library) and SVML (Short Vector Math Library) are
more highly optimized for Intel® microprocessors than for non-Intel microprocessors.

NOTE
The standard Fortran names for the various math intrinsic functions do not match the math
library names of the math intrinsic functions. You must find the actual math library name
that is generated for the relevant Fortran math intrinsic.

One way to do this is to generate assembly code by using one of the following options:

Linux

-S
Windows

/Fa or /S
The assembly code will show the actual math library name.

For example, if you create a program that contains a call to SIN(x) where x is declared as
REAL(KIND=4) and then use option S to produce assembly code for the program, the assembly code
will show a call to sinf.

To define the maximum allowable relative error for the single-precision sine function, you should
specify:

Linux

-fimf-max-error=sinf
Windows

/Qimf-max-error:sinf

NOTE
This option only applies to host compilation. When offloading is enabled, it does not impact
device-specific compilation. Offloading can only be enabled when using ifx.

Intel® Fortran Compiler Classic and Intel® Fortran Compiler Developer Guide and Reference 1

283

Product and Performance Information

Performance varies by use, configuration and other factors. Learn more at www.Intel.com/
PerformanceIndex.

Notice revision #20201201

IDE Equivalent

None

Alternate Options

None

See Also
fimf-absolute-error, Qimf-absolute-error compiler option
fimf-accuracy-bits, Qimf-accuracy-bits compiler option
fimf-arch-consistency, Qimf-arch-consistency compiler option
fimf-domain-exclusion, Qimf-domain-exclusion compiler option
fimf-precision, Qimf-precision compiler option
fimf-use-svml_Qimf-use-svml compiler option

fimf-precision, Qimf-precision
Lets you specify a level of accuracy (precision) that
the compiler should use when determining which math
library functions to use.

Syntax

Linux OS:

-fimf-precision[=value[:funclist]]
Windows OS:

/Qimf-precision[:value[:funclist]]

Arguments

value Is one of the following values denoting the desired accuracy:

high This is equivalent to max-error = 1.0.

medium This is equivalent to max-error = 4; this is
the default setting if the option is specified
and value is omitted.

low This is equivalent to accuracy-bits = 11 for
single-precision functions; accuracy-bits =
26 for double-precision functions.

Linux

In the above explanations, max-error means option
-fimf-max-error; accuracy-bits means option
-fimf-accuracy-bits.

Windows

 1 Intel® Fortran Compiler Classic and Intel® Fortran Compiler Developer Guide and Reference

284

https://www.intel.com/PerformanceIndex
https://www.intel.com/PerformanceIndex

In the above explanations, max-error means
option /Qimf-max-error (Windows*); accuracy-bits means
option /Qimf-accuracy-bits.

funclist Is an optional list of one or more math library functions to which the
attribute should be applied.

Do not specify the standard Fortran name of the math function; you
must specify the actual math library name. If you specify more than
one function, they must be separated with commas.

Precision-specific variants like sin and sinf are considered different
functions, so you would need to use
-fimf-precision=high:sin,sinf
(or /Qimf-precision:high:sin,sinf) to specify high precision for
both the single-precision and double-precision sine functions.

You also can specify the symbol /f to denote single-precision divides,
symbol / to denote double-precision divides, symbol /l to denote
extended-precision divides, and symbol /q to denote quad-precision
divides. For example you can specify -fimf-precision=low:/
or /Qimf-precision:low:/ and -fimf-precision=low:/f
or /Qimf-precision:low:/f.

Default

medium The compiler uses medium precision when calling math library functions. Note that
other options can affect precision; see below for details.

Description

This option lets you specify a level of accuracy (precision) that the compiler should use when determining
which math library functions to use.

This option can be used to improve runtime performance if reduced accuracy is sufficient for the application,
or it can be used to increase the accuracy of math library functions selected by the compiler.

In general, using a lower precision can improve runtime performance and using a higher precision may
reduce runtime performance.

If you need to define the accuracy for a math function of a certain precision, specify the function name of the
precision that you need. For example, if you want double precision, you can specify :sin; if you want single
precision, you can specify :sinf, as in -fimf-precision=low:sin or /Qimf-precision:low:sin, or
-fimf-precision=high:sqrtf or /Qimf-precision:high:sqrtf.

If you do not specify any function names, then the setting applies to all functions (and to all precisions).
However, as soon as you specify an individual function name, the setting applies only to the function of
corresponding precision. So, for example, sinf applies only to the single-precision sine function, sin applies
only to the double-precision sine function, sinl applies only to the extended-precision sine function, etc.

There are three options you can use to express the maximum relative error. They are as follows:

Linux

• -fimf-precision
• -fimf-max-error
• -fimf-accuracy-bits
Windows

• /Qimf-precision

Intel® Fortran Compiler Classic and Intel® Fortran Compiler Developer Guide and Reference 1

285

• /Qimf-max-error
• /Qimf-accuracy-bits
If more than one of these options are specified, the default value for the maximum relative error is
determined by the last one specified on the command line.

If none of the above options are specified, the default values for the maximum relative error are determined
by the setting of the following options:

• [Q]fast-transcendentals (ifort only)
• [Q]prec-div
• [Q]prec-sqrt (ifort only)
• -fp-model (Linux) or /fp (Windows)

NOTE
Many routines in libraries LIBM (Math Library) and SVML (Short Vector Math Library) are
more highly optimized for Intel® microprocessors than for non-Intel microprocessors.

NOTE
The standard Fortran names for the various math intrinsic functions do not match the math
library names of the math intrinsic functions. You must find the actual math library name
that is generated for the relevant Fortran math intrinsic.

One way to do this is to generate assembly code by using one of the following options:

Linux

-S
Windows

/Fa or /S
The assembly code will show the actual math library name.

For example, if you create a program that contains a call to SIN(x) where x is declared as
REAL(KIND=4) and then use option S to produce assembly code for the program, the assembly code
will show a call to sinf.

To specify a level of accuracy for the single-precision sine function, you should specify:

Linux

-fimf-precision=sinf
Windows

/Qimf-precision:sinf

NOTE
This option only applies to host compilation. When offloading is enabled, it does not impact
device-specific compilation. Offloading can only be enabled when using ifx.

Product and Performance Information

Performance varies by use, configuration and other factors. Learn more at www.Intel.com/
PerformanceIndex.

 1 Intel® Fortran Compiler Classic and Intel® Fortran Compiler Developer Guide and Reference

286

https://www.intel.com/PerformanceIndex
https://www.intel.com/PerformanceIndex

Product and Performance Information

Notice revision #20201201

IDE Equivalent

None

Alternate Options

None

See Also
fimf-absolute-error, Qimf-absolute-error compiler option
fimf-accuracy-bits, Qimf-accuracy-bits compiler option
fimf-arch-consistency, Qimf-arch-consistency compiler option
fimf-domain-exclusion, Qimf-domain-exclusion compiler option
fimf-max-error, Qimf-max-error compiler option
fast-transcendentals, Qfast-transcendentals compiler option
prec-div, Qprec-div compiler option
prec-sqrt, Qprec-sqrt compiler option
fp-model, fp compiler option
fimf-use-svml_Qimf-use-svml compiler option

fimf-use-svml, Qimf-use-svml
Instructs the compiler to use the Short Vector Math
Library (SVML) rather than the Intel® Fortran Compiler
Classic and Intel® Fortran Compiler Math Library
(LIBM) to implement math library functions.

Syntax

Linux OS:

-fimf-use-svml=value[:funclist]
Windows OS:

/Qimf-use-svml:value[:funclist]

Arguments

funclist Is an optional list of one or more math library functions to which the
attribute should be applied. Do not specify the standard Fortran name
of the math function; you must specify the actual math library name.
If you specify more than one function, they must be separated with
commas.

Precision-specific variants like sin and sinf are considered different
functions, so you would need to use
-fimf-use-svmlt=true:sin,sinf
(or /Qimf-use-svml:true:sin,sinf) to specify that both the
single-precision and double-precision sine functions should use SVML.

Intel® Fortran Compiler Classic and Intel® Fortran Compiler Developer Guide and Reference 1

287

Default

false Math library functions are implemented using the Intel® Fortran Compiler Classic and Intel®
Fortran Compiler Math Library, though other compiler options such as -fast-transcendentals
or /Qfast-transcendentals may give the compiler the flexibility to implement math library
functions with either LIBM or SVML.

Description

This option instructs the compiler to implement math library functions using the Short Vector Math Library
(SVML).

Linux

When you specify option -fimf-use-svml=true, the specific SVML variant chosen is influenced by other
compiler options such as -fimf-precision and -fp-model.

Windows

When you specify option /Qimf-use-svml:true, the specific SVML variant chosen is influenced by other
compiler options such as /Qimf-precision and /fp.

This option has no effect on math library functions that are implemented in LIBM but not in SVML.

In value-safe settings of option -fp-model (Linux) or option /fp (Windows) such as precise, this option
causes a slight decrease in the accuracy of math library functions, because even the high accuracy SVML
functions are slightly less accurate than the corresponding functions in LIBM. Additionally, the SVML functions
might not accurately raise floating-point exceptions, do not maintain errno, and are designed to work
correctly only in round-to-nearest-even rounding mode.

The benefit of using -fimf-use-svml=true or /Qimf-use-svml:true with value-safe settings of
-fp-model (Linux) or /fp (Windows) is that it can significantly improve performance by enabling the
compiler to efficiently vectorize loops containing calls to math library functions.

If you need to use SVML for a specific math function of a certain precision, specify the function name of the
precision that you need. For example, if you want double precision, you can specify :sin; if you want single
precision, you can specify :sqrtf, as in -fimf-use-svml=true:sin or /Qimf-use-svml:true:sin, or
-fimf-use-svml =false:sqrtf or /Qimf-use-svml:false:sqrtf.

If you do not specify any function names, then the setting applies to all functions (and to all precisions).
However, as soon as you specify an individual function name, the setting applies only to the function of
corresponding precision. So, for example, sinf applies only to the single-precision sine function, sin applies
only to the double-precision sine function, sinl applies only to the extended-precision sine function, etc.

NOTE
Linux
If you specify option -mia32, vector instructions cannot be used. Therefore, you cannot use option
-mia32 with option -fimf-use-svml=true.

Windows

If you specify option /arch:IA32 (Windows*), vector instructions cannot be used. Therefore, you
cannot use option /arch:IA32 with option /Qimf-use-svml:true.

 1 Intel® Fortran Compiler Classic and Intel® Fortran Compiler Developer Guide and Reference

288

NOTE
Since SVML functions may raise unexpected floating-point exceptions, be cautious about
using features that enable trapping on floating-point exceptions. For example, be cautious
about specifying option -fimf-use-svml=true with option -fp-trap, or
option /Qimf-use-svml:true with option /Qfp-trap. For some inputs to some math library
functions, such option combinations may cause your program to trap unexpectedly.

NOTE
The standard Fortran names for the various math intrinsic functions do not match the math
library names of the math intrinsic functions. You must find the actual math library name
that is generated for the relevant Fortran math intrinsic.

One way to do this is to generate assembly code by using one of the following options:

Linux

-S
Windows

/Fa or /S
The assembly code will show the actual math library name.

For example, if you create a program that contains a call to SIN(x) where x is declared as
REAL(KIND=4) and then use option S to produce assembly code for the program, the assembly code
will show a call to sinf.

To request the use of SVML for the single-precision sine function, you should specify:

Linux

-fimf-use-svml=true:sinf
Windows

/Qimf-use-svml:true:sinf

NOTE
This option only applies to host compilation. When offloading is enabled, it does not impact
device-specific compilation. Offloading can only be enabled when using ifx.

Product and Performance Information

Performance varies by use, configuration and other factors. Learn more at www.Intel.com/
PerformanceIndex.

Notice revision #20201201

IDE Equivalent

None

Alternate Options

None

Intel® Fortran Compiler Classic and Intel® Fortran Compiler Developer Guide and Reference 1

289

https://www.intel.com/PerformanceIndex
https://www.intel.com/PerformanceIndex

See Also
fp-model, fp compiler option
m compiler option
arch compiler option

fltconsistency
Enables improved floating-point consistency.

Syntax

Linux OS:

-fltconsistency
-nofltconsistency
Windows OS:

/fltconsistency
/nofltconsistency

Arguments

None

Default

nofltconsistency Improved floating-point consistency is not enabled. This setting provides
better accuracy and runtime performance at the expense of less consistent
floating-point results.

Description

This option enables improved floating-point consistency and may slightly reduce execution speed. It limits
floating-point optimizations and maintains declared precision. It also disables inlining of math library
functions.

Floating-point operations are not reordered and the result of each floating-point operation is stored in the
target variable rather than being kept in the floating-point processor for use in a subsequent calculation.

For example, the compiler can change floating-point division computations into multiplication by the
reciprocal of the denominator. This change can alter the results of floating-point division computations
slightly.

Floating-point intermediate results are kept in full 80 bits internal precision. Additionally, all spills/reloads of
the X87 floating point registers are done using the internal formats; this prevents accidental loss of precision
due to spill/reload behavior over which you have no control.

Specifying this option has the following effects on program compilation:

• Floating-point user variables are not assigned to registers.
• Floating-point arithmetic comparisons conform to IEEE 754.
• The exact operations specified in the code are performed. For example, division is never changed to

multiplication by the reciprocal.
• The compiler performs floating-point operations in the order specified without reassociation.
• The compiler does not perform constant folding on floating-point values. Constant folding also eliminates

any multiplication by 1, division by 1, and addition or subtraction of 0. For example, code that adds 0.0 to
a number is executed exactly as written. Compile-time floating-point arithmetic is not performed to
ensure that floating-point exceptions are also maintained.

 1 Intel® Fortran Compiler Classic and Intel® Fortran Compiler Developer Guide and Reference

290

• Whenever an expression is spilled, it is spilled as 80 bits (extended precision), not 64 bits (DOUBLE
PRECISION). When assignments to type REAL and DOUBLE PRECISION are made, the precision is
rounded from 80 bits down to 32 bits (REAL) or 64 bits (DOUBLE PRECISION). When you do not
specify /fltconsistency, the extra bits of precision are not always rounded away before the variable is
reused.

• Even if vectorization is enabled by the [Q]x option, the compiler does not vectorize reduction loops (loops
computing the dot product) and loops with mixed precision types. Similarly, the compiler does not enable
certain loop transformations. For example, the compiler does not transform reduction loops to perform
partial summation or loop interchange.

This option causes performance degradation relative to using default floating-point optimization flags.

For ifort on Windows systems, an alternative is to use the /Qprec option, which should provide better than
default floating-point precision while still delivering good floating-point performance.

The recommended method to control the semantics of floating-point calculations is to use option -fp-model
(Linux*) or /fp (Windows*).

IDE Equivalent

None

Alternate Options

fltconsistency Linux: -mieee-fp
Windows: None

nofltconsistency Linux: -mno-ieee-fp
Windows: None

See Also
mp1, Qprec compiler option
fp-model, fp compiler option

fma, Qfma
Determines whether the compiler generates fused
multiply-add (FMA) instructions if such instructions
exist on the target processor.

Syntax

Linux OS:

-fma
-no-fma
Windows OS:

/Qfma
/Qfma-

Arguments

None

Intel® Fortran Compiler Classic and Intel® Fortran Compiler Developer Guide and Reference 1

291

Default

-fma
or /Qfma

If the instructions exist on the target processor, the compiler generates fused multiply-
add (FMA) instructions.

However, if you specify -fp-model strict (Linux*) or /fp:strict (Windows*), but
do not explicitly specify -fma or /Qfma, the default is -no-fma or /Qfma-.

Description

This option determines whether the compiler generates fused multiply-add (FMA) instructions if such
instructions exist on the target processor. When the [Q]fma option is specified, the compiler may generate
FMA instructions for combining multiply and add operations. When the negative form of the [Q]fma option is
specified, the compiler must generate separate multiply and add instructions with intermediate rounding.

This option has no effect unless setting CORE-AVX2 or higher is specified for option [Q]x,-march (Linux),
or /arch (Windows).

IDE Equivalent

None

Alternate Options

None

See Also
fp-model, fp compiler option
x, Qx compiler option
ax, Qax compiler option
march compiler option
arch compiler option

fp-model, fp
Controls the semantics of floating-point calculations.

Syntax

Linux OS:

-fp-model=keyword
Windows OS:

/fp:keyword

Arguments

keyword Specifies the semantics to be used. Possible values are:

precise Disables optimizations that are not value-safe on floating-point
data.

fast[=1|2] Enables more aggressive optimizations on floating-point data.

On ifx, if you specify fast with no number, it is equivalent to
fast=1.

 1 Intel® Fortran Compiler Classic and Intel® Fortran Compiler Developer Guide and Reference

292

On ifort, there is currently no difference between fast=1 and
fast=2.

consistent Disables optimizations that are not value-safe on floating-point
data and disables contraction (FMA) and selects math library
functions that produce consistent results across different
microarchitectural implementations of the same architecture.

strict Enables precise, disables contractions, and enables the
property that allows modification of the floating-point
environment. On ifort, it also enables except.

source Rounds intermediate results to source-defined precision.

[no-]except (Linux*) or
except[-] (Windows*)
(ifort only)

Determines whether strict floating-point exception semantics are
honored.

Default

-fp-model=fast
or /fp:fast

The compiler uses more aggressive optimizations on floating-point
calculations.

Description

This option controls the semantics of floating-point calculations.

The floating-point (FP) environment is a collection of registers that control the behavior of FP machine
instructions and indicate the current FP status. The floating-point environment may include rounding-mode
controls, exception masks, flush-to-zero controls, exception status flags, and other floating-point related
features.

ifort:

The keywords can be considered in groups:

• Group A: precise, fast, strict
• Group B: source
• Group C: except (or negative forms -no-except or /except-)
• Group D: consistent
You can specify more than one keyword. However, the following rules apply:

• You cannot specify fast and except together in the same compilation. You can specify any other
combination of group A, group B, and group C.
Since fast is the default, you must not specify except without a group A or group B keyword.

• You should specify only one keyword from group A and only one keyword from group B. If you try to
specify more than one keyword from either group A or group B, the last (rightmost) one takes effect.

• If you specify except more than once, the last (rightmost) one takes effect.
• If you specify consistent and any other keyword from another group, the last (rightmost) one may not

fully override the heuristics set by consistent.

Intel® Fortran Compiler Classic and Intel® Fortran Compiler Developer Guide and Reference 1

293

Option Description

-fp-model=precise or /fp:precise Tells the compiler to strictly adhere to value-safe
optimizations when implementing floating-point
calculations. It disables optimizations that can
change the result of floating-point calculations,
which is required for strict ANSI conformance.

These semantics ensure the reproducibility of
floating-point computations for serial code,
including code vectorized or auto-parallelized by the
compiler, but they may slow performance. They do
not ensure value safety or run-to-run reproducibility
of other parallel code.

Run-to-run reproducibility for floating-point
reductions in OpenMP* code may be obtained for a
fixed number of threads through the
KMP_DETERMINISTIC_REDUCTION environment
variable. For more information about this
environment variable, see topic "Supported
Environment Variables".

The compiler assumes the default floating-point
environment; you are not allowed to modify it.

On ifort, floating-point exception semantics are
disabled by default. To enable these semantics, you
must also specify -fp-model=except
or /fp:except.

-fp-model=fast[=1|2] or /fp:fast[=1|2] Tells the compiler to use more aggressive
optimizations when implementing floating-point
calculations. These optimizations increase speed,
but they may affect the accuracy or reproducibility
of floating-point computations.

ifx:

Specifying fast is the same as specifying fast=1.

Setting fast=1 (the default) recognizes and
supports NaN and infinite values. Setting fast=2
does not; no NaN or infinite values will be used or
produced.

Setting fast or fast=1 sets option
assume nan_compares; setting fast=2 sets option
assume nonan_compares.

ifort:

Specifying fast is the same as specifying fast=2.

With fast=2 floating-point compares happen as
specified by the IEEE floating-point standard, in
that the code sequence generated for them
assumes a compare can involve a NaN.

 1 Intel® Fortran Compiler Classic and Intel® Fortran Compiler Developer Guide and Reference

294

Option Description

Setting fast or fast=2 sets option
assume nan_compares.

Floating-point exception semantics are disabled by
default. To enable these semantics, you must also
specify -fp-model=except or /fp:except.

-fp-model=consistent or /fp:consistent Disables optimizations that are not value-safe on
floating-point data and disables contraction (FMA)
and selects math library functions that produce
consistent results across different
microarchitectural implementations of the same
architecture.

For more information, see the article titled:
Consistency of Floating-Point Results using the
Intel® Compiler.

-fp-model=strict or /fp:strict Tells the compiler to strictly adhere to value-safe
optimizations when implementing floating-point
calculations and enables floating-point exception
semantics. This is the strictest floating-point model.

The compiler does not assume the default floating-
point environment; you are allowed to modify it.

On ifort, floating-point exception semantics can be
disabled by explicitly specifying
-fp-model=no-except or /fp:except-.

-fp-model=source or /fp:source This option causes intermediate results to be
rounded to the precision defined in the source code.
It also implies keyword precise unless it is
overridden by a keyword from Group A.

It sets options -fprotect-parens
and /Qprotect-parens.

The compiler assumes the default floating-point
environment; you are not allowed to modify it.

-fp-model=except or /fp:except (ifort only) Tells the compiler to follow strict floating-point
exception semantics.

The -fp-model and /fp options determine the setting for the maximum allowable relative error for math
library function results (max-error) if none of the following options are specified:

• -fimf-accuracy-bits (Linux*) or /Qimf-accuracy-bits (Windows*)
• -fimf-max-error (Linux) or /Qimf-max-error (Windows)
• -fimf-precision (Linux) or /Qimf-precision (Windows)
• [Q]fast-transcendentals (ifort only)

Option -fp-model=fast (and /fp:fast) sets option -fimf-precision=medium
(/Qimf-precision:medium) and option -fp-model=precise (and /fp:precise); it implies
-fimf-precision=high (and /Qimf-precision:high).

Intel® Fortran Compiler Classic and Intel® Fortran Compiler Developer Guide and Reference 1

295

https://www.intel.com/content/www/us/en/developer/articles/technical/consistency-of-floating-point-results-using-the-intel-compiler.html
https://www.intel.com/content/www/us/en/developer/articles/technical/consistency-of-floating-point-results-using-the-intel-compiler.html

On ifort, option -fp-model=fast=2 (and /fp:fast2) sets option -fimf-precision=medium
(and /Qimf-precision:medium) and option -fimf-domain-exclusion=15
(and /Qimf-domain-exclusion=15).

NOTE
This option cannot be used to change the default (source) precision for the calculation of
intermediate results.

NOTE
In Microsoft* Visual Studio, when you create a Visual Studio* Fortran project,
option /fp:fast is set by default. It sets the floating-point model to use more aggressive
optimizations when implementing floating-point calculations, which increase speed, but may
affect the accuracy or reproducibility of floating-point computations. /fp:fast is the general
default for the IDE project property for Floating Point Model.

Product and Performance Information

Performance varies by use, configuration and other factors. Learn more at www.Intel.com/
PerformanceIndex.

Notice revision #20201201

IDE Equivalent

Visual Studio

Visual Studio: Floating Point > Floating Point Model

Floating Point > Reliable Floating Point Exceptions Model

Alternate Options

None

See Also
O compiler option (specifically O0)
Od compiler option
mp1, Qprec compiler option (ifort only)
fimf-absolute-error, Qimf-absolute-error compiler option
fimf-accuracy-bits, Qimf-accuracy-bits compiler option
fimf-max-error, Qimf-max-error compiler option
fimf-precision, Qimf-precision compiler option
fimf-domain-exclusion, Qimf-domain-exclusion compiler option
fast-transcendentals, Qfast-transcendentals compiler option (ifort only)
Supported Environment Variables
The article titled: Consistency of Floating-Point Results using the Intel® Compiler

fp-port, Qfp-port
Rounds floating-point results after floating-point
operations. This feature is only available for ifort.

 1 Intel® Fortran Compiler Classic and Intel® Fortran Compiler Developer Guide and Reference

296

https://www.intel.com/PerformanceIndex
https://www.intel.com/PerformanceIndex
https://www.intel.com/content/www/us/en/developer/articles/technical/consistency-of-floating-point-results-using-the-intel-compiler.html

Syntax

Linux OS:

-fp-port
-no-fp-port
Windows OS:

/Qfp-port
/Qfp-port-

Arguments

None

Default

-no-fp-port
or /Qfp-port-

The default rounding behavior depends on the compiler's code generation decisions
and the precision parameters of the operating system.

Description

This option rounds floating-point results after floating-point operations.

This option is designed to be used with the -mia32 (Linux*) or /arch:IA32 (Windows*) option on a 32-bit
compiler. Under those conditions, the compiler implements floating-point calculations using the x87
instruction set, which uses an internal precision that may be higher than the precision specified in the
program.

By default, the compiler may keep results of floating-point operations in this higher internal precision.
Rounding to program precision occurs at unspecified points. This provides better performance, but the
floating-point results are less deterministic. The [Q]fp-port option rounds floating-point results to user-
specified precision at assignments and type conversions. This has some impact on speed.

When compiling for newer architectures, the compiler implements floating-point calculations with different
instructions, such as Intel® SSE and SSE2. These Intel® Streaming SIMD Extensions round directly to single
precision or double precision at every instruction. In these cases, option [Q]fp-port has no effect.

IDE Equivalent

Windows

Visual Studio: Floating-Point > Round Floating-Point Results

Alternate Options

None

See Also
Floating-point Operations

fp-speculation, Qfp-speculation
Tells the compiler the mode in which to speculate on
floating-point operations.

Syntax

Linux OS:

-fp-speculation=mode

Intel® Fortran Compiler Classic and Intel® Fortran Compiler Developer Guide and Reference 1

297

Windows OS:

/Qfp-speculation:mode

Arguments

mode Is the mode for floating-point operations. Possible values are:

fast Tells the compiler to speculate on floating-
point operations.

safe Tells the compiler to disable speculation if
there is a possibility that the speculation
may cause a floating-point exception.

strict Tells the compiler to disable speculation on
floating-point operations.

off (ifort only) This is the same as specifying strict.

Default

-fp-speculation=fast
or /Qfp-speculation:fast

The compiler speculates on floating-point operations. This is also the
behavior when optimizations are enabled.

However, if you specify no optimizations (-O0), the default changes to
-fp-speculation=safe (Linux) and /Qfp-speculation:safe
(Windows).

Description

This option tells the compiler the mode in which to speculate on floating-point operations.

Disabling speculation may prevent the vectorization of some loops containing conditionals.

IDE Equivalent

Visual Studio

Visual Studio: Floating Point > Floating-Point Speculation

Alternate Options

None

fp-stack-check, Qfp-stack-check
Tells the compiler to generate extra code after every
function call to ensure that the floating-point stack is
in the expected state. This feature is only available for
ifort.

Syntax

Linux OS:

-fp-stack-check
Windows OS:

/Qfp-stack-check

 1 Intel® Fortran Compiler Classic and Intel® Fortran Compiler Developer Guide and Reference

298

Arguments

None

Default

OFF There is no checking to ensure that the floating-point (FP) stack is in the expected state.

Description

This option tells the compiler to generate extra code after every function call to ensure that the floating-point
(FP) stack is in the expected state.

By default, there is no checking. So when the FP stack overflows, a NaN value is put into FP calculations and
the program's results differ. Unfortunately, the overflow point can be far away from the point of the actual
bug. This option places code that causes an access violation exception immediately after an incorrect call
occurs, thus making it easier to locate these issues.

IDE Equivalent

Windows

Visual Studio: Floating-Point > Check Floating-Point Stack

Alternate Options

None

fpe
Allows some control over floating-point exception
handling for the main program at runtime.

Syntax

Linux OS:

-fpen
Windows OS:

/fpe:n

Arguments

n Specifies the floating-point exception handling level. Possible values are:

0 Floating-point invalid, divide-by-zero, and overflow exceptions are enabled throughout
the application when the main program is compiled with this value. If any such
exceptions occur, execution is aborted. This option causes subnormal floating-point
results to be set to zero. Underflow results will also be set to zero, unless you override
this by explicitly specifying option -no-ftz or -fp-model precise (Linux*) or
option /Qftz- or /fp:precise (Windows*).

Underflow results from SSE instructions, as well as x87 instructions, will be set to zero.
By contrast, option [Q]ftz only sets SSE underflow results to zero.

Sets option -fp-speculation=strict (Linux*) or /Qfp-speculation:strict
(Windows*) for any program unit compiled with -fpe0 (Linux*) or /fpe:0
(Windows*). This disables certain optimizations in cases where speculative execution of

Intel® Fortran Compiler Classic and Intel® Fortran Compiler Developer Guide and Reference 1

299

floating-point operations could lead to floating-point exceptions that would not occur in
the absence of speculation. For example, this may prevent the vectorization of some
loops containing conditionals.

Disables certain optimizations that generate calls to the Short Vector Math Library that
could lead to floating-point exceptions for extreme input arguments that would not
occur if libm was called instead. For example, this may prevent the vectorization of
some loops containing calls to transcendental math functions.

To get more detailed location information about where the error occurred, use option
traceback.

NOTE
If you have more than one module, you must build each module,
including the main module, with value fpe0 (Linux) or fpe:0 (Windows) to
avoid floating-point exceptions that may occur within the modules.

1 All floating-point exceptions are disabled.

Underflow results from SSE instructions, as well as x87 instructions, will be set to zero.

3 All floating-point exceptions are disabled. Floating-point underflow is gradual, unless
you explicitly specify a compiler option that enables flush-to-zero, such as [Q]ftz, O3,
or O2. This setting provides full IEEE support.

Default

-fpe3 or /fpe:3 All floating-point exceptions are disabled. Floating-point underflow is
gradual, unless you explicitly specify a compiler option that enables flush-
to-zero.

Description

This option allows some control over floating-point exception handling at runtime. This includes whether
exceptional floating-point values are allowed and how precisely runtime exceptions are reported.

The fpe option affects how the following conditions are handled:

• When floating-point calculations result in a divide by zero, overflow, or invalid operation.
• When floating-point calculations result in an underflow.
• When a subnormal number or other exceptional number (positive infinity, negative infinity, or a NaN) is

present in an arithmetic expression.

When enabled exceptions occur, execution is aborted and the cause of the abort reported to the user. If
compiler option traceback is specified at compile time, detailed information about the location of the abort
is also reported.

This option does not enable underflow exceptions, input subnormal exceptions, or inexact exceptions.

IDE Equivalent

Visual Studio

Visual Studio: Floating-Point > Floating-Point Exception Handling

Alternate Options

None

 1 Intel® Fortran Compiler Classic and Intel® Fortran Compiler Developer Guide and Reference

300

See Also
fpe-all compiler option
ftz, Qftz compiler option
fp-model, fp compiler option
fp-speculation, Qfp-speculation compiler option
traceback compiler option

fpe-all
Allows some control over floating-point exception
handling for each routine in a program at runtime.

Syntax

Linux OS:

-fpe-all=n

Windows OS:

/fpe-all:n

Arguments

n Specifies the floating-point exception handling level. Possible values are:

0 Floating-point invalid, divide-by-zero, and overflow exceptions are enabled. If any such
exceptions occur, execution is aborted. This option sets the [Q]ftz option; therefore
underflow results will be set to zero unless you explicitly specify -no-ftz (Linux)
or /Qftz- (Windows).

To get more detailed location information about where the error occurred, use option
traceback.

1 All floating-point exceptions are disabled.

Underflow results from SSE instructions, as well as x87 instructions, will be set to zero.

3 All floating-point exceptions are disabled. Floating-point underflow is gradual, unless
you explicitly specify a compiler option that enables flush-to-zero, such as [Q]ftz, O3,
or O2. This setting provides full IEEE support.

Default

-fpe-all=3 or /fpe-all:3 or the
setting of fpe that the main
program was compiled with

All floating-point exceptions are disabled. Floating-point underflow is
gradual, unless you explicitly specify a compiler option that enables
flush-to-zero.

Description

This option allows some control over floating-point exception handling for each routine in a program at
runtime. This includes whether exceptional floating-point values are allowed and how precisely runtime
exceptions are reported.

The fpe-all option affects how the following conditions are handled:

• When floating-point calculations result in a divide by zero, overflow, or invalid operation.
• When floating-point calculations result in an underflow.
• When a subnormal number or other exceptional number (positive infinity, negative infinity, or a NaN) is

present in an arithmetic expression.

Intel® Fortran Compiler Classic and Intel® Fortran Compiler Developer Guide and Reference 1

301

The current settings of the floating-point exception and status flags are saved on each routine entry and
restored on each routine exit. This may incur some performance overhead.

When option fpe-all is applied to a main program, it has the same effect as when option fpe is applied to
the main program.

When enabled exceptions occur, execution is aborted and the cause of the abort reported to the user. If
compiler option traceback is specified at compile time, detailed information about the location of the abort
is also reported.

This option does not enable underflow exceptions, input subnormal exceptions, or inexact exceptions.

Option fpe-all sets option assume ieee_fpe_flags.

IDE Equivalent

None

Alternate Options

None

See Also
assume compiler option
fpe compiler option
ftz, Qftz compiler option
traceback compiler option

ftz, Qftz
Flushes subnormal results to zero.

Syntax

Linux OS:

-ftz
-no-ftz
Windows OS:

/Qftz
/Qftz-

Arguments

None

Default

-ftz or /Qftz Subnormal results are flushed to zero.

Every optimization option O level, except O0, sets
[Q]ftz.

Value 0 for the [Q]fpe option sets [Q]ftz.

Description

This option flushes subnormal results to zero when the application is in the gradual underflow mode. It may
improve performance if the subnormal values are not critical to your application's behavior.

The [Q]ftz option has no effect during compile-time optimization.

 1 Intel® Fortran Compiler Classic and Intel® Fortran Compiler Developer Guide and Reference

302

The [Q]ftz option sets or resets the FTZ and the DAZ hardware flags. If FTZ is ON, subnormal results from
floating-point calculations will be set to the value zero. If FTZ is OFF, subnormal results remain as is. If DAZ
is ON, subnormal values used as input to floating-point instructions will be treated as zero. If DAZ is OFF,
subnormal instruction inputs remain as is. Systems using Intel® 64 architecture have both FTZ and DAZ. FTZ
and DAZ are not supported on all IA-32 architectures.

When the [Q]ftz option is used in combination with an SSE-enabling option on systems using IA-32
architecture (for example, the [Q]xSSE2 option), the compiler will insert code in the main routine to set FTZ
and DAZ. When [Q]ftz is used without such an option, the compiler will insert code to conditionally set
FTZ/DAZ based on a runtime processor check.

If you specify option -no-ftz (Linux) or option /Qftz- (Windows), it prevents the compiler from inserting
any code that might set FTZ or DAZ.

Option [Q]ftz only has an effect when the main program is being compiled. It sets the FTZ/DAZ mode for
the process. The initial thread and any threads subsequently created by that process will operate in FTZ/DAZ
mode.

If this option produces undesirable results of the numerical behavior of your program, you can turn the
FTZ/DAZ mode off by specifying -no-ftz or /Qftz- in the command line while still benefiting from the O3
optimizations.

NOTE
Option [Q]ftz is a performance option. Setting this option does not guarantee that all
subnormals in a program are flushed to zero. The option only causes subnormals generated
at runtime to be flushed to zero.

IDE Equivalent

Windows

Visual Studio: IA-32 architecture: Floating Point > Flush Subnormal Results to Zero

Intel® 64 architecture: None

Alternate Options

None

See Also
x, Qx compiler option
Set the FTZ and DAZ Flags

Ge
Enables stack-checking for all functions. This is a
deprecated option that may be removed in a future
release.

Syntax

Linux OS:

None
Windows OS:

/Ge

Intel® Fortran Compiler Classic and Intel® Fortran Compiler Developer Guide and Reference 1

303

Arguments

None

Default

OFF Stack-checking for all functions is disabled.

Description

This option enables stack-checking for all functions.

This is a deprecated option that may be removed in a future release. The replacement option is /Gs0.

IDE Equivalent

None

Alternate Options

Linux: None

Windows: /Gs0

mp1, Qprec
Improves floating-point precision and consistency.
This feature is only available for ifort.

Syntax

Linux OS:

-mp1
Windows OS:

/Qprec

Arguments

None

Default

OFF The compiler provides good accuracy and runtime performance at the expense of less consistent
floating-point results.

Description

This option improves floating-point consistency. It ensures the out-of-range check of operands of
transcendental functions and improves the accuracy of floating-point compares.

This option prevents the compiler from performing optimizations that change NaN comparison semantics and
causes all values to be truncated to declared precision before they are used in comparisons. It also causes
the compiler to use library routines that give better precision results compared to the X87 transcendental
instructions.

This option disables fewer optimizations and has less impact on performance than option fltconsistency.

This option disables fewer optimizations and has less impact on performance than option
fltconsistency,-fp-model precise (Linux*), or option /fp:precise (Windows*).

 1 Intel® Fortran Compiler Classic and Intel® Fortran Compiler Developer Guide and Reference

304

IDE Equivalent

None

Alternate Options

None

See Also
fltconsistency compiler option

pc, Qpc
Enables control of floating-point significand precision.

Syntax

Linux OS:

-pcn
Windows OS:

/Qpcn

Arguments

n Is the floating-point significand precision. Possible values are:

32 Rounds the significand to 24 bits (single
precision).

64 Rounds the significand to 53 bits (double
precision).

80 Rounds the significand to 64 bits (extended
precision).

Default

-pc80
or /Qpc64

On Linux* systems, the floating-point significand is rounded to 64 bits.

On Windows* systems, the floating-point significand is rounded to 53 bits.

Description

This option enables control of floating-point significand precision.

Some floating-point algorithms are sensitive to the accuracy of the significand, or fractional part of the
floating-point value. For example, iterative operations like division and finding the square root can run faster
if you lower the precision with this option.

Note that a change of the default precision control or rounding mode, for example, by using the [Q]pc32
option or by user intervention, may affect the results returned by some of the mathematical functions.

IDE Equivalent

None

Alternate Options

None

Intel® Fortran Compiler Classic and Intel® Fortran Compiler Developer Guide and Reference 1

305

prec-div, Qprec-div
Improves precision of floating-point divides.

Syntax

Linux OS:

-prec-div
-no-prec-div

Windows OS:

/Qprec-div
/Qprec-div-

Arguments

None

Default

OFF Default heuristics are used. The default is not as accurate as full IEEE division, but it is
slightly more accurate than would be obtained when /Qprec-div- or -no-prec-div
is specified.

If you need full IEEE precision for division, you should specify [Q]prec-div.

Description

This option improves precision of floating-point divides. It has a slight impact on speed.

At default optimization levels, the compiler may change floating-point division computations into
multiplication by the reciprocal of the denominator. For example, A/B is computed as A * (1/B) to improve
the speed of the computation. Also, vectorization at default optimization levels may cause the use of
multiplication by the reciprocal of the denominator in some iterations, and floating-point division in other
iterations.

However, sometimes the value produced by this transformation is not as accurate as full IEEE division. When
it is important to have fully precise IEEE division, use this option to disable the floating-point division-to-
multiplication optimization. The result is more accurate, with some loss of performance.

If you specify -no-prec-div (Linux*) or /Qprec-div- (Windows*), it enables optimizations that give
slightly less precise results than full IEEE division.

Option [Q]prec-div is implied by option -fp-model precise (Linux*) and option /fp:precise
(Windows*).

IDE Equivalent

None

Alternate Options

None

See Also
fp-model, fp compiler option

prec-sqrt, Qprec-sqrt
Improves precision of square root implementations.
This feature is only available for ifort.

 1 Intel® Fortran Compiler Classic and Intel® Fortran Compiler Developer Guide and Reference

306

Syntax

Linux OS:

-prec-sqrt
-no-prec-sqrt
Windows OS:

/Qprec-sqrt
/Qprec-sqrt-

Arguments

None

Default

-no-prec-sqrt
or /Qprec-sqrt-

The compiler uses a faster but less precise implementation of square root.

However, the default is -prec-sqrt or /Qprec-sqrt if any of the following options
are specified: /Od, /fltconsistency, or /Qprec on Windows* systems; -O0,
-fltconsistency, or -mp1 on Linux* systems.

Description

This option improves precision of square root implementations. It has a slight impact on speed.

This option inhibits any optimizations that can adversely affect the precision of a square root computation.
The result is fully precise square root implementations, with some loss of performance.

IDE Equivalent

None

Alternate Options

None

qsimd-honor-fp-model, Qsimd-honor-fp-model
Tells the compiler to obey the selected floating-point
model when vectorizing SIMD loops. This feature is
only available for ifort.

Syntax

Linux OS:

-qsimd-honor-fp-model
-qno-simd-honor-fp-model
Windows OS:

/Qsimd-honor-fp-model
/Qsimd-honor-fp-model-

Arguments

None

Intel® Fortran Compiler Classic and Intel® Fortran Compiler Developer Guide and Reference 1

307

Default

-qno-simd-honor-fp-model
or /Qsimd-honor-fp-model-

The compiler performs vectorization of SIMD loops even if it breaks
the floating-point model setting.

Description

The OpenMP* SIMD specification and the setting of compiler option -fp-model (Linux*) or /fp (Windows*)
can contradict in requirements. When contradiction occurs, the default behavior of the compiler is to follow
the OpenMP* specification and therefore vectorize the loop.

This option lets you override this default behavior - it causes the compiler to follow the -fp-model (or /fp)
specification. This means that the compiler will serialize the loop.

NOTE
This option does not affect automatic vectorization of loops. By default, the compiler uses
-fp-model (Linux*) or /fp (Windows*) settings for this.

IDE Equivalent

None

Alternate Options

None

See Also
qsimd-serialize-fp-reduction, Qsimd-serialize-fp-reduction compiler option
fp-model, fp compiler option
SIMD Loop Directive
SIMD Directive for OpenMP

qsimd-serialize-fp-reduction, Qsimd-serialize-fp-reduction
Tells the compiler to serialize floating-point reduction
when vectorizing SIMD loops. This feature is only
available for ifort.

Syntax

Linux OS:

-qsimd-serialize-fp-reduction
-qno-simd-serialize-fp-reduction
Windows OS:

/Qsimd-serialize-fp-reduction
/Qsimd-serialize-fp-reduction-

Arguments

None

 1 Intel® Fortran Compiler Classic and Intel® Fortran Compiler Developer Guide and Reference

308

Default

-qno-simd-serialize-fp-reduction
or /Qsimd-serialize-fp-reduction-

The compiler does not attempt to serialize floating-point
reduction in SIMD loops.

Description

The OpenMP* SIMD reduction specification and the setting of compiler option -fp-model (Linux*) or /fp
(Windows*) can contradict in requirements. When contradiction occurs, the default behavior of the compiler
is to follow OpenMP* specification and therefore vectorize the loop, including floating-point reduction.

This option lets you override this default behavior - it causes the compiler to follow the -fp-model (or /fp)
specification. This means that the compiler will serialize the floating-point reduction while vectorizing the rest
of the loop.

NOTE
When [q or Q]simd-honor-fp-model is specified and OpenMP* SIMD reduction specification
is the only thing causing serialization of the entire loop, addition of option
[q or Q]simd-serialize-fp-reduction will result in vectorization of the entire loop except
for reduction calculation, which will be serialized.

NOTE
This option does not affect automatic vectorization of loops. By default, the compiler uses
-fp-model (Linux*) or /fp (Windows*) settings for this.

IDE Equivalent

None

Alternate Options

None

See Also
qsimd-honor-fp-model, Qsimd-honor-fp-model compiler option
fp-model, fp compiler option
SIMD Loop Directive
SIMD Directive for OpenMP

rcd, Qrcd
Enables fast float-to-integer conversions. This is a
deprecated option that may be removed in a future
release. This feature is only available for ifort.

Syntax

Linux OS:

-rcd
Windows OS:

/Qrcd

Intel® Fortran Compiler Classic and Intel® Fortran Compiler Developer Guide and Reference 1

309

Arguments

None

Default

OFF Floating-point values are truncated when a conversion to an integer is involved.

Description

This option enables fast float-to-integer conversions. It can improve the performance of code that requires
floating-point-to-integer conversions.

This is a deprecated option that may be removed in a future release. There is no replacement option.

The system default floating-point rounding mode is round-to-nearest. However, the Fortran language
requires floating-point values to be truncated when a conversion to an integer is involved. To do this, the
compiler must change the rounding mode to truncation before each floating-point-to-integer conversion and
change it back afterwards.

This option disables the change to truncation of the rounding mode for all floating-point calculations,
including floating point-to-integer conversions. This option can improve performance, but floating-point
conversions to integer will not conform to Fortran semantics.

IDE Equivalent

None

Alternate Options

Linux: None

Windows: /QIfist (this is a deprecated option)

recursive
Tells the compiler that all routines should be compiled
for possible recursive execution.

Syntax

Linux OS:

-recursive
-norecursive
Windows OS:

/recursive
/norecursive

Arguments

None

Default

norecursive Routines are not compiled for possible recursive execution.

Description

This option tells the compiler that all routines should be compiled for possible recursive execution. It sets
option auto.

 1 Intel® Fortran Compiler Classic and Intel® Fortran Compiler Developer Guide and Reference

310

NOTE
This option will be deprecated in a future release. We recommend you use its replacement
option: assume [no]recursion.

IDE Equivalent

Windows

Visual Studio: Code Generation > Enable Recursive Routines

Alternate Options

Linux: -assume [no]recursion
Windows: /assume:[no]recursion

See Also
auto compiler option
assume compiler option, setting [no]recursion

Inlining Options
This section contains descriptions for compiler options that pertain to inlining. They are listed in alphabetical
order.

finline
Determines whether the compiler inlines functions
declared with !DIR$ ATTRIBUTES FORCEINLINE.

Syntax

Linux OS:

-finline
-fno-inline

Windows OS:

None

Arguments

None

Default

-finline The compiler inlines functions declared with !DIR$ ATTRIBUTES FORCEINLINE.

Description

This option determines whether the compiler inlines functions declared with !DIR$ ATTRIBUTES
FORCEINLINE.

If -fno-inline is specified, the compiler does not inline functions declared with !DIR$ ATTRIBUTES
FORCEINLINE.

IDE Equivalent

None

Intel® Fortran Compiler Classic and Intel® Fortran Compiler Developer Guide and Reference 1

311

Alternate Options

-fno-inline Linux: -inline-level
Windows: /Ob0

finline-functions
Enables function inlining for single file compilation.

Syntax

Linux OS:

-finline-functions
-fno-inline-functions
Windows OS:

None

Arguments

None

Default

-finline-functions Interprocedural optimizations occur. However, if you specify -O0, the default
is OFF.

Description

This option enables function inlining for single file compilation.

It enables the compiler to perform inline function expansion for calls to functions defined within the current
source file.

The compiler applies a heuristic to perform the function expansion. On ifort, to specify the size of the
function to be expanded, use the -finline-limit option.

IDE Equivalent

None

Alternate Options

Linux: -inline-level=2
Windows: /Ob2

See Also
ip, Qip compiler option
finline-limit compiler option

finline-limit
Lets you specify the maximum size of a function to be
inlined. This feature is only available for ifort.

Syntax

Linux OS:

-finline-limit=n

 1 Intel® Fortran Compiler Classic and Intel® Fortran Compiler Developer Guide and Reference

312

Windows OS:

None

Arguments

n Must be an integer greater than or equal to zero. It is the maximum
number of lines the function can have to be considered for inlining.

Default

OFF The compiler uses default heuristics when inlining functions.

Description

This option lets you specify the maximum size of a function to be inlined. The compiler inlines smaller
functions, but this option lets you inline large functions. For example, to indicate a large function, you could
specify 100 or 1000 for n.

Note that parts of functions cannot be inlined, only whole functions.

This option is a modification of the -finline-functions option, whose behavior occurs by default.

IDE Equivalent

None

Alternate Options

None

See Also
finline-functions compiler option

inline
Specifies the level of inline function expansion.

Syntax

Linux OS:

None
Windows OS:

/inline[:keyword]

Arguments

keyword Is the level of inline function expansion. Possible values are:

none Disables inlining of user-defined functions. This is the same as specifying manual.

manual Disables inlining of user-defined functions. Fortran statement functions are always
inlined.

size Enables inlining of any function. However, the compiler decides which functions
are inlined.

This option enables interprocedural optimizations and most speed optimizations.

speed Enables inlining of any function. This is the same as specifying all.

Intel® Fortran Compiler Classic and Intel® Fortran Compiler Developer Guide and Reference 1

313

all Enables inlining of any function. However, the compiler decides which functions
are inlined.

This option enables interprocedural optimizations and all speed optimizations. This
is the same as specifying inline with no keyword.

Default

OFF The compiler inlines certain functions by default.

Description

This option specifies the level of inline function expansion.

IDE Equivalent

None

Alternate Options

inline all or inline speed Linux: None

Windows: /Ob2/Ot

inline size Linux: None

Windows: /Ob2/Os

inline manual Linux: None

Windows: /Ob0

inline none Linux: None

Windows: /Ob0

See Also
finline-functions compiler option

inline-factor, Qinline-factor
Specifies the percentage multiplier that should be
applied to all inlining options that define upper limits.
This feature is only available for ifort.

Syntax

Linux OS:

-inline-factor=n
-no-inline-factor
Windows OS:

/Qinline-factor:n
/Qinline-factor-

 1 Intel® Fortran Compiler Classic and Intel® Fortran Compiler Developer Guide and Reference

314

Arguments

n Is a positive integer specifying the percentage value. The default value
is 100 (a factor of 1).

Default

-inline-factor=100
or /Qinline-factor:100

The compiler uses a percentage multiplier of 100.

Description

This option specifies the percentage multiplier that should be applied to all inlining options that define upper
limits:

• [Q]inline-max-size
• [Q]inline-max-total-size
• [Q]inline-max-per-routine
• [Q]inline-max-per-compile
The [Q]inline-factor option takes the default value for each of the above options and multiplies it by n
divided by 100. For example, if 200 is specified, all inlining options that define upper limits are multiplied by
a factor of 2. This option is useful if you do not want to individually increase each option limit.

If you specify -no-inline-factor (Linux*) or /Qinline-factor- (Windows*), the following occurs:

• Every function is considered to be a small or medium function; there are no large functions.
• There is no limit to the size a routine may grow when inline expansion is performed.
• There is no limit to the number of times some routine may be inlined into a particular routine.
• There is no limit to the number of times inlining can be applied to a compilation unit.

To see compiler values for important inlining limits, specify option [q or Q]opt-report.

Caution
When you use this option to increase default limits, the compiler may do so much additional
inlining that it runs out of memory and terminates with an "out of memory" message.

IDE Equivalent

None

Alternate Options

None

See Also
inline-max-size, Qinline-max-size compiler option
inline-max-total-size, Qinline-max-total-size compiler option
inline-max-per-routine, Qinline-max-per-routine compiler option
inline-max-per-compile, Qinline-max-per-compile compiler option
qopt-report, Qopt-report compiler option (ifort)

Intel® Fortran Compiler Classic and Intel® Fortran Compiler Developer Guide and Reference 1

315

inline-forceinline, Qinline-forceinline
Instructs the compiler to force inlining of functions
suggested for inlining whenever the compiler is
capable doing so. This feature is only available for
ifort.

Syntax

Linux OS:

-inline-forceinline
Windows OS:

/Qinline-forceinline

Default

OFF The compiler uses default heuristics for inline routine expansion.

Description

This option instructs the compiler to force inlining of functions suggested for inlining whenever the compiler
is capable doing so.

Without this option, the compiler treats functions declared with an INLINE attribute as merely being
recommended for inlining. When this option is used, it is as if they were declared with the directive !DIR$
ATTRIBUTES FORCEINLINE.

To see compiler values for important inlining limits, specify option [q or Q]opt-report.

Caution
When you use this option to change the meaning of inline to "forceinline", the compiler may
do so much additional inlining that it runs out of memory and terminates with an "out of
memory" message.

IDE Equivalent

None

Alternate Options

None

See Also
qopt-report, Qopt-report compiler option (ifort)

inline-level, Ob
Specifies the level of inline function expansion.

Syntax

Linux OS:

-inline-level=n
Windows OS:

/Obn

 1 Intel® Fortran Compiler Classic and Intel® Fortran Compiler Developer Guide and Reference

316

Arguments

n Is the inline function expansion level. Possible values are 0, 1, and 2.

Default

-inline-level=2 or /Ob2 This is the default if option O2 is specified or is in effect by
default. On Windows* systems, this is also the default if option
O3 is specified.

-inline-level=0 or /Ob0 This is the default if option -O0 (Linux*) or /Od (Windows*) is
specified.

Description

This option specifies the level of inline function expansion. Inlining procedures can greatly improve the
runtime performance of certain programs.

Option Description

-inline-level=0 or /Ob0 Disables inlining of user-defined functions. Note that statement functions
are always inlined.

-inline-level=1 or /Ob1 Enables inlining when an inline keyword or an inline directive is specified.

-inline-level=2 or /Ob2 Enables inlining of any function at the compiler's discretion.

IDE Equivalent

Windows

Visual Studio: Optimization > Inline Function Expansion

Alternate Options

None

See Also
inline compiler option

inline-max-per-compile, Qinline-max-per-compile
Specifies the maximum number of times inlining may
be applied to an entire compilation unit. This feature is
only available for ifort.

Syntax

Linux OS:

-inline-max-per-compile=n
-no-inline-max-per-compile
Windows OS:

/Qinline-max-per-compile=n
/Qinline-max-per-compile-

Intel® Fortran Compiler Classic and Intel® Fortran Compiler Developer Guide and Reference 1

317

Arguments

n Is a positive integer that specifies the number of times inlining may be
applied.

Default

-no-inline-max-per-compile
or /Qinline-max-per-compile-

The compiler uses default heuristics for inline routine expansion.

Description

This option the maximum number of times inlining may be applied to an entire compilation unit. It limits the
number of times that inlining can be applied.

For compilations using Interprocedural Optimizations (IPO), the entire compilation is a compilation unit. For
other compilations, a compilation unit is a file.

If you specify -no-inline-max-per-compile (Linux*) or /Qinline-max-per-compile- (Windows*),
there is no limit to the number of times inlining may be applied to a compilation unit.

To see compiler values for important inlining limits, specify option [q or Q]opt-report.

Caution
When you use this option to increase the default limit, the compiler may do so much
additional inlining that it runs out of memory and terminates with an "out of memory"
message.

IDE Equivalent

None

Alternate Options

None

See Also
inline-factor, Qinline-factor compiler option
qopt-report, Qopt-report compiler option (ifort)

inline-max-per-routine, Qinline-max-per-routine
Specifies the maximum number of times the inliner
may inline into a particular routine. This feature is
only available for ifort.

Syntax

Linux OS:

-inline-max-per-routine=n
-no-inline-max-per-routine
Windows OS:

/Qinline-max-per-routine=n
/Qinline-max-per-routine-

 1 Intel® Fortran Compiler Classic and Intel® Fortran Compiler Developer Guide and Reference

318

Arguments

n Is a positive integer that specifies the maximum number of times the
inliner may inline into a particular routine.

Default

-no-inline-max-per-routine
or /Qinline-max-per-routine-

The compiler uses default heuristics for inline routine expansion.

Description

This option specifies the maximum number of times the inliner may inline into a particular routine. It limits
the number of times that inlining can be applied to any routine.

If you specify -no-inline-max-per-routine (Linux*) or /Qinline-max-per-routine- (Windows*),
there is no limit to the number of times some routine may be inlined into a particular routine.

To see compiler values for important inlining limits, specify option [q or Q]opt-report.

Caution
When you use this option to increase the default limit, the compiler may do so much
additional inlining that it runs out of memory and terminates with an "out of memory"
message.

IDE Equivalent

None

Alternate Options

None

See Also
inline-factor, Qinline-factor compiler option
qopt-report, Qopt-report compiler option (ifort)

inline-max-size, Qinline-max-size
Specifies the lower limit for the size of what the inliner
considers to be a large routine. This feature is only
available for ifort.

Syntax

Linux OS:

-inline-max-size=n
-no-inline-max-size
Windows OS:

/Qinline-max-size=n
/Qinline-max-size-

Intel® Fortran Compiler Classic and Intel® Fortran Compiler Developer Guide and Reference 1

319

Arguments

n Is a positive integer that specifies the minimum size of what the
inliner considers to be a large routine.

Default

-inline-max-size
or /Qinline-max-size

The compiler sets the maximum size (n) dynamically, based on
the platform.

Description

This option specifies the lower limit for the size of what the inliner considers to be a large routine (a function
or subroutine). The inliner classifies routines as small, medium, or large. This option specifies the boundary
between what the inliner considers to be medium and large-size routines.

The inliner prefers to inline small routines. It has a preference against inlining large routines. So, any large
routine is highly unlikely to be inlined.

If you specify -no-inline-max-size (Linux*) or /Qinline-max-size- (Windows*), there are no large
routines. Every routine is either a small or medium routine.

To see compiler values for important inlining limits, specify option [q or Q]opt-report.

Caution
When you use this option to increase the default limit, the compiler may do so much
additional inlining that it runs out of memory and terminates with an "out of memory"
message.

IDE Equivalent

None

Alternate Options

None

See Also
inline-min-size, Qinline-min-size compiler option
inline-factor, Qinline-factor compiler option
qopt-report, Qopt-report compiler option (ifort)

inline-max-total-size, Qinline-max-total-size
Specifies how much larger a routine can normally
grow when inline expansion is performed. This feature
is only available for ifort.

Syntax

Linux OS:

-inline-max-total-size=n
-no-inline-max-total-size
Windows OS:

/Qinline-max-total-size=n

 1 Intel® Fortran Compiler Classic and Intel® Fortran Compiler Developer Guide and Reference

320

/Qinline-max-total-size-

Arguments

n Is a positive integer that specifies the permitted increase in the
routine's size when inline expansion is performed.

Default

-no-inline-max-total-size
or /Qinline-max-total-size-

The compiler uses default heuristics for inline routine expansion.

Description

This option specifies how much larger a routine can normally grow when inline expansion is performed. It
limits the potential size of the routine. For example, if 2000 is specified for n, the size of any routine will
normally not increase by more than 2000.

If you specify -no-inline-max-total-size (Linux*) or /Qinline-max-total-size- (Windows*), there is
no limit to the size a routine may grow when inline expansion is performed.

To see compiler values for important inlining limits, specify option [q or Q]opt-report.

Caution
When you use this option to increase the default limit, the compiler may do so much
additional inlining that it runs out of memory and terminates with an "out of memory"
message.

IDE Equivalent

None

Alternate Options

None

See Also
inline-factor, Qinline-factor compiler option
qopt-report, Qopt-report compiler option (ifort)

inline-min-caller-growth, Qinline-min-caller-growth
Lets you specify a procedure size n for which
procedures of size <= n do not contribute to the
estimated growth of the caller when inlined. This
feature is only available for ifort.

Syntax

Linux OS:

-inline-min-caller-growth=n
Windows OS:

/Qinline-min-caller-growth=n

Intel® Fortran Compiler Classic and Intel® Fortran Compiler Developer Guide and Reference 1

321

Arguments

n Is a non-negative integer. When n > 0, procedures with a size of n are
treated as if they are size 0.

Default

-inline-min-caller-growth=0
or /Qinline-min-caller-growth=0

The compiler treats procedures as if they have size zero.

Description

This option lets you specify a procedure size n for which procedures of size <= n do not contribute to the
estimated growth of the caller when inlined. It allows you to inline procedures that the compiler would
otherwise consider too large to inline.

NOTE
We recommend that you choose a value of n <= 10; otherwise, compile time and code size
may greatly increase.

IDE Equivalent

None

Alternate Options

None

inline-min-size, Qinline-min-size
Specifies the upper limit for the size of what the
inliner considers to be a small routine. This feature is
only available for ifort.

Syntax

Linux OS:

-inline-min-size=n
-no-inline-min-size
Windows OS:

/Qinline-min-size=n
/Qinline-min-size-

Arguments

n Is a positive integer that specifies the maximum size of what the
inliner considers to be a small routine.

Default

-no-inline-min-size
or /Qinline-min-size-

The compiler uses default heuristics for inline routine expansion.

 1 Intel® Fortran Compiler Classic and Intel® Fortran Compiler Developer Guide and Reference

322

Description

This option specifies the upper limit for the size of what the inliner considers to be a small routine (a function
or subroutine). The inliner classifies routines as small, medium, or large. This option specifies the boundary
between what the inliner considers to be small and medium-size routines.

The inliner has a preference to inline small routines. So, when a routine is smaller than or equal to the
specified size, it is very likely to be inlined.

If you specify -no-inline-min-size (Linux*) or /Qinline-min-size- (Windows*), there is no limit to the
size of small routines. Every routine is a small routine; there are no medium or large routines.

To see compiler values for important inlining limits, specify option [q or Q]opt-report.

Caution
When you use this option to increase the default limit, the compiler may do so much
additional inlining that it runs out of memory and terminates with an "out of memory"
message.

IDE Equivalent

None

Alternate Options

None

See Also
inline-max-size, Qinline-max-size compiler option
qopt-report, Qopt-report compiler option (ifort)

Qinline-dllimport
Determines whether dllimport functions are inlined.
This feature is only available for ifort.

Syntax

Linux OS:

None
Windows OS:

/Qinline-dllimport
/Qinline-dllimport-

Arguments

None

Default

/Qinline-dllimport The dllimport functions are inlined.

Description

This option determines whether dllimport functions are inlined. To disable dllimport functions from being
inlined, specify /Qinline-dllimport-.

Intel® Fortran Compiler Classic and Intel® Fortran Compiler Developer Guide and Reference 1

323

IDE Equivalent

None

Alternate Options

None

Output, Debug, and Precompiled Header Options
This section contains descriptions for compiler options that pertain to output, debugging, or precompiled
headers (PCH). They are listed in alphabetical order.

bintext
Places a text string into the object file (.obj) being
generated by the compiler. This feature is only
available for ifort.

Syntax

Linux OS:

None
Windows OS:

/bintext:string
/nobintext

Arguments

string Is the text string to go into the object file.

Default

/nobintext No text string is placed in the object file.

Description

This option places a text string into the object file (.obj) being generated by the compiler. The string also
gets propagated into the executable file.

For example, this option is useful if you want to place a version number or copyright information into the
object and executable.

If the string contains a space or tab, the string must be enclosed by double quotation marks ("). A backslash
(\) must precede any double quotation marks contained within the string.

If the command line contains multiple /bintext options, the last (rightmost) one is used.

IDE Equivalent

Windows

Visual Studio: Code Generation > Object Text String

Alternate Options

Linux: None

Windows: /Vstring

 1 Intel® Fortran Compiler Classic and Intel® Fortran Compiler Developer Guide and Reference

324

c
Causes the compiler to generate an object only and
not link.

Syntax

Linux OS:

-c

Windows OS:

/c

Arguments

None

Default

OFF Linking is performed.

Description

This option causes the compiler to generate an object only and not link. Compilation stops after the object
file is generated.

The compiler generates an object file for each Fortran source file.

IDE Equivalent

None

Alternate Options

Linux: None

Windows: /compile-only, /nolink

debug (Linux*)
Enables or disables generation of debugging
information.

Syntax

Linux OS:

-debug[=keyword]

Windows OS:

None

Arguments

keyword Is the type of debugging information to be generated. Possible values are:

none Disables generation of debugging information.

full or all Generates complete debugging information. It is the same
as specifying -debug with no keyword.

minimal Generates line number information for debugging.

Intel® Fortran Compiler Classic and Intel® Fortran Compiler Developer Guide and Reference 1

325

[no]emit-column Determines whether the compiler generates column
number information for debugging.

[no]inline-debug-info
(ifort only)

Determines whether the compiler generates enhanced
debug information for inlined code.

[no]pubnames
(ifort only)

Determines whether the compiler generates a DWARF
debug_pubnames section.

[no]semantic-stepping
(ifort only)

Determines whether the compiler generates enhanced
debug information useful for breakpoints and stepping.

[no]variable-locations
(ifort only)

Determines whether the compiler generates enhanced
debug information useful in finding scalar local variables.

extended
(ifort only)

Generates complete debugging information and also sets
keyword values semantic-stepping and variable-
locations.

[no]parallel
(ifort only)

Determines whether the compiler generates parallel debug
code instrumentations useful for thread data sharing and
reentrant call detection. This keyword can only be specified
on Linux systems.

For information on the non-default settings for these keywords, see the Description section.

Default

-debug none No debugging information is generated.

Description

This option enables or disables generation of debugging information.

By default, enabling debugging, will disable optimization. To enable both debugging and optimization use the
-debug option together with one of the optimization level options (-O3, -O2 or -O3).

Keywords semantic-stepping, inline-debug-info, variable-locations, and extended can be used in
combination with each other. If conflicting keywords are used in combination, the last one specified on the
command line has precedence.

Option Description

-debug none Disables generation of debugging information.

-debug full or -debug all Generates complete debugging information. It is the same as specifying
-debug with no keyword.

-debug minimal Generates line number information for debugging.

-debug emit-column Generates column number information for debugging.

-debug inline-debug-info
(ifort only)

Generates enhanced debug information for inlined code.

On inlined functions, symbols are (by default) associated with the caller.
This option causes symbols for inlined functions to be associated with the
source of the called function.

 1 Intel® Fortran Compiler Classic and Intel® Fortran Compiler Developer Guide and Reference

326

Option Description

-debug pubnames
(ifort only)

The compiler generates a DWARF debug_pubnames section. This provides
a means to list the names of global objects and functions in a compilation
unit.

-debug semantic-stepping
(ifort only)

Generates enhanced debug information useful for breakpoints and
stepping. It tells the debugger to stop only at machine instructions that
achieve the final effect of a source statement.

For example, in the case of an assignment statement, this might be a
store instruction that assigns a value to a program variable; for a function
call, it might be the machine instruction that executes the call. Other
instructions generated for those source statements are not displayed
during stepping.

This option has no impact unless optimizations have also been enabled.

-debug variable-locations
(ifort only)

Generates enhanced debug information useful in finding scalar local
variables. It uses a feature of the DWARF object module known as
"location lists".

This feature allows the runtime locations of local scalar variables to be
specified more accurately; that is, whether, at a given position in the
code, a variable value is found in memory or a machine register.

-debug extended
(ifort only)

Sets keyword values semantic-stepping and variable-locations. It
also tells the compiler to include column numbers in the line information.

Generates complete debugging information. This is a more powerful
setting than -debug full or -debug all.

-debug parallel
(ifort only)

Generates parallel debug code instrumentations needed for the thread
data sharing and reentrant call detection.

For this setting to be effective, option -qopenmp must be set.

On Linux* systems, debuggers read debug information from executable images. As a result, information is
written to object files and then added to the executable by the linker.

IDE Equivalent

None

Alternate Options

For -debug full, -debug all, or
-debug

Linux: -g
Windows: /debug:full, /debug:all, or /debug

See Also
debug (Windows*) compiler option
qopenmp, Qopenmp compiler option

debug (Windows*)
Enables or disables generation of debugging
information.

Intel® Fortran Compiler Classic and Intel® Fortran Compiler Developer Guide and Reference 1

327

Syntax

Linux OS:

None

Windows OS:

/debug[:keyword]
/nodebug

Arguments

keyword Is the type of debugging information to be generated. Possible values are:

none Disables generation of debugging information.

full or all Generates complete debugging information.

minimal Generates line number information for debugging.

[no]inline-
debug-info
(ifort only)

Determines whether the compiler generates enhanced debug information
for inlined code.

For information on the non-default settings for these keywords, see the Description section.

Default

/debug:none This is the default on the command line and for a release configuration in the IDE.

/debug:all This is the default for a debug configuration in the IDE.

Description

This option enables or disables generation of debugging information. It is passed to the linker.

By default, enabling debugging, will disable optimization. To enable both debugging and optimization use
the /debug option together with one of the optimization level options (/O3, /O2 or /O3).

If conflicting keywords are used in combination, the last one specified on the command line has precedence.

Option Description

/debug:none Disables generation of debugging information. It is the same
as specifying /nodebug.

/debug:full or /debug:all Generates complete debugging information. It produces
symbol table information needed for full symbolic debugging of
unoptimized code and global symbol information needed for
linking. It is the same as specifying /debug with no keyword.
If you specify /debug:full for an application that makes calls
to C library routines and you need to debug calls into the C
library, you should also specify /dbglibs to request that the
appropriate C debug library be linked against.

/debug:minimal Generates line number information for debugging.

/debug:inline-debug-info
(ifort only)

Generates enhanced debug information for inlined code.

 1 Intel® Fortran Compiler Classic and Intel® Fortran Compiler Developer Guide and Reference

328

Option Description

On inlined functions, symbols are (by default) associated with
the caller. This option causes symbols for inlined functions to
be associated with the source of the called function.

IDE Equivalent

Windows

Visual Studio: General > Debug Information Format (/debug:minimal, /debug:full)

Alternate Options

For /debug:all or
/debug

Linux: None
Windows: /Zi

See Also
dbglibs compiler option
debug (Linux*) compiler option

debug-parameters
Tells the compiler to generate debug information for
PARAMETERs used in a program.

Syntax

Linux OS:

-debug-parameters [keyword]
-nodebug-parameters
Windows OS:

/debug-parameters[:keyword]
/nodebug-parameters

Arguments

keyword Specifies the PARAMETERs to generate debug information for. Possible values are:

none Generates no debug information for any PARAMETERs used in the program.
This is the same as specifying nodebug-parameters.

used Generates debug information for only PARAMETERs that have actually been
referenced in the program. This is the default if you do not specify a
keyword.

all Generates debug information for all PARAMETERs defined in the program.

Default

nodebug-parameters The compiler generates no debug information for any PARAMETERs used in
the program. This is the same as specifying keyword none.

Description

This option tells the compiler to generate debug information for PARAMETERs used in a program.

Intel® Fortran Compiler Classic and Intel® Fortran Compiler Developer Guide and Reference 1

329

Note that if a .mod file contains PARAMETERs, debug information is only generated for the PARAMETERs that
have actually been referenced in the program, even if you specify keyword all.

IDE Equivalent

Windows

Visual Studio: Debugging > Information for PARAMETER Constants

Alternate Options

None

exe
Specifies the name for a built program or dynamic-link
library.

Syntax

Linux OS:

None
Windows OS:

/exe:{filename | dir}

Arguments

filename Is the name for the built program or dynamic-link library.

dir Is the directory where the built program or dynamic-link library should be placed. It can
include filename.

Default

OFF The name of the file is the name of the first source file on the command line with file
extension .exe, so file.f becomes file.exe.

Description

This option specifies the name for a built program (.EXE) or a dynamic-link library (.DLL).

You can use this option to specify an alternate name for an executable file. This is especially useful when
compiling and linking a set of input files. You can use the option to give the resulting file a name other than
that of the first input file (source or object) on the command line.

IDE Equivalent

None

Alternate Options

Linux: -o
Windows: /Fe

Example
The following example creates a dynamic-link library file named file.dll (note that you can use /LD in place
of /dll):

ifx /dll /exe:file.dll a.f90

 1 Intel® Fortran Compiler Classic and Intel® Fortran Compiler Developer Guide and Reference

330

In the following example (which uses the alternate option /Fe), the command produces an executable file
named outfile.exe as a result of compiling and linking three files: one object file and two Fortran source files.

prompt> ifx /Feoutfile.exe file1.obj file2.for file3.for
Without /Feoutfile.exe, this command produces an executable file named file1.exe.

See Also
o compiler option

Fa
Specifies that an assembly listing file should be
generated.

Syntax

Linux OS:

-Fa[filename|dir]
Windows OS:

/Fa[filename|dir]

Arguments

filename Is the name of the assembly listing file.

dir Is the directory where the file should be placed. It can include
filename.

Default

OFF No assembly listing file is produced.

Description

This option specifies that an assembly listing file should be generated (optionally named filename). Only an
assembly file is generated.

If filename is not specified, the file name will be the name of the source file with an extension of .asm; the
file is placed in the current directory.

NOTE
This option only applies to host compilation. When offloading is enabled, it does not impact
device-specific compilation. Offloading can only be enabled when using ifx.

IDE Equivalent

Windows

Visual Studio: Output > ASM Listing Name

Alternate Options

Linux: -S
Windows: /S, /FA

Intel® Fortran Compiler Classic and Intel® Fortran Compiler Developer Guide and Reference 1

331

FA (ifort only)
Specifies the contents of an assembly listing file.

Syntax

Linux OS:

None

Windows OS:

/FA[specifier]

Arguments

specifier Denotes the contents of the assembly listing file. Possible values are c, s, or cs.

Default

OFF No source or machine code annotations appear in the assembly listing file, if one is produced.

Description

These options specify what information, in addition to the assembly code, should be generated in the
assembly listing file.

To use this option, you must also specify option /Fa, which causes an assembly listing to be generated.

Option Description

/FA Produces an assembly listing without source or machine code
annotations.

/FAc Produces an assembly listing with machine code annotations.

The assembly listing file shows the hex machine instructions at the
beginning of each line of assembly code. The file cannot be assembled;
the file name is the name of the source file with an extension of .cod.

/FAs Produces an assembly listing with source code annotations.

The assembly listing file shows the source code as interspersed
comments.

Note that if you use alternate option -fsource-asm, you must also
specify the -S option.

/FAcs Produces an assembly listing with source and machine code annotations.

The assembly listing file shows the source code as interspersed
comments and shows the hex machine instructions at the beginning of
each line of assembly code. This file cannot be assembled.

IDE Equivalent

Windows

Visual Studio: Output Files > Assembler Output

Alternate Options

/FAc Linux: -fcode-asm

 1 Intel® Fortran Compiler Classic and Intel® Fortran Compiler Developer Guide and Reference

332

Windows: None

/FAs Linux: -fsource-asm
Windows: None

FA (ifx only)
Produces an assembly listing without source or
machine code annotations.

Syntax

Linux OS:

None
Windows OS:

/FA

Arguments

None

Default

OFF No source or machine code annotations appear in the assembly listing file, if one is produced.

Description

This option roduces an assembly listing without source or machine code annotations. It is equivalent to
option /S.

IDE Equivalent

Windows

Visual Studio: Output Files > Assembler Output

Alternate Options

None

fcode-asm
Produces an assembly listing with machine code
annotations. This feature is only available for ifort.

Syntax

Linux OS:

-fcode-asm
Windows OS:

None

Arguments

None

Intel® Fortran Compiler Classic and Intel® Fortran Compiler Developer Guide and Reference 1

333

Default

OFF No machine code annotations appear in the assembly listing file, if one is produced.

Description

This option produces an assembly listing file with machine code annotations.

The assembly listing file shows the hex machine instructions at the beginning of each line of assembly code.
The file cannot be assembled; the file name is the name of the source file with an extension of .cod.

To use this option, you must also specify option -S, which causes an assembly listing to be generated.

IDE Equivalent

None

Alternate Options

Linux: None

Windows: /FAc

See Also
S compiler option

Fd
Lets you specify a name for a program database
(PDB) file created by the compiler. This feature is only
available for ifort.

Syntax

Linux OS:

None
Windows OS:

/Fd[:filename]

Arguments

filename Is the name for the PDB file. It can include a path. If you do not
specify a file extension, the extension .pdb is used.

Default

OFF No PDB file is created unless you specify option /Zi. If you specify option /Zi and /Fd, the
default filename is vcx0.pdb, where x represents the version of Visual C++, for example
vc100.pdb.

Description

This option lets you specify a name for a program database (PDB) file that is created by the compiler.

A program database (PDB) file holds debugging and project state information that allows incremental linking
of a Debug configuration of your program. A PDB file is created when you build with option /Zi. Option /Fd
has no effect unless you specify option /Zi.

 1 Intel® Fortran Compiler Classic and Intel® Fortran Compiler Developer Guide and Reference

334

IDE Equivalent

Windows

Visual Studio: Output Files > Program Database File Name

Alternate Options

None

See Also
Zi, Z7 compiler option
pdbfile compiler option

feliminate-unused-debug-types, Qeliminate-unused-debug-types
Controls the debug information emitted for types
declared in a compilation unit. This feature is only
available for ifort.

Syntax

Linux OS:

-feliminate-unused-debug-types
-fno-eliminate-unused-debug-types
Windows OS:

/Qeliminate-unused-debug-types
/Qeliminate-unused-debug-types-

Arguments

None

Default

-feliminate-unused-debug-types
or
/Qeliminate-unused-debug-types

The compiler emits debug information only for types that are actually
used by a variable/parameter/etc..

Description

This option controls the debug information emitted for types declared in a compilation unit.

If you specify -fno-eliminate-unused-debug-types (Linux) or /Qeliminate-unused-debug-types-, it
will cause the compiler to emit debug information for all types present in the sources. This option may cause
a large increase in the size of the debug information.

IDE Equivalent

None

Alternate Options

None

Intel® Fortran Compiler Classic and Intel® Fortran Compiler Developer Guide and Reference 1

335

fmerge-constants
Determines whether the compiler and linker attempt
to merge identical constants (string constants and
floating-point constants) across compilation units. This
feature is only available for ifort.

Syntax

Linux OS:

-fmerge-constants
-fno-merge-constants
Windows OS:

None

Arguments

None

Default

-fmerge-constants The compiler and linker attempt to merge identical constants across
compilation units if the compiler and linker supports it.

Description

This option determines whether the compiler and linker attempt to merge identical constants (string
constants and floating-point constants) across compilation units.

If you do not want the compiler and linker to attempt to merge identical constants across compilation units.
specify -fno-merge-constants.

IDE Equivalent

None

Alternate Options

None

fmerge-debug-strings
Causes the compiler to pool strings used in debugging
information.

Syntax

Linux OS:

-fmerge-debug-strings
-fno-merge-debug-strings
Windows OS:

None

Arguments

None

 1 Intel® Fortran Compiler Classic and Intel® Fortran Compiler Developer Guide and Reference

336

Default

-fmerge-debug-strings The compiler will pool strings used in debugging information.

Description

This option causes the compiler to pool strings used in debugging information. The linker will automatically
retain this pooling.

This option can reduce the size of debug information, but it may produce slightly slower compile and link
times.

This option is only turned on by default if you are using gcc 4.3 or higher, where this setting is also the
default, since the generated debug tables require binutils version 2.17 or higher to work reliably.

If you do not want the compiler to pool strings used in debugging information, specify option
-fno-merge-debug-strings.

IDE Equivalent

None

Alternate Options

None

fsource-asm
Produces an assembly listing with source code
annotations. This feature is only available for ifort.

Syntax

Linux OS:

-fsource-asm
Windows OS:

None

Arguments

None

Default

OFF No source code annotations appear in the assembly listing file, if one is produced.

Description

This option produces an assembly listing file with source code annotations. The assembly listing file shows
the source code as interspersed comments.

To use this option, you must also specify option -S, which causes an assembly listing to be generated.

IDE Equivalent

None

Alternate Options

Linux: None

Windows: /FAs

Intel® Fortran Compiler Classic and Intel® Fortran Compiler Developer Guide and Reference 1

337

See Also
S compiler option

ftrapuv, Qtrapuv
Initializes stack local variables to an unusual value to
aid error detection.

Syntax

Linux OS:

-ftrapuv

Windows OS:

/Qtrapuv

Arguments

None

Default

OFF The compiler does not initialize local variables.

Description

This option initializes stack local variables to an unusual value to aid error detection. Normally, these local
variables should be initialized in the application. It also unmasks the floating-point invalid exception.

For ifort, the option sets any uninitialized local variables that are allocated on the stack to a value that is
typically interpreted as a very large integer or an invalid address. References to these variables are then
likely to cause runtime errors that can help you detect coding errors.

This option sets option -g (Linux*) and /Zi or /Z7 (Windows*), which changes the default optimization level
from O2 to -O0 (Linux) or /Od (Windows). You can override this effect by explicitly specifying an O option
setting.

This option sets option [Q]init snan.

If option O2 and option -ftrapuv (Linux) or /Qtrapuv (Windows) are used together, you should specify
option -fp-speculation safe (Linux) or /Qfp-speculation:safe (Windows) to prevent exceptions
resulting from speculated floating-point operations from being trapped.

For more details on using options -ftrapuv and /Qtrapuv with compiler option O, see the article titled Don't
optimize when using -ftrapuv for uninitialized variable detection.

Another way to detect uninitialized local scalar variables is by specifying keyword uninit for option check.

IDE Equivalent

Windows

Visual Studio: Data > Initialize stack variables to an unusual value

Alternate Options

None

See Also
g compiler option
Zi, Z7 compiler option

 1 Intel® Fortran Compiler Classic and Intel® Fortran Compiler Developer Guide and Reference

338

https://www.intel.com/content/www/us/en/developer/articles/technical/dont-optimize-when-using-ftrapuv-for-uninitialized-variable-detection.html
https://www.intel.com/content/www/us/en/developer/articles/technical/dont-optimize-when-using-ftrapuv-for-uninitialized-variable-detection.html

O compiler option
check compiler option (see setting uninit)
init, Qinit compiler option (see setting snan)
Locate Runtime Errors

fverbose-asm
Produces an assembly listing with compiler comments,
including options and version information.

Syntax

Linux OS:

-fverbose-asm
-fno-verbose-asm
Windows OS:

None

Arguments

None

Default

-fno-verbose-asm No source code annotations appear in the assembly listing file, if one
is produced.

Description

This option produces an assembly listing file with compiler comments, including options and version
information.

To use this option, you must also specify -S, which sets -fverbose-asm.

If you do not want this default when you specify -S, specify -fno-verbose-asm.

NOTE
This option only applies to host compilation. When offloading is enabled, it does not impact
device-specific compilation. Offloading can only be enabled when using ifx.

IDE Equivalent

None

Alternate Options

None

See Also
S compiler option

g
Tells the compiler to generate a level of debugging
information in the object file.

Intel® Fortran Compiler Classic and Intel® Fortran Compiler Developer Guide and Reference 1

339

Syntax

Linux OS:

-g[n]
Windows OS:

See option Zi, Z7.

Arguments

n Is the level of debugging information to be generated. Possible values
are:

0 Disables generation of symbolic debug
information.

1 Produces minimal debug information for
performing stack traces.

2 Produces complete debug information. This
is the same as specifying -g with no n.

3 Produces extra information that may be
useful for some tools.

Default

-g or -g2 The compiler produces complete debug information.

Description

Option -g tells the compiler to generate symbolic debugging information in the object file, which increases
the size of the object file.

The compiler does not support the generation of debugging information in assemblable files. If you specify
this option, the resulting object file will contain debugging information, but the assemblable file will not.

This option turns off option -O2 and makes option -O0 the default unless option -O2 (or higher) is explicitly
specified in the same command line.

Specifying the -g or -O0 option sets the -fno-omit-frame-pointer option.

Linux

For ifort, the -debug inline-debug-info option will be enabled by default if you compile with optimizations
(option -O2 or higher) and debugging is enabled with option -g.

NOTE
When option -g is specified, debugging information is generated in the DWARF Version 4
format. Older versions of some analysis tools may require applications to be built with the
-gdwarf-2 option to ensure correct operation.

IDE Equivalent

None

 1 Intel® Fortran Compiler Classic and Intel® Fortran Compiler Developer Guide and Reference

340

Alternate Options

Linux: None

Windows: /Zi, /Z7

See Also
gdwarf compiler option
Zi, Z7 compiler option
debug (Linux*) compiler option

gdwarf
Lets you specify a DWARF Version format when
generating debug information.

Syntax

Linux OS:

-gdwarf-n

Windows OS:

None

Arguments

n Is a value denoting the DWARF Version format to use. Possible values
are:

2 Generates debug information using the
DWARF Version 2 format.

3 Generates debug information using the
DWARF Version 3 format.

4 Generates debug information using the
DWARF Version 4 format.

5 Generates debug information using the
DWARF Version 5 format.

Default

OFF No debug information is generated. However, if compiler option -g is specified, debugging
information is generated in the DWARF Version 4 format.

Description

This option lets you specify a DWARF Version format when generating debug information.

Note that older versions of some analysis tools may require applications to be built with the -gdwarf-2 option
to ensure correct operation.

IDE Equivalent

None

Alternate Options

None

Intel® Fortran Compiler Classic and Intel® Fortran Compiler Developer Guide and Reference 1

341

See Also
g compiler option

grecord-gcc-switches
Causes the command line options that were used to
invoke the compiler to be appended to the
DW_AT_producer attribute in DWARF debugging
information. This feature is only available for ifort.

Syntax

Linux OS:

-grecord-gcc-switches

Windows OS:

None

Arguments

None

Default

OFF The command line options that were used to invoke the compiler are
not appended to the DW_AT_producer attribute in DWARF debugging
information.

Description

This option causes the command line options that were used to invoke the compiler to be appended to the
DW_AT_producer attribute in DWARF debugging information.

The options are concatenated with whitespace separating them from each other and from the compiler
version.

IDE Equivalent

None

Alternate Options

None

gsplit-dwarf
Creates a separate object file containing DWARF
debug information.

Syntax

Linux OS:

-gsplit-dwarf

Windows OS:

None

Arguments

None

 1 Intel® Fortran Compiler Classic and Intel® Fortran Compiler Developer Guide and Reference

342

Default

OFF No separate object file containing DWARF debug information is
created.

Description

This option creates a separate object file containing DWARF debug information. It causes debug information
to be split between the generated object (.o) file and the new DWARF object (.dwo) file.

The DWARF object file is not used by the linker, so this reduces the amount of debug information the linker
must process and it results in a smaller executable file.

For this option to perform correctly, you must use binutils-2.24 or higher. To debug the resulting executable,
you must use gdb-7.6.1 or higher.

NOTE
If you use the split executable with a tool that does not support the split DWARF format, it
will behave as though the DWARF debug information is absent.

NOTE
This option only applies to host compilation. When offloading is enabled, it does not impact
device-specific compilation. Offloading can only be enabled when using ifx.

IDE Equivalent

None

Alternate Options

None

list
Tells the compiler to create a listing of the source file.

Syntax

Linux OS:

-list[=filename]
-nolist
Windows OS:

/list[:filename]
/nolist

Arguments

filename Is the name of the file for output. It can include a path.

Default

nolist No listing is created for the source file.

Intel® Fortran Compiler Classic and Intel® Fortran Compiler Developer Guide and Reference 1

343

Description

This option tells the compiler to create a listing of the source file. The listing contains the following:

• The contents of files included with INCLUDE statements
• A symbol list with a line number cross-reference for each routine
• A list of compiler options used for the current compilation

The contents of the listing can be controlled by specifying option show.

The line length of the listing can be specified by using option list-line-len.

The page length of the listing can be specified by using option list-page-len.

If you do not specify filename, the output is written to a file in the same directory as the source. The file
name is the name of the source file with an extension of .lst.

IDE Equivalent

Windows

Visual Studio: Output Files > Source Listing (/list)

Output Files > Source Listing File (/list:[filename])

Alternate Options

None

See Also
show compiler option
list-line-len compiler option
list-page-len compiler option

list-line-len
Specifies the line length for the listing generated when
option list is specified.

Syntax

Linux OS:

-list-line-len=n
Windows OS:

/list-line-len:n

Arguments

n Is a positive integer indicating the number of columns to show in the listing.

Default

80 When a listing is generated, the default line length is 80 columns.

Description

This option specifies the line length for the listing generated when option list is specified.

Option list-line-len is ignored unless you also specify option list.

 1 Intel® Fortran Compiler Classic and Intel® Fortran Compiler Developer Guide and Reference

344

IDE Equivalent

None

Alternate Options

None

See Also
list compiler option
list-page-len compiler option

list-page-len
Specifies the page length for the listing generated
when option list is specified.

Syntax

Linux OS:

-list-page-len=n
Windows OS:

/list-page-len:n

Arguments

n Is a positive integer indicating the number of lines on a page to show in the listing.

Default

60 When a listing is generated, the default page length is 60 lines.

Description

This option specifies the page length for the listing generated when option list is specified.

Option list-page-len is ignored unless you also specify option list.

IDE Equivalent

None

Alternate Options

None

See Also
list compiler option
list-line-len compiler option

map-opts, Qmap-opts
Maps one or more compiler options to their equivalent
on a different operating system. This feature is only
available for ifort.

Intel® Fortran Compiler Classic and Intel® Fortran Compiler Developer Guide and Reference 1

345

Syntax

Linux OS:

-map-opts
Windows OS:

/Qmap-opts

Arguments

None

Default

OFF No platform mappings are performed.

Description

This option maps one or more compiler options to their equivalent on a different operating system. The result
is output to stdout.

On Windows systems, the options you provide are presumed to be Windows options, so the options that are
output to stdout will be Linux equivalents.

On Linux systems, the options you provide are presumed to be Linux options, so the options that are output
to stdout will be Windows equivalents.

The option may also provide the following:

• Option mapping information for options included in the compiler configuration file
• Alternate forms of the options that are supported but may not be documented

The option mapping can be invoked from the compiler command line or it can be used directly.

No compilation is performed when option mapping is used.

This option is useful if you have both compilers and want to convert scripts or makefiles.

NOTE
Compiler options are mapped to their equivalent on the architecture you are using.

IDE Equivalent

None

Alternate Options

None

Examples
The following command line maps the Linux options to Windows-based options, and then outputs the results
to stdout:

ifort -map-opts -xP -O2
The following command line maps the Windows options to Linux-based options, and then outputs the results
to stdout:

ifort /Qmap-opts /QxP /O2

 1 Intel® Fortran Compiler Classic and Intel® Fortran Compiler Developer Guide and Reference

346

The following shows what is displayed if you use this command line method to find the Linux equivalent for
option /Oy-:

ifort /Qmap-opts /Oy-
Intel(R) Compiler option mapping tool
mapping Windows options to Linux for Fortran
'-Qmap-opts' Windows option maps to
 --> '-map-opts' option on Linux
 --> '-map_opts' option on Linux
'-Oy-' Windows option maps to
 --> '-fomit-frame-pointer-' option on Linux
 --> '-fno-omit-frame-pointer' option on Linux
 --> '-fp' option on Linux

You can also execute option mapping directly from a command line environment where the full path to the
map_opts executable is known (compiler bin directory) by using the following syntax:

map_opts -t<target OS> -l<language> -opts <compiler option(s)>
where values for:

• <target OS> = {l|linux|w|windows}
• <language> = {f|fortran|c}
The following shows how to find the Linux equivalent for option /Oy-:

map_opts -tl -lf -opts /Oy-
Intel(R) Compiler option mapping tool
mapping Windows options to Linux for Fortran
'-Oy-' Windows option maps to
 --> '-fomit-frame-pointer-' option on Linux
 --> '-fno-omit-frame-pointer' option on Linux
 --> '-fp' option on Linux

The following shows how to find the Linux equivalent for option -fp:

map_opts -tw -lf -opts -fp
Intel(R) Compiler option mapping tool
mapping Linux options to Windows for Fortran
'-fp' Linux option maps to
 --> '-Oy-' option on Windows

o
Specifies the name for an output file.

Syntax

Linux OS:

-o filename
Windows OS:

None

Arguments

filename Is the name for the output file. The space before filename is optional.

Intel® Fortran Compiler Classic and Intel® Fortran Compiler Developer Guide and Reference 1

347

Default

OFF The compiler uses the default file name for an output file.

Description

This option specifies the name for an output file as follows:

• If -c is specified, it specifies the name of the generated object file.
• If -S is specified, it specifies the name of the generated assembly listing file.
• If -preprocess-only or -P is specified, it specifies the name of the generated preprocessor file.

Otherwise, it specifies the name of the executable file.

IDE Equivalent

None

Alternate Options

Linux: None

Windows: /exe

See Also
object compiler option
exe compiler option

object
Specifies the name for an object file.

Syntax

Linux OS:

None
Windows OS:

/object:filename

Arguments

filename Is the name for the object file. It can be a file name or a directory name. A directory name must
be followed by a backslash (\).

If a special character appears within the file name or directory name, the file name or directory
name must appear within quotes. To be safe, you should consider any non-ASCII numeric
character to be a special character.

Default

OFF An object file has the same name as the name of the first source file and a file extension of .obj.

Description

This option specifies the name for an object file.

If you specify this option and you omit /c or /compile-only, the /object option gives the object file its
name.

On Linux systems, this option is equivalent to specifying option -ofilename-c.

 1 Intel® Fortran Compiler Classic and Intel® Fortran Compiler Developer Guide and Reference

348

IDE Equivalent

Windows

Visual Studio: Output Files > Object File Name

Alternate Options

Linux: None

Windows: /Fo

Example
The following command shows how to specify a directory:

ifort /object:directorya\ end.f
If you do not add the backslash following a directory name, an executable is created. For example, the
following command causes the compiler to create directorya.exe:

ifort /object:directorya end.f
The following commands show how to specify a subdirectory that contains a special character:

ifort /object:"blank subdirectory"\ end.f
ifort /object:"c:\my_directory"\ end.f

See Also
o compiler option

pdbfile
Lets you specify the name for a program database
(PDB) file created by the linker. This feature is only
available for ifort.

Syntax

Linux OS:

None
Windows OS:

/pdbfile[:filename]

Arguments

filename Is the name for the PDB file. It can include a path. If you do not
specify a file extension, the extension .pdb is used.

Default

OFF No PDB file is created unless you specify option /Zi. If you specify option /Zi the default
filename is executablename.pdb.

Description

This option lets you specify the name for a program database (PDB) file created by the linker. This option
does not affect where the compiler outputs debug information.

To use this option, you must also specify option /debug:full or /Zi.

Intel® Fortran Compiler Classic and Intel® Fortran Compiler Developer Guide and Reference 1

349

If filename is not specified, the default file name used is the name of your file with an extension of .pdb.

IDE Equivalent

None

Alternate Options

None

See Also
Zi, Z7 compiler option
debug compiler option
Fd compiler option

print-multi-lib
Prints information about where system libraries should
be found.

Syntax

Linux OS:

-print-multi-lib
Windows OS:

None

Arguments

None

Default

OFF No information is printed unless the option is specified.

Description

This option prints information about where system libraries should be found, but no compilation occurs. On
Linux* systems, it is provided for compatibility with gcc.

IDE Equivalent

None

Alternate Options

None

Quse-msasm-symbols
Tells the compiler to use a dollar sign ("$") when
producing symbol names. This feature is only available
for ifort.

Syntax

Linux OS:

None

 1 Intel® Fortran Compiler Classic and Intel® Fortran Compiler Developer Guide and Reference

350

Windows OS:

/Quse-msasm-symbols

Arguments

None

Default

OFF The compiler uses a period (".") when producing symbol names

Description

This option tells the compiler to use a dollar sign ("$") when producing symbol names.

Use this option if you require symbols in your .asm files to contain characters that are accepted by the MS
assembler.

IDE Equivalent

None

Alternate Options

None

S
Causes the compiler to compile to an assembly file
only and not link.

Syntax

Linux OS:

-S
Windows OS:

/S

Arguments

None

Default

OFF Normal compilation and linking occur.

Description

This option causes the compiler to compile to an assembly file only and not link.

On Linux* systems, the assembly file name has a .s suffix. On Windows* systems, the assembly file name
has an .asm suffix.

IDE Equivalent

None

Alternate Options

Linux: None

Intel® Fortran Compiler Classic and Intel® Fortran Compiler Developer Guide and Reference 1

351

Windows: /Fa

See Also
Fa compiler option

show
Controls the contents of the listing generated when
option list is specified.

Syntax

Linux OS:

-show keyword[, keyword...]
Windows OS:

/show:keyword[, keyword...]

Arguments

keyword Specifies the contents for the listing. Possible values are:

[no]include Controls whether contents of files added with INCLUDE statements
are included when a listing is generated.

[no]map Controls whether a symbol listing with a line number cross-
reference for each routine is included when a listing is generated.

[no]options Controls whether a list of compiler options used for the compilation
is included when a listing is generated.

Default

include, map, and
options

When a listing is generated, it contains the contents of INCLUDEd files, a symbol list
with a line number cross reference, and a list of compiler options used.

Description

This option controls the contents of the listing generated when option list is specified.

If you specify option show and do not specify option list, the option is ignored.

IDE Equivalent

None

Alternate Options

None

See Also
list compiler option

use-asm, Quse-asm
Tells the compiler to produce objects through the
assembler. This is a deprecated option that may be
removed in a future release. This feature is only
available for ifort.

 1 Intel® Fortran Compiler Classic and Intel® Fortran Compiler Developer Guide and Reference

352

Syntax

Linux OS:

-use-asm
-no-use-asm
Windows OS:

/Quse-asm
/Quse-asm-

Arguments

None

Default

OFF The compiler produces objects directly.

Description

This option tells the compiler to produce objects through the assembler.

This is a deprecated option that may be removed in a future release. There is no replacement option.

IDE Equivalent

None

Alternate Options

None

Zi, Z7
Tells the compiler to generate full debugging
information in either an object (.obj) file or a project
database (PDB) file.

Syntax

Linux OS:

See option g.
Windows OS:

/Zi
/Z7

Arguments

None

Default

OFF No debugging information is produced.

Description

Option /Z7 tells the compiler to generate symbolic debugging information in the object (.obj) file for use with
the debugger. No .pdb file is produced by the compiler.

Intel® Fortran Compiler Classic and Intel® Fortran Compiler Developer Guide and Reference 1

353

The /Zi option tells the compiler to generate symbolic debugging information in a program database (PDB)
file for use with the debugger. Type information is placed in the .pdb file, and not in the .obj file, resulting in
smaller object files in comparison to option /Z7.

When option /Zi is specified, two PDB files are created:

• The compiler creates the program database project.pdb. If you compile a file without a project, the
compiler creates a database named vcx0.pdb, where x represents the major version of Visual C++, for
example vc140.pdb.

This file stores all debugging information for the individual object files and resides in the same directory
as the project makefile. If you want to change this name, use option /Fd.

• The linker creates the program database executablename.pdb.

This file stores all debug information for the .exe file and resides in the debug subdirectory. It contains full
debug information, including function prototypes, not just the type information found in vcx0.pdb.

Both PDB files allow incremental updates. The linker also embeds the path to the .pdb file in the .exe or .dll
file that it creates.

The compiler does not support the generation of debugging information in assemblable files. If you specify
these options, the resulting object file will contain debugging information, but the assemblable file will not.

These options turn off option /O2 and make option /Od the default unless option /O2 (or higher) is explicitly
specified in the same command line.

For more information about the /Z7 and /Zi options, see the Microsoft documentation.

IDE Equivalent

Visual Studio

Visual Studio: General > Generate Debug Information

Alternate Options

Linux: -g

Windows: None

See Also
Fd compiler option
g compiler option
debug (Windows*) compiler option

Zo
Enables or disables generation of enhanced debugging
information for optimized code. This feature is only
available for ifort.

Syntax

Linux OS:

None
Windows OS:

/Zo
/Zo-

 1 Intel® Fortran Compiler Classic and Intel® Fortran Compiler Developer Guide and Reference

354

Arguments

None

Default

OFF The compiler does not generate enhanced debugging information for optimized code.

Description

This option enables or disables the generation of additional debugging information for local variables and
inlined routines when code optimizations are enabled. It should be used with option /Zi or /Z7 to allow
improved debugging of optimized code.

Option /Zo enables generation of this enhanced debugging information. Option /Zo- disables this
functionality.

For more information on code optimization, see option /O.

IDE Equivalent

None

Alternate Options

None

See Also
Zi, Z7 compiler option
debug (Windows*) compiler option
O compiler option

Preprocessor Options
This section contains descriptions for compiler options that pertain to preprocessing. They are listed in
alphabetical order.

B
Specifies a directory that can be used to find include
files, libraries, and executables.

Syntax

Linux OS:

-Bdir
Windows OS:

None

Arguments

dir Is the directory to be used. If necessary, the compiler adds a directory
separator character at the end of dir.

Default

OFF The compiler looks for files in the directories specified in your PATH environment variable.

Intel® Fortran Compiler Classic and Intel® Fortran Compiler Developer Guide and Reference 1

355

Description

This option specifies a directory that can be used to find include files, libraries, and executables.

The compiler uses dir as a prefix.

For include files, the dir is converted to -I/dir/include. This command is added to the front of the includes
passed to the preprocessor.

For libraries, the dir is converted to -L/dir. This command is added to the front of the standard -L inclusions
before system libraries are added.

For executables, if dir contains the name of a tool, such as ld or as, the compiler will use it instead of those
found in the default directories.

The compiler looks for include files in dir /include while library files are looked for in dir.

IDE Equivalent

None

Alternate Options

None

D
Defines a symbol name that can be associated with an
optional value.

Syntax

Linux OS:

-Dname[=value]
Windows OS:

/Dname[=value]

Arguments

name Is the name of the symbol.

value Is an optional integer or an optional character string delimited by
double quotes; for example, Dname=string.

Default

noD Only default symbols or macros are defined.

Description

Defines a symbol name that can be associated with an optional value. This definition is used during
preprocessing in both Intel® Fortran conditional compilation directives and the fpp preprocessor. The
Dname=value will be ignored if there are any non-alphabetic, non-numeric characters in name.

If a value is not specified, name is defined as "1".

If you want to specify more than one definition, you must use separate D options.

If you specify noD, all preprocessor definitions apply only to fpp and not to Intel® Fortran conditional
compilation directives. To use this option, you must also specify the fpp option.

 1 Intel® Fortran Compiler Classic and Intel® Fortran Compiler Developer Guide and Reference

356

Caution
Linux
If you are not specifying a value, do not use D for name, because it will conflict with the -DD option.

IDE Equivalent

Windows

Visual Studio: General > Preprocessor Definitions

Preprocessor> Preprocessor Definitions

Preprocessor > Preprocessor Definitions to FPP only

Alternate Options

D Linux: None
Windows: /define:name[=value]

noD Linux: -nodefine
Windows: /nodefine

See Also
Using Predefined Preprocessor Symbols

d-lines, Qd-lines
Compiles debug statements.

Syntax

Linux OS:

-d-lines
-nod-lines
Windows OS:

/d-lines
/nod-lines
/Qd-lines

Arguments

None

Default

nod-lines Debug lines are treated as comment lines.

Description

This option compiles debug statements. It specifies that lines in fixed-format files that contain a D in column
1 (debug statements) should be treated as source code.

IDE Equivalent

Windows

Visual Studio: Language > Compile Lines With D in Column 1 (/d-lines)

Intel® Fortran Compiler Classic and Intel® Fortran Compiler Developer Guide and Reference 1

357

Alternate Options

Linux: -DD
Windows: None

E
Causes the preprocessor to send output to stdout.

Syntax

Linux OS:

-E
Windows OS:

/E

Arguments

None

Default

OFF Preprocessed source files are output to the compiler.

Description

This option causes the preprocessor to send output to stdout. Compilation stops when the files have been
preprocessed.

When you specify this option, the compiler's preprocessor expands your source module and writes the result
to stdout. The preprocessed source contains #line directives, which the compiler uses to determine the
source file and line number.

IDE Equivalent

None

Alternate Options

None

EP
Causes the preprocessor to send output to stdout,
omitting #line directives.

Syntax

Linux OS:

-EP
Windows OS:

/EP

Arguments

None

 1 Intel® Fortran Compiler Classic and Intel® Fortran Compiler Developer Guide and Reference

358

Default

OFF Preprocessed source files are output to the compiler.

Description

This option causes the preprocessor to send output to stdout, omitting #line directives.

If you also specify option preprocess-only, the preprocessor will write the results (without #line directives)
to a file instead of stdout.

IDE Equivalent

None

Alternate Options

None

fpp
Runs the Fortran preprocessor on source files before
compilation.

Syntax

Linux OS:

-fpp
-nofpp
Windows OS:

/fpp
/fpp[:"fpp_option"]
/nofpp

Arguments

fpp_option Is a Fortran preprocessor (fpp) option; it must start with a slash (/)
and appear in quotes. This argument is only allowed on Windows*
systems.

Default

nofpp The Fortran preprocessor is not run on files before compilation.

Description

This option runs the Fortran preprocessor on source files before they are compiled.

If you want to pass fpp options to the Fortran preprocessor, you can use any of the following methods:

• Specify option Qoption,fpp,"option". This is the recommended method.
• Linux

Specify option -Wp,fpp_option (for example, -Wp,-macro=no).
• Windows

Specify option fpp and include the argument fpp_option (for example, fpp:"/macro=no").

To see a list of all available fpp options, specify the following on the command line:

Intel® Fortran Compiler Classic and Intel® Fortran Compiler Developer Guide and Reference 1

359

Linux

fpp -help
Windows

fpp /help

IDE Equivalent

Windows

Visual Studio: Preprocessor > Preprocess Source File

Alternate Options

Linux: -cpp (this is a deprecated option)

Windows: None

Example
The following examples show the recommended method of passing fpp options to the Fortran preprocessor.

Linux

This code undefines all predefined macros:

ifx -fpp –Qoption,fpp,"-undef" file.f90
Windows

This code disables macro expansion within comments:

ifx /fpp /Qoption,fpp,"/macro=no_com" file.f90

See Also
Qoption compiler option
Using Fortran Preprocessor Options
Wp compiler option

fpp-name
Lets you specify an alternate preprocessor to use with
Fortran.

Syntax

Linux OS:

-fpp-name=name
Windows OS:

/fpp-name:name

Arguments

name Is the name of the preprocessor executable. It can include a path. See the description below for
more details.

Default

OFF No preprocessor is run on files before compilation.

 1 Intel® Fortran Compiler Classic and Intel® Fortran Compiler Developer Guide and Reference

360

Description

This option lets you specify an alternate preprocessor to use with Fortran.

The compiler invokes the user-specified Fortran preprocessor by spawning a command with the following
signature:

alt_fpp @fpp.arg
where alt_fpp is the name of the Fortran preprocessor you want to use, and fpp.arg is an input file
containing the preprocessor's command line arguments.

fpp.arg is generated by the Fortran compiler driver, and contains the -D<define>,
-I<include directory>, and input file names from the compiler command line. Compiler predefined
options -D<define> and -I<include directory> are also included. Output from the preprocessor goes to
STDOUT and will be captured for any further processing.

You can use option Qoption,fpp,… to pass other definitions (using -D<define>), include directories (using
-I<include directory>), or other options accepted by the preprocessor.

You can use option Qlocation, fpp,… to specify a directory for supporting tools.

IDE Equivalent

None

Alternate Options

None

See Also
fpp Preprocessing
fpp compiler option
Qoption compiler option
Qlocation compiler option

gen-dep
Tells the compiler to generate build dependencies for
the current compilation.

Syntax

Linux OS:

-gen-dep[=filename]
-no-gen-dep
Windows OS:

/gen-dep[:filename]
/gen-dep-

Arguments

filename Is the name of the file for output. It can include a path.

If you specify filename, it is similar to specifying option [Q]MFfilename. If you do not specify
filename, it is similar to specifying option [Q]MD or [Q]MMD.

Intel® Fortran Compiler Classic and Intel® Fortran Compiler Developer Guide and Reference 1

361

Default

-no-gen-dep or /gen-dep- The compiler does not generate build dependencies for the compilation.

Description

This option tells the compiler to generate build dependencies for the current compilation. The build
dependencies include a list of all files included with INCLUDE statements or .mod files accessed with USE
statements.

If you do not specify filename, the dependencies are written to stdout.

You can use option gen-depformat to specify the form of the output for the build dependencies generated.

If you specify option gen-dep and you do not specify option gen-depformat, the output format is in a form
acceptable to the make utility.

Note that if option fpp is used to process #include files, those files will also appear in the list of build
dependencies.

If you want to generate build dependencies but you do not want to compile the sources, you must also
specify option syntax-only.

IDE Equivalent

Visual Studio

Visual Studio: Output Files > Build Dependencies (/gen-dep)

Output Files > Emit Build Dependencies to File (/gen-dep:filename)

Output Files > Build Dependencies File (/gen-dep:filename)

Alternate Options

gen-dep with a filename Linux: -MF
Windows: /QMF

gen-dep with no filename Linux: -MD or -MMD
Windows: /QMD or /QMMD

See Also
gen-depformat compiler option
gen-depshow compiler option
syntax-only compiler option

gen-depformat
Specifies the form for the output generated when
option gen-dep is specified.

Syntax

Linux OS:

-gen-depformat=form
Windows OS:

/gen-depformat:form

 1 Intel® Fortran Compiler Classic and Intel® Fortran Compiler Developer Guide and Reference

362

Arguments

form Is the output form for the list of build dependencies. Possible values are make or nmake.

Default

make The output form for the list of build dependencies is in a form acceptable to the make utility.

Description

This option specifies the form for the output generated when option gen-dep is specified.

Option gen-depformat is ignored unless you also specify option gen-dep.

IDE Equivalent

None

Alternate Options

None

See Also
gen-dep compiler option

gen-depshow
Determines whether certain features are excluded
from dependency analysis. Currently, it only applies to
intrinsic modules.

Syntax

Linux OS:

-gen-depshow=keyword

Windows OS:

/gen-depshow:keyword

Arguments

keyword Specifies inclusion or exclusion from dependency analysis. Possible values are:

[no]intr_mod Determines whether intrinsic modules are excluded from
dependency analysis.

Default

nointr_mod Tells the compiler to exclude Fortran intrinsic modules in dependency analysis.

Description

This option determines whether certain features are excluded from dependency analysis. Currently, it only
applies to intrinsic modules.

Option Description

gen-depshow intr_mod Tells the compiler to include Fortran intrinsic modules in dependency
analysis.

Intel® Fortran Compiler Classic and Intel® Fortran Compiler Developer Guide and Reference 1

363

Option gen-depshow is ignored unless you also specify option gen-dep, which generates build dependencies
for the compilation.

IDE Equivalent

None

Alternate Options

gen-depshow nointr_mod Linux: -MMD
Windows: /QMMD

See Also
gen-dep compiler option

I
Specifies an additional directory for the include path.

Syntax

Linux OS:

-Idir
Windows OS:

/Idir

Arguments

dir Is the directory to add to the include path.

Default

OFF The default include path is used.

Description

This option specifies an additional directory for the include path, which is searched for module files
referenced in USE statements and include files referenced in INCLUDE statements. To specify multiple
directories on the command line, repeat the option for each directory you want to add.

For all USE statements and for those INCLUDE statements whose file name does not begin with a device or
directory name, the directories are searched in this order:

1. The directory containing the first source file.

Note that if assume nosource_include is specified, this directory will not be searched.
2. The current working directory where the compilation is taking place (if different from the above

directory).
3. Any directory or directories specified using the I option. If multiple directories are specified, they are

searched in the order specified on the command line, from left to right.
4. On Linux* systems, any directories indicated using environment variable CPATH. On Windows*

systems, any directories indicated using environment variable INCLUDE.

This option affects fpp preprocessor behavior and the USE statement.

 1 Intel® Fortran Compiler Classic and Intel® Fortran Compiler Developer Guide and Reference

364

IDE Equivalent

Windows

Visual Studio: General > Additional Include Directories (/I)

Preprocessor > Additional Include Directories (/I)

Alternate Options

Linux: None

Windows: /include

See Also
X compiler option
assume compiler option

idirafter
Adds a directory to the second include file search
path.

Syntax

Linux OS:

-idirafterdir
Windows OS:

None

Arguments

dir Is the name of the directory to add.

Default

OFF Include file search paths include certain default directories.

Description

This option adds a directory to the second include file search path (after -I).

IDE Equivalent

None

Alternate Options

None

isystem
Specifies a directory to add to the start of the system
include path.

Syntax

Linux OS:

-isystemdir

Intel® Fortran Compiler Classic and Intel® Fortran Compiler Developer Guide and Reference 1

365

Windows OS:

None

Arguments

dir Is the directory to add to the system include path.

Default

OFF The default system include path is used.

Description

This option specifies a directory to add to the system include path. The compiler searches the specified
directory for include files after it searches all directories specified by the -I compiler option but before it
searches the standard system directories.

On Linux* systems, this option is provided for compatibility with gcc.

IDE Equivalent

None

Alternate Options

None

module
Specifies the directory where module files should be
placed when created and where they should be
searched for.

Syntax

Linux OS:

-module path

Windows OS:

/module:path

Arguments

path Is the directory for module files.

Default

OFF The compiler places module files in the current directory.

Description

This option specifies the directory (path) where module (.mod) files should be placed when created and
where they should be searched for (USE statement).

IDE Equivalent

Windows

Visual Studio: Output > Module Path

 1 Intel® Fortran Compiler Classic and Intel® Fortran Compiler Developer Guide and Reference

366

Alternate Options

None

preprocess-only
Causes the Fortran preprocessor to send output to a
file.

Syntax

Linux OS:

-preprocess-only
Windows OS:

/preprocess-only

Arguments

None

Default

OFF Preprocessed source files are output to the compiler.

Description

This option causes the Fortran preprocessor to send output to a file.

The source file is preprocessed by the Fortran preprocessor, and the result for each source file is output to a
corresponding .i or .i90 file.

Note that the source file is not compiled.

IDE Equivalent

None

Alternate Options

Linux: -P
Windows: /P

u (Windows*)
Undefines all previously defined preprocessor values.

Syntax

Linux OS:

None
Windows OS:

/u

Arguments

None

Intel® Fortran Compiler Classic and Intel® Fortran Compiler Developer Guide and Reference 1

367

Default

OFF Defined preprocessor values are in effect until they are undefined.

Description

This option undefines all previously defined preprocessor values.

To undefine specific preprocessor values, use the /U option.

IDE Equivalent

Windows

Visual Studio: Preprocessor > Undefine All Preprocessor Definitions

Alternate Options

None

See Also
U compiler option

U
Undefines any definition currently in effect for the
specified symbol.

Syntax

Linux OS:

-Uname
Windows OS:

/Uname

Arguments

name Is the name of the symbol to be undefined.

Default

OFF Symbol definitions are in effect until they are undefined.

Description

This option undefines any definition currently in effect for the specified symbol.

On Windows systems, use the /u option to undefine all previously defined preprocessor values.

IDE Equivalent

Windows

Visual Studio: Preprocessor > Undefine Preprocessor Definitions

Alternate Options

Linux: None

Windows: /undefine:name

 1 Intel® Fortran Compiler Classic and Intel® Fortran Compiler Developer Guide and Reference

368

See Also
u (Windows) compiler option

undef
Disables all predefined symbols.

Syntax

Linux OS:

-undef

Windows OS:

None

Arguments

None

Default

OFF Defined symbols are in effect until they are undefined.

Description

This option disables all predefined symbols.

IDE Equivalent

None

Alternate Options

None

X
Removes standard directories from the include file
search path.

Syntax

Linux OS:

-X

Windows OS:

/X

Arguments

None

Default

OFF Standard directories are in the include file search path.

Description

This option removes standard directories from the include file search path. It prevents the compiler from
searching the default path specified by the CPATH environment variable.

Intel® Fortran Compiler Classic and Intel® Fortran Compiler Developer Guide and Reference 1

369

On Linux* systems, specifying -X (or -noinclude) prevents the compiler from searching in /usr/include
for files specified in an INCLUDE statement.

You can use this option with the I option to prevent the compiler from searching the default path for include
files and direct it to use an alternate path.

This option affects fpp preprocessor behavior and the USE statement.

IDE Equivalent

Windows

Visual Studio: Preprocessor > Ignore Standard Include Path (/X)

Alternate Options

Linux: -nostdinc
Windows: /noinclude

See Also
I compiler option

Component Control Options
This section contains descriptions for compiler options that pertain to component control. They are listed in
alphabetical order.

Qinstall
Specifies the root directory where the compiler
installation was performed.

Syntax

Linux OS:

-Qinstalldir
Windows OS:

None

Arguments

dir Is the root directory where the installation was performed.

Default

OFF The default root directory for compiler installation is searched for the compiler.

Description

This option specifies the root directory where the compiler installation was performed. It is useful if you want
to use a different compiler or if you did not use a shell script to set your environment variables.

IDE Equivalent

None

Alternate Options

None

 1 Intel® Fortran Compiler Classic and Intel® Fortran Compiler Developer Guide and Reference

370

Qlocation
Specifies the directory for supporting tools.

Syntax

Linux OS:

-Qlocation,string,dir

Windows OS:

/Qlocation,string,dir

Arguments

string Is the name of the tool.

dir Is the directory (path) where the tool is located.

Default

OFF The compiler looks for tools in a default area.

Description

This option specifies the directory for supporting tools.

string can be any of the following:

• f - Indicates the Intel® Fortran compiler.
• fpp (or cpp) - Indicates the Intel® Fortran preprocessor or a user-specified (alternate) Fortran

preprocessor.
• asm - Indicates the assembler.
• link - Indicates the linker.
• prof - Indicates the profiler.
• On Windows* systems, the following is also available:

• masm - Indicates the Microsoft assembler.
• On Linux* systems, the following are also available:

• as - Indicates the assembler.
• gas - Indicates the GNU assembler. This setting is for Linux* only.
• ld - Indicates the loader.
• gld - Indicates the GNU loader. This setting is for Linux* only.
• lib - Indicates an additional library.
• crt - Indicates the crt%.o files linked into executables to contain the place to start execution.

On Windows systems, you can also specify a tool command name.

The following shows an example on Windows* systems:

/Qlocation,link,"c:\Program Files\tools\" ! This tells the driver to use c:\Program
Files\tools\link.exe for the loader
/Qlocation,link,"c:\Program Files\tools\my_link.exe" ! This tells the driver to use c:\Program
Files\tools\my_link.exe as the loader

IDE Equivalent

None

Alternate Options

None

Intel® Fortran Compiler Classic and Intel® Fortran Compiler Developer Guide and Reference 1

371

Example
The following command provides the path for the fpp tool:

ifort -Qlocation,fpp,/usr/preproc myprog.f

See Also
Qoption compiler option

Qoption
Passes options to a specified tool.

Syntax

Linux OS:

-Qoption,string,options
Windows OS:

/Qoption,string,options

Arguments

string Is the name of the tool.

options Are one or more comma-separated, valid options for the designated
tool.

Note that certain tools may require that options appear within
quotation marks (" ").

Default

OFF No options are passed to tools.

Description

This option passes options to a specified tool.

If an argument contains a space or tab character, you must enclose the entire argument in quotation marks
(" "). You must separate multiple arguments with commas.

string can be any of the following:

• fpp (or cpp) - Indicates the Intel® Fortran preprocessor or a user-specified (alternate) Fortran
preprocessor.

• asm - Indicates the assembler.
• link - Indicates the linker.
• prof - Indicates the profiler.
• On Windows* systems, the following is also available:

• masm - Indicates the Microsoft assembler.
• On Linux* systems, the following are also available:

• as - Indicates the assembler.
• gas - Indicates the GNU assembler.
• ld - Indicates the loader.
• gld - Indicates the GNU loader.
• lib - Indicates an additional library.
• crt - Indicates the crt%.o files linked into executables to contain the place to start execution.

 1 Intel® Fortran Compiler Classic and Intel® Fortran Compiler Developer Guide and Reference

372

NOTE
This option only applies to host compilation. When offloading is enabled, it does not impact
device-specific compilation. Offloading can only be enabled when using ifx.

IDE Equivalent

None

Alternate Options

None

Examples
The following examples demonstrate ways to use this option.

Linux

The following example directs the linker to link with an alternative library:

ifx -Qoption,link,-L.,-Lmylib prog1.f
The following example passes a compiler option to the assembler to generate a listing file:

ifx -Qoption,as,"-as=myprogram.lst" -use-asm myprogram.f90
The following option passes an fpp option to the Fortran preprocessor:

ifx -Qoption,fpp,"-fpp=macro=no
Windows

The following example directs the linker to create a memory map when the compiler produces the executable
file from the source being compiled:

ifx /Qoption,link,/map:prog1.map prog1.f
The following example passes a compiler option to the assembler:

ifx /Quse-asm /Qoption,masm,"/WX" myprogram.f90
The following option passes an fpp option to the Fortran preprocessor:

ifx /Qoption,fpp,"/fpp:macro=no"

See Also
Qlocation compiler option

Language Options
This section contains descriptions for compiler options that pertain to language compatibility, conformity,
etc.. They are listed in alphabetical order.

allow
Determines whether the compiler allows certain
behaviors.

Syntax

Linux OS:

-allow keyword

Intel® Fortran Compiler Classic and Intel® Fortran Compiler Developer Guide and Reference 1

373

Windows OS:

/allow:keyword

Arguments

keyword Specifies the behaviors to allow or disallow. Possible values are:

[no]fpp_comments Determines how the fpp preprocessor treats Fortran end-of-line
comments in preprocessor directive lines.

Default

fpp_comments The compiler recognizes Fortran-style end-of-line comments in preprocessor lines.

Description

This option determines whether the compiler allows certain behaviors.

Option Description

allow nofpp_comments Tells the compiler to disallow Fortran-style end-of-line comments on
preprocessor lines. Comment indicators have no special meaning.

IDE Equivalent

None

Alternate Options

None

Example
Consider the following:

#define MAX_ELEMENTS 100 ! Maximum number of elements
By default, the compiler recognizes Fortran-style end-of-line comments on preprocessor lines. Therefore, the
line above defines MAX_ELEMENTS to be "100" and the rest of the line is ignored. If allow nofpp_comments
is specified, Fortran comment conventions are not used and the comment indicator "!" has no special
meaning. So, in the above example, "! Maximum number of elements" is interpreted as part of the value for
the MAX_ELEMENTS definition.

Option allow nofpp_comments can be useful when you want to have a Fortran directive as a define value;
for example:

#define dline(routname) !dir$ attributes alias:"__routname":: routname

altparam
Allows alternate syntax (without parentheses) for
PARAMETER statements.

Syntax

Linux OS:

-altparam
-noaltparam

 1 Intel® Fortran Compiler Classic and Intel® Fortran Compiler Developer Guide and Reference

374

Windows OS:

/altparam
/noaltparam

Arguments

None

Default

altparam The alternate syntax for PARAMETER statements is allowed.

Description

This option specifies that the alternate syntax for PARAMETER statements is allowed. The alternate syntax is:

PARAMETER c = expr [, c = expr] ...
This statement assigns a name to a constant (as does the standard PARAMETER statement), but there are no
parentheses surrounding the assignment list.

In this alternative statement, the form of the constant, rather than implicit or explicit typing of the name,
determines the data type of the variable.

IDE Equivalent

Windows

Visual Studio: Language > Enable Alternate PARAMETER Syntax

Alternate Options

altparam Linux: None

Windows: /4Yaltparam

noaltparam Linux: None

Windows: /4Naltparam

assume
Tells the compiler to make certain assumptions.

Syntax

Linux OS:

-assume keyword[, keyword...]
Windows OS:

/assume:keyword[, keyword...]

Arguments

keyword Specifies the assumptions to be made. Possible values are:

none Disables all assume options.

Intel® Fortran Compiler Classic and Intel® Fortran Compiler Developer Guide and Reference 1

375

[no]bscc Determines whether the backslash character is treated
as a C-style control character syntax in character
literals.

[no]buffered_io Determines whether data is immediately read from or
written to disk or accumulated in a buffer. For variable
length, unformatted files, determines whether data is
buffered on input or read directly from disk to user
variables.

[no]buffered_stdout Determines whether data is immediately written to the
standard output device or accumulated in a buffer.

[no]byterecl Determines whether units for the OPEN statement RECL
specifier (record length) value in unformatted files are
in bytes or longwords (four-byte units).

[no]cc_omp Determines whether conditional compilation as defined
by the OpenMP Fortran API is enabled or disabled.

[no]contiguous_assumed_shape Determines whether contiguity is assumed for
assumed-shape dummy arguments.

[no]contiguous_pointer Determines whether contiguity is assumed for pointers.

[no]dummy_aliases Determines whether the compiler assumes that dummy
arguments to procedures share memory locations with
other dummy arguments or with COMMON variables
that are assigned.

[no]failed_images Determines whether the runtime system checks for
failed images on a team of images when executing
image control statements without a STAT= specifier, or
when executing a call to MOVE_ALLOC or a collective or
atomic subroutine that does not specify a STAT
argument.

[no]fpe_summary Determines whether a floating-point exceptions
summary is displayed when a STOP or ERROR STOP
statement is encountered.

[no]ieee_compares Determines whether floating-point comparison
operations are performed as IEEE signaling operations.

[no]ieee_fpe_flags Determines whether the floating-point exception and
status flags are saved on routine entry and restored on
routine exit.

[no]minus0 Determines whether the compiler uses Fortran 2003 or
Fortran 90/77 standard semantics in the SIGN intrinsic
when treating -0.0 and +0.0 as 0.0, and how it writes
the value on formatted output.

[no]nan_compares Determines whether code for floating-point comparison
operations involving NaNs is generated, or if the
compiler can generate a faster code sequence because
it assumes no NaNs will be encountered.

 1 Intel® Fortran Compiler Classic and Intel® Fortran Compiler Developer Guide and Reference

376

[no]old_boz Determines whether the binary, octal, and hexadecimal
constant arguments in intrinsic functions INT, REAL,
DBLE, and CMPLX are treated as signed integer
constants.

[no]old_e0g0_format Determines whether Fortran 2018 rules are used to
format floating-point numbers that have G0.0 or E0 or
ES0 format edit descriptors.

[no]old_inquire_recl Determines the value of the RECL= specifier on an
INQUIRE statement for an unconnected unit or a unit
connected for stream access.

Prior to Fortran 2018, this behavior was undefined
(ifort used the value 0 for an unconnected file).
Fortran 2018 specifies that the scalar-int-variable in the
RECL= specifier becomes defined with -1 if the file is
unconnected, and -2 if the file is connected for stream
access.

[no]old_ldout_format Determines the output of integer and real values in list-
directed and namelist-directed output.

[no]old_ldout_zero Determines the format of a floating-point zero produced
by list-directed output. old_ldout_zero uses
exponential format; noold_ldout_zero uses fractional
format.

[no]old_logical_assign Determines the behavior in assignment statements of
logical values assigned to numeric variables and
numeric values assigned to logical variables.

[no]old_logical_ldio Determines whether NAMELIST and list-directed input
accept logical values for numeric IO-list items and
numeric values for logical IO-list items.

[no]old_maxminloc Determines the results of intrinsics MAXLOC and
MINLOC when given an empty array as an argument or
every element of the mask is false.

[no]old_unit_star Determines whether unit * is treated the same as units
5 and 6, or is distinct.

[no]old_xor Determines whether .XOR. is defined by the compiler as
an intrinsic operator.

[no]protect_allocates Determines whether memory allocation requests using
the ALLOCATE statement are protected with critical
sections to avoid random timing problems in a multi-
threaded environment.

[no]protect_constants Determines whether a constant actual argument or a
copy of it is passed to a called routine.

[no]protect_parens Determines whether the optimizer honors parentheses
in REAL and COMPLEX expression evaluations by not
reassociating operations.

Intel® Fortran Compiler Classic and Intel® Fortran Compiler Developer Guide and Reference 1

377

[no]realloc_lhs Determines whether the compiler uses the current
Fortran Standard rules or the old Fortran 2003 rules
when interpreting assignment statements.

[no]recursion Determines whether procedures are compiled for
recursion by default.

[no]source_include Determines whether the compiler searches for USE
modules and INCLUDE files in the default directory or in
the directory where the source file is located.

[no]std_intent_in Determines whether the compiler assumes that dummy
arguments with the INTENT(IN) attribute in a called
procedure are not modified across a call, in accordance
with the Fortran standard.

[no]std_minus0_rounding Determines whether to display a negative value that is
not zero but rounds to zero on output with a leading
minus sign.

[no]std_mod_proc_name Determines whether the names of module procedures
are allowed to conflict with user external symbol
names.

[no]std_value Determines whether the VALUE attribute has the effect
as if the actual argument is assigned to a temporary,
and the temporary is then passed to the called
procedure so that subsequent changes to the value of
the dummy argument do not affect the actual
argument, in accordance with the Fortran standard.

[no]underscore Determines whether the compiler appends an
underscore character to external user-defined names.

[no]2underscores
(Linux)

Determines whether the compiler appends two
underscore characters to external user-defined names.

[no]writeable-strings Determines whether character constants go into non-
read-only memory.

Default

nobscc The backslash character is treated as a normal character in character
literals.

nobuffered_io Data in the internal buffer is immediately read from or written (flushed)
to disk (OPEN specifier BUFFERED='NO'). Data read from variable length,
unformatted files is read directly from disk to a user's variables.

If you set the FORT_BUFFERED environment variable to true, the default
is assume buffered_io.

nobuffered_stdout Data is not buffered for the standard output device but instead is written
immediately to the device.

nobyterecl Units for OPEN statement RECL values with unformatted files are in four-
byte (longword) units.

 1 Intel® Fortran Compiler Classic and Intel® Fortran Compiler Developer Guide and Reference

378

nocc_omp Conditional compilation as defined by the OpenMP Fortran API is disabled
unless option [q or Q]openmp is specified.

If compiler option [q or Q]openmp is specified, the default is
assume cc_omp.

nocontiguous_assumed_shape Contiguity is not assumed for assumed-shape dummy arguments.

nocontiguous_pointer Contiguity is not assumed for pointers.

nodummy_aliases Dummy arguments to procedures do not share memory locations with
other dummy arguments or with variables shared through use
association, host association, or common block use.

nofailed_images When an image executes an image control statement without a STAT=
specifier, or when executing a MOVE_ALLOC or collective or atomic
subroutine without a STAT argument, the runtime system does not
explicitly check for failed images on the current team.

nofpe_summary Suppresses a summary of floating-point exceptions from being displayed
when a STOP or ERROR STOP statement is encountered.

noieee_compares Floating-point comparison operations are not performed using IEEE
signaling compares.

noieee_fpe_flags The flags are not saved on routine entry and they are not restored on
routine exit.

nominus0 The compiler uses Fortran 90/77 standard semantics in the SIGN intrinsic
to treat -0.0 and +0.0 as 0.0, and writes a value of 0.0 with no sign on
formatted output.

nan_compares Code is generated for floating-point compares to check for NaNs and give
the same results as are performed when assume ieee_compares is
specified, except a compare to a signaling NaN behaves as if it was a
quiet NaN.

noold_boz The binary, octal, and hexadecimal constant arguments in intrinsic
functions INT, REAL, DBLE, and CMPLX are treated as bit strings that
represent a value of the data type of the intrinsic, that is, the bits are not
converted.

old_e0g0_format Formats output for the G0.0, E0 and ES0 edit descriptors as it did prior to
conforming to the Fortran 2018 standard. G0.0 does not use the minimal
width needed for a real value.

This setting causes the runtime to always remove the exponent letter E
from the output for real values produced with the E0 and ES0 format edit
descriptors.

old_inquire_recl The scalar-int-variable in a RECL= specifier of an INQUIRE statement for
an unconnected unit becomes defined with the value 0; if the unit is
connected for stream access, the value is undefined.

old_ldout_format For list-directed and namelist-directed output, integers are written with a
fixed width that is dependent on the integer kind, and zero real values
are written using the E format.

Intel® Fortran Compiler Classic and Intel® Fortran Compiler Developer Guide and Reference 1

379

old_ldout_zero For list-directed output of a floating-point zero, exponential format is
used instead of fractional output.

noold_logical_assign In the assignment statement L = N, where L is a logical variable and N is
a numeric value, N is converted to integer if necessary, and L is assigned
the value .FALSE. if the integer value is 0, and .TRUE. if the integer value
is -1 or 1 according to the setting of the compiler option
fpscomp logicals.

In the assignment statement N = L, where N is a variable of numeric type
and L is a logical value, if L is .FALSE., N is assigned the value 0,
converted, if necessary, to the type of N. If L is .TRUE., N is assigned the
value 1 or -1, converted, if necessary, to the type of N, according to the
setting of the compiler option fpscomp logicals.

The compiler option fpscomp logicals specifies that non-zero values
are treated as true and zero values are treated as false. The literal
constant .TRUE. has an integer value of 1 and the literal constant .FALSE.
has an integer value of 0.

The default is fpscomp nologicals, which specifies that odd integer
values (low bit one) are treated as true and even integer values (low bit
zero) are treated as false. The literal constant .TRUE. has an integer
value of -1 and the literal constant .FALSE. has an integer value of 0.

noold_logical_ldio Tells the compiler that NAMELIST and list-directed input cannot accept
logical values (T, F, etc.) for numeric (integer, real, and complex) IO-list
items or numeric values for logical IO-list items. If this option is specified
and a logical value is given for a numeric item or a numeric value is given
for a logical item in NAMELIST and list-directed input, a runtime error will
be produced.

old_maxminloc MAXLOC and MINLOC return 1 when given an empty array as an
argument or every element of the mask is false.

old_unit_star The READs or WRITEs to UNIT=* go to stdin or stdout, respectively, even
if UNIT=5 or 6 has been connected to another file.

old_xor Intrinsic operator .XOR. is defined by the compiler.

noprotect_allocates Memory allocation requests using the ALLOCATE statement are not
protected with critical sections and may encounter random timing
problems in a multi-threaded environment.

protect_constants A constant actual argument is passed to a called routine. Any attempt to
modify it results in an error.

noprotect_parens The optimizer reorders REAL and COMPLEX expressions without regard
for parentheses by reassociating operations if it produces faster executing
code.

realloc_lhs Tells the compiler that when the left-hand side of an assignment is an
allocatable object, it should be reallocated to the shape of the right-hand
side of the assignment before the assignment occurs. This is the current
Fortran Standard definition. This feature may cause extra overhead at
runtime. The option standard-realloc-lhs has the same effect as
assume realloc_lhs.

 1 Intel® Fortran Compiler Classic and Intel® Fortran Compiler Developer Guide and Reference

380

norecursion Tells the compiler that all procedures are not compiled for recursion,
unless declared with the RECURSIVE keyword. Fortran 2018 specifies the
default mode of compilation is recursion; previous standards specified no
recursion. This default will change in a future release.

source_include The compiler searches for USE modules and INCLUDE files in the
directory where the source file is located.

std_intent_in The compiler assumes that dummy arguments with the INTENT(IN)
attribute in a called procedure are not modified across a call, in
accordance with the Fortran standard.

std_minus0_rounding A negative value that is not zero but rounds to zero on output is
displayed with a leading minus sign. For example, the value -0.00000001
in F5.1 format will be displayed as -0.0 rather than as 0.0.

nostd_mod_proc_name The compiler allows the names of module procedures to conflict with user
external symbol names.

std_value The compiler assumes that the VALUE attribute has the effect as if the
actual argument is assigned to a temporary, and the temporary is then
passed to the called procedure so that subsequent changes to the value
of the dummy argument do not affect the actual argument, in accordance
with the Fortran standard.

Windows: nounderscore
Linux: underscore

On Windows* systems, the compiler does not append an underscore
character to external user-defined names. On Linux* systems, the
compiler appends an underscore character to external user-defined
names.

no2underscores
(Linux)

The compiler does not append two underscore characters to external
user-defined names that contain an embedded underscore.

nowriteable-strings The compiler puts character constants into read-only memory.

Description

This option specifies assumptions to be made by the compiler.

Option Description

assume none Disables all the assume options.

assume bscc Tells the compiler to treat the backslash character (\) as a C-
style control (escape) character syntax in character literals.
The "bscc" keyword means "BackSlashControlCharacters."

assume buffered_io Tells the compiler to accumulate records in a buffer. This sets
the default for opening sequential files to BUFFERED='YES',
which also occurs if the FORT_BUFFERED runtime environment
variable is specified.

When this option is specified, the internal buffer is filled,
possibly by many record input statements (READ) or output
statements (WRITE), before it is read from disk, or written to
disk, by the Fortran runtime system. If a file is opened for
direct access, I/O buffering is ignored.

Intel® Fortran Compiler Classic and Intel® Fortran Compiler Developer Guide and Reference 1

381

Option Description

Using buffered reads and writes usually makes disk I/O more
efficient by handling larger blocks of data on disk less often.
However, if you request buffered writes, records not yet
written to disk may be lost in the event of a system failure.

The OPEN statement BUFFERED specifier applies to a specific
logical unit. In contrast, the assume [no]buffered_io option
and the FORT_BUFFERED environment variable apply to all
Fortran units.

assume buffered_stdout Tells the Fortran runtime system to accumulate data for the
standard output device in a buffer. When the buffer is full or
the user executes a FLUSH on OUTPUT_UNIT in intrinsic
module ISO_FORTRAN_ENV, the data is displayed on the
standard output unit.

Using buffered writes may be a more efficient in time and
space but use assume nobuffered_stdout if you want data
displayed immediately on the standard output device, like for
an input prompt.

assume [no]buffered_stdout does not affect and is not
affected by assume [no]buffered_io.

After compiling with this option, the default blocksize for
stdout is 8 KB.

assume byterecl Specifies that the units for the OPEN statement RECL specifier
(record length) value are in bytes for unformatted data files,
not longwords (four-byte units). For formatted files, the RECL
value is always in bytes.

If a file is open for unformatted data and assume byterecl is
specified, INQUIRE returns RECL in bytes; otherwise, it returns
RECL in longwords. An INQUIRE returns RECL in bytes if the
unit is not open.

assume cc_omp Enables conditional compilation as defined by the OpenMP
Fortran API. That is, when "!$space" appears in free-form
source or "c$spaces" appears in column 1 of fixed-form
source, the rest of the line is accepted as a Fortran line.

assume contiguous_assumed_shape Tells the compiler to assume contiguity for assumed-shape
dummy arguments. This may aid in optimization. However, if
you are mistaken about the contiguity of your data, it could
result in runtime failures.

assume contiguous_pointer Tells the compiler to assume contiguity for pointers. This may
aid in optimization. However, if you are mistaken about the
contiguity of your data, it could result in runtime failures.

assume dummy_aliases Tells the compiler that dummy (formal) arguments to
procedures share memory locations with other dummy
arguments (aliases) or with variables shared through use
association, host association, or common block use.

 1 Intel® Fortran Compiler Classic and Intel® Fortran Compiler Developer Guide and Reference

382

Option Description

Specify the option when you compile the called subprogram.
The program semantics involved with dummy aliasing do not
strictly obey Standard Fortran and they slow performance, so
you get better runtime performance if you do not use this
option.

However, if a program depends on dummy aliasing and you do
not specify this option, the runtime behavior of the program
will be unpredictable. In such programs, the results will
depend on the exact optimizations that are performed. In
some cases, normal results will occur, but in other cases,
results will differ because the values used in computations
involving the offending aliases will differ.

assume failed_images Tells the runtime system to check for failed images on the
current team when executing an image control statement that
does not have a STAT= specifier, or when a MOVE_ALLOC or
collective or atomic subroutine without a STAT argument is
executed.

A failed image check is made each time an image control
statement that has a STAT= specifier is executed, and when a
call to MOVE_ALLOC or a collective or atomic subroutine with a
STAT argument is executed.

assume fpe_summary Causes a summary of floating-point exceptions that occurred
during program execution to be displayed when a STOP or
ERROR STOP statement is encountered. Counts will be shown
for each exception. This is the behavior specified by the
Fortran 2003 standard.

Note that if there is no STOP or ERROR STOP statement, no
summary is displayed.

assume ieee_compares Tells the compiler to generate IEEE signaling comparison
operations for the binary floating-point comparison operators.

assume ieee_fpe_flags Tells the compiler to save floating-point exception and status
flags on routine entry and restore them on routine exit.

This option can slow runtime performance because it provides
extra code to save and restore the floating-point exception and
status flags (and the rounding mode) on entry to and exit from
every routine compiled with the option.

This option can be used to get the full Fortran Standard
behavior of intrinsic modules IEEE EXCEPTIONS, IEEE
ARITHMETIC, and IEEE FEATURES, which require that if a flag
is signaling on routine entry, the processor will set it to quiet
on entry and restore it to signaling on return. If a flag signals
while the routine is executing, it will not be set to quiet on
routine exit.

Options fpe and fpe-all can be used to set the initial state
for which floating-point exceptions will signal.

Intel® Fortran Compiler Classic and Intel® Fortran Compiler Developer Guide and Reference 1

383

Option Description

assume minus0 Tells the compiler to use Fortran 95 standard semantics for the
treatment of the IEEE* floating value -0.0 in the SIGN
intrinsic, which distinguishes the difference between -0.0 and
+0.0, and to write a value of -0.0 with a negative sign on
formatted output.

assume nan_compares Tells the compiler to generate code for floating-point
exceptions using an ieee_compare comparison code sequence
such that compares to a NaN get correct answers. Signaling
NaNs behave like quiet NaNs. Specifiying nonan_compares
tells the compiler that floating-point compares will not involve
NaN operands, which allows a faster code sequence to be
generated, but will give undefined behavior if an operand in a
floating-point comparison is a NaN.

assume old_boz Tells the compiler that the binary, octal, and hexadecimal
constant arguments in intrinsic functions INT, REAL, DBLE, and
CMPLX should be treated as signed integer constants.

assume noold_e0g0_format Tells the compiler to use Fortran 2018 standard format for real
numbers that are output using the G0.0, E0, and ES0 edit
descriptors.

assume noold_inquire_recl Tells the compiler to use Fortran 2018 semantics for RECL= on
an INQUIRE statement. If the unit is unconnected, the scalar-
int-variable of the RECL= specifier becomes defined with the
value -1; if the unit is connected for stream access, it becomes
defined with the value -2.

assume noold_ldout_format Tells the compiler to use Fortran 2003 standard semantics for
output of integer and real values in list-directed and namelist-
directed output.

Integers are written using an I0 format with a leading blank
for spacing.

Real and complex values are written using and E or F format
with a leading blank for spacing. The format used depends on
the magnitude of the value. Values that are zero are written
using an F format.

assume noold_ldout_zero For list-directed output of a floating-point zero, fractional
format is used instead of exponential output.

Early versions of the Fortran standard specified exponential
format should be used for list-directed output of a floating-
point zero value. Newer versions of the standard specify that
fractional format should be used.

assume old_logical_assign In the assignment statement L = N, where L is a logical
variable and N is a numeric value, N is converted to integer if
necessary, and L is assigned the bit value of the integer value
without conversion.

 1 Intel® Fortran Compiler Classic and Intel® Fortran Compiler Developer Guide and Reference

384

Option Description

In the assignment statement N = L, where N is a variable of
numeric type and L is a logical value, N is assigned the bit
value of the value of L without conversion.

assume old_logical_ldio Logical values are allowed for numeric items and numeric
values are allowed for logical items.

assume noold_maxminloc Tells the compiler that MAXLOC and MINLOC should return 0
when given an empty array as an argument or every element
of the mask is false. Compared to the default setting
(old_maxminloc), this behavior may slow performance
because of the extra code needed to check for an empty array
argument or for an all-false mask.

assume noold_unit_star Tells the compiler that READs or WRITEs to UNIT=* go to the
file to which UNIT=5 or 6 is connected.

assume noold_xor Prevents the compiler from defining .XOR. as an intrinsic
operator. This lets you use .XOR. as a user-defined operator.
This is a Fortran 2003 feature.

assume protect_allocates Memory allocation requests using the ALLOCATE statement are
protected with critical sections to avoid random timing
problems in a multi-threaded environment in some
distributions and configurations.

assume noprotect_constants Tells the compiler to pass a copy of a constant actual
argument. This copy can be modified by the called routine,
even though the Fortran standard prohibits such modification.
The calling routine does not see any modification to the
constant.

assume protect_parens Tells the optimizer to honor parentheses in REAL and COMPLEX
expression evaluations by not reassociating operations. For
example, (A+B)+C would not be evaluated as A+(B+C).

If assume noprotect_parens is specified, (A+B)+C would be
treated the same as A+B+C and could be evaluated as A+(B
+C) if it produced faster executing code.

Such reassociation could produce different results depending
on the sizes and precision of the arguments.

For example, in (A+B)+C, if B and C had opposite signs and
were very large in magnitude compared to A, A+B could result
in the value as B; adding C would result in 0.0. With
reassociation, B+C would be 0.0; adding A would result in a
non-zero value.

assume norealloc_lhs The compiler uses the old Fortran 2003 rules when interpreting
assignment statements. The left-hand side is assumed to be
allocated with the correct shape to hold the right-hand side. If
it is not, incorrect behavior will occur. The option
nostandard-realloc-lhs has the same effect as
assume norealloc_lhs.

Intel® Fortran Compiler Classic and Intel® Fortran Compiler Developer Guide and Reference 1

385

Option Description

assume recursion Tells the compiler to compile procedures that are declared
without the RECURSIVE or NON_RECURSIVE keyword as
recursive procedures. In Fortran 2018, these procedures are
compiled for recursion by default; in previous standards they
were compiled as non-recursive procedures. The current
default behavior is non-recursive. This will change in a future
release.

assume nosource_include Tells the compiler to search the default directory for module
files specified by a USE statement or source files specified by
an INCLUDE statement. This option affects fpp preprocessor
behavior and the USE statement.

assume nostd_intent_in Tells the compiler to assume that dummy arguments with the
INTENT(IN) attribute in a called procedure may be modified
across a call. This is not in accordance with the Fortran
standard.

If you specify option standard_semantics, it sets option
assume std_intent_in.

assume nostd_minus0_rounding Tells the compiler to use pre-Fortran 2008 standard semantics
for the treatment of IEEE* floating values that are negative,
non-zero, and when rounded for display are zero. The value
should be printed without a leading minus sign.

For example, the floating value -0.00000001 when rounded in
F5.1 format will be displayed as 0.0. Use
assume std_minus0_rounding to use Fortran 2008 standard
semantics to display this value as -0.0 when rounded in F5.1
format.

assume [no]std_minus0_rounding does not affect and is
not affected by assume [no]minus0. The former controls
printing of a minus sign for non-zero numbers while the latter
controls printing of actual signed zero values.

assume std_mod_proc_name Tells the compiler to revise the names of module procedures
so they do not conflict with user external symbol names. For
example, procedure proc in module m would be named
m_MP_proc. The Fortran 2003 Standard requires that module
procedure names not conflict with other external symbols.

By default, procedure proc in module m would be named
m_mp_proc, which could conflict with a user-defined external
name m_mp_proc.

assume nostd_value Tells the compiler to use pre-Fortran 2003 standard semantics
for the VALUE attribute so that the value of the actual
argument is passed to the called procedure, not the address of
the actual argument nor the address of a copy of the actual
argument.

 1 Intel® Fortran Compiler Classic and Intel® Fortran Compiler Developer Guide and Reference

386

Option Description

assume underscore Tells the compiler to append an underscore character to
external user-defined names: the main program name, named
common blocks, BLOCK DATA blocks, global data names in
MODULEs, and names implicitly or explicitly declared
EXTERNAL. The name of a blank (unnamed) common block
remains _BLNK__, and Fortran intrinsic names are not
affected.

assume 2underscores
(Linux)

Tells the compiler to append two underscore characters to
external user-defined names that contain an embedded
underscore: the main program name, named common blocks,
BLOCK DATA blocks, global data names in MODULEs, and
names implicitly or explicitly declared EXTERNAL. The name of
a blank (unnamed) common block remains _BLNK__, and
Fortran intrinsic names are not affected.

This option does not affect external names that do not contain
an embedded underscore. By default, the compiler only
appends one underscore to those names. For example, if you
specify assume 2underscores for external names
my_program and myprogram, my_program becomes
my_program__, but myprogram becomes myprogram_.

assume writeable-strings Tells the compiler to put character constants into non-read-
only memory.

IDE Equivalent

Visual Studio

Visual Studio: Code Generation > Enable Recursive Routines (/assume:[no]recursion)

Compatibility > Treat Backslash as Normal Character in Strings (/assume:[no]bscc)

Data > Assume Dummy Arguments Share Memory Locations (/assume:dummy_aliases)

Data > Constant Actual Arguments Can Be Changed (/assume:noprotect_constants)

Data > Use Bytes as RECL=Unit for Unformatted Files (/assume:byterecl)

External Procedures > Append Underscore to External Names (/assume:underscore)

Floating Point > Enable IEEE Minus Zero Support (/assume:minus0)

Optimization > I/O Buffering (/assume:buffered_io)

Preprocessor > Default Include and Use Path (/assume:nosource_include)

Preprocessor > OpenMP Conditional Compilation (/assume:nocc_omp)

Alternate Options

assume nobscc Linux: -nbs
Windows: /nbs

assume dummy_aliases Linux: -common-args
Windows: /Qcommon-args

Intel® Fortran Compiler Classic and Intel® Fortran Compiler Developer Guide and Reference 1

387

assume protect_parens Linux: -fprotect-parens
Windows: /Qprotect-parens

assume realloc_lhs Linux: -standard-realloc-lhs
Windows: /standard-realloc-lhs

assume recursion Linux: -recursive
Windows: /recursive

See Also
fp-model, fp compiler option
fpe compiler option
fpe-all compiler option
standard-semantics compiler option
standard-realloc-lhs compiler option
fpscomp compiler option, setting logicals
Rules for Unformatted Sequential READ Statements

ccdefault
Specifies the type of carriage control used when a file
is displayed at a terminal screen.

Syntax

Linux OS:

-ccdefault keyword
Windows OS:

/ccdefault:keyword

Arguments

keyword Specifies the carriage-control setting to use. Possible values are:

none Tells the compiler to use no carriage control processing.

default Tells the compiler to use the default carriage-control setting.

fortran Tells the compiler to use normal Fortran interpretation of the first character.
For example, the character 0 causes output of a blank line before a record.

list Tells the compiler to output one line feed between records.

Default

ccdefault default The compiler uses the default carriage control setting.

Description

This option specifies the type of carriage control used when a file is displayed at a terminal screen (units 6
and *). It provides the same functionality as using the CARRIAGECONTROL specifier in an OPEN statement.

 1 Intel® Fortran Compiler Classic and Intel® Fortran Compiler Developer Guide and Reference

388

The default carriage-control setting can be affected by the vms option. If option vms is specified with
ccdefault default, carriage control defaults to normal Fortran interpretation (ccdefault fortran) if the
file is formatted and the unit is connected to a terminal. If option novms (the default) is specified with
ccdefault default, carriage control defaults to list (ccdefault list).

IDE Equivalent

Windows

Visual Studio: Run-time > Default Output Carriage Control

Alternate Options

None

check
Checks for certain conditions at runtime.

Syntax

Linux OS:

-check [keyword[, keyword...]]
-nocheck
Windows OS:

/check[:keyword[, keyword...]]
/nocheck

Arguments

keyword Specifies the conditions to check. Possible values are:

none Disables all check options.

[no]arg_temp_created Determines whether checking occurs for actual arguments
copied into temporary storage before routine calls.

[no]assume Determines whether checking occurs to test that the scalar-
logical-expression in the ASSUME directive is true, or that the
addresses in the ASSUME_ALIGNED directive are aligned on the
specified byte boundaries.

[no]bounds Determines whether checking occurs for array subscript and
character substring expressions.

[no]contiguous Determines whether the compiler checks pointer contiguity at
pointer-assignment time.

[no]format Determines whether checking occurs for the data type of an
item being formatted for output.

[no]output_conversion Determines whether checking occurs for the fit of data items
within a designated format descriptor field.

[no]pointers Determines whether checking occurs for certain disassociated
or uninitialized pointers or unallocated allocatable objects.

Intel® Fortran Compiler Classic and Intel® Fortran Compiler Developer Guide and Reference 1

389

[no]shape Determines whether array conformance checking is performed.

[no]stack Determines whether checking occurs on the stack frame.

[no]teams Determines whether the runtime system diagnoses non-
standard coarray team usage.

[no]udio_iostat Determines whether conformance checking occurs when user-
defined derived type input/output routines are executed.

[no]uninit Determines whether checking occurs for uninitialized variables.
For ifx: This setting is only available for Linux.

all Enables all check options.

Caution
Files compiled with option check all should also be
linked with this same option, or the link step may fail.

Default

nocheck No checking is performed for runtime failures. Note that if option vms is specified, the defaults are
check format and check output_conversion.

Description

This option checks for certain conditions at runtime.

Option Description

check none Disables all check options (same as nocheck).

check arg_temp_created Enables runtime checking on whether actual arguments are
copied into temporary storage before routine calls. If a copy is
made at runtime, an informative message is displayed.

check assume Enables runtime checking on whether the scalar-logical-
expression in the ASSUME directive is true and that the
addresses in the ASSUME_ALIGNED directive are aligned on
the specified byte boundaries. If the test is .FALSE., a runtime
error is reported and the execution terminates.

check bounds Enables compile-time and runtime checking for array subscript
and character substring expressions. An error is reported if the
expression is outside the dimension of the array or the length
of the string.

For array bounds, each individual dimension is checked. For
arrays that are dummy arguments, only the lower bound is
checked for a dimension whose upper bound is specified as *
or where the upper and lower bounds are both 1.

For some intrinsics that specify a DIM= dimension argument,
such as LBOUND, an error is reported if the specified
dimension is outside the declared rank of the array being
operated upon.

 1 Intel® Fortran Compiler Classic and Intel® Fortran Compiler Developer Guide and Reference

390

Option Description

Once the program is debugged, omit this option to reduce
executable program size and slightly improve runtime
performance.

It is recommended that you do bounds checking on
unoptimized code. If you use option check bounds on
optimized code, it may produce misleading messages because
registers (not memory locations) are used for bounds values.

check contiguous Tells the compiler to check pointer contiguity at pointer-
assignment time. This will help prevent programming errors
such as assigning contiguous pointers to non-contiguous
objects.

check format Issues the runtime FORVARMIS fatal error when the data type
of an item being formatted for output does not match the
format descriptor being used (for example, a REAL*4 item
formatted with an I edit descriptor).

With check noformat, the data item is formatted using the
specified descriptor unless the length of the item cannot
accommodate the descriptor (for example, it is still an error to
pass an INTEGER*2 item to an E edit descriptor).

check output_conversion Issues the runtime OUTCONERR continuable error message
when a data item is too large to fit in a designated format
descriptor field without loss of significant digits. Format
truncation occurs, the field is filled with asterisks (*), and
execution continues.

check pointers Enables runtime checking for disassociated or uninitialized
Fortran pointers, unallocated allocatable objects, and integer
pointers that are uninitialized.

check shape Enables compile-time and runtime array conformance checking
in contexts where it is required by the standard. These include
the right-hand and left-hand side of intrinsic and elemental
defined assignment, the operands of intrinsic and elemental
defined binary operations, two or more array arguments to
ELEMENTAL procedures, the ARRAY= and MASK= arguments
to intrinsic procedures as required, and the arguments to the
intrinsic module procedures IEEE_SET_FLAG and
IEEE_SET_HALTING_MODE.

In an ALLOCATE statement with array bounds specified for an
allocate-object and with SOURCE=source specified, the
allocate-object must conform with source.

Note that you can specify a setting in the warn option to
choose whether array conformance violations are diagnosed
with errors or warnings.

check stack Enables checking on the stack frame. The stack is checked for
buffer overruns and buffer underruns. This option also
enforces local variables initialization and stack pointer
verification.

Intel® Fortran Compiler Classic and Intel® Fortran Compiler Developer Guide and Reference 1

391

Option Description

This option disables optimization and overrides any
optimization level set by option O.

check teams Enables checking for non-standard coarray team usage. For
example, ifort permits the TEAM argument to NUM_IMAGES to
be a type TEAM_TYPE variable which describes a team that is
not the current or an ancestor of the current team. Similarly,
ifort permits the TEAM_NUMBER specifier in an image selector
to specify a value of -1 indicating the initial team. Such
behavior is not permitted by the standard.

When check teams is specified, a message is generated each
time a non-standard coarray extension is detected.

check uninit ifort:

Linux and Windows

Enables runtime checking for uninitialized variables. If a
variable is read before it is written, a runtime error routine will
be called. Only local scalar variables of intrinsic type INTEGER,
REAL, COMPLEX, and LOGICAL without the SAVE attribute are
checked.

To detect uninitialized arrays or array elements, see option
[Q]init or see the article titled Detection of Uninitialized
Floating-point Variables in Intel® Fortran.

ifx:

Linux

Uses the LLVM Memory Sanitizer (MSAN) to enable run-time
checking on uninitialized stack- or heap-allocated variables. If
such a variable is read before it is written at runtime, a MSAN
message that details the call stack of the read instruction and
the call stack of the allocation instruction of the variable will be
issued. The program terminates right after a MSAN message is
issued.

To get source information about the call stacks in a MSAN
message, do the following:

1. Compile your program with option -g1 or above. For
example:

ifx -check uninit -g1 myprog.f90 -o myprog.exe
2. Run your program with the MSAN_SYMBOLIZER_PATH

environment variable set to the executable llvm-
symbolizer in your compiler installation. For example:

MSAN_SYMBOLIZER_PATH=${ONEAPI_ROOT}/compiler/latest/
linux/bin-llvm/llvm-symbolizer myprog.exe
If you specify option -check uninit, you cannot also specify
option -static.

 1 Intel® Fortran Compiler Classic and Intel® Fortran Compiler Developer Guide and Reference

392

https://www.intel.com/content/www/us/en/developer/articles/technical/detection-of-uninitialized-floating-point-variables-in-intel-fortran.html?wapkw=detection%20of%20uninitialized%20floating-point%20variables%20in%20intel%20fortran%20
https://www.intel.com/content/www/us/en/developer/articles/technical/detection-of-uninitialized-floating-point-variables-in-intel-fortran.html?wapkw=detection%20of%20uninitialized%20floating-point%20variables%20in%20intel%20fortran%20

Option Description

To ensure that the required runtime libraries are linked and
correctly initialized, specify option -check uninit in the link
command if any part of the object file is compiled with this
option.

NOTE
For MSAN to be accurate, your whole program, including the
library code used by the program, needs to be compiled with
option -check uninit (or its equivalent if it is not a Fortran
source file, such as option -fsanitize=memory for C/C++);
otherwise, you may get false positive reports on uninitialized
variables.

Since every Fortran program links by default with the
static Fortran runtime library and the runtime library’s
dependencies, ifx provides a set of those memory-
sanitized static libraries in the compiler installation and
uses them when you link your Fortran program with option
-check uninit.

No memory-sanitized dynamic Fortran runtime library is
provided in the installation.

Consequently, if you link your program with option
-check uninit and specify option -shared-intel to
force the use of the dynamic Fortran runtime library, your
final executable will be linked with the regular, unsanitized
dynamic Fortran runtime library. You may then see false
positive MSAN messages when you run this executable.

Therefore, for option -check uninit to be effective, do
not link your program with option -shared-intel.

For more information on the Memory Sanitizer, see:
https://clang.llvm.org/docs/MemorySanitizer.html.

Caution
Files compiled with option check uninit should also be linked
with this same option, or the link step may fail.

NOTE
Option -check uninit only applies to host compilation. When
offloading is enabled, it does not impact device-specific
compilation. Offloading can only be enabled when using ifx.

Windows

This setting is not currently available on Windows because the
Memory Sanitizer is not supported on Windows.

Intel® Fortran Compiler Classic and Intel® Fortran Compiler Developer Guide and Reference 1

393

https://clang.llvm.org/docs/MemorySanitizer.html

Option Description

check all Enables all check options. This is the same as specifying check
with no keyword.

This option disables optimization and overrides any
optimization level set by option O.

To get more detailed location information about where an error occurred, use option traceback.

IDE Equivalent

Visual Studio

Visual Studio: Run-time > Runtime Error Checking (/nocheck, /check:all)

Run-time > Check Array and String Bounds (/check:bounds)

Run-time > Check Edit Descriptor Data Type (/check:format)

Run-time > Check Edit Descriptor Data Size (/check:output_conversion)

Run-time > Check For Actual Arguments Using Temporary Storage (/check:arg_temp_created)

Run-time > Check Array Conformance (/check:shape)

Run-time > Check For Null Pointers and Allocatable Array References (/check:pointers)

Alternate Options

check none Linux: -nocheck
Windows: /nocheck

check bounds Linux: -CB
Windows: /CB

check shape Linux: -CS
Windows: /CS

check uninit Linux: -CU
Windows: None

check all Linux: -check, -C
Windows: /check, /C

See Also
traceback compiler option
init, Qinit compiler option
warn compiler option
fsanitize compiler option
ASSUME directive
ASSUME_ALIGNED directive

extend-source
Specifies the length of the statement field in a fixed-
form source file.

 1 Intel® Fortran Compiler Classic and Intel® Fortran Compiler Developer Guide and Reference

394

Syntax

Linux OS:

-extend-source [size]
-noextend-source

Windows OS:

/extend-source[:size]
/noextend-source

Arguments

size Is the length of the statement field in a fixed-form source file. Possible values are: 72, 80, or 132.

Default

72 If you do not specify this option or you specify noextend-source, the statement field ends at
column 72.

132 If you specify extend-source without size, the statement field ends at column 132.

Description

This option specifies the size (column number) of the statement field of a source line in a fixed-form source
file. This option is valid only for fixed-form files; it is ignored for free-form files.

When size is specified, it is the last column parsed as part of the statement field. Any columns after that are
treated as comments.

If you do not specify size, it is the same as specifying extend-source 132.

Option Description

extend-source 72 Specifies that the statement field ends at column 72.

extend-source 80 Specifies that the statement field ends at column 80.

extend-source 132 Specifies that the statement field ends at column 132.

IDE Equivalent

Windows

Visual Studio: Language > Fixed Form Line Length

Alternate Options

extend-source 72 Linux: -72
Windows: /4L72

extend-source 80 Linux: -80
Windows: /4L80

extend-source 132 Linux: -132
Windows: /4L132

Intel® Fortran Compiler Classic and Intel® Fortran Compiler Developer Guide and Reference 1

395

fixed
Specifies source files are in fixed format.

Syntax

Linux OS:

-fixed
-nofixed
Windows OS:

/fixed
/nofixed

Arguments

None

Default

OFF The source file format is determined from the file extension.

Description

This option specifies source files are in fixed format. If this option is not specified, format is determined as
follows:

• Files with an extension of .f90, .F90, or .i90 are free-format source files.
• Files with an extension of .f, .for, .FOR, .ftn, .FTN, .fpp, .FPP, or .i are fixed-format files.

Note that on Linux* systems, file names and file extensions are case sensitive.

IDE Equivalent

Windows

Visual Studio: Language > Source File Format (/free, /fixed)

Alternate Options

Linux: -FI
Windows: /nofree, /FI, /4Nf

free
Specifies source files are in free format.

Syntax

Linux OS:

-free
-nofree
Windows OS:

/free
/nofree

 1 Intel® Fortran Compiler Classic and Intel® Fortran Compiler Developer Guide and Reference

396

Arguments

None

Default

OFF The source file format is determined from the file extension.

Description

This option specifies source files are in free format. If this option is not specified, format is determined as
follows:

• Files with an extension of .f90, .F90, or .i90 are free-format source files.
• Files with an extension of .f, .for, .FOR, .ftn, or .i are fixed-format files.

IDE Equivalent

Windows

Visual Studio: Language > Source File Format (/free, /fixed)

Alternate Options

Linux: -FR
Windows: /nofixed, /FR, /4Yf

See Also
fixed compiler option

fsanitize
Enables the specified code sanitizer to detect certain
issues at runtime. This feature is only available for ifx.

Syntax

Linux OS:

-fsanitize=sanitizer
Windows OS:

/fsanitize=sanitizer

Arguments

sanitizer Specifies the code sanitizer to use. You can only specify one sanitizer.
Possible values are:

address Detects buffer overflows/underflows (Linux
and Windows) and memory leaks (Linux
only).

memory (Linux only) Detects uninitialized variables. The memory
sanitizer requires all code (library code that
is linked, either dynamically or statically) to
be sanitized, or you may encounter false
positives either in user code or in library
code.

Intel® Fortran Compiler Classic and Intel® Fortran Compiler Developer Guide and Reference 1

397

This setting is the same as specifying option
-check uninit.

thread (Linux only) Detects data races in a threaded program.

Default

OFF The sanitizers follow default heuristics at runtime.

Description

This option enables the specified code sanitizer to detect certain issues at runtime.

Option fsanitize is especially useful when you want to make sure that your program is free of the various
issues detected by the sanitizers, or when your program behaves erratically, and you cannot pinpoint the
issue by inspecting the source code or by using a debugger.

When running a thread-sanitized OpenMP program, please set the environment variable
"OMP_TOOL_LIBRARIES='libarcher.so'" to get more accurate data race detections.

You should not specify fsanitize when building production code.

To ensure that the required runtime libraries are linked and correctly initialized, specify option -fsanitize in
the link command if any part of the object file is compiled with this option.

NOTE
This option only applies to host compilation. When offloading is enabled, it does not impact
device-specific compilation.

IDE Equivalent

None

Alternate Options

None

iface
Specifies the default calling convention and argument-
passing convention for an application.

Syntax

Linux OS:

None
Windows OS:

/iface:keyword

Arguments

keyword Specifies the calling convention or the argument-passing convention. Possible values are:

default Tells the compiler to use the default calling conventions.

cref Tells the compiler to use calling conventions C, REFERENCE.

 1 Intel® Fortran Compiler Classic and Intel® Fortran Compiler Developer Guide and Reference

398

cvf Tells the compiler to use calling conventions compatible with
Compaq Visual Fortran*. This value is only available on Windows*
systems.

[no]mixed_str_len_arg Determines the argument-passing convention for hidden-length
character arguments.

stdcall Tells the compiler to use calling convention STDCALL.

stdref Tells the compiler to use calling conventions STDCALL,
REFERENCE.

Default

/iface:default The default calling convention is used.

Description

This option specifies the default calling convention and argument-passing convention for an application.

The aspects of calling and argument passing controlled by this option are as follows:

• The calling mechanism (C or STDCALL) is as follows:

On IA-32 architecture: These mechanisms differ in how the stack register is adjusted when a procedure
call returns.

On Intel® 64 architecture: The only calling mechanism available is C; requests for the STDCALL
mechanism are ignored.

• The argument passing mechanism (by value or by reference)
• Character-length argument passing (at the end of the argument list or after the argument address)
• The case of external names (uppercase or lowercase)
• The name decoration (prefix and suffix)

You can also use the ATTRIBUTES compiler directive to modify these conventions on an individual basis. Note
that the effects of the ATTRIBUTES directive do not always match that of the iface option of the same name.

Option Description

/iface:default Tells the compiler to use the default calling conventions. These
conventions are as follows:

• The calling mechanism: C
• The argument passing mechanism: by reference
• Character-length argument passing: at end of argument list
• The external name case: uppercase
• The name decoration: Underscore prefix on IA-32 architecture,

no prefix on Intel® 64 architecture; no suffix

/iface:cref Tells the compiler to use the same conventions as /iface:default
except that external names are lowercase.

/iface:cvf Tells the compiler to use calling conventions compatible with
Compaq Visual Fortran* and Microsoft Fortran PowerStation. This
option is only available on Windows* systems. These conventions
are as follows:

• The calling mechanism: STDCALL on Windows* systems using
IA-32 architecture

Intel® Fortran Compiler Classic and Intel® Fortran Compiler Developer Guide and Reference 1

399

Option Description

• The argument passing mechanism: by reference
• Character-length argument passing: following the argument

address
• The external name case: uppercase
• The name decoration:

ifort: Underscore prefix on IA-32 architecture, no prefix on Intel®
64 architecture. On Windows* systems using IA-32 architecture,
@n suffix where n is the number of bytes to be removed from
the stack on exit from the procedure. On other systems: no
suffix.

ifx: no prefix; no suffix

/iface:mixed_str_len_arg Specifies argument-passing conventions for hidden-length character
arguments. This option tells the compiler that the hidden length
passed for a character argument is to be placed immediately after
its corresponding character argument in the argument list.

This is the method used by Compaq Visual Fortran*. When porting
mixed-language programs that pass character arguments, either
this option must be specified correctly or the order of hidden length
arguments must be changed in the source code. This option can be
used in addition to other /iface options.

/iface:stdcall Tells the compiler to use the following conventions:

• The calling mechanism: STDCALL
• The argument passing mechanism: by value
• Character-length argument passing: at the end of the argument

list
• The external name case: uppercase
• The name decoration:

ifort: Underscore prefix on IA-32 architecture, no prefix on Intel®
64 architecture. On Windows* systems using IA-32 architecture,
@n suffix where n is the number of bytes to be removed from
the stack on exit from the procedure. No suffix on other systems.

ifx: no prefix; no suffix

/iface:stdref Tells the compiler to use the same conventions as /iface:stdcall
except that argument passing is by reference.

Caution
On Windows systems, if you specify option /iface:cref, it overrides the default for external
names and causes them to be lowercase. It is as if you specified "!dir$ attributes c,
reference" for the external name.

If you specify option /iface:cref and want external names to be uppercase, you must explicitly
specify option /names:uppercase.

 1 Intel® Fortran Compiler Classic and Intel® Fortran Compiler Developer Guide and Reference

400

Caution
On systems using IA-32 architecture, there must be agreement between the calling program
and the called procedure as to which calling mechanism (C or STDCALL) is used, or
unpredictable errors may occur. If you change the default mechanism to STDCALL, you must
use the ATTRIBUTES DEFAULT directive to reset the calling conventions for any procedure
that is:

• Specified as a FINAL procedure for a derived type
• Specified as a USEROPEN procedure in an OPEN statement
• Referenced in a variable format expression
• Specified as a comparison routine passed to the QSORT library routine from module IFPORT
• Used as a dialog callback procedure with the IFLOGM module
• Called from other contexts or languages that assume the C calling convention

Note that Visual Studio projects that are imported using the Extract Compaq Visual Fortran project
items wizard have /iface:cvf applied automatically; this establishes STDCALL as the default
convention.

IDE Equivalent

Visual Studio

Visual Studio: External Procedures > Calling Convention
(/iface:{cref|stdref|stdcall|cvf|default})

External Procedures > String Length Argument Passing (/iface:[no]mixed_str_len_arg)

Alternate Options

/iface:cvf Linux: None

Windows: /Gm

/iface:mixed_str_len_arg Linux: -mixed-str-len-arg
Windows: None

/iface:nomixed_str_len_arg Linux: -nomixed-str-len-arg
Windows: None

/iface:stdcall Linux: None

Windows: /Gz

See Also
ATTRIBUTES Directive

names
Specifies how source code identifiers and external
names are interpreted.

Syntax

Linux OS:

-names keyword
Windows OS:

/names:keyword

Intel® Fortran Compiler Classic and Intel® Fortran Compiler Developer Guide and Reference 1

401

Arguments

keyword Specifies how to interpret the identifiers and external names in source code. Possible values
are:

lowercase Causes the compiler to ignore case differences in identifiers and to
convert external names to lowercase.

uppercase Causes the compiler to ignore case differences in identifiers and to
convert external names to uppercase.

as_is Causes the compiler to distinguish case differences in identifiers and to
preserve the case of external names.

Default

lowercase This is the default on Linux* systems. The compiler ignores case differences in
identifiers and converts external names to lowercase.

uppercase This is the default on Windows* systems. The compiler ignores case differences in
identifiers and converts external names to uppercase.

Description

This option specifies how source code identifiers and external names are interpreted. It can be useful in
mixed-language programming.

This naming convention applies whether names are being defined or referenced.

You can use the ALIAS directive to specify an alternate external name to be used when referring to external
subprograms.

Caution
On Windows systems, if you specify option /iface:cref, it overrides the default for external
names and causes them to be lowercase. It is as if you specified "!dir$ attributes c,
reference" for the external name.

If you specify option /iface:cref and want external names to be uppercase, you must explicitly
specify option /names:uppercase.

IDE Equivalent

Windows

Visual Studio: External Procedures > Name Case Interpretation

Alternate Options

None

See Also
iface compiler option
ALIAS Directive

pad-source, Qpad-source
Specifies padding for fixed-form source records.

 1 Intel® Fortran Compiler Classic and Intel® Fortran Compiler Developer Guide and Reference

402

Syntax

Linux OS:

-pad-source
-nopad-source
Windows OS:

/pad-source
/nopad-source
/Qpad-source
/Qpad-source-

Arguments

None

Default

-nopad-source
or /Qpad-source-

Fixed-form source records are not padded.

Description

This option specifies padding for fixed-form source records. It tells the compiler that fixed-form source lines
shorter than the statement field width are to be padded with spaces to the end of the statement field. This
affects the interpretation of character and Hollerith literals that are continued across source records.

The default value setting causes a warning message to be displayed if a character or Hollerith literal that
ends before the statement field ends is continued onto the next source record. To suppress this warning
message, specify setting nousage for option warn.

Specifying [Q]pad-source can prevent warning messages associated with setting usage for option warn.

IDE Equivalent

Windows

Visual Studio: Language > Pad Fixed Form Source Lines

Alternate Options

None

See Also
warn compiler option

stand
Tells the compiler to issue compile-time messages for
nonstandard language elements.

Syntax

Linux OS:

-stand [keyword]
-nostand

Intel® Fortran Compiler Classic and Intel® Fortran Compiler Developer Guide and Reference 1

403

Windows OS:

/stand[:keyword]
/nostand

Arguments

keyword Specifies the language to use as the standard. Possible values are:

none Issues no messages for nonstandard language elements.

f90 Issues messages for language elements that are not standard in Fortran 90.

f95 Issues messages for language elements that are not standard in Fortran 95.

f03 or
f2003

Issues messages for language elements that are not standard in Fortran 2003.

f08 or
f2008

Issues messages for language elements that are not standard in Fortran 2008.

f18 or
f2018

Issues messages for language elements that are not standard in Fortran 2018.

f23 or
f2023

Issues messages for language elements that are not standard in Fortran 2023.

Default

nostand The compiler issues no messages for nonstandard language elements.

Description

This option tells the compiler to issue compile-time messages for nonstandard language elements.

If you do not specify a keyword for stand, it is the same as specifying stand f18.

Option Description

stand none Tells the compiler to issue no messages for nonstandard language elements. This is
the same as specifying nostand.

stand f90 Tells the compiler to issue messages for language elements that are not standard in
Fortran 90.

stand f95 Tells the compiler to issue messages for language elements that are not standard in
Fortran 95.

stand f03 Tells the compiler to issue messages for language elements that are not standard in
Fortran 2003.

stand f08 Tells the compiler to issue messages for language elements that are not standard in
Fortran 2008.

stand f18 Tells the compiler to issue messages for language elements that are not standard in
Fortran 2018. This option is set if you specify warn stderrors.

stand f23 Tells the compiler to issue messages for language elements that are not standard in
Fortran 2023.

 1 Intel® Fortran Compiler Classic and Intel® Fortran Compiler Developer Guide and Reference

404

NOTE
When you specify this option, things that are not supported in the Fortran standard at the
specified standard level are diagnosed with warnings - this includes compiler directives
recognized by ifort.

These standard compliance warnings can be ignored as they are informational only and do not affect
compilation.

IDE Equivalent

Visual Studio

Visual Studio: Diagnostics > Warn For Nonstandard Fortran

Alternate Options

stand none Linux: -nostand
Windows: /nostand, /4Ns

stand f90 Linux: -std90
Windows: /stand:f90, /4Ys

stand f95 Linux: -std95
Windows: /stand:f95

stand f03 Linux: -stand f2003, -std03
Windows: /stand:f03, /stand:f2003

stand f08 Linux: -stand f2008, -std08
Windows: /stand:f08, /stand:f2008

stand f18 Linux: -stand f2018, -std18, -stand, -std
Windows: /stand, /stand:f18, /stand:f2018

stand f23 Linux: -stand f2023, -std23
Windows: /stand:f23, /stand:f2023

See Also
warn stderrors compiler option

standard-realloc-lhs
Determines whether the compiler uses the current
Fortran Standard rules or the old Fortran 2003 rules
when interpreting assignment statements.

Syntax

Linux OS:

-standard-realloc-lhs
-nostandard-realloc-lhs
Windows OS:

/standard-realloc-lhs

Intel® Fortran Compiler Classic and Intel® Fortran Compiler Developer Guide and Reference 1

405

/nostandard-realloc-lhs

Arguments

None

Default

standard-realloc-lhs The compiler uses the current Fortran Standard rules when interpreting
assignment statements.

Description

This option determines whether the compiler uses the current Fortran Standard rules or the old Fortran 2003
rules when interpreting assignment statements.

Option standard-realloc-lhs (the default), tells the compiler that when the left-hand side of an
assignment is an allocatable object, it should be reallocated to the shape of the right-hand side of the
assignment before the assignment occurs. This is the current Fortran Standard definition. This feature may
cause extra overhead at runtime. This option has the same effect as option assume realloc_lhs.

If you specify nostandard-realloc-lhs, the compiler uses the old Fortran 2003 rules when interpreting
assignment statements. The left-hand side is assumed to be allocated with the correct shape to hold the
right-hand side. If it is not, incorrect behavior will occur. This option has the same effect as option
assume norealloc_lhs.

IDE Equivalent

None

Alternate Options

None

standard-semantics
Determines whether the current Fortran Standard
behavior of the compiler is fully implemented.

Syntax

Linux OS:

-standard-semantics
Windows OS:

/standard-semantics

Arguments

None

Default

OFF The compiler implements most but not all of the current Fortran Standard behavior.

Description

This option determines whether the current Fortran Standard behavior of the compiler is fully implemented.

If you specify option standard-semantics, it enables all of the options that implement the current Fortran
Standard behavior of the compiler, which is Fortran 2018 features.

 1 Intel® Fortran Compiler Classic and Intel® Fortran Compiler Developer Guide and Reference

406

Option standard-semantics enables option fpscomp logicals and the following settings for option
assume: byterecl, failed_images, fpe_summary, ieee_compares, ieee_fpe_flags (if the fp-model option
setting is strict or precise), minus0, nan_compares, noold_inquire_recl, noold_ldout_format,
noold_ldout_zero, noold_maxminloc, noold_unit_star, noold_xor, protect_parens, realloc_lhs, recursion,
std_intent_in, std_minus0_rounding, std_mod_proc_name, and std_value.

Note that realloc_lhs, std_minus0_rounding, and std_value are default settings for option assume.

If you specify option standard-semantics and also explicitly specify a different setting for an affected
assume option, the value you specify takes effect. It overrides the settings enabled by option
standard-semantics.

IDE Equivalent

Windows

Visual Studio: Language > Enable F2018 Semantics

Alternate Options

None

See Also
assume compiler option
stand compiler option

syntax-only
Tells the compiler to check only for correct syntax.

Syntax

Linux OS:

-syntax-only
Windows OS:

/syntax-only

Arguments

None

Default

OFF Normal compilation is performed.

Description

This option tells the compiler to check only for correct syntax. It lets you do a quick syntax check of your
source file.

Compilation stops after the source file has been parsed. No code is generated, no object file is produced, and
some error checking done by the optimizer is bypassed.

This option also generates all appropriate module files for each module found in the source. If Fortran
preprocessing is requested, the preprocessed source file is also created.

Warnings and messages appear on stderr.

IDE Equivalent

None

Intel® Fortran Compiler Classic and Intel® Fortran Compiler Developer Guide and Reference 1

407

Alternate Options

Linux: -y, -fsyntax-only, -syntax (this is a deprecated option)

Windows: /Zs

wrap-margin
Provides a way to disable the right margin wrapping
that occurs in Fortran list-directed output.

Syntax

Linux OS:

-wrap-margin
-no-wrap-margin
Windows OS:

/wrap-margin
/wrap-margin-

Arguments

None

Default

wrap-margin The right margin wraps at column 80 if the record length is greater than 80
characters.

Description

This option provides a way to disable the right margin wrapping that occurs in Fortran list-directed output. By
default, when the record being written becomes longer than 80 characters, the record is wrapped to a new
record at what is called the "right margin".

Specify -no-wrap-margin (Linux*) or /wrap-margin- (Windows*) to disable this behavior.

IDE Equivalent

None

Alternate Options

None

Data Options
This section contains descriptions for compiler options that pertain to the treatment of data. They are listed
in alphabetical order.

align
Tells the compiler how to align certain data items.

Syntax

Linux OS:

-align [keyword[, keyword...]]

 1 Intel® Fortran Compiler Classic and Intel® Fortran Compiler Developer Guide and Reference

408

-noalign
Windows OS:

/align[:keyword[, keyword...]]
/noalign

Arguments

keyword Specifies the data items to align. Possible values are:

none Prevents padding bytes anywhere in common blocks and structures.

arraynbyte Specifies a starting boundary for arrays.

[no]commons Affects alignment of common block entities.

[no]dcommons Affects alignment of common block entities.

[no]qcommons Affects alignment of common block entities.

[no]zcommons Affects alignment of common block entities.

[no]records Affects alignment of derived-type components and fields of record
structures.

recnbyte Specifies a size boundary for derived-type components and fields of
record structures.

[no]sequence Affects alignment of sequenced derived-type components.

all Adds padding bytes whenever possible to data items in common blocks
and structures.

Default

nocommons Adds no padding bytes for alignment of common blocks.

nodcommmons Adds no padding bytes for alignment of common blocks.

noqcommmons Adds no padding bytes for alignment of common blocks.

nozcommmons Adds no padding bytes for alignment of common blocks.

records Aligns derived-type components and record structure fields on default natural
boundaries.

nosequence Causes derived-type components declared with the SEQUENCE statement to be
packed, regardless of current alignment rules set by the user.

By default, no padding is added to common blocks but padding is added to structures.

Description

This option specifies the alignment to use for certain data items. The compiler adds padding bytes to perform
the alignment.

Option Description

align none Tells the compiler not to add padding bytes anywhere in common blocks or
structures. This is the same as specifying noalign.

Intel® Fortran Compiler Classic and Intel® Fortran Compiler Developer Guide and Reference 1

409

Option Description

align arraynbyte Aligns the start of arrays on an n-byte boundary. n can be 8, 16, 32, 64, 128, or
256. The default value for n is 8. This affects the starting alignment for all
arrays except for arrays in COMMON.

Arrays do not have padding between their elements.

align commons Aligns all common block entities on natural boundaries up to 4 bytes, by adding
padding bytes as needed.

The align nocommons option adds no padding to common blocks. In this case,
unaligned data can occur unless the order of data items specified in the
COMMON statement places the largest numeric data item first, followed by the
next largest numeric data (and so on), followed by any character data.

align dcommons Aligns all common block entities on natural boundaries up to 8 bytes, by adding
padding bytes as needed.

The align nodcommons option adds no padding to common blocks.

align qcommons Aligns all common block entities on natural boundaries up to 16 bytes, by adding
padding bytes as needed.

The align noqcommons option adds no padding to common blocks.

align zcommons Aligns all common block entities on natural boundaries up to 32 bytes, by adding
padding bytes as needed.

The align nozcommons option adds no padding to common blocks.

align norecords Aligns components of derived types and fields within record structures on
arbitrary byte boundaries with no padding.

The align records option requests that multiple data items in record structures
and derived-type structures without the SEQUENCE statement be naturally
aligned, by adding padding as needed.

align recnbyte Aligns components of derived types and fields within record structures on the
smaller of the size boundary specified (n) or the boundary that will naturally
align them. n can be 1, 2, 4, 8, 16, or 32. The default value for n is 8. When you
specify this option, each structure member after the first is stored on either the
size of the member type or n-byte boundaries, whichever is smaller. For
example, to specify 16 bytes as the packing boundary (or alignment constraint)
for all structures and unions in the file prog1.f, use the following command:

ifx {-align rec16byte | /align:rec16byte} prog1.f
This option does not affect whether common blocks are naturally aligned or
packed.

align sequence Aligns components of a derived type declared with the SEQUENCE statement
(sequenced components) according to the alignment rules that are currently in
use. The default alignment rules are to align unsequenced components on
natural boundaries.

The align nosequence option requests that sequenced components be packed
regardless of any other alignment rules. Note that align none implies
align nosequence.

If you specify an option for standards checking, align sequence is ignored.

 1 Intel® Fortran Compiler Classic and Intel® Fortran Compiler Developer Guide and Reference

410

Option Description

align all Tells the compiler to add padding bytes whenever possible to obtain the natural
alignment of data items in common blocks, derived types, and record structures.
Specifies align dcommons, align records, align nosequence. This is the
same as specifying align with no keyword.

IDE Equivalent

Visual Studio

Visual Studio: Data > Structure Member Alignment (/align:recnbyte)

Data > Alignment of COMMON block entities (/align:[no]commons, /align:[no]dcommons, /align:
[no]qcommons, /align:[no]zcommons)

Data > SEQUENCE Types Obey Alignment Rules (/align:[no]sequence)

Data > Default Array Alignment (/align:arraynbyte)

Alternate Options

align none Linux: -noalign
Windows: /noalign

align records Linux: -align rec16byte, -Zp16
Windows: /align:rec16byte, /Zp16

align norecords Linux: -Zp1, -align rec1byte
Windows: /Zp1, /align:rec1byte

align recnbyte Linux: -Zp{1|2|4|8|16}
Windows: /Zp{1|2|4|8|16}

align all Linux: -align commons -align dcommons -align records
-align nosequence
Windows: /align:nocommons,dcommons,records,nosequence

auto
Causes all local, non-SAVEd variables to be allocated
to the runtime stack.

Syntax

Linux OS:

-auto
-noauto
Windows OS:

/auto
/noauto

Arguments

None

Intel® Fortran Compiler Classic and Intel® Fortran Compiler Developer Guide and Reference 1

411

Default

varies Items that are declared in a main program are not necessarily allocated on
the stack, but anything declared inside a function or subroutine (unless it's
initialized) is always on the stack.

The default is also auto if one of the following options are specified:

• recursive
• [q or Q]openmp

Description

This option places local variables (scalars and arrays of all types), except those declared as SAVE, on the
runtime stack. It is as if the variables were declared with the AUTOMATIC attribute.

It does not affect variables that have the SAVE attribute or ALLOCATABLE attribute, or variables that appear
in an EQUIVALENCE statement or in a common block.

This option may provide a performance gain for your program, but if your program depends on variables
having the same value as the last time the routine was invoked, your program may not function properly.

If you want to cause variables to be placed in static memory, specify option [Q]save. If you want only scalar
variables of certain intrinsic types to be placed on the runtime stack, specify option auto-scalar.

NOTE
On Windows NT* systems, there is a performance penalty for addressing a stack frame that
is too large. This penalty may be incurred with /[Q]auto, because arrays are allocated on
the stack along with scalars. However, with /Qauto-scalar, you would have to have more
than 32K bytes of local scalar variables before you incurred the performance
penalty. /Qauto-scalar enables the compiler to make better choices about which variables
should be kept in registers during program execution.

IDE Equivalent

Visual Studio

Visual Studio: Data > Local Variable Storage

Alternate Options

auto Linux: None

Windows: /Qauto, /4Ya

noauto Linux: -save
Windows: /Qsave, /4Na

See Also
auto-scalar, Qauto-scalar compiler option
save, Qsave compiler option

 1 Intel® Fortran Compiler Classic and Intel® Fortran Compiler Developer Guide and Reference

412

auto-scalar, Qauto-scalar
Causes scalar variables of intrinsic types INTEGER,
REAL, COMPLEX, and LOGICAL that do not have the
SAVE attribute to be allocated to the runtime stack.
This is a deprecated option that may be removed in a
future release.

Syntax

Linux OS:

-auto-scalar
Windows OS:

/Qauto-scalar

Arguments

None

Default

-auto-scalar
or /Qauto-scalar

Scalar variables of intrinsic types INTEGER, REAL, COMPLEX, and LOGICAL
that do not have the SAVE attribute are allocated to the runtime stack.

Note that the default changes to option auto if one of the following options
are specified:

• recursive
• [q or Q]openmp

Description

This option causes allocation of scalar variables of intrinsic types INTEGER, REAL, COMPLEX, and LOGICAL to
the runtime stack. It is as if they were declared with the AUTOMATIC attribute.

It does not affect variables that have the SAVE attribute (which include initialized locals) or that appear in an
EQUIVALENCE statement or in a common block.

This option may provide a performance gain for your program, but if your program depends on variables
having the same value as the last time the routine was invoked, your program may not function properly.
Variables that need to retain their values across subroutine calls should appear in a SAVE statement.

You cannot specify option save or auto with this option.

NOTE
On Windows NT* systems, there is a performance penalty for addressing a stack frame that
is too large. This penalty may be incurred with [Q]auto because arrays are allocated on the
stack along with scalars. However, with /Qauto-scalar, you would have to have more than
32K bytes of local scalar variables before you incurred the performance
penalty. /Qauto-scalar enables the compiler to make better choices about which variables
should be kept in registers during program execution.

IDE Equivalent

Visual Studio

Visual Studio: Data > Local Variable Storage (/Qsave, /Qauto, /Qauto_scalar)

Intel® Fortran Compiler Classic and Intel® Fortran Compiler Developer Guide and Reference 1

413

Alternate Options

None

See Also
auto compiler option
save compiler option

convert
Specifies the format of unformatted files containing
numeric data.

Syntax

Linux OS:

-convert keyword
Windows OS:

/convert:keyword

Arguments

keyword Specifies the format for the unformatted numeric data. Possible values are:

native Specifies that unformatted data should not be converted.

big_endian Specifies that the format will be big endian for integer data and
big endian IEEE floating-point for real and complex data.

cray Specifies that the format will be big endian for integer data and
CRAY* floating-point for real and complex data.

fdx
(Linux*)

Specifies that the format will be little endian for integer data, and
VAX processor floating-point format F_floating, D_floating, and
IEEE binary128 for real and complex data.

fgx
(Linux)

Specifies that the format will be little endian for integer data, and
VAX processor floating-point format F_floating, G_floating, and
IEEE binary128 for real and complex data.

ibm Specifies that the format will be big endian for integer data and
IBM* System\370 floating-point format for real and complex
data.

little_endian Specifies that the format will be little endian for integer data and
little endian IEEE floating-point for real and complex data.

vaxd Specifies that the format will be little endian for integer data, and
VAX* processor floating-point format F_floating, D_floating, and
H_floating for real and complex data.

vaxg Specifies that the format will be little endian for integer data, and
VAX processor floating-point format F_floating, G_floating, and
H_floating for real and complex data.

 1 Intel® Fortran Compiler Classic and Intel® Fortran Compiler Developer Guide and Reference

414

Default

convert native No conversion is performed on unformatted files containing numeric data.

Description

This option specifies the format of unformatted files containing numeric data.

Option Description

convert native Specifies that unformatted data should not be converted.

convert big_endian Specifies that the format will be big endian for INTEGER*1, INTEGER*2,
INTEGER*4, or INTEGER*8, and big endian IEEE floating-point for
REAL*4, REAL*8, REAL*16, COMPLEX*8, COMPLEX*16, or COMPLEX*32.

convert cray Specifies that the format will be big endian for INTEGER*1, INTEGER*2,
INTEGER*4, or INTEGER*8, and CRAY* floating-point for REAL*8 or
COMPLEX*16.

convert fdx Specifies that the format will be little endian for INTEGER*1, INTEGER*2,
INTEGER*4, or INTEGER*8, and VAX processor floating-point format
F_floating for REAL*4 or COMPLEX*8, D_floating for REAL*8 or
COMPLEX*16, and IEEE binary128 for REAL*16 or COMPLEX*32.

convert fgx Specifies that the format will be little endian for INTEGER*1, INTEGER*2,
INTEGER*4, or INTEGER*8, and VAX processor floating-point format
F_floating for REAL*4 or COMPLEX*8, G_floating for REAL*8 or
COMPLEX*16, and IEEE binary128 for REAL*16 or COMPLEX*32.

convert ibm Specifies that the format will be big endian for INTEGER*1, INTEGER*2,
or INTEGER*4, and IBM* System\370 floating-point format for REAL*4 or
COMPLEX*8 (IBM short 4) and REAL*8 or COMPLEX*16 (IBM long 8).

convert little_endian Specifies that the format will be little endian for INTEGER*1, INTEGER*2,
INTEGER*4, or INTEGER*8 and little endian IEEE floating-point for
REAL*4, REAL*8, REAL*16, COMPLEX*8, COMPLEX*16, or COMPLEX*32.

convert vaxd Specifies that the format will be little endian for INTEGER*1, INTEGER*2,
INTEGER*4, or INTEGER*8, and VAX processor floating-point format
F_floating for REAL*4 or COMPLEX*8, D_floating for REAL*8 or
COMPLEX*16, and H_floating for REAL*16 or COMPLEX*32.

convert vaxg Specifies that the format will be little endian for INTEGER*1, INTEGER*2,
INTEGER*4, or INTEGER*8, and VAX processor floating-point format
F_floating for REAL*4 or COMPLEX*8, G_floating for REAL*8 or
COMPLEX*16, and H_floating for REAL*16 or COMPLEX*32.

Non-native data conversion works on scalars and arrays of intrinsic types: INTEGER*1, INTEGER*2,
INTEGER*4, INTEGER*8, including LOGICAL*1, LOGICAL*2, LOGICAL*4, LOGICAL*8, and REAL*4, REAL*8,
REAL*16, including COMPLEX*8, COMPLEX*16, and COMPLEX*32. Conversion does not work inside defined
type records on their individual fields. For example:

type REC
 integer(8) :: K
 real(8) :: X
end type REC

type (REC) :: R

Intel® Fortran Compiler Classic and Intel® Fortran Compiler Developer Guide and Reference 1

415

write (17) R%K, R%X ! conversion will work on these objects
write (17) R ! conversion will not work on the fields of this object

IDE Equivalent

Windows

Visual Studio: Compatibility > Unformatted File Conversion

Alternate Options

None

double-size
Specifies the default KIND for DOUBLE PRECISION
and DOUBLE COMPLEX declarations, constants,
functions, and intrinsics.

Syntax

Linux OS:

-double-size size
Windows OS:

/double-size:size

Arguments

size Specifies the default KIND for DOUBLE PRECISION and DOUBLE COMPLEX declarations,
constants, functions, and intrinsics. Possible values are: 64 (KIND=8) or 128 (KIND=16).

Default

64 DOUBLE PRECISION variables are defined as REAL*8 and DOUBLE COMPLEX variables are defined
as COMPLEX*16.

Description

This option defines the default KIND for DOUBLE PRECISION and DOUBLE COMPLEX declarations, constants,
functions, and intrinsics.

Option Description

double-size 64 Defines DOUBLE PRECISION declarations, constants, functions, and intrinsics as
REAL(KIND=8) (REAL*8) and defines DOUBLE COMPLEX declarations, functions, and
intrinsics as COMPLEX(KIND=8) (COMPLEX*16).

double-size 128 Defines DOUBLE PRECISION declarations, constants, functions, and intrinsics as
REAL(KIND=16) (REAL*16) and defines DOUBLE COMPLEX declarations, functions,
and intrinsics as COMPLEX(KIND=16) (COMPLEX*32).

The real-size option overrides the double-size option; for example, on Linux* systems, "-double-size 64
-real-size 128" acts like "-double-size 128 -real-size 128".

 1 Intel® Fortran Compiler Classic and Intel® Fortran Compiler Developer Guide and Reference

416

IDE Equivalent

Windows

Visual Studio: Data > Default Double Precision KIND

Alternate Options

None

dyncom, Qdyncom
Enables dynamic allocation of common blocks at
runtime.

Syntax

Linux OS:

-dyncom "common1,common2,..."
Windows OS:

/Qdyncom "common1,common2,..."

Arguments

common1,common2,... Are the names of the common blocks to be dynamically allocated. The list of
names must be within quotes.

Default

OFF Common blocks are not dynamically allocated at runtime.

Description

This option enables dynamic allocation of the specified common blocks at runtime. For example, to enable
dynamic allocation of common blocks a, b, and c at runtime, use this syntax:

Linux

-dyncom "a,b,c"
Windows

/Qdyncom "a,b,c"
The following are some limitations that you should be aware of when using this option:

• An entity in a dynamic common cannot be initialized in a DATA statement.
• Only named common blocks can be designated as dynamic COMMON.
• An entity in a dynamic common block must not be used in an EQUIVALENCE expression with an entity in a

static common block or a DATA-initialized variable.

IDE Equivalent

Windows

Visual Studio: Data > Dynamic Common Blocks

Alternate Options

None

Intel® Fortran Compiler Classic and Intel® Fortran Compiler Developer Guide and Reference 1

417

See Also
Allocating Common Blocks
FOR_SET_FTN_ALLOC

falign-functions, Qfnalign
Tells the compiler to align procedures on an optimal
byte boundary.

Syntax

Linux OS:

-falign-functions[=n]
-fno-align-functions
Windows OS:

/Qfnalign[:n]
/Qfnalign-

Arguments

n Is an optional positive integer scalar initialization expression indicating
the number of bytes for the minimum alignment boundary.

It tells the compiler to align procedures on a power-of-2 byte
boundary. If you do not specify n, the compiler aligns the start of
procedures on 16-byte boundaries.

The n must be a positive integer less than or equal to 4096. If you
specify a value that is not a power of 2, n will be rounded up to the
nearest power of 2. For example, if 23 is specified for n, procedures
will be aligned on 32 byte boundaries.

Default

-fno-align-functions
or /Qfnalign-

The compiler aligns procedures on 2-byte boundaries. This is the same as
specifying -falign-functions=2 (Linux*) or /Qfnalign:2 (Windows*).

Description

This option tells the compiler to align procedures on an optimal byte boundary. If you do not specify n, the
compiler aligns the start of procedures on 16-byte boundaries.

IDE Equivalent

None

Alternate Options

None

falign-loops, Qalign-loops
Aligns loops to a power-of-two byte boundary. This
feature is only available for ifort.

 1 Intel® Fortran Compiler Classic and Intel® Fortran Compiler Developer Guide and Reference

418

Syntax

Linux OS:

-falign-loops[=n]
-fno-align-loops

Windows OS:

/Qalign-loops[:n]
/Qalign-loops-

Arguments

n Is the optional number of bytes for the minimum alignment boundary. It must be a power of 2
between 1 and 4096, such as 1, 2, 4, 8, 16, 32, 64, 128, and so on.

If you specify 1 for n, no alignment is performed; this is the same as specifying the negative form
of the option.

If you do not specify n, the default alignment is 16 bytes.

Default

-fno-align-loops
or /Qalign-loops-

No special loop alignment is performed.

Description

This option aligns loops to a power-of-two boundary. This alignment may improve performance.

It can be affected by the directives CODE_ALIGN and ATTRIBUTES CODE_ALIGN.

If code is compiled with the -falign-loops=m (Linux*) or /Qalign-loops:m (Windows*) option and a
CODE_ALIGN:n directive precedes a loop, the loop is aligned on a MAX (m, n) byte boundary. If a procedure
has the CODE_ALIGN:k attribute and a CODE_ALIGN:n directive precedes a loop, then both the procedure
and the loop are aligned on a MAX (k, n) byte boundary.

IDE Equivalent

None

Alternate Options

None

Example
Consider the following code fragment in file test_align_loops.f90:

DO J = 1, N
…
END DO

Compiling test_align_loops.f90 with the -falign-loops (Linux) or /Qalign-loops (Windows) compiler
option aligns the code that begins the DO J loop on a (default) 16-byte boundary. If you do not specify this
compiler option, the alignment of the loop is implementation-dependent and may change from compilation to
compilation.

See Also
falign-functions, Qfnalign compiler option

Intel® Fortran Compiler Classic and Intel® Fortran Compiler Developer Guide and Reference 1

419

CODE_ALIGN directive
ATTRIBUTES CODE_ALIGN directive

falign-stack
Tells the compiler the stack alignment to use on entry
to routines. This is a deprecated option that may be
removed in a future release. This feature is only
available for ifort.

Architecture Restrictions

Only available on IA-32 architecture. IA-32 support is deprecated and will be removed in a future release.

Syntax

Linux OS:

-falign-stack=mode
Windows OS:

None

Arguments

mode Is the method to use for stack alignment. Possible values are:

assume-4-byte Tells the compiler to assume the stack is aligned on 4-byte
boundaries. The compiler can dynamically adjust the stack
to 16-byte alignment if needed.

maintain-16-byte Tells the compiler to not assume any specific stack
alignment, but attempt to maintain alignment in case the
stack is already aligned. The compiler can dynamically
align the stack if needed. This setting is compatible with
gcc.

assume-16-byte Tells the compiler to assume the stack is aligned on 16-
byte boundaries and to continue to maintain 16-byte
alignment. This setting is compatible with gcc.

Default

-falign-stack=assume-16-byte The compiler assumes the stack is aligned on 16-byte
boundaries and continues to maintain 16-byte alignment.

Description

This option tells the compiler the stack alignment to use on entry to routines.

This is a deprecated option that may be removed in a future release. There is no replacement option.

IDE Equivalent

None

Alternate Options

None

 1 Intel® Fortran Compiler Classic and Intel® Fortran Compiler Developer Guide and Reference

420

fcommon
Determines whether the compiler treats common
symbols as global definitions.

Syntax

Linux OS:

-fcommon
-fno-common
Windows OS:

None

Arguments

None

Default

-fcommon The compiler does not treat common symbols as global definitions.

Description

This option determines whether the compiler treats common symbols as global definitions and to allocate
memory for each symbol at compile time.

Option -fno-common tells the compiler to treat common symbols as global definitions. When using this
option, you can only have a common variable declared in one module; otherwise, a link time error will occur
for multiple defined symbols.

IDE Equivalent

None

Alternate Options

None

fkeep-static-consts, Qkeep-static-consts
Tells the compiler to preserve allocation of variables
that are not referenced in the source. This feature is
only available for ifort.

Syntax

Linux OS:

-fkeep-static-consts
-fno-keep-static-consts
Windows OS:

/Qkeep-static-consts
/Qkeep-static-consts-

Arguments

None

Intel® Fortran Compiler Classic and Intel® Fortran Compiler Developer Guide and Reference 1

421

Default

-fno-keep-static-consts
or /Qkeep-static-consts-

If a variable is never referenced in a routine, the variable is discarded
unless optimizations are disabled by option -O0 (Linux*) or /Od
(Windows*).

Description

This option tells the compiler to preserve allocation of variables that are not referenced in the source.

The negated form can be useful when optimizations are enabled to reduce the memory usage of static data.

IDE Equivalent

None

Alternate Options

None

fmaintain-32-byte-stack-align, Qmaintain-32-byte-stack-align
Tells the compiler to realign the stack to 32-byte if
stack alignment is uncertain for functions with
external linkage, and retain 32-byte alignment for
other functions. This feature is only available for ifx.

Syntax

Linux OS:

-fmaintain-32-byte-stack-align
-fno-maintain-32-byte-stack-align
Windows OS:

/Qmaintain-32-byte-stack-align
/Qmaintain-32-byte-stack-align-

Arguments

None

Default

OFF The compiler assumes system alignment for the stack unless an option affecting that alignment is
specified.

Description

This option tells the compiler to realign the stack to 32-byte if stack alignment is uncertain for functions with
external linkage, and retain 32-byte alignment for other functions.

You should not use this option if you specify Clang options -mstack-alignment or -mstackrealign.

NOTE
This option only applies to host compilation. When offloading is enabled, it does not impact
device-specific compilation. Offloading can only be enabled when using ifx.

 1 Intel® Fortran Compiler Classic and Intel® Fortran Compiler Developer Guide and Reference

422

IDE Equivalent

None

Alternate Options

None

fmath-errno
Tells the compiler that errno can be reliably tested
after calls to standard math library functions.

Syntax

Linux OS:

-fmath-errno
-fno-math-errno
Windows OS:

None

Arguments

None

Default

-fno-math-errno The compiler assumes that the program does not test errno after
calls to standard math library functions.

Description

This option tells the compiler to assume that the program tests errno after calls to math library functions.
This restricts optimization because it causes the compiler to treat most math functions as having side effects.

Option -fno-math-errno tells the compiler to assume that the program does not test errno after calls to
math library functions. This frequently allows the compiler to generate faster code. Floating-point code that
relies on IEEE exceptions instead of errno to detect errors can safely use this option to improve
performance.

IDE Equivalent

None

Alternate Options

None

fminshared
Specifies that a compilation unit is a component of a
main program and should not be linked as part of a
shareable object. This feature is only available for
ifort.

Syntax

Linux OS:

-fminshared

Intel® Fortran Compiler Classic and Intel® Fortran Compiler Developer Guide and Reference 1

423

Windows OS:

None

Arguments

None

Default

OFF Source files are compiled together to form a single object file.

Description

This option specifies that a compilation unit is a component of a main program and should not be linked as
part of a shareable object.

This option allows the compiler to optimize references to defined symbols without special visibility settings.
To ensure that external and common symbol references are optimized, you need to specify visibility hidden
or protected by using the -fvisibility, -fvisibility-hidden, or -fvisibility-protected option.

Also, the compiler does not need to generate position-independent code for the main program. It can use
absolute addressing, which may reduce the size of the global offset table (GOT) and may reduce memory
traffic.

IDE Equivalent

None

Alternate Options

None

See Also
fvisibility compiler option

fpconstant
Tells the compiler that single-precision constants
assigned to double-precision variables should be
evaluated in double precision.

Syntax

Linux OS:

-fpconstant
-nofpconstant
Windows OS:

/fpconstant
/nofpconstant

Arguments

None

 1 Intel® Fortran Compiler Classic and Intel® Fortran Compiler Developer Guide and Reference

424

Default

nofpconstant Single-precision constants assigned to double-precision variables are
evaluated in single precision according to Fortran 2003 Standard rules.

Description

This option tells the compiler that single-precision constants assigned to double-precision variables should be
evaluated in double precision.

This is extended precision. It does not comply with the Fortran 2003 standard, which requires that single-
precision constants assigned to double-precision variables be evaluated in single precision.

It allows compatibility with FORTRAN 77, where such extended precision was allowed. If this option is not
used, certain programs originally created for FORTRAN 77 compilers may show different floating-point results
because they rely on the extended precision for single-precision constants assigned to double-precision
variables.

IDE Equivalent

Windows

Visual Studio: Floating-Point > Extend Precision of Single-Precision Constants

Alternate Options

None

Example
In the following example, if you specify fpconstant, identical values are assigned to D1 and D2. If you omit
fpconstant, the compiler will obey the Fortran 2003 Standard and assign a less precise value to D1:

REAL (KIND=8) D1, D2
DATA D1 /2.71828182846182/ ! REAL (KIND=4) value expanded to double
DATA D2 /2.71828182846182D0/ ! Double value assigned to double

fpic
Determines whether the compiler generates position-
independent code.

Syntax

Linux OS:

-fpic
-fno-pic
Windows OS:

None

Arguments

None

Default

-fno-pic The compiler does not generate position-independent code.

Intel® Fortran Compiler Classic and Intel® Fortran Compiler Developer Guide and Reference 1

425

Description

This option determines whether the compiler generates position-independent code.

Option -fpic specifies full symbol preemption. Global symbol definitions as well as global symbol references
get default (that is, preemptable) visibility unless explicitly specified otherwise.

Option -fpic must be used when building shared objects.

This option can also be specified as -fPIC.

IDE Equivalent

None

Alternate Options

None

fpie
Tells the compiler to generate position-independent
code. The generated code can only be linked into
executables.

Syntax

Linux OS:

-fpie
Windows OS:

None

Arguments

None

Default

OFF The compiler does not generate position-independent code for an
executable-only object.

Description

This option tells the compiler to generate position-independent code. It is similar to -fpic, but code
generated by -fpie can only be linked into an executable.

Because the object is linked into an executable, this option causes better optimization of some symbol
references.

To ensure that runtime libraries are set up properly for the executable, you should also specify option -pie
to the compiler driver on the link command line.

Option -fpie can also be specified as -fPIE.

IDE Equivalent

None

Alternate Options

None

 1 Intel® Fortran Compiler Classic and Intel® Fortran Compiler Developer Guide and Reference

426

See Also
fpic compiler option
pie compiler option

fstack-protector
Enables or disables stack overflow security checks for
certain (or all) routines.

Syntax

Linux OS:

-fstack-protector[-keyword]
-fno-stack-protector[-keyword]
Windows OS:

None

Arguments

keyword Possible values are:

strong When option -fstack-protector-strong is specified, it enables stack
overflow security checks for routines with any type of buffer.

all When option -fstack-protector-all is specified, it enables stack
overflow security checks for every routine.

If no -keyword is specified, option -fstack-protector enables stack overflow security checks for routines
with a string buffer.

Default

-fno-stack-protector,
-fno-stack-protector-strong

No stack overflow security checks are enabled for the relevant
routines.

-fno-stack-protector-all No stack overflow security checks are enabled for any routines.

Description

This option enables or disables stack overflow security checks for certain (or all) routines. A stack overflow
occurs when a program stores more data in a variable on the execution stack than is allocated to the
variable. Writing past the end of a string buffer or using an index for an array that is larger than the array
bound could cause a stack overflow and security violations.

The -fstack-protector options are provided for compatibility with gcc. If the gcc/glibc implementation is
available, it is used; otherwise, the Intel implementation is used.

For an Intel-specific version of this feature, see option -fstack-security-check.

IDE Equivalent

None

Alternate Options

None

See Also
fstack-security-check compiler option

Intel® Fortran Compiler Classic and Intel® Fortran Compiler Developer Guide and Reference 1

427

GS compiler option

fstack-security-check
Determines whether the compiler generates code that
detects some buffer overruns.

Syntax

Linux OS:

-fstack-security-check
-fno-stack-security-check
Windows OS:

None

Arguments

None

Default

-fno-stack-security-check The compiler does not detect buffer overruns.

Description

This option determines whether the compiler generates code that detects some buffer overruns that
overwrite the return address. This is a common technique for exploiting code that does not enforce buffer
size restrictions.

This option always uses an Intel implementation.

For a gcc-compliant version of this feature, see option fstack-protector.

NOTE
This option only applies to host compilation. When offloading is enabled, it does not impact
device-specific compilation. Offloading can only be enabled when using ifx.

IDE Equivalent

None

Alternate Options

Linux: None

Windows: /GS

See Also
fstack-protector compiler option
GS compiler option

fstrict-overflow, Qstrict-overflow
Determines whether strict overflow is enabled for
signed addition, subtraction, and multiplication wrap
arounds using twos-complement representation. This
feature is only available for ifx.

 1 Intel® Fortran Compiler Classic and Intel® Fortran Compiler Developer Guide and Reference

428

Syntax

Linux OS:

-fstrict-overflow (for Clang compatibility)
-fno-strict-overflow (for Clang compatibility)
Windows OS:

/Qstrict-overflow
/Qstrict-overflow-

Arguments

None

Default

-fstrict-overflow
or /Qstrict-overflow

Strict overflow is enabled for signed arithmetic overflow of addition,
subtraction, and multiplication wrap arounds using twos-complement
representation.

Description

This option determines whether strict overflow is enabled for signed addition, subtraction, and multiplication
wrap arounds using twos-complement representation.

Integer overflow occurs when an operation on two integer values results in a value that is too large to be
represented in an integer of the size specified; for example, two 32-bit integers added together result in a
value that does not fit into 32 bits.

When overflow occurs, as much of the value as can fit into the result is assigned, usually resulting in a
negative number.

When -fstrict-overflow (Linux) or /Qstrict-overflow (Windows) is in effect, the compiler assumes
that integer operations can never overflow . This can provide better optimizations. However, if overflow does
occur, the resulting behavior is undefined.

If your program relies on integer overflow to work, specify -fno-strict-overflow (Linux)
or /Qstrict-overflow- (Windows). This permits overflow but may produce less optimized code.

NOTE
This option only applies to host compilation. When offloading is enabled, it does not impact
device-specific compilation.

IDE Equivalent

None

Alternate Options

None

Example
The following shows an example of using this option::

ifx /Qstrict-overflow- rnflow.f90

Intel® Fortran Compiler Classic and Intel® Fortran Compiler Developer Guide and Reference 1

429

fvisibility
Specifies the default visibility for global symbols or the
visibility for symbols in a file.

Syntax

Linux OS:

-fvisibility=keyword
-fvisibility-keyword=filename
Windows OS:

None

Arguments

keyword Specifies the visibility setting. Possible values are:

default Sets visibility to default.

extern Sets visibility to extern.

hidden Sets visibility to hidden.

internal Sets visibility to internal.

protected Sets visibility to protected.

filename Is the pathname of a file containing the list of symbols whose visibility
you want to set. The symbols must be separated by whitespace
(spaces, tabs, or newlines).

Default

-fvisibility=default The compiler sets visibility of symbols to default.

Description

This option specifies the default visibility for global symbols (syntax -fvisibility=keyword) or the visibility
for symbols in a file (syntax -fvisibility-keyword=filename).

Visibility specified by -fvisibility-keyword=filename overrides visibility specified by
-fvisibility=keyword for symbols specified in a file.

Option Description

-fvisibility=default
-fvisibility-default=filename

Sets visibility of symbols to default. This means
other components can reference the symbol, and
the symbol definition can be overridden
(preempted) by a definition of the same name in
another component.

-fvisibility=extern
-fvisibility-extern=filename

Sets visibility of symbols to extern. This means the
symbol is treated as though it is defined in another
component. It also means that the symbol can be
overridden by a definition of the same name in
another component.

 1 Intel® Fortran Compiler Classic and Intel® Fortran Compiler Developer Guide and Reference

430

Option Description

-fvisibility=hidden
-fvisibility-hidden=filename

Sets visibility of symbols to hidden. This means that
other components cannot directly reference the
symbol. However, its address may be passed to
other components indirectly.

-fvisibility=internal
-fvisibility-internal=filename

Sets visibility of symbols to internal. This means
that the symbol cannot be referenced outside its
defining component, either directly or indirectly.
The affected functions can never be called from
another module, including through function
pointers.

-fvisibility=protected
-fvisibility-protected=filename

Sets visibility of symbols to protected. This means
other components can reference the symbol, but it
cannot be overridden by a definition of the same
name in another component.

If an -fvisibility option is specified more than once on the command line, the last specification takes
precedence over any others.

If a symbol appears in more than one visibility filename, the setting with the least visibility takes precedence.

The following shows the precedence of the visibility settings (from greatest to least visibility):

• extern
• default
• protected
• hidden
• internal
Note that extern visibility only applies to functions. If a variable symbol is specified as extern, it is
assumed to be default.

IDE Equivalent

None

Alternate Options

None

Example
A file named prot.txt contains symbols a, b, c, d, and e. Consider the following:

-fvisibility-protected=prot.txt
This option sets protected visibility for all the symbols in the file. It has the same effect as specifying
fvisibility=protected in the declaration for each of the symbols.

fzero-initialized-in-bss, Qzero-initialized-in-bss
Determines whether the compiler places in the DATA
section any variables explicitly initialized with zeros.

Syntax

Linux OS:

-fzero-initialized-in-bss

Intel® Fortran Compiler Classic and Intel® Fortran Compiler Developer Guide and Reference 1

431

-fno-zero-initialized-in-bss
Windows OS:

/Qzero-initialized-in-bss
/Qzero-initialized-in-bss-

Arguments

None

Default

-fno-zero-initialized-in-bss
or /Qzero-initialized-in-bss-

Variables explicitly initialized with zeros are placed in the BSS
section. This can save space in the resulting code.

Description

This option determines whether the compiler places in the DATA section any variables explicitly initialized
with zeros.

If option -fno-zero-initialized-in-bss (Linux*) or /Qzero-initialized-in-bss- (Windows*) is
specified, the compiler places in the DATA section any variables that are initialized to zero.

IDE Equivalent

None

Alternate Options

None

Gs
Lets you control the threshold at which the stack
checking routine is called or not called.

Syntax

Linux OS:

None
Windows OS:

/Gs[n]

Arguments

n Is the number of bytes that local variables and compiler temporaries
can occupy before stack checking is activated. This is called the
threshold.

Default

/Gs Stack checking occurs for routines that require more than 4KB (4096 bytes) of stack space. This
is also the default if you do not specify n.

 1 Intel® Fortran Compiler Classic and Intel® Fortran Compiler Developer Guide and Reference

432

Description

This option lets you control the threshold at which the stack checking routine is called or not called. If a
routine's local stack allocation exceeds the threshold (n), the compiler inserts a __chkstk() call into the
prologue of the routine.

NOTE
This option only applies to host compilation. When offloading is enabled, it does not impact
device-specific compilation. Offloading can only be enabled when using ifx.

IDE Equivalent

None

Alternate Options

None

GS
Determines whether the compiler generates code that
detects some buffer overruns.

Syntax

Linux OS:

None
Windows OS:

/GS[:keyword]
/GS-

Arguments

keyword Specifies the level of stack protection heuristics used by the compiler. Possible values are:

off Tells the compiler to ignore buffer overruns. This is the same
as specifying /GS-.

partial Tells the compiler to provide a stack protection level that is
compatible with Microsoft* Visual Studio 2008.

strong Tells the compiler to provide full stack security level checking.
This setting is compatible with more recent Microsoft* Visual
Studio stack protection heuristics. This is the same as
specifying /GS with no keyword.

Default

/GS- The compiler does not detect buffer overruns.

Description

This option determines whether the compiler generates code that detects some buffer overruns that
overwrite a function's return address, exception handler address, or certain types of parameters.

Intel® Fortran Compiler Classic and Intel® Fortran Compiler Developer Guide and Reference 1

433

This option has been added for Microsoft compatibility. For more details about option /GS, see the Microsoft
documentation.

Following Visual Studio 2008, the Microsoft implementation of option /GS became more extensive (for
example, more routines are protected). The performance of some programs may be impacted by the newer
heuristics. In such cases, you may see better performance if you specify /GS:partial.

IDE Equivalent

None

Alternate Options

Linux: -fstack-security-check
Windows: None

See Also
fstack-security-check compiler option
fstack-protector compiler option

homeparams
Tells the compiler to store parameters passed in
registers to the stack. This feature is only available for
ifort.

Architecture Restrictions

Only available on Intel® 64 architecture

Syntax

Linux OS:

None
Windows OS:

/homeparams

Arguments

None

Default

OFF Register parameters are not written to the stack.

Description

This option tells the compiler to store parameters passed in registers to the stack.

IDE Equivalent

None

Alternate Options

None

 1 Intel® Fortran Compiler Classic and Intel® Fortran Compiler Developer Guide and Reference

434

init, Qinit
Lets you initialize a class of variables to zero or to
various numeric exceptional values.

Syntax

Linux OS:

-init=keyword [, keyword]
Windows OS:

/Qinit:keyword [, keyword]

Arguments

keyword Specifies the initial value for a class of variables. Possible values are:

[no]arrays Determines whether the compiler initializes variables that are
arrays or scalars. Specifying arrays initializes variables that are
arrays or scalars. Specifying noarrays or neither arrays or
noarrays initializes only variables that are scalars. You must also
specify at least one other keyword when you specify keyword
noarrays.

huge or minus_huge Determines both of the following:

• whether the compiler initializes to the largest representable
positive or negative real value all uninitialized variables of
intrinsic type REAL or COMPLEX that are saved, local,
automatic, or allocated variables

• whether the compiler initializes to the largest representable
positive or negative integer value all uninitialized variables of
intrinsic type INTEGER that are saved, local, automatic, or
allocated variables

infinity or
minus_infinity

Determines whether the compiler initializes to positive or
negative Infinity all uninitialized variables of intrinsic type REAL
or COMPLEX that are saved, local, automatic, or allocated
variables.

[no]snan Determines whether the compiler initializes to signaling NaN all
uninitialized variables of intrinsic type REAL or COMPLEX that are
saved, local, automatic, or allocated variables.

tiny or minus_tiny Determines whether the compiler initializes to the smallest
representable positive or negative real value all uninitialized
variables of intrinsic type REAL or COMPLEX that are saved, local,
automatic, or allocated variables.

[no]zero Determines whether the compiler initializes to zero all
uninitialized variables of intrinsic type REAL, COMPLEX, INTEGER,
or LOGICAL that are saved, local, automatic, or allocated
variables.

Option /Qinit:[no]zero replaces option /Qzero[-]
(Windows*) , and option -init=[no]zero replaces option
-[no]zero (Linux*).

Intel® Fortran Compiler Classic and Intel® Fortran Compiler Developer Guide and Reference 1

435

Default

OFF No initializations are performed by default if you do not specify any of these options.

Description

This option lets you initialize a class of variables to zero or to one or more of the various numeric exceptional
values positive or negative huge, positive or negative Infinity, signaling NaN, or positive or negative tiny.

If you only specify the keyword [minus_]huge, [minus_]infinity, snan, [minus_]tiny, or zero, option
[Q]init affects only scalar variables. To apply an initialization to arrays as well, you must also specify the
keyword arrays.

If you have specified an ALLOCATE statement and you specify one or more [Q]init keywords, the initializers
are applied to the memory that has been allocated by the ALLOCATE statement.

Keywords are applied to the various numeric types in the following order:

• For REAL and COMPLEX variables, keywords [minus_]huge, [minus_]infinity, snan, [minus_]tiny,
and zero initialize to the specified value.

• For INTEGER variables, keywords [minus_]huge and zero initialize to the specified value.
• For LOGICAL variables, keyword zero initializes to .FALSE..

The following classes of variables are initialized by the [Q]init option:

• Variables of intrinsic numeric type, that is, of type COMPLEX, INTEGER, LOGICAL, or REAL, of any KIND
• SAVEd scalar or array variables, not in the main program, that are not initialized in the source code
• Local scalars and arrays
• Module variables that are not initialized in the source code
• Automatic arrays
• Integers can be set to zero, huge, or minus_huge.
• In a COMPLEX variable, each of the real and imaginary parts is separately initialized as a REAL.

The following are general restrictions for this option:

• The keywords [minus_]infinity, snan, and [minus_]tiny only affect certain variables of REAL or
COMPLEX type.

• You cannot initialize variables in equivalence groups to any of the numeric exceptional values.
• In an equivalence group, if no member of that equivalence group has an explicit initialization or a default

initialization (in the case of a derived type), a variable in that equivalence group can be initialized to zero
but not to any of the numeric exceptional values.

• Derived types, arrays of derived types, and their components will not be initialized.
• Dummy arguments including adjustable arrays will not be initialized.
• Variables in COMMON will not be initialized.

The following spellings all cause the same behavior, that is, they initialize certain numeric arrays and scalars
to zero:

• [Q]init zero [Q]init arrays
• [Q]init arrays [Q]init zero
• [Q]init zero, arrays
• [Q]init arrays, zero
Combinations of keywords will override each other in a left-to-right fashion as follows:

• zero and nozero override each other.
• snan and nosnan override each other.
• huge and minus_huge override each other.
• tiny and minus_tiny override each other.

 1 Intel® Fortran Compiler Classic and Intel® Fortran Compiler Developer Guide and Reference

436

• infinity, minus_infinity, and snan will all override each other.

Because a REAL or COMPLEX variable can be initialized to huge or minus_huge, infinity or
minus_infinity, tiny or minus_tiny, snan, or zero, these initializations are applied in the following
order:

1. snan
2. infinity or minus_infinity
3. tiny or minus_tiny
4. huge or minus_huge
5. zero
Because an INTEGER variable can be initialized to huge or minus_huge, or zero, these initializations are
applied in the following order:

1. huge or minus_huge
2. zero
For example, if you specify [Q]init zero, minus_huge, snan when compiling the following program:

program test
real X
integer K
complex C
end

The variable X will be initialized with a signaling NaN (snan), variable K will be initialized to the integer value
minus_huge, and the real and imaginary parts of variable C will be initialized to a signaling NaN (snan) in
each.

If you specify [Q]init snan, the floating-point exception handling flags will be set to trap signaling NaN and
halt so that when such a value is trapped at runtime, the Fortran library can catch the usage, display an error
message about a possible uninitialized variable, display a traceback, and stop execution. You can use the
debugger to determine where in your code this uninitialized variable is being referenced when execution
stops.

Setting the option [Q]init snan implicitly sets the option fpe 0. A compile time warning will occur if you
specify both option fpe 3 and option [Q]init snan on the command line. In this case, fpe 3 is ignored.

NOTE
If you build with optimization, the compiler may speculate floating-point operations,
assuming the default floating-point environment in which floating-point exceptions are
masked. When you add [Q]init snan, this speculation may result in exceptions, unrelated
to uninitialized variables, that now get trapped. To avoid this, reduce the optimization level
to /O1 or /Od (Windows*), or -O1 or -O0 (Linux*) when doing uninitialized variable
detection.

If you wish to maintain optimization, you should add option [Q]fp-speculation safe to disable
speculation when there is a possibility that the speculation may result in a floating-point exception.

NOTE
To avoid possible performance issues, you should only use [Q]init for debugging (for
example, [Q]init zero) and checking for uninitialized variables (for example,
[Q]init snan).

Intel® Fortran Compiler Classic and Intel® Fortran Compiler Developer Guide and Reference 1

437

Use option [Q]save if you wish all variables to be specifically marked as SAVE.

IDE Equivalent

Visual Studio

Visual Studio: Data > Initialize Variables to Signaling NaN

Data > Initialize Variables to Zero

Data > Initialize Arrays as well as Scalars

Alternate Options

None

Example
The following example shows how to initialize scalars of intrinsic type REAL and COMPLEX to signaling NaN,
and scalars of intrinsic type INTEGER and LOGICAL to zero:

-init=snan,zero ! Linux systems
/Qinit:snan,zero ! Windows systems

The following example shows how to initialize scalars and arrays of intrinsic type REAL and COMPLEX to
signaling NaN, and scalars and arrays of intrinsic type INTEGER and LOGICAL to zero:

-init=zero -init=snan –init=arrays ! Linux systems
/Qinit:zero /Qinit:snan /Qinit:arrays ! Windows systems

To see an example of how to use option [Q]init for detection of uninitialized floating-point variables at
runtime, see the article titled Detection of Uninitialized Floating-point Variables in Intel® Fortran.

See Also
O compiler option
fp-speculation, Qfp-speculation compiler option
Explicit-Shape Specifications for details on automatic arrays and adjustable arrays
HUGE
TINY
Data Representation Models

intconstant
Tells the compiler to use FORTRAN 77 semantics to
determine the kind parameter for integer constants.

Syntax

Linux OS:

-intconstant
-nointconstant
Windows OS:

/intconstant
/nointconstant

Arguments

None

 1 Intel® Fortran Compiler Classic and Intel® Fortran Compiler Developer Guide and Reference

438

https://www.intel.com/content/www/us/en/developer/articles/technical/detection-of-uninitialized-floating-point-variables-in-intel-fortran.html?wapkw=detection%20of%20uninitialized%20floating-point%20variables%20in%20intel%20fortran%20

Default

nointconstant The compiler uses the Fortran default INTEGER type.

Description

This option tells the compiler to use FORTRAN 77 semantics to determine the kind parameter for integer
constants.

With FORTRAN 77 semantics, the kind is determined by the value of the constant. All constants are kept
internally by the compiler in the highest precision possible. For example, if you specify option intconstant,
the compiler stores an integer constant of 14 internally as INTEGER(KIND=8) and converts the constant
upon reference to the corresponding proper size. Fortran specifies that integer constants with no explicit
KIND are kept internally in the default INTEGER kind (KIND=4 by default).

Note that the internal precision for floating-point constants is controlled by option fpconstant.

IDE Equivalent

Windows

Visual Studio: Compatibility > Use F77 Integer Constants

Alternate Options

None

integer-size
Specifies the default KIND for integer and logical
variables.

Syntax

Linux OS:

-integer-size size

Windows OS:

/integer-size:size

Arguments

size Is the size for integer and logical variables. Possible values are: 16, 32, or 64.

Default

integer-size 32 Integer and logical variables are 4 bytes long (INTEGER(KIND=4) and
LOGICAL(KIND=4)).

Description

This option specifies the default size (in bits) for integer and logical variables.

Option Description

integer-size 16 Makes default integer and logical declarations, constants, functions, and intrinsics 2
bytes long. INTEGER and LOGICAL declarations are treated as (KIND=2). Integer
and logical constants of unspecified KIND are evaluated in INTEGER (KIND=2) and
LOGICAL(KIND=2) respectively.

Intel® Fortran Compiler Classic and Intel® Fortran Compiler Developer Guide and Reference 1

439

Option Description

integer-size 32 Makes default integer and logical declarations, constants, functions, and intrinsics 4
bytes long. INTEGER and LOGICAL declarations are treated as (KIND=4). Integer
and logical constants of unspecified KIND are evaluated in INTEGER (KIND=4) and
LOGICAL(KIND=4) respectively.

integer-size 64 Makes default integer and logical declarations, constants, functions, and intrinsics 8
bytes long. INTEGER and LOGICAL declarations are treated as (KIND=8). Integer
and logical constants of unspecified KIND are evaluated in INTEGER (KIND=8) and
LOGICAL(KIND=8) respectively.

IDE Equivalent

Windows

Visual Studio: Data > Default Integer KIND

Alternate Options

integer-size 16 Linux: -i2
Windows: /4I2

integer-size 32 Linux: -i4
Windows: /4I4

integer-size 64 Linux: -i8
Windows: /4I8

mcmodel
Tells the compiler to use a specific memory model to
generate code and store data.

Syntax

Linux OS:

-mcmodel=mem_model
Windows OS:

None

Arguments

mem_model Is the memory model to use. Possible values are:

small Tells the compiler to restrict code and data to
the first 2GB of address space. All accesses
of code and data can be done with
Instruction Pointer (IP)-relative addressing.

 1 Intel® Fortran Compiler Classic and Intel® Fortran Compiler Developer Guide and Reference

440

medium Tells the compiler to restrict code to the first
2GB; it places no memory restriction on
data. Accesses of code can be done with IP-
relative addressing, but accesses of data
must be done with absolute addressing.

large Places no memory restriction on code or
data. All accesses of code and data must be
done with absolute addressing.

Default

-mcmodel=small On systems using Intel® 64 architecture, the compiler restricts code and data to the
first 2GB of address space. Instruction Pointer (IP)-relative addressing can be used to
access code and data.

Description

This option tells the compiler to use a specific memory model to generate code and store data. It can affect
code size and performance. If your program has COMMON blocks and local data with a total size smaller than
2GB, -mcmodel=small is sufficient. COMMONs larger than 2GB require-mcmodel=medium or
-mcmodel=large. Allocation of memory larger than 2GB can be done with any setting of -mcmodel.

IP-relative addressing requires only 32 bits, whereas absolute addressing requires 64-bits. IP-relative
addressing is somewhat faster. So, the small memory model has the least impact on performance.

NOTE
When you specify option -mcmodel=medium or -mcmodel=large, it sets option -shared-intel.
This ensures that the correct dynamic versions of the Intel runtime libraries are used.

If you specify option -static-intel while -mcmodel=medium or -mcmodel=large is set, an error will
be displayed.

IDE Equivalent

None

Alternate Options

None

Example
The following example shows how to compile using -mcmodel:

ifx -shared-intel -mcmodel=medium -o prog prog.f

See Also
shared-intel compiler option
fpic compiler option

Intel® Fortran Compiler Classic and Intel® Fortran Compiler Developer Guide and Reference 1

441

no-bss-init, Qnobss-init
Tells the compiler to place in the DATA section any
uninitialized variables and explicitly zero-initialized
variables. This is a deprecated option that may be
removed in a future release. This feature is only
available for ifort.

Syntax

Linux OS:

-no-bss-init
Windows OS:

/Qnobss-init

Arguments

None

Default

OFF Uninitialized variables and explicitly zero-initialized variables are placed in the BSS section.

Description

This option tells the compiler to place in the DATA section any uninitialized variables and explicitly zero-
initialized variables.

This is a deprecated option that may be removed in a future release. There is no replacement option.

IDE Equivalent

None

Alternate Options

None

Qsfalign
Specifies stack alignment for functions. This is a
deprecated option that may be removed in a future
release. This feature is only available for ifort.

Architecture Restrictions

Only available on IA-32 architecture. IA-32 support is deprecated and will be removed in a future release.

Syntax

Linux OS:

None
Windows OS:

/Qsfalign[n]

Arguments

n Is the byte size of aligned variables. Possible values are:

 1 Intel® Fortran Compiler Classic and Intel® Fortran Compiler Developer Guide and Reference

442

8 Specifies that alignment should occur for
functions with 8-byte aligned variables. At
this setting the compiler aligns the stack to
16 bytes if there is any 16-byte or 8-byte
data on the stack. For 8-byte data, the
compiler only aligns the stack if the
alignment will produce a performance
advantage.

16 Specifies that alignment should occur for
functions with 16-byte aligned variables. At
this setting, the compiler only aligns the
stack for 16-byte data. No attempt is made
to align for 8-byte data.

Default

/Qsfalign8 Alignment occurs for functions with 8-byte aligned variables.

Description

This option specifies stack alignment for functions. It lets you disable the normal optimization that aligns a
stack for 8-byte data.

This is a deprecated option that may be removed in a future release. There is no replacement option.

If you do not specify n, stack alignment occurs for all functions. If you specify /Qsfalign-, no stack
alignment occurs for any function.

IDE Equivalent

None

Alternate Options

None

real-size
Specifies the default KIND for real and complex
declarations, constants, functions, and intrinsics.

Syntax

Linux OS:

-real-size size
Windows OS:

/real-size:size

Arguments

size Is the size for real and complex declarations, constants, functions, and intrinsics. Possible values
are: 32, 64, or 128.

Intel® Fortran Compiler Classic and Intel® Fortran Compiler Developer Guide and Reference 1

443

Default

real-size 32 Default real and complex declarations, constants, functions, and intrinsics
are 4 bytes long (REAL(KIND=4) and COMPLEX(KIND=4)).

Description

This option specifies the default size (in bits) for real and complex declarations, constants, functions, and
intrinsics.

Option Description

real-size 32 Makes default real and complex declarations, constants, functions, and intrinsics 4
bytes long. REAL declarations are treated as single precision REAL (REAL(KIND=4))
and COMPLEX declarations are treated as COMPLEX (COMPLEX(KIND=4)). Real and
complex constants of unspecified KIND are evaluated in single precision (KIND=4).

real-size 64 Makes default real and complex declarations, constants, functions, and intrinsics 8
bytes long. REAL declarations are treated as DOUBLE PRECISION (REAL(KIND=8))
and COMPLEX declarations are treated as DOUBLE COMPLEX (COMPLEX(KIND=8)).
Real and complex constants of unspecified KIND are evaluated in double precision
(KIND=8).

real-size 128 Makes default real and complex declarations, constants, functions, and intrinsics 16
bytes long. REAL declarations are treated as extended precision REAL
(REAL(KIND=16)); COMPLEX and DOUBLE COMPLEX declarations are treated as
extended precision COMPLEX (COMPLEX(KIND=16)). Real and complex constants of
unspecified KIND are evaluated in extended precision (KIND=16).

These compiler options can affect the result type of intrinsic procedures, such as CMPLX, FLOAT, REAL, SNGL,
and AIMAG, which normally produce single-precision REAL or COMPLEX results. To prevent this effect, you
must explicitly declare the kind type for arguments of such intrinsic procedures.

For example, if real-size 64 is specified, the CMPLX intrinsic will produce a result of type DOUBLE
COMPLEX (COMPLEX(KIND=8)). To prevent this, you must explicitly declare any real argument to be
REAL(KIND=4), and any complex argument to be COMPLEX(KIND=4).

IDE Equivalent

Windows

Visual Studio: Data > Default Real KIND

Alternate Options

real-size 32 Linux: -r4
Windows: /4R4

real-size 64 Linux: -r8, -autodouble
Windows: /4R8, /Qautodouble

real-size 128 Linux: -r16
Windows: /4R16

save, Qsave
Causes variables to be placed in static memory.

 1 Intel® Fortran Compiler Classic and Intel® Fortran Compiler Developer Guide and Reference

444

Syntax

Linux OS:

-save
Windows OS:

/Qsave

Arguments

None

Default

-auto-scalar
or /Qauto-scalar

Scalar variables of intrinsic types INTEGER, REAL, COMPLEX, and LOGICAL
are allocated to the runtime stack. Note that the default changes to option
auto if one of the following options are specified:

• recursive
• [q or Q]openmp

Description

This option saves all variables in static allocation except local variables within a recursive routine and
variables declared as AUTOMATIC.

If you want all local, non-SAVEd variables to be allocated to the runtime stack, specify option auto.

IDE Equivalent

Visual Studio

Visual Studio: Data > Local Variable Storage

Alternate Options

Linux: -noauto
Windows: /noauto, /4Na
See Also
auto compiler option
auto_scalar compiler option

zero, Qzero
Initializes to zero variables of intrinsic type INTEGER,
REAL, COMPLEX, or LOGICAL that are not yet
initialized. This is a deprecated option. The
replacement option is /Qinit:[no]zero or -
init=[no]zero.

Syntax

Linux OS:

-zero
-nozero
Windows OS:

/Qzero

Intel® Fortran Compiler Classic and Intel® Fortran Compiler Developer Guide and Reference 1

445

/Qzero-

Arguments

None

Default

-nozero or /Qzero- Variables are not initialized to zero.

Description

This option initializes to zero variables of intrinsic type INTEGER, REAL, COMPLEX, or LOGICAL that are not
yet initialized.

Use option [Q]save on the command line to make all local variables specifically marked as SAVE.

IDE Equivalent

None

Alternate Options

None

See Also
init, Qinit compiler option (see setting zero)
save compiler option

Compiler Diagnostic Options
This section contains descriptions for compiler options that pertain to compiler diagnostics. They are listed in
alphabetical order.

diag, Qdiag
Controls the display of diagnostic information during
compilation.

Syntax

Linux OS:

-diag-type=diag-list
Windows OS:

/Qdiag-type:diag-list

Arguments

type Is an action to perform on diagnostics. Possible values are:

disable Disables one or more warnings or remarks.
If you specify -diag-disable=all (Linux*)
or /Qdiag-disable:all (Windows*), all
warnings and remarks shown in diag-list are
disabled.

error Tells the compiler to change warnings or
remarks to errors.

 1 Intel® Fortran Compiler Classic and Intel® Fortran Compiler Developer Guide and Reference

446

warning Tells the compiler to change remarks to
warnings.

diag-list Is a diagnostic group or ID value. Possible values are:

driver Specifies diagnostic messages issued by the
compiler driver.

vec ifort only: Specifies diagnostic messages
issued by the vectorizer.

par ifort only: Specifies diagnostic messages
issued by the auto-parallelizer (parallel
optimizer).

openmp ifort only: Specifies diagnostic messages
issued by the OpenMP* parallelizer.

warn Specifies diagnostic messages that have a
"warning" severity level.

error Specifies diagnostic messages that have an
"error" severity level.

remark Specifies diagnostic messages that are
remarks or comments.

cpu-dispatch iifort only: Specifies the CPU dispatch
remarks for diagnostic messages. These
remarks are enabled by default.

id[,id,...] Specifies the ID number of one or more
messages. If you specify more than one
message number, they must be separated by
commas. There can be no intervening white
space between each id.

tag[,tag,...] Specifies the mnemonic name of one or
more messages. If you specify more than
one mnemonic name, they must be
separated by commas. There can be no
intervening white space between each tag.

The diagnostic messages generated can be affected by certain options,
such as [Q]x, /arch (Windows) or -m (Linux).

Default

OFF The compiler issues certain diagnostic messages by default.

Description

This option controls the display of diagnostic information during compilation. Diagnostic messages are output
to stderr unless the [Q]diag-file option is specified.

Intel® Fortran Compiler Classic and Intel® Fortran Compiler Developer Guide and Reference 1

447

NOTE
The [Q]diag options do not control diagnostics emitted at runtime. For more information
about runtime errors and diagnostics, see Handling Runtime Errors.

On ifort, to control the diagnostic information reported by the vectorizer, use options [q or Q]opt-report
and [q or Q]opt-report-phase, phase vec.

On ifort, to control the diagnostic information reported by the auto-parallelizer, use options
[q or Q]opt-report and [q or Q]opt-report-phase, phase par.

IDE Equivalent

Visual Studio

Visual Studio: Diagnostics > Disable Specific Diagnostics

Alternate Options

ifx: None

ifort:

enable vec Linux: -qopt-report; -qopt-report -qopt-report-phase=vec
Windows: /Qopt-report;
/Qopt-report /Qopt-report-phase:vec

disable vec Linux: -qopt-report=0 -qopt-report-phase=vec
Windows: /Qopt-report:0 /Qopt-report-phase:vec

enable par Linux: -qopt-report; -qopt-report -qopt-report-phase=par
Windows: /Qopt-report;
/Qopt-report /Qopt-report-phase:par

disable par Linux: -qopt-report=0 -qopt-report-phase=par
Windows: /Qopt-report:0 /Qopt-report-phase:par

Examples
The following example shows how to disable all remarks or comments:

-diag-disable=remark ! Linux systems
/Qdiag-disable:remark ! Windows systems

ifort: The following example shows how to change vectorizer diagnostic messages to warnings:

-diag-enable=vec -diag-warning=vec ! Linux systems
/Qdiag-enable:vec /Qdiag-warning:vec ! Windows systems

ifort: Note that you need to enable the vectorizer diagnostics before you can change them to warnings.

ifort: The following example shows how to disable all auto-parallelizer diagnostic messages:

-diag-disable=par ! Linux systems
/Qdiag-disable:par ! Windows systems

The following example shows how to change all diagnostic warnings and remarks to errors:

-diag-error=warn,remark ! Linux systems
/Qdiag-error:warn,remark ! Windows systems

 1 Intel® Fortran Compiler Classic and Intel® Fortran Compiler Developer Guide and Reference

448

The following example shows how to get a list of only vectorization diagnostics:

-diag-dump -diag-disable=all -diag-enable=vec ! Linux systems
/Qdiag-dump /Qdiag-disable:all /Qdiag-enable:vec ! Windows systems

The following example shows a way to disable a debug-related informational remark:

ifx -diag-disable=10440 -g myfile.f90 ! Linux
ifx /Qdiag-disable:10440 -debug myfile.f90 ! Windows

See Also
diag-dump, Qdiag-dump compiler option
diag-file, Qdiag-file compiler option
qopt-report, Qopt-report compiler option (ifort)
qopt-report, Qopt-report compiler option (ifx)
x, Qx compiler option

diag-dump, Qdiag-dump
Tells the compiler to print all enabled diagnostic
messages.

Syntax

Linux OS:

-diag-dump
Windows OS:

/Qdiag-dump

Arguments

None

Default

OFF The compiler issues certain diagnostic messages by default.

Description

This option tells the compiler to print all enabled diagnostic messages. The diagnostic messages are output to
stdout.

This option prints the enabled diagnostics from all possible diagnostics that the compiler can issue, including
any default diagnostics.

If diag-list is specified for the [Q]diag-enable option, the print out will include the diag-list diagnostics.

IDE Equivalent

None

Alternate Options

None

See Also
diag, Qdiag compiler option

Intel® Fortran Compiler Classic and Intel® Fortran Compiler Developer Guide and Reference 1

449

diag-error-limit, Qdiag-error-limit
Specifies the maximum number of errors allowed
before compilation stops.

Syntax

Linux OS:

-diag-error-limit=n
-no-diag-error-limit
Windows OS:

/Qdiag-error-limit:n
/Qdiag-error-limit-

Arguments

n Is the maximum number of error-level or fatal-level compiler errors
allowed.

Default

30 A maximum of 30 error-level and fatal-level messages are allowed.

Description

This option specifies the maximum number of errors allowed before compilation stops. It indicates the
maximum number of error-level or fatal-level compiler errors allowed for a file specified on the command
line.

If you specify the negative form of the [Q]diag-error-limit option on the command line, there is no limit
on the number of errors that are allowed.

If the maximum number of errors is reached, a warning message is issued and the next file (if any) on the
command line is compiled.

IDE Equivalent

Visual Studio

Visual Studio: Diagnostics > Error Limit

Alternate Options

Linux: -error-limit and -noerror-limit
Windows: /error-limit and /noerror-limit

diag-file, Qdiag-file
Causes the results of diagnostic analysis to be output
to a file.

Syntax

Linux OS:

-diag-file[=filename]
Windows OS:

/Qdiag-file[:filename]

 1 Intel® Fortran Compiler Classic and Intel® Fortran Compiler Developer Guide and Reference

450

Arguments

filename Is the name of the file for output.

Default

OFF Diagnostic messages are output to stderr.

Description

This option causes the results of diagnostic analysis to be output to a file. The file is placed in the current
working directory.

You can include a file extension in filename. For example, if file.txt is specified, the name of the output file is
file.txt. If you do not provide a file extension, the name of the file is filename.diag.

If filename is not specified, the name of the file is name-of-the-first-source-file.diag. This is also the name of
the file if the name specified for file conflicts with a source file name provided in the command line.

NOTE
If you specify the [Q]diag-file option and you also specify the [Q]diag-file-append
option, the last option specified on the command line takes precedence.

IDE Equivalent

Windows

Visual Studio: Diagnostics > Diagnostics File

Alternate Options

None

Example
The following example shows how to cause diagnostic analysis to be output to a file named
my_diagnostics.diag:

-diag-file=my_diagnostics ! Linux systems
/Qdiag-file:my_diagnostics ! Windows systems

See Also
diag-file-append, Qdiag-file-append compiler option

diag-file-append, Qdiag-file-append
Causes the results of diagnostic analysis to be
appended to a file.

Syntax

Linux OS:

-diag-file-append[=filename]
Windows OS:

/Qdiag-file-append[:filename]

Intel® Fortran Compiler Classic and Intel® Fortran Compiler Developer Guide and Reference 1

451

Arguments

filename Is the name of the file to be appended to. It can include a path.

Default

OFF Diagnostic messages are output to stderr.

Description

This option causes the results of diagnostic analysis to be appended to a file. If you do not specify a path, the
driver will look for filename in the current working directory.

If filename is not found, then a new file with that name is created in the current working directory. If the
name specified for file conflicts with a source file name provided in the command line, the name of the file is
name-of-the-first-source-file.diag.

NOTE
If you specify the [Q]diag-file-append option and you also specify the [Q]diag-file
option, the last option specified on the command line takes precedence.

IDE Equivalent

None

Alternate Options

None

Example
The following example shows how to cause diagnostic analysis to be appended to a file named
my_diagnostics.txt:

-diag-file-append=my_diagnostics.txt ! Linux systems
/Qdiag-file-append:my_diagnostics.txt ! Windows systems

See Also
diag-file, Qdiag-file compiler option

diag-id-numbers, Qdiag-id-numbers
Determines whether the compiler displays diagnostic
messages by using their ID number values. This
feature is only available for ifort.

Syntax

Linux OS:

-diag-id-numbers
-no-diag-id-numbers
Windows OS:

/Qdiag-id-numbers
/Qdiag-id-numbers-

 1 Intel® Fortran Compiler Classic and Intel® Fortran Compiler Developer Guide and Reference

452

Arguments

None

Default

-diag-id-numbers
or /Qdiag-id-numbers

The compiler displays diagnostic messages by using their ID number values.

Description

This option determines whether the compiler displays diagnostic messages by using their ID number values.
If you specify the negative form of the [Q]diag-id-numbers option, mnemonic names are output for driver
diagnostics only.

IDE Equivalent

None

Alternate Options

None

See Also
diag, Qdiag compiler option

gen-interfaces
Tells the compiler to generate an interface block for
each routine in a source file.

Syntax

Linux OS:

-gen-interfaces [[no]source]
-nogen-interfaces
Windows OS:

/gen-interfaces[:[no]source]
/nogen-interfaces

Arguments

None

Default

nogen-interfaces The compiler does not generate interface blocks for routines in a source file.

Description

This option tells the compiler to generate an interface block for each routine (that is, for each SUBROUTINE
and FUNCTION statement) defined in the source file. The compiler generates two files for each routine,
a .mod file and a .f90 file, and places them in the current directory or in the directory specified by the include
(-I) or -module option. The .f90 file is the text of the interface block; the .mod file is the interface block
compiled into binary form. The .f90 file is for reference only and may not completely represent the generated
interface used by the compiler.

Intel® Fortran Compiler Classic and Intel® Fortran Compiler Developer Guide and Reference 1

453

If source is specified, the compiler creates the procedure-name__GENmod.f90 as well as the procedure-
name__GENmod.mod files. If nosource is specified, the compiler creates the procedure-
name__GENmod.mod but not the procedure-name__GENmod.f90 files. If neither is specified, it is the same
as specifying setting source for the gen-interfaces option.

On Windows* systems, for a Debug configuration in a Visual Studio project, the default
is /warn:interfaces.

IDE Equivalent

Visual Studio

Visual Studio: None

Alternate Options

None

traceback
Tells the compiler to generate extra information in the
object file to provide source file traceback information
when a severe error occurs at runtime.

Syntax

Linux OS:

-traceback
-notraceback
Windows OS:

/traceback
/notraceback

Arguments

None

Default

notraceback No extra information is generated in the object file to produce traceback information.

Description

This option tells the compiler to generate extra information in the object file to provide source file traceback
information when a severe error occurs at runtime.

When the severe error occurs, source file, routine name, and line number correlation information is displayed
along with call stack hexadecimal addresses (program counter trace).

Note that when a severe error occurs, advanced users can also locate the cause of the error using a map file
and the hexadecimal addresses of the stack displayed when the error occurs.

This option increases the size of the executable program, but has no impact on runtime execution speeds.

It functions independently of the debug option.

Linux

 1 Intel® Fortran Compiler Classic and Intel® Fortran Compiler Developer Guide and Reference

454

To display the section headers in the image (including the header for the .trace section, if any), use the
command:

objdump -h your_app_name.exe
Windows

Option traceback sets the /Oy- option, which forces the compiler to use EBP as the stack frame pointer.

The linker places the traceback information in the executable image, in a section named ".trace". To see
which sections are in an image, use the command:

link -dump -summary your_app_name.exe
To see more detailed information, use the command:

link -dump -headers your_app_name.exe
When requesting traceback, you must set Enable Incremental Linking in the VS .NET* IDE Linker Options to
No. You must also set Omit Frame Pointers (the /Oy option) in the Optimization Options to "No."

IDE Equivalent

Windows

Visual Studio: Run-time > Generate Traceback Information

Alternate Options

None

warn
Specifies diagnostic messages to be issued by the
compiler.

Syntax

Linux OS:

-warn [keyword[, keyword...]]
-nowarn

Windows OS:

/warn[:keyword[, keyword...]]
/nowarn

Arguments

keyword Specifies the diagnostic messages to be issued. Possible values are:

all Enables all warning messages except errors and stderrors.
This is the default if no keyword is specified.

Note that if all is in effect, stderrors are not upgraded to
warning level.

[no]alignments Determines whether warnings occur for data that is not
naturally aligned.

[no]declarations Determines whether warnings occur for any undeclared
names.

Intel® Fortran Compiler Classic and Intel® Fortran Compiler Developer Guide and Reference 1

455

[no]errors Determines whether warnings are changed to errors.

[no]externals Determines whether warnings occur for any dummy
procedures or procedure calls that have no explicit interface or
have not been declared external.

[no]general Determines whether warning messages and informational
messages are issued by the compiler.

[no]ignore_bounds Determines whether the compiler issues warnings if it detects
at compile time that a constant array subscript is out of the
declared bounds of the array.

[no]ignore_loc Determines whether warnings occur when %LOC is stripped
from an actual argument.

[no]interfaces Determines whether the compiler checks the interfaces of all
SUBROUTINEs called and FUNCTIONs invoked in your
compilation against an external set of interface blocks.

[no]shape Determines whether array conformance violations are
diagnosed with errors or warnings when used with the
check shape option.

[no]stderrors Determines whether warnings about Fortran standard
violations are changed to errors.

[no]truncated_source Determines whether warnings occur when source exceeds the
maximum column width in fixed-format files.

[no]uncalled Determines whether warnings occur when a statement
function is never called

[no]unused Determines whether warnings occur for declared variables that
are never used.

[no]usage Determines whether warnings occur for questionable
programming practices.

none Disables all warning messages.

Default

alignments Warnings are issued about data that is not naturally aligned.

general All information-level and warning-level messages are enabled.

nodeclarations No warnings are issued for undeclared names.

noerrors Warning-level messages are not changed to error-level messages.

noexternals No warnings are issued when a dummy procedure or external procedure
does not have an explicit interface and has not be declared external.

noignore_bounds The compiler checks array references with constant subscripts and
warns if the reference is to an element outside the declared bounds of
the array.

noignore_loc No warnings are issued when %LOC is stripped from an argument.

 1 Intel® Fortran Compiler Classic and Intel® Fortran Compiler Developer Guide and Reference

456

nointerfaces The compiler does not check interfaces of SUBROUTINEs called and
FUNCTIONs invoked in your compilation against an external set of
interface blocks.

noshape Array conformance violations are issued as errors if the check shape
option is specified.

nostderrors Warning-level messages about Fortran standards violations are not
changed to error-level messages.

notruncated_source No warnings are issued when source exceeds the maximum column
width in fixed-format files.

nounused No warnings are issued for variables that are declared but never used.

uncalled Warnings are issued when a statement function is not called.

usage Warnings are issued for questionable programming practices.

Description

This option specifies the diagnostic messages to be issued by the compiler.

Option Description

warn none Disables all warning messages. This is the same as specifying nowarn.

warn noalignments Disables warnings about data that is not naturally aligned.

warn declarations Enables warnings about any undeclared names. The compiler will use
the default implicit data typing rules for such undeclared names. The
IMPLICIT and IMPLICIT NONE statements override this option.

warn errors Tells the compiler to change all warning-level messages to error-level
messages; this includes warnings about Fortran standards violations.

warn externals Enables warnings about dummy procedures and external procedures
that do not have explicit interfaces and have not been declared with
the EXTERNAL attribute.

warn nogeneral Disables all informational-level and warning-level diagnostic
messages.

warn ignore_bounds The compiler does not check array references with constant subscripts
and no warnings are issued if the reference is to an element outside
the declared bounds of the array.

warn ignore_loc Enables warnings when %LOC is stripped from an actual argument.

warn interfaces Tells the compiler to check the interfaces of all SUBROUTINEs called
and FUNCTIONs invoked in your compilation against a set of interface
blocks stored separately from the source being compiled.

The compiler generates a compile-time message if the interface used
to invoke a routine does not match the interface defined in a .mod file
external to the source (that is, in a .mod generated by option
gen-interfaces as opposed to a .mod file USEd in the source). The
compiler looks for these .mods in the current directory or in the

Intel® Fortran Compiler Classic and Intel® Fortran Compiler Developer Guide and Reference 1

457

Option Description

directory specified by the include (-I) or -module option. If interface
mismatches occur, some will result in a compile-time error, others will
only generate a warning.

By default, warn interfaces turns on option gen-interfaces. You
can turn off that option by explicitly specifying option
nogen-interfaces.

warn shape If the check shape option is specified, array conformance violations
are issued as warnings rather than as errors.

warn stderrors Tells the compiler to change all warning-level messages about Fortran
standards violations to error-level messages. This option sets the
stand option.

warn truncated_source Enables warnings when a source line exceeds the maximum column
width in fixed-format source files. The maximum column width for
fixed-format files is 72, 80, or 132, depending on the setting of the
extend-source option. The warn truncated_source option has no
effect on truncation; lines that exceed the maximum column width are
always truncated. This option does not apply to free-format source
files.

warn nouncalled Disables warnings for variables that are declared but never used.

warn unused Enables warnings for variables that are declared but never used.

warn nousage Disables warnings about questionable programming practices.
Questionable programming practices, although allowed, often are the
result of programming errors; for example: a continued character or
Hollerith literal whose first part ends before the statement field and
appears to end with trailing spaces. Note that the /pad-source
option can prevent this error.

warn all This is the same as specifying warn. This option does not set options
warn errors or warn stderrors. To enable all the additional
checking to be performed and force the severity of the diagnostic
messages to be severe enough to not generate an object file, specify
options warn all and warn errors or specify options warn all and
warn stderrors.

Windows

In the Property Pages, Custom means that diagnostics will be
specified on an individual basis.

IDE Equivalent

Windows

Visual Studio: General > Compile Time Diagnostics (/warn:all, /warn:none)

Diagnostics > Treat Warnings as Errors (/warn:[no]errors)

Diagnostics > Treat Fortran Standard Warnings as Errors (/warn:[no]stderrors)

Diagnostics > Language Usage Warnings > Compile Time Diagnostics (/warn:all, /warn:none)

 1 Intel® Fortran Compiler Classic and Intel® Fortran Compiler Developer Guide and Reference

458

Diagnostics > Warn for Undeclared Symbols (/warn:[no]declarations)

Diagnostics > Warn for Undeclared Externals (/warn:[no]externals)

Diagnostics > Warn for Unused Variables (/warn:[no]unused)

Diagnostics > Warn When Removing %LOC (/warn:[no]ignore_loc)

Diagnostics > Warn When Truncating Source Line (/warn:[no]truncated_source)

Diagnostics > Warn for Unaligned Data (/warn:[no]alignments)

Diagnostics > Warn for Uncalled Statement Function (/warn:[no]uncalled)

Diagnostics > Warn for Array Conformance Violations (/warn:shape)

Diagnostics > Suppress Usage Messages (/warn:[no]usage)

Diagnostics > Check Routine Interfaces (/warn:[no]interfaces)

Alternate Options

warn none Linux: -nowarn, -w, -W0, -warn nogeneral
Windows: /nowarn,/w, /W0, /warn:nogeneral

warn declarations Linux: -implicitnone, -u
Windows: /4Yd

warn nodeclarations Linux: None

Windows: /4Nd

warn general Linux: -W1
Windows: /W1

warn nogeneral Linux: -W0, -w, -nowarn, -warn none
Windows: /W0, /w, /nowarn, /warn:none

warn stderrors Linux: -e90, -e95, -e03, -e08, -e18
Windows: None

warn all Linux: -warn
Windows: /warn (this is a deprecated option)

WB
Turns a compile-time bounds check into a warning.

Syntax

Linux OS:

-WB

Windows OS:

/WB

Arguments

None

Intel® Fortran Compiler Classic and Intel® Fortran Compiler Developer Guide and Reference 1

459

Default

OFF Compile-time bounds checks are errors.

Description

This option turns a compile-time bounds check into a warning.

IDE Equivalent

None

Alternate Options

None

Winline
Warns when a function that is declared as inline is not
inlined. This feature is only available for ifort.

Syntax

Linux OS:

-Winline
Windows OS:

None

Arguments

None

Default

OFF No warning is produced when a function that is declared as inline is not inlined.

Description

This option warns when a function that is declared as inline is not inlined.

To see diagnostic messages, including a message about why a particular function was not inlined, you should
generate an optimization report by specifying option -qopt-report=5.

IDE Equivalent

None

Alternate Options

None

See Also
qopt-report, Qopt-report compiler option (ifort)

Compatibility Options
This section contains descriptions for compiler options that pertain to language compatibility.

 1 Intel® Fortran Compiler Classic and Intel® Fortran Compiler Developer Guide and Reference

460

f66
Tells the compiler to apply FORTRAN 66 semantics.

Syntax

Linux OS:

-f66
Windows OS:

/f66

Arguments

None

Default

OFF The compiler applies Fortran 2018 semantics.

Description

This option tells the compiler to apply FORTRAN 66 semantics when interpreting language features. This
causes the following to occur:

• DO loops are always executed at least once.
• FORTRAN 66 EXTERNAL statement syntax and semantics are allowed.
• If the OPEN statement STATUS specifier is omitted, the default changes to STATUS='NEW' instead of

STATUS='UNKNOWN'.
• If the OPEN statement BLANK specifier is omitted, the default changes to BLANK='ZERO' instead of

BLANK='NULL'.

IDE Equivalent

Windows

Visual Studio: Language > Enable FORTRAN 66 Semantics

Alternate Options

None

f77rtl
Tells the compiler to use the runtime behavior of
FORTRAN 77.

Syntax

Linux OS:

-f77rtl
-nof77rtl
Windows OS:

/f77rtl
/nof77rtl

Arguments

None

Intel® Fortran Compiler Classic and Intel® Fortran Compiler Developer Guide and Reference 1

461

Default

nof77rtl The compiler uses the runtime behavior of Intel® Fortran.

Description

This option tells the compiler to use the runtime behavior of FORTRAN 77.

Specifying this option controls the following runtime behavior:

• When the unit is not connected to a file, some INQUIRE specifiers will return different values:

• NUMBER= returns 0
• ACCESS= returns 'UNKNOWN'
• BLANK= returns 'UNKNOWN'
• FORM= returns 'UNKNOWN'

• There is no support for the PAD= qualifier. FORTRAN 77 does not pad formatted input.
• NAMELIST and list-directed input of character strings must be delimited by apostrophes or quotes.
• When processing NAMELIST input:

• Column 1 of each record is skipped.
• The '$' or '&' that appears prior to the group-name must appear in column 2 of the input record.

IDE Equivalent

Windows

Visual Studio: Compatibility > Enable F77 Run-Time Compatibility

Alternate Options

None

fpscomp
Controls whether certain aspects of the runtime
system and semantic language features within the
compiler are compatible with Intel® Fortran or
Microsoft* Fortran PowerStation.

Syntax

Linux OS:

-fpscomp [keyword[, keyword...]]
-nofpscomp
Windows OS:

/fpscomp[:keyword[, keyword...]]
/nofpscomp

Arguments

keyword Specifies the compatibility that the compiler should follow. Possible values are:

none Specifies that no options should be used for compatibility.

[no]filesfromcmd Determines what compatibility is used when the OPEN statement
FILE= specifier is blank.

 1 Intel® Fortran Compiler Classic and Intel® Fortran Compiler Developer Guide and Reference

462

[no]general Determines what compatibility is used when semantics
differences exist between Fortran PowerStation and Intel®
Fortran.

[no]ioformat Determines what compatibility is used for list-directed formatted
and unformatted I/O.

[no]libs Determines whether the portability library is passed to the linker.

[no]ldio_spacing Determines whether a blank is inserted at runtime after a
numeric value before a character value.

[no]logicals Determines what compatibility is used for representation of
LOGICAL values.

all Specifies that all options should be used for compatibility.

Default

fpscomp libs The portability library is passed to the linker.

Description

This option controls whether certain aspects of the runtime system and semantic language features within
the compiler are compatible with Intel Fortran or Microsoft* Fortran PowerStation.

If you experience problems when porting applications from Fortran PowerStation, specify fpscomp (or
fpscomp all). When porting applications from Intel Fortran, use fpscomp none or fpscomp libs (the
default).

Option Description

fpscomp none Specifies that no options should be used for compatibility with Fortran
PowerStation. This is the same as specifying nofpscomp. Option
fpscomp none enables full Intel® Fortran compatibility. If you omit
fpscomp, the default is fpscomp libs. You cannot use the fpscomp and
vms options in the same command.

fpscomp filesfromcmd Specifies Fortran PowerStation behavior when the OPEN statement FILE=
specifier is blank (FILE=' '). It causes the following actions to be taken at
runtime:

• The program reads a file name from the list of arguments (if any) in
the command line that invoked the program. If any of the command-
line arguments contain a null string (''), the program asks the user for
the corresponding file name. Each additional OPEN statement with a
blank FILE= specifier reads the next command-line argument.

• If there are more nameless OPEN statements than command-line
arguments, the program prompts for additional file names.

• In a QuickWin application, a "File Select" dialog box appears to
request file names.

To prevent the runtime system from using the file name specified on the
command line when the OPEN statement FILE specifier is omitted, specify
fpscomp nofilesfromcmd. This allows the application of Intel Fortran
defaults, such as the FORTn environment variable and the FORT. n file
name (where n is the unit number).

Intel® Fortran Compiler Classic and Intel® Fortran Compiler Developer Guide and Reference 1

463

Option Description

The fpscomp filesfromcmd option affects the following Fortran
features:

• The OPEN statement FILE specifier

For example, assume a program OPENTEST contains the following
statements:

OPEN(UNIT = 2, FILE = ' ')

OPEN(UNIT = 3, FILE = ' ')

OPEN(UNIT = 4, FILE = ' ')

The following command line assigns the file TEST.DAT to unit 2,
prompts the user for a file name to associate with unit 3, then
prompts again for a file name to associate with unit 4:

opentest test.dat '' ''
• Implicit file open statements such as the WRITE, READ, and ENDFILE

statements Unopened files referred to in READ or WRITE statements
are opened implicitly as if there had been an OPEN statement with a
name specified as all blanks. The name is read from the command
line.

fpscomp general Specifies that Fortran PowerStation semantics should be used when a
difference exists between Intel Fortran and Fortran PowerStation. The
fpscomp general option affects the following Fortran features:

• The BACKSPACE statement:

• It allows files opened with ACCESS='APPEND' to be used with the
BACKSPACE statement.

• It allows files opened with ACCESS='DIRECT' to be used with the
BACKSPACE statement.

Note: Allowing files that are not opened with sequential access (such
as ACCESS='DIRECT') to be used with the BACKSPACE statement
violates the Fortran 95 standard and may be removed in the future.

• The READ statement:

• It causes a READ from a formatted file opened for direct access to
read records that have the same record type format as Fortran
PowerStation. This consists of accounting for the trailing Carriage
Return/Line Feed pair (<CR><LF>) that is part of the record. It
allows sequential reads from a formatted file opened for direct
access.

Note: Allowing files that are not opened with sequential access
(such as ACCESS='DIRECT') to be used with the sequential READ
statement violates the Fortran 95 standard and may be removed in
the future.

• It allows the last record in a file opened with FORM='FORMATTED'
and a record type of STREAM_LF or STREAM_CR that does not end
with a proper record terminator (<line feed> or <carriage return>)
to be read without producing an error.

 1 Intel® Fortran Compiler Classic and Intel® Fortran Compiler Developer Guide and Reference

464

Option Description

• It allows sequential reads from an unformatted file opened for
direct access.

• Note: Allowing files that are not opened with sequential access
(such as ACCESS='DIRECT') to be read with the sequential READ
statement violates the Fortran 95 standard and may be removed in
the future.

• The INQUIRE statement:

• The CARRIAGECONTROL specifier returns the value "UNDEFINED"
instead of "UNKNOWN" when the carriage control is not known.

• The NAME specifier returns the file name "UNKNOWN" instead of
filling the file name with spaces when the file name is not known.

• The SEQUENTIAL specifier returns the value "YES" instead of "NO"
for a direct access formatted file.

• The UNFORMATTED specifier returns the value "NO" instead of
"UNKNOWN" when it is not known whether unformatted I/O can be
performed to the file.

Note: Returning the value "NO" instead of "UNKNOWN" for this
specifier violates the Fortran 95 standard and may be removed in
the future.

• The OPEN statement:

• If a file is opened with an unspecified STATUS keyword value, and
is not named (no FILE specifier), the file is opened as a scratch file.

For example:

OPEN (UNIT = 4)
• In contrast, when fpscomp nogeneral is in effect with an

unspecified STATUS value with no FILE specifier, the FORTn
environment variable and the FORT.n file name are used (where n
is the unit number).

• If the STATUS value was not specified and if the name of the file is
"USER", the file is marked for deletion when it is closed.

• It allows a file to be opened with the APPEND and READONLY
characteristics.

• If the default for the CARRIAGECONTROL specifier is assumed, it
gives "LIST" carriage control to direct access formatted files instead
of "NONE".

• If the default for the CARRIAGECONTROL specifier is assumed and
the device type is a terminal file, the file is given the default
carriage control value of "FORTRAN" instead of "LIST".

• It gives an opened file the additional default of write sharing.
• It gives the file a default block size of 1024 instead of 8192.
• If the default for the MODE and ACTION specifier is assumed and

there was an error opening the file, try opening the file as read
only, then write only.

• If a file that is being re-opened has a different file type than the
current existing file, an error is returned.

• It gives direct access formatted files the same record type as
Fortran PowerStation. This means accounting for the trailing
Carriage Return/Line Feed pair (<CR><LF>) that is part of the
record.

Intel® Fortran Compiler Classic and Intel® Fortran Compiler Developer Guide and Reference 1

465

Option Description

• The STOP statement: It writes the Fortran PowerStation output string
and/or returns the same exit condition values.

• The WRITE statement:

• Writing to formatted direct files

When writing to a formatted file opened for direct access, records
are written in the same record type format as Fortran
PowerStation. This consists of adding the trailing Carriage Return/
Line Feed pair <CR><LF>) that is part of the record.

It ignores the CARRIAGECONTROL specifier setting when writing to
a formatted direct access file.

• Interpreting Fortran carriage control characters

When interpreting Fortran carriage control characters during
formatted I/O, carriage control sequences are written that are the
same as Fortran PowerStation. This is true for the "Space, 0, 1 and
+ " characters.

• Performing non-advancing I/O to the terminal

When performing non-advancing I/O to the terminal, output is
written in the same format as Fortran PowerStation.

• Interpreting the backslash (\) and dollar ($) edit descriptors

When interpreting backslash and dollar edit descriptors during
formatted I/O, sequences are written the same as Fortran
PowerStation.

• Performing sequential writes

It allows sequential writes from an unformatted file opened for
direct access.

Note: Allowing files that are not opened with sequential access
(such as ACCESS='DIRECT') to be read with the sequential WRITE
statement violates the Fortran 95 standard and may be removed in
the future.

Specifying fpscomp general sets fpscomp ldio_spacing.

fpscomp ioformat Specifies that Fortran PowerStation semantic conventions and record
formats should be used for list-directed formatted and unformatted I/O.
The fpscomp ioformat option affects the following Fortran features:

• The WRITE statement:

• For formatted list-directed WRITE statements, formatted internal
list-directed WRITE statements, and formatted namelist WRITE
statements, the output line, field width values, and the list-directed
data type semantics are determined according to the following
sample for real constants (N below):

For 1 <= N < 10**7, use F15.6 for single precision or F24.15 for
double.

For N < 1 or N >= 10**7, use E15.6E2 for single precision or
E24.15E3 for double.

 1 Intel® Fortran Compiler Classic and Intel® Fortran Compiler Developer Guide and Reference

466

Option Description

See the Fortran PowerStation documentation for more detailed
information about the other data types affected.

• For unformatted WRITE statements, the unformatted file semantics
are dictated according to the Fortran PowerStation documentation;
these semantics are different from the Intel Fortran file format. See
the Fortran PowerStation documentation for more detailed
information.

The following table summarizes the default output formats for list-
directed output with the intrinsic data types:

Data Type Output Format with
fpscomp
noioformat

Output Format with
fpscomp ioformat

BYTE I5 I12

LOGICAL
(all)

L2 L2

INTEGER(1) I5 I12

INTEGER(2) I7 I12

INTEGER(4) I12 I12

INTEGER(8) I22 I22

REAL(4) 1PG15.7E2 1PG16.6E2

REAL(8) 1PG24.15E3 1PG25.15E3

COMPLEX(4
)

'(',1PG14.7E2, ',
',1PG14.7E2, ') '

'(',1PG16.6E2, ',
',1PG16.6E2, ') '

COMPLEX(8
)

'(',1PG23.15E3, ',
',1PG23.15E3, ') '

'(',1PG25.15E3, ',
',1PG25.15E3, ') '

CHARACTER Aw Aw

• The READ statement:

• For formatted list-directed READ statements, formatted internal
list-directed READ statements, and formatted namelist READ
statements, the field width values and the list-directed semantics
are dictated according to the following sample for real constants (N
below):

For 1 <= N < 10**7, use F15.6 for single precision or F24.15 for
double.

For N < 1 or N >= 10**7, use E15.6E2 for single precision or
E24.15E3 for double.

See the Fortran PowerStation documentation for more detailed
information about the other data types affected.

Intel® Fortran Compiler Classic and Intel® Fortran Compiler Developer Guide and Reference 1

467

Option Description

• For unformatted READ statements, the unformatted file semantics
are dictated according to the Fortran PowerStation documentation;
these semantics are different from the Intel Fortran file format. See
the Fortran PowerStation documentation for more detailed
information.

fpscomp nolibs Prevents the portability library from being passed to the linker.

fpscomp ldio_spacing Specifies that at runtime a blank should not be inserted after a numeric
value before a character value (undelimited character string). This
representation is used by Intel Fortran releases before Version 8.0 and by
Fortran PowerStation. If you specify fpscomp general, it sets
fpscomp ldio_spacing.

fpscomp logicals Specifies that integers with a non-zero value are treated as true, integers
with a zero value are treated as false. The literal constant .TRUE. has an
integer value of 1, and the literal constant .FALSE. has an integer value of
0. This representation is used by Intel Fortran releases before Version 8.0
and by Fortran PowerStation.

The default is fpscomp nologicals, which specifies that odd integer
values (low bit one) are treated as true and even integer values (low bit
zero) are treated as false.

The literal constant .TRUE. has an integer value of -1, and the literal
constant .FALSE. has an integer value of 0. This representation is used by
Compaq* Visual Fortran. The internal representation of LOGICAL values is
not specified by the Fortran standard. Programs which use integer values
in LOGICAL contexts, or which pass LOGICAL values to procedures
written in other languages, are non-portable and may not execute
correctly. Intel recommends that you avoid coding practices that depend
on the internal representation of LOGICAL values.

The fpscomp logicals option affects the results of all logical
expressions and affects the return value for the following Fortran
features:

• The INQUIRE statement specifiers OPENED, IOFOCUS, EXISTS, and
NAMED

• The EOF intrinsic function
• The BTEST intrinsic function
• The lexical intrinsic functions LLT, LLE, LGT, and LGE

fpscomp all Specifies that all options should be used for compatibility with Fortran
PowerStation. This is the same as specifying fpscomp with no keyword.
Option fpscomp all enables full compatibility with Fortran PowerStation.

IDE Equivalent

Windows

Visual Studio: Compatibility > Use Filenames from Command Line (/fpscomp:filesfromcmd)

Compatibility > Use PowerStation I/O Format (/fpscomp:ioformat)

Compatibility > Use PowerStation Portability Library (/fpscomp:nolibs)

 1 Intel® Fortran Compiler Classic and Intel® Fortran Compiler Developer Guide and Reference

468

Compatibility > Use PowerStation List-Directed I/O Spacing (/fpscomp:ldio_spacing)

Compatibility > Use PowerStation Logical Values (/fpscomp:logicals)

Compatibility > Use Other PowerStation Run-time Behavior (/fpscomp:general)

Alternate Options

None

gcc-name
Lets you specify the name of the GCC compiler that
should be used to set up the link-time environment,
including the location of standard libraries.

Syntax

Linux OS:

-gcc-name=name
Windows OS:

None

Arguments

name Is the name of the GCC compiler to use. It can include the path where
the GCC compiler is located.

Default

OFF The compiler uses the PATH setting to find the GCC compiler and resolve environment settings.

Description

This option lets you specify the name of the GCC compiler that should be used to set up the link-time
environment, including the location of standard libraries. If you do not specify a path, the compiler will
search the PATH settings for the compiler name you provide.

This option is helpful when you are referencing a non-standard GCC installation, or you have multiple GCC
installations on your system. The compiler will match GCC version values to the GCC compiler you specify.

The C++ equivalent to option -gcc-name is -gxx-name.

IDE Equivalent

None

Alternate Options

None

Example
If the following option is specified, the compiler looks for the GCC compiler named foobar in the PATH
setting:

-gcc-name=foobar
If the following option is specified, the compiler looks for the GCC compiler named foobar in the path
specified:

-gcc-name=/a/b/foobar

Intel® Fortran Compiler Classic and Intel® Fortran Compiler Developer Guide and Reference 1

469

See Also
gxx-name compiler option

gxx-name
Lets you specify the name of the g++ compiler that
should be used to set up the link-time environment,
including the location of standard libraries.

Syntax

Linux OS:

-gxx-name=name
Windows OS:

None

Arguments

name Is the name of the g++ compiler to use. It can include the path where
the g++ compiler is located.

Default

OFF The compiler uses the PATH setting to find the g++ compiler and resolve environment settings.

Description

This option lets you specify the name of the g++ compiler that should be used to set up the link-time
environment, including the location of standard libraries. If you do not specify a path, the compiler will
search the PATH settings for the compiler name you provide.

This option is helpful if you have multiple gcc++ installations on your system. The compiler will match gcc++
version values to the gcc++ compiler you specify.

The C equivalent to option -gxx-name is -gcc-name.

IDE Equivalent

None

Alternate Options

None

Example
If the following option is specified, the compiler looks for the g++ compiler named foobar in the PATH
setting:

-gxx-name=foobar
If the following option is specified, the compiler looks for the g++ compiler named foobar in the path
specified:

-gxx-name=/a/b/foobar

See Also
gcc-name compiler option

 1 Intel® Fortran Compiler Classic and Intel® Fortran Compiler Developer Guide and Reference

470

Qvc
Specifies which version of Microsoft Visual C++*
(MSVC) or Microsoft Visual Studio* that the compiler
should link to.This feature is only available for ifort.

Syntax

Linux OS:

None
Windows OS:

/Qvc14.2

Arguments

None

Default

varies When the compiler is installed, it detects which version of Microsoft Visual Studio is on your
system. Qvc defaults to the form of the option that is compatible with that version.

When multiple versions of Microsoft Visual Studio are installed, the compiler installation lets you
select which version you want to link to. In this case, Qvc defaults to the version you choose.

Description

This option specifies which version of MSVC or Microsoft Visual Studio that the compiler should link to.

Option Description

/Qvc14.2 Specifies that the compiler should link to Microsoft Visual
Studio 2019.

IDE Equivalent

None

Alternate Options

None

vms
Causes the runtime system to behave like HP* Fortran
on OpenVMS* Alpha systems and VAX* systems (VAX
FORTRAN*).

Syntax

Linux OS:

-vms
-novms
Windows OS:

/vms
/novms

Intel® Fortran Compiler Classic and Intel® Fortran Compiler Developer Guide and Reference 1

471

Arguments

None

Default

novms The runtime system follows default Intel® Fortran behavior.

Description

This option causes the runtime system to behave like HP* Fortran on OpenVMS* Alpha systems and VAX*
systems (VAX FORTRAN*).

It affects the following language features:

• Certain defaults

In the absence of other options, vms sets the defaults as check format and check
output_conversion.

• Alignment

Option vms does not affect the alignment of fields in records or items in common blocks. For compatibility
with HP Fortran on OpenVMS systems, use align norecords to pack fields of records on the next byte
boundary.

• Carriage control default

If option vms and option ccdefault default are specified, carriage control defaults to FORTRAN if the
file is formatted and the unit is connected to a terminal.

• INCLUDE qualifiers

/LIST and /NOLIST are recognized at the end of the file name in an INCLUDE statement at compile time.
If the file name in the INCLUDE statement does not specify the complete path, the path used is the
current directory. Note that if vms is not specified, the path used is the directory where the file that
contains the INCLUDE statement resides.

• Quotation mark character

A quotation mark (") character is recognized as starting an octal constant ("0..7) instead of a character
literal ("...").

• Deleted records in relative files

When a record in a relative file is deleted, the first byte of that record is set to a known character
(currently '@'). Attempts to read that record later result in ATTACCNON errors. The rest of the record
(the whole record, if vms is not specified) is set to nulls for unformatted files and spaces for formatted
files.

• ENDFILE records

When an ENDFILE is performed on a sequential unit, an actual 1-byte record containing a Ctrl/Z is written
to the file. If vms is not specified, an internal ENDFILE flag is set and the file is truncated. The vms option
does not affect ENDFILE on relative files: these files are truncated.

• Implied logical unit numbers

The vms option enables Intel® Fortran to recognize certain environment variables at runtime for ACCEPT,
PRINT, and TYPE statements and for READ and WRITE statements that do not specify a unit number (such
as READ (*,1000)).

• Treatment of blanks in input

The vms option causes the defaults for the keyword BLANK in OPEN statements to become 'NULL' for an
explicit OPEN and 'ZERO' for an implicit OPEN of an external or internal file.

• OPEN statement effects

 1 Intel® Fortran Compiler Classic and Intel® Fortran Compiler Developer Guide and Reference

472

Carriage control defaults to FORTRAN if the file is formatted, and the unit is connected to a terminal.
Otherwise, carriage control defaults to LIST. The vms option affects the record length for direct access and
relative organization files. The buffer size is increased by 1 to accommodate the deleted record character.

• Reading deleted records and ENDFILE records

The runtime direct access READ routine checks the first byte of the retrieved record. If this byte is '@' or
NULL ("\0"), then an ATTACCNON error is returned. The runtime sequential access READ routine checks to
see if the record it just read is one byte long and contains a Ctrl/Z. If this is true, it returns EOF.

IDE Equivalent

Windows

Visual Studio: Compatibility > Enable VMS Compatibility

Alternate Options

None

See Also
align compiler option
ccdefault compiler option
check compiler option

Linking or Linker Options
This section contains descriptions for compiler options that pertain to linking or to the linker. They are listed
in alphabetical order.

4Nportlib, 4Yportlib
Determines whether the compiler links to the library of
portability routines.

Syntax

Linux OS:

None
Windows OS:

/4Nportlib
/4Yportlib

Arguments

None

Default

/4Yportlib The library of portability routines is linked during compilation.

Description

Option /4Yportlib causes the compiler to link to the library of portability routines. This also includes Intel's
functions for Microsoft* compatibility.

Option /4Nportlib prevents the compiler from linking to the library of portability routines.

Intel® Fortran Compiler Classic and Intel® Fortran Compiler Developer Guide and Reference 1

473

IDE Equivalent

Windows

Visual Studio: Libraries > Use Portlib Library

Alternate Options

None

Bdynamic
Enables dynamic linking of libraries at runtime.

Syntax

Linux OS:

-Bdynamic
Windows OS:

None

Arguments

None

Default

OFF Limited dynamic linking occurs.

Description

This option enables dynamic linking of libraries at runtime. Smaller executables are created than with static
linking.

This option is placed in the linker command line corresponding to its location on the user command line. It
controls the linking behavior of any library that is passed using the command line.

All libraries on the command line following option -Bdynamic are linked dynamically until the end of the
command line or until a -Bstatic option is encountered. The -Bstatic option enables static linking of
libraries.

NOTE
This option only applies to host compilation. When offloading is enabled, it does not impact
device-specific compilation. Offloading can only be enabled when using ifx.

IDE Equivalent

None

Alternate Options

None

See Also
Bstatic compiler option

 1 Intel® Fortran Compiler Classic and Intel® Fortran Compiler Developer Guide and Reference

474

Bstatic
Enables static linking of a user's library.

Syntax

Linux OS:

-Bstatic
Windows OS:

None

Arguments

None

Default

OFF Default static linking occurs.

Description

This option enables static linking of a user's library.

This option is placed in the linker command line corresponding to its location on the user command line. It
controls the linking behavior of any library that is passed using the command line.

All libraries on the command line following option -Bstatic are linked statically until the end of the
command line or until a -Bdynamic option is encountered. The -Bdynamic option enables dynamic linking of
libraries.

NOTE
This option only applies to host compilation. When offloading is enabled, it does not impact
device-specific compilation. Offloading can only be enabled when using ifx.

IDE Equivalent

None

Alternate Options

None

See Also
Bdynamic compiler option

Bsymbolic
Binds references to all global symbols in a program to
the definitions within a user's shared library.

Syntax

Linux OS:

-Bsymbolic
Windows OS:

None

Intel® Fortran Compiler Classic and Intel® Fortran Compiler Developer Guide and Reference 1

475

Arguments

None

Default

OFF When a program is linked to a shared library, it can override the definition within the shared
library.

Description

This option binds references to all global symbols in a program to the definitions within a user's shared
library.

This option is only meaningful on Executable Linkage Format (ELF) platforms that support shared libraries.

Caution
This option can have unintended side-effects of disabling symbol preemption in the shared
library.

NOTE
This option only applies to host compilation. When offloading is enabled, it does not impact
device-specific compilation. Offloading can only be enabled when using ifx.

IDE Equivalent

None

Alternate Options

None

See Also
Bsymbolic-functions compiler option

Bsymbolic-functions
Binds references to all global function symbols in a
program to the definitions within a user's shared
library.

Syntax

Linux OS:

-Bsymbolic-functions
Windows OS:

None

Arguments

None

 1 Intel® Fortran Compiler Classic and Intel® Fortran Compiler Developer Guide and Reference

476

Default

OFF When a program is linked to a shared library, it can override the definition within the shared
library.

Description

This option binds references to all global function symbols in a program to the definitions within a user's
shared library.

This option is only meaningful on Executable Linkage Format (ELF) platforms that support shared libraries.

Caution
This option can have unintended side-effects of disabling symbol preemption in the shared
library.

NOTE
This option only applies to host compilation. When offloading is enabled, it does not impact
device-specific compilation. Offloading can only be enabled when using ifx.

IDE Equivalent

None

Alternate Options

None

See Also
Bsymbolic compiler option

cxxlib
Determines whether the compiler links using the C++
runtime libraries provided by gcc.

Syntax

Linux OS:

-cxxlib
-no-cxxlib
Windows OS:

None

Arguments

None

Default

-no-cxxlib The compiler uses the default runtime libraries and does not link to any
additional C++ runtime libraries.

Intel® Fortran Compiler Classic and Intel® Fortran Compiler Developer Guide and Reference 1

477

Description

This option determines whether the compiler links to the standard C++ runtime library (libstdc++). It is
useful for building mixed Fortran/C++ applications.

Option -cxxlib=dir can be used with option -gcc-name=name to specify the location dir/bin/name.

IDE Equivalent

None

Alternate Options

None

See Also
gcc-name compiler option

dbglibs
Tells the linker to search for unresolved references in
a debug runtime library.

Syntax

Linux OS:

None
Windows OS:

/dbglibs
/nodbglibs

Arguments

None

Default

/nodbglibs The linker does not search for unresolved references in a debug runtime
library.

Description

This option tells the linker to search for unresolved references in a debug runtime library.

This option is processed by the compiler, which adds directives to the compiled object file that are processed
by the linker.

The following table shows which options to specify for a debug runtime library:

Type of Library Options Required Alternate Option

Debug single-threaded /libs:static
/dbglibs

/MLd (this is a
deprecated option)

Debug multithreaded /libs:static
/threads
/dbglibs

/MTd

 1 Intel® Fortran Compiler Classic and Intel® Fortran Compiler Developer Guide and Reference

478

Type of Library Options Required Alternate Option

Multithreaded debug DLLs /libs:dll
/threads
/dbglibs

/MDd

Debug Fortran QuickWin multi-thread applications /libs:qwin
/dbglibs

None

Debug Fortran standard graphics (QuickWin single-
thread) applications

/libs:qwins
/dbglibs

None

IDE Equivalent

None

Alternate Options

None

dll
Specifies that a program should be linked as a
dynamic-link (DLL) library.

Syntax

Linux OS:

None
Windows OS:

/dll

Arguments

None

Default

OFF The program is not linked as a dynamic-link (DLL) library.

Description

This option specifies that a program should be linked as a dynamic-link (DLL) library instead of an executable
(.exe) file. It overrides any previous specification of runtime routines to be used and enables the /libs:dll
option.

If you use this option with the /libs:qwin or /libs:qwins option, the compiler issues a warning.

IDE Equivalent

None

Alternate Options

Linux: None

Windows: /LD

Intel® Fortran Compiler Classic and Intel® Fortran Compiler Developer Guide and Reference 1

479

dynamic-linker
Specifies a dynamic linker other than the default.

Syntax

Linux OS:

-dynamic-linker file
Windows OS:

None

Arguments

file Is the name of the dynamic linker to be used.

Default

OFF The default dynamic linker is used.

Description

This option lets you specify a dynamic linker other than the default.

NOTE
This option only applies to host compilation. When offloading is enabled, it does not impact
device-specific compilation. Offloading can only be enabled when using ifx.

IDE Equivalent

None

Alternate Options

None

extlnk
Specifies file extensions to be passed directly to the
linker.

Syntax

Linux OS:

None
Windows OS:

/extlnk:ext

Arguments

ext Are the file extensions to be passed directly to the linker.

Default

OFF Only the file extensions recognized by the compiler are passed to the linker.

 1 Intel® Fortran Compiler Classic and Intel® Fortran Compiler Developer Guide and Reference

480

Description

This option specifies file extensions (ext) to be passed directly to the linker. It is useful if your source file has
a nonstandard extension.

You can specify one or more file extensions. A leading period before each extension is optional; for
example, /extlnk:myobj and /extlnk:.myobj are equivalent.

IDE Equivalent

None

Alternate Options

None

F (Windows*)
Specifies the stack reserve amount for the program.

Syntax

Linux OS:

None
Windows OS:

/Fn

Arguments

n Is the stack reserve amount. It can be specified as a decimal integer
or as a hexadecimal constant by using a C-style convention (for
example, /F0x1000).

Default

OFF The stack size default is chosen by the operating system.

Description

This option specifies the stack reserve amount for the program. The amount (n) is passed to the linker.

Note that the linker property pages have their own option to do this.

NOTE
This option only applies to host compilation. When offloading is enabled, it does not impact
device-specific compilation. Offloading can only be enabled when using ifx.

IDE Equivalent

None

Alternate Options

None

Intel® Fortran Compiler Classic and Intel® Fortran Compiler Developer Guide and Reference 1

481

fortlib
Tells the C/C++ compiler driver to link to the Fortran
libraries. This option is primarily used by C/C++ for
mixed-language programming.

Syntax

Linux OS:

-fortlib
Windows OS:

None

Arguments

None

Default

OFF C/C++ compiler drivers do not link to Fortran libraries.

Description

This option tells the C/C++ compiler driver to link to the Fortran libraries. This option is primarily used by
C/C++ for mixed-language programming.

It is useful for building mixed Fortran and C/C++ applications, and it is only effective at link time.

IDE Equivalent

None

Alternate Options

None

Example
Consider that a C/C++ program contains the following lines:

icx mymain.c -c
…
ifx sub1.f90 -c
icx -fortlib mymain.o sub1.o

In this case, the C/C++ program will link to the Fortran libraries at link-time.

fuse-ld
Tells the compiler to use a different linker instead of
the default linker, which is ld on Linux and link on
Windows.

Syntax

Linux OS:

-fuse-ld=keyword
Windows OS:

-fuse-ld=keyword

 1 Intel® Fortran Compiler Classic and Intel® Fortran Compiler Developer Guide and Reference

482

Arguments

keyword Tells the compiler which non-default linker to use. Possible values are:

bfd Tells the compiler to use the bfd linker. This setting is only available for
Linux.

gold Tells the compiler to use the gold linker. This setting is only available for
Linux.

lld Tells the compiler to use the lld linker.

llvm-lib Tells the compiler to use the LLVM librarian. This setting is only available
for Windows.

Default

Linux: ld The compiler uses the ld linker by default.

Windows: link The compiler uses the link linker by default.

Description

This option tells the compiler to use a different linker instead of the default linker, which is ld on Linux and
link on Windows.

On Linux, this option is provided for compatibility with gcc.

NOTE
For ifx on Windows, option /Qipo automatically sets option -fuse-ld=lld.

NOTE
This option only applies to host compilation. When offloading is enabled, it does not impact
device-specific compilation. Offloading can only be enabled when using ifx.

IDE Equivalent

None

Alternate Options

None

See Also
flto compiler option
ipo, Qipo compiler option

l
Tells the linker to search for a specified library when
linking.

Syntax

Linux OS:

-lstring

Intel® Fortran Compiler Classic and Intel® Fortran Compiler Developer Guide and Reference 1

483

Windows OS:

None

Arguments

string Specifies the library (libstring) that the linker should search.

Default

OFF The linker searches for standard libraries in standard directories.

Description

This option tells the linker to search for a specified library when linking.

When resolving references, the linker normally searches for libraries in several standard directories, in
directories specified by the L option, then in the library specified by the l option.

The linker searches and processes libraries and object files in the order they are specified. So, you should
specify this option following the last object file it applies to.

NOTE
This option only applies to host compilation. When offloading is enabled, it does not impact
device-specific compilation. Offloading can only be enabled when using ifx.

IDE Equivalent

None

Alternate Options

None

See Also
L compiler option

L
Tells the linker to search for libraries in a specified
directory before searching the standard directories.

Syntax

Linux OS:

-Ldir
Windows OS:

None

Arguments

dir Is the name of the directory to search for libraries.

Default

OFF The linker searches the standard directories for libraries.

 1 Intel® Fortran Compiler Classic and Intel® Fortran Compiler Developer Guide and Reference

484

Description

This option tells the linker to search for libraries in a specified directory before searching for them in the
standard directories.

NOTE
This option only applies to host compilation. When offloading is enabled, it does not impact
device-specific compilation. Offloading can only be enabled when using ifx.

IDE Equivalent

None

Alternate Options

None

See Also
l compiler option

libs
Tells the compiler which type of runtime library to link
to.

Syntax

Linux OS:

None
Windows OS:

/libs[:keyword]

Arguments

keyword Specifies the type of runtime library to link to. Possible values are:

dll Specifies a multithreaded, dynamic-link (DLL) library.

qwin Specifies the Fortran QuickWin library.

qwins Specifies the Fortran Standard Graphics library.

static Specifies a multi-threaded, static runtime library. This is the
same as specifying /libs with no keyword.

Note that some libraries do not have a static version, such as
the OpenMP runtime libraries or the coarray runtime libraries.

Default

/libs The compiler links to a multi-threaded, static runtime library.

Description

This option tells the compiler which type of runtime library to link to.

This option is processed by the compiler, which adds directives to the compiled object file that are processed
by the linker.

Intel® Fortran Compiler Classic and Intel® Fortran Compiler Developer Guide and Reference 1

485

There are several types of libraries you can link to, depending on which compiler options you specify, as
shown in the table below.

If you use the /libs:dll option and an unresolved reference is found in the DLL, it gets resolved when the
program is executed, during program loading, reducing executable program size.

If you use the /libs:qwin or /libs:qwins option with the /dll option, the compiler issues a warning.

You cannot use the /libs:qwin option and options /libs:dll /threads.

The following table shows which options to specify for different runtime libraries:

Type of Library Options Required Alternate Option

Multithreaded static /libs
(or /threads)

/MT

Debug multithreaded static /libs
(or /threads)

and /dbglibs

/MTd

Multithreaded DLLs /libs:dll /MD

Multithreaded debug DLLs /libs:dll and

/dbglibs
/MDd

Fortran QuickWin multi-doc applications /libs:qwin /MW

Fortran standard graphics (QuickWin single-doc) applications /libs:qwins /MWs

Debug Fortran QuickWin multi-doc applications /libs:qwin
/dbglibs

None

Debug Fortran standard graphics (QuickWin single-doc)
applications

/libs:qwins
/dbglibs

None

NOTE
This option adds directives to the compiled code, which the linker then reads without further
input from the driver.

NOTE
The Intel® OpenMP* library is provided in DLL form only.

IDE Equivalent

Visual Studio

Visual Studio: Libraries > Runtime Library (/libs:{dll|qwin|qwins}, /threads, /dbglibs)

Alternate Options

/libs Linux: -threads
Windows: /threads

 1 Intel® Fortran Compiler Classic and Intel® Fortran Compiler Developer Guide and Reference

486

/libs:dll Linux: None

Windows: /MD

/libs:qwin Linux: None

Windows: /MW

/libs:qwins Linux: None

Windows: /MWs

See Also
threads compiler option
dbglibs compiler option

map
Tells the linker to generate a link map file.

Syntax

Linux OS:

None
Windows OS:

/map[:filename]
/nomap

Arguments

filename Is the name for the link map file. It can be a file name or a directory name.

Default

/nomap No link map is generated.

Description

This option tells the linker to generate a link map file.

IDE Equivalent

Windows

Visual Studio: Linker > Debugging > Generate Map File (/MAP)

Alternate Options

None

MD
Tells the linker to search for unresolved references in
a multithreaded, dynamic-link runtime library.

Syntax

Linux OS:

None

Intel® Fortran Compiler Classic and Intel® Fortran Compiler Developer Guide and Reference 1

487

Windows OS:

/MD
/MDd

Arguments

None

Default

OFF The linker searches for unresolved references in a multi-threaded, static runtime library.

Description

This option tells the linker to search for unresolved references in a multithreaded, dynamic-link (DLL)
runtime library. This is the same as specifying options /libs:dll /threads /dbglibs. You can also
specify /MDd, where d indicates a debug version.

This option is processed by the compiler, which adds directives to the compiled object file that are processed
by the linker.

NOTE
This option only applies to host compilation. When offloading is enabled, it does not impact
device-specific compilation. Offloading can only be enabled when using ifx.

IDE Equivalent

Visual Studio

Visual Studio: Libraries > Runtime Library

Alternate Options

None

See Also
libs compiler option
threads compiler option

MT
Tells the linker to search for unresolved references in
a multithreaded, static runtime library.

Syntax

Linux OS:

None
Windows OS:

/MT
/MTd

Arguments

None

 1 Intel® Fortran Compiler Classic and Intel® Fortran Compiler Developer Guide and Reference

488

Default

/MT /noreentrancy:threaded The linker searches for unresolved references in a multithreaded,
static runtime library.

Description

This option tells the linker to search for unresolved references in a multithreaded, static runtime library. This
is the same as specifying options /libs:static /threads /noreentrancy. You can also specify /MTd,
where d indicates a debug version.

This option is processed by the compiler, which adds directives to the compiled object file that are processed
by the linker.

Caution
If the final executable will be linked with ifx option -fsycl, you should not specify /MT.
Instead, you should use /MD.

NOTE
This option only applies to host compilation. When offloading is enabled, it does not impact
device-specific compilation. Offloading can only be enabled when using ifx.

IDE Equivalent

Visual Studio

Visual Studio: Libraries > Runtime Library

Alternate Options

None

See Also
Qvc compiler option
libs compiler option
threads compiler option
reentrancy compiler option

nodefaultlibs
Prevents the compiler from using standard libraries
when linking.

Syntax

Linux OS:

-nodefaultlibs
Windows OS:

None

Arguments

None

Intel® Fortran Compiler Classic and Intel® Fortran Compiler Developer Guide and Reference 1

489

Default

OFF The standard libraries are linked.

Description

This option prevents the compiler from using standard libraries when linking.

NOTE
This option only applies to host compilation. When offloading is enabled, it does not impact
device-specific compilation. Offloading can only be enabled when using ifx.

IDE Equivalent

None

Alternate Options

None

See Also
nostdlib compiler option

nofor-main
Specifies that the main program is not written in
Fortran.

Syntax

Linux OS:

-nofor-main
Windows OS:

None

Arguments

None

Default

OFF The compiler assumes the main program is written in Fortran.

Description

This option specifies that the main program is not written in Fortran. It is a link-time option that prevents the
compiler from linking for_main.o into applications.

For example, if the main program is written in C and calls a Fortran subprogram, specify -nofor-main when
compiling the program with the ifx or ifort command.

If you omit this option, the main program must be a Fortran program.

IDE Equivalent

None

 1 Intel® Fortran Compiler Classic and Intel® Fortran Compiler Developer Guide and Reference

490

Alternate Options

None

no-intel-lib, Qno-intel-lib
Disables linking to specified Intel® libraries, or to all
Intel® libraries.

Syntax

Linux OS:

-no-intel-lib[=library]
Windows OS:

/Qno-intel-lib[:library]

Arguments

library Indicates which Intel® library should not be linked. Possible values are:

libirc Disables linking to the Intel® C/C++ library.

libimf Disables linking to the Intel® Fortran Compiler Classic and
Intel® Fortran Compiler Math library.

libm This setting is only available on Windows. It is equivalent
to specifying libimf.

libsvml Disables linking to the Intel® Short Vector Math library.

libirng Disables linking to the Random Number Generator library.

libipgo Disables linking to the Profile-Guided Optimization library.
This value is only available for ifort.

If you specify more than one library, they must be separated by commas.

If library is omitted, the compiler will not link to any of the Intel® libraries shown above.

Default

OFF If this option is not specified, the compiler uses default heuristics for linking to
libraries.

Description

This option disables linking to specified Intel® libraries, or to all Intel® libraries.

NOTE
This option only applies to host compilation. When offloading is enabled, it does not impact
device-specific compilation. Offloading can only be enabled when using ifx.

IDE Equivalent

None

Intel® Fortran Compiler Classic and Intel® Fortran Compiler Developer Guide and Reference 1

491

Alternate Options

None

nostartfiles
Prevents the compiler from using standard startup
files when linking.

Syntax

Linux OS:

-nostartfiles
Windows OS:

None

Arguments

None

Default

OFF The compiler uses standard startup files when linking.

Description

This option prevents the compiler from using standard startup files when linking.

NOTE
This option only applies to host compilation. When offloading is enabled, it does not impact
device-specific compilation. Offloading can only be enabled when using ifx.

IDE Equivalent

None

Alternate Options

None

See Also
nostdlib compiler option

nostdlib
Prevents the compiler from using standard libraries
and startup files when linking.

Syntax

Linux OS:

-nostdlib
Windows OS:

None

 1 Intel® Fortran Compiler Classic and Intel® Fortran Compiler Developer Guide and Reference

492

Arguments

None

Default

OFF The compiler uses standard startup files and standard libraries when linking.

Description

This option prevents the compiler from using standard libraries and startup files when linking.

NOTE
This option only applies to host compilation. When offloading is enabled, it does not impact
device-specific compilation. Offloading can only be enabled when using ifx.

IDE Equivalent

None

Alternate Options

None

See Also
nodefaultlibs compiler option
nostartfiles compiler option

pie
Determines whether the compiler generates position-
independent code that will be linked into an
executable.

Syntax

Linux OS:

-pie
-no-pie
Windows OS:

None

Arguments

None

Default

-no-pie The compiler does not generate position-independent code that will be linked into an executable.

Description

This option determines whether the compiler generates position-independent code that will be linked into an
executable. To enable generation of position-independent code that will be linked into an executable, specify
-pie.

To disable generation of position-independent code that will be linked into an executable, specify -no-pie.

Intel® Fortran Compiler Classic and Intel® Fortran Compiler Developer Guide and Reference 1

493

IDE Equivalent

None

Alternate Options

None

See Also
fpic compiler option

pthread
Tells the compiler to use pthreads library for
multithreading support.

Syntax

Linux OS:

-pthread
Windows OS:

None

Arguments

None

Default

OFF The compiler does not use pthreads library for multithreading support.

Description

Tells the compiler to use pthreads library for multithreading support.

NOTE
This option only applies to host compilation. When offloading is enabled, it does not impact
device-specific compilation. Offloading can only be enabled when using ifx.

IDE Equivalent

None

Alternate Options

Linux: -reentrancy threaded
Windows: /reentrancy:threaded

shared
Tells the compiler to produce a dynamic shared object
instead of an executable.

Syntax

Linux OS:

-shared

 1 Intel® Fortran Compiler Classic and Intel® Fortran Compiler Developer Guide and Reference

494

Windows OS:

None

Arguments

None

Default

OFF The compiler produces an executable.

Description

This option tells the compiler to produce a dynamic shared object (DSO) instead of an executable. This
includes linking in all libraries dynamically and passing -shared to the linker.

You must specify option fpic for the compilation of each object file you want to include in the shared library.

NOTE
When you specify option shared, the Intel® libraries are linked dynamically. If you want
them to be linked statically, you must also specify option static-intel.

NOTE
This option only applies to host compilation. When offloading is enabled, it does not impact
device-specific compilation. Offloading can only be enabled when using ifx.

IDE Equivalent

None

Alternate Options

None

See Also
fpic compiler option
Xlinker compiler option

shared-intel
Causes Intel-provided libraries to be linked in
dynamically.

Syntax

Linux OS:

-shared-intel
Windows OS:

None

Arguments

None

Intel® Fortran Compiler Classic and Intel® Fortran Compiler Developer Guide and Reference 1

495

Default

OFF Intel® libraries are linked in statically except for the following, which are linked in dynamically:

• Intel's coarray runtime support library
• Intel's OpenMP* runtime support library
• ifx: Intel's math functions library (libimf)
• ifx: Intel's replacement for libc (libintlc)

To link the OpenMP* runtime support library statically, specify option -qopenmp-link=static.

Description

This option causes Intel-provided libraries to be linked in dynamically. It is the opposite of -static-intel.

This option is processed by the compiler driver command that initiates linking, adding library names explicitly
to the link command.

If you specify option -mcmodel=medium or -mcmodel=large, it sets option -shared-intel.

NOTE
This option only applies to host compilation. When offloading is enabled, it does not impact
device-specific compilation. Offloading can only be enabled when using ifx.

IDE Equivalent

None

Alternate Options

None

See Also
static-intel compiler option
qopenmp-link compiler option

shared-libgcc
Links the GNU libgcc library dynamically.

Syntax

Linux OS:

-shared-libgcc
Windows OS:

None

Arguments

None

Default

-shared-libgcc The compiler links the libgcc library dynamically.

Description

This option links the GNU libgcc library dynamically. It is the opposite of option static-libgcc.

 1 Intel® Fortran Compiler Classic and Intel® Fortran Compiler Developer Guide and Reference

496

This option is processed by the compiler driver command that initiates linking, adding library names explicitly
to the link command.

This option is useful when you want to override the default behavior of the static option, which causes all
libraries to be linked statically.

NOTE
This option only applies to host compilation. When offloading is enabled, it does not impact
device-specific compilation. Offloading can only be enabled when using ifx.

IDE Equivalent

None

Alternate Options

None

See Also
static-libgcc compiler option

static
Prevents linking with shared libraries.

Syntax

Linux OS:

-static
Windows OS:

/static

Arguments

None

Default

varies The compiler links with shared GNU libraries (Linux* systems) or shared Microsoft* libraries
(Windows* systems) and it links with static Intel libraries, with the exception of the OpenMP*
libraries and coarray library libicaf, which are linked in dynamically.

On Windows* systems, option /static is equivalent to option /MT.

Description

This option prevents linking with shared libraries. It causes the executable to link all libraries statically.

NOTE
This option does not cause static linking of libraries for which no static version is available,
such as the OpenMP runtime libraries on Windows* or the coarray runtime libraries. These
libraries can only be linked dynamically.

Intel® Fortran Compiler Classic and Intel® Fortran Compiler Developer Guide and Reference 1

497

NOTE
This option only applies to host compilation. When offloading is enabled, it does not impact
device-specific compilation. Offloading can only be enabled when using ifx.

IDE Equivalent

None

Alternate Options

None

See Also
MT compiler option
Qvc compiler option
static-intel compiler option

static-intel
Causes Intel-provided libraries to be linked in
statically.

Syntax

Linux OS:

-static-intel
Windows OS:

None

Arguments

None

Default

ON Intel® libraries are linked in statically with the following exceptions:

• The Intel coarray runtime support library is linked in dynamically.
• The Intel OpenMP* runtime support library is linked in dynamically. To prevent this, specify

option -qopenmp-link=static.
• The Intel specific math library functions in libimf are linked in dynamically by ifx.
• The Intel replacement for libc (libintlc) is linked in dynamically by ifx.
• The Intel libraries are linked in dynamically when you specify option shared. To prevent this,

when you specify shared, you must also specify option static-intel.

Description

This option causes Intel-provided libraries to be linked in statically with certain exceptions (see the Default
above). It is the opposite of -shared-intel.

This option is processed by the compiler driver command that initiates linking, adding library names explicitly
to the link command.

If you specify option -static-intel while option -mcmodel=medium or -mcmodel=large is set, an error
will be displayed.

If you specify option -static-intel and any of the Intel-provided libraries have no static version, a
diagnostic will be displayed.

 1 Intel® Fortran Compiler Classic and Intel® Fortran Compiler Developer Guide and Reference

498

NOTE
This option only applies to host compilation. When offloading is enabled, it does not impact
device-specific compilation. Offloading can only be enabled when using ifx.

IDE Equivalent

None

Alternate Options

None

See Also
shared-intel compiler option
qopenmp-link compiler option

static-libgcc
Links the GNU libgcc library statically.

Syntax

Linux OS:

-static-libgcc
Windows OS:

None

Arguments

None

Default

OFF The compiler links the GNU libgcc library dynamically.

Description

This option links the GNU libgcc library statically. It is the opposite of option -shared-libgcc.

This option is processed by the compiler driver command that initiates linking, adding library names explicitly
to the link command.

This option is useful when you want to override the default behavior, which causes the library to be linked
dynamically.

NOTE
If you want to use traceback, you must also link to the static version of the libgcc library.
This library enables printing of backtrace information.

NOTE
This option only applies to host compilation. When offloading is enabled, it does not impact
device-specific compilation. Offloading can only be enabled when using ifx.

Intel® Fortran Compiler Classic and Intel® Fortran Compiler Developer Guide and Reference 1

499

IDE Equivalent

None

Alternate Options

None

See Also
shared-libgcc compiler option
static-libstdc++ compiler option

static-libstdc++
Links the GNU libstdc++ library statically.

Syntax

Linux OS:

-static-libstdc++
Windows OS:

None

Arguments

None

Default

OFF The compiler links the GNU libstdc++ library dynamically.

Description

This option links the GNU libstdc++ library statically.

This option is processed by the compiler driver command that initiates linking, adding library names explicitly
to the link command.

This option is useful when you want to override the default behavior, which causes the library to be linked
dynamically.

NOTE
This option only applies to host compilation. When offloading is enabled, it does not impact
device-specific compilation. Offloading can only be enabled when using ifx.

IDE Equivalent

None

Alternate Options

None

See Also
static-libgcc compiler option

 1 Intel® Fortran Compiler Classic and Intel® Fortran Compiler Developer Guide and Reference

500

T
Tells the linker to read link commands from a file.

Syntax

Linux OS:

-Tfilename
Windows OS:

None

Arguments

filename Is the name of the file.

Default

OFF The linker does not read link commands from a file.

Description

This option tells the linker to read link commands from a file.

NOTE
This option only applies to host compilation. When offloading is enabled, it does not impact
device-specific compilation. Offloading can only be enabled when using ifx.

IDE Equivalent

None

Alternate Options

None

threads
Tells the linker to search for unresolved references in
a multithreaded runtime library.

Syntax

Linux OS:

-threads
-nothreads
Windows OS:

/threads
/nothreads

Arguments

None

Intel® Fortran Compiler Classic and Intel® Fortran Compiler Developer Guide and Reference 1

501

Default

threads The linker searches for unresolved references in a library that supports enabling thread-safe
operation.

Description

This option tells the linker to search for unresolved references in a multithreaded runtime library.

This option sets option reentrancy threaded.

Windows systems: The following table shows which options to specify for a multithreaded runtime library.

Type of Library Options Required Alternate Option

Multithreaded /libs:static
/threads

/MT

Debug multithreaded /libs:static
/threads
/dbglibs

/MTd

Multithreaded DLLs /libs:dll
/threads

/MD

Multithreaded debug DLLs /libs:dll
/threads
/dbglibs

/MDd

To ensure that a threadsafe and/or reentrant runtime library is linked and correctly initialized, option
threads should also be used for the link step and for the compilation of the main routine.

NOTE
On Windows* systems, this option is processed by the compiler, which adds directives to the
compiled object file that are processed by the linker. On Linux* systems, this option is
processed by the ifort command that initiates linking, adding library names explicitly to the
link command.

IDE Equivalent

None

Alternate Options

None

See Also
reentrancy compiler option

v
Specifies that driver tool commands should be
displayed and executed.

 1 Intel® Fortran Compiler Classic and Intel® Fortran Compiler Developer Guide and Reference

502

Syntax

Linux OS:

-v [filename]
Windows OS:

None

Arguments

filename Is the name of a source file to be compiled. A space must appear
before the file name.

Default

OFF No tool commands are shown.

Description

This option specifies that driver tool commands should be displayed and executed.

If you use this option without specifying a source file name, the compiler displays only the version of the
compiler.

If you want to display processing information (pass information and source file names), specify keyword all
for the watch option.

IDE Equivalent

None

Alternate Options

Linux: -watch cmd
Windows: /watch:cmd

See Also
dryrun compiler option
watch compiler option

Wa
Passes options to the assembler for processing.

Syntax

Linux OS:

-Wa,option1[,option2,...]
Windows OS:

None

Arguments

option Is an assembler option. This option is not processed by the driver and
is directly passed to the assembler.

Intel® Fortran Compiler Classic and Intel® Fortran Compiler Developer Guide and Reference 1

503

Default

OFF No options are passed to the assembler.

Description

This option passes one or more options to the assembler for processing. If the assembler is not invoked,
these options are ignored.

NOTE
This option only applies to host compilation. When offloading is enabled, it does not impact
device-specific compilation. Offloading can only be enabled when using ifx.

IDE Equivalent

None

Alternate Options

None

winapp
Tells the compiler to create a graphics or Fortran
Windows application and link against the most
commonly used libraries.

Syntax

Linux OS:

None
Windows OS:

/winapp

Arguments

None

Default

OFF No graphics or Fortran Windows application is created.

Description

This option tells the compiler to create a graphics or Fortran Windows application and link against the most
commonly used libraries.

This option is processed by the compiler, which adds directives to the compiled object file that are processed
by the linker.

IDE Equivalent

Visual Studio

Visual Studio: Libraries > Use Common Windows Libraries

 1 Intel® Fortran Compiler Classic and Intel® Fortran Compiler Developer Guide and Reference

504

Alternate Options

Linux: None

Windows: /MG

Wl, link
Passes options to the linker for processing.

Syntax

Linux OS:

-Wl,option1[,option2,...]
Windows OS:

/link

Arguments

option Is a linker option. This option is not processed by the driver and is
directly passed to the linker.

Default

OFF No options are passed to the linker.

Description

Option -Wl passes one or more options to the linker for processing. If the linker is not invoked, these options
are ignored.

All options that appear following /link are passed directly to the linker.

The -Wl option is equivalent to specifying option -Qoption,link,options.

NOTE
This option only applies to host compilation. When offloading is enabled, it does not impact
device-specific compilation. Offloading can only be enabled when using ifx.

IDE Equivalent

None

Alternate Options

None

See Also
Qoption compiler option

Wp
Passes options to the preprocessor.

Syntax

Linux OS:

-Wp,option1[,option2,...]

Intel® Fortran Compiler Classic and Intel® Fortran Compiler Developer Guide and Reference 1

505

Windows OS:

None

Arguments

option Is a preprocessor option. This option is not processed by the driver
and is directly passed to the preprocessor.

Default

OFF No options are passed to the preprocessor.

Description

This option passes one or more options to the preprocessor. If the preprocessor is not invoked, these options
are ignored.

This option is equivalent to specifying option -Qoption,fpp, options.

NOTE
This option only applies to host compilation. When offloading is enabled, it does not impact
device-specific compilation. Offloading can only be enabled when using ifx.

IDE Equivalent

None

Alternate Options

None

See Also
Qoption compiler option

Xlinker
Passes a linker option directly to the linker.

Syntax

Linux OS:

-Xlinker option
Windows OS:

None

Arguments

option Is a linker option.

Default

OFF No options are passed directly to the linker.

 1 Intel® Fortran Compiler Classic and Intel® Fortran Compiler Developer Guide and Reference

506

Description

This option passes a linker option directly to the linker. If -Xlinker -shared is specified, only -shared is
passed to the linker and no special work is done to ensure proper linkage for generating a shared object.
-Xlinker just takes whatever arguments are supplied and passes them directly to the linker.

If you want to pass compound options to the linker, for example "-L $HOME/lib", you must use the
following method:

-Xlinker -L -Xlinker $HOME/lib

NOTE
This option only applies to host compilation. When offloading is enabled, it does not impact
device-specific compilation. Offloading can only be enabled when using ifx.

IDE Equivalent

None

Alternate Options

None

See Also
shared compiler option
Wl, link compiler option

Miscellaneous Options
This section contains descriptions for compiler options that do not pertain to a specific category. They are
listed in alphabetical order.

bigobj
Increases the number of sections that an object file
can contain. This feature is only available for ifort.

Syntax

Linux OS:

None
Windows OS:

/bigobj

Arguments

None

Default

OFF An object file can hold up to 65,536 (2**16) addressable sections.

Description

This option increases the number of sections that an object file can contain. It increases the address capacity
to 4,294,967,296(2**32).

This option may be helpful for .obj files that can hold more sections, such as machine generated code.

Intel® Fortran Compiler Classic and Intel® Fortran Compiler Developer Guide and Reference 1

507

IDE Equivalent

None

Alternate Options

None

dryrun
Specifies that driver tool commands should be shown
but not executed.

Syntax

Linux OS:

-dryrun
Windows OS:

None

Arguments

None

Default

OFF No tool commands are shown, but they are executed.

Description

This option specifies that driver tool commands should be shown but not executed.

IDE Equivalent

None

Alternate Options

None

See Also
v compiler option

dumpmachine
Displays the target machine and operating system
configuration.

Syntax

Linux OS:

-dumpmachine
Windows OS:

None

Arguments

None

 1 Intel® Fortran Compiler Classic and Intel® Fortran Compiler Developer Guide and Reference

508

Default

OFF The compiler does not display target machine or operating system information.

Description

This option displays the target machine and operating system configuration. No compilation is performed.

NOTE
This option only applies to host compilation. When offloading is enabled, it does not impact
device-specific compilation. Offloading can only be enabled when using ifx.

IDE Equivalent

None

Alternate Options

None

extfor
Specifies file extensions to be processed by the
compiler as Fortran files.

Syntax

Linux OS:

None
Windows OS:

/extfor:ext

Arguments

ext Are the file extensions to be processed as a Fortran file.

Default

OFF Only the file extensions recognized by the compiler are processed as Fortran files.

Description

This option specifies file extensions (ext) to be processed by the compiler as Fortran files. It is useful if your
source file has a nonstandard extension.

You can specify one or more file extensions. A leading period before each extension is optional; for
example, /extfor:myf95 and /extfor:.myf95 are equivalent.

IDE Equivalent

None

Alternate Options

None

Intel® Fortran Compiler Classic and Intel® Fortran Compiler Developer Guide and Reference 1

509

See Also
Tf compiler option

extfpp
Specifies file extensions to be recognized as a file to
be preprocessed by the Fortran preprocessor.

Syntax

Linux OS:

None
Windows OS:

/extfpp:ext

Arguments

ext Are the file extensions to be preprocessed by the Fortran preprocessor.

Default

OFF Only the file extensions recognized by the compiler are preprocessed by fpp.

Description

This option specifies file extensions (ext) to be recognized as a file to be preprocessed by the Fortran
preprocessor (fpp). It is useful if your source file has a nonstandard extension.

You can specify one or more file extensions. A leading period before each extension is optional; for
example, /extfpp:myfpp and /extfpp:.myfpp are equivalent.

NOTE
All files are assumed to be Fortran fixed source format files by default. To preprocess them
as free source format, specify the /free compiler option.

IDE Equivalent

None

Alternate Options

None

fpreview-breaking-changes
Lets a user tell the compiler that they are willing to
give up backward compatibility guarantees and lets
the compiler enable new backward breaking changes
that will appear in the next major release. This feature
is only available for ifx.

Syntax

Linux OS:

-fpreview-breaking-changes

 1 Intel® Fortran Compiler Classic and Intel® Fortran Compiler Developer Guide and Reference

510

Windows OS:

-fpreview-breaking-changes

Arguments

None

Default

OFF The compiler follows default heuristics for backward compatibility.

Description

This option lets a user tell the compiler that they are willing to give up backward compatibility guarantees
and lets the compiler enable new backward breaking changes that will appear in the next major release.

The breaking changes specified will be the default in the next major compiler release. So, this option lets you
prepare for that release should you want to do so.

When this option is specified, it sets the macro __INTEL_PREVIEW_BREAKING_CHANGES.

When this option is used along with option -fsycl, the driver will link against an alternate form of libsycl,
which is libsycl-preview.

NOTE
To decide whether you want to choose to use the latest changes made by developers, see
the Release Notes, which will show what is actually enabled by option
-fpreview-breaking-release in each release.

IDE Equivalent

None

Alternate Options

None

Example
The following shows examples of using this option:

> ifx -fpreview-breaking-changes file.f90
> ifx -fpreview-breaking-changes -fiopenmp -fopenmp-targets=spir64 test.for

global-hoist, Qglobal-hoist
Enables certain optimizations that can move memory
loads to a point earlier in the program execution than
where they appear in the source.

Syntax

Linux OS:

-global-hoist
-no-global-hoist
Windows OS:

/Qglobal-hoist

Intel® Fortran Compiler Classic and Intel® Fortran Compiler Developer Guide and Reference 1

511

https://www.intel.com/content/www/us/en/developer/articles/release-notes/oneapi-fortran-compiler-release-notes.html

/Qglobal-hoist-

Arguments

None

Default

-global-hoist
or /Qglobal-hoist

Certain optimizations are enabled that can move memory loads.

Description

This option enables certain optimizations that can move memory loads to a point earlier in the program
execution than where they appear in the source. In most cases, these optimizations are safe and can
improve performance.

The negative form of the option is useful for some applications, such as those that use shared or dynamically
mapped memory, which can fail if a load is moved too early in the execution stream (for example, before the
memory is mapped).

IDE Equivalent

None

Alternate Options

None

help
Displays all supported compiler options or supported
compiler options within a specified category of
options.

Syntax

Linux OS:

-help[category]
Windows OS:

/help[category]

Arguments

category Is a category or class of options to display. Possible values are:

advanced Displays advanced optimization options that
allow fine tuning of compilation or allow
control over advanced features of the
compiler.

codegen Displays Code Generation options.

compatibility Displays options affecting language
compatibility.

component Displays options for component control.

 1 Intel® Fortran Compiler Classic and Intel® Fortran Compiler Developer Guide and Reference

512

data Displays options related to interpretation of
data in programs or the storage of data.

deprecated Displays options that have been deprecated.

diagnostics Displays options that affect diagnostic
messages displayed by the compiler.

float Displays options that affect floating-point
operations.

help Displays all the available help categories.

inline Displays options that affect inlining.

ipo Displays Interprocedural Optimization (IPO)
options

language Displays options affecting the behavior of the
compiler language features.

link Displays linking or linker options.

misc Displays miscellaneous options that do not fit
within other categories.

openmp Displays OpenMP and parallel processing
options.

opt Displays options that help you optimize code.

output Displays options that provide control over
compiler output.

pgo Displays Profile Guided Optimization (PGO)
options.

preproc Displays options that affect preprocessing
operations.

reports Displays options for optimization reports.

Default

OFF No list is displayed unless this compiler option is specified.

Description

This option displays all supported compiler options or supported compiler options within a specified category
of options. If you specify category, it will display all available (supported) compiler options in the specified
category.

NOTE
This option only applies to host compilation. When offloading is enabled, it does not impact
device-specific compilation. Offloading can only be enabled when using ifx.

Intel® Fortran Compiler Classic and Intel® Fortran Compiler Developer Guide and Reference 1

513

IDE Equivalent

None

Alternate Options

Linux: None

Windows: /?

intel-freestanding
Lets you compile in the absence of a gcc environment.

Syntax

Linux OS:

-intel-freestanding[=ver]
Windows OS:

None

Arguments

ver Is a three-digit number that is used to determine the gcc version that
the compiler should be compatible with for compilation. It also sets
the corresponding GNUC macros.

The number will be normalized to reflect the gcc compiler version
numbering scheme. For example, if you specify 493, it indicates the
compiler should be compatible with gcc version 4.9.3.

Default

OFF The compiler uses default heuristics when choosing the gcc environment.

Description

This option lets you compile in the absence of a gcc environment. It disables any external compiler calls
(such as calls to gcc) that the compiler driver normally performs by default.

This option also removes any default search locations for header and library files. So, for successful
compilation and linking, you must provide these search locations.

This option does not affect ld, as, or fpp. They will be used for compilation as needed.

NOTE
This option does not imply option -X -nostdlib. If you want to assure a clean environment
for compilation (including removal of Intel-specific header locations and libs), you should
specify -X and/or -nostdlib.

IDE Equivalent

None

Alternate Options

None

 1 Intel® Fortran Compiler Classic and Intel® Fortran Compiler Developer Guide and Reference

514

See Also
intel-freestanding-target-os compiler option
nostdlib compiler option
X compiler option

intel-freestanding-target-os
Lets you specify the target operating system for
compilation.

Syntax

Linux OS:

-intel-freestanding-target-os=os
Windows OS:

None

Arguments

os Is the target operating system for the Linux compiler.

Currently, the only possible value is linux.

Default

OFF The installed gcc determines the target operating system.

Description

This option lets you specify the target operating system for compilation. It sets option
-intel-freestanding.

IDE Equivalent

None

Alternate Options

None

See Also
intel-freestanding compiler option

libdir
Controls whether linker options for search libraries are
included in object files generated by the compiler.

Syntax

Linux OS:

None
Windows OS:

/libdir[:keyword]
/nolibdir

Intel® Fortran Compiler Classic and Intel® Fortran Compiler Developer Guide and Reference 1

515

Arguments

keyword Specifies the linker search options. Possible values are:

none Prevents any linker search options from being included into the
object file. This is the same as specifying /nolibdir.

[no]automatic Determines whether linker search options for libraries
automatically determined by the command driver (default
libraries) are included in the object file.

[no]user Determines whether linker search options for libraries specified
by the OBJCOMMENT source directives are included in the object
file.

all Causes linker search options for the following libraries:

• Libraries automatically determined by the command driver
(default libraries)

• Libraries specified by the OBJCOMMENT directive to be
included in the object file

This is the same as specifying /libdir.

Default

/libdir:all Linker search options for libraries automatically determined by the
command driver (default libraries) and libraries specified by the
OBJCOMMENT directive are included in the object file.

Description

This option controls whether linker options for search libraries (/DEFAULTLIB:library) are included in
object files generated by the compiler.

The linker option /DEFAULTLIB:library adds one library to the list of libraries that the linker searches
when resolving references. A library specified with /DEFAULTLIB:library is searched after libraries
specified on the command line and before default libraries named in .obj files.

IDE Equivalent

Windows

Visual Studio: Libraries > Disable Default Library Search Rules (/libdir:[no]automatic)

Libraries > Disable OBJCOMMENT Library Name in Object (/libdir:[no]user)

Alternate Options

/libdir:none Linux: None

Windows: /Zl

logo
Displays the compiler version information.

 1 Intel® Fortran Compiler Classic and Intel® Fortran Compiler Developer Guide and Reference

516

Syntax

Linux OS:

-logo
-nologo
Windows OS:

/logo
/nologo

Arguments

None

Default

Linux*: nologo The compiler version information is not displayed.

Windows*: logo The compiler version information is displayed.

Description

This option displays the startup banner, which contains the following compiler information:

• The name of the compiler and its applicable architecture
• The major and minor version of the compiler, the update number, and the package number (for example,

Version 2024.1.0 Build 20240308)
• The specific build and build date (for example, Build <builddate>)
• The copyright date of the software

This option can be placed anywhere on the command line.

IDE Equivalent

Windows

Visual Studio: General > Suppress Startup Banner (/nologo)

Alternate Options

Linux: -V
Windows: None

multiple-processes, MP
Creates multiple processes that can be used to
compile large numbers of source files at the same
time.

Syntax

Linux OS:

-multiple-processes[=n]
Windows OS:

/MP[:n]

Intel® Fortran Compiler Classic and Intel® Fortran Compiler Developer Guide and Reference 1

517

Arguments

n Is the maximum number of processes that the compiler should create.

Default

OFF A single process is used to compile source files.

Description

This option creates multiple processes that can be used to compile large numbers of source files at the same
time. It can improve performance by reducing the time it takes to compile source files on the command line.

This option causes the compiler to create one or more copies of itself, each in a separate process. These
copies simultaneously compile the source files.

If n is not specified for this option, the default value is as follows:

• On Windows* systems, the value is based on the setting of the NUMBER_OF_PROCESSORS environment
variable.

• On Linux* systems, the value is 2.

This option applies to compilations, but not to linking or link-time code generation.

To override default heuristics, specify option /MP-force. It ensures that n will be the maximum number of
processes created regardless of other heuristics that may limit the number of processes.

IDE Equivalent

Windows

Visual Studio: General > Multi-processor Compilation

Alternate Options

None

save-temps, Qsave-temps
Tells the compiler to save intermediate files created
during compilation.

Syntax

Linux OS:

-save-temps
-no-save-temps
Windows OS:

/Qsave-temps
/Qsave-temps-

Arguments

None

Default

Linux systems: -no-save-temps On Linux systems, the compiler deletes intermediate
files after compilation is completed.

 1 Intel® Fortran Compiler Classic and Intel® Fortran Compiler Developer Guide and Reference

518

Windows systems: .obj files are saved On Windows systems, the compiler saves only
intermediate object files after compilation is
completed.

Description

This option tells the compiler to save intermediate files created during compilation. The names of the files
saved are based on the name of the source file; the files are saved in the current working directory.

If option -save-temps (Linux) or option /Qsave-temps (Windows) is specified, the following occurs:

• On Linux, the object .o file is saved.
• On Windows, the .obj file object .o file is saved.
• The assembler .s file (Linux) or .asm file (Windows) is saved if you specified the [Q]use-asm option.
• The .i or .i90 file is saved if the fpp preprocessor is invoked.

If -no-save-temps is specified on Linux systems, the following occurs:

• The .o file is put into /tmp and deleted after calling ld.
• The preprocessed file is not saved after it has been used by the compiler.

If /Qsave-temps- is specified on Windows systems, the following occurs:

• The .obj file is not saved after the linker step.
• The preprocessed file is not saved after it has been used by the compiler.

NOTE
This option only saves intermediate files that are normally created during compilation.

IDE Equivalent

None

Alternate Options

None

Example
If you compile program my_foo.F on a Linux system and you specify option -save-temps and option
-use-asm, the compilation will produce files my_foo.o, my_foo.s, and my_foo.i.

If you compile program my_foo.fpp on a Windows system and you specify option /Qsave-temps and
option /Quse-asm, the compilation will produce files my_foo.obj, my_foo.asm, and my_foo.i.

sox
Tells the compiler to save the compilation options and
version number in the executable file. It also lets you
choose whether to include lists of certain routines.

Syntax

Linux OS:

-sox[=keyword[,keyword]]
-no-sox
Windows OS:

None

Intel® Fortran Compiler Classic and Intel® Fortran Compiler Developer Guide and Reference 1

519

Arguments

keyword Is the routine information to include. Possible values are:

inline Includes a list of the routines that were
inlined in each object.

profile Includes a list of the routines that were
compiled with the -prof-use option and for
which the .dpi file had profile information,
and an indication for each as to whether the
profile information was USED (matched) or
IGNORED (mismatched).

Default

-no-sox The compiler does not save these informational strings in the object file.

Description

This option tells the compiler to save the compilation options and version number in the executable file. It
also lets you choose whether to include lists of certain routines. The information is embedded as a string in
each object file or assembly output.

If you specify option sox with no keyword, the compiler saves the compiler options and version number used
in the compilation of the objects that make up the executable.

When you specify this option, the size of the executable on disk is increased slightly. Each keyword you
specify increases the size of the executable. When you link the object files into an executable file, the linker
places each of the information strings into the header of the executable. It is then possible to use a tool,
such as a strings utility, to determine what options were used to build the executable file.

IDE Equivalent

None

Alternate Options

None

Example
The following commands are equivalent:

-sox=profile -sox=inline
-sox=profile,inline

You can use the negative form of the option to disable and reset the option. For example:

-sox=profile -no-sox -sox=inline ! This means -sox=inline

See Also
prof-use, Qprof-use compiler option

sysroot
Specifies the root directory where headers and
libraries are located.

 1 Intel® Fortran Compiler Classic and Intel® Fortran Compiler Developer Guide and Reference

520

Syntax

Linux OS:

--sysroot=dir
Windows OS:

None

Arguments

dir Specifies the local directory that contains copies of target libraries in
the corresponding subdirectories.

Default

Off The compiler uses default settings to search for headers and libraries.

Description

This option specifies the root directory where headers and libraries are located.

For example, if the headers and libraries are normally located in /usr/include and /usr/lib respectively,
--sysroot=/mydir will cause the compiler to search in /mydir/usr/include and /mydir/usr/lib for the
headers and libraries.

IDE Equivalent

None

Alternate Options

None

Tf
Tells the compiler to compile the file as a Fortran
source file.

Syntax

Linux OS:

-Tf filename
Windows OS:

/Tf filename

Arguments

filename Is the name of the file.

Default

OFF Files that do not end in standard Fortran file extensions are not compiled as Fortran files.

Description

This option tells the compiler to compile the file as a Fortran source file.

Intel® Fortran Compiler Classic and Intel® Fortran Compiler Developer Guide and Reference 1

521

This option is useful when you have a Fortran file with a nonstandard file extension (that is, not one
of .F, .FOR, or .F90).

This option assumes the file specified uses fixed source form. If the file uses free source form, you must also
specify option free.

IDE Equivalent

None

Alternate Options

None

See Also
extfor compiler option
free compiler option

watch
Tells the compiler to display certain information to the
console output window.

Syntax

Linux OS:

-watch[=keyword[, keyword...]]
-nowatch
Windows OS:

/watch[:keyword[, keyword...]]
/nowatch

Arguments

keyword Determines what information is displayed. Possible values are:

none Disables cmd and source.

[no]cmd Determines whether driver tool commands are displayed and
executed.

[no]source Determines whether the name of the file being compiled is displayed.

all Enables cmd and source.

Default

nowatch Pass information and source file names are not displayed to the console output window.

Description

Tells the compiler to display processing information (pass information and source file names) to the console
output window.

 1 Intel® Fortran Compiler Classic and Intel® Fortran Compiler Developer Guide and Reference

522

Option watch keyword Description

none Tells the compiler to not display pass information and source file names
to the console output window. This is the same as specifying nowatch.

cmd Tells the compiler to display and execute driver tool commands.

source Tells the compiler to display the name of the file being compiled.

all Tells the compiler to display pass information and source file names to
the console output window. This is the same as specifying watch with no
keyword. For heterogeneous compilation, the tool commands for the host
and the offload compilations will be displayed.

NOTE
This option only applies to host compilation. When offloading is enabled, it does not impact
device-specific compilation. Offloading can only be enabled when using ifx.

IDE Equivalent

None

Alternate Options

watch cmd Linux: -v
Windows: None

See Also
v compiler option

what
Tells the compiler to display its detailed version string.

Syntax

Linux OS:

-what
Windows OS:

/what

Arguments

None

Default

OFF The version strings are not displayed.

Description

This option tells the compiler to display its detailed version string.

IDE Equivalent

None

Intel® Fortran Compiler Classic and Intel® Fortran Compiler Developer Guide and Reference 1

523

Alternate Options

None

Deprecated and Removed Compiler Options
Occasionally, compiler options are marked as "deprecated." Deprecated options are still supported in the
current release, but they may be unsupported in future releases.

Some compiler options are no longer supported and have been removed. If you use one of these options, the
compiler issues a warning, ignores the option, and then proceeds with compilation.

This topic lists deprecated and removed compiler options and suggests replacement options, if any are
available.

For more information on compiler options, see the detailed descriptions of the individual options.

Deprecated Options for SYCL
The following table lists options that are currently deprecated.

Note that deprecated options are not limited to this list.

Deprecated Linux and Windows Options Suggested Replacement

fsycl-link-huge-device-code flink-huge-device-code

Other Deprecated Options
The following two tables list options that are currently deprecated.

Note that deprecated options are not limited to these lists.

Deprecated Linux Options Suggested Replacement

arch=IA32 None

axS axSSE4.1

axT Linux: axSSSE3

cpp fpp

device-math-lib None

falign-stack None

m32 None

mcpu mtune

mia32 None

mkl qmkl

no-bss-init None

qopt-args-in-regs None

rcd None

use-asm None

 1 Intel® Fortran Compiler Classic and Intel® Fortran Compiler Developer Guide and Reference

524

Deprecated Linux Options Suggested Replacement

xS xSSE4.1

xT Linux: xSSSE3

[no]zero init=[no]zero

Deprecated Windows Options Suggested Replacement

arch:IA32 None

arch:SSE None

device-math-lib None

Ge Gs0

Oy None

QaxS QaxSSE4.1

QaxT QaxSSSE3

QIfist Qrcd

Qm32 None

Qnobss-init None

Qopt-args-in-regs None

Qrcd None

Qsfalign None

Qsox None

Quse-asm None

QxS QxSSE4.1

QxT QxSSSE3

Qzero[-] Qinit:[no]zero

unroll Qunroll

Zg None

Removed Options
The following two tables list options that are no longer supported.

Note that removed options are not limited to these lists.

Removed Linux Options Suggested Replacement

1 f66

Intel® Fortran Compiler Classic and Intel® Fortran Compiler Developer Guide and Reference 1

525

Removed Linux Options Suggested Replacement

66 f66

automatic auto

axB axSSE2

axH axSSE4.2

axi None

axK No exact replacement; upgrade to msse2

axM None

axN Linux: axSSE2

axP Linux: axSSE3

axW msse2

cm warn nousage

cxxlib-gcc[=dir] cxxlib[=dir]

cxxlib-icc None

dps altparam

F preprocess-only or P

falign-stack=mode None

fp fno-omit-frame-pointer

fpstkchk fp-stack-check

func-groups prof-func-groups

fvisibility=internal fvisibility=hidden

gcc-version No exact replacement; use gcc-name

guide None

guide-data-trans None

guide-file None

guide-file-append None

guide-opts None

guide-par None

guide-profile None

guide-vec None

i-dynamic shared-intel

 1 Intel® Fortran Compiler Classic and Intel® Fortran Compiler Developer Guide and Reference

526

Removed Linux Options Suggested Replacement

i-static static-intel

inline-debug-info debug inline-debug-info

ipo-obj (and -ipo_obj) None

ipp-link=static-thread None

Knopic, KNOPIC fpic

Kpic, KPIC fpic

lowercase names lowercase

m32 None

mp fp-model

no-alias-args fargument-noalias

nobss-init no-bss-init

no-standard-semantics No exact replacement; negate specific options
separately

nus assume nounderscore

Ob inline-level

onetrip f66

openmp qopenmp

openmp-lib qopenmp-lib

openmp-lib legacy None

openmp-link and qopenmp-link None

openmpP qopenmp

openmp-profile None

openmp-report qopt-report-phase=openmp

openmpS qopenmp-stubs

openmp-simd qopenmp-simd

openmp-stubs qopenmp-stubs

openmp-task qopenmp-task

openmp-threadprivate qopenmp-threadprivate

opt-args-in-regs qopt-args-in-regs

opt-assume-safe-padding qopt-assume-safe-padding

Intel® Fortran Compiler Classic and Intel® Fortran Compiler Developer Guide and Reference 1

527

Removed Linux Options Suggested Replacement

opt-block-factor qopt-block-factor

opt-dynamic-align qopt-dynamic-align

opt-jump-tables qopt-jump-tables

opt-malloc-options qopt-malloc-options

opt-matmul qopt-matmul

opt-mem-layout-trans qopt-mem-layout-trans

opt-multi-version-aggressive qopt-multi-version-aggressive

opt-prefetch qopt-prefetch

opt-prefetch-distance qopt-prefetch-distance

opt-ra-region-strategy qopt-ra-region-strategy

opt-report qopt-report

opt-report-embed qopt-report-embed

opt-report-file qopt-report-file

opt-report-filter qopt-report-filter

opt-report-format qopt-report-format

opt-report-help qopt-report-help

opt-report-level qopt-report

opt-report-per-object qopt-report-per-object

opt-report-phase qopt-report-phase

opt-report-routine qopt-report-routine

opt-streaming-cache-evict None

opt-streaming-stores qopt-streaming-stores

opt-subscript-in-range qopt-subscript-in-range

par-report qopt-report-phase=par

prefetch qopt-prefetch

prof-format-32 None

prof-gen-sampling None

prof-genx prof-gen=srcpos

prof-use-sampling None

profile-functions None

 1 Intel® Fortran Compiler Classic and Intel® Fortran Compiler Developer Guide and Reference

528

Removed Linux Options Suggested Replacement

profile-loops None

profile-loops-report None

qcf-protection fcf-protection

qoffload None

qoffload-arch None

qoffload-attribute-target None

qoffload-option None

qopenmp-offload None

qopenmp-report qopt-report-phase=openmp

qopenmp-task None

qp p

rct None

shared-libcxa shared-libgcc

ssp None

stand f15 stand f18

static-libcxa static-libgcc

syntax syntax-only or fsyntax-only

tcheck None

tpp1, tpp5, tpp6 None

tpp2 mtune=itanium2

tpp7 mtune=pentium4

tprofile None

tune x<code>

uppercase names uppercase

us assume underscore

vec-report qopt-report-phase=vec

xB xSSE2

xi None

xK No exact replacement; upgrade to msse2

xM None

Intel® Fortran Compiler Classic and Intel® Fortran Compiler Developer Guide and Reference 1

529

Removed Linux Options Suggested Replacement

xN Linux: xSSE2

xO msse3

xP Linux: xSSE3

xSSE3_ATOM xATOM_SSSE3

xSSSE3_ATOM xATOM_SSSE3

Removed Windows Options Suggested Replacement

1 f66

4ccD (and 4ccd) None

4Nb check:none

4Yb check:all

architecture arch

asmattr:none, noasmattr FA

asmattr:machine FAc

asmattr:source FAs

asmattr:all FAcs

asmfile Fa

automatic auto

cm warn:nousage

debug:parallel None

debug:partial None

Fm map

G1, G5, G6 (or GB), G7 None

Gf GF

MDs[d] None

ML[d] Upgrade to MT[d]

Og O1, O2, or O3

Op fltconsistency

optimize:0, nooptimize Od

optimize:1, optimize:2 O1

 1 Intel® Fortran Compiler Classic and Intel® Fortran Compiler Developer Guide and Reference

530

Removed Windows Options Suggested Replacement

optimize:3, optimize:4 O2

optimize:5 O3

QaxB QaxSSE2

QaxH QaxSSE4.2

Qaxi None

QaxK Upgrade to arch:SSE2

QaxM None

QaxN QaxSSE2

QaxP QaxSSE3

QaxW arch:SSE2

Qcpp fpp

Qdps altparam

Qextend-source extend-source

Qfpp[0 | 1 | 2 | 3] fpp

Qfpstkchk Qfp-stack-check

Qguide None

Quide-data-trans None

Quide-file None

Quide-file-append None

Quide-opts None

Quide-par None

Quide-profile None

Quide-vec None

Qinline-debug-info debug:inline-debug-info

Qlowercase names:lowercase

Qm32 None

Qmspp None

Qonetrip f66

Qopenmp-lib:legacy None

Qopenmp-link None

Intel® Fortran Compiler Classic and Intel® Fortran Compiler Developer Guide and Reference 1

531

Removed Windows Options Suggested Replacement

Qopenmp-offload None

Qopenmp-profile None

Qopenmp-report Qopt-report-phase:openmp

Qopenmp-task None

Qopt-report-level Qopt-report

Qpar-report Qopt-report-phase:par

Qprefetch Qopt-prefetch

Qprof-format-32 None

Qprof-genx Qprof-gen=srcpos

Qprofile-functions None

Qprofile-loops None

Qprofile-loops-report None

Qrct None

Qssp None

Qtprofile None

Qtcheck None

Quppercase names:uppercase

Quse-vcdebug None

Qvc11
Qvc10
Qvc9 and earlier

None

Qvec-report Qopt-report-phase:vec

Qvms vms

QxB QxSSE2

Qxi None

QxK Upgrade to arch:SSE2

QxM None

QxN QxSSE2

QxO arch:SSE3

QxP QxSSE3

 1 Intel® Fortran Compiler Classic and Intel® Fortran Compiler Developer Guide and Reference

532

Removed Windows Options Suggested Replacement

QxSSE3_ATOM QxATOM_SSSE3

QxSSSE3_ATOM QxATOM_SSSE3

QxW arch:SSE2

source Tf

stand f15 stand f18

standard-semantics- No exact replacement; negate specific options
separately

tune Qx<code>

unix None

us assume:underscore

w90, /w95 None

Zd debug:minimal

Product and Performance Information

Performance varies by use, configuration and other factors. Learn more at www.Intel.com/
PerformanceIndex.

Notice revision #20201201

Display Option Information
To display a list of all available compiler options, specify option help on the command line.

To display functional groupings of compiler options, specify a functional category for option help. For
example, to display a list of options that affect diagnostic messages, enter one of the following commands:

Linux

-help diagnostics
Windows

/help diagnostics
For details on other categories you can specify, see help.

Alternate Compiler Options
This topic lists alternate names for compiler options and show the primary option name. Some of the
alternate option names are deprecated and may be removed in future releases.

For more information on compiler options, see the detailed descriptions of the individual, primary options.

Some of these options are deprecated. For more information, see Deprecated and Removed Options.

Intel® Fortran Compiler Classic and Intel® Fortran Compiler Developer Guide and Reference 1

533

https://www.intel.com/PerformanceIndex
https://www.intel.com/PerformanceIndex

Linux

Alternate Linux* Options Primary Option Name

Code Generation:

-fp -fomit-frame-pointer

-mcpu -mtune

Advanced Optimizations:

-funroll-loops -unroll

Profile Guided Optimization (PGO):

-pg -p (Linux* only)

-qp -p (Linux* only)

OpenMP* and Parallel Processing Options:

Floating-Point:

-mieee-fp -fltconsistency

Output, Debug, Precompiled Header (PCH):

-fvar-tracking -debug variable-locations

-fvar-tracking-assignments -debug semantic-stepping

-V -logo

Preprocessor:

-cpp -fpp

-DD -d-lines

-nodefine -noD

-nostdinc -X

-P -preprocess-only

Language:

-72
-80
-132

-extend-source 72

-extend-source 80

-extend-source 132

-C -check all

-CB -check bounds

-common-args -assume dummy_aliases

-CU -check uninit

 1 Intel® Fortran Compiler Classic and Intel® Fortran Compiler Developer Guide and Reference

534

Alternate Linux* Options Primary Option Name

-FI -fixed

-FR -free

-fsyntax-only -syntax-only

-mixed-str-len-arg No equivalent on Linux* systems. On Windows*
systems, /iface:mixed_str_len_arg

-nbs -assume nobcss

-std
-std90
-std95
-std03
-std08
-std18
-std23

-stand f18 or -stand f2018
-stand f90

-stand f95

-stand f03 or -stand f2003
-stand f08 or -stand f2008
-stand f18 or -stand f2018
-stand f23 or -stand f2023

-y -syntax-only

-Zp -align recnbyte

Data:

-autodouble -real-size 64

-automatic -auto

-i2
-i4
-i8

-integer-size 16

-integer-size 32

-integer-size 64

-r4
-r8
-r16

-real-size 32

-real-size 64

-real-size 128

Compiler Diagnostics:

-e90
-e95
-e03

-warn stderrors

-error-limit -diag-error-limit

-implicitnone -warn declarations

-u -warn declarations

-w -warn none or -warn nogeneral

Intel® Fortran Compiler Classic and Intel® Fortran Compiler Developer Guide and Reference 1

535

Alternate Linux* Options Primary Option Name

-W0
-W1

-warn none or -warn nogeneral

-warn general

Compatibility:

-66 -f66

-onetrip -f66

Linking or Linker:

-i-dynamic -shared-intel

-i-static -static-intel

Windows

Alternate Windows* Options Primary Option Name

Optimization:

/Ox /O

OpenMP* and Parallel Processing Options:

/openmp /Qopenmp

Floating Point:

/QIfist /Qrcd

Output, Debug, Precompiled Header (PCH):

/compile-only /c

/Fe /exe

/Fo /object

/nolink /c

/pdbfile /Fd

/V /bintext

Preprocessor:

/define /D

/include /I

/nodefine /noD

/noinclude /X

/undefine /U

Language:

 1 Intel® Fortran Compiler Classic and Intel® Fortran Compiler Developer Guide and Reference

536

Alternate Windows* Options Primary Option Name

/4L72
/4L80
/4L132

-extend-source:72

-extend-source:80

-extend-source:132

/4Naltparam
/4Yaltparam

/noaltparam

/altparam

/4Nf
/4Yf

/fixed

/free

/4Ns
/4Ys

/stand:none

/stand:f90

/C /check:all

/CB /check:bounds

/CU /check:uninit

/FI /fixed

/FR /free

/Gm /iface:cvf

/Gz /iface:stdcall

/nbs /assume:nobcss

/Qcommon-args /assume:dummy_aliases

/RTCu /check:uninit

/Zp /align:recnbyte

/Zs /syntax-only

Data:

/4I2
/4I4
/4I8

/integer-size:16

/integer-size:32

/integer-size:64

/4Na
/4Ya

/noauto

/auto

/4R4
/4R8
/4R16

/real-size:32

/real-size:64

/real-size:128

/automatic /auto

Intel® Fortran Compiler Classic and Intel® Fortran Compiler Developer Guide and Reference 1

537

Alternate Windows* Options Primary Option Name

/Qauto /auto

/Qautodouble /real-size:64

/Zp /align:recnbyte

Compiler Diagnostics:

/4Nd
/4Yd

/warn:nodeclarations

/warn:declarations

/error-limit /Qdiag-error-limit

/w /warn:none or /warn:nogeneral

/W0
/W1

/warn:none or /warn:nogeneral

/warn:general

Compatibility:

/Qonetrip /f66

Linking or Linker:

/LD /dll

/MG /winapp

/MW /libs

/MWs /libs:qwins

Miscellaneous:

/V /logo

/Zl /libdir:none

Floating-Point Operations
This section contains information about floating-point operations, including IEEE floating-point operations,
and it provides guidelines that can help you improve the performance of floating-point applications.

Programming Tradeoffs in Floating-Point Applications
In general, the programming objectives for floating-point applications fall into the following categories:

• Accuracy: The application produces results that are close to the correct result.
• Reproducibility and portability: The application produces consistent results across different runs,

different sets of build options, different compilers, different platforms, and different architectures.
• Performance: The application produces fast, efficient code.

Based on the goal of an application, you will need to make tradeoffs among these objectives. For example, if
you are developing a 3D graphics engine, performance may be the most important factor to consider, with
reproducibility and accuracy as secondary concerns.

The default behavior of the compiler is to compile for performance. Several options are available that allow
you to tune your applications based on specific objectives. Broadly speaking, there are the floating-point
specific options, such as the -fp-model (Linux*) or /fp (Windows*) option, and the fast-but-low-accuracy

 1 Intel® Fortran Compiler Classic and Intel® Fortran Compiler Developer Guide and Reference

538

options, such as the [Q]imf-max-error option (host only). The compiler optimizes and generates code
differently when you specify these different compiler options. Select appropriate compiler options by carefully
balancing your programming objectives and making tradeoffs among these objectives. Some of these options
may influence the choice of math routines that are invoked.

Use Floating-Point Options
The default behavior of the compiler is to use fp-model=fast. In this mode, lower-accuracy versions of the
math library functions are chosen. For host code, this only affects calls that have been vectorized. For target
code, the exact effect will vary depending on the target.

For GPU devices, using fp-model=fast enables lower-accuracy versions of the functions. Lower accuracy
implementations are conformant with the OpenCL 3.0 specification. SVML functions with up to four ULPs (the
equivalent to using -fimf-precision=medium) are used.

For FPGA devices, using fp-model=fast enables lower-accuracy versions of the functions, but there is no
specific limit on the accuracy.

With fp-model=precise, the host code will use high accuracy implementations for both scalar and SVML
calls. Target devices use implementations that conform to the SYCL specification, which isn't as accurate as
host implementations, but is more accurate than with fp-model=fast.

Take the following code as an example:

REAL(4):: t0, t1, t2
 ...
t0=t1+t2+4.0+0.1

If you specify the -fp-model precise (Linux) or /fp:precise (Windows) option in favor of accuracy, the
compiler generates the following assembly code:

movss xmm0, _t1
addss xmm0, _t2
addss xmm0, DWORD PTR _Cnst4.0
addss xmm0, DWORD PTR _Cnst0.1
movss DWORD PTR _t0, xmm0

The assembly code follows the same semantics as the original source code.

If you specify the -fp-model fast (Linux) or /fp:fast (Windows) option in favor of performance, the
compiler generates the following assembly code:

movss xmm0, DWORD PTR _Cnst4.1
addss xmm0, DWORD PTR _t1
addss xmm0, DWORD PTR _t2
movss DWORD PTR _t0, xmm0

This code maximizes performance using Intel® Streaming SIMD Extensions (Intel® SSE) instructions and pre-
computing 4.0 + 0.1. It is not as accurate as the first implementation, due to the greater intermediate
rounding error. It does not provide reproducible results because it must reorder the addition to pre-compute
4.0 + 0.1. When fast-math is enabled, the ordering of operations is decided by the compiler. Different
ordering may be used depending on the context, and not all compilers will choose the same ordering.

For many other applications, the considerations may be more complicated.

Tune Compilation Accuracy
In general, the -fp-model option provides control for accuracy. However, the compiler provides command-
line options for an easy way to control the accuracy of mathematical functions and utilize performance/
accuracy tradeoffs offered by the Intel math libraries that are provided with the compiler. These options are
helpful in the following scenarios:

Intel® Fortran Compiler Classic and Intel® Fortran Compiler Developer Guide and Reference 1

539

https://registry.khronos.org/OpenCL/

• Use high-accuracy implementations while otherwise allowing fast-math optimizations
• Use faster-but-less-accurate implementations while otherwise disabling fast-math optimizations

You can specify accuracy, via a command line interface, for all math functions or a selected set of math
functions at a level more precise than low, medium, or high.

You specify the accuracy requirements as a set of function attributes that the compiler uses for selecting an
appropriate function implementation in the math libraries. For example, use the following option to specify
the relative error of two ULPs for all single, double, long double, and quad precision functions:

-fimf-max-error=2
To specify twelve bits of accuracy for a sin function, use:

-fimf-accuracy-bits=12:sin
To specify relative error of ten ULPs for a sin function, and four ULPs for other math functions called in the
source file you are compiling, use:

-fimf-max-error=10:sin-fimf-max-error=4
On Windows systems, the compiler defines the default value for the max-error attribute depending on
the /fp option setting. In /fp:fast mode the compiler sets a max-error=4.0 for the call. Otherwise, it sets
a max-error=0.6.

The /Qfast-transcendentals option can also be used to modify the default max-error attribute behavior.
If /Qfast-transcendentals is used to explicitely enable fast but less accurate math functions, the compiler
sets max-error=4.0 for the call.

Dispatching of Math Routines
The compiler optimizes calls to routines from the libm and svml libraries into direct CPU-specific calls, when
the compilation configuration specifies the target CPU where the code is tuned, and if the set of instructions
available for the code compilation is not narrower than the set of instructions available in the tuning target
CPU.

Note that except in the case of functions which return correctly-rounded results (<= 0.5 ulp error), you
cannot rely on being able to obtain bitwise identical results from different device types. This is mainly due to
differences in the implementation of math library functions which are optimized for the available instruction
set on the device.

The use of floating-point options to require high accuracy implementations of the math library routines will
reduce the impact of this problem, but not eliminate it. Depending on the algorithm used by the program
being compiled, small errors may be compounded.

The use of less accurate implementations may amplify the differences. For example, if the cos() function is
called with a four ULP error implementation, all devices will return a result that is within four ULP of the
theoretically accurate result, but there is no guarantee that two different devices will return the same result
within that error range.

See Also
fimf-max-error, Qimf-max-error compiler option

Floating-Point Optimizations
Application performance is an important goal of the Intel® Fortran Compiler, even at default optimization
levels. A number of optimizations involve transformations that might affect the floating-point behavior of the
application, such as evaluation of constant expressions at compile time, hoisting invariant expressions out of
loops, or changes in the order of evaluation of expressions. These optimizations usually help the compiler to
produce the most efficient code possible. However, the optimizations might be contrary to the floating-point
requirements of the application.

 1 Intel® Fortran Compiler Classic and Intel® Fortran Compiler Developer Guide and Reference

540

Some optimizations are not consistent with strict interpretation of the ANSI or ISO standards for Fortran.
Such optimizations can cause differences in rounding and small variations in floating-point results that may
be more or less accurate than the ANSI-conformant result.

The Intel® Fortran Compiler provides the -fp-model (Linux*) or /fp (Windows*) option, which allows you to
control the optimizations performed when you build an application. The option allows you to specify the
compiler rules for:

• Value safety: Whether the compiler may perform transformations that could affect the result. For
example, in the SAFE mode, the compiler won't transform x/x to 1.0 because the value of x at runtime
might be a zero or a NaN . The UNSAFE mode is the default.

• Floating-point contractions: Whether the compiler should generate fused multiply-add (FMA)
instructions on processors that support them. When enabled, the compiler may generate FMA instructions
for combining multiply and add operations; when disabled, the compiler must generate separate multiply
and add instructions with intermediate rounding.

• Floating-point environment access: Whether the compiler must account for the possibility that the
program might access the floating-point environment, either by changing the default floating-point control
settings or by reading the floating-point status flags. This is disabled by default. You can use the
-fp-model:strict (Linux) /fp:strict (Windows) option to enable it.

• Precise floating-point exceptions: Whether the compiler should account for the possibility that
floating-point operations might produce an exception. This is disabled by default. You can use
-fp-model:strict (Linux*) or /fp:strict (Windows). For ifort only, you can use
-fp-model:except (Linux) or /fp:except (Windows) to enable it.

The following table lists possible keyword values for the -fp-model option:

Keyword Description

precise Enables value-safe optimizations on floating-point data and rounds intermediate
results to source-defined precision.

source
(ifort only)

Enables value-safe optimizations on floating-point data and rounds intermediate
results to source-defined precision (same as precise keyword).

strict Enables precise and except , disables contractions, and enables the property that
allows modification of the floating-point environment.

consistent Enables consistent, reproducible results for different optimization levels or between
different processors of the same architecture. This setting is equivalent to the use
of the following options:

Linux: -fp-model precise -no-fma -fimf-arch-consistency=true
Windows: /fp:precise /Qfma- /Qimf-arch-consistency:true

fast Enables more aggressive optimizations on floating-point data.

[no-]except
(Linux) or
except[-]
(Windows)

(ifort only)

Determines whether strict floating-point exception semantics are used.

The keyword that is specified for the -fp-model option may influence the choice of math routines that are
invoked. Many routines in the libirc, libm, and libsvml libraries are more highly optimized for Intel
microprocessors than for non-Intel microprocessors.

The following table describes the impact of different -fp-model keywords on compiler rules and
optimizations:

Intel® Fortran Compiler Classic and Intel® Fortran Compiler Developer Guide and Reference 1

541

Keyword Value
Safety

Floating-Point
Contractions

Floating-Point
Environment
Access

Precise Floating-Point
Exceptions

precise
source
(source is
ifort
only)

Safe Sets fp-contract=on
(ifx) or
fp-contract=fast
(ifort)

No No

strict Safe No Yes Yes

consisten
t

Safe No No No

fast
(ifx only)

Unsafe Sets fp-
contract=fast

No No

fast=1
(default)

(ifort
only)

Unsafe Sets fp-
contract=fast

No No

fast=2
(ifort
only)

Very
unsafe

Sets fp-
contract=fast

No No

except
except-
(ifort
only)

Unaffecte
d
Unaffecte
d

Unaffected
Unaffected

Unaffected
Unaffected

Yes
No

NOTE
ifort only: It is illegal to specify the except keyword in an unsafe safety mode.

Based on the objectives of an application, you can choose to use different sets of compiler options and
keywords to enable or disable certain optimizations, so that you can get the desired result.

For example, for applications that do not require support for subnormal numbers, the -fp-model or /fp
option can be combined with the [Q]ftz option to flush subnormal results to zero. This flush can improve
runtime performance on processors based on all Intel® architectures.

See Also

Subnormal Numbers
A normalized number is a number for which both the exponent (including bias) and the most significant bit of
the mantissa are non-zero. For such numbers, all the bits of the mantissa contribute to the precision of the
representation.

The smallest normalized single-precision floating-point number greater than zero is about 1.1754943-38.
Smaller numbers are possible, but those numbers must be represented with a zero exponent and a mantissa
whose leading bit(s) are zero, which leads to a loss of precision. These numbers are called subnormal
numbers or subnormals(older specifications refer to these as denormal numbers).

Subnormal computations use hardware and/or operating system resources to handle subnormals; these can
cost hundreds of clock cycles. Subnormal computations take much longer to calculate than normal
computations.

 1 Intel® Fortran Compiler Classic and Intel® Fortran Compiler Developer Guide and Reference

542

In general, avoid subnormals and increase the performance of your application in the following ways:

• Scale the values into the normalized range.
• Use a higher precision data type with a larger range.
• Flush subnormals to zero.

In most cases, you can expect subnormals to be flushed to zero by the hardware.

See Also
Reducing Impact of Subnormal Exceptions
Intel® 64 Architectures Software Developer's Manual, Volume 1: Basic Architecture

Floating-Point Environment
The floating-point environment is a collection of registers that control the behavior of the floating-point
machine instructions and indicate the current floating-point status. The floating-point environment can
include rounding mode controls, exception masks, flush-to-zero (FTZ) controls, exception status flags, and
other floating-point related features.

The floating-point environment affects most floating-point operations; therefore, correct configuration to
meet your specific needs is important. For example, the exception mask bits define which exceptional
conditions will be raised as exceptions by the processor. In general, the default floating-point environment is
set by the operating system. You don't need to configure the floating-point environment unless the default
floating-point environment does not suit your needs.

There are several methods available to modify the default floating-point environment:

• inline assembly
• compiler built-in functions
• library functions
• command line options
• intrinsic procedures defined in the IEEE intrinsic modules

By default the floating-point environment access is set to off. To enable floating-point environment access,
set -fp-model=strict.

Changing the default floating-point environment affects runtime results only. This does not affect any
calculations that are pre-computed at compile time.

See Also
IEEE Intrinsic Modules and Procedures

Set the FTZ and DAZ Flags
For Intel® processors, the flush-to-zero (FTZ) and subnormals-are-zero (DAZ) flags in the MXCSR register are
used to control floating-point calculations. Intel® Streaming SIMD Extensions (Intel® SSE) and Intel®
Advanced Vector Extensions (Intel® AVX) instructions, including scalar and vector instructions, benefit from
enabling the FTZ and DAZ flags. Floating-point computations using the Intel® SSE and Intel® AVX instructions
are accelerated when the FTZ and DAZ flags are enabled. This improves the application's performance. The
FTZ and DAZ flags are supported on Intel® 64 and some IA-32 architectures.

Use the [Q]ftz option to flush subnormal results to zero when the application is in the gradual underflow
mode. This option may improve performance if the subnormal values are not critical to the application's
behavior. The [Q]ftz option, when applied to the main program, sets the FTZ and the DAZ hardware flags.
The negative forms of the [Q]ftz option (-no-ftz for Linux* and /Qftz- for Windows*) leave the flags as
they are.

The following table describes how the compiler processes subnormal values based on the status of the FTZ
and DAZ flags:

Intel® Fortran Compiler Classic and Intel® Fortran Compiler Developer Guide and Reference 1

543

https://www.intel.com/content/dam/www/public/us/en/documents/manuals/64-ia-32-architectures-software-developer-vol-1-manual.pdf

Flag When set to ON, the compiler... When set to OFF, the compiler...

FTZ ...sets subnormal results from floating-
point calculations to zero.

...does not change the subnormal
results.

DAZ ...treats subnormal values used as input
to floating-point instructions as zero.

...does not change the subnormal
instruction inputs.

• FTZ and DAZ are not supported on all IA-32 architectures. The FTZ flag is supported only on IA-32
architectures that support Intel® SSE instructions.

• FTZ only applies to Intel® SSE and Intel® AVX instructions. If the application generates subnormals using
x86 instructions, FTZ does not apply.

• DAZ and FTZ flags are not compatible with the ISO/IEC/IEEE 60559 standard, and should only be enabled
when compliance to the IEEE standard is not required.

Options for [Q]ftz are performance options. Setting these options does not guarantee that all subnormals in
a program are flushed to zero. They only cause subnormals generated at runtime to be flushed to zero.

By default, the compiler inserts code into the main routine to set the FTZ and DAZ flags. When the [Q]ftz
option is used on IA-32 systems with the option –msse2 or /arch:sse2, the compiler inserts code that
conditionally sets the FTZ/DAZ flags based on a runtime processor check. Using the negative form of [Q]ftz
prevents the compiler from inserting any code that sets FTZ or DAZ flags.

The [Q]ftz option only has an effect when the main program is being compiled. It sets the FTZ/DAZ mode
for the process. The initial thread, and any subsequently created threads, operate in the FTZ/DAZ mode.

With the default floating-point model (fast), every optimization option O level, except O0, sets [Q]ftz.

If this option produces undesirable results of the numerical behavior of the program, turn the FTZ/DAZ mode
off by using the negative form of [Q]ftz in the command line.

Manually set the flags by calling the following Intel® Fortran intrinsic:

RESULT = FOR_SET_FPE (FOR_M_ABRUPT_UND)

See Also
ftz, Qftz compiler option

Check the Floating-Point Stack State
This content is only applicable for ifort.

On systems based on the IA-32 architecture, when an application calls a function that returns a floating-point
value, the returned floating-point value is supposed to be on the top of the floating-point stack. If the return
value is not used, the compiler must pop the value off of the floating-point stack in order to keep the
floating-point stack in the correct state.

On systems based on Intel® 64 architecture, floating-point values are usually returned in the xmm0 register.
The floating-point stack is used only when the return value is an internal 80-bit floating-point data type on
Linux* systems.

If the application calls a function without defining or incorrectly defining the function's prototype, the
compiler cannot determine if the function must return a floating-point value. Consequently, the return value
is not popped off the floating-point stack if it is not used. This can cause the floating-point stack to overflow.

The overflow of the stack results in two undesirable situations:

• A NaN value gets involved in the floating-point calculations
• The program results become unpredictable; the point where the program starts making errors can be

arbitrarily far away from the point of the actual error.

For systems based on the IA-32 and Intel® 64 architectures, the [Q]fp-stack-check option checks whether a
program makes a correct call to a function that should return a floating-point value. If an incorrect call is
detected, the option places a code that marks the incorrect call in the program. The [Q]fp-stack-check option
marks the incorrect call and makes it easy to find the error.

 1 Intel® Fortran Compiler Classic and Intel® Fortran Compiler Developer Guide and Reference

544

NOTE
The [Q]fp-stack-check option causes significant code generation after every function/subroutine call to
ensure that the floating-point stack is maintained in the correct state. Therefore, using this option
slows down the program being compiled. Use the option only as a debugging aid to find floating point
stack underflow/overflow problems, which can be otherwise hard to find.

See Also
fp-stack-check, Qfp-stack-check compiler option

Tuning Performance
This section describes several programming guidelines that can help you improve the performance of
floating-point applications, including:

• Handling Floating-point Array Operations in a Loop Body
• Reducing the Impact of Subnormal Exceptions
• Avoiding Mixed Data Type Arithmetic Expressions
• Using Efficient Data Types

Floating-Point Array Operations in a Loop Body
Following the guidelines below will help auto-vectorization of the loop.

• Statements within the loop body may contain float or double operations (typically on arrays). The
following arithmetic operations are supported: addition, subtraction, multiplication, division, negation,
square root, MAX, MIN, and mathematical functions such as SIN and COS. Note that if fp-model set to
precise or strict, leaving math -errno enabled will decrease the chances that a loop will be
vectorized.

• Writing to a single-precision scalar/array and a double scalar/array within the same loop decreases the
chance of auto-vectorization due to the differences in the vector length (that is, the number of elements
in the vector register) between float and double types. If auto-vectorization fails, try to avoid using mixed
data types.

Reduce the Impact of Subnormal Exceptions
Subnormal floating-point values are those that are too small to be represented in the normal manner; that
is, the mantissa cannot be left-justified. Subnormal values require hardware or operating system
interventions to handle the computation, so floating-point computations that result in subnormal values may
have an adverse impact on performance.

There are several ways to handle subnormals to increase the performance of your application:

• Scale the values into the normalized range
• Use a higher precision data type with a larger range
• Flush subnormals to zero

For example, you can translate them to normalized numbers by multiplying them using a large scalar
number, doing the remaining computations in the normal space, then scaling back down to the subnormal
range. Consider using this method when the small subnormal values benefit the program design.

If you change the type declaration of a variable, you might also need to change associated library calls,
unless these are generic . Another strategy that might result in increased performance is to increase the
amount of precision of intermediate values using the -fp-model [double|extended] option. However, this
strategy might not eliminate all subnormal exceptions, so you must experiment with the performance of your
application. You should verify that the gain in performance from eliminating subnormals is greater than the
overhead of using a data type with higher precision and greater dynamic range.

In many cases, subnormal numbers can be treated safely as zero without adverse effects on program results.
Depending on the target architecture, use flush-to-zero (FTZ) options.

Intel® Fortran Compiler Classic and Intel® Fortran Compiler Developer Guide and Reference 1

545

IA-32 and Intel® 64 Architectures

IA-32 and Intel® 64 architectures take advantage of the FTZ (flush-to-zero) and DAZ (subnormals-are-zero)
capabilities of Intel® Streaming SIMD Extensions (Intel® SSE) instructions.

By default, the Intel® Fortran Compiler inserts code into the main routine to enable FTZ and DAZ at
optimization levels higher than O0. To enable FTZ and DAZ at O0, compile the source file containing PROGRAM
(main program) using compiler option [Q]ftz. When the [Q]ftz option is used on IA-32-based systems
with the option –mia32 (Linux*) or /arch:IA32 (Windows*), the compiler inserts code to conditionally
enable FTZ and DAZ flags based on a runtime processor check.

NOTE
After using flush-to-zero, ensure that your program still gives correct results when treating subnormal
values as zero.

Avoid Mixed Data Type Arithmetic Expressions
Avoid mixing integer and floating-point (REAL) data in the same computation. Expressing all numbers in a
floating-point arithmetic expression (assignment statement) as floating-point values eliminates the need to
convert data between fixed and floating-point formats. Expressing all numbers in an integer arithmetic
expression as integer values also achieves this. This improves runtime performance.

For example, assuming that I and J are both INTEGER variables, expressing a constant number (2.0) as an
integer value (2) eliminates the need to convert the data. The following examples demonstrate inefficient and
efficient code.

Inefficient code:

INTEGER I, J
 I = J / 2.0

Efficient code:

INTEGER I, J
 I = J / 2

Use Efficient Data Types
In cases where more than one data type can be used for a variable, consider selecting the data types based
on the following hierarchy, listed from most to least efficient:

• Integer
• Single-precision real, expressed explicitly as REAL, REAL (KIND=4), or REAL*4
• Double-precision real, expressed explicitly as DOUBLE PRECISION, REAL (KIND=8), or REAL*8
• Extended-precision real, expressed explicitly as REAL (KIND=16) or REAL*16

NOTE
In an arithmetic expression, you should avoid mixing integer and floating-point data.

See Also
Programming Guidelines for Vectorization
Setting the FTZ and DAZ Flags
Intel® 64 Software Developer's Manual, Volume 1: Basic Architecture

 1 Intel® Fortran Compiler Classic and Intel® Fortran Compiler Developer Guide and Reference

546

https://www.intel.com/content/dam/www/public/us/en/documents/manuals/64-ia-32-architectures-software-developer-vol-1-manual.pdf

Libraries
This section contains information about creating, calling, comparing, and other considerations when using
libraries.

Create Libraries
This topic contains information about shared and static libraries.

For more information about compiler options mentioned in this topic, find the links to their full descriptions in
the Alphabetical Options List.

Shared Libraries
Shared libraries, also referred to as dynamic libraries, are linked differently than static libraries. At compile
time, the linker ensures that all the necessary symbols are either linked into the executable or can be linked
at runtime from the shared library.

Executables compiled using shared libraries are smaller, but the shared libraries must be included with the
executable to function correctly. When multiple programs use the same shared library, only one copy of the
library is required in memory.

Create a Shared Library

NOTE In the following examples, you can replace ifx with ifort.

Linux

To create a shared library from a Fortran source file, process the files using the ifx or ifort commands:

• You must specify the -shared option to create the .so file. You must also specify option -fpic for the
compilation of each object file you want to include in the shared library.

• You can specify the -o filename option to name the shared library.
• If you omit the -c option, you will create a shared library (.so file) directly from the command line in a

single step.
• If you omit the -o filename option, the file name of the first Fortran file on the command line is used to

create the file name of the .so file. You can specify additional options associated with shared library
creation.

• If you specify the -c option, you will create an object file (.o file) that you can name with the -o option.
• With option -shared, you can specify multiple object (.o) files that were compiled with option -fpic.

For example, you can create a shared library file with a single command:

ifx -shared -fpic octagon.f90
The -shared and -fpic options are required to create a shared library. The name of the source file is
octagon.f90. Because the -o option was omitted, the name of the shared library file is octagon.so.

Note the following:

• The -shared and -fpic options are required to create a shared library.
• The name of the object file is octagon.o. With -shared you can specify multiple object (.o) files where

all are compiled with -fpic to include them in one shared library

To see a list of options that may be helpful, see Linking or Linker Options.

Windows

Use the following options to create shared libraries on Windows:

Intel® Fortran Compiler Classic and Intel® Fortran Compiler Developer Guide and Reference 1

547

Option Description

/dll Produces a DLL.

/MD, /MDd Compiles and links with the dynamic, multi-thread run time library. The d
in /MDd indicates the debug version.

/libdir:none Disables embedding default libraries in object files.

For more information about creating and using Fortran DLLs, see Use Intel® Fortran to Create and Build
Windows-Based Applications.

Install Shared Libraries on Linux or Windows

After a shared library is created, it must be installed for private or system-wide use before you run a
program that refers to it:

• To install a private shared library (for example, when you are testing), set the environment variable
LD_LIBRARY_PATH, as described in ld (1).

• To install a system-wide shared library, place the shared library file in one of the standard directory paths
used by ld or libtool.

Static Libraries
Executables generated using static libraries are no different than executables generated from individual
source or object files. Because static libraries are not required at runtime, you do not need to include them
when you distribute your executable. Linking to a static library is generally faster than linking to individual
object files.

When building objects for a static library from the ifx or ifort command line, include option c to suppress
linking. Without this option, the linker will run and generate an error because the object is not a complete
program.

Build a Static Library with ifx

Linux

1. Use the -c option to generate object files from the source files:

ifx -c my_source1.f90 my_source2.f90 my_source3.f90
2. Use the usual GNU ar tool to create the library file from the object files:

ar rc my_lib.a my_source1.o my_source2.o my_source3.o
If using the -flto or -ipo option during the compile step, you must use the LLVM tool llvm-ar to
create the library file from the object files. To install llvm-ar, see https://llvm.org/docs/
CommandGuide/llvm-ar.html.

llvm-ar rc my_lib.a my_source1.o my_source2.o my_source3.o
3. Compile and link your project with your new library:

ifx main.f90 my_lib.a
If your library file and source files are in different directories, use the -Ldir option to indicate where your
library is located. For example:

ifx -L/for/libs main.f90 my_lib.a
Windows

To build a static library from the integrated development environment (IDE), select the Fortran Static
Library project type.

 1 Intel® Fortran Compiler Classic and Intel® Fortran Compiler Developer Guide and Reference

548

https://www.intel.com/content/www/us/en/docs/fortran-compiler/developer-reference-build-windows-applications/15-0/overview.html
https://www.intel.com/content/www/us/en/docs/fortran-compiler/developer-reference-build-windows-applications/15-0/overview.html
https://llvm.org/docs/CommandGuide/llvm-ar.html
https://llvm.org/docs/CommandGuide/llvm-ar.html

Use the following options to create static libraries on Windows:

Option Description

/MT, /MTd Compiles and links with the static, multi-thread run time library. The d in /MTd
indicates the debug version.

/libdir:none Disables embedding default libraries in object files.

Build a Static Library with ifort

Linux

1. Use the -c option to generate object files from the source files:

ifort -c my_source1.f90 my_source2.f90 my_source3.f90
2. Use the Intel®xiar tool to create the library file from the object files:

xiar rc my_lib.a my_source1.o my_source2.o my_source3.o
3. Compile and link your project with your new library:

ifort main.f90 my_lib.a
If your library file and source files are in different directories, use the -Ldir option to indicate where your
library is located:

ifort -L/for/libs main.f90 my_lib.a
Windows

To build a static library from the integrated development environment (IDE), select the Fortran Static
Library project type.

To build a static library using the command line:

1. Use option /c to generate object files from the source files:

ifort /c my_source1.f90 my_source2.f90
2. Use the Intel®xilib tool to create the library file from the object files:

xilib /out:my_lib.lib my_source1.obj my_source2.obj
3. Compile and link your project with your new library:

ifort main.f90 my_lib.lib

See Also
shared compiler option
fpic compiler option
dll compiler option
MD compiler option
MT compiler option
libdir compiler option

Call Library Routines
The following tables show Intel® Fortran Compiler library routine groups and the USE statement required to
include the interface definitions for the routines in that group:

Routine USE statement

Portability USE IFPORT

Intel® Fortran Compiler Classic and Intel® Fortran Compiler Developer Guide and Reference 1

549

Routine USE statement

POSIX* USE IFPOSIX

Miscellaneous Runtime USE IFCORE

The following are Windows only:

Routine USE statement

Automation (AUTO) USE IFAUTO

Component Object Model (COM) USE IFCOM

Dialog USE IFLOGM

Graphics USE IFQWIN

National Language Support USE IFNLS

QuickWin USE IFQWIN

Serial port I/O USE IFPORT

Language Reference section Runtime Library Routines lists topics that provide an overview of the different
groups of library routines as well as calling syntax for the routines. For example, add the following USE
statement before any data declaration statements, such as IMPLICIT NONE or INTEGER:

USE IFPORT
If you want to minimize compile time for source files that use the Intel® Fortran library routines, add the
ONLY keyword to the USE statement. For example:

USE IFPORT, only: getenv
Using the ONLY keyword limits the number of interfaces for that group of library routines.

To view the actual interface definitions, view the .f90 file that corresponds to the .mod file. For example, if a
routine requires a USE IFCORE, locate and use a text editor to view the file ifcore.f90 in the standard
compiler INCLUDE directory.

You should avoid copying the actual interface definitions contained in the ifport.f90 (or ifcore.f90, ...)
into your program because future versions of Intel® Fortran might change these interface definitions.

Similarly, some of the library interface .f90 files contain USE statements for a subgrouping of routines.
However, if you specify a USE statement for such a subgroup, this module name may change in a future
version of the Intel® Fortran Compiler. Although this will make compilation times faster, it might not be
compatible with future versions of the compiler.

See Also
Runtime Library Routines

Comparison of Intel® Fortran Compiler and Windows API Routines
Intel® Fortran Compiler provides Fortran language elements (such as intrinsic procedures and statements)
that conform to the Fortran Standard. The Intel® Fortran Compiler also provides language elements that are
language extensions, including library routines.

The library routines provided by the Intel® Fortran Compiler:

• Are intended to be called from the Fortran language. For example, character arguments are assumed to
be Fortran character variables, not null-terminated C strings.

• May have QQ appended at the end of their names to differentiate them from equivalent Windows routines.

 1 Intel® Fortran Compiler Classic and Intel® Fortran Compiler Developer Guide and Reference

550

• Are described in the Intel® Fortran Compiler Language Reference online documentation, in the A to Z
Reference. The routine description lists the appropriate USE statement needed to include the interface
definitions, such as USE IFPORT.

• Call appropriate Windows system API routines provided with the operating system.
• Are specific to Windows systems, with one exception: most of the Intel® Fortran Compiler IFPORT

Portability Library routines exist on most Linux* systems.

In contrast, the Windows API routines provided by the Windows operating system:

• Are intended to be called from the C language. For example, character arguments are assumed to be null-
terminated C strings.

• Often have multiple words appended together in their names, such as GetSystemTime.
• Are described in the Windows SDK online documentation.
• Are also specific to Windows.

Note that the Intel® Fortran Compiler provides interface block definitions that simplify calling Windows API
routines from the Intel® Fortran Compiler (such as allowing you to specify Fortran data arguments as being
passed by reference). To obtain these interface definitions, add the USE IFWIN statement to your program.

There are many groups of Windows routines (see the Platform SDK and other resources). These routines
provide sophisticated window management, memory management, graphics support, threading, security, and
networking.

You can access many Windows API routines from any Fortran application, including Fortran Console and
Fortran QuickWin applications. Only the Fortran Windows application Understanding Project Types provides
access to the full set of Win32 routines needed to create GUI applications.

Fortran Console applications are text-only applications. Fortran QuickWin applications allow you to build
Windows-style applications easily, but access only a small subset of the available Windows API features.
Fortran QuickWin applications also allow you to use graphics.

See Also
A to Z Reference
IFPORT Portability Library
Understanding Project Types

Specify Consistent Library Types on Windows
There are a number of Microsoft* Visual C++ runtime libraries that offer the same entry points but have
different characteristics. The default Microsoft Visual C++ library is libcmt.lib, which is multi-threaded,
non-debug, and static.

The Intel® Fortran Compiler and Microsoft Visual C++ libraries must be the same types. The following types
are incompatible:

• Mixing static and dynamic-link versions of the libraries.
• Mixing debug with non-debug versions of the libraries.

The default Intel® Fortran Compiler libraries depend on the project type:

Fortran Project Type Default Libraries Used

Fortran Console Static, multithreaded libraries libifcoremt.lib and libcmt.lib

Fortran Standard Graphics Static, multithreaded libraries libifcoremt.lib and libcmt.lib

Fortran QuickWin Static, multithreaded libraries libifcoremt.lib and libcmt.lib

Fortran Windows Static, multithreaded libraries libifcoremt.lib and libcmt.lib

Fortran DLL Dynamic-link libraries libfcoremd and msvcrt (and their import
libraries)

Pure Fortran applications can have mismatched types of libraries. One common scenario is a Fortran Windows
application that is linking with a Fortran static library. This can cause link-time conflicts as well as undesired
runtime failures. The Fortran library should be rebuilt as a dynamic library to avoid these issues.

Intel® Fortran Compiler Classic and Intel® Fortran Compiler Developer Guide and Reference 1

551

Similarly, different C/C++ applications link against different C libraries. If you mix the different types of
applications without modifying the defaults, you can get conflicts. The debug version of a library has a letter
d appended to its base file name:

• Static, multithreaded: libcmt.lib and libcmtd.lib
• Dynamic-link libraries: msvcrt and msvcrtd (.lib import library and .dll)

When using a Debug configuration, Microsoft Visual C++ selects the debug libraries.

The Intel® Fortran Compiler does not select debug libraries for any configuration but provides settings that
allow you to request their use. To specify different types of Fortran libraries in the IDE, select Project >
Properties, then select the Libraries category on the Fortran tab:

• To specify static libraries, select the appropriate type of static (non-DLL) library under Runtime Library
(see /libs:static).

• To specify dynamic-link libraries, select the appropriate type of DLL library under Runtime Library
(see /libs:dll).

• To specify the debug libraries, select the appropriate type of Debug library under Runtime Library
(see /[no]dbglibs). If you specify debug libraries (/dbglibs) and also request DLL libraries
(/libs:dll), be aware that this combination selects the debug versions of the Fortran DLLs. These
Fortran DLL files have been linked against the C debug DLLs.

• When you specify QuickWin or Standard Graphics libraries under Runtime Library, this selection implicitly
requests multithreaded libraries.

NOTE
This option does not cause static linking of libraries for which no static version is available, such as the
OpenMP runtime libraries or the coarray runtime libraries on Windows. These libraries can only be
linked dynamically.

See Also
Building Intel® Fortran C Mixed-Language Programs on Windows* Systems

Redistribute Libraries When Deploying Applications
When you deploy your application to systems that do not have a compiler installed, you need to redistribute
certain Intel® libraries where your application is linked. You can do so in one of the following ways:

• Statically link your application. An application built with statically linked libraries eliminates the need to
distribute runtime libraries with the application executable. By linking the application to the static
libraries, you are not dependent on the dynamic shared libraries.

• Dynamically link your application. If you must build your application with dynamically linked (or shared)
compiler libraries, you should address the following concerns:

• You must build your application with shared or dynamic libraries that are redistributable.
• Note the directory where the redistributables are installed and how the OS finds them.
• You should determine which shared or dynamic libraries your application needs.

The information here is only introductory. The redistributable library installation packages are available at the
following locations:

• Intel® oneAPI versions
• Older Intel® Parallel Studio XE versions

Resolve References to Shared Libraries
If you are relying on shared libraries distributed with Intel® oneAPI toolkits, you must make sure that your
users have these shared libraries on their systems.

 1 Intel® Fortran Compiler Classic and Intel® Fortran Compiler Developer Guide and Reference

552

https://www.intel.com/content/www/us/en/developer/articles/tool/oneapi-standalone-components.html
https://www.intel.com/content/www/us/en/developer/articles/tool/compilers-redistributable-libraries-by-version.html

If you are building an application that will be deployed to your user community and you are relying on shared
libraries (.so shared objects on Linux, .dll dynamic libraries on Windows) distributed with Intel® oneAPI
tools, you must make sure that your users have these shared libraries on their systems. To determine what
shared libraries you depend on, use one of the following commands for each of your programs and
components:

Linux

ldd
Windows

dumpbin /DEPENDENTS programOrComponentName
Once you have done this, you must choose how your users will receive these libraries.

Shared Library Deployment
Once you have built, run, and debugged your application, you must deploy it to your users. That deployment
includes any shared libraries, including libraries that are components of the Intel® oneAPI toolkits.

Deployment Models
You have two options for deploying the shared libraries from the Intel oneAPI toolkit that your application
depends on:

Private Model Copy the shared libraries from the Intel oneAPI toolkit into your application
environment, and then package and deploy them with your application. Review
the license and third-party files associated with the Intel oneAPI toolkits and/or
components you have installed to determine the files that you can redistribute.

The advantage to this model is that you have control over your library and
version choice, so you only package and deploy the libraries that you have
tested. The disadvantage is that the end users may see multiple libraries
installed on their system, if multiple installed applications all use the private
model. You are also responsible for updating these libraries whenever updates
are required.

Public Model You direct your users to runtime packages provided by Intel. Your users install
these packages on their system when they install your application. The runtime
packages install onto a fixed location, so all applications built with Intel oneAPI
tools can be used.

The advantage is that one copy of each library is shared by all applications, which
results in improved performance. You can rely on updates to the runtime
packages to resolve issues with libraries independently from when you update
your application. The disadvantage is that the footprint of the runtime package is
larger than a package from the private model. Another disadvantage is that your
tested versions of the runtime libraries may not be the same as your end user's
versions.

Select the model that best fits your environment, your needs, and the needs of your users.

NOTE
Intel ensures that newer compiler-support libraries work with older versions of generated compiler
objects, but newer versioned objects require newer versioned compiler-support libraries. If an
incompatibility is introduced that causes newer compiler-support libraries not to work with older
compilers, you will have sufficient warning and the library will be versioned so that deployed
applications continue to work.

Intel® Fortran Compiler Classic and Intel® Fortran Compiler Developer Guide and Reference 1

553

Additional Steps
Under either model, you must manually configure certain environment variables that are normally handled by
the oneapi-vars, setvars, or vars scripts or module files.

For example, with the Intel® MPI Library, you must set the following environment variables during
installation:

Linux

I_MPI_ROOT=installPath FI_PROVIDER_PATH=installPath/intel64/libfabric:/usr/lib64/libfabric
Windows

I_MPI_ROOT=installPath

Compatibility in the Minor Releases of the Intel oneAPI Products
For Intel oneAPI products, each minor version of the product is compatible with the other minor version from
the same release (for example, 2021). When there are breaking changes in API or ABI, the major version is
increased. For example, if you tested your application with an Intel oneAPI product with a 2021.1 version, it
will work with all 2021.x versions. It is not guaranteed that it will work with 2022.x or 19.x versions.

Redistributable Library Considerations
The Intel Compiler links to some Intel and non-Intel libraries by default; additional libraries are linked with
different options. See the following table for options and their linked libraries. If your application links to a
redistributable library, you need to ensure that those libraries are packaged with your application.

Fortran
Option Intel Libraries Non-Intel Libraries

Linux Windows Linux Windows Linux Windows

default
(static-
intel)

default (MT) libsvml.a
libimf.a
libirc.a
libirc_s.a
libifport.a
libifcoremt.
a
libipgo.a

libircmt.lib
svml_dispmt.
lib
libdecimal.l
ib
libmmt.lib
ifconsol.lib
libifcoremt.
lib
libifport.li
b

libm.so
libgcc_s.so
libgcc.so
libdl.so
libc.so

libcmt.lib
oldnames.lib

shared/
shared-intel

MD libsvml.so
libimf.so
libintlc.so
libirc_s.so
libifport.so
libifcoremt.
so
libipgo.a

libircmt.lib
svml_dispmd.
lib
libdecimal.l
ib
libmmd.lib
ifconsol.lib
libifcoremd.
lib

libm.so
libgcc.so
libgcc_s.so
libdl.so
libc.so

msvcrt.lib
oldnames.lib

 1 Intel® Fortran Compiler Classic and Intel® Fortran Compiler Developer Guide and Reference

554

Option Intel Libraries Non-Intel Libraries

Linux Windows Linux Windows Linux Windows

libifportmd.
lib

MTd libircmt.lib
svml_dispmt.
lib
libdecimal.l
ib
libmmt.lib
ifconsol.lib
libifcoremt.
lib
libifport.li
b

libcmtd.lib
oldnames.lib

MDd libircmt.lib
svml_dispmd.
lib
libdecimal.l
ib
libmmdd.lib
ifconsol.lib
libifcoremdd
.lib
libifportmd.
lib

msvcrtd.lib
oldnames.lib

coarray Qcoarray libicaf.so libicaf.lib

fiopenmp (or
qopenmp)

Qiopenmp (or
Qopenmp)

libiomp5.so libiomp5md.l
ib

libpthread.s
o

fiopenmp (or
qopenmp)
fopenmp-
targets=spir
64

Qiopenmp (or
Qopenmp)
Qopenmp-
targets=spir
64

libiomp5.so
libomptarget
.so

libiomp5md.l
ib
omptarget.li
b

libpthread.s
o

qopenmp-
stubs

Qopenmp-
stubs

libiompstubs
5.so

libiompstubs
5md.lib

fortlib libifcoremt.
a

libpthread.s
o

fortlib
shared/
shared-intel

libifcoremt.
so

libpthread.s
o

fsycl fsycl libsycl.so sycl.lib libstdc++.so

Intel® Fortran Compiler Classic and Intel® Fortran Compiler Developer Guide and Reference 1

555

Option Intel Libraries Non-Intel Libraries

Linux Windows Linux Windows Linux Windows

libsycl-
devicelib-
host.so

sycl-
devicelib-
host.lib

qmkl=paralle
l

Qmkl:paralle
l

libmkl_intel
_lp64.a
libmkl_intel
_thread.a
libmkl_core.
a
libiomp5.a

mkl_intel_lb
64.lib
mkl_intel_th
read.lib
mkl_core.lib
libiomp5md.l
ib

libpthread.s
o

qmkl=sequent
ial

Qmkl:sequent
ial

libmkl_intel
_lp64.a
libmkl_intel
_sequential.
a
libmkl_core.
a

mkl_intel_lb
64.lib
mkl_intel_se
quential.lib
mkl_core.lib

Store Object Code in Static Libraries
Another way to organize source code used by several projects is to build a static library (for Windows, .lib
and for Linux, .a) containing the object files for the reused procedures. You can create a static library by
doing the following:

• From the Microsoft Visual Studio integrated development environment (IDE), create and build a Fortran
Static Library project type.

• From the command line, use the ar command (on Linux) or the lib command (Windows).

After you have created a static library, you can use it as input to other types of Intel® Fortran Compiler
projects.

See Also
Using Fortran Static Library Projects

Store Routines in Shareable Libraries
You can organize the code in your application by storing the executable code for certain routines in a
shareable library: .dll for Windows*, .so for Linux*. You can then build your applications so that they call
these routines from the shareable library.

When routines in a shareable library are called, the routines are loaded into memory at runtime as they are
needed. This is most useful when several applications use a common group of routines. By storing these
common routines in a shareable library, you reduce the size of each application that calls the library. In
addition, you can update the routines in the library without having to rebuild any of the applications that call
the library.

Use Windows API Routines
This section contains information about how to include interface definitions for Windows API routines, how to
call Windows API routines, and which Windows API routines are provided.

 1 Intel® Fortran Compiler Classic and Intel® Fortran Compiler Developer Guide and Reference

556

Include the Intel® Fortran Interface Definitions for Windows API Routines

Intel® Fortran provides interface definitions for both the Intel Fortran library routines and most of the
Windows API routines in the standard include directory. Documentation on the Windows API can be found at
Microsoft Learn.

To include the Windows API interface definitions, do one of the following:

1. Add the statement USE IFWIN to include all Windows API routine definitions.

The USE IFWIN statement makes all parameters and interfaces for most Windows routines available to
your Intel Fortran program. Any program or subprogram that uses the Windows features can include
the statement USE IFWIN, which is needed in each subprogram that makes Windows API calls.

Add the USE statement before any declaration statements (such as IMPLICIT NONE or INTEGER).
2. You can limit the type of parameters and interfaces for Windows applications to make compilation times

faster. To do this, include only the subsets of the Windows API needed in multiple USE statements (see
the file ...\INCLUDE\IFWIN.F90).

If you want to further minimize compile time, add the ONLY keyword to the USE statement. For example:

USE KERNEL32, only: GetSystemTime, GetLastError

Call Windows API Routines

This topic describes general information about calling Windows API routines from Intel® Fortran Compiler
applications. It contains the following information:

• Calling Windows API Routines Using the Intel® Fortran Compiler Interface Definitions
• Understanding Data Types Differences

Call Windows API Routines Using the Intel® Fortran Compiler Interface Definitions
To call the appropriate Windows API routine after including the Intel® Fortran Compiler interface definitions,
follow these guidelines:

1. Examine the documentation for the appropriate routine in the Windows API (for example,
GetSystemTime) to obtain the following information:

• The number and order of arguments. You will need to declare and initialize each argument variable
using the correct data type. In the case of the GetSystemTime routine, a structure (derived type) is
passed by reference.

If character arguments are present, add a null character as a terminator to the character variable
before calling the Windows API routine.

• Whether the routine returns a result (function) or not (subroutine). For example, because the
GetSystemTime routine calling format starts with VOID, this routine should be called as a subroutine
with a CALL statement.

2. If you are not sure about the data type of arguments or its function return value, you can examine the
interface definitions in the appropriate .F90 file in ...\INCLUDE\. For example, to view the interface
definition for GetSystemTime:

• In a text editor, open the file kernel32.f90 from ...\INCLUDE\.
• Search for the routine name (such as GetSystemTime)
• View the interface definition and compare it to the description in the Windows API documentation to

see how the arguments are represented in Fortran. Take note of how arguments are passed; in
some cases, such as when an arbitrary data type is passed by address, you must pass the address
of a variable using the LOC intrinsic rather than the variable directly.

3. If one of the arguments is a structure, look up the definition in IFWINTY.F90 in ...\INCLUDE\. For
example, to view the data type definition for the T_SYSTEMTIME type used in GetSystemTime:

• In a text editor, open the file IFWINTY.F90 from ...\INCLUDE\.
• Search for the data type name (such as T_SYSTEMTIME).

Intel® Fortran Compiler Classic and Intel® Fortran Compiler Developer Guide and Reference 1

557

https://learn.microsoft.com

• View the data type definition and note the field names. In some cases, these will differ slightly from
those listed in the Windows API documentation.

• Define a variable name to use the derived-type definition in your program, such as:

TYPE (T_SYSTEMTIME) MYTIME
4. Many Windows API routines have an argument or return a value described as a handle. This is

generally an address-sized integer and must be declared using an appropriate KIND value, typically
HANDLE, which automatically provides the correct value for 32- and 64-bit platforms. For example:

Integer(HANDLE) :: hwnd
Use the variable definition to call the Win32 routine. For example, the completed program follows:

! Getsystime.f90 file shows how to call a Windows API routine
! Since the only routine called is GetSystemTime, only include
! interface definitions from kernel32.mod instead of all modules
! included by ifwin.f90. Type definitions are defined in IFWINTY,
! which is used within KERNEL32.
!
PROGRAM Getsystime
USE KERNEL32
TYPE (T_SYSTEMTIME) MYTIME
CALL GetSystemTime(MYTIME)
WRITE (*,*) 'Current UTC time year :: ', Mytime.wYear, &
 ' Month :: ', Mytime.wMonth, ' Day :: ', Mytime.wDay, &
 ' Hour :: ', Mytime.wHour, ' Minute :: ', Mytime.wMinute, &
 ' Second :: ', Mytime.wSecond
END PROGRAM

You can create a new Fortran Console (or QuickWin) application project, add the code shown above as a
source file, build it, and view the result.

Data Type Differences
Module IFWINTY, which is used by IFWIN and the other Win32 API modules, defines a set of constants for
INTEGER and REAL kinds that correspond to many of the type definitions provided in the Windows
WINDOWS.H header file. Use these kind values in INTEGER and REAL declarations. The following table gives
the correspondence of some of the more common Windows types:

Windows Data Type Equivalent Fortran Data Type

BOOL, BOOLEAN INTEGER(BOOL)

BYTE INTEGER(BYTE)

CHAR, CCHAR, UCHAR CHARACTER or INTEGER(UCHAR)

DWORD INTEGER(DWORD)

ULONG INTEGER(ULONG)

SHORT INTEGER(SHORT)

LPHANDLE INTEGER(LPHANDLE)

PLONG INTEGER(PLONG)

DOUBLE REAL(DOUBLE)

Use the kind constants instead of explicitly specifying the kind as a number, or assuming a default kind.

 1 Intel® Fortran Compiler Classic and Intel® Fortran Compiler Developer Guide and Reference

558

Note that the Windows BOOL type is not equivalent to Fortran LOGICAL and should not be used with Fortran
LOGICAL operators and literal constants. Use the constants TRUE and FALSE, defined in IFWINTY, rather than
the Fortran literals .TRUE. and .FALSE., and do not test BOOL values using LOGICAL expressions.

Additional notes about equivalent data types for arguments:

• If an argument is described in the Windows API documentation as a pointer, then the corresponding
Fortran interface definition of that argument would have the REFERENCE property (see the ATTRIBUTES).
Older interface definitions use the POINTER - Integer and pass the address of the argument, or the LOC
intrinsic function.

• Pointer arguments on systems using Intel® 64 architecture are 64 bits (8 bytes) in length.
• Be aware that Fortran character variables need to be null-terminated. You can do this by using the C

string extension (see C Strings in Character Constants):

forstring = 'This is a null-terminated string.'C
You can also concatenate a null using the C_NULL_CHAR constant from intrinsic module ISO_C_BINDING,
or CHAR(0):

use, intrinsic :: ISO_C_BINDING
…
forstring = 'This is a null-terminated string'//C_NULL_CHAR
forstring2 = 'This is another null-terminated string'//CHAR(0)

The structures in WINDOWS.H have been converted to derived types in IFWINTY. Unions in structures are
converted to union/maps within the derived type.

Names of components are generally unchanged. C bitfields do not translate directly to Fortran; collections of
bitfields are declared as Fortran INTEGER types and individual bitfields are noted as comments in the source
(IFWINTY.F90). To see how a particular Windows declaration was translated to Fortran, read the
corresponding declaration in the appropriate .F90 source file in the Include folder.

Supplied Windows API Modules

The Intel® Fortran Compiler provides the following Windows* API modules. These modules correspond to the
Windows import libraries of the same name.

• ADVAPI32
• COMCTL32
• COMDLG32
• GDI32
• KERNEL32
• LZ32
• OLE32
• OLEAUT32
• PSAPI
• SCRNSAVE
• SHELL32
• USER32
• VERSION
• WINMM
• WINSPOOL
• WS2_32
• WSOCK32

Additionally, the IFOPNGL module declares OpenGL routines for Windows, with Fortran-specific names.

Math Libraries
The Intel® Fortran Compiler includes the following math libraries:

Intel® Fortran Compiler Classic and Intel® Fortran Compiler Developer Guide and Reference 1

559

Library OS Support Description

libimf.a (static library)
and libimf.so (dynamic
library)

Linux Intel® Compiler Math Libraries, in
addition to libm.a, the math library
provided with gcc.

Both of these libraries are linked in by
default because certain math functions
supported by the GNU* math library are
not available in the Intel® Compiler Math
Library. This linking arrangement allows
the GNU users to have all functions
available when using ifx, with Intel
optimized versions available when
supported.

libimf.a is linked in before libm.a. If
you link in libm.a first, it will change
the versions of the math functions that
are used.

Many routines in the libimf library are
more optimized for Intel®
microprocessors than for non-Intel
microprocessors.

libm.lib (static library)
and libmmd.dll (the DLL
version)

Windows* Math Libraries provided by Intel.

Many routines in the libim library are
more optimized for Intel®
microprocessors than for non-Intel
microprocessors.

Intel® oneAPI Math Kernel
Library (Intel® oneMKL)

Linux, Windows Math library of Fortran routines and
functions that perform a wide variety of
operations on vectors and matrices. The
library also includes fast Fourier
transform (fft) functions, as well as
vector mathematical and vector
statistical functions. For more
information, see Using Intel®
Performance Libraries with Microsoft
Visual Studio* and the Intel® oneMKL
documentation.

It is strongly recommended to use the default rounding mode (round-to-nearest-even) when calling math
library transcendental functions and compiling with default optimization or higher. Faster implementations (in
terms of latency and/or throughput) of these functions are validated under the default round-to-nearest-even
mode.

Using other rounding modes may make results generated by these faster implementations less accurate or
set unexpected floating-point status flags. This behavior may be avoided by -fp-model strict, which
warns the compiler that it cannot assume default settings for the floating-point environment.

Many routines in the Intel Compiler Math Libraries are more optimized for Intel® microprocessors than for
non-Intel microprocessors.

The Intel Compiler Math Libraries contain performance-optimized implementations for various Intel
platforms. By default, the best implementation for the underlying hardware is selected at runtime.

The library dispatch of multi-threaded code may lead to apparent data races, which may be detected by
certain software analysis tools. However, as long as the threads are running on cores with the same CPUID,
these data races are harmless and are not a cause for concern.

 1 Intel® Fortran Compiler Classic and Intel® Fortran Compiler Developer Guide and Reference

560

Product and Performance Information

Performance varies by use, configuration and other factors. Learn more at www.Intel.com/
PerformanceIndex.

Notice revision #20201201

Data and I/O
This section discusses the following:

• Fortran integer, logical, character, and Hollerith data representation
• Fortran input and output (I/O) topics, such as I/O devices, statements, and files, and OPEN and CLOSE

statements

Data Representation
Intel® Fortran expects numeric data to be in native little endian order, in which the least-significant, right-
most zero bit (bit 0) or byte has a lower address than the most-significant, left-most bit (or byte). For
information on using non-native big endian and VAX* floating-point formats, see Supported Native and Non-
native Numeric Formats.

The following table lists the intrinsic data types used by Intel® Fortran, the storage required, and valid
ranges. For information on declaring Fortran intrinsic data types, see Type Declarations. For example, the
declaration INTEGER(4) is the same as INTEGER(KIND=4) and INTEGER*4.

Data Type Storage Description

BYTE 1 byte

(8 bits)

A signed integer data type equivalent to INTEGER(1).

INTEGER See
INTEGER(2),
INTEGER(4),
and
INTEGER(8)

A signed integer, either INTEGER(2), INTEGER(4), or INTEGER(8). The
size is controlled by the integer-size compiler option.

INTEGER(1) 1 byte

(8 bits)

A signed integer value from -128 to 127.

INTEGER(2) 2 bytes

(16 bits)

A signed integer value from -32,768 to 32,767.

INTEGER(4) 4 bytes

(32 bits)

A signed integer value from -2,147,483,648 to 2,147,483,647.

INTEGER(8) 8 bytes

(64 bits)

A signed integer value from -9,223,372,036,854,775,808 to
9,223,372,036,854,775,807.

REAL See REAL(4),
REAL(8), and
REAL(16)

A real floating-point value, either REAL(4), REAL(8), or REAL(16). The
size is controlled by the real-size compiler option.

DOUBLE
PRECISION

See REAL(8)
and REAL(16)

A double precision floating-point value, either REAL(8) or REAL(16). The
size is controlled by the double-size compiler option.

REAL(4) 4 bytes

(32 bits)

A single-precision real floating-point value in IEEE binary32 format
ranging from 1.17549435E-38 to 3.40282347E38. Values between
1.17549429E-38 and 1.40129846E-45 are subnormal.

Intel® Fortran Compiler Classic and Intel® Fortran Compiler Developer Guide and Reference 1

561

https://www.intel.com/PerformanceIndex
https://www.intel.com/PerformanceIndex

Data Type Storage Description

REAL(8) 8 bytes

(64 bits)

A double-precision real floating-point value in IEEE binary64 format
ranging from 2.2250738585072013D-308 to 1.7976931348623158D308.
Values between 2.2250738585072008D-308 and
4.94065645841246544D-324 are subnormal.

REAL(16) 16 bytes
(128 bits)

An extended-precision real floating-point value in IEEE binary128 format
ranging from 6.4751751194380251109244389582276465524996Q-4966
to 1.189731495357231765085759326628007016196477Q4932.

COMPLEX See
COMPLEX(4),
COMPLEX(8),
and
COMPLEX(16
)

A complex floating-point value in a pair of real and imaginary parts that
are either REAL(4), REAL(8), or REAL(16). The size is controlled by the
real-size compiler option.

DOUBLE
COMPLEX

See
COMPLEX(8)
and
COMPLEX(16
)

A double complex floating-point value in a pair of real and imaginary
parts that are either REAL(8) or REAL(16). The size is controlled by the
double-size compiler option.

COMPLEX(4) 8 bytes

(64 bits)

A single-precision complex floating-point value in a pair of IEEE binary32
format parts: real and imaginary. The real and imaginary parts each
range from 1.17549435E-38 to 3.40282347E38. Values between
1.17549429E-38 and 1.40129846E-45 are subnormal.

COMPLEX(8) 16 bytes
(128 bits)

A double-precision complex floating-point value in a pair of IEEE binary64
format parts: real and imaginary. The real and imaginary parts each
range from 2.2250738585072013D-308 to 1.7976931348623158D308.
Values between 2.2250738585072008D-308 and
4.94065645841246544D-324 are subnormal.

COMPLEX(16
)

32 bytes
(256 bits)

An extended-precision complex floating-point value in a pair of IEEE
binary128 format parts: real and imaginary. The real and imaginary parts
each range from
6.4751751194380251109244389582276465524996Q-4966 to
1.189731495357231765085759326628007016196477Q4932.

LOGICAL See
LOGICAL(2),
LOGICAL(4),
and
LOGICAL(8)

A logical value, either LOGICAL(2), LOGICAL(4), or LOGICAL(8). The size
is controlled by the integer-size compiler option.

LOGICAL(1) 1 byte

(8 bits)

A logical value of .TRUE. or .FALSE.

LOGICAL(2) 2 bytes

(16 bits)

A logical value of .TRUE. or .FALSE.

LOGICAL(4) 4 bytes

(32 bits)

A logical value of .TRUE. or .FALSE.

LOGICAL(8) 8 bytes

(64 bits)

A logical value of .TRUE. or .FALSE.

 1 Intel® Fortran Compiler Classic and Intel® Fortran Compiler Developer Guide and Reference

562

Data Type Storage Description

CHARACTER 1 byte (8
bits) per
character

Character data represented by character code convention. Declarations
for Character Types can be in the form CHARACTER(LEN=n) or
CHARACTER*n, where n is the number of bytes or n is (*) to indicate
passed-length format.

HOLLERITH 1 byte (8
bits) per
Hollerith
character

A Hollerith constant.

In addition, you can define Binary Constants.

Integer Data Representations

The Fortran numeric environment is flexible, which helps make Fortran a strong language for intensive
numerical calculations. The Fortran standard purposely leaves the precision of numeric quantities and the
method of rounding numeric results unspecified. This allows Fortran to operate efficiently for diverse
applications on diverse systems.

The effect of math computations on integers is straightforward:

• INTEGER(KIND=1) Representation consists of a maximum positive integer (127), a minimum negative
integer (-128), and all integers between them including zero.

• INTEGER(KIND=2) Representation consists of a maximum positive integer (32,767), a minimum negative
integer (-32,768) , and all integers between them including zero.

• INTEGER(KIND=4) Representation consists of a maximum positive integer (2,147,483,647), a minimum
negative integer (-2,147,483,648), and all integers between them including zero.

• INTEGER(KIND=8) Representation consists of a maximum positive integer (9,223,372,036,854,775,807),
a minimum negative integer (-9,223,372,036,854,775,808), and all integers between them including
zero.

NOTE
In the figures of the INTEGER representations, the symbol :A specifies the address of the byte
containing bit 0, which is the starting address of the represented data element.

Operations on integers usually result in other integers within this range. Integer computations that produce
values too large or too small to be represented in the desired KIND result in the loss of precision. One
arithmetic rule to remember is that integer division results in truncation (for example, 8/3 evaluates to 2).

Integer data lengths can be 1, 2, 4, or 8 bytes in length.

The default data size used for an INTEGER data declaration is INTEGER(4) (same as INTEGER(KIND=4)).
However, you can specify a compiler option to override the default. Option integer-size 16 can be used to
specify INTEGER(2) and option integer-size 64 can be used to specify INTEGER(8).

Integer data is signed with the sign bit being 0 (zero) for positive numbers and 1 for negative numbers.

INTEGER(KIND=1) Representation

INTEGER(1) values range from -128 to 127 and are stored in 1 byte, as shown below.

INTEGER(1) Data Representation

Intel® Fortran Compiler Classic and Intel® Fortran Compiler Developer Guide and Reference 1

563

Integers are stored in a two's complement representation. For example:

+22 == 16 (hex)
 -7 == F9 (hex)

INTEGER(KIND=2) Representation

INTEGER(2) values range from -32,768 to 32,767 and are stored in 2 contiguous bytes, as shown below:

INTEGER(2) Data Representation

Integers are stored in a two's complement representation. For example:

+22 == 0016 (hex)
 -7 == FFF9 (hex)

INTEGER(KIND=4) Representation

INTEGER(4) values range from -2,147,483,648 to 2,147,483,647 and are stored in 4 contiguous bytes, as
shown below.

INTEGER(4) Data Representation

Integers are stored in a two's complement representation.

INTEGER(KIND=8) Representation

INTEGER(8) values range from -9,223,372,036,854,775,808 to 9,223,372,036,854,775,807 and are stored
in 8 contiguous bytes, as shown below.

INTEGER(8) Data Representation

Integers are stored in a two's complement representation.

Logical Data Representations

Logical data can be 1, 2, 4, or 8 bytes in length.

The default data size used for a LOGICAL data declaration is LOGICAL(4) (same as LOGICAL(KIND=4)).
However, you can specify a compiler option to override the default. Option integer-size 16 can be used to
specify LOGICAL(2) and option integer-size 64 can be used to specify LOGICAL(8).

 1 Intel® Fortran Compiler Classic and Intel® Fortran Compiler Developer Guide and Reference

564

To improve performance on systems using Intel® 64 architecture, use LOGICAL(4) (or LOGICAL(8)) rather
than LOGICAL(2) or LOGICAL(1). On systems using IA-32 architecture, use LOGICAL(4) rather than
LOGICAL(8), LOGICAL(2), or LOGICAL(1).

LOGICAL(KIND=1) values are stored in 1 byte. In addition to having logical values .TRUE. and .FALSE.,
LOGICAL(1) data can also have values in the range -128 to 127. Logical variables can also be interpreted as
integer data.

In addition to LOGICAL(1), logical values can also be stored in 2 (LOGICAL(2)), 4 (LOGICAL(4)), or 8
(LOGICAL(8)) contiguous bytes, starting on an arbitrary byte boundary.

The Intel® Fortran compilers permit a numerical value to be assigned to a logical variable. The internal
representation of the numerical value used to be assigned to the logical variable with no change in the
internal representation. Now, by default, the value is converted to the internal representation of .true.
or .false. and the converted value is stored into the logical variable. To change the behavior to the old
semantics, specify assume old_logical_assign on the command line.

If the fpscomp nologicals compiler option is set (the default), the low-order bit determines whether the
logical value is true or false. To interoperate with procedures written in C for Microsoft* Fortran PowerStation
logical values, where 0 (zero) is false and non-zero values are true, specify fpscomp logicals.

LOGICAL(1), LOGICAL(2), LOGICAL(4), and LOGICAL(8) data representations (when fpscomp nologicals
is set) appear below.

The symbol :A in the figure specifies the address of the byte containing bit 0, which is the starting address of
the represented data element.

LOGICAL(1), LOGICAL(2), LOGICAL(4), and LOGICAL(8) Data Representations

See Also
integer-size compiler option
assume compiler option, setting [no]old_logical_assign
fpscomp compiler option, setting [no]logicals

Character Representation

A character string is a contiguous sequence of bytes in memory, as shown below.

Intel® Fortran Compiler Classic and Intel® Fortran Compiler Developer Guide and Reference 1

565

The symbol :A in the figure specifies the address of the byte containing bit 0, which is the starting address of
the represented data element.

CHARACTER Data Representation

A character string is specified by two attributes: the address A of the first byte of the string, and the length L
of the string in bytes.

Linux

The length L of a string is in the range 1 through 2,147,483,647 (2**31-1) for systems based on IA-32
architecture and in the range 1 through 9,223,372,036,854,775,807 (2**63-1) for systems based on Intel®
64 architecture.

Windows

The length L of a string is in the range 1 through 2,147,483,647 (2**31-1) .

Hollerith Representation

Hollerith constants are stored internally, one character per byte, as shown below.

 1 Intel® Fortran Compiler Classic and Intel® Fortran Compiler Developer Guide and Reference

566

The symbol :A in the figure specifies the address of the byte containing bit 0, which is the starting address of
the represented data element.

Hollerith Data Representation

Fortran I/O
In Fortran's I/O system, data is stored and transferred among files. All I/O data sources and destinations are
considered files.

Devices such as the screen, keyboard, and printer are external files, as are data files stored on a device such
as a disk.

Variables in memory can also act as a file on a disk and are typically used to convert ASCII representations
of numbers to binary form. When variables are used in this way, they are called internal files.

For more information, see the individual topics in this section.

Logical Devices

Every file, internal or external, is associated with a logical device. You identify the logical device associated
with a file by using Unit Specifier (UNIT=). The unit specifier for an internal file is the name of the character
variable associated with it. The unit specifier for an external file is one of the following:

• A number you assign with the OPEN statement
• A number assigned by the Intel® Fortran runtime library with the OPEN specifier NEWUNIT=
• A number preconnected as a unit specifier to a device
• An asterisk (*)

Intel® Fortran Compiler Classic and Intel® Fortran Compiler Developer Guide and Reference 1

567

The OPEN statement connects a unit number with an external file and allows you to explicitly specify file
attributes and runtime options using OPEN statement specifiers. External unit specifiers that are
preconnected to certain devices do not have to be opened. External units that you connect are disconnected
when program execution terminates or when the unit is closed by a CLOSE statement.

A unit must not be connected to more than one file at a time, and a file must not be connected to more than
one unit at a time. You can OPEN an already opened file but only to change some of the I/O options for the
connection, not to connect an already opened file or unit to a different unit or file.

You must use a unit specifier for all I/O statements except in the following cases:

• ACCEPT, which always reads from standard input unless the FOR_ACCEPT environment variable is defined.
• INQUIRE by file, which specifies the filename rather than the unit with which the file is associated.
• PRINT, which always writes to standard output unless the FOR_PRINT environment variable is defined.
• READ statements that contain only an I/O list and format specifier, which read from standard input

(UNIT=5) unless the FOR_READ environment variable is defined.
• WRITE statements that contain only an I/O list and format specifier, which write to standard output unless

the FOR_WRITE environment variable is defined.
• TYPE, which always writes to standard output unless the FOR_TYPE environment variable is defined.

External Files
A unit specifier associated with an external file must be either an integer expression or an asterisk (*). The
integer expression must be in the range 0 (zero) to a maximum value of 2,147,483,640. (The predefined
parameters FOR_K_PRINT_UNITNO, FOR_K_TYPE_UNITNO, FOR_K_ACCEPT_UNITNO, and
FOR_K_READ_UNITNO may not be in that range. For more information, see the Language Reference.)

The following example connects the external file UNDAMP.DAT to unit 10 and writes to it:

OPEN (UNIT = 10, FILE = 'UNDAMP.DAT')
WRITE (10, '(A18,\)') ' Undamped Motion:'

The asterisk (*) unit specifier specifies the keyboard when reading and the screen when writing. The
following example uses the asterisk specifier to write to the screen:

WRITE (*, '(1X, A30,\)') ' Write this to the screen.'
Intel Fortran has four units preconnected to external files (devices), as shown in the following table:

External Unit
Specifier

Environment
Variable

Description

Asterisk (*) None Always represents the keyboard and screen (unless the
appropriate environment variable is defined, such as
FOR_READ).

0 FORT0 Initially represents the screen (unless FORT0 is explicitly
defined)

5 FORT5 Initially represents the keyboard (unless FORT5 is explicitly
defined)

6 FORT6 Initially represents the screen (unless FORT6 is explicitly
defined)

The asterisk (*) specifier is the only unit specifier that cannot be reconnected to another file; attempting to
close such a unit causes a compile-time error. Units 0, 5, and 6 can be connected to any file with the OPEN
statement; if you close one of those units, the file is automatically reconnected to its preconnected device
the next time an I/O statement attempts to use that unit.

 1 Intel® Fortran Compiler Classic and Intel® Fortran Compiler Developer Guide and Reference

568

Intel® Fortran does not support buffering to stdin, and does not buffer to stdout by default unless the
assume buffered_stdout option is specified. All I/O to units * and 6 use line buffering by default.
Therefore, C and Fortran output to stdout should work well as long as the C code is not performing
buffering. If the C code is performing buffering, the C code will have to flush the buffers after each write. For
more information on stdout and stdin, see Assigning Files to Logical Units.

You can change these preconnected files by doing one of the following:

• Using an OPEN statement to open unit 5, 6, or 0. When you explicitly OPEN a file for unit 5, 6, or 0, the
OPEN statement keywords specify the file-related information to be used instead of the preconnected
standard I/O file.

• Setting the appropriate environment variable (FORTn) to redirect I/O to an external file.

To redirect input or output from the standard preconnected files at runtime, you can set the appropriate
environment variable or use the appropriate shell redirection character in a pipe (such as > or <).

When you omit the file name in the OPEN statement or use an implicit OPEN, you can define the environment
variable FORTn to specify the file name for a particular unit number n. An exception to this is when the
fpscomp filesfromcmd compiler option is specified.

For example, if you want unit 6 to write to a file instead of standard output, set the environment variable
FORT6 to the path and filename to be used before you run the program. If the appropriate environment
variable is not defined, a default filename is used, in the form fort.n where n is the logical unit number.

The following example writes to the preconnected unit 6 (the screen), then reconnects unit 6 to an external
file and writes to it, and finally reconnects unit 6 to the screen and writes to it:

PROGRAM Cosines
 implicit none
 INTEGER, PARAMETER :: dp = selected_real_kind(15, 307)
 integer,parameter :: k15 = selected_int_kind(15)
 INTEGER(kind=k15) k
 real(kind = dp) :: a, b,c

 !Write to the screen (preconnected unit 6).
 WRITE (6, '('' This is unit 6'')')
 ! Use the OPEN statement to connect unit 6
 ! to an external file named 'COSINES'.
 OPEN (UNIT = 6, FILE = 'COSINES', STATUS = 'UNKNOWN')
 DO k = 1, 63, 1
 c = real (k)
 a = c / 10.0
 b = COS(a)
 ! Write to the file 'COSINES'.
 WRITE (6, 100) a, b
 WRITE (*, 101) k, a, b
100 FORMAT (F3.1, ' ', F5.2)
101 FORMAT (I4, ' ', F3.1,' ', F5.2)
 END DO
 ! Close it.
 CLOSE (6)
 ! Reconnect unit 6 to the screen, by writing to it.
 WRITE (6,' ('' Cosines completed'')')
END PROGRAM Cosines

Internal Files
The unit specifier associated with an internal file is a scalar or array character variable:

• If the internal file is a scalar character variable, the file has only one record; its length is equal to that of
the variable.

Intel® Fortran Compiler Classic and Intel® Fortran Compiler Developer Guide and Reference 1

569

• If the internal file is an array character variable, the file has a record for each element in the array; each
record's length is equal to one array element.

Follow these rules when using internal files:

• Use only formatted I/O, including I/O formatted with a format specification, namelist, and list-directed
I/O. (List-directed and namelist I/O are treated as sequential formatted I/O.)

• If the character variable is an allocatable array or array part of an allocatable array, the array must be
allocated before use as an internal file. If the character variable is a pointer, it must be associated with a
target.

• Use only READ and WRITE statements. You cannot use file connection (OPEN, CLOSE), file positioning
(REWIND, BACKSPACE), or file inquiry (INQUIRE) statements with internal files.

You can read and write internal files with FORMAT I/O statements, namelist I/O statements, or list-directed
I/O statements exactly as you can external files. Before an I/O statement is executed, internal files are
positioned at the beginning of the variable, before the first record.

With internal files, you can use the formatting capabilities of the I/O system to convert values between
external character representations and Fortran internal memory representations. Reading from an internal
file converts the ASCII representations into numeric, logical, or character representations, and writing to an
internal file converts these representations into their ASCII representations.

This feature makes it possible to read a string of characters without knowing its exact format, examine the
string, and interpret its contents. It also makes it possible, as in dialog boxes, for the user to enter a string
and for your application to interpret it as a number.

If less than an entire record is written to an internal file, the rest of the record is filled with blanks.

In the following example, str and fname specify internal files:

PROGRAM INTERNALFILES
 implicit none
 integer,parameter :: k15 = selected_int_kind(15)
 CHARACTER(10) str, fname
 INTEGER(kind=k15) i, n1, n2, n3
 str = " 1 2 3"
 ! List-directed READ sets n1 = 1, n2 = 2, n3 = 3.
 READ(str, *) n1, n2, n3
 i = 4
 ! Formatted WRITE sets fname = 'FM004.DAT'.
 WRITE (fname, 200) i
200 FORMAT ('FM', I3.3, '.DAT')
 write(*,*)fname
END PROGRAM

See Also
assume compiler option

Physical Devices on Windows

Input/Output (I/O) statements that do not refer to a specific file or I/O device read from standard input and
write to standard output. Standard input is the keyboard, and standard output is the screen (console). To
perform input and output on a physical device other than the keyboard or screen, specify the device name as
the file name to be read from or written to.

Some physical device names are determined by the host operating system; others are recognized by Intel®
Fortran. Extensions on most device names are ignored.

The following table shows file names for device I/O:

 1 Intel® Fortran Compiler Classic and Intel® Fortran Compiler Developer Guide and Reference

570

Device Description

CON Console (standard output)

PRN Printer

COM1 Serial port #1

COM2 Serial port #2

COM3 Serial port #3

COM4 Serial port #4

LPT1 Parallel Port #1

LPT2 Parallel Port #2

LPT3 Parallel Port #3

LPT4 Parallel Port #4

NUL NULL device. Discards all output; contains no input.

AUX Serial port #1

LINE Serial port #1

USER Standard output

ERR Standard error

CONOUT$ Standard output

CONIN$ Standard input

NOTE
If you use the LINE, USER, or ERR name with an extension, for example, LINE.TXT, Fortran will write
to a file rather than to the device.

Examples of opening physical devices as units are:

 OPEN (UNIT = 4, FILE = 'PRN')
 OPEN (UNIT = 7, FILE = 'LPT2', ERR = 100)

Types of I/O Statements

The table below lists the file connection I/O statements:

Statement name Description

CLOSE Disconnects a unit number from an external file.

OPEN Connects a unit number with an external file and specifies file connection
characteristics.

The table below lists the file inquiry I/O statements:

Intel® Fortran Compiler Classic and Intel® Fortran Compiler Developer Guide and Reference 1

571

Statement name Description

DEFINE FILE Specifies file characteristics for a direct access relative file and connects the unit
number to the file, similar to an OPEN statement. Provided for compatibility with
compilers older than FORTRAN-77.

INQUIRE Returns information about a named file, a connection to a unit, or the length of an
output item list.

The table below lists the record position I/O statements:

Statement name Description

BACKSPACE Moves the record position to the beginning of the previous record (sequential access
only).

DELETE Marks the record at the current record position in a relative file as deleted (direct
access only).

ENDFILE Writes an end-of-file marker after the current record (sequential access only).

FIND Changes the record position in a direct access file. Provided for compatibility with
compilers older than FORTRAN-77.

REWIND Sets the record position to the beginning of the file (sequential access only).

The table below lists the record input I/O statements:

Statement name Description

READ Transfers data from an external file record or an internal file to internal storage.

ACCEPT Reads input from stdin. Unlike READ, ACCEPT only provides formatted sequential
input and does not specify a unit number.

The table below lists the record output I/O statements:

Statement name Description

FLUSH Flushes the contents of an external unit's buffer to its associated file.

PRINT Transfers data from internal storage to stdout. Unlike WRITE, PRINT only provides
formatted sequential output and does not specify a unit number.

REWRITE Transfers data from internal storage to an external file record at the current record
position (direct access relative files only).

TYPE Writes record output to stdout.

WRITE Transfers data from internal storage to an external file record or to an internal file.

In addition to the READ, WRITE, REWRITE, TYPE, and PRINT statements, other I/O record-related statements
are limited to a specific file organization. For instance:

• The DELETE statement only applies to relative files. (Detecting deleted records is only available if the vms
option was specified when the program was compiled.)

• The BACKSPACE statement only applies to sequential files open for sequential access.
• The REWIND statement only applies to sequential files open for sequential access and to direct access

files.
• The ENDFILE statement only applies to certain types of sequential files open for sequential access and to

direct access files.

The file-related statements (OPEN, INQUIRE, and CLOSE) apply to any relative or sequential file.

 1 Intel® Fortran Compiler Classic and Intel® Fortran Compiler Developer Guide and Reference

572

Forms of I/O Statements

Each type of record I/O statement can be coded in a variety of forms. The form you select depends on the
nature of your data and how you want it treated. When opening a file, specify the form using the FORM
specifier.

The following are the forms of I/O statements:

• Formatted I/O statements contain explicit format specifiers that are used to control the translation of data
from internal (binary) form within a program to external (readable character) form in the records, or vice
versa.

• List-directed and namelist I/O statements are similar to formatted statements in function. However, they
use different mechanisms to control the translation of data: formatted I/O statements use explicit format
specifiers, and list-directed and namelist I/O statements use data types.

• Unformatted I/O statements do not contain format specifiers and therefore do not translate the data
being transferred (important when writing data that will be read later).

Formatted, list-directed, and namelist I/O forms require translation of data from internal (binary) form within
a program to external (readable character) form in the records. Consider using unformatted I/O for the
following reasons:

• Unformatted data avoids the translation process, so I/O tends to be faster.
• Unformatted data avoids the loss of precision in floating-point numbers when the output data will

subsequently be used as input data.
• Unformatted data conserves file storage space (stored in binary form).

To write data to a file using formatted, list-directed, or namelist I/O statements, specify FORM= 'FORMATTED'
when opening the file. To write data to a file using unformatted I/O statements, specify FORM=
'UNFORMATTED' when opening the file.

Data written using formatted, list-directed, or namelist I/O statements is referred to as formatted data. Data
written using unformatted I/O statements is referred to as unformatted data.

When reading data from a file, you should use the same I/O statement form that was used to write the data
to the file. For instance, if data was written to a file with a formatted I/O statement, you should read data
from that file with a formatted I/O statement.

I/O statement form is usually the same for reading and writing data in a file. However, a program can read a
file containing unformatted data (using unformatted input) and write it to a separate file containing
formatted data (using formatted output). Similarly, a program can read a file containing formatted data and
write it to a different file containing unformatted data.

You can access records in any sequential or relative file using sequential access. For relative files and certain
(fixed-length) sequential files, you can also access records using direct access.

The following table shows the forms and I/O statements that can be used for sequential access external files:

I/O Form Available Statements

Formatted READ, WRITE, PRINT, ACCEPT, TYPE, REWRITE

List-directed READ, WRITE, PRINT, ACCEPT, TYPE

Namelist READ, WRITE, PRINT, ACCEPT, TYPE

Unformatted READ, WRITE, REWRITE

The following table shows the forms and I/O statements that can be used for direct access external files:

I/O Form Available Statements

Formatted READ, WRITE, REWRITE

Unformatted READ, WRITE, REWRITE

The following table shows the forms and I/O statements that can be used for stream access external files:

Intel® Fortran Compiler Classic and Intel® Fortran Compiler Developer Guide and Reference 1

573

I/O Form Available Statements

Formatted READ, WRITE

List-directed READ, WRITE

Namelist READ, WRITE

Unformatted READ, WRITE

The following table shows the forms and I/O statements that can be used for internal files:

I/O Form Available Statements

Formatted READ, WRITE

List-directed READ, WRITE

Unformatted None

NOTE
You can use the REWRITE statement only for relative files, by using direct access.

Assign Files to Logical Units

Most I/O operations involve a disk file, keyboard, or screen display. Other devices can also be used:

• Sockets can be read from or written to if a USEROPEN routine (usually written in C) is used to open the
socket.

• Pipes opened for read and write access block (wait until data is available) if you issue a READ to an empty
pipe.

• Pipes opened for read-only access return EOF if you issue a READ to an empty pipe.

You can access the terminal screen or keyboard by using preconnected files listed in Logical Devices.

You can choose to assign files to logical units by using one of the following methods:

• Using default values, such as a preconnected unit
• Supplying a file name (and possibly a directory) in an OPEN statement
• Using environment variables

Use Default Values
In the following example, the PRINT statement is associated with a preconnected unit (stdout) by default.

PRINT *,100
The READ statement associates the logical unit 7 with the file fort.7 (because the FILE specifier was
omitted) by default:

OPEN (UNIT=7,STATUS='NEW')
READ (7,100)

Supply a File Name in an OPEN Statement
The FILE specifier in an OPEN statement typically specifies only a file name (such as filnam) or contains
both a directory and file name (such as /usr/proj/filnam).

For example:

OPEN (UNIT=7, FILE='FILNAM.DAT', STATUS='OLD')

 1 Intel® Fortran Compiler Classic and Intel® Fortran Compiler Developer Guide and Reference

574

The DEFAULTFILE specifier in an OPEN statement typically specifies a pathname that contains only a directory
(such as /usr/proj/) or both a directory and file name (such as /usr/proj/testdata).

Implied OPEN

An implied OPEN means that the FILE and DEFAULTFILE specifier values are not specified. If you used an
implied OPEN, or if the FILE specifier in an OPEN statement did not specify a file name, you can use an
environment variable to specify a file name or a pathname. The pathname can contain both a directory and
file name.

Use Environment Variables
You can use shell commands to set the appropriate environment variable to a value that indicates a directory
(if needed) and a file name to associate a unit with an external file.

Intel® Fortran recognizes environment variables for each logical I/O unit number in the form of FORTn, where
n is the logical I/O unit number. If a file name is not specified in the OPEN statement and the corresponding
FORTn environment variable is not set for that unit number, Intel Fortran generates a file name in the form
fort.n, where n is the logical unit number.

Implied Intel Fortran Logical Unit Numbers
The ACCEPT, PRINT, and TYPE statements, and the use of an asterisk (*) in place of a unit number in READ
and WRITE statements, do not include an explicit logical unit number.

Each of these Fortran statements uses an implicit internal logical unit number and environment variable.
Each environment variable is in turn associated by default with one of the Fortran file names that are
associated with standard I/O files. The table below shows these relationships:

Intel® Fortran statement Environment variable Standard I/O file name

READ (*,f) io-list FOR_READ stdin

READ f,io-list FOR_READ stdin

ACCEPT f,io-list FOR_ACCEPT stdin

WRITE (*,f) io-list FOR_PRINT stdout

PRINT f,io-list FOR_PRINT stdout

TYPE f,io-list FOR_TYPE stdout

WRITE(0,f) io-list FORT0 stderr

READ(5,f) io-list FORT5 stdin

WRITE(6,f) io-list FORT6 stdout

You can change the file associated with these Intel Fortran environment variables, as you would any other
environment variable, by means of the environment variable assignment command. For example:

setenv FOR_READ /usr/users/smith/test.dat
After executing the preceding command, the environment variable for the READ statement using an asterisk
refers to file test.dat in the specified directory.

Intel® Fortran Compiler Classic and Intel® Fortran Compiler Developer Guide and Reference 1

575

NOTE
The association between the logical unit number and the physical file can occur at runtime. Instead of
changing the logical unit numbers specified in the source program, you can change this association at
runtime to match the needs of the program and the available resources. For example, before running
the program, a script file can set the appropriate environment variable or allow the terminal user to
type a directory path, file name, or both.

File Organization

File organization refers to the way records are physically arranged on a storage device. This topic describes
the two main types of file organization.

Related topics describe the following:

• Record type refers to whether records in a file are all the same length, are of varying length, or use other
conventions to define where one record ends and another begins. For more information on record types,
see Record Types.

• Record access refers to the method used to read records from or write records to a file, regardless of its
organization. The way a file is organized does not necessarily imply the way in which the records within
that file will be accessed. For more information on record access, see File Access and File Structure and
Record Access.

Types of File Organization
Fortran supports two types of file organizations:

• Sequential
• Relative

The organization of a file is specified by means of the ORGANIZATION keyword in the OPEN statement.

The default file organization is always ORGANIZATION= 'SEQUENTIAL' for an OPEN statement.

You can store sequential files on magnetic tape or disk devices, and can use other peripheral devices, such as
terminals, pipes, and line printers as sequential files.

You must store relative files on a disk device.

Sequential File Organization
A sequentially organized file consists of records arranged in the sequence in which they are written to the
file. The first record written is the first record in the file, the second record written is the second record in the
file, and so on. As a result, records can be added only at the end of the file. Attempting to add records at
some place other than the end of the file will result in the file begin truncated at the end of the record just
written.

Sequential files are usually read sequentially, starting with the first record in the file. Sequential files with a
fixed-length record type that are stored on disk can also be accessed by relative record number (direct
access).

Relative File Organization
Within a relative file are numbered positions, called cells. These cells are of fixed equal length and are
consecutively numbered from 1 to n, where 1 is the first cell, and n is the last available cell in the file. Each
cell either contains a single record or is empty. Records in a relative file are accessed according to cell
number. A cell number is a record's relative record number; its location relative to the beginning of the file.
By specifying relative record numbers, you can directly retrieve, add, or delete records regardless of their
locations. You can only detect deleted records if you specify option vms when the program is compiled.

When creating a relative file, use the RECL value to determine the size of the fixed-length cells. Within the
cells, you can store records of varying length, as long as their size does not exceed the cell size.

 1 Intel® Fortran Compiler Classic and Intel® Fortran Compiler Developer Guide and Reference

576

Internal Files and Scratch Files

Intel Fortran also supports internal files and scratch files.

Internal Files
When you use sequential access, you can use an internal file to reference character data in a buffer. The
transfer occurs between internal storage spaces (unlike external files), such as between user variables and a
character array.

An internal file consists of any of the following:

• Character variable
• Character-array element
• Character array
• Character substring
• Character array section without a vector subscript

Instead of specifying a unit number for the READ or WRITE statement, use an internal file specifier in the
form of a character scalar memory reference or a character-array name reference.

An internal file is a designated internal storage space (variable buffer) of characters that is treated as a
sequential file of fixed-length records. To perform internal I/O, use formatted and list-directed sequential
READ and WRITE statements. You cannot use file-related statements such as OPEN and INQUIRE on an
internal file (no unit number is used).

If an internal file is made up of a single character variable, array element, or substring, that file comprises a
single record whose length is the same as the length of the character variable, array element, or substring it
contains. If an internal file is made up of a character array, that file comprises a sequence of records, with
each record consisting of a single array element. The sequence of records in an internal file is determined by
the order of subscript progression.

A record in an internal file can be read only if the character variable, array element, or substring comprising
the record has been defined (a value has been assigned to the record).

Prior to each READ and WRITE statement, an internal file is always positioned at the beginning of the first
record.

Scratch Files
Scratch files are created by specifying STATUS= 'SCRATCH' in an OPEN statement. By default, these
temporary files are created by an OPEN statement and are deleted when closed.

File Access and File Structure

Fortran supports three methods of file access:

• Sequential
• Direct
• Stream

Fortran supports three kinds of file structure:

• Formatted
• Unformatted
• Binary

Sequential-access and direct-access files can have any of the three file structures. Stream-access files can
have a file structure of formatted or unformatted.

Choose a File Access and File Structure
Each kind of file has advantages and the best choice depends on the application you are developing:

Intel® Fortran Compiler Classic and Intel® Fortran Compiler Developer Guide and Reference 1

577

• Formatted Files

You create a formatted file by opening it with the FORM='FORMATTED' option, or by omitting the FORM
parameter when creating a sequential file. The records of a formatted file are stored as ASCII characters.
Numbers that would otherwise be stored in binary form are converted to ASCII format. Each record ends
with the ASCII carriage return (CR) and/or line feed (LF) characters.

If you need to view a data file's contents, use a formatted file. You can load a formatted file into a text
editor and read its contents directly. The numbers will look like numbers and the strings will look like
character strings (an unformatted or binary file looks like a set of hexadecimal characters).

• Unformatted Files

You create an unformatted file by opening it with the FORM='UNFORMATTED' option, or by omitting the
FORM parameter when creating a direct-access file. An unformatted file is a series of records composed of
physical blocks. Each record contains a sequence of values stored in a representation that is close to what
is used in program memory. Little conversion is required during input/output.

The lack of formatting makes these files quicker to access and more compact than files that store the
same information in a formatted form. However, if the files contain numbers, you will not be able to read
them with a text editor.

• Binary Files

You create a binary file by specifying FORM='BINARY'. Binary files are similar to unformatted files, except
binary files have no internal record format associated with them.

• Sequential-Access Files

Data in sequential files must be accessed in order, one record after the other (unless you change your
position in the file with the REWIND or BACKSPACE statements). Some methods of I/O are possible only
with sequential files, including nonadvancing I/O, list-directed I/O, and namelist I/O. Internal files must
also be sequential files. You must use sequential access for files associated with sequential devices.

A sequential device is a physical storage device that does not allow explicit motion (other than reading or
writing). The keyboard, screen, and printer are all sequential devices.

• Direct-Access Files

Data in direct-access files can be read or written to in any order. Records are numbered sequentially,
starting with record number 1. All records have the length specified by the RECL option in the OPEN
statement. Data in direct-access files is accessed by specifying the record you want within the file. If you
need random access I/O, use direct-access files. A common example of a random-access application is a
database.

• Stream-Access Files

Stream-access I/O is a method of accessing a file without reference to a record structure. With stream
access, a file is seen as a continuous sequence of bytes and is addressed by a positive integer starting
from 1.

To enable stream access, specify ACCESS='STREAM' in the OPEN statement for the file. You can use the
STREAM= specifier in the INQUIRE statement to determine if STREAM is listed in the set of possible
access methods for the file. A value of YES, NO, or UNKNOWN is returned.

A file enabled for stream access is positioned by file storage units (normally bytes) starting at position 1.
To determine the current position, use the POS= specifier in an INQUIRE statement for the unit. You can
indicate a required position in a read or write statement with a POS= specifier.

Stream access can be either formatted or unformatted.

When connected for formatted stream access, an external file has the following characteristics:

• The first file storage unit in the file is at position 1. The relationship between positions of successive file
storage units is processor dependent; not all positive integers need to correspond to valid positions.

 1 Intel® Fortran Compiler Classic and Intel® Fortran Compiler Developer Guide and Reference

578

• Some file storage units may contain record markers that impose a record structure on the file in
addition to its stream structure. If there is no record marker at the end of the file, the final record is
incomplete. Writing an empty record with no record marker has no effect.

When connected for unformatted stream access, an external file has the following characteristics:

• The first file storage unit in the file is at position 1. The position of each subsequent file storage unit is
one greater than the position of the preceding file storage unit.

• If it is possible to position the file, the file storage units do not need to be read or written in order of
their position. For example, you may be able to write the file storage unit at position 2, even though
the file storage unit at position 1 has not been written.

• Any file storage unit can be read from the file while it is connected to a unit, if the file storage unit has
been written since the file was created, and a READ statement for this connection is allowed.

• You cannot use BACKSPACE in an unformatted stream.

File Records

Files may be composed of records. Each record is one entry in the file. A record can be a line from a terminal
or a logical record on a magnetic tape or disk file. All records within one file are of the same type.

In Fortran, the number of bytes transferred to a record must be less than or equal to the record length. One
record is transferred for each unformatted READ or WRITE statement. A formatted READ or WRITE statement
can transfer more than one record using the slash (/) edit descriptor.

For binary files, a single READ or WRITE statement reads or writes as many records as needed to
accommodate the number of bytes being transferred. On output, incomplete formatted records are padded
with spaces. Incomplete unformatted and binary records are padded with undefined bytes (zeros).

Record Types

An I/O record is a collection of data items, called fields, which are logically related and are processed as a
unit. The record type refers to the convention for storing fields in records.

The record type of the data within a file is not maintained as an attribute of the file. The results of using a
record type other than the one used to create the file are indeterminate.

A number of record types are available, as shown in the following table. The table also lists the record
overhead. Record overhead refers to bytes associated with each record that are used internally by the file
system and are not available when a record is read or written. Knowing the record overhead helps when
estimating the storage requirements for an application. Although the overhead bytes exist on the storage
media, do not include them when specifying the record length with the RECL specifier in an OPEN statement.

Record Type Available File Organizations and Portability
Considerations

Record Overhead

Fixed-length Relative or sequential file organizations. None for sequential or
for relative if the vms
option is omitted or
option novms is
specified. One byte for
relative if the vms option
is specified.

Variable-
length

Sequential file organization only. The variable-length record
type is generally the most portable record type across multi-
vendor platforms.

Eight bytes per record.

Segmented Sequential file organization only and specifically for
unformatted sequential access. The segmented record type is
unique to Intel Fortran. It should not be used for portability
with programs written in languages other than Fortran or for
places where Intel Fortran is not used. However, because the

Four bytes per record.
One additional padding
byte (space) is added if
the specified record size
is an odd number.

Intel® Fortran Compiler Classic and Intel® Fortran Compiler Developer Guide and Reference 1

579

Record Type Available File Organizations and Portability
Considerations

Record Overhead

segmented record type is unique to Intel Fortran products,
formatted data in segmented files can be ported across Intel
Fortran platforms.

Stream

(uses no
record
terminator)

Sequential file organization only. None required.

Stream_CR

(uses CR as
record
terminator)

Sequential file organization only. One byte per record.

Stream_LF

(uses LF as
record
terminator)

Sequential file organization only. One byte per record.

Stream_CRLF
(uses CR and
LF as record
terminator)

Sequential file organization only. Two bytes per record.

Fixed-Length Records
When you specify fixed-length records, you are specifying that all records in the file contain the same
number of bytes. When you open a file that is to contain fixed-length records, you must specify the record
size using the RECL keyword. A sequentially organized opened file for direct access must contain fixed-length
records, to allow the record position in the file to be computed correctly.

For relative files, the layout and overhead of fixed-length records depends upon whether the program
accessing the file was compiled using the vms option:

• For relative files where the vms option is omitted (the default), each record has no control information.
• For relative files where the vms option is specified, each record has one byte of control information at the

beginning of the record.

The following figures show the record layout of fixed-length records. The first is for all sequential and relative
files where the vms option is omitted. The second is for relative files where the vms option is specified.

 1 Intel® Fortran Compiler Classic and Intel® Fortran Compiler Developer Guide and Reference

580

Variable-Length Records
Variable-length records can contain any number of bytes up to a specified maximum record length, and apply
only to sequential files.

Variable-length records are prefixed and suffixed by 4 bytes of control information containing length fields.
The trailing length field allows a BACKSPACE request to skip back over records efficiently. The 4-byte integer
value stored in each length field indicates the number of data bytes (excluding overhead bytes) in that
particular variable-length record.

The character count field of a variable-length record is available when you read the record by issuing a READ
statement with a Q format descriptor. You can then use the count field information to determine how many
bytes should be in an I/O list.

The following shows the record layout of variable-length records that are less than 2 gigabytes:

For a record length greater than 2,147,483,639 bytes, the record is divided into subrecords. The subrecord
can be of any length from 1 to 2,147,483,639, inclusive.

The sign bit of the leading length field indicates whether the record is continued or not. The sign bit of the
trailing length field indicates the presence of a preceding subrecord. The position of the sign bit is determined
by the endian format of the file.

The following rules describe sign bit values:

• A subrecord that is continued has a leading length field with a sign bit value of 1.
• The last subrecord that makes up a record has a leading length field with a sign bit value of 0.
• A subrecord that has a preceding subrecord has a trailing length field with a sign bit value of 1.
• The first subrecord that makes up a record has a trailing length field with a sign bit value of 0.
• If the value of the sign bit is 1, the length of the record is stored in twos-complement notation.

The following shows the record layout of variable-length records that are greater than 2 gigabytes:

Files written with variable-length records by Intel Fortran programs usually cannot be accessed as text files.
Instead, use the Stream_LF record format for text files with records of varying length.

Intel® Fortran Compiler Classic and Intel® Fortran Compiler Developer Guide and Reference 1

581

Segmented Records
A segmented record is a single logical record consisting of one or more variable-length, unformatted records
in a sequentially organized disk file. Unformatted data written to sequentially organized files using sequential
access is stored as segmented records by default.

Segmented records are useful when you want to write exceptionally long records but cannot, or you do not
want to define one long variable-length record. For example, you might not want to define one long variable-
length record because virtual memory limitations can prevent program execution. By using smaller,
segmented records, you reduce the chance of problems caused by virtual memory limitations on systems on
which the program may execute.

For disk files, the segmented record is a single logical record that consists of one or more segments. Each
segment is a physical record. A segmented (logical) record can exceed the absolute maximum record length
(2.14 billion bytes), but each segment (physical record) individually cannot exceed the maximum record
length.

To access an unformatted sequential file that contains segmented records, specify FORM='UNFORMATTED'
and RECORDTYPE='SEGMENTED' when you open the file.

The following shows that the layout of segmented records consists of 4 bytes of control information followed
by the user data:

The control information consists of a 2-byte integer record length count (includes the 2 bytes used by the
segment identifier), followed by a 2-byte integer segment identifier that identifies this segment as one of the
following:

Identifier Value Segment Identified

0 One of the segments between the first and last segments

1 First segment

2 Last segment

3 Only segment

If the specified record length is an odd number, the user data will be padded with a single blank (one byte),
but this extra byte is not added to the 2-byte integer record size count.

Avoid the segmented record type when the application requires that the same file be used for programs
written in languages other than Intel Fortran and for non-Intel platforms.

Stream File Data
A stream file is not grouped into records and contains no control information. Stream files are used with
CARRIAGECONTROL='NONE'. They contain character or binary data that is read or written only to the extent
of the variables specified on the input or output statement.

The following shows the layout of a stream file:

 1 Intel® Fortran Compiler Classic and Intel® Fortran Compiler Developer Guide and Reference

582

Stream_CR, Stream_LF and Stream_CRLF Records
Stream_CR, Stream_LF, and Stream_CRLF records are variable-length records whose length is indicated by
explicit record terminators embedded in the data, not by a count. These terminators are automatically added
when you write records to a stream-type file and are removed when you read records.

Each variety uses either a different 1-byte or 2-byte record terminator:

• Stream_CR files must not contain embedded carriage-return characters because Stream_CR files use only
a carriage-return as the terminator.

• Stream_LF files must not contain embedded line-feed (new line) characters because Stream_LF files use
only a line-feed (new line) as the terminator. Stream_LF is the usual operating system text file record
type on Linux* systems.

• Stream_CRLF files must not contain embedded carriage returns or line-feed (new line) characters because
Stream_CRLF files use a carriage return/line-feed (new line) pair as the terminator. Stream_CRLF is the
usual operating system text file record type on Windows* systems.

Guidelines for Choosing a Record Type
Before you choose a record type, consider whether your application will use formatted or unformatted data.
If you are using formatted data, you can choose any record type except segmented. If you are using
unformatted data, avoid the Stream, Stream_CR, Stream_LF and Stream_CRLF record types.

The segmented record type can only be used for unformatted sequential access with sequential files. You
should not use segmented records for files that are read by programs written in languages other than Intel
Fortran.

The Stream, Stream_CR, Stream_LF, Stream_CRLF and segmented record types can be used only with
sequential files.

The default record type (RECORDTYPE) depends on the values for the ACCESS and FORM specifiers for the
OPEN statement. (The RECORDTYPE= specifier is ignored for stream access.)

The record type of the file is not maintained as an attribute of the file. The results of using a record type
other than the one used to create the file are indeterminate.

An I/O record is a collection of fields (data items) that are logically related and are usually processed as a
unit.

Unless you specify nonadvancing I/O (ADVANCE specifier), each Intel Fortran I/O statement transfers at least
one record.

Specify the Line Terminator for Formatted Files
Use the FOR_FMT_TERMINATOR environment variable to specify the line terminator value used for Fortran
formatted files with no explicit RECORDTYPE= specifier.

The FOR_FMT_TERMINATOR environment variable is processed once at the beginning of program execution.
Whatever it specifies for specific units continues for the rest of the execution.

You can specify the numbers of the units to have a specific record terminator. The READ/WRITE statements
that use these unit numbers will now use the specified record terminators. Other READ/WRITE statements
will work in the usual way.

A RECORDTYPE=specifier on an OPEN statement overrides the value set by FOR_FMT_TERMINATOR. The
FOR_FMT_TERMINATOR value is ignored for ACCESS='STREAM' files.

Intel® Fortran Compiler Classic and Intel® Fortran Compiler Developer Guide and Reference 1

583

General Syntax for FOR_FMT_TERMINATOR
The syntax for this environment variable is as follows:

FOR_FMT_TERMINATOR=MODE[:ULIST][;MODE[:ULIST]]
where:

MODE=CR | LF | CRLF
ULIST = U | ULIST,U
U = decimal | decimal - decimal

• MODE specifies the record terminator to be used. The keyword CR means to terminate records with a
carriage return. The keyword LF means to terminate records with a line feed; LF is the default on Linux*
systems. The keyword CRLF means to terminate records with a carriage return/line feed pair; CRLF is the
default on Windows systems.

• Each list member "U" is a simple unit number or a number of units as a range. The number of list
members is limited to 64.

• "decimal" is a non-negative decimal number less than 232.

No spaces are allowed inside the FOR_FMT_TERMINATOR value.

On Linux* systems, the following shows the command line for the variable setting in a bash-style shell:

Sh: export FOR_FMT_TERMINATOR=MODE:ULIST

NOTE
The environment variable value should be enclosed in quotes if the semicolon is present.

Example:

The following specifies that all input/output operations on unit numbers 10, 11, and 12 have records
terminated with a carriage return/line feed pair:

FOR_FMT_TERMINATOR=CRLF:10-12

Record Length

Use the RECL specifier to specify the record length.

The units used for specifying record length depend on the form of the data:

• Formatted files (FORM= 'FORMATTED'): Specify the record length in bytes.
• Unformatted files (FORM= 'UNFORMATTED'): Specify the record length in 4-byte units, unless you specify

the assume byterecl compiler option to request 1-byte units.

For all but variable-length sequential records on 64-bit addressable systems, the maximum record length is
2.147 billion bytes (2,147,483,647 minus the bytes for record overhead). For variable-length sequential
records on 64-bit addressable systems, the theoretical maximum record length is about 17,000 gigabytes.
When considering very large record sizes, also consider limiting factors such as system virtual memory.

NOTE
The RECL specifier is ignored for stream access.

Record Access

Record access refers to how records will be read from or written to a file, regardless of the file's organization.
Record access is specified each time you open a file; it can be different each time. The type of record access
permitted is determined by the combination of file organization and record type.

For example, you can fo the following:

 1 Intel® Fortran Compiler Classic and Intel® Fortran Compiler Developer Guide and Reference

584

• Add records to a sequential file with ORGANIZATION= 'SEQUENTIAL' and POSITION= 'APPEND' (or use
ACCESS= 'APPEND').

• Add records sequentially by using multiple WRITE statements, close the file, and then open it again with
ORGANIZATION= 'SEQUENTIAL' and ACCESS= 'SEQUENTIAL' (or ACCESS= 'DIRECT' if the sequential file
has fixed-length records).

Sequential Access
Sequential access transfers records sequentially to or from files or I/O devices such as terminals. You can use
sequential I/O with any type of supported file organization and record type.

When you select sequential access mode for files with sequential or relative organization, records are written
to or read from the file starting at the beginning of the file and continuing through it, one record after
another. A particular record can be retrieved only after all of the records preceding it have been read; new
records can be written only at the end of the file.

Direct Access
Direct access transfers records selected by record number to and from either sequential files stored on disk
with a fixed-length record type or relative organization files.

If you select direct access mode, you can determine the order in which records are read or written. Each
READ or WRITE statement must include the relative record number, indicating the record to be read or
written.

You can directly access a sequential disk file only if it contains fixed-length records. Because direct access
uses cell numbers to find records, you can enter successive READ or WRITE statements requesting records
that either precede or follow previously requested records. For example, the first statement reads record 24;
the second statement reads record 10:

READ (12,REC=24) I
READ (12,REC=10) J

Stream Access
Stream access transfers bytes from records sequentially until a record terminator is found or a specified
number of bytes have been read or written. Formatted stream records are terminated with a new line
character; unformatted stream data contains no record terminators. Bytes can be read from or written to a
file by byte position, where the first byte of the file is position 1. For example:

OPEN (UNIT=12, ACCESS='STREAM')
READ (12) I, J, K ! start at the first byte of the file
READ (12, POS=200) X, Y ! then read staring at byte 200
READ (12) A, B ! then read starting where the previous READ stopped

The POS= specifier on INQUIRE can be used to determine the current byte position in the file.

NOTE
The RECORDTYPE= specifier is ignored for stream access.

Limitations of Record Access by File Organization and Record Type
You can use sequential and direct access modes on sequential and relative files. However, direct access to a
sequential organization file can only be done if the file resides on disk and contains fixed-length records.

The following table summarizes the types of access permitted and relevant record types for sequential file
organization:

Intel® Fortran Compiler Classic and Intel® Fortran Compiler Developer Guide and Reference 1

585

Record Type Sequential Access Direct Access

Fixed Yes Yes

Variable Yes No

Segmented Yes No

Stream Yes No

Stream_CR Yes No

Stream_LF Yes No

Stream_CRLF Yes No

The following table summarizes the types of access permitted and relevant record types for relative file
organization:

Record Type Sequential Access Direct Access

Fixed Yes Yes

NOTE
Direct access and relative files require that the file resides on a disk device.

Record Transfer

I/O statements transfer all data as records. The amount of data that a record can contain depends on the
following circumstances:

• With formatted I/O (except for fixed-length records), the number of items in the I/O statement and its
associated format specifier jointly determine the amount of data to be transferred.

• With namelist and list-directed output, the items listed in the NAMELIST statement or I/O statement list
(in conjunction with the NAMELIST or list-directed formatting rules) determine the amount of data to be
transferred.

• With unformatted I/O (except for fixed-length records), the I/O statement alone specifies the amount of
data to be transferred.

• When you specify fixed-length records (RECORDTYPE= 'FIXED'), all records are the same size. If the size
of an I/O record being written is less than the record length (RECL), extra bytes are added (padding).

Typically, the data transferred by an I/O statement is read from or written to a single record. However, a
single I/O statement can possibly transfer data from or to more than one record, depending on the form of
I/O used.

Input Record Transfer
When using advancing I/O, if an input statement specifies fewer data fields (less data) than the record
contains, the remaining fields are ignored.

If an input statement specifies more data fields than the record contains, one of the following occurs:

• For formatted input using advancing I/O, if the file was opened with PAD='YES', additional fields are read
as spaces. If the file is opened with PAD='NO', an error occurs (the input statement should not specify
more data fields than the record contains).

• For formatted input using nonadvancing I/O (ADVANCE='NO'), an end-of-record (EOR) condition is
returned. If the file was opened with PAD='YES', additional fields are read as spaces.

• For list-directed input, another record is read.
• For NAMELIST input, another record is read.

 1 Intel® Fortran Compiler Classic and Intel® Fortran Compiler Developer Guide and Reference

586

• For unformatted input, an error occurs.

Output Record Transfer
If an output statement specifies fewer data fields than the record contains (less data than required to fill a
record), the following occurs:

• With fixed-length records (RECORDTYPE= 'FIXED'), all records are the same size. If the size of an I/O
record being written is less than the record length (RECL), extra bytes are added (padding) in the form of
spaces (for a formatted record) or zeros (for an unformatted record).

• With other record types, the fields present are written and fields omitted are not written (might result in a
short record).

If the output statement specifies more data than the record can contain, an error occurs, as follows:

• With formatted or unformatted output using fixed-length records, if the items in the output statement and
its associated format specifier result in a number of bytes that exceed the maximum record length
(RECL), an error occurs.

• With formatted or unformatted output not using fixed-length records, if the items in the output statement
and its associated format specifier result in a number of bytes that exceed the maximum record length
(RECL), the Intel Fortran RTL attempts to increase the RECL value and write the longer record. To obtain
the RECL value, use an INQUIRE statement.

• For list-directed output and namelist output, if the data specified exceeds the maximum record length
(RECL), another record is written.

Specify Default Pathnames and File Names

Intel® Fortran provides a number of ways of specifying all or part of a file specification (directory and file
name). The following list uses the Linux* pathname /usr/proj/testdata as an example:

• The FILE specifier in an OPEN statement typically specifies only a file name (such as testdata) or
contains both a directory and file name (such as /usr/proj/testdata).

• The DEFAULTFILE specifier in an OPEN statement typically specifies a pathname that contains only a
directory (such as /usr/proj/) or both a directory and file name (such as /usr/proj/testdata).

• If you used an implied OPEN (described in Assigning Files to Logical Units) or if the FILE specifier in an
OPEN statement did not specify a file name, you can use an environment variable to specify a file name or
a pathname that contains both a directory and file name.

Examples of Applying Default Pathnames and File Names
For example, for an implied OPEN of unit number 3, Intel Fortran will check the environment variable FORT3.
If the environment variable FORT3 is set, its value is used. If it is not set, the system supplies the file name
fort.3.

In the following table, assume the current directory is /usr/smith and the I/O uses unit 1, as in the
statement READ (1,100).

OPEN FILE Value OPEN DEFAULTFILE Value FORT1 Environment
Variable Value

Resulting
Pathname

Not specified Not specified Not specified /usr/smith/
fort.1

Not specified Not specified test.dat /usr/smith/
test.dat

Not specified Not checked /usr/tmp/t.dat /usr/tmp/t.dat

Not specified /tmp Not specified /tmp/fort.1

Intel® Fortran Compiler Classic and Intel® Fortran Compiler Developer Guide and Reference 1

587

OPEN FILE Value OPEN DEFAULTFILE Value FORT1 Environment
Variable Value

Resulting
Pathname

Not specified /tmp testdata /tmp/testdata

Not specified /usr lib/testdata /usr/lib/
testdata

file.dat /usr/group Not checked /usr/group/
file.dat

/tmp/file.dat Not checked Not checked /tmp/file.dat

file.dat Not specified Not checked /usr/smith/
file.dat

When the resulting file pathname begins with a tilde character (~), C-shell-style pathname substitution is
used (regardless of what shell is being used), such as a top-level directory (below the root). For additional
information on tilde pathname substitution, see csh(1).

Rules for Applying Default Pathnames and File Names
Intel Fortran determines the file name and the directory path based on certain rules. It determines a file
name string as follows:

• If the FILE specifier is present, its value is used.
• If the FILE specifier is not present, Intel Fortran examines the corresponding environment variable. If the

corresponding environment variable is set, that value is used. If the corresponding environment variable
is not set, a file name in the form fort.n is used.

Once Intel Fortran determines the resulting file name string, it determines the directory (which optionally
precedes the file name) as follows:

• If the resulting file name string contains an absolute pathname, it is used and the DEFAULTFILE specifier,
environment variable, and current directory values are ignored.

• If the resulting file name string does not contain an absolute pathname, Intel Fortran examines the
DEFAULTFILE specifier and current directory value:

• If the corresponding environment variable is set and specifies an absolute pathname, that value is
used.

• Otherwise, the DEFAULTFILE specifier value, if present, is used.

If the DEFAULTFILE specifier is not present, Intel Fortran uses the current directory as an absolute
pathname.

Open Files: OPEN Statement

To open a file, you can use a preconnected file (as described in Logical Devices) or can open a file with an
OPEN statement. The OPEN statement lets you specify the file connection characteristics and other
information.

OPEN Statement Specifiers
The OPEN statement connects a unit number with an external file and allows you to explicitly specify file
attributes and runtime options using OPEN statement specifiers. Once you open a file, you should close it
before opening it again unless it is a preconnected file.

If you open a unit number that was opened previously (without being closed), one of the following occurs:

 1 Intel® Fortran Compiler Classic and Intel® Fortran Compiler Developer Guide and Reference

588

• If you specify a file specification that does not match the one specified for the original open, the runtime
system closes the original file and then opens the second file. This action resets the current record
position for the second file.

• If you specify a file specification that matches the one specified for the original open, the file is
reconnected without the internal equivalent of the CLOSE and OPEN. This behavior lets you change one or
more OPEN statement runtime specifiers while maintaining the record position context.

You can use the INQUIRE Statement to obtain information about whether a file is opened by your program.

Especially when creating a new file using the OPEN statement, examine the defaults (see the description of
the OPEN statement) or explicitly specify file attributes with the appropriate OPEN statement specifiers.

Specifiers for File and Unit Information
These specifiers identify file and unit information:

• UNIT specifies the logical unit number.
• NEWUNIT specifies that the Intel® Fortran runtime library should select an unused logical unit number.
• FILE (or NAME) and DEFAULTFILE specify the directory and/or file name of an external file.
• STATUS or TYPE indicates whether to create a new file, overwrite an existing file, open an existing file, or

use a scratch file.
• STATUS or DISPOSE specifies the file existence status after CLOSE.

Specifiers for File and Record Characteristics
These specifiers identify file and record characteristics:

• ORGANIZATION indicates the file organization (sequential or relative).
• RECORDTYPE indicates which record type to use.
• FORM indicates whether records are formatted or unformatted.
• CARRIAGECONTROL indicates the terminal control type.
• RECL or RECORDSIZE specifies the record size.

Specifier for Special File Open Routine
USEROPEN names the routine that will open the file to establish special context that changes the effect of
subsequent Intel Fortran I/O statements.

Specifiers for File Access, Processing, and Position
These specifiers identify file access, processing, and position:

• ACCESS indicates the access mode (direct, sequential, or stream).
• SHARED sets file locking for shared access. Indicates that other users can access the same file.
• NOSHARED sets file locking for exclusive access. Indicates that other users who use file locking

mechanisms cannot access the same file.
• SHARE specifies shared or exclusive access; for example, SHARE='DENYNONE' or SHARE='DENYRW'.
• POSITION indicates whether to position the file at the beginning of file, before the end-of-file record, or

leave it as is (unchanged).
• ACTION or READONLY indicates whether statements will be used to only read records, only write records,

or both read and write records.
• MAXREC specifies the maximum record number for direct access.
• ASSOCIATEVARIABLE specifies the variable containing the next record number for direct access.
• ASYNCHRONOUS specifies whether input/output should be performed asynchronously.

Specifiers for Record Transfer Characteristics
These specifiers identify record transfer characteristics:

• BLANK indicates whether to ignore blanks in numeric fields.

Intel® Fortran Compiler Classic and Intel® Fortran Compiler Developer Guide and Reference 1

589

• DELIM specifies the delimiter character for character constants in list-directed or namelist output.
• PAD, when reading formatted records, indicates whether padding characters should be added if the item

list and format specification require more data than the record contains.
• BUFFERED indicates whether buffered or non-buffered I/O should be used.
• BLOCKSIZE specifies the physical I/O buffer or transfer size.
• BUFFERCOUNT specifies the number of physical I/O buffers.
• CONVERT specifies the format of unformatted numeric data.

Specifiers for Error-Handling Capabilities
These specifiers are used for error handling:

• ERR specifies a label to branch to if an error occurs.
• IOSTAT specifies the integer variable to receive the error (IOSTAT) number if an error occurs.

Specifier for File Close Action
DISPOSE identifies the action to take when the file is closed.

Specifying File Locations in an OPEN Statement
You can use the FILE and DEFAULTFILE specifiers of the OPEN statement to specify the complete definition of
a particular file to be opened on a logical unit. (The Language Reference Manual describes the OPEN
statement in greater detail.)

For example:

OPEN (UNIT=4, FILE='/usr/users/smith/test.dat', STATUS='OLD')
The file test.dat in directory /usr/users/smith is opened on logical unit 4. No defaults are applied,
because both the directory and file name were specified. The value of the FILE specifier can be a character
constant, variable, or expression.

In the following interactive example, the user supplies the file name and the DEFAULTFILE specifier supplies
the default values for the full pathname string. The file to be opened is located in /usr/users/smith and is
concatenated with the file name typed by the user into the variable DOC:

CHARACTER(LEN=9) DOC
WRITE (6,*) 'Type file name '
READ (5,*) DOC
OPEN (UNIT=2, FILE=DOC, DEFAULTFILE='/usr/users/smith',STATUS='OLD')

A slash (backslash on Windows systems) is appended to the end of the default file string if it does not have
one.

On Windows, there is a default limit of 260 characters in a pathname string. Longer strings are truncated to
that limit. Windows provides an override of the limit. To use the override, the pathname must be absolute
(from the drive), not relative (from the current directory). To override, start the pathname with "\\?\". If
DEFAULTFILE is set, it can be prefixed with the override. Fortran supports this override for the FILE and
DEFAULTFILE specifiers, up to a limit of 4095 characters.

On Linux, the pathname limit is always 4095 characters.

Obtain File Information: INQUIRE Statement

The INQUIRE statement returns information about a file and has the following forms:

• Inquiry by unit
• Inquiry by file name
• Inquiry by output item list
• Inquiry by directory

 1 Intel® Fortran Compiler Classic and Intel® Fortran Compiler Developer Guide and Reference

590

Inquiry by Unit
An inquiry by unit is usually done for an opened (connected) file. An inquiry by unit causes the Intel® Fortran
RTL to check whether the specified unit is connected or not. One of the following occurs, depending on
whether the unit is connected or not:

If the unit is connected:

• The EXIST and OPENED specifier variables indicate a true value.
• The pathname and file name are returned in the NAME specifier variable (if the file is named).
• Other information requested on the previously connected file is returned.
• Default values are usually returned for the INQUIRE specifiers also associated with the OPEN statement.
• The RECL value unit for connected formatted files is always 1-byte units. For unformatted files, the RECL

unit is 4-byte units, unless you specify the -assume byterecl option to request 1-byte units.

If the unit is not connected:

• The OPENED specifier indicates a false value.
• The unit NUMBER specifier variable is returned as a value of -1.
• Any other information returned will be undefined or default values for the various specifiers.

For example, the following INQUIRE statement will show whether unit 3 has a file connected (OPENED
specifier) in logical variable I_OPENED, the case-sensitive name in character variable I_NAME. It will also
show whether the file is opened for READ, WRITE, or READWRITE access in character variable I_ACTION:

INQUIRE (3, OPENED=I_OPENED, NAME=I_NAME, ACTION=I_ACTION)

Inquiry by File Name
An inquiry by name causes the Intel Fortran RTL to scan its list of open files for a matching file name. One of
the following occurs, depending on whether a match occurs or not:

If a match occurs:

• The EXIST and OPENED specifier variables indicate a true value.
• The pathname and file name are returned in the NAME specifier variable.
• The UNIT number is returned in the NUMBER specifier variable.
• Other information requested on the previously connected file is returned.
• Default values are usually returned for the INQUIRE specifiers also associated with the OPEN statement.
• The RECL value unit for connected formatted files is always 1-byte units. For unformatted files, the RECL

unit is 4-byte units, unless you specify the -assume byterecl option to request 1-byte units.

If no match occurs:

• The OPENED specifier variable indicates a false value.
• The unit NUMBER specifier variable is returned as a value of -1.
• The EXIST specifier variable indicates (true or false) whether the named file exists on the device or not.
• If the file does exist, the NAME specifier variable contains the pathname and file name.
• Any other information returned will be default values for the various specifiers, based on any information

specified when calling INQUIRE.

The following INQUIRE statement returns whether the file named log_file is connected in logical variable
I_OPEN, whether the file exists in logical variable I_EXIST, and the unit number in integer variable
I_NUMBER:

INQUIRE (FILE='log_file', OPENED=I_OPEN, EXIST=I_EXIST, NUMBER=I_NUMBER)

Intel® Fortran Compiler Classic and Intel® Fortran Compiler Developer Guide and Reference 1

591

Inquiry by Output Item List
Unlike inquiry by unit or inquiry by name, inquiry by output item list does not attempt to access any external
file. It returns the length of a record for a list of variables that would be used for unformatted WRITE, READ,
and REWRITE statements. The following INQUIRE statement returns the maximum record length of the
variable list in variable I_RECLENGTH. This variable is then used to specify the RECL value in the OPEN
statement:

INQUIRE (IOLENGTH=I_RECLENGTH) A, B, H
OPEN (FILE='test.dat', FORM='UNFORMATTED', RECL=I_RECLENGTH, UNIT=9)

For an unformatted file, the IOLENGTH value is returned using 4-byte units, unless you specify the
-assume byterecl option to request 1-byte units.

Inquiry by Directory
An inquiry by directory verifies that a directory exists.

If the directory exists:

• The EXIST specifier variable indicates a true value.
• The full directory pathname is returned in the DIRSPEC specifier variable.

If the directory does not exist:

• The EXIST specified variable indicates a false value.
• The value of the DIRSPEC specifier variable is unchanged.

For example, the following INQUIRE statement returns the full directory pathname:

LOGICAL ::L_EXISTS
CHARACTER (255)::C_DIRSPEC
INQUIRE (DIRECTORY=".", DIRSPEC=C_DIRSPEC, EXIST=L_EXISTS)

The following INQUIRE statement verifies that a directory does not exist:

INQUIRE (DIRECTORY="I-DO-NOT-EXIST", EXIST=L_EXISTS)

Close Files: CLOSE Statement

Usually, any external file opened should be closed by the same program before it completes. The CLOSE
statement flushes any output buffers and disconnects the unit and its external file. You must specify the unit
number (UNIT specifier) to be closed.

You can also specify:

• Whether the file should be deleted or kept (STATUS specifier)
• Error handling information (ERR and IOSTAT specifiers)

To delete a file when closing it:

• In the OPEN statement, specify the ACTION keyword (such as ACTION='READ'). Avoid using the
READONLY keyword, because a file opened using the READONLY keyword cannot be deleted when it is
closed.

• In the CLOSE statement, specify the keyword STATUS='DELETE'.

If you opened an external file and performed an inquire by unit, but do not like the default value for the
ACCESS specifier, you can close the file and then reopen it. When you reopen it, explicitly specify the
ACCESS desired.

Typically, it is not necessary to close preconnected units. Internal files are neither opened nor closed.

Record I/O Statement Specifiers

After you open a file or use a preconnected file, you can use the following statements:

 1 Intel® Fortran Compiler Classic and Intel® Fortran Compiler Developer Guide and Reference

592

• READ, WRITE, ACCEPT, and PRINT to perform record I/O.
• BACKSPACE, ENDFILE, and REWIND to set record position within the file.
• DELETE, REWRITE, TYPE, and FIND to perform various operations.

The record I/O statement must use the appropriate record I/O form (formatted, list-directed, namelist, or
unformatted).

You can use the following specifiers with the READ and WRITE record I/O statements:

• UNIT specifies the unit number to or from which input or output will occur.
• END specifies a label to branch to if end-of-file occurs; only applies to input statements on sequential

files.
• ERR specifies a label to branch to if an error occurs.
• IOSTAT specifies an integer variable to contain the error number if an error occurs.
• FMT specifies a label of a FORMAT statement or character data specifying a FORMAT.
• NML specifies the name of a NAMELIST.
• REC specifies a record number for direct access.

When using nonadvancing I/O, use the ADVANCE, EOR, and SIZE specifiers.

When using the REWRITE statement, you can use the UNIT, FMT, ERR, and IOSTAT specifiers.

File Sharing on Linux

Depending on the value specified by the ACTION (or READONLY) specifier in the OPEN statement, the file will
be opened by your program for reading, writing, or both reading and writing records. This simply checks that
the program itself executes the type of statements intended.

File locking mechanisms allow users to enable or restrict access to a particular file when that file is being
accessed by another process.

Intel® Fortran file locking features provide three file access modes:

• Implicit Shared mode, which occurs when no mode is specified. This mode is also called No Locking.
• Explicit Shared mode, when all cooperating processes have access to a file. This mode is set in the OPEN

statement by the SHARED specifier or the SHARE='DENYNONE' specifier.
• Exclusive mode, when only one process has access to a file. This mode is set in the OPEN statement by

the NOSHARED specifier or the SHARE='DENYRW' specifier.

The file locking mechanism looks for explicit setting of the corresponding specifier in the OPEN statement.
Otherwise, the Fortran runtime does not perform any setting or checking for file locking. The process can
access the file regardless of the fact that other processes have already opened or locked the file.

Examples
In the following examples, Process 1 and Process 2 are separate programs running at the same time, and
opening the same file. Process 1 opens the file first. Process 2 opens the file later, before Process 1 closes it.
The processes may or may not be cooperating.

Implicit Shared Mode (No Locking)
Process 1 opens the file without a specifier, resulting in no locking.

Process 2 now tries to open the file:

• It gains access regardless of the mode it is using.

Explicit Shared Mode
Process 1 opens the file with Explicit Shared mode.

Process 2 now tries to open the file:

• If process 2 opens the file with Explicit Shared mode or Implicit Shared (No Locking) mode, it gets access
to the file.

Intel® Fortran Compiler Classic and Intel® Fortran Compiler Developer Guide and Reference 1

593

• If process 2 opens the file with Exclusive mode, it receives an error.

Exclusive Mode
Process 1 opens the file with Exclusive mode.

Process 2 now tries to open the file:

• If process 2 opens the file with Implicit Shared (No Locking) mode, it gets access to the file.
• If process 2 opens the file with Explicit Shared or Exclusive mode, it receives an error.

The Fortran runtime does not coordinate file entry updates during cooperative access. The user needs to
coordinate access times among cooperating processes to handle the possibility of simultaneous WRITE and
REWRITE statements on the same record positions.

Specify the Initial Record Position

When you open a disk file, you can use the OPEN statement POSITION specifier to request one of the
following initial record positions within the file:

• The initial position before the first record (POSITION='REWIND')

A sequential access READ or WRITE statement will read or write the first record in the file.
• A point beyond the last record in the file (POSITION='APPEND'), just before the end-of-file record, if one

exists

For a new file, this point is the initial position before the first record (same as 'REWIND'). You might
specify 'APPEND' before you write records to an existing sequential file using sequential access.

• The current position (POSITION='ASIS')

This position is usually used only to maintain the current record position when reconnecting a file. The
second OPEN specifies the same unit number and specifies the same file name (or omits it), which leaves
the file open, retaining the current record position. However, if the second OPEN specifies a different file
name for the same unit number, the current file will be closed and the different file will be opened.

The following I/O statements allow you to change the current record position:

• REWIND sets the record position to the initial position before the first record. A sequential access READ or
WRITE statement would read or write the first record in the file.

• BACKSPACE sets the record position to the previous record in a file. Using sequential access, if you wrote
record 5, issued a BACKSPACE to that unit, and then read from that unit, you would read record 5.

• ENDFILE writes an end-of-file marker. This action is used after writing records using sequential access just
before you close the file.

Unless you use nonadvancing I/O, reading and writing records usually advances the current record position
by one record. More than one record might be transferred using a single record I/O statement.

Advancing and Nonadvancing Record I/O

After you open a file, if you omit the ADVANCE specifier (or specify ADVANCE= 'YES') in READ and WRITE
statements, advancing I/O (normal Fortran I/O) will be used for record access. When using advancing I/O:

• Record I/O statements transfer one entire record (or multiple records).
• Record I/O statements advance the current record position to a position before the next record.

You can request nonadvancing I/O for the file by specifying the ADVANCE= 'NO' specifier in a READ and
WRITE statement. You can use nonadvancing I/O only for sequential access to external files using formatted
I/O (not list-directed or namelist).

When you use nonadvancing I/O, the current record position does not change, and part of the record might
be transferred, unlike advancing I/O where one or more entire records are always transferred.

You can alternate between advancing and nonadvancing I/O by specifying different values for the ADVANCE
specifier ('YES' and 'NO') in the READ and WRITE record I/O statements.

When reading records with either advancing or nonadvancing I/O, you can use the END specifier to branch to
a specified label when the end of the file is read.

 1 Intel® Fortran Compiler Classic and Intel® Fortran Compiler Developer Guide and Reference

594

Because nonadvancing I/O might not read an entire record, it also supports an EOR specifier to branch to a
specified label when the end of the record is read. If you omit the EOR and the IOSTAT specifiers when using
nonadvancing I/O, you will get an error when the end-of-record is read.

When using nonadvancing input, you can use the SIZE specifier to return the number of characters read. For
example, in the following READ statement, SIZE=X (where variable X is an integer) returns the number of
characters read in X and an end-of-record condition causes a branch to label 700:

150 FORMAT (F10.2, F10.2, I6)
 READ (UNIT=20, FMT=150, SIZE=X, ADVANCE='NO', EOR=700) A, F, I

Use USEROPEN to Pass Control To a Routine

You can use the USEROPEN specifier in an OPEN statement to pass control to a routine that directly opens a
file. The called routine can use system calls or library routines to open the file and may establish special
context that changes the effect of subsequent I/O statements.

The Intel® Fortran runtime library (RTL) I/O support routines call the USEROPEN function in place of the
system calls that are usually used when the file is first opened for I/O. The USEROPEN specifier in an OPEN
statement specifies the name of a function to receive control.

The called function must open a file (or pipe) and return the file descriptor of the file (or pipe) it has opened
when control is returned to the RTL. The called function may specify different options when it opens the file
than a normal OPEN statement would. It may specify a different file.

You can use the PXFFILENO routine to get the file descriptor from the RTL for a specific unit number.

Although the called function can be written in other languages (such as Fortran), C is usually the best choice
for making system calls, such as open or create.

NOTE
If your application requires that you use C to perform the file open and close, as well as all record
operations, call the appropriate C procedure from the Intel® Fortran program without using the Fortran
OPEN statement.

NOTE
If a file name was specified in the OPEN statement that included the USEROPEN specifier, any
subsequent CLOSE statement specifying STATUS=DELETE (or DISPOSE=DELETE) only acts on the file
name specified in the OPEN statement.

If you specified a different file name in the function named in USEROPEN, the CLOSE statement will
have no effect on that file name.

Syntax and Behavior
The USEROPEN specifier for the OPEN statement has the form:

USEROPEN = function-name

The function-name represents the name of an external function. The external function can be written in
Fortran, C, or other languages.

The return value is the file descriptor, which takes the following form:

• Linux

It is a 4-byte integer on both 32-bit and 64-bit system.
• Windows

It is a 4-byte integer on 32-bit systems and an 8-byte integer on 64-bit systems.

If an error occurs in the function, file descriptor returns -1.

Intel® Fortran Compiler Classic and Intel® Fortran Compiler Developer Guide and Reference 1

595

Declarations depend on the language that the function is written in:

• If the USEROPEN function is written in C, declare it as a C function.
• If the USEROPEN function is written in Fortran, declare it as a FUNCTION, perhaps with an interface block.

In the calling program, the function must be declared in an EXTERNAL statement. For example, the following
Intel® Fortran code can be used to call the USEROPEN procedure UOPEN (known to the linker as uopen_):

EXTERNAL UOPEN
INTEGER UOPEN
.
.
.
OPEN (UNIT=10, FILE='/usr/test/data', STATUS='NEW', USEROPEN=UOPEN)

During the execution of the OPEN statement, the external procedure called uopen_ receives control. The
function opens the file, may perform other operations, and subsequently returns control (with the file
descriptor) to the RTL. You can use other system calls or library routines within the USEROPEN function.
In most cases, the USEROPEN function modifies the open flags argument passed by the Intel® Fortran RTL or
it uses a new value before the open (or create) system call. After the function opens the file, it must return
control to the RTL.

The following shows the available arguments and definitions.

Linux

int uopen_ ((1)
char *file_name, (2)
int *open_flags, (3)
int *create_mode, (4)
int *lun, (5)
int file_length); (6)

The function definition and the arguments passed from the Intel® Fortran RTL are as follows:

1. The function must be declared as a 4-byte integer (int).
2. Indicates the pathname to be opened; the pathname includes the file name.
3. Indicates the open flags. The open flags are described in the header file /usr/include/sys/file.h or

open(2).
4. Indicates the create mode, which is the protection needed when creating a Linux* OS-style file. The

create modes are described in open(2).
5. Indicates the logical unit number.
6. Indicates the pathname length (hidden character length argument of the pathname).

The open system call (see open(2)) requires the passed pathname, the open flags (which define the type of
access needed, whether the file exists, and so on), and the create mode.

The logical unit number specified in the OPEN statement is passed in case the USEROPEN function needs it.
The hidden character length of the pathname is also passed.

Windows

int uopen_ ((1)
char *filename, (2)
int *desired_access, (3)
int *share_mode, (4)
int a_null, /* always 0 */ (5)
int *flags_attr, (6)
int b_null, /* always 0 */ (7)
int *unit, (8)
int [*]flen); (9)

 1 Intel® Fortran Compiler Classic and Intel® Fortran Compiler Developer Guide and Reference

596

The function definition and the arguments passed from the Intel® Fortran RTL are as follows:

1. The function must be declared as a 4-byte integer (int) on 32-bit systems and an 8-byte integer (long
long int) on 64-bit systems.

2. Indicates the pathname to be opened; the pathname includes the file name.
3. Indicates the mode of access. It can be set to read, write, or read/write.
4. Indicates the file protection mode.
5. This line indicates a NULL that is passed as a literal zero by value.
6. This sets flags that specify file modes and several kinds of file features, such as whether to use

sequential access or random access, whether to delete on close, etc.
7. This line indicates a NULL that is passed as a literal zero by value.
8. Indicates the logical unit number.
9. Indicates the pathname length (the hidden character length argument of the pathname).

The argument list for a USEROPEN routine on Windows is very similar to the argument list for the Microsoft*
Windows function CreateFile. This lets you easily write a USEROPEN routine and pass the input arguments
to a call to CreateFile. The CreateFile system call requires the file name, the desired_access, the
shared_mode, and the flags_attr. These arguments have been set to reflect the file semantics requested in
the OPEN statement.

The logical unit number specified in the OPEN statement is passed in case the USEROPEN function needs it.
The hidden character length of the pathname is also passed.

On 32-bit systems, a Fortran USEROPEN function must use the default "C, Reference" calling convention. If
you have used the iface compiler option to change the default calling convention to stdcall or cvf, you
will need to add a !DIR$ ATTRIBUTES DEFAULT directive in the function source to have it use the correct
calling convention.

Restrictions
The Intel® Fortran RTL uses exactly one file descriptor per logical unit, which must be returned by the called
function. Because of this, only certain system calls or library routines can be used to open the file.

NOTE
On Linux* systems, system calls and library routines that do not return a file descriptor include mknod
(see mknod(2)) and fopen (see fopen(3)). For example, the fopen routine returns a file pointer
instead of a file descriptor.

The following Fortran code calls the USEROPEN function named UOPEN:

EXTERNAL UOPEN
INTEGER UOPEN
.
.
.
OPEN (UNIT=1,FILE='ex1.dat',STATUS='NEW',USEROPEN=UOPEN,
ERR=9,IOSTAT=errnum)

If UOPEN is a Fortran function, its name is decorated appropriately for Fortran.

Likewise, if UOPEN is a C function, its name is decorated appropriately for C, as long as the following line is
included in the above code:

!DIR$ ATTRIBUTES C::UOPEN

Examples
The following examples demonstrate how to use the USEROPEN specifier to pass control.

Intel® Fortran Compiler Classic and Intel® Fortran Compiler Developer Guide and Reference 1

597

Linux

 PROGRAM UserOpenMain
 IMPLICIT NONE

 EXTERNAL UOPEN
 INTEGER(4) UOPEN

 CHARACTER(10) :: FileName="UOPEN.DAT"
 INTEGER :: IOS
 CHARACTER(255):: InqFullName
 CHARACTER(100):: InqFileName
 INTEGER :: InqLun
 CHARACTER(30) :: WriteOutBuffer="Write_One_Record_to_the_File. "
 CHARACTER(30) :: ReadInBuffer ="??????????????????????????????"

110 FORMAT(X,"FortranMain: ",A," Created (iostat=",I0,")")
115 FORMAT(X,"FortranMain: ",A,": Creation Failed (iostat=",I0,")")
120 FORMAT(X,"FortranMain: ",A,": ERROR: INQUIRE Returned Wrong FileName")
130 FORMAT(X,"FortranMain: ",A,": ERROR: ReadIn and WriteOut Buffers Do Not Match")

 WRITE(*,'(X,"FortranMain: Test the USEROPEN Facility of Open")')

 OPEN(UNIT=10,FILE='UOPEN.DAT',STATUS='REPLACE',USEROPEN=UOPEN, &
 IOSTAT=ios, ACTION='READWRITE')

! When the OPEN statement is executed, the uopen_ function receives control.
! The uopen_ function opens the file by calling open(), and subsequently
! returns control with the handle returned by open().

 IF (IOS .EQ. 0) THEN
 WRITE(*,110) TRIM(FileName), IOS
 INQUIRE(10, NAME=InqFullName)
 CALL ParseForFileName(InqFullName,InqFileName)
 IF (InqFileName .NE. FileName) THEN
 WRITE(*,120) TRIM(FileName)
 END IF
 ELSE
 WRITE(*,115) TRIM(FileName), IOS
 GOTO 9999
 END IF

 WRITE(10,*) WriteOutBuffer
 REWIND(10)
 READ(10,*) ReadInBuffer
 IF (ReadinBuffer .NE. WriteOutbuffer) THEN
 WRITE(*,130) TRIM(FileName)
 END IF

 CLOSE(10)
 WRITE(*,'(X,"FortranMain: Test of USEROPEN Completed")')

9999 CONTINUE
 END

!---
! SUBROUTINE: ParseForFileName
! Takes a full pathname and returns the filename

 1 Intel® Fortran Compiler Classic and Intel® Fortran Compiler Developer Guide and Reference

598

! with its extension.
!---
 SUBROUTINE ParseForFileName(FullName,FileName)

 CHARACTER(255):: FullName
 CHARACTER(255):: FileName
 INTEGER :: P

 P = INDEX(FullName,'/',.TRUE.)
 FileName = FullName(P+1:)

 END

//
// File: UserOpen_Sub.c
//
// This routine opens a file using data passed from the Intel(c) Fortran OPEN statement.
//

#include <stdio.h>
#include <stdlib.h>
#include <fcntl.h>
#include <sys/types.h>
#include <sys/stat.h>
#include <sys/file.h>
#include <errno.h>
int uopen_ (char *file_name, /* access read: name of the file to open (null terminated) */
 int *open_flags, /* access read: READ/WRITE, see file.h or open(2) */
 int *create_mode, /* access read: set if the file is to be created */
 int *unit_num, /* access read: logical unit number to be opened */
 int filenam_len) /* access read: number of characters in file_name */
{
 /*
 ** The returned value is the following:
 ** value != -1 is a valid file descriptor
 ** value == -1 is returned on an error
 */
 int return_value;

 printf(" %s: Opening FILENAME = %s\n", __FILE__, file_name);
 printf(" %s: open_flags = 0x%8.8x\n", __FILE__, *open_flags);
 if (*open_flags & O_CREAT) {
 printf(" %s: the file is being created, create_mode = 0x%8.8x\n", __FILE__,
*create_mode);
 }

 printf(" %s: open() ", __FILE__);
 return_value = open(file_name, *open_flags, *create_mode);
 if (return_value != 0) {
 printf("FAILED.\n");
 return_value = -1;
 } else {
 printf("SUCCEEDED.\n");
 }

 return (return_value);
} /* end of uopen_() */

Intel® Fortran Compiler Classic and Intel® Fortran Compiler Developer Guide and Reference 1

599

Windows

In the calling Fortran program, the function named in USEROPEN must first be declared in an EXTERNAL
statement. For example, the following Fortran code might be used to call the USEROPEN procedure UOPEN:

 IMPLICIT INTEGER (A-Z)
 EXTERNAL UOPEN
 INTEGER(INT_PTR_KIND()) UOPEN
 ...
 OPEN(UNIT=10,FILE='UOPEN.DAT',STATUS='NEW',USEROPEN=UOPEN)

When the OPEN statement is executed, the UOPEN function receives control. The function opens the file by
calling CreateFile(), performs whatever operations were specified, and subsequently returns control
(with the handle returned by CreateFile()) to the calling Fortran program.

Here is what the UOPEN function might look like:

 INTEGER(INT_PTR_KIND()) FUNCTION UOPEN(FILENAME, &
 DESIRED_ACCESS, &
 SHARE_MODE, &
 A_NULL, &
 CREATE_DISP, &
 FLAGS_ATTR, &
 B_NULL, &
 UNIT, &
 FLEN)
 !DIR$ ATTRIBUTES C, ALIAS:'_UOPEN' :: UOPEN
 !DIR$ ATTRIBUTES REFERENCE :: FILENAME
 !DIR$ ATTRIBUTES REFERENCE :: DESIRED_ACCESS
 !DIR$ ATTRIBUTES REFERENCE :: SHARE_MODE
 !DIR$ ATTRIBUTES REFERENCE :: CREATE_DISP
 !DIR$ ATTRIBUTES REFERENCE :: FLAGS_ATTR
 !DIR$ ATTRIBUTES REFERENCE :: UNIT

 USE IFWIN
 IMPLICIT INTEGER (A-Z)
 CHARACTER*(FLEN) FILENAME
 TYPE(T_SECURITY_ATTRIBUTES), POINTER :: NULL_SEC_ATTR

! Set the FILE_FLAG_WRITE_THROUGH bit in the flag attributes to CreateFile()
! (for whatever reason)
 FLAGS_ATTR = FLAGS_ATTR + FILE_FLAG_WRITE_THROUGH

! Do the CreateFile() call and return the status to the Fortran rtl
 STS = CreateFile(FILENAME, &
 DESIRED_ACCESS, &
 SHARE_MODE, &
 NULL_SEC_ATTR, &
 CREATE_DISP, &
 FLAGS_ATTR, &
 0)

 UOPEN = STS
 RETURN
 END

The UOPEN function is declared to use the cdecl calling convention, so it matches the Fortran runtime
library declaration of a USEROPEN routine.

 1 Intel® Fortran Compiler Classic and Intel® Fortran Compiler Developer Guide and Reference

600

The following function definition and arguments are passed from the Fortran runtime Library to the function
named in USEROPEN:

 INTEGER(INT_PTR_KIND()) FUNCTION UOPEN(FILENAME, &
 DESIRED_ACCESS, &
 SHARE_MODE, &
 A_NULL, &
 CREATE_DISP, &
 FLAGS_ATTR, &
 B_NULL, &
 UNIT, &
 FLEN)
 !DIR$ ATTRIBUTES C, ALIAS:'_UOPEN' :: UOPEN
 !DIR$ ATTRIBUTES REFERENCE :: DESIRED_ACCESS
 !DIR$ ATTRIBUTES REFERENCE :: SHARE_MODE
 !DIR$ ATTRIBUTES REFERENCE :: CREATE_DISP
 !DIR$ ATTRIBUTES REFERENCE :: FLAGS_ATTR
 !DIR$ ATTRIBUTES REFERENCE :: UNIT

The first 7 arguments correspond to the CreateFile() API arguments. The value of these arguments is set
according to the caller's OPEN() arguments:

FILENAME Is the address of a null terminated character string that is the name of
the file.

DESIRED_ACCESS Is the desired access (read-write) mode passed by reference.

SHARE_MODE Is the file sharing mode passed by reference.

A_NULL Is always null. The Fortran runtime library always passes a NULL for
the pointer to a SECURITY_ATTRIBUTES structure in its
CreateFile() call.

CREATE_DISP Is the creation disposition specifying the action to take on files that
exist, and the action to take on files that do not exist. The value is
passed by reference.

FLAGS_ATTR Specifies the file attributes and flags for the file. The value is passed
by reference.

B_NULL Is always null. The Fortran runtime library always passes a NULL for
the handle to a template file in its CreateFile() call.

The last 2 arguments are the Fortran unit number and length of the file name:

UNIT Is the Fortran unit number on which this OPEN is being done. The
value is passed by reference.

FLEN Is the length of the file name, not counting the terminating null, and
passed by value.

See Also
OPEN: USEROPEN Specifier
PXFFILENO

Microsoft Fortran PowerStation Compatible Files

When using the fpscomp option for Microsoft* Fortran PowerStation compatibility, the following types of files
are possible:

Intel® Fortran Compiler Classic and Intel® Fortran Compiler Developer Guide and Reference 1

601

• Formatted Sequential
• Formatted Direct
• Unformatted Sequential
• Unformatted Direct
• Binary Sequential
• Binary Direct

Formatted Sequential Files
A formatted sequential file is a series of formatted records written sequentially and read in the order in which
they appear in the file. Records can vary in length and can be empty. They are separated by carriage return
(0D) and line feed (0A) characters as shown in the following figure.

Formatted Records in a Formatted Sequential File

An example of a program writing three records to a formatted sequential file is given below. The resulting file
is shown in the following figure.

 OPEN (3, FILE='FSEQ')
! FSEQ is a formatted sequential file by default.
 WRITE (3, '(A, I3)') 'RECORD', 1
 WRITE (3, '()')
 WRITE (3, '(A11)') 'The 3rd One'
 CLOSE (3)
 END

Formatted Sequential File

 1 Intel® Fortran Compiler Classic and Intel® Fortran Compiler Developer Guide and Reference

602

Formatted Direct Files
In a formatted direct file, all of the records are the same length and can be written or read in any order. The
record size is specified with the RECL option in an OPEN statement and should be equal to or greater than
the number of bytes in the longest record.

The carriage return (CR) and line feed (LF) characters are record separators and are not included in the RECL
value. Once a direct-access record has been written, you cannot delete it, but you can rewrite it.

During output to a formatted direct file, if data does not completely fill a record, the compiler pads the
remaining portion of the record with blank spaces. The blanks ensure that the file contains only completely
filled records, all of the same length. During input, the compiler by default also adds filler bytes (blanks) to
the input record if the input list and format require more data than the record contains.

You can override the default blank padding on input by setting PAD='NO' in the OPEN statement for the file.
If PAD='NO', the input record must contain the amount of data indicated by the input list and format
specification. Otherwise, an error occurs. PAD='NO' has no effect on output.

An example of a program writing two records, record one and record three, to a formatted direct file is given
below. The result is shown in the following figure.

 OPEN (3,FILE='FDIR', FORM='FORMATTED', ACCESS='DIRECT',RECL=10)
 WRITE (3, '(A10)', REC=1) 'RECORD ONE'
 WRITE (3, '(I5)', REC=3) 30303
 CLOSE (3)
 END

Formatted Direct File

Unformatted Sequential Files
Unformatted sequential files are organized slightly differently on different platforms. This section describes
unformatted sequential files created by Intel® Fortran when the fpscomp option is specified.

The records in an unformatted sequential file can vary in length. Unformatted sequential files are organized
in chunks of 130 bytes or less called physical blocks. Each physical block consists of the data you send to the
file (up to 128 bytes) plus two 1-byte "length bytes" inserted by the compiler. The length bytes indicate
where each record begins and ends.

Intel® Fortran Compiler Classic and Intel® Fortran Compiler Developer Guide and Reference 1

603

A logical record refers to an unformatted record that contains one or more physical blocks. (See the following
figure.) Logical records can be as big as you want; the compiler will use as many physical blocks as
necessary.

When you create a logical record consisting of more than one physical block, the compiler sets the length
byte to 129 to indicate that the data in the current physical block continues on into the next physical block.
For example, if you write 140 bytes of data, the logical record has the structure shown in the following
figure.

Logical Record in Unformatted Sequential File

The first and last bytes in an unformatted sequential file are reserved; the first contains a value of 75, and
the last holds a value of 130. Fortran uses these bytes for error checking and end-of-file references.

The following program creates the unformatted sequential file shown in the following figure:

! Note: The file is sequential by default
! -1 is FF FF FF FF hexadecimal.
!
 CHARACTER xyz(3)
 INTEGER(4) idata(35)
 DATA idata /35 * -1/, xyz /'x', 'y', 'z'/
!
! Open the file and write out a 140-byte record:
! 128 bytes (block) + 12 bytes = 140 for IDATA, then 3 bytes for XYZ.
 OPEN (3, FILE='UFSEQ',FORM='UNFORMATTED')
 WRITE (3) idata

 1 Intel® Fortran Compiler Classic and Intel® Fortran Compiler Developer Guide and Reference

604

 WRITE (3) xyz
 CLOSE (3)
 END

Unformatted Sequential File

Unformatted Direct Files
An unformatted direct file is a series of unformatted records. You can write or read the records in any order
you choose. All records have the same length, given by the RECL specifier in an OPEN statement. No
delimiting bytes separate records or otherwise indicate record structure.

You can write a partial record to an unformatted direct file. Intel Fortran pads these records to the fixed
record length with ASCII NULL characters. Unwritten records in the file contain undefined data.

The following program creates the sample unformatted direct file shown in the following figure:

 OPEN (3, FILE='UFDIR', RECL=10,&
 & FORM = 'UNFORMATTED', ACCESS = 'DIRECT')
 WRITE (3, REC=3) .TRUE., 'abcdef'
 WRITE (3, REC=1) 2049
 CLOSE (3)
 END

Unformatted Direct File

Intel® Fortran Compiler Classic and Intel® Fortran Compiler Developer Guide and Reference 1

605

Binary Sequential Files
A binary sequential file is a series of values written and read in the same order and stored as binary
numbers. No record boundaries exist, and no special bytes indicate file structure. Data is read and written
without changes in form or length. For any I/O data item, the sequence of bytes in memory is the sequence
of bytes in the file.

The next program creates the binary sequential file shown in the following figure:

! NOTE: 07 is the bell character
! Sequential is assumed by default.
!
 INTEGER(1) bells(4)
 CHARACTER(4) wys(3)
 CHARACTER(4) cvar
 DATA bells /4*7/
 DATA cvar /' is '/,wys /'What',' you',' see'/
 OPEN (3, FILE='BSEQ',FORM='BINARY')
 WRITE (3) wys, cvar
 WRITE (3) 'what ', 'you get!'
 WRITE (3) bells
 CLOSE (3)
 END

Binary Sequential File

Binary Direct Files
A binary direct file stores records as a series of binary numbers, accessible in any order. Each record in the
file has the same length, as specified by the RECL argument to the OPEN statement. You can write partial
records to binary direct files; any unused portion of the record will contain undefined data.

A single read or write operation can transfer more data than a record contains by continuing the operation
into the next records of the file. Performing such an operation on an unformatted direct file would cause an
error. Valid I/O operations for unformatted direct files produce identical results when they are performed on
binary direct files, provided the operations do not depend on zero padding in partial records.

The following program creates the binary direct file shown in the following figure:

 OPEN (3, FILE='BDIR',RECL=10,FORM='BINARY',ACCESS='DIRECT')
 WRITE (3, REC=1) 'abcdefghijklmno'

 1 Intel® Fortran Compiler Classic and Intel® Fortran Compiler Developer Guide and Reference

606

 WRITE (3) 4,5
 WRITE (3, REC=4) 'pq'
 CLOSE (3) END

Binary Direct File

Use Asynchronous I/O

For external files, you can specify that I/O should be asynchronous. This specification will allow other
statements to execute while an I/O statement is executing.

NOTE
To execute a program that uses asynchronous I/O on Linux* systems, you must explicitly include one
of the following compiler options when you compile and link your program:

• -threads
• -reentrancy threaded
• -qopenmp
On Windows* systems, no extra options are needed to execute a program that uses asynchronous I/O.

Use the ASYNCHRONOUS Specifier
Asynchronous I/O is supported for all READ and WRITE operations to external files. However, if you specify
asynchronous I/O, you cannot use variable format expressions in formatted I/O operations.

To allow asynchronous I/O for a file, first specify ASYNCHRONOUS='YES' in its OPEN statement, then do the
same for each READ or WRITE statement that you want to execute in this manner.

Execution of an asynchronous I/O statement initiates a "pending" I/O operation, which can be terminated in
the following ways:

• By an explicit WAIT (initno) statement, which performs a wait operation for the specified pending
asynchronous data transfer operation

• By a CLOSE statement for the file
• By a file-positioning statement such as REWIND or BACKSPACE
• By an INQUIRE statement for the file

Intel® Fortran Compiler Classic and Intel® Fortran Compiler Developer Guide and Reference 1

607

Use the WAIT statement to ensure that the objects used in the asynchronous data transfer statements are
not prematurely deallocated. This action is especially important for local stack objects and allocatable objects
that may be deallocated before completion of the pending operation. If you do not specify the wait operation,
the program may terminate with an access violation error. The following example shows use of the WAIT
statement:

module mod
 real, allocatable :: X(:)
end module mod
subroutine sbr()
use mod
integer :: Y(500)
 !X and Y initialization
 allocate (X(500))
 call foo1(X, Y)
 !asynchronous writing
 open(1, asynchronous='yes')
 write(1, asynchronous='yes') X, Y
 !some computation
 call foo2()
 !wait operation
 wait(1)
 !X deallocation
 deallocate(X)
 !stack allocated object Y will be deallocated when the routine returns
end subroutine sbr

You can use the INQUIRE statement with the keyword of ASYNCHRONOUS (ASYNCHRONOUS=specifier) to
determine whether asynchronous I/O is allowed. If it is allowed, a value of YES is returned.

Additionally, you can use the INQUIRE statement with the keyword of PENDING (PENDING= specifier) to
determine whether previously pending asynchronous data transfers are complete.

If an ID= specifier appears and the specified data transfer operation is complete, the variable specified by
PENDING is assigned the value False and the INQUIRE statement performs a wait operation for the specified
data transfer.

If the ID= specifier is omitted and all previously pending data transfer operations for the specified unit are
complete, the variable specified by PENDING is assigned the value False and the INQUIRE statement
performs wait operations for all previously pending data transfers for the specified unit.

Otherwise, the variable specified by PENDING is assigned the value True and no wait operations are
performed. Previously pending data transfers remain pending.

Use the ASYNCHRONOUS Attribute
A data attribute called ASYNCHRONOUS specifies that a variable may be subject to asynchronous input/
output. Assigning this attribute to a variable allows certain optimizations to occur.

See Also
Asynchronous Specifier (ASYNCHRONOUS=)
OPEN/ASYNCHRONOUS Specifier
INQUIRE/ASYNCHRONOUS Specifier
ASYNCHRONOUS Statement and Attributes

Mixed-Language Programming
Mixed-language programming is the process of building programs in which the source code is written in two
or more languages. It allows you to:

 1 Intel® Fortran Compiler Classic and Intel® Fortran Compiler Developer Guide and Reference

608

• Call existing code that is written in another language.
• Use procedures that may be difficult to implement in a particular language.

In mixed-language programming, a routine written in one language calls a function, procedure, or subroutine
written in another language. For example, a Fortran program may need to call an existing shared library or
system procedure written in another language.

Although mixed-language programming is possible between Intel® Fortran and other languages, the primary
focus of this section is programming using Intel® Fortran and C. Mixed-language programming between these
languages is relatively straightforward for these reasons:

• Fortran implements functions, subroutines, and procedures in approximately the same way as C.
• Fortran provides many standard features to improve interoperability with C. An entity is considered to be

interoperable if equivalent declarations are possible in both languages. Interoperability is provided for
variables, derived types, and procedures. For more information, see Standard Fortran and C
Interoperability.

Standard Fortran and C Interoperability
The Intel® Fortran Compiler supports the Fortran standardized mechanism, allowing Fortran code to
communicate (or interoperate) with C code.

This mechanism includes a group of features for C interoperability, enabling mixed-language programming in
a more portable manner.

The Fortran standard discusses interoperability in terms of a companion C processor. Each Fortran
implementation is free to choose which C is its companion. Although the standard explicitly specifies a
companion C (not C++) processor, you can use C++, as long as you use features compatible with C when
interoperating with Fortran.

For Intel® Fortran, the supported C companion is the Intel® oneAPI DPC++/C++ Compiler or the Microsoft
Visual C++ Compiler on Windows, and the Intel® oneAPI DPC++/C++ Compiler or GCC on Linux.

The core principle of interoperability is that something should work the same way in Fortran as it does in C.
In terms of interoperability, the following applies:

• Fortran references procedures defined by the C programming language or procedures described by C
prototypes, even if they are not defined by C.

• A procedure defined by a Fortran subroutine can be referenced by a function defined by C.
• You can define global variables associated with C variables whose names have external linkage.
• You can declare Fortran variables, data structures, and enumerations that correspond to similar

declarations in C.

The following sections describe interoperability requirements for types, variables, procedures, and global
data.

Example of Fortran Calling C
The following example calls a C function.

C function prototype example:

int C_Library_Function(void* sendbuf, int sendcount, int *recvcounts);
Fortran module example:

module ftn_C_2
 interface
 integer (C_INT) function C_Library_Function &
 (sendbuf, sendcount, recvcounts) &
 BIND(C, name='C_Library_Function')
 use, intrinsic :: ISO_C_BINDING, only: C_PTR, C_INT
 implicit none
 type (C_PTR), value :: sendbuf
 integer (C_INT), value :: sendcount
 type (C_PTR), value :: recvcounts

Intel® Fortran Compiler Classic and Intel® Fortran Compiler Developer Guide and Reference 1

609

 end function C_Library_Function
 end interface
end module ftn_C_2

Fortran calling sequence example:

use, intrinsic :: ISO_C_BINDING, only: C_INT, C_FLOAT, C_LOC
 use ftn_C_2
 implicit none
 ...
 real (C_FLOAT), target :: send(100)
 integer (C_INT) :: sendcount, ret
 integer (C_INT), ALLOCATABLE, target :: recvcounts(:)
 ...
 ALLOCATE(recvcounts(100))
 ...
 ret = C_Library_Function(C_LOC(send), sendcount, &
 C_LOC(recvcounts))
 ...

Example of C Calling Fortran
The following example calls a Fortran subroutine called Simulation. This subroutine corresponds to the C
void function simulation.

Fortran code example:

subroutine simulation(alpha, beta, gamma, delta, arrays) BIND(C)
 use, intrinsic :: ISO_C_BINDING
 implicit none
 integer (C_LONG), value :: alpha
 real (C_DOUBLE), intent(inout) :: beta
 integer (C_LONG), intent(out) :: gamma
 real (C_DOUBLE),dimension(*),intent(in) :: delta
 type, BIND(C) :: pass
 integer (C_INT) :: lenc, lenf
 type (C_PTR) :: c, f
 end type pass
 type (pass), intent(inout) :: arrays
 real (C_FLOAT), ALLOCATABLE, target, save :: eta(:)
 real (C_FLOAT), pointer :: c_array(:)
 ...
 ! Associate c_array with an array allocated in C
 call C_F_POINTER (arrays%c, c_array, [arrays%lenc])
 ...
 ! Allocate an array and make it available in C
 arrays%lenf = 100
 ALLOCATE (eta(arrays%lenf))
 arrays%f = c_loc(eta)
 ...
end subroutine simulation

C struct declaration example:

struct pass {int lenc, lenf; float *c, *f;};
C function prototype example:

void simulation(long alpha, double *beta, long *gamma, double delta[], struct pass *arrays);

 1 Intel® Fortran Compiler Classic and Intel® Fortran Compiler Developer Guide and Reference

610

C calling sequence example:

simulation(alpha, &beta, &gamma, delta, &arrays);

Use Standard Fortran Interoperability Syntax for Existing Fortran Extensions

Before the introduction of the Standard Fortran interoperability features, extensions provided by Intel®
Fortran were used to facilitate programming using code written in Fortran and C. The Fortran 2003 standard
defined new language features for C interoperability; in many cases, these features can be used instead of
existing Intel® Fortran extensions.

The following table lists the legacy Intel® Fortran extensions and shows their Standard Fortran equivalents.
This color indicates an Intel extension (non-standard feature) that may or may not be implemented by other
compilers.

NOTE
Existing code using legacy extensions will continue to work; however, if you are writing new code, you
should use the standard syntax.

Legacy Extension Standard Fortran Interoperability Equivalent

ATTRIBUTES ALIAS Use BIND(C,NAME=<alias-name>).

The BIND(C) syntax also implies ATTRIBUTES
DECORATE; the compiler applies whatever name
decoration (leading or trailing underscores) that C
would use for the name. If the NAME= keyword is
omitted, Intel® Fortran will use the Fortran name
converted to lowercase on all platforms.

If the procedure has no arguments, you must
indicate that with () when adding BIND.

All arguments to a routine specified as
interoperable (with BIND(C)) must themselves be
interoperable.

You can also specify BIND(C) on module variables
and COMMON blocks.

ATTRIBUTES C Use BIND(C) (see ALIAS above), which has a
similar effect to ATTRIBUTES C except that it does
not change the argument passing mechanism to be
by-value. Use the Fortran standard VALUE attribute
if you need to pass by value.

BIND(C) specifies that small records are passed and
returned as function value results in the same way
that C would. The results may be different from the
Intel® Fortran default. Like ATTRIBUTES C, BIND(C)
lowercases the external name and adds any
necessary name decoration.

ATTRIBUTES DECORATE Typically used with ATTRIBUTES ALIAS. See
ATTRIBUTES ALIAS above.

Intel® Fortran Compiler Classic and Intel® Fortran Compiler Developer Guide and Reference 1

611

Legacy Extension Standard Fortran Interoperability Equivalent

ATTRIBUTES DEFAULT Not needed when using BIND(C); the compiler
always uses the semantics of the C compiler
regardless of the setting of command-line options
such as iface.

ATTRIBUTES EXTERN Use BIND(C) with a module variable.

ATTRIBUTES REFERENCE Not needed when using BIND(C).

Typically used with character arguments, or to
override the implicit pass-by-value of ATTRIBUTES
C.

ATTRIBUTES STDCALL No equivalent.

ATTRIBUTES VALUE Use the Fortran-standard VALUE attribute.

VALUE has an additional effect when used with a
Fortran procedure. The dummy argument is
received by value, then copied to a temporary
variable that can be modified within the procedure.
Once the procedure exits, the temporary value is
discarded.

ATTRIBUTES VARYING No equivalent.

%LOC function Use the C_LOC function from intrinsic module
ISO_C_BINDING, which may be an appropriate
substitute for variables. C_FUNLOC is the
corresponding function for procedures.

%VAL function Declare the argument with the VALUE attribute.

%REF function No equivalent; %REF function is the default when
BIND(C) is used.

Standard Tools for Interoperability
The topics in this section contain information on the standard tools for interoperability.

ISO_C_BINDING

The intrinsic module provides a set of named constants and procedures that can assist you in programming
with mixed languages.

Use the intrinsic module with:

USE, INTRINSIC::ISO_C_BINDING
There are two groups of named constants included in this intrinsic module:

• Constants that hold kind type parameter values for intrinsic types.
• Constants that provide a Fortran equivalent to some of the C special characters.

These constants include:

Named Constant C Definition Value

C_NULL_CHAR null character '\0'

 1 Intel® Fortran Compiler Classic and Intel® Fortran Compiler Developer Guide and Reference

612

Named Constant C Definition Value

C_ALERT alert '\a'

C_BACKSPACE backspace '\b'

C_FORM_FEED form feed '\f'

C_NEW_LINE new line '\n'

C_CARRIAGE_RETURN carriage return '\r'

C_HORIZONTAL_TAB horizontal tab '\t'

C_VERTICAL_TAB vertical tab '\v'

The procedures included in ISO_C_BINDING are all generic, not specific. Aside from C_F_POINTER and
C_F_STRPOINTER, all of the procedures are pure. They include:

• C_ASSOCIATED
• C_F_POINTER
• C_F_PROCPOINTER
• C_F_STRPOINTER
• C_FUNLOC
• C_LOC
• C_SIZEOF
• F_C_STRING

Additionally, ISO_C_BINDING includes the following derived types to interoperate with C pointers:

• C_PTR
• C_FUNPTR
• C_NULL_PTR
• C_NULL_FUNPTR

BIND(C)

The BIND statement specifies that an object is interoperable with C and has external linkage. The syntax is:

BIND(C [, NAME=scalar-default-char-constant-expr])
C is the only language name that you can specify. Generally, an entity with the BIND(C) attribute behaves as
if it were the corresponding entity in the companion C processor.

The optional NAME= specifier lets you use a different external name than the one the standard prescribes.
The companion C processor does this with the Fortran name forced to lowercase. If the C name was mixed-
case, specify the mixed-case name here without any name decoration, such as leading underscores. The
compiler applies the same decoration the C processor provides. NAME= is not a strict replacement for the
ALIAS attribute extension. This extension is more like ALIAS combined with DECORATE.

BIND(C) is not equivalent to ATTRIBUTES C. Although these both downcase the external name, BIND(C) does
not imply pass-by-value and has other effects that are different from ATTRIBUTES C.

You can specify ATTRIBUTES STDCALL for an interoperable procedure (a procedure whose declaration
includes the BIND(C) language binding attribute). This combination has the following effects for Windows
applications targeting IA-32 architecture:

• The calling mechanism is changed to STDCALL, which affects how the stack is cleaned up on procedure
exit.

• The external name from the BIND attribute is suffixed with @n, where n is the number of bytes to be
removed from the stack on return.

No other effects from STDCALL, such as pass-by-value, are provided. The Fortran standard VALUE attribute
(not ATTRIBUTES VALUE) may be used if desired. For all other platforms, specifying STDCALL with BIND(C)
has no effect. For more information, see ATTRIBUTES C and STDCALL.

Intel® Fortran Compiler Classic and Intel® Fortran Compiler Developer Guide and Reference 1

613

BIND(C) in Procedures
BIND(C) is often used in procedures. It can be used in INTERFACE blocks to specify the interface of an
external interoperable procedure, and in any Fortran procedures that you want to make interoperable. For
SUBROUTINE and FUNCTION, you need to specify BIND(C) after the argument list. For functions, you can
specify BIND(C) before or after the RESULT clause. For example:

SUBROUTINE INTEROP_SUB (ARG) BIND(C,NAME="InteropSub")

FUNCTION INTEROP_FUN (ARG) BIND(C,NAME="InteropFun") RESULT (IAMFUN)
The example includes an external name, which is not required. You can also specify BIND(C) in a
PROCEDURE declaration, in which case it appears in the normal list of attributes before the :: separator.

Specifying BIND(C) for procedures results in the following:

• The external name is what the C compiler would use, with the Fortran name lowercased (unless NAME= is
specified).

• Arguments are passed and received by reference (unless the VALUE attribute is specified for the
argument).

• Only interoperable arguments are allowed.
• No hidden arguments are allowed.
• Function type must be interoperable and function values are returned exactly as the C compiler would

(this mainly affects small derived types).

Note that the Fortran Standard prohibits an argument to a procedure with the BIND attribute to have both
the VALUE and the OPTIONAL attributes.

The Fortran Standard allows for passing character strings to interoperable procedures. You can pass a
character argument of default kind (kind C_CHAR is the default in Intel® Fortran); the corresponding dummy
argument is an explicit-shape array of single characters. Because no length is passed, you need to provide
the length another way - usually by appending C_NULL_CHAR to the end of a Fortran character entity.
C_NULL_CHAR is defined in the intrinsic module ISO_C_BINDING.

However, you can also pass Fortran character variables to C strings (null terminated) by using the
F_C_STRING function from the intrinsic module ISO_C_BINDING. The function has a character argument
with kind C_CHAR. An optional second argument of type logical determines if any trailing blanks in the string
should be stripped before inserting a null terminator. For example:

SUBROUTINE interop_sub () BIND(C)
USE, INTRINSIC :: ISO_C_BINDING
CHARACTER(LEN=6) :: string
string = "abc"
CALL c_func (F_C_STRING (string))
CALL c_func (F_C_STRING (string, .TRUE.)

The first call to c_func passes the value "abc " // C_NULL_CHAR. The second call to c_func passes the
value "abc"// C_NULL_CHAR.

C pointers to contiguous arrays of single characters or pointers to strings can be converted to a scalar
Fortran character pointer by using the C_F_STRPOINTER subroutine from the intrinsic module
ISO_C_BINDING. For example:

SUBROUTINE interop_sub (c_sptr, c_char_arr) BIND(C)
USE, INTRINSIC :: ISO_C_BINDING
TYPE(C_PTR) :: c_sptr
CHARACTER(C_CHAR),DIMENSION(10),TARGET :: c_char_arr
CHARACTER(LEN=:, C_CHAR),POINTER :: f_sptr1, f_sptr2
CALL C_F_STRPOINTER (c_sptr, f_sptr1, 100)
CALL C_F_STRPOINTER (c_char_arr, f_sptr2)

 1 Intel® Fortran Compiler Classic and Intel® Fortran Compiler Developer Guide and Reference

614

In the above example, if c_sptr is associated with the literal string "ABCDEF", after the first call to
C_F_STRPOINTER, f_sptr1(1:1) is 'A', and LEN(f_sptr1) is 6. If c_char_arr associated with a 10 element
character array digits, where 'digits[0] = '0', … digits[9] = '9’, then after the second call to
C_F_STRPOINTER, f_sptr2(1:1) is '0', and LEN(f_sptr2) is 10.

See Also
BIND
C_F_STRPOINTER
F_C_STRING

Interoperate with Arguments Using C Descriptors

These are facilities for interoperable procedure interfaces that specify arguments that are assumed-shape
arrays, have assumed character length, or have the ALLOCATABLE, POINTER, or OPTIONAL attributes.

Assumed-Rank
An assumed-rank object is a variable whose rank is assumed from its actual argument. This facilitates
interoperability with C functions that can accept arguments of arbitrary rank. The intrinsic function, RANK,
can be used to obtain the rank of an assumed-rank variable.

A procedure must have an explicit interface if it has an argument that is assumed-rank.

The SHAPE, SIZE, and UBOUND intrinsic functions are not defined for an assumed-rank array that is
associated with an assumed-size array except when DIM is specified for either SHAPE or UBOUND, and DIM
is not equal to the rank of the array.

An assumed-rank argument may correspond to an actual argument of any rank. If the actual argument has
rank zero, the argument has rank zero; the shape is a zero-sized array and the LBOUND and UBOUND
intrinsic functions, with no DIM argument, return zero-sized arrays. If the actual argument has rank greater
than zero, the rank and extents of the argument are assumed from the actual argument, including no final
extent for an assumed-size array. If the actual argument is an array and the argument has the ALLOCATABLE
or POINTER attribute, the bounds of the argument are assumed from the actual argument.

Assumed-Type
An assumed-type object is a variable declared as TYPE(*). This simplifies interoperability with C formal
parameters of type (void *).

An explicit interface is required for a procedure that has an argument that is assumed-type because an
assumed-type argument is polymorphic.

An assumed-type argument must not correspond to an actual argument that is of derived type with type
parameters, type-bound procedures, or final subroutines.

CFI_cdesc
A C descriptor is a C structure of type CFI_cdesc that is defined in the file ISO_Fortran_binding.h.

Restrictions for BIND(C)
If BIND(C) is specified for a procedure, each argument must be an interoperable procedure or a variable that
is interoperable, assumed shape, assumed rank, assumed type, of assumed character length, or has the
ALLOCATABLE or POINTER attribute. If BIND(C) is specified for a function, the function result must be an
interoperable scalar variable.

An argument of a procedure that is BIND(C) must not have both the OPTIONAL and VALUE attributes.

A variable that is an argument of a procedure that is BIND(C) must be of interoperable type or assumed
type.

Intel® Fortran Compiler Classic and Intel® Fortran Compiler Developer Guide and Reference 1

615

A coarray shall not be an argument of a BIND(C) procedure.

The ALLOCATABLE or POINTER attribute must not be specified for a default-initialized argument of a BIND(C)
procedure.

Further Requirements
Variables with the ASYNCHRONOUS attribute can be used for asynchronous communications between Fortran
and C procedures.

When a Fortran procedure that has an INTENT (OUT) allocatable argument is invoked by a C function, and
the actual argument in the C function is the address of a C descriptor that describes an allocated allocatable
variable, the variable is deallocated on entry to the Fortran procedure. When a C function is invoked from a
Fortran procedure via an interface with an INTENT (OUT) allocatable argument, and the actual argument in
the reference to the C function is an allocated allocatable variable, the variable is deallocated on invocation
(before execution of the C function begins).

ISO_Fortran_binding.h
The types, macros, and functions declared in ISO_Fortran_binding.h can be used by a C function to
interpret C descriptors and allocate and deallocate objects represented by C descriptors. These provide a
means to specify a C prototype that interoperates with a Fortran interface that has an allocatable, assumed
character length, assumed-rank, assumed-shape, or data pointer argument.

The ISO_Fortran_binding.h is a C header file that contains these definitions:

• The C structures CFI_cdesc_t and CFI_dim_t.
• The typedef definitions for CFI_attribute_t, CFI_index_t, CFI_rank_t, and CFI_type_t.
• The macro CFI_CDESC_T and macro definitions that expand to integer constants with various useful

values.
• The C function prototypes or macro definitions for CFI_address, CFI_allocate, CFI_deallocate,

CFI_establish, CFI_is_contiguous, CFI_section, CFI_select_part, and CFI_setpointer. Some
of these functions return an error indicator; this is an integer value that indicates whether an error
condition was detected. The value zero CFI_SUCCESS indicates that no error condition was detected, and
a nonzero value indicates which error condition was detected. The Macros and typedefs in
ISO_Fortran_binding.h section lists the standard error conditions and the macro names for their
corresponding error codes. In function arguments representing subscripts, bounds, extents, or strides, the
ordering of the elements is the same as the ordering of the elements of the dim member of a C descriptor.

Restrictions on C Functions Interoperating with Fortran Procedures
Any C function inter-operating with Fortran procedures must meet these restrictions:

• A C descriptor shall not be initialized, updated, or copied other than by calling the functions in
ISO_Fortran_binding.h.

• If the address of a C descriptor is a formal parameter that corresponds to a Fortran actual argument or is
a C actual argument that corresponds to a Fortran argument. In this context, modification refers to any
change to the location or contents of the C descriptor, including establishing and updating. The intent of
these restrictions is that the C descriptors will remain intact at all times that they are accessible to an
active Fortran procedure, so that the Fortran code is not required to copy them:

• The C descriptor shall not be modified if either the corresponding argument in the Fortran interface has
the INTENT(IN) attribute or the C descriptor is for a nonallocatable nonpointer object, and

• The base_addr member of the C descriptor shall not be accessed before it is given a value if the
corresponding argument in the Fortran interface has the POINTER and INTENT(OUT) attributes.

• Within a C function, an allocatable object shall be allocated or deallocated only by execution of the
CFI_allocate and CFI_deallocate functions. A Fortran pointer can become associated with a target by
execution of the CFI allocate function.

 1 Intel® Fortran Compiler Classic and Intel® Fortran Compiler Developer Guide and Reference

616

• Calling CFI_allocate or CFI_deallocate for a C descriptor changes the allocation status of the Fortran
variable it describes and causes the allocation status of any associated allocatable variable to change
accordingly.

• If the address of an object is the value of a formal parameter that corresponds to a nonpointer argument
in a BIND(C) interface, then:

• if the argument has the INTENT (IN) attribute, the object must not be defined or become undefined,
and

• if the argument has the INTENT (OUT) attribute, the object must not be referenced before it is defined.
• When a Fortran object is deallocated, or execution of its host function is completed, or its association

status becomes undefined, all C descriptors and C pointers to any part of it become undefined, and any
further use of them is undefined behavior.

• A C descriptor whose address is a formal parameter that corresponds to a Fortran argument becomes
undefined on return from a call to the function from Fortran. If the argument does not have either the
TARGET or ASYNCHRONOUS attribute, all C pointers to any part of the object described by the C
descriptor become undefined on return from the call, and any further use of them is undefined behavior.

• When a Fortran object is deallocated, or execution of its host function is completed, or its association
status becomes undefined, all C descriptors and C pointers to any part of it become undefined, and any
further use of them is undefined behavior.

• If the address of a C descriptor is passed as an actual argument to a Fortran procedure, the C lifetime of
the C descriptor shall not end before the return from the procedure call.

• If an object is passed to a Fortran procedure as a nonallocatable, nonpointer argument, its lifetime shall
not end before the return from the procedure call.

• If the lifetime of a C descriptor for an allocatable object that was established by C ends before the
program exits, the object shall be unallocated at that time.

• If a Fortran pointer becomes associated with a C object, the association status of the Fortran pointer
becomes undefined when the lifetime of the C object ends.

See Also
C Structures, Typedefs, and Macros for Interoperability

C Structures, Typedefs, and Macros for Interoperability

The C Structures CFI_dim_t and CFI_cdesc_t
CFI_dim_t is a typedef name for a C structure. This typedef is used to represent lower bound, extent, and
memory stride information for one dimension of an array. The CFI_dim_t typedef contains at least the
following members in any order:

• CFI_index_t lower_bound: The value of the lower bound for the dimension being described.
• CFI_index_t extent: The value is the number of elements in the dimension being described or -1 for

the last dimension of an assumed-size array.
• CFI_index_t sm: The value is the memory stride for a dimension; this value is the difference in bytes

between the addresses of successive elements in the dimension being described.

CFI_cdesc_t is a typedef name for a C structure, which contains a flexible array member. The first three
members of the structure are base_addr, elem_len, and version in that order. The final member is dim.
All other members must be between version and dim, in any order.

• void * base_addr: If the object Interoperating with arguments using C descriptors is an unallocated
allocatable variable or a pointer that is disassociated, the value is a null pointer. If the object has zero
size, the value is not a null pointer but is processor-11 dependent. Otherwise, the value is the base
address of the object being described. The base address of a scalar is its C address. The base address of
an array is the C address of the first element in Fortran array element order.

• size_t elem_len: If the object is a scalar, the value is the storage size in bytes of the object; otherwise,
the value is the storage size in bytes of an element of the object.

Intel® Fortran Compiler Classic and Intel® Fortran Compiler Developer Guide and Reference 1

617

• int version: The value is the value of CFI_VERSION in the source file ISO_Fortran_binding.h that
defined the format and meaning of this C descriptor when the descriptor was established.

• CFI_rank_t rank: The value is the number of dimensions of the Fortran object being described; if the
object is a scalar, the value is zero.

• CFI_type_t type: The value is the specifier for the type of the object. Each interoperable intrinsic C
type has a specifier. Specifiers are also provided to indicate that the type of the object is an interoperable
structure, or is unknown. The following macros provide values that correspond to each type code specifier.

Macro Name C Type

CFI_type_signed_char signed char
CFI_type_short short int
CFI_type_int int
CFI_type_long long int
CFI_type_long_long long long int
CFI_type_size_t size_t
CFI_type_int8_t int8_t
CFI_type_int16_t int16_t
CFI_type_int32_t int32_t
CFI_type_int64_t int64_t
CFI_type_int_least8_t int_least8_t
CFI_type_int_least16_t int_least16_t
CFI_type_int_least32_t int_least32_t
CFI_type_int_least64_t int_least64_t
CFI_type_int_fast8_t int_fast8_t
CFI_type_int_fast16_t int_fast16_t
CFI_type_int_fast32_t int_fast32_t
CFI_type_int_fast64_t int_fast64_t
CFI_type_intmax_t intmax_t
CFI_type_intptr_t intptr_t
CFI_type_ptrdiff_t ptrdiff_t
CFI_type_float float
CFI_type_double double
CFI_type_long_double long double
CFI_type_float_Complex float _Complex
CFI_type_double_Complex double _Complex
CFI_type_long_double_Complex long double _Complex
CFI_type_Bool _Bool
CFI_type_char char
CFI_type_cptr void *
CFI_type_struct interoperable C structure

CFI_type_other not otherwise specified

• The value for CFI_type_other is negative and distinct from all other type specifiers.
• CFI_type_struct specifies a C structure that is interoperable with a Fortran derived type; its value is

positive and distinct from all other type specifiers.

 1 Intel® Fortran Compiler Classic and Intel® Fortran Compiler Developer Guide and Reference

618

• If a C type is not interoperable with a Fortran type and kind supported by the Fortran processor, its
macro evaluates to a negative value.

• Otherwise, the value for an intrinsic type is positive.
• CFI_attribute_t attribute: The value is the value of an attribute code that indicates whether the

object described is allocatable, a data pointer, or a nonallocatable, nonpointer data object. The values are
nonnegative and distinct. The following macros provide values that correspond to each attribute code:

• CFI_attribute_pointer: Specifies a data object with the Fortran POINTER attribute.
• CFI_attribute_allocatable: Specifies an object with the Fortran ALLOCATABLE attribute.
• CFI_attribute_other: Specifies a nonallocatable nonpointer object.

• CFI_dim_t dim – The number of elements in the dim array is equal to the rank of the object. Each
element of the array contains the lower bound, extent, and memory stride information for the
corresponding dimension of the Fortran object.

For a C descriptor of an array pointer or allocatable array, the value of the lower_bound member of each
element of the dim member of the descriptor is determined by argument association, allocation, or pointer
association. For a C descriptor of a nonallocatable nonpointer object, the value of the lower_bound member
of each element of the dim member of the descriptor is zero.

In a C descriptor of an assumed-size array, the extent member of the last element of the dim member has
the value -1. The value of elem_len for a Fortran CHARACTER object is equal to the character length times
the number of bytes of a single character of that kind. If the kind is C_CHAR, this value will be equal to the
character length.

Macros and typedefs in ISO_Fortran_binding.h
Except for CFI_CDESC_T, each macro defined in ISO_Fortran_binding.h expands to an integer constant
expression that is either a single token or a parenthesized expression that is suitable for use in #if
preprocessing directives.

CFI_CDESC_T is a function-like macro that takes one argument: The rank of the C descriptor creates and
evaluates to an unqualified type of suitable size and alignment for defining a variable to use as a C descriptor
of that rank. The argument shall be an integer constant expression with a value that is greater than or equal
to zero and less than or equal to CFI_MAX_RANK. A pointer to a variable declared using CFI_CDESC_T can be
cast to CFI_cdesc_t *. A variable declared using CFI_CDESC_T must not have an initializer.

The CFI_CDESC_T macro provides the memory for a C descriptor. The address of an entity declared using the
macro is not usable as an actual argument corresponding to a formal parameter of type CFI_cdesc_t *
without an explicit cast.

CFI_index_t is a typedef name for a standard signed integer type capable of representing the result of
subtracting two pointers.

The CFI_MAX_RANK macro has a value equal to the largest rank supported. The typedef CFI_rank_t is a
standard integer type capable of representing the largest supported rank.

The CFI_VERSION macro has a processor-dependent value that encodes the version of the
ISO_Fortran_binding.h source file containing this macro. This value is increased if a new version of the
source file is incompatible with the previous version.

CFI_attribute_t is a typedef name for a standard integer type capable of representing the values of the
attribute codes.

CFI_type_t is a typedef name for a standard integer type capable of representing the values for the
supported type specifiers.

The following macros are used as error codes. The macro CFI_SUCCESS is the integer constant 0. The value
of each macro other than CFI_SUCCESS is nonzero and is different from the values of the other error code
macros.

Intel® Fortran Compiler Classic and Intel® Fortran Compiler Developer Guide and Reference 1

619

Macro Name Error Condition

CFI_SUCCESS No error detected.

CFI_ERROR_BASE_ADDR_NULL The base address member of a C descriptor is a null
pointer in a context that requires a non-null pointer
value.

CFI_ERROR_BASE_ADDR_NOT_NULL The base address member of a C descriptor is not a
null pointer in a context that requires a null pointer
value.

CFI_INVALID_ELEM_LEN The value supplied for the element length member
of a C descriptor is not valid.

CFI_INVALID_RANK The value supplied for the rank member of a C
descriptor is not valid.

CFI_INVALID_TYPE The value supplied for the type member of a C
descriptor is not valid.

CFI_INVALID_ATTRIBUTE The value supplied for the attribute member of a C
descriptor is not valid.

CFI_INVALID_EXTENT The value supplied for the extent member of a
CFI_dim_t structure is not valid.

CFI_INVALID_DESCRIPTOR A C descriptor is invalid in some way.

CFI_ERROR_MEM_ALLOCATION Memory allocation failed.

CFI_ERROR_OUT_OF_BOUNDS A reference is out of bounds.

See Also
Interoperating with arguments using C descriptors

Data Types

Fortran and C support many of the same data types, but there are no direct correlations.

One difference is that Fortran has the concept of kinds. C treats these kinds as distinct types. For example,
the Fortran INTEGER. C has integer types that range from short int to long long int, and has specialty
types such as intptr_t. Fortran may not have a corresponding kind. For each interoperable C integer
type, the ISO_C_BINDING declares a named constant (PARAMETER) that gives the kind number for the
implementation's equivalent INTEGER kind.

Consider the simple C int type. This corresponds to INTEGER(C_INT), where C_INT is defined in the
ISO_C_BINDING. In Intel® Fortran, the value is always four, as a C int corresponds with Fortran
INTEGER(4). Other Fortran implementations may use different kind numbers. Using the named constant
ensures portability.

Now consider the C intptr_t type. This integer is large enough to hold a pointer (address). In Intel®
Fortran, this corresponds to INTEGER(C_INTPTR_T). Use INTEGER(4) when building a 32-bit application, and
INTEGER(8) when building a 64-bit application.

Fortran has no unsigned integer types, so there are no constants for C unsigned types. These types are not
interoperable.

If there is a kind of C type that is not supported by the Fortran implementation, the named constant for that
type is defined as -1 and generates a compile-time error if used.

 1 Intel® Fortran Compiler Classic and Intel® Fortran Compiler Developer Guide and Reference

620

There are constants defined for REAL, COMPLEX, LOGICAL, and CHARACTER. For REAL, the standard offers
the possibility of a C long double type. This is implemented in different ways by various C compilers on
various platforms supported by Intel® Fortran.

• GCC on 32-bit Linux: The long double is an 80-bit floating type, as supported by the X87 instruction
set. It is not supported by Intel® Fortran, so the C_LONG_DOUBLE is -1.

• Windows: The long double is treated the same as a double, so the C_LONG_DOUBLE is defined as 8.
• 64-bit Linux: The C_LONG_DOUBLE is defined as 16.

For Intel's DPC++ and C/C++ compilers, long double by default is an 80-bit extended precision
floating-point type. C/C++ files containing long double data types that interoperate with Fortran should
be compiled with the GCC option -mlong-double-128 to force long double variables to 128-bit quad
precision. Intel's Fortran compilers do not support an 80-bit extended precision data type.

NOTE

• Use the constants for kind values and the corresponding types in C to ensure matching.
• In Intel® C/C++ on Linux, a long double can be forced to be a 128-bit IEEE format floating-point

data type using the -mlong-double-128 command line option. On all platforms, Intel® C/C++
supports __float128 in the source code.

• On Windows, Intel® C/C++ supports the _Quad type in the source code by using the command line
option, /Qoption,cpp,--extended_float_types.

LOGICAL and CHARACTER need special treatment for interoperability. The Fortran standard states that
LOGICAL corresponds to the (ISO_C_BINDING) C_Bool type, and defines a single kind value of C_BOOL,
which is 1 in Intel® Fortran. By default, Intel® Fortran tests LOGICAL for true/false differently than C does.
Where C uses zero for false and not-zero for true, Intel® Fortran defaults to using -1 (all bits set) as true and
zero as false.

If you are going to use LOGICAL types to interoperate with C, specify the option fpscomp[:]logicals to
change the interpretation to be C-like. This is included when using the option standard-semantics, which is
recommended for using Fortran 2003 (or later) features. C does not have character strings. It has arrays of
single characters, and this is how strings in Fortran must be represented. There is a kind value defined as
C_CHAR, which corresponds to the C char type. Only character variables with a length of one are
interoperable. See Procedures for more information.

Derived types can also be interoperable. For additional information and restrictions, see Derived Types.

Scalar Types

The commonly used types are included in the following table. Named Constants in the ISO_C_BINDING
Module contains a full list of named kind constants that correspond to other C types.

The following rules apply:

• Integer types in Fortran are always signed. In C, integer types may be specified as signed or unsigned,
but are signed by default.

• The values of C_LONG, C_SIZE_T, C_LONG_DOUBLE, and C_LONG_DOUBLE_COMPLEX are different on
different platforms.

Named Constant from
ISO_C_BINDING

(Kind Type Parameter If Value
Is Positive)

C Type Equivalent Fortran Type

C_SHORT

C_INT

C_LONG

short int
int
long int

INTEGER(KIND=2)

INTEGER(KIND=4)

INTEGER (KIND=4 or 8)

Intel® Fortran Compiler Classic and Intel® Fortran Compiler Developer Guide and Reference 1

621

Named Constant from
ISO_C_BINDING

(Kind Type Parameter If Value
Is Positive)

C Type Equivalent Fortran Type

C_LONG_LONG long long int INTEGER(KIND=8)

C_SIGNED_CHAR signed char
unsigned char

INTEGER(KIND=1)

C_SIZE_T size_t INTEGER(KIND=4 or 8)

C_INT8_T

C_INT16_T

C_INT32_T

C_INT64_T

int8_t
int16_t
int32_t
int64_t

INTEGER(KIND=1)

INTEGER(KIND=2)

INTEGER(KIND=4)

INTEGER(KIND=8)

C_FLOAT

C_DOUBLE

C_LONG_DOUBLE

float
double
long double

REAL(KIND=4)

REAL(KIND=8)

REAL(KIND=8 or 16)

C_FLOAT_COMPLEX

C_DOUBLE_COMPLEX

C_LONG_DOUBLE_COMPLEX

float _Complex
double _Complex
long double _Complex

COMPLEX(KIND=4)

COMPLEX(KIND=8)

COMPLEX(KIND=8 or 16)

C_BOOL 1 _Bool LOGICAL(KIND=1)

C_CHAR char CHARACTER(LEN=1)

1 Use compiler option fpscomp logicals so that .TRUE. is 1 and .FALSE. is 0 as defined for C's _Bool.

While there are named constants for all possible C types, every type is not necessarily supported on every
processor. Lack of support is indicated by a negative value for the constant in the module.

For a character type to be interoperable, you must either omit the length type parameter or specify it using a
constant expression with a value of one.

See Also
fpscomp compiler option, setting logicals

Characters

The C language does not have character strings. Instead, it has arrays of single characters. You must
represent this type of character string in Fortran.

A kind value is defined, C_CHAR, which corresponding to the C char type. However, only character variables
with a length of one (1) are interoperable.

The following shows a Fortran program passing a string to a C routine and the C routine calling a Fortran
routine with a new string.

Fortran program example:

program demo_character_interop
 use, intrinsic :: iso_c_binding
 implicit none

 1 Intel® Fortran Compiler Classic and Intel® Fortran Compiler Developer Guide and Reference

622

 interface
 subroutine c_append (string) bind(C)
 character(len=1), dimension(*), intent(in) :: string
 end subroutine c_append
 end interface

 ! Call C routine passing an ordinary character value
 ! The language allows this to match an array of
 ! single characters of default kind.
 ! Easiest way to call c_append:
 call c_append (F_C_STRING ('Intel Fortran'))
 ! Alternate way to call c_append
 call c_append('Intel Fortran'//C_NULL_CHAR)
end program demo_character_interop

subroutine fort_print (string) bind(C)
 use, intrinsic :: iso_c_binding
 implicit none

 ! Must declare argument as an array of single characters
 ! in order to be "interoperable"
 character(len=1), dimension(100), intent(in), target :: string
 integer s_len ! Length of string
 character(LEN=:, C_CHAR), pointer :: string_pointer
 character(100), pointer :: string1
 character(100) :: string2

 ! Easiest way to convert the array to a character pointer.
 ! LEN(string_ptr) will be set to INDEX(string, C_NULL_CHAR) – 1.
 call C_F_STRPOINTER (string, string_ptr)
 print *, string_ptr

 ! Another way to convert the array to a character variable
 call C_F_POINTER(C_LOC(string),string1)
 s_len = INDEX(string1,C_NULL_CHAR) - 1
 print *, string1(1:s_len)

 ! Another way to convert
 string2 = TRANSFER(string,string2) ! May move garbage if source length < 100
 s_len = INDEX(string2,C_NULL_CHAR) - 1
 print *, string2(1:s_len)

 end subroutine fort_print

C routine example:

C module (c_append.c):
#include <string.h>
extern void fort_print(char * string); /* Fortran routine */
void c_append (char * string) {
 char mystring[100];
 strcpy(mystring, string);
 strcat(mystring, " interoperates with C");
 /* Call Fortran routine passing new string */
 fort_print (mystring);
 return;
}

Intel® Fortran Compiler Classic and Intel® Fortran Compiler Developer Guide and Reference 1

623

Pointers

For interoperating with C pointers, the module ISO_C_BINDING contains the derived types C_PTR and
C_FUNPTR, which are interoperable with C object and function type pointers, respectively.

These types, as well as certain procedures in the module, provide the mechanism for passing dynamic arrays
between the two languages. Because its elements do not need to be contiguous in memory, a Fortran pointer
target or assumed-shape array cannot be passed to C. However, you can pass an allocated allocatable array
to C, and you can associate an array allocated in C with a Fortran pointer. Additionally, as shown in the
following, you can convert a pointer in C format to one in Fortran format.

Fortran program example:

program demo_c_f_pointer
 use, intrinsic :: iso_c_binding
 implicit none

 interface
 function make_array(n_elements) bind(C)
 import ! Make iso_c_binding visible here
 type(C_PTR) :: make_array
 integer(C_INT), value, intent(IN) :: n_elements
 end function make_array
 end interface

 type(C_PTR) :: cptr_to_array
 integer(C_INT), pointer :: array(:) => NULL()
 integer, parameter :: n_elements = 3 ! Number of elements

 ! Call C function to create and populate an array
 cptr_to_array = make_array(n_elements)
 ! Convert to Fortran pointer to array of n_elements elements
 call C_F_POINTER (cptr_to_array, array, [n_elements])
 ! Print value
 print *, array

end program demo_c_f_pointer

C module example:

#include <stdlib.h>
int *make_array(int n_elements) {
 int *parray;
 int i;
 parray = (int*) malloc(n_elements * sizeof(int));
 for (i = 0; i < n_elements; i++) {
 parray[i] = i+1;
 }
 return parray;
 }

Derived Types

For a derived type to be interoperable with C, you must specify the BIND attribute:

type, BIND(C) :: MyType

 1 Intel® Fortran Compiler Classic and Intel® Fortran Compiler Developer Guide and Reference

624

Additionally, each component must have an interoperable type and interoperable type parameters, must not
be a pointer or coarray, and must not be allocatable. This allows Fortran and C types to correspond:

typedef struct {
 int m, n;
 float r;
} MyCtype

The previous example is interoperable with the following:

use, intrinsic :: ISO_C_BINDING
type, BIND(C) :: MyFtype
integer(C_INT) :: i, j
real(C_FLOAT) :: s
end type MyFtype

The following restrictions apply to a derived type specified with the BIND attribute:

• It cannot have the SEQUENCE attribute.
• It cannot be an extended type.
• It cannot have type-bound procedures.

Variables

A scalar Fortran variable is interoperable if its type and type parameters are interoperable, and if it is not a
pointer.

An array Fortran variable is interoperable if its type and type parameters are interoperable, and it has an
explicit shape or assumed size. It interoperates with a C array of the same type, type parameters, and
shape, but with subscripts reversed.

For example, a Fortran array declared as integer :: a(18, 3:7, *) is interoperable with a C array
declared as int b[][5][18].

Scalar variables are interoperable only if the type parameters (kind and length) are interoperable, not a
coarray, do not have the POINTER or ALLOCATABLE attribute, and if character length is not assumed nor
defined by a non-constant expression.

Arrays are interoperable if the base type meets the scalar variable requirements, if they are explicit shape or
assumed-size, and are not zero-sized. Assumed-size arrays are interoperable only with C arrays that have no
size specified. An allocatable array, coarray, or array pointer is not interoperable.

Global Data

A module variable or a common block can interoperate with a C global variable if the Fortran entity uses the
BIND attribute and the members of that entity are also interoperable. Consider the entities c_extern, c2,
com and single in the following module's interoperability example:

module LINK_TO_C_VARS
 use, intrinsic :: ISO_C_BINDING
 integer(C_INT), BIND(C) :: c_extern
 integer(C_LONG) :: c2
 BIND(C, name='myVariable') :: c2
 common /com/ r,s
 real(C_FLOAT) :: r,s,t
 BIND(C) :: /com/, /single/
 common /single/ t
end module LINK_TO_C_VARS

This example can interoperate with the following C external variables:

int c_extern;
long myVariable;
struct {float r, s;} com;
float single;

Intel® Fortran Compiler Classic and Intel® Fortran Compiler Developer Guide and Reference 1

625

Accessing global parameters example:

 MODULE Examp
 integer, BIND(C)::idata(20)
 real::rdata(10)
 END MODULE

In Fortran, a variable can access a global parameter by using the standard BIND C attribute.

In the above, two external variables are created (the latter with proper case and decoration): idata and
foo_mp_rdata.

Use the BIND attribute to resolve name discrepancies with C, seen in the global variable statement example:

 int idata[20]; // declared as global (outside of any function)
Fortran can declare the variable global (COMMON) and other languages can reference it as external, for
example:

 ! Fortran declaring PI global
 real pi_r
 COMMON /pi/ pi_r ! Common Block and variable names
 BIND(C)::/pi/

Use of BIND(C) above means that the name will be appropriately decorated for the target and made
lowercase. In C, the variable is referenced as an external with the statement:

 //C code with external reference to pi
 extern float pi;

The global name C references is the name of the Fortran common block (pi), not the name of a variable
within a common block (pi_r). Therefore, you cannot use blank common (unnamed) to make data
accessible between C and Fortran.

COMMON
To reference C structures from Fortran common blocks and vice versa, you must take into account how
common blocks and structures differ in their methods of storing member variables in memory. Fortran places
common block variables into memory in order as close together as possible, with the following rules:

• A single BYTE, INTEGER(1), LOGICAL(1), or CHARACTER variable in common block list begins immediately
following the previous variable or array in memory.

• All other types of single variables begin at the next even address immediately following the previous
variable or array in memory.

• All arrays of variables begin on the next even address immediately following the previous variable or array
in memory, except for CHARACTER arrays which always follow immediately after the previous variable or
array.

• All common blocks begin on a four-byte aligned address.

Because of these rules, you must consider the alignment of C structure elements with Fortran common block
elements. Specifically, you should ensure interoperability either by making all variables exactly equivalent
types and kinds in both languages (using only 4-byte and 8-byte data types in both languages simplifies this)
or by using the C pack pragmas in the C code around the C structure. This makes C data packing compatible
with Fortran data packing.

Consider that your Fortran code has a common block named Really, as shown in this Fortran example:

 USE, INTRINSIC::ISO_C_BINDING
 REAL (C_float)::x,y,z(6)
 REAL (C_double)::ydbl
 COMMON, BIND(C) / Really /x, y, z(6), ydbl

 1 Intel® Fortran Compiler Classic and Intel® Fortran Compiler Developer Guide and Reference

626

You can access this data structure from your C code with the following external data structures, as shown in
the C example:

 #pragma pack(2)
 extern struct {
 float x, y, z[6];
 double ydbl;
 } Really;
 #pragma pack()

To restore the original packing, you must add #pragma pack() at the end of the C structure.

You can also access C structures from Fortran by creating common blocks that correspond to those
structures. This is the reverse case from that shown above. However, the implementation is the same; after
common blocks and structures have been defined and given a common address (name), and, assuming the
alignment in memory has been accounted for, both languages share the same memory locations for the
variables.

Once you have accounted for alignment and padding, you can give C access to an entire common block or
set of common blocks. Alternatively, you can pass individual members of a Fortran common block in an
argument list, just as you can any other data item.

See Also
BIND C

Procedures

For a Fortran procedure to be interoperable with C, it must have an explicit interface and be declared with
the BIND attribute, as shown in the BIND interface example:

function Func(i, j, k, l, m) BIND(C)
In the case of a function, the result must be scalar and interoperable.

A procedure has an associated binding label, which is global in scope. This label is the name recognized by
the C processor and is, by default, the lower-case version of the Fortran name (plus any needed leading or
trailing underscores). For example, the previous function has the binding label func. You can specify an
alternative binding label as shown in the alternate binding label example:

function Func(i, j, k, l, m) BIND(C, name='myC_Func')
All arguments must be interoperable. Furthermore, you must ensure that the Fortran routine uses the VALUE
attribute for scalar arguments, or that the C routine receives these scalar arguments as pointers to the scalar
values. Consider the following call to this C function:

int c_func(int x, int *y);
As shown here, the interface for the Fortran call to c_func must have x passed with the VALUE attribute y
should not have the VALUE attribute, since it is received as a pointer in the Fortran call example:

interface
 integer (C_INT) function C_Func(x, y) BIND(C)
 use, intrinsic :: ISO_C_BINDING
 implicit none
 integer (C_INT), value :: x
 integer (C_INT) :: y
 end function C_Func
end interface

Alternatively, the declaration for y can be specified as a C_PTR passed by value:

type (C_PTR), value :: y

Intel® Fortran Compiler Classic and Intel® Fortran Compiler Developer Guide and Reference 1

627

Platform Specifics
The topics in this section contain information on platform specific issues that can come up when using mixed-
language programming.

Mixed-Language Issues

There are important differences in Fortran and C/C++ mixed-language programming; argument passing,
naming conventions, and other interface issues must be consistently reconciled between any two languages
to prevent program failure and indeterminate results. However, the advantages of mixed-language
programming often make the extra effort worthwhile.

A summary of major Fortran and C/C++ mixed-language issues:

• Generally, Fortran/C programs are mixed to allow one language to use existing code written in the other.
Either Fortran or C can call the other, so the main routine can be in either language. On Linux systems, if
Fortran is not the main routine, the -nofor-main compiler option must be specified in the ifx or ifort
command line that links the application.

• When the main program is written in Fortran, the Fortran compiler automatically creates any code needed
to initialize the Fortran Runtime Library (RTL). The RTL provides the Fortran environment for input/output
and exception handling. When the main program is written in C/C++, the C main program needs to call
for_rtl_init_ to initialize the Fortran RTL and for_rtl_finish_ at the end of the C main program to shut down
the Fortran RTL gracefully. With the Fortran RTL initialized, Fortran I/O and error handling will work
correctly even when C/C++ routines are called.

• For mixed-language applications, the Intel® Fortran main program can call subprograms written in C/C++
if the appropriate calling conventions are used.

To use the same Microsoft visual development environment for multiple languages, you must have the
same version of the visual development environment for your languages.

• On Linux systems, Fortran adds an underscore to the end of external names; C does not.
• Fortran changes the case of external names to lowercase on Linux and to uppercase on Windows; C

leaves them in their original case.
• By default, Fortran passes data by reference; C by value. In both languages, the other method can be

specified.

NOTE It is possible to override some default Fortran behavior by using BIND(C) specifier. This is the
preferred method. You can also override default Fortran behavior by using ATTRIBUTES and ALIAS.

• By default, Intel® Fortran internally represents logical values .TRUE. and .FALSE. differently that C
represents the values of _BOOL typed variables. When passing logical values between Fortran and C/C++
procedures, be sure to use the Fortran compiler option -fpscomp logicals (Linux*)
or /fpscomp:logicals (Windows*). This uses the value 1 for .TRUE. and the value 0 for .FALSE., which
are C/C++ compatible.

• Fortran subroutines are equivalent to C void routines.
• Fortran requires that the length of strings is passed; C is able to calculate the length based on the

presence of a trailing null. Therefore, if Fortran is passing a string to a C routine, that string needs to be
terminated by a null; for example:

 "mystring"c or StringVar // CHAR(0) or F_C_STRING("mystring")
• For COMPLEX, REAL*16, CHARACTER, derived types, and ALLOCATABLE or array data types, Fortran adds

a hidden first argument to contain function return values.
• On Linux, the -fexceptions option enables C++ exception handling table generation, preventing Fortran

routines in mixed-language applications from interfering with exception handling between C++ routines.
• For more information on debugging mixed-language programs on Windows, see Debugging Mixed-

Language Programs.

 1 Intel® Fortran Compiler Classic and Intel® Fortran Compiler Developer Guide and Reference

628

Call Subprograms from the Main Program on Windows

In mixed-language applications, an Intel® Fortran main program can call subprograms written in a variety of
languages. Conversely, an Intel® Fortran subprogram (including those contained within a DLL or static library)
can be called from a main program written in another language.

Microsoft Visual Studio* projects support a single language; therefore, code for each language must exist in
its own project.

This topic summarizes mixed language compatibility with Intel® Fortran for both managed code and
unmanaged code. Managed code is architecture-independent code that runs under the control of the
Microsoft* .NET Common Language Runtime Environment; unmanaged code is native, architecture-specific
code.

Mixed-language applications can supply programs in a variety of formats:
Format Created By Callable By

Compiled objects (.OBJ) and
static libraries (.LIB)

NOTE
Objects and libraries must be link-
compatible and not have conflicting
names in their language support
libraries

Intel® Fortran, Intel® C++,
Microsoft Visual C++*
(unmanaged)

Intel® Fortran, Intel® C++,
Microsoft Visual C++
(unmanaged)

Dynamic Link Library (.DLL) Intel® Fortran, Intel® C++,
Microsoft Visual C++
(unmanaged), Microsoft Visual
Basic* (unmanaged), many more

Intel® Fortran, Intel® C++,
Microsoft Visual C++ (both
managed and unmanaged),
Microsoft Visual Basic (managed
and unmanaged), many others

.NET managed code assembly Microsoft Visual C++ .NET,
Microsoft Visual Basic .NET,
other .NET languages

Intel® Fortran (with interface
generated by Fortran Module
Wizard), .NET languages

Pass Arguments in Mixed-Language Programming

By default, Fortran programs pass arguments by reference. They pass a pointer to each actual argument
rather than the value of the argument. C programs typically pass arguments by value. Consider the
following:

• When a Fortran program calls a C function, the C function's formal arguments must be declared as
pointers to the appropriate data type.

• When a C program calls a Fortran subprogram, each actual argument must be specified explicitly as a
pointer.

You can pass data between Fortran and C/C++ using argument lists just as you can within each language
(for example, the argument list a, b and c in CALL MYSUB(a,b,c)). You can pass individual arguments in
two ways:

• By value: Passes the argument's value.
• By reference: Passes the address of the arguments. On systems based on IA-32 architecture, Fortran, C,

and C++ use 4-byte addresses. On Intel® 64 architecture, Fortran, C, and C++ use 8-byte addresses.

You need to make sure that for every call, the calling program and the called routine agree how each
argument is passed. Otherwise, the called routine receives bad data.

The Fortran technique for passing arguments changes depending on the calling convention specified. By
default, Fortran passes all data by reference (except the hidden length argument of strings, which is passed
by value).

Intel® Fortran Compiler Classic and Intel® Fortran Compiler Developer Guide and Reference 1

629

On Windows systems using IA-32 architecture only, you can alter the default calling convention. You can use
either the /iface:stdcall option (stdcall) or the /iface:cvf option (Compaq and Powerstation
compatibility) to change the default calling convention, or the VALUE or C attributes in an explicit interface
using the ATTRIBUTES directive. For more information on the ATTRIBUTES directive, see the Intel® Fortran
Language Reference.

Both options cause the routine compiled and routines that it calls to have a @<n> appended to the external
symbol name, where n is the number of bytes of all parameters. Both options assume that any routine called
from a Fortran routine compiled this way will do its own stack cleanup, callee pops.

On Windows, option /iface:cvf changes the way that CHARACTER variables are passed. With /iface:cvf,
CHARACTER variables are passed as address/length pairs (/iface:mixed_str_len_arg).

See Also
Handling Fortran Array Pointers and Allocatable Arrays

Stack Considerations in Calling Conventions on Windows

In the C calling convention, which is the default, the calling routine always adjusts the stack immediately
after the called routine returns control. This process produces slightly larger object code because the code
that restores the stack must exist at every point a procedure is called.

NOTE
For 32-bit applications, use of the STDCALL calling convention means that the called procedure
controls the stack. The code to restore the stack resides in the called procedure, so the code needs to
appear only once. For 64-bit applications, the stack adjustment and @n name suffix features of
STDCALL are not used.

The C calling convention makes calling with a variable number of arguments possible. In the C calling
convention, the caller cleans up the stack, so it is possible to write a routine with a variable number of
arguments. Therefore, the return point has the same address relative to the frame pointer, regardless of how
many arguments are actually passed. The calling routine controls the stack, knows how many arguments it
passed, how big they are, and where they reside in the stack. It can skip passing an argument and still keep
track.

You can call routines with a variable number of arguments by including the ATTRIBUTES C option in your
interface to a routine.

Naming Conventions

Naming conventions are as follows:

• Windows: No leading or trailing underscores can appear.
• Linux: A trailing (postfix) underscore must appear.

C/C++ Naming Conventions

By default, the Fortran compiler converts function and subprogram names to lower case for Linux and upper
case for Windows. The C compiler never performs case conversion. A C procedure called from a Fortran
program must, therefore, be named using the appropriate case, or the BIND (C, NAME = "name") must be
used in an explicit interface for the C procedure.

C++ uses the same calling convention and argument-passing techniques as C, but naming conventions differ
because of C++ decoration of external symbols. When the C++ code resides in a .cpp file, C++ name
decoration semantics are applied to external names, often resulting in linker errors. The extern "C" syntax
makes it possible for a C++ module to share data and routines with other languages by causing C++ to drop
name decoration.

The following example declares prn as an external function using the C naming convention. This declaration
appears in C++ source code:

extern "C" { void prn(); }

 1 Intel® Fortran Compiler Classic and Intel® Fortran Compiler Developer Guide and Reference

630

To call functions written in Fortran, declare the function as you would in C and use a "C" linkage
specification. For example, to call the Fortran function FACT from C++, declare it as follows:

extern "C" { int fact(int* n); }
The extern "C" syntax can be used to adjust a call from C++ to other languages, or to change the naming
convention of C++ routines called from other languages. However, extern "C" can only be used from within
C++. If the C++ code does not use extern "C" and cannot be changed, you can call C++ routines only by
determining the name decoration and generating it from the other language. Such an approach should only
be used as a last resort, because the decoration scheme is not guaranteed to remain the same between
versions.

When using extern "C" in a C++ program, keep in mind the following restrictions:

• You cannot declare a member function with extern "C".
• You can specify extern "C" for only one instance of an overloaded function; all other instances of an

overloaded function have C++ linkage.

Compile and Link Intel® Fortran and C/C++ Programs

Your application can contain both C/C++ and Fortran source files.

Use the Fortran Driver to Link Mixed Fortran and C/C++ Programs
If your main program is a Fortran source file (myprog.f90) that calls a routine written in C (cfunc.c), you
can use the following sequence of commands to build your application using the Fortran driver to link mixed
Fortran and C/C++ programs.

Linux

icx -c cfunc.c
ifx -o myprog myprog.f90 cfunc.o

Windows

icx /c cfunc.c
ifx myprog.f90 cfunc.obj
 /link /out:myprog.exe

The icx command for Intel® C++ or the cl command (for Microsoft Visual C++) compiles cfunc.c. The -c
(Linux) or /c (Windows) option specifies that the linker is not called. This command creates cfunc.o (Linux)
or cfunc.obj (Windows).

The ifx command compiles myprog.f90 and links cfunc.o (Linux) or cfunc.obj (Windows) with the
object file created from myprog.f90 to create the executable.

Additionally, on Linux systems, you may need to specify one or more of the following options:

• Use the -cxxlib compiler option to tell the compiler to link using the C++ runtime libraries. By default, C
++ libraries are not linked with Fortran applications.

• Use the -fexceptions compiler option to enable C++ exception handling table generation so C++
programs can handle C++ exceptions when there are calls to Fortran routines on the call stack. This
option causes additional information to be added to the object file that is required during C++ exception
handling. By default, mixed Fortran/C++ applications abort in the Fortran code if a C++ exception is
thrown.

• Use the -nofor_main compiler option if your C/C++ program contains the main() entry point and is
calling an Intel® Fortran subprogram, as shown in the following:

• For C use:

icx -c cmain.c
ifx -nofor_main cmain.o fsub.f90

Intel® Fortran Compiler Classic and Intel® Fortran Compiler Developer Guide and Reference 1

631

• For C++ use:

icpx -c cmain.c
ifx -nofor_main cmain.o fsub.f90

Use the C/C++ Driver to Link Mixed Fortran and C Programs
If your main program is a Fortran source file (fortrancallsycl.f90) that calls a routine written in C++
(array_example_sycl.cpp), you can use the following sequence of commands to build your application
using the C/C++ driver to link mixed Fortran and C/C++ programs.

Linux

ifx -c fortrancallsycl.f90 -o fortrancallsycl.o
icpx -fortlib -fsycl -fsycl-targets=nvptx64-nvidia-cuda array_example_sycl.cpp fortrancallsycl.o
-o array_example_fortran_sycl

Windows

ifx /c fortrancallsycl.f90 /Fo:fortrancallsycl.obj
icpx -fsycl -fsycl-targets=spir64 array_example_sycl.cpp fortrancallsycl.obj /
Fe:array_eample_fortran_sycl.exe

The ifx command for Intel® Fortran compiles fortrancallsycl.f90. The -c (Linux) or /c (Windows)
option specifies that the linker is not called. This command creates fortrancallsycl.o (Linux) or
fortrancallsycl.obj (Windows).

The icpx command compiles array_example_sycl.cpp and links array_example_sycl.o (Linux) or
array_example_sycl.obj (Windows) with the object file created from fortrancallsycl.f90 to create
the executable.

Additionally, on Linux systems, you may need to specify one or more of the following options:

• Use the -fortlib compiler option to tell the compiler to link using the Fortran runtime libraries. By
default, Fortran libraries are not linked with C/C++ applications.

• Use the -fexceptions compiler option to enable C++ exception handling table generation so C++
programs can handle C++ exceptions when there are calls to Fortran routines on the call stack. This
option causes additional information to be added to the object file that is required during C++ exception
handling. By default, mixed Fortran/C++ applications abort in the Fortran code if a C++ exception is
thrown.

For more information about compiling and linking Intel® Fortran and C++ programs on Windows operating
systems, and the libraries used, see Specify Consistent Library Types.

Build Intel® Fortran and C Mixed-Language Programs on Windows

Understand how to call, name, and argument passing conventions between Fortran and C to build an
application. If you are using Microsoft Visual C++ or Intel® C++, you can edit, compile, and debug your code
within the Microsoft Integrated Development Environment. If you are using another C compiler, you can edit
your code within the Integrated Development Environment. However, you must compile your code outside
the Integrated Development Environment and either build the Fortran/C program on the command line or
add the compiled C .OBJ file to your Fortran project in the Microsoft IDE.

As an example of building from the command line, if you have a main C program CMAIN.C that calls Fortran
subroutines contained in FORSUBS.F90, you can create the CMAIN application with the following commands:

icl /c cmain.c
ifx cmain.obj forsubs.f90

Intel® Fortran accepts an object file for the main program written in C and compiled by a C compiler. The
compiler compiles the .F90 file and then has the linker create an executable file under the name CMAIN.EXE
using the two object files.

 1 Intel® Fortran Compiler Classic and Intel® Fortran Compiler Developer Guide and Reference

632

Either compiler (C or Intel® Fortran) can do the linking, regardless of which language the main program is
written in. However, if you use the Intel® Fortran compiler first, you must include LIBIFCORE.LIB and
IFCONSOL.LIB with the C compiler. You may experience some difficulty with the version of the runtime
library used by the C compiler. You may prefer to use the C compiler first or specify your project settings for
both Intel® Fortran and C so there is agreement on the C library to link against. Ensure that your application
links against only one copy of the C library.

If you are using the IDE to build your application, Intel® Fortran uses Fortran and C libraries depending on
the information specified in the Fortran folder in Project > Properties (Project Settings dialog box). You
can also specify linker settings with the Linker folder in the Project Settings dialog box.

In the Fortran folder, within the Libraries property page, the Runtime Library category determines the
libraries selected.

Runtime Library Fortran Link Library Used C Link Library Used

Debug Single-Threaded libifcore.lib libcmtd.lib

Multithreaded libifcoremt.lib libcmt.lib

Debug Multithreaded libifcoremt.lib libcmtd.lib

Debug Single-Threaded DLL libifcorertd.lib (libifcorertd.dll) msvcrt.lib (msvcrt.dll)

Multithreaded DLL libifcoremd.lib (libifcoremd.dll) msvcrt.lib (msvcrt.dll)

Debug Multithreaded DLL libifcoremdd.lib (libifcoremdd.dll) msvcrt.lib (msvcrt.dll)

For example, select Debug Multi-threaded DLL in the runtime Library list to specify that DLL (/libs:DLL),
multi-threaded (/threads), and debug (/dbglibs) libraries should be linked against, namely Fortran import
library libifcoremdd.lib and its DLL library libifcoremdd.dll and C/C++ import library msvcrtd.lib
and its DLL library msvcrtd.dll.

A mixed language solution containing a Fortran library project should have Disable Default Library Search
Rules set to No in the IDE. To check this setting, choose Project > Properties and then choose the
Libraries category. If you change the Disable Default Library Search Rules setting to Yes, you will need to
explicitly add the needed runtime libraries to the non-Fortran project. If you are adding libraries explicitly,
make sure you add IFCONSOL.LIB to the libraries of the non-Fortran project. This library is needed to
perform almost any kind of I/O with Intel® Fortran.

When you have a C++ main program and a Fortran library subproject, you need to manually add the library
path to the Intel® Fortran LIB folder. You only need to do this manual add once per user. To add the path,
choose Tools > Options > Projects and Solutions > VC++ Directories. Use the Show directories for:
dropdown item to select Library files. Add the path to the displayed list.

The way Microsoft Visual C++ chooses libraries is also based upon the Project > Properties item, but
within the C/C++ tab. In the Code Generation category, the runtime library item lists the following C
libraries:

Menu Item Selected CL Option or Project Type
Enabled

Default Library Specified in Object
File

Multithreaded /MTd libcmt.lib

Multithreaded DLL /MD msvcrt.lib (msvcrnn.dll)

Debug Multithreaded /MTd libcmtd.lib

Debug Multithreaded
DLL

/MDd msvcrtd.lib (msvcrtd.dll)

You must take care to choose the same type of runtime libraries in both your Fortran and C project. For
example, if you select Multithreaded DLL in your Fortran project, you must select Multithreaded DLL in your C
project. Otherwise, when your build your mixed Fortran/C application, you will receive errors from the Linker
regarding undefined and/or duplicate symbols.

Intel® Fortran Compiler Classic and Intel® Fortran Compiler Developer Guide and Reference 1

633

If you are using Microsoft Visual C++ or Intel® C++, the Microsoft Integrated Development Environment can
build mixed Fortran/C applications transparently, with no special directives or steps on your part. You can edit
and browse your C and Fortran programs with appropriate syntax coloring for the language. You need to
place your Fortran source files into a Fortran project and your C/C++ files into a Visual C++ project.

When you debug a mixed Visual C++/Fortran application, the debugger will adjust to the code type as it
steps through: the C or Fortran expression evaluator will be selected automatically based on the code being
debugged, and the stack window will show Fortran data types for Fortran procedures and C data types for C
procedures.

Implementation Specifics
The topics in this section contain information on implementation specific issues.

Fortran Module Naming Conventions

Fortran module entities (data and procedures) have external names that differ from other external entities.
Module names use the convention:

Linux

modulename_mp_entity_
Windows

_MODULENAME_mp_ENTITY
modulename is the name of the module. On Windows, the name is uppercase by default.

entity is the name of the module procedure or module data contained within MODULENAME. On Windows,
ENTITY is uppercase by default.

mp is the separator between the module and entity names and is always lowercase (except when option
assume std_mod_proc_name or option standard-semantics is specified).

For example:

 MODULE mymod
 INTEGER a
 CONTAINS
 SUBROUTINE b (j)
 INTEGER j
 END SUBROUTINE
 END MODULE

On Linux, this results in the following symbols being defined in the compiled object file.

mymod_mp_a_
mymod_mp_b_

The following symbols are defined in the compiled object file on Windows operating systems based on IA-32
architecture:

_MYMOD_mp_A
_MYMOD_mp_B

On Windows, there is no beginning underscore.

Handle Fortran Array Pointers and Allocatable Arrays

When a Standard Fortran array pointer or array is passed to another language, either its descriptor or its
base address can be passed.

Standard Fortran array pointers and arrays are passed:

• If the ATTRIBUTES properties are in effect.

 1 Intel® Fortran Compiler Classic and Intel® Fortran Compiler Developer Guide and Reference

634

• If the INTERFACE of the procedure they are passed to is explicit.

If the INTERFACE declares the array pointer or array with deferred shape (for example, ARRAY(:)), its
descriptor is passed. If the INTERFACE declares the array pointer or an array with fixed shape, or if there is
no explicit interface, the base address passes it as a contiguous array. This process is similar to passing the
first element of an array for contiguous array slices.

Use of the REFERENCE attribute on an array has no effect. Additionally, the VALUE attribute cannot be used
with array arguments.

When you pass a Fortran array pointer or an array by descriptor to a non-Fortran routine, that routine needs
to know how to interpret the descriptor. Part of the descriptor is a pointer to address space, such as a C
pointer, and part of it is a description of the pointer or array properties, such as its rank, stride, and bounds.

For information about the Intel Fortran array descriptor format, see Handling Fortran Array Descriptors.

Standard Fortran array pointers and assumed-shape arrays are passed by passing the address of the array
descriptor.

Standard Fortran pointers that point to scalar data contain the address of the data and are not passed by
descriptor.

Handle Fortran Array Descriptors

For cases where Standard Fortran needs to keep track of more than a pointer memory address, the Intel®
Fortran Compiler uses an array descriptor, which stores the details of how an array is organized.

When using an explicit interface (by association or procedure interface block), the compiler generates a
descriptor for the following types of array arguments:

• Fortran array pointers
• Assumed-shape arrays
• Allocatable arrays
• Coarrays
• Class objects

Certain types of arguments do not use a descriptor, even when an appropriate explicit interface is provided.
For example, explicit-shape and assumed-size arrays do not use a descriptor. In contrast, array pointers and
allocatable arrays use descriptors regardless of whether they are used as arguments.

When calling between Intel® Fortran and C/C++, use an implicit interface, which allows the array argument
to be passed without an Intel® Fortran descriptor. However, for cases where the called routine needs the
information in the Intel® Fortran descriptor, declare the routine with an explicit interface and specify the
dummy array as either an assumed-shape array or with the pointer attribute.

NOTE
The information in the remainder of this section is specific to Intel® Fortran, and subject to change in
future releases. For information on how to interoperate with C and array descriptors in a portable and
standard fashion, see C Structures, Typedefs, and Macros for Interoperability.

You can associate a Fortran array pointer with any piece of memory, organized in any way desired (as long as
it is "rectangular" in terms of array bounds). You can also pass Fortran array pointers to the C language, and
have it correctly interpret the descriptor to obtain the information it needs.

The downside to using array descriptors is that it can increase the opportunity for errors. Additionally, the
corresponding code is not portable. Specifically:

• If the descriptor is not defined correctly, the program may access the wrong memory address, possibly
causing a General Protection Fault.

• Array descriptor formats are specific to each Fortran compiler. Code that uses array descriptors is not
portable to other compilers or platforms.

• The array descriptor format may change in the future.
• If the descriptor was built by the compiler, it cannot be modified by the user. Changing fields of existing

descriptors is illegal.

The components of the current Intel® Fortran array descriptor are as follows:

Intel® Fortran Compiler Classic and Intel® Fortran Compiler Developer Guide and Reference 1

635

• Bytes 0 to 7 contain the base address.
• Bytes 8 to 15 contain the size of a single element of the array.
• Bytes 16 to 23 are reserved and should not be explicitly set.
• Bytes 24 to 31 contain a set of flags used to store information about the array. This includes:

• bit 1 (0x01): array is defined -- set if the array has been defined (storage allocated).
• bit 2 (0x02): no deallocation allowed -- set if the array pointed to cannot be deallocated (that is, it is

an explicit array target).
• bit 3 (0x04): array is contiguous -- set if the array pointed to is a contiguous whole array or slice.
• bit 8 (0x80): set if the array pointed to is ALLOCATABLE.
• Other bits are reserved.

• Bytes 32 to 39 contain the number of dimensions (rank) of the array.
• Bytes 40 to 47 are reserved and should not be explicitly set.
• The remaining bytes contain information about each dimension (up to 31). Each dimension is described by

a set of three 8-byte entities:

• The number of elements (extent).
• The distance between the starting address of two successive elements in this dimension, in bytes.
• The lower bound.

An array of rank one requires three additional 8-byte entities for a total of nine 8-byte entities (6 + 3*1) and
ends at byte 71. An array of rank seven is described in a total of twenty-seven 8-byte entities (6 + 3*7) and
ends at byte 215. Consider the following declaration:

 integer,target :: a(10,10)
 integer,pointer :: p(:,:)
 p => a(9:1:-2,1:9:3)
 call f(p)
...

The descriptor for actual argument p would contain the following values:

• Bytes 0 to 7 contain the base address (assigned at runtime).
• Bytes 8 to 15 are set to 4 (size of a single element).
• Bytes 16 to 23 are reserved.
• Bytes 24 to 31 contain 3 (array is defined and deallocation is not allowed).
• Bytes 32 to 39 contain 2 (rank).
• Bytes 40 to 47 are reserved.
• Bytes 48 to 71 contain information for the first dimension, as follows:

• 5 (extent).
• -8 (distance between elements).
• 9 (the lower bound).

• For the second dimension, bytes 72 to 95 contain:

• 3 (extent).
• 120 (distance between elements).
• 1 (the lower bound).

• Byte 95 is the last byte for this example.

Return Character Data Types

A discrepancy occurs when working with C and Fortran character strings: C strings are null-terminated while
Fortran strings have known lengths. A C routine that returns a character string returns a pointer to a null-
terminated string. A Fortran routine does not know the string’s length.

If a Fortran routine is passing a string to a C function, the Fortran program must null-terminate the string.

 1 Intel® Fortran Compiler Classic and Intel® Fortran Compiler Developer Guide and Reference

636

Return Character Types from C to Fortran
The following examples show Fortran code that declares an interface to a C function, then calls the C
function. The char pointer returned by the C function can be passed to the intrinsic subroutine
C_F_STRPOINTER to convert the null terminated string to a Fortran character pointer. Fortran cannot use a
C_PTR to a char* as is, since Fortran does not know the string's length.

Fortran code example:

! This Fortran program calls a C function to convert a binary
! number to a character string containing the base 10 representation
! of its value. The null terminated C string result is then converted
! to a Fortran character pointer and printed.
PROGRAM f_calls_c_returns_cptr
 USE, INTRINSIC :: ISO_C_BINDING,ONLY : C_PTR, C_INT, C_F_STRPOINTER, C_CHAR
 ! Interface to C function
 INTERFACE
 TYPE (C_PTR) FUNCTION my_c_func (input) BIND(C)
 IMPORT, ONLY : C_PTR, C_INT
 INTEGER(C_INT),VALUE :: input
 END FUNCTION my_c_func
 END INTERFACE

 CHARACTER(LEN=:, C_CHAR),POINTER :: f_str_ptr
 INTEGER(C_INT) :: bin_str = B'1101001110'

 ! This converts a C char* to a Fortran character pointer with maximum
 ! length of 1000 characters.
 CALL C_F_STRPOINTER (my_c_func (bin_str), f_str_ptr, NCHARS=1000))
 PRINT *, f_str_ptr
END PROGRAM

The call to C_F_STRPOINTER copies characters from the result of my_c_func to the target of f_str_ptr
until it finds a NULL character, or the value specified for NCHARS is reached. LEN (f_str_ptr) is either the
number of characters preceding the null terminator in the string returned by my_c_func, or 1000, whichever
is less.

Called C routine example:

#include <stdio.h>

char *my_croutine1 (int input) {
 static char temp[30];
 temp[0] = '\0';
 sprintf(temp, "in routine, you said %d", input);
 return temp;
}

Return Character Types from Fortran to C
The following examples show the C code used to call a Fortran routine; the Fortran routine returns a string
that is then printed by the C program. The function F_C_STRING takes a Fortran character expression as an
argument and returns a C string pointer.

C code example:

#include <stdio.h>

char *GetFortranWords(void);

Intel® Fortran Compiler Classic and Intel® Fortran Compiler Developer Guide and Reference 1

637

int main() {

 printf ("Fortran says this: %s\n", GetFortranWords());
 return 0;
}

Called Fortran routine example:

! This routine is called from C, returning a C null terminated
! string that can be printed by the caller.
FUNCTION get_fortran_words () BIND(C, NAME="GetFortranWords")
 USE,INTRINSIC :: ISO_C_BINDING, ONLY : F_C_STRING, C_PTR
 TYPE(C_PTR) :: get_fortran_words
 Get_fortran_words = F_C_STRING ("I like to type words!")
 RETURN
END FUNCTION get_fortran_words

Legacy Extensions

The topics in this section contain information on legacy extension issues.

ATTRIBUTES Directive Properties

Standard Fortran provides a syntax for interoperating with C, including applying the appropriate naming
conventions. You should use BIND(C) for interoperability with C, instead of specifying ATTRIBUTES
properties. Do not specify both BIND(C) and ATTRIBUTES C for the same procedure. Specifying ATTRIBUTES
STDCALL has no effect if BIND(C) is also specified for the same procedure.

The ATTRIBUTES properties C, STDCALL (Windows only), REFERENCE, and VALUE affect the calling
convention of routines. You can specify:

• The C and STDCALL properties for an entire routine.
• The VALUE and REFERENCE properties for individual arguments.

By default, Fortran passes all data by reference (except the hidden length argument of strings, which is
passed by value). If the C (or STDCALL) property is used, the default changes to passing almost all data
except arrays by value. However, in addition to the calling-convention properties C and STDCALL, you can
specify properties VALUE and REFERENCE to pass arguments by value or by reference, regardless of the
calling convention option. Arrays can only be passed by reference.

Different Fortran calling conventions can be specified by declaring the Fortran procedure to have certain
attributes.

The following table summarizes the effect of the most common Fortran calling convention directives.

Argum
ent

Default C C, REFERENCE STDCALL

(Windows
IA-32
Architecture
)

STDCALL,
REFERENCE

(Windows
IA-32
Architecture
)

Scalar Reference Value Reference Value Reference

Scalar
[value]

Value Value Value Value Value

 1 Intel® Fortran Compiler Classic and Intel® Fortran Compiler Developer Guide and Reference

638

Argum
ent

Default C C, REFERENCE STDCALL

(Windows
IA-32
Architecture
)

STDCALL,
REFERENCE

(Windows
IA-32
Architecture
)

Scalar
[referen
ce]

Reference Reference Reference Reference Reference

String Reference, either
Len:End or
Len:Mixed

String(1:1) Reference, either
Len:End or
Len:Mixed

String(1:1) String(1:1)

String
[value]

Error String(1:1) String(1:1) String(1:1) String(1:1)

String
[referen
ce]

Reference, either
No Len or
Len:Mixed

Reference, No Len Reference, No Len Reference, No
Len

Reference,
No Len

Array Reference Reference Reference Reference Reference

Array
[value]

Error Error Error Error Error

Array
[referen
ce]

Reference Reference Reference Reference Reference

Derived
Type

Reference Value, size
dependent

Reference Value, size
dependent

Reference

Derived
Type
[value]

Value, size
dependent

Value, size
dependent

Value, size
dependent

Value, size
dependent

Value, size
dependent

Derived
Type
[referen
ce]

Reference Reference Reference Reference Reference

F90
Pointer

Descriptor Descriptor Descriptor Descriptor Descriptor

F90
Pointer
[value]

Error Error Error Error Error

F90
Pointer
[referen
ce]

Descriptor Descriptor Descriptor Descriptor Descriptor

The naming conventions are shown in the following table.

Intel® Fortran Compiler Classic and Intel® Fortran Compiler Developer Guide and Reference 1

639

Argument Default C C, REFERENCE STDCALL

(Windows
IA-32
Architecture)

STDCALL,
REFERENCE

(Windows
IA-32
Architecture)

Prefix _ (Windows
operating
systems using
IA-32
architecture)

none for all
others

_ (Windows
operating
systems using
IA-32
architecture)

none for all
others

_ (Windows
operating
systems using
IA-32
architecture)

none for all
others

_ _

Suffix none
(Windows)

_ (Linux)

none none @n @n

Case Upper Case
(Windows)

Lower Case
(Linux)

Lower Case Lower Case Lower Case Lower Case

Stack Cleanup Caller Caller Caller Callee Callee

The terms in the previous table mean the following:
Term Term Meaning

[value] Argument assigned the VALUE attribute.

[reference] Argument assigned the REFERENCE attribute.

Value The argument value is pushed to the stack. All values are padded to the next 4-byte
boundary.

Reference On systems using IA-32 architecture: The 4-byte argument address is pushed to the
stack.

On systems using Intel® 64 architecture: The 8-byte argument address is pushed to the
stack.

Len:End or
Len:Mixed

For certain string arguments:
• Len:End applies when -nomixed-str-len-arg (Linux)

or /iface:nomixed_str_len_arg (Windows) is set. The length of the string is
pushed (by value) on the stack after all of the other arguments. This is the default.

• Len:Mixed applies when -mixed-str-len-arg (Linux)
or /iface:mixed_str_len_arg (Windows) is set. The length of the string is pushed
(by value) on the stack immediately after the address of the beginning of the string.

No Len or
Len:Mixed

For certain string arguments:
• No Len applies when -nomixed-str-len-arg (Linux)

or /iface:nomixed_str_len_arg (Windows) is set. The length of the string is not
available to the called procedure. This is the default.

• Len:Mixed applies when -mixed-str-len-arg (Linux)
or /iface:mixed_str_len_arg (Windows) is set. The length of the string is pushed
(by value) on the stack immediately after the address of the beginning of the string.

No Len For string arguments, the length of the string is not available to the called procedure.

 1 Intel® Fortran Compiler Classic and Intel® Fortran Compiler Developer Guide and Reference

640

Term Term Meaning

String(1:1) For string arguments, the first character is converted to INTEGER(4) as in
ICHAR(string(1:1)) and pushed to the stack by value.

Error Produces a compiler error.

Descriptor On systems using IA-32 architecture: The 4-byte address of the array descriptor.

On systems using Intel® 64 architecture: The 8-byte argument address of the array
descriptor.

@n On systems using IA-32 architecture, the at sign (@) followed by the number of bytes (in
decimal) required for the argument list.

Size
dependent

On ifort systems using IA-32 architecture, derived-type arguments specified by value are
passed as follows:
• Arguments from 1 to 4 bytes are passed by value.
• Arguments from 5 to 8 bytes are passed by value in two registers (two arguments).
• Arguments more than 8 bytes provide value semantics by passing a temporary storage

address by reference.

On Intel® 64 architecture:

Linux
• Arguments from 1 to 8 bytes are passed by register.
• Arguments from 9 to 16 bytes are passed in two registers.
• Arguments more the 16 bytes provide value semantics by passing a temporary storage

address by register.

Windows
• Arguments from 1 to 8 bytes are passed by register.
• Arguments greater than 8 bytes provide value semantics by passing a temporary

storage address by reference.

Upper Case Procedure name in all uppercase.

Lower Case Procedure name in all lowercase.

Callee The procedure being called is responsible for removing arguments from the stack before
returning to the caller.

Caller The procedure doing the call is responsible for removing arguments from the stack after
the call is over.

You can use the BIND(C, name=<string>) attribute to resolve discrepancies with C. Alternatively, the
ALIAS property can be used with any other Fortran calling-convention option to preserve mixed-case names.

On Windows, the compiler option /iface also establishes some default argument passing conventions.
Option /iface has the following choices:

Option Argument Is
Passed By

Appends @n to Names on Systems Using IA-32
Architecture?

Who
Cleans
the
Stack?

Vararg
s
Suppor
t?

/
iface:
cref

By reference No Caller Yes

/
iface:
stdref

By reference Yes Callee No

Intel® Fortran Compiler Classic and Intel® Fortran Compiler Developer Guide and Reference 1

641

Option Argument Is
Passed By

Appends @n to Names on Systems Using IA-32
Architecture?

Who
Cleans
the
Stack?

Vararg
s
Suppor
t?

/
iface:
defaul
t

By reference No Caller Yes

/
iface:
c

By value No Caller Yes

/
iface:
stdcal
l

By value Yes Callee No

/
iface:
cvf

By reference Yes Callee No

NOTE
On Windows, when interfacing to the Windows GUI or making API calls, you will typically use
STDCALL.

ALIAS Property for ATTRIBUTES Directive

Use the ALIAS property for the ATTRIBUTES directive. If the name of a routine appears as mixed-case in C,
and you need to preserve the case.

To use the ALIAS property, place the name in quotation marks exactly as it is to appear in the object file. A C
function My_Proc example:

 !DIR$ ATTRIBUTES DECORATE,ALIAS:'My_Proc'
 :: My_Proc

This example uses the DECORATE property to reconcile external name declaration for the target platform.

Using the DECORATE property in combination with the ALIAS property specifies that the external name
specified in ALIAS should have the correct prefix and postfix decorations for the calling mechanism in effect.

Use the -nofor-main Compiler Option

Intel® Fortran subprograms can be called by C/C++ main programs. Use Linux compiler option -nofor-main
if your C/C++ program contains the main() entry point and is calling an Intel® Fortran subprogram.

See Also
nofor-main compiler option

Error Handling
This section contains information about understanding and handling compile-time and runtime errors.

 1 Intel® Fortran Compiler Classic and Intel® Fortran Compiler Developer Guide and Reference

642

Build Process Errors
The Intel® Fortran Compiler identifies syntax errors and violations of language rules in the source program.

Compiler Diagnostic Messages
These messages describe diagnostics that are reported during the processing of the source file. Compiler
diagnostic messages usually provide enough information for you to determine the cause of an error and
correct it. These messages generally have the following format:

filename(linenum): severity #error number: message

Diagnostic Meaning

filename Indicates the name of the source file currently being processed.

linenum Indicates the source line where the compiler detects the condition.

severity Indicates the severity of the diagnostic message: Warning, Error, or Fatal error.

message Describes the problem.

The following is an example of an error message:

echar.for(7): error #6321: An unterminated block exits.
 DO I=1,5
-------^

The pointer (---^) indicates the place on the source program line where the error was found, in this case
where an END DO statement was omitted.

To view the passes as they execute on the command line, specify the watch compiler option.

NOTE
You can perform compile-time procedure interface checking between routines with no explicit
interfaces present. To do this, generate a module containing the interface for each compiled routine
using the gen-interfaces option and check implicit interfaces using the warn[:]interfaces
compiler option.

Control Compiler Diagnostic Warning and Error Messages
You can use a number of compiler options to control the diagnostic messages issued by the compiler. For
example, compiler option WB turns compile-time bounds errors into warnings.

To control compiler diagnostic messages (such as warning messages), use the warn option. This option
controls warnings issued by the compiler and supports a wide range of keywords. Some of these are as
follows:

• [no]alignments: Determines whether warnings occur or do not occur for data that is not naturally
aligned.

• [no]declarations: Determines whether warnings occur or do not occur for any undeclared symbols.
• [no]errors: Determines whether warning-level messages are changed or are not changed to error-level

messages.
• [no]general: Determines whether warning messages and informational messages are issued or are not

issued by the compiler.
• [no]interfaces: Determines whether warnings about the interfaces for all called SUBROUTINES and

invoked FUNCTIONS are issued or are not issued by the compiler.

Intel® Fortran Compiler Classic and Intel® Fortran Compiler Developer Guide and Reference 1

643

• [no]stderrors: Determines whether warnings about Fortran standard violations are changed or are not
changed to errors.

• [no]truncated_source: Determines whether warnings occur or do not occur when source exceeds the
maximum column width in fixed-format files.

For more information, see the warn compiler option.

You can also control the display of diagnostic information with variations of the -diag (Linux*) or /Qdiag
(Windows*) compiler option. This option accepts numerous arguments and values, allowing you wide control
over displayed diagnostic messages and reports.

Some of the most common variations include the following:

Linux* Windows* Description

-diag-enable=list /Qdiag-enable:list Enables a diagnostic message or a group
of messages

-diag-disable=list /Qdiag-disable:list Disables a diagnostic message or a
group of messages

-diag-warning=list /Qdiag-warning:list Tells the compiler to change diagnostics
to warnings

-diag-error=list /Qdiag-error:list Tells the compiler to change diagnostics
to errors

-diag-remark=list /Qdiag-remark:list Tells the compiler to change diagnostics
to remarks (comments)

The list items can be one of the keywords warn, remark, or error, a keyword specifying a certain group
(such as par, vec, driver, or cpu-dispatch), or specific diagnostic IDs separated by commas. For more
information, see diag, Qdiag.

Additionally, you can use the following related options:

Linux* Windows* Description

-diag-dump /Qdiag-dump Tells the compiler to print all enabled
diagnostic messages and stop
compilation.

-diag-file[=file] /Qdiag-file[:file] Causes the results of diagnostic analysis
to be output to a file.

-diag-file-append[=file] /Qdiag-file-append[:fil
e]

Causes the results of diagnostic analysis
to be appended to a file.

-diag-error-limit=n /Qdiag-error-limit:n Specifies the maximum number of errors
allowed before compilation stops.

Linker Diagnostic Errors
If the linker detects any errors while linking object modules, it displays messages about their cause and
severity. If any errors occur, the linker does not produce an executable file. Linker messages are descriptive,
and you do not normally need additional information to determine the specific error.

To view the libraries being passed to the linker on the command line, specify the watch option.

 1 Intel® Fortran Compiler Classic and Intel® Fortran Compiler Developer Guide and Reference

644

Error Severity Levels
Comment Messages

These messages indicate valid but inadvisable use of the language being compiled. The compiler displays
comments by default. You can suppress comment messages with the warn[:]nousage option.

Comment messages do not terminate translation or linking, they do not interfere with any output files either.
Some examples of the comment messages are:

Null CASE construct
The use of a non-integer DO loop variable or expression
Terminating a DO loop with a statement other than CONTINUE or ENDDO

Warning Messages

These messages report valid but questionable use of the language being compiled. The compiler displays
warnings by default. You can suppress warning messages by using the nowarn option. Warnings do not stop
translation or linking. Warnings do not interfere with any output files. Some representative warning
messages are:

constant truncated - precision too great
non-blank characters beyond column 72 ignored
Hollerith size exceeds that required by the context

Error Messages

These messages report syntactic or semantic misuse of Fortran. Errors suppress object code for the file
containing the error and prevent linking, but they do not stop the compiler from scanning for any other
errors. Some typical examples of error messages are:

line exceeds 132 characters
unbalanced parenthesis
incomplete string

Fatal Errors

Fatal messages indicate environmental problems. Fatal error conditions stop translation, assembly, and
linking. If a fatal error ends compilation, the compiler displays a termination message on standard error
output. Some representative fatal error messages are:

Disk is full, no space to write object file
Too many segments, object format cannot support this many segments

Use the Command Line
If you are using the command line, messages are written to the standard error output file. When using the
command line:

• Make sure that the appropriate environment variables have been set by executing the vars.sh (Linux*)
or vars.bat (Windows*) file. For Windows*, these environment variables are preset if you use the
Fortran Command Prompt window in the Intel® Fortran program folder. For a list of environment variables
used by the ifort or ifx command during compilation, see Supported Environment Variables.

• Specify the libraries to be linked against using compiler options.
• You can specify libraries (include the path, if needed) as file names on the command line.

Use the Visual Studio IDE (Windows*)
If you are using the Microsoft* Visual Studio* integrated development environment (IDE), compiler and
linker errors are displayed in the Build pane of the Output window. To display the Output window, choose
View > Other Windows > Output. You can also use the Task List window (View > Other Windows >
Task List) to view display links to problems encountered during the build process. Click these tasks to jump
to code that caused build problems. You can also check the Build log for more information.

Intel® Fortran Compiler Classic and Intel® Fortran Compiler Developer Guide and Reference 1

645

To quickly locate the source line causing the error, do one of the following:

• Double-click the error message text in the Build pane of the Output window.
• Press F8. The editor window appears with a marker in the left margin that identifies the line causing the

error. You can continue to press F8 to scroll through additional errors.

After you have corrected any compiler errors reported during the previous build, choose Build project name
from the Build menu. The build engine recompiles only those files that have changed, or which refer to
changed include or module files. If all files in your project compile without errors, the build engine links the
object files and libraries to create your program or library.

You can force the build engine to recompile all source files in the project by selecting Rebuild project name
from the Build menu. This is useful to verify that all of your source code is clean, especially if you are using
a makefile, or if you use a new set of compiler options for all of the files in your project.

Remember the following when using the IDE:

• Make sure that you have specified the correct path, library, and include directories. For more information,
see Specifying Path Library and Include Directories.

• If a compiler option is not available through Project > Properties in the Intel® Fortran Property pages,
you can type the option in the Command Line category. Use the lower part of the window under
Additional Options, just as you would using the command line. For example, you can enter the linker
option /link /DEFAULTLIB to specify an additional library.

NOTE
If you have a question about a compile-time error, submit your question to the Intel® Fortran forum.

See Also
Specifying Path Library and Include Directories
Supported Environment Variables
warn compiler option
diag, Qdiag compiler option

Runtime Errors
This section contains information about understanding and handling runtime errors.

Understand Runtime Errors

During execution, your program may encounter errors or exception conditions. These conditions can result
from any of the following:

• Errors that occur during I/O operations.
• Invalid input data.
• Argument errors in calls to the mathematical library.
• Arithmetic errors.
• Other system-detected errors.

The Intel® Fortran Runtime Library (RTL) generates appropriate messages and takes action to recover from
errors whenever possible.

For a description of many Intel® Fortran runtime error messages, see List of Runtime Error Messages.

There are a few tools and aids that are useful when an application fails and you need to diagnose the error.
Compiler-generated machine code listings and linker-generated map files can help you understand the effects
of compiler optimizations and to see how your application is laid out in memory. They may help you interpret
the information provided in a stack trace at the time of the error. See Generating Listing and Map Files.

 1 Intel® Fortran Compiler Classic and Intel® Fortran Compiler Developer Guide and Reference

646

https://community.intel.com/t5/Intel-Fortran-Compiler/bd-p/fortran-compiler

Force a Core Dump for Severe Errors
You can force a core dump for severe errors that do not usually cause a core file to be created. Before
running the program, set the FOR_DUMP_CORE_FILE environment variable to TRUE to cause severe errors to
create a core file. See the "Supported Environments Variables" topic for valid values of TRUE and FALSE.

For instance, the following C shell command sets the FOR_DUMP_CORE_FILE environment variable:

setenv FOR_DUMP_CORE_FILE y
The core file is written to the current directory and can be examined using a debugger.

NOTE
If you requested a core file to be created on severe errors and you do not get one when expected, the
problem might be that your process limit for the allowable size of a core file is set too low (or to zero).
See the man page for your shell for information on setting process limits. For example, the C shell
command limit (with no arguments) will report your current settings, and limit coredumpsize
unlimited will raise the allowable limit to your current system maximum.

See Also
Supported Environment Variables
Runtime Default Error Processing
Runtime Message Display and Format
Values Returned at Program Termination
Methods of Handling Errors
Locate Runtime Errors
List of Runtime Error Messages
Generate Listing and Map Files
Signal Handling
Override the Default Runtime Library Exception Handler
Traceback and related topics

Runtime Default Error Processing

The Intel® Fortran runtime system processes a number of errors that can occur during program execution. A
default action is defined for each error recognized by the Intel® Fortran runtime system. The default actions
described throughout this section occur unless overridden by explicit error-processing methods.

The way in which the Intel® Fortran runtime system actually processes errors depends upon the following
factors:

• The severity of the error. For instance, the program usually continues executing when an error message
with a severity level of warning or info (informational) is detected.

• For certain errors associated with I/O statements, whether or not an I/O error-handling specifier was
specified.

• For certain errors, whether or not the default action of an associated signal was changed.
• For certain errors related to arithmetic operations (including floating-point exceptions), compilation

options can determine whether the error is reported and the severity of the reported error.

How arithmetic exception conditions are reported and handled depends on the cause of the exception and
how the program was compiled. Unless the program was compiled to handle exceptions, the exception might
not be reported until after the instruction that caused the exception condition.

See Also
Runtime Message Display and Format
Values Returned at Program Termination
Locating Runtime Errors

Intel® Fortran Compiler Classic and Intel® Fortran Compiler Developer Guide and Reference 1

647

Traceback
Data Representation

See Also
Advanced Exception and Termination Handling Considerations
Setting Compiler Options in the Visual Studio* IDE Property Pages

Runtime Message Display and Format

When errors occur during execution (runtime) of a program, the Intel® Fortran runtime system issues
diagnostic messages.

The location where Fortran runtime messages are displayed depends on the project type:

Project Type Where Messages Appear

Fortran Console application Runtime error messages are displayed on the standard
error device (unless redirected).

Fortran QuickWin and Fortran Standard
Graphics application

Runtime error messages are displayed in a separate
QuickWin message box.

Fortran Windows application Runtime error messages are displayed in a separate
message box.

For more information about project types, see Understanding Project Types.

Fortran runtime messages have the following format:

forrtl:severity (number):message-text
where:

• forrtl: Identifies the source as the Intel® Fortran runtime system (Runtime Library or RTL).
• severity: The severity levels are: severe, error, warning, or info
• number: The message number; see also the Methods of Handling Errors for I/O statements.
• message-text: Explains the event that caused the message.

The following table explains the severity levels of runtime messages, in the order of greatest to least
severity. The severity of the runtime error message determines whether program execution continues:

Severit
y

Description

severe Must be corrected. The program's execution is terminated when the error is encountered unless
the program's I/O statements use the END, EOR, or ERR branch specifiers to transfer control,
perhaps to a routine that uses the IOSTAT and/or the IOMSG specifier. (See Use the END EOR
and ERR Branch Specifiers and Use the IOSTAT and IOMSG Specifiers, and Fortran Exit Codes
and Methods of Handling Errors.)

Some Fortran intrinsics, the ALLOCATE and DEALLOCATE statements, and image control
statements contain an optional STAT argument or specifier. If this is omitted and an error
condition occurs during the operations, program execution terminates. If STAT is present and
an error condition occurs, program execution continues and the STAT variable is assigned a
non-zero value.

Some of these intrinsics and statements also have an optional ERRMSG argument or specifier. If
specified and an error condition occurs during execution of the subroutine or statement,
ERRMSG is assigned a descriptive message of what the error condition is that occurred. (See
Use the STAT or STATUS argument, or STAT and ERRMSG Specifiers .)

For severe errors, stack trace information is produced by default, unless environment variable
FOR_DISABLE_STACK_TRACE is set. When that environment variable is set, no stack trace
information is produced.

 1 Intel® Fortran Compiler Classic and Intel® Fortran Compiler Developer Guide and Reference

648

Severit
y

Description

If compiler option traceback is specified on the command line, the stack trace information
contains program counters set to symbolic information. Otherwise, the information only
contains hexadecimal program counter information.

In some cases, stack trace information is also produced by the compiled code at runtime to
provide details about the creation of array temporaries.

error Should be corrected. The program might continue execution, but the output from this execution
might be incorrect.

For errors of severity type error, stack trace information is produced by default, unless the
environment variable FOR_DISABLE_STACK_TRACE is set. When that environment variable is
set, no stack trace information is produced.

If the command line option traceback is specified, the stack trace information contains
program counters set to symbolic information. Otherwise, the information only contains
hexadecimal program counter information.

In some cases stack trace information is also produced by the compiled code at runtime to
provide details about the creation of array temporaries.

warning Should be investigated. The program continues execution, but output from this execution might
be incorrect.

info For informational purposes only; the program continues.

For a description of many Intel® Fortran runtime error messages, see Runtime Default Error Processing and
related topics.

Linux

In some cases, stack trace information is produced by the compiled code at runtime to provide details about
the creation of temporary array items.

For example, the following program generates an error:

program ovf
real*4 x(5),y(5)
integer*4 i

 x(1) = -1e32
 x(2) = 1e38
 x(3) = 1e38
 x(4) = 1e38
 x(5) = -36.0

do i=1,5
y(i) = 100.0*(x(i))
print *, 'x = ', x(i), ' x*100.0 = ',y(i)
end do
end

The following command produces stack trace information for the program executable.

> ifx -O0 -fpe0 -traceback ovf.f90 -o ovf.exe
> ovf.exe

x = -1.0000000E+32 x*100.0
 = -1.0000000E+34
forrtl: error (72): floating overflow
Image PC Routine Line Source

Intel® Fortran Compiler Classic and Intel® Fortran Compiler Developer Guide and Reference 1

649

ovf.exe 08049E4A MAIN__ 14 ovf.f90
ovf.exe 08049F08 Unknown Unknown Unknown
ovf.exe 400B3507 Unknown Unknown Unknown
ovf.exe 08049C51 Unknown Unknown Unknown
Abort

The following suppresses stack trace information because the FOR_DISABLE_STACK_TRACE environment
variable is set.

> setenv FOR_DISABLE_STACK_TRACE true> ovf.exe

x = -1.0000000E+32 x*100.0 = -1.0000000E+34
forrtl: error (72): floating overflow
Abort

Runtime Library Message Catalog File Location
The libifcore, libirc, and libm runtime libraries ship message catalogs. When a message by one of these
libraries is to be displayed, the library searches for its message catalog in a directory specified by either the
NLSPATH (Linux*), or %PATH% (Windows*) environment variable. If the message catalog cannot be found, the
message is displayed in English.

The following shows the file names of the message catalogs and their related text message files for each
library:

Library Linux Windows

libifcore Catalog file name:
ifcore_msg.cat
Message file name:
ifcore_msg.msg

Catalog file name:
ifcore_msg.dll
Message file name:
ifcore_msg.mc

libirc Catalog file name: irc_msg.cat
Message file name: irc_msg.msg

Catalog file name: irc_msg.dll
Message file name: irc_msg.mc

libm Catalog file name: libm.cat
Message file name: libm.msg

Catalog file name: libmUI.dll
Message file name: libmUI.mc

See Also
Understanding Project Types
Methods of Handling Errors
Runtime Default Error Processing

Values Returned at Program Termination

An Intel® Fortran program can terminate in a number of ways. On Linux*, values are returned to the shell.

• The program runs to normal completion. A value of zero is returned.
• The program stops with a STOP or ERROR STOP statement. If an integer stop-code is specified, a status

equal to the code is returned; if no stop-code is specified, a status of zero is returned.
• The program stops because of a signal that is caught but does not allow the program to continue. A value

of '1' is returned.
• The program stops because of a severe runtime error. The error number for that runtime error is

returned. See Understanding Runtime Errors and related topics.
• The program stops with a CALL EXIT statement. The value passed to EXIT is returned.
• The program stops with a CALL ABORT statement. A value of '134' is returned.

 1 Intel® Fortran Compiler Classic and Intel® Fortran Compiler Developer Guide and Reference

650

See Also
Understanding Runtime Errors

Methods of Handling Errors

Whenever possible, the Intel® Fortran RTL does certain error handling, such as generating appropriate
messages and taking necessary action to recover from errors. You can explicitly supplement or override
default actions by using the following methods:

• To transfer control to error-handling code within the program, use the END, EOR, and ERR branch
specifiers in I/O statements. See Use the END EOR and ERR Branch Specifiers.

• To identify Fortran-specific I/O errors based on the value of Intel® Fortran RTL error codes, use the I/O
status specifier (IOSTAT) in I/O statements (or call the ERRSNS subroutine). To capture an explanatory
message about an error condition, use the IOMSG specifier. For more information, see Use the IOSTAT
and IOMSG Specifiers, and Fortran Exit Codes.

• To continue execution after an error condition is detected in some intrinsic subroutines, including the
collectives, atomics, MOVE_ALLOC and image control, and the ALLOCATE and DEALLOCATE statements,
specify the optional STAT argument or specifier.

Further information about the error can be captured using an optional ERRMSG argument or specifier, if
available, for the intrinsic or statement. For more information, see USE the STAT or STATUS argument, or
STAT and ERRMSG Specifiers.

• Obtain system-level error codes by using the appropriate library routines.
• For certain error conditions, use the signal handling facility to change the default action to be taken.

Use the END, EOR, and ERR Branch Specifiers
When a severe error occurs during Intel® Fortran program execution, the default action is to display an error
message and terminate the program. To override this default action, there are three branch specifiers you
can use in I/O statements to transfer control to a specified point in the program:

• The END branch specifier handles an end-of-file condition.
• The EOR branch specifier handles an end-of-record condition for non-advancing reads.
• The ERR branch specifier handles all error conditions.

If you use the END, EOR, or ERR branch specifiers, no error message is displayed and execution continues at
the designated statement, usually error-handling code.

You might encounter an unexpected error that the error-handling routine cannot handle. In this case, do one
of the following:

• Modify the error-handling routine to display the error message number.
• Remove the END, EOR, or ERR branch specifiers from the I/O statement that causes the error.

After you modify the source code, compile, link, and run the program to display the error message. For
example:

 READ (8,50,ERR=400)
If any severe error occurs during execution of this statement, the Intel® Fortran RTL transfers control to the
statement at label 400. Similarly, you can use the END specifier to handle an end-of-file condition that might
otherwise be treated as an error. For example:

 READ (12,70,END=550)
When using non-advancing I/O, use the EOR specifier to handle the end-of-record condition. For example:

150 FORMAT (F10.2, F10.2, I6)
 READ (UNIT=20, FMT=150, SIZE=X, ADVANCE='NO', EOR=700) A, F, I

You can also use ERR as a specifier in an OPEN, CLOSE, or INQUIRE statement. For example:

 OPEN (UNIT=10, FILE='FILNAME', STATUS='OLD', ERR=999)

Intel® Fortran Compiler Classic and Intel® Fortran Compiler Developer Guide and Reference 1

651

If an error is detected during execution of this OPEN statement, control transfers to the statement at label
999.

Use the IOSTAT and IOMSG Specifiers, and Fortran Exit Codes
The IOSTAT specifier can be used to continue program execution after an I/O error, or an end-of-file or end-
of-record condition occurs, and to return information about the status of I/O operations. Certain error
conditions are not returned in IOSTAT.

The IOSTAT specifier can supplement or replace the use of the END=, EOR=, and ERR= branch specifiers.

Use of an IOSTAT= specifier in an I/O statement prevents initiation of error termination if an error occurs
during the execution of the I/O statement. The integer variable specified in the IOSTAT= specifier becomes
defined during the execution of the I/O statement with the following values:

• Zero for normal completion of the I/O statement (no error, end-of-file, or end-of-record condition occurs).
• The value of the (negative) default integer scalar constant IOSTAT_EOR defined in the intrinsic module

ISO_FORTRAN_ENV if no error condition or end-of-file condition occurs, but an end-of-record condition
does occur during the execution of an input statement.

• The value of the (negative) default integer scalar constant IOSTAT_END defined in ISO_FORTRAN_ENV if
no error condition occurs, but an end-of-file condition does occur during the execution of an input
statement.

• For an INQUIRE statement, the value of the default integer constant IOSTAT_INQUIRE_INTERNAL_UNIT
defined in ISO_FORTRAN_ENV if a file-unit-number identifies an internal unit in the execution of the
statement.

• A positive integer value if an error condition occurs. (This value is one of the Fortran-specific IOSTAT
numbers listed in the runtime error message. See List of Runtime Error Messages, which lists many of the
messages.)

Note that the value assigned to the IOSTAT variable is the same value that would be returned as an exit code
if error termination was initiated.

In addition, many I/O statements support an optional IOMSG= specifier. If an error, end of file, or end of
record error occurs during the execution of the statement containing the specifier, the default character
scalar variable specified in the IOMSG= specifier becomes defined with an explanatory message, truncated or
padded as in intrinsic character assignment. If none of these conditions occur, the value of the IOMSG
variable is unchanged.

Following the execution of the I/O statement and assignment of an IOSTAT and IOMSG value, control
transfers to the END=, EOR=, or ERR= statement label, if any. If there is no control transfer, normal
execution continues.

The non-standard include file FOR_ISODEF.FOR and the non-standard module FORISODEF contain symbolic
constants for the values returned through an IOSTAT= specifier.

The following example uses the IOSTAT and IOMSG specifier and the module FORIOSDEF to handle an OPEN
statement error (in the FILE specifier):

 USE foriosdef
 IMPLICIT NONE
 CHARACTER(LEN=40) :: FILNM
 CHARACTER(LEN=128) :: MSG
 INTEGER IERR
 PRINT *, 'Type file name:'
 READ (*,*) FILNM
 OPEN (UNIT=1, FILE=FILNM, STATUS='OLD', IOSTAT=IERR, ERR=100, IOMSG=MSG)
 PRINT *, 'Opening file: ', FILNM
 ! process the input file
 ...
 CLOSE (UNIT=1)

 1 Intel® Fortran Compiler Classic and Intel® Fortran Compiler Developer Guide and Reference

652

 STOP
 100 IF(IERR . EQ. FOR$IOS_FILNOTFOU) THEN
 PRINT *, 'File: ', FILNM, ' does not exist '
 ELSE
 PRINT *, 'Unrecoverable error, code =', IERR
 PRINT *, 'Error description =', MSG
 END IF
 END PROGRAM

Another way to obtain information about an error is by using the ERRSNS subroutine, which allows you to
obtain the last I/O system error code associated with an Intel® Fortran RTL error.

Use the STAT or STATUS argument, or STAT and ERRMSG Specifiers
ALLOCATE, DEALLOCATE, and image control statements have optional STAT= and ERRMSG= specifiers.
Several intrinsic subroutines have optional STAT or STATUS arguments, and some of these also have an
optional ERRMSG argument.

Use STAT specifiers, or STAT and STATUS arguments, to prevent initiation of error termination if an error
condition occurs during the execution of the statement or procedure that specifies this specifier or argument.

If an error occurs, the integer status variable is assigned a non-zero value; if no error occurs, it is assigned a
value of 0. The status variable can be tested to determine if an error occurred, and the program can contain
error handling code if an error did occur. Several intrinsic subroutines and statement descriptions include the
meaning of the error code value; for example, IERRNO and CHDIR.

If a statement has an ERRMSG specifier, or an intrinsic subroutine has an ERRMSG argument, the variable
associated with it is a default character scalar variable that becomes defined with an explanatory message
about the type of error that occurred. The message is truncated or blank padded, according to the rules for
intrinsic assignment. If no error occurs, the value of ERRMSG is unchanged.

The following example shows how the use of the STAT= and ERRMSG= can be used on an ALLOCATE
statement to handle allocation errors:

 IMPLICIT NONE
 REAL,ALLOCATABLE(:, :, :) :: A, B
 CHARACTER(LEN=128) :: MSG
 INTEGER :: STATUS
 INTEGER :: I, J, K
 PRINT *, 'Enter the 3 extents of the arrays A and B:'
 READ (*,*) I, J, K
 ALLOCATE (A(I, J, K), B(I, J, K), STAT=STATUS, ERRMSG=MSG)
 IF(STATUS .NE.1) THEN
 PRINT *, 'Unrecoverable allocation error', STATUS
 PRINT *, 'Error description =', MSG
 ERROR STOP STATUS
 END IF
 END PROGRAM

See Also
List of Runtime Error Messages
IS_IOSTAT_END intrinsic function
IS_IOSTAT_EOR intrinsic function
ERRSNS intrinsic subroutine

Locate Runtime Errors

This topic provides some guidelines for locating the cause of exceptions and runtime errors. Intel® Fortran
runtime error messages do not usually indicate the exact source location causing the error.

The following compiler options are related to handling errors and exceptions:

Intel® Fortran Compiler Classic and Intel® Fortran Compiler Developer Guide and Reference 1

653

• check
• traceback
• fpe
• warn and nowarn
• fexceptions (Linux)
• Compilation Diagnostics Options in the IDE (Windows)

Their effects are described in the following sections.

The check Option
This option generates extra code to catch certain conditions at runtime. It lets you specify a keyword to
check for specific conditions.

The keyword bounds generates code to perform compile-time and runtime checks on array subscript and
character substring expressions. An error is reported if the expression is outside the dimension of the array
or the length of the string.

The keyword shape generates code to compare the shapes of the right-hand side and the left-hand side of
array assignments, and issues runtime errors when they do not conform.

The keyword uninit generates code for dynamic checks of uninitialized variables. If a variable is read before
written, a runtime error routine will be called.

The keywords noformat and nooutput_conversion reduce the severity level of the associated runtime
error to allow program continuation.

The keyword pointers generates code to test for disassociated pointers and unallocatable arrays.

The following examples show output messages received when the code was specified using option
check[:]pointers.

Examples

The following example shows the message received for an allocatable variable that has not been allocated:

real, allocatable:: a(:)
 !
 ! A is initially unallocated. To allocate, use:
 !
 ! allocate(a(4))
 !
 ! Because A is unallocated, the next statement will
 ! issue an error in applications built with "check pointers".
 !
 a=17
 print *,a
 end
Output 1:
forrtl: severe (408): fort: (8): Attempt to fetch from allocatable
 variable A when it is not allocated

The following example shows the message received for an unassociated pointer:

 real, pointer:: a(:)
 allocate(a(5))
 a=17
 print *,a
 deallocate(a) ! Once A is deallocated, the next statement
 ! issues an error in an application built
 ! with "check pointers".
 a=20
 print *,a

 1 Intel® Fortran Compiler Classic and Intel® Fortran Compiler Developer Guide and Reference

654

 end

Output 2:
 17.00000 17.00000 17.00000 17.00000 17.00000
forrtl: severe (408): fort: (7): Attempt to use pointer A when it is
 not associated with a target

The following example shows the message received for a Cray pointer with a zero value:

 pointer(p,a)
 real, target:: b
 !
 ! P initially has no address assigned to it. To assign an
 ! address, use:
 !
 ! p=loc(b)
 !
 ! Because P has no address assigned to it, the next
 ! statement will issue an error in an application built
 ! with "check pointers".
 !
 b=17.
 print *,a
 end
Output 3:
forrtl: severe (408): fort: (9): Attempt to use pointee A when its
 corresponding integer
 pointer P has the value zero

The traceback Option
This option generates extra information in the object file to provide source file traceback information when a
severe error occurs at runtime. This simplifies the task of locating the cause of severe runtime errors.

Without the traceback option, you could try to locate the cause of the error using a map file and the
hexadecimal addresses of the stack displayed when a severe error occurs. Certain traceback-related
information accompanies severe runtime errors, as described in Traceback.

The fpe Option
This option controls the handling of floating-point arithmetic exceptions (IEEE arithmetic) at runtime. If you
specify the fpe[:]3 compiler option, all floating-point exceptions are disabled, allowing IEEE exceptional
values and program continuation.

In contrast, specifying fpe[:]0 stops execution when an exceptional value (such as a NaN) is generated,
when floating overflow or divide by zero occur, or when attempting to use a subnormal number, which usually
allows you to localize the cause of the error. It also forces underflow to zero.

The warn and nowarn Options
These options control compile-time warning messages, which, in some circumstances, can help determine
the cause of a runtime error.

Linux fexceptions Option
This option enables C++ exception handling table generation, preventing Fortran routines in mixed-language
applications from interfering with exception handling between C++ routines.

Intel® Fortran Compiler Classic and Intel® Fortran Compiler Developer Guide and Reference 1

655

Windows Compilation Diagnostics Options in the IDE
The Compilation Diagnostics Options in the IDE control compile-time diagnostic messages. In some
circumstances, these messages can help determine the cause of a runtime error.

See Also
Understand Runtime Errors
check compiler option
traceback compiler option
fpe compiler option
warn compiler option
fexceptions compiler option

List of Runtime Error Messages

This section lists some of the errors processed by the Intel® Fortran runtime library (RTL).

NOTE
To see a more complete list of runtime errors, see file ifcore_msg.msg, which is located in the libraries
part of your kit.

For each error shown in the below table of example messages, you will see the error number, the severity
code, error message text, and condition symbol name. Some messages also provide more details about the
error.

To define the condition symbol values (PARAMETER statements) in your program, include the following file:

for_iosdef.for
As described in the table, the severity of the message determines which of the following occurs:

• with info and warning, program execution continues
• with error, the results may be incorrect
• with severe, program execution stops (unless a recovery method is specified)

In the last case, to prevent program termination, you must include either an appropriate I/O error-handling
specifier and recompile or, for certain errors, change the default action of a signal before you run the
program again.

In the following table of example messages, the first column lists error numbers returned to IOSTAT variables
when an I/O error is detected.

The first line of the second column provides the message as it is displayed (following forrtl:), including the
severity level, message number, and the message text. The following lines of the second column contain the
status condition symbol (such as FOR$IOS_INCRECTYP) and sometimes an explanation of the message.

In these messages, words in quotes represent variables. For example, "number" indicates a numeric variable,
and "string" indicates a character string variable.

Numbe
r

Severity Level, Number, and Message Text; Condition Symbol and Explanation

11 severe (1): Not a Fortran-specific error

FOR$IOS_NOTFORSPE. An error in the user program or in the RTL was not an Intel® Fortran-
specific error and was not reportable through any other Intel® Fortran runtime messages.

2 severe (2): not implemented

FOR$IOS_NOTIMP.

3 warning (3): ignored requested disposition

 1 Intel® Fortran Compiler Classic and Intel® Fortran Compiler Developer Guide and Reference

656

Numbe
r

Severity Level, Number, and Message Text; Condition Symbol and Explanation

FOR$IOS_IGNORED.

4 warning (4): ignored requested disposition, file not deleted

FOR$IOS_IGNNOTDEL.

5 warning (5): requested disposition modified, file not deleted, unit "number", file
"string"

FOR$IOS_REQDISMOD.

8 severe (8): Internal consistency check failure

FOR$IOS_BUG_CHECK. Internal error. Please check that the program is correct. Recompile if an
error existed in the program. If this error persists, submit a problem report.

9 severe (9): Permission to access file denied

FOR$IOS_PERACCFIL. Check the permissions of the specified file and whether the network
device is mapped and available. Make sure the correct file and device was being accessed.
Change the protection, specific file, or process used before rerunning the program.

10 severe (10): Cannot overwrite existing file

FOR$IOS_CANOVEEXI. Specified file xxx already exists when OPEN statement specified
STATUS='NEW' (create new file) using I/O unit x. Make sure correct file name, directory path,
unit, and so forth were specified in the source program. Decide whether to:
• Rename or remove the existing file before rerunning the program.
• Modify the source file to specify different file specification, I/O unit, or OPEN statement

STATUS.

111 info (11): Unit not connected

FOR$IOS_UNINOTCON. The specified unit was not open at the time of the attempted I/O
operation. Check if correct unit number was specified. If appropriate, use an OPEN statement to
explicitly open the file (connect the file to the unit number).

14 info (14): SOURCE length "number" does not equal variable length "number"

FOR$IOS_SOURCELENERR.

17 severe (17): Syntax error in NAMELIST input

FOR$IOS_SYNERRNAM. The syntax of input to a namelist-directed READ statement was
incorrect.

18 severe (18): Too many values for NAMELIST variable

FOR$IOS_TOOMANVAL. An attempt was made to assign too many values to a variable during a
namelist READ statement.

19 severe (19): Invalid reference to variable in NAMELIST input

FOR$IOS_INVREFVAR. One of the following conditions occurred:
• The variable was not a member of the namelist group.
• An attempt was made to subscript a scalar variable.
• A subscript of the array variable was out-of-bounds.
• An array variable was specified with too many or too few subscripts for the variable.
• An attempt was made to specify a substring of a non-character variable or array name.
• A substring specifier of the character variable was out-of-bounds.
• A subscript or substring specifier of the variable was not an integer constant.
• An attempt was made to specify a substring by using an unsubscripted array variable.

Intel® Fortran Compiler Classic and Intel® Fortran Compiler Developer Guide and Reference 1

657

Numbe
r

Severity Level, Number, and Message Text; Condition Symbol and Explanation

20 severe (20): REWIND error

FOR$IOS_REWERR. One of the following conditions occurred:
• The file was not a sequential file.
• The file was not opened for sequential or append access.
• The Intel® Fortran RTL I/O system detected an error condition during execution of a REWIND

statement.

21 severe (21): Duplicate file specifications

FOR$IOS_DUPFILSPE. Multiple attempts were made to specify file attributes without an
intervening close operation. A DEFINE FILE statement was followed by another DEFINE FILE
statement or an OPEN statement.

22 severe (22): Input record too long

FOR$IOS_INPRECTOO. A record was read that exceeded the explicit or default record length
specified when the file was opened. To read the file, use an OPEN statement with a
RECL=VALUE (record length) of the appropriate size.

23 severe (23): BACKSPACE error

FOR$IOS_BACERR. The Intel® Fortran RTL I/O system detected an error condition during
execution of a BACKSPACE statement.

241 severe (24): End-of-file during read

FOR$IOS_ENDDURREA. One of the following conditions occurred:
• An Intel® Fortran RTL I/O system end-of-file condition was encountered during execution of

a READ statement that did not contain an END, ERR, or IOSTAT specification.
• An end-of-file record written by the ENDFILE statement was encountered during execution of

a READ statement that did not contain an END, ERR, or IOSTAT specification.
• An attempt was made to read past the end of an internal file character string or array during

execution of a READ statement that did not contain an END, ERR, or IOSTAT specification.

This error is returned by END and ERRSNS.

25 severe (25): Record number outside range

FOR$IOS_RECNUMOUT. A direct access READ, WRITE, or FIND statement specified a record
number outside the range specified when the file was opened.

26 severe (26): OPEN or DEFINE FILE required

FOR$IOS_OPEDEFREQ. A direct access READ, WRITE, or FIND statement was attempted for a
file when no prior DEFINE FILE or OPEN statement with ACCESS='DIRECT' was performed for
that file.

27 severe (27): Too many records in I/O statement

FOR$IOS_TOOMANREC. An attempt was made to do one of the following:
• Read or write more than one record with an ENCODE or DECODE statement.
• Write more records than existed.

28 severe (28): CLOSE error

FOR$IOS_CLOERR. An error condition was detected by the Intel® Fortran RTL I/O system during
execution of a CLOSE statement.

29 severe (29): File not found

FOR$IOS_FILNOTFOU. A file with the specified name could not be found during an OPEN
operation.

 1 Intel® Fortran Compiler Classic and Intel® Fortran Compiler Developer Guide and Reference

658

Numbe
r

Severity Level, Number, and Message Text; Condition Symbol and Explanation

30 severe (30): Open failure

FOR$IOS_OPEFAI. An error was detected by the Intel® Fortran RTL I/O system while attempting
to open a file in an OPEN, INQUIRE, or other I/O statement. This message is issued when the
error condition is not one of the more common conditions for which specific error messages are
provided. It can occur when an OPEN operation was attempted for one of the following:
• Segmented file that was not on a disk or a raw magnetic tape
• Standard I/O file that had been closed

31 severe (31): Mixed file access modes

FOR$IOS_MIXFILACC. An attempt was made to use any of the following combinations:
• Formatted and unformatted operations on the same unit
• An invalid combination of access modes on a unit, such as direct and sequential
• An Intel® Fortran RTL I/O statement on a logical unit that was opened by a program coded in

another language

32 severe (32): Invalid logical unit number

FOR$IOS_INVLOGUNI. A logical unit number greater than 2,147,483,647 or less than zero was
used in an I/O statement.

33 severe (33): ENDFILE error

FOR$IOS_ENDFILERR. One of the following conditions occurred:
• The file was not a sequential organization file with variable-length records.
• The file was not opened for sequential, append, or direct access.
• An unformatted file did not contain segmented records.
• The Intel® Fortran RTL I/O system detected an error during execution of an ENDFILE

statement.

34 severe (34): Unit already open

FOR$IOS_UNIALROPE. A DEFINE FILE statement specified a logical unit that was already
opened.

35 severe (35): Segmented record format error

FOR$IOS_SEGRECFOR. An invalid segmented record control data word was detected in an
unformatted sequential file. The file was probably either created with RECORDTYPE='FIXED' or
'VARIABLE' in effect, or was created by a program written in a language other than Fortran or
Standard Fortran.

36 severe (36): Attempt to access non-existent record

FOR$IOS_ATTACCNON. A direct-access READ or FIND statement attempted to access beyond
the end of a relative file (or a sequential file on disk with fixed-length records) or access a
record that was previously deleted from a relative file.

37 severe (37): Inconsistent record length

FOR$IOS_INCRECLEN. An attempt was made to open a direct access file without specifying a
record length.

38 severe (38): Error during write

FOR$IOS_ERRDURWRI. The Intel® Fortran RTL I/O system detected an error condition during
execution of a WRITE statement.

39 severe (39): Error during read

Intel® Fortran Compiler Classic and Intel® Fortran Compiler Developer Guide and Reference 1

659

Numbe
r

Severity Level, Number, and Message Text; Condition Symbol and Explanation

FOR$IOS_ERRDURREA. The Intel® Fortran RTL I/O system detected an error condition during
execution of a READ statement.

40 severe (40): Recursive I/O operation

FOR$IOS_RECIO_OPE. While processing an I/O statement for a logical unit, another I/O
operation on the same logical unit was attempted, such as a function subprogram that performs
I/O to the same logical unit that was referenced in an expression in an I/O list or variable
format expression.

41 severe (41): Insufficient virtual memory

FOR$IOS_INSVIRMEM. The Intel® Fortran RTL attempted to exceed its available virtual memory
while dynamically allocating space. To overcome this problem, investigate increasing the data
limit. Before you try to run this program again, wait until the new system resources take effect.

NOTE
This error can be returned by STAT in an ALLOCATE or a DEALLOCATE statement.

42 severe (42): No such device

FOR$IOS_NO_SUCDEV. A pathname included an invalid or unknown device name when an
OPEN operation was attempted.

43 severe (43): File name specification error

FOR$IOS_FILNAMSPE. A pathname or file name given to an OPEN or INQUIRE statement was
not acceptable to the Intel® Fortran RTL I/O system.

44 severe (44): Inconsistent record type

FOR$IOS_INCRECTYP. The RECORDTYPE value in an OPEN statement did not match the record
type attribute of the existing file that was opened.

45 severe (45): Keyword value error in OPEN statement

FOR$IOS_KEYVALERR. An improper value was specified for an OPEN or CLOSE statement
specifier requiring a value.

46 severe (46): Inconsistent OPEN/CLOSE parameters

FOR$IOS_INCOPECLO. Specifications in an OPEN or CLOSE statement were inconsistent. Some
invalid combinations follow:
• READONLY or ACTION='READ' with STATUS='NEW' or STATUS='SCRATCH'
• READONLY with STATUS='REPLACE', ACTION='WRITE', or ACTION='READWRITE'
• ACCESS='APPEND' with READONLY, ACTION='READ', STATUS='NEW', or STATUS='SCRATCH'
• DISPOSE='SAVE', 'PRINT', or 'SUBMIT' with STATUS='SCRATCH'
• DISPOSE='DELETE' with READONLY
• CLOSE statement STATUS='DELETE' with OPEN statement READONLY
• ACCESS='DIRECT' with POSITION='APPEND' or 'ASIS'

47 severe (47): Write to READONLY file

FOR$IOS_WRIREAFIL. A write operation was attempted to a file that was declared
ACTION='READ' or READONLY in the OPEN statement that is currently in effect.

48 severe (48): Invalid argument to Fortran Runtime Library

FOR$IOS_INVARGFOR. The compiler passed an invalid or improperly coded argument to the
Intel® Fortran RTL. This can occur if the compiler is newer than the RTL in use.

 1 Intel® Fortran Compiler Classic and Intel® Fortran Compiler Developer Guide and Reference

660

Numbe
r

Severity Level, Number, and Message Text; Condition Symbol and Explanation

49 severe (49): invalid key specification, unit "number", file "string"

FOR$IOS_INVKEYSPE.

50 severe (50): inconsistent key change or duplicate key, unit "number", file "string"

FOR$IOS_INCKEYCHG.

51 severe (51): Inconsistent file organization

FOR$IOS_INCFILORG. The file organization specified in an OPEN statement did not match the
organization of the existing file.

52 severe (52): specified record locked, unit "number", file "string"

FOR$IOS_SPERECLOC.

53 severe (53): No current record, unit "number", file "string"

FOR$IOS_NO_CURREC. Attempted to execute a REWRITE statement to rewrite a record when
the current record was undefined. To define the current record, execute a successful READ
statement. You can optionally perform an INQUIRE statement on the logical unit after the READ
statement and before the REWRITE statement. No other operations on the logical unit may be
performed between the READ and REWRITE statements.

54 severe (54): REWRITE error, unit "number", file "string"

FOR$IOS_REWRITERR.

55 severe (55): DELETE error, unit "number", file "string"

FOR$IOS_DELERR. An error condition was detected by the Intel® Fortran RTL I/O system during
execution of a DELETE statement.

56 severe (56): UNLOCK error, unit "number", file "string"

FOR$IOS_UNLERR.

57 severe (57): FIND error, unit "number", file "string"

FOR$IOS_FINERR. The Intel® Fortran RTL I/O system detected an error condition during
execution of a FIND statement.

581 info (58): Format syntax error at or near xx

FOR$IOS_FMTSYN. Check the statement containing xx, a character substring from the format
string, for a format syntax error. For more information, see the FORMAT statement.

59 severe (59): List-directed I/O syntax error

FOR$IOS_LISIO_SYN. The data in a list-directed input record had an invalid format, or the type
of the constant was incompatible with the corresponding variable. The value of the variable was
unchanged.

NOTE
Note: The ERR transfer is taken after completion of the I/O statement for error number
59. The resulting file status and record position are the same as if no error had occurred.
However, other I/O errors take the ERR transfer as soon as the error is detected, so file
status and record position are undefined.

60 severe (60): Infinite format loop

Intel® Fortran Compiler Classic and Intel® Fortran Compiler Developer Guide and Reference 1

661

Numbe
r

Severity Level, Number, and Message Text; Condition Symbol and Explanation

FOR$IOS_INFFORLOO. The format associated with an I/O statement that included an I/O list
had no field descriptors to use in transferring those values.

61 severe or info(61): Format/variable-type mismatch

FOR$IOS_FORVARMIS. An attempt was made either to read or write a real variable with an
integer field descriptor (I, L, O, Z, B), or to read or write an integer or logical variable with a
real field descriptor (D, E, or F). To suppress this error message, see the description of
check[:]noformat.

NOTE
Note: The severity depends on the check[:]keywords option used during the
compilation command. The ERR transfer is taken after completion of the I/O statement
for error numbers 61, 63, 64, and 68. The resulting file status and record position are the
same as if no error had occurred. However, other I/O errors take the ERR transfer as soon
as the error is detected, so file status and record position are undefined.

62 severe (62): Syntax error in format

FOR$IOS_SYNERRFOR. A syntax error was encountered while the RTL was processing a format
stored in an array or character variable.

63 error or info(63): Output conversion error

FOR$IOS_OUTCONERR. During a formatted output operation, the value of a particular number
could not be output in the specified field length without loss of significant digits. When this
situation is encountered, the overflowed field is filled with asterisks to indicate the error in the
output record. If no ERR address has been defined for this error, the program continues after
the error message is displayed. To suppress this error message, see the description of
check[:]nooutput_conversion.

NOTE
Note: The severity depends on the check[:]keywords option used during the
compilation command. The ERR transfer is taken after completion of the I/O statement
for error numbers 61, 63, 64, and 68. The resulting file status and record position are the
same as if no error had occurred. However, other I/O errors take the ERR transfer as soon
as the error is detected, so file status and record position are undefined.

64 severe (64): Input conversion error

FOR$IOS_INPCONERR. During a formatted input operation, an invalid character was detected in
an input field, or the input value overflowed the range representable in the input variable. The
value of the variable was set to zero.

NOTE
The ERR transfer is taken after completion of the I/O statement for error numbers 61, 63,
64, and 68. The resulting file status and record position are the same as if no error had
occurred. However, other I/O errors take the ERR transfer as soon as the error is
detected, so file status and record position are undefined.

65 error (65): Floating invalid

 1 Intel® Fortran Compiler Classic and Intel® Fortran Compiler Developer Guide and Reference

662

Numbe
r

Severity Level, Number, and Message Text; Condition Symbol and Explanation

FOR$IOS_FLTINV. During an arithmetic operation, the floating-point values used in a calculation
were invalid for the type of operation requested or invalid exceptional values. For example, the
error can occur if you request a log of the floating-point values 0.0 or a negative number. For
certain arithmetic expressions, specifying the check[:]nopower option can suppress this
message.

66 severe (66): Output statement overflows record

FOR$IOS_OUTSTAOVE. An output statement attempted to transfer more data than would fit in
the maximum record size.

67 severe (67): Input statement requires too much data

FOR$IOS_INPSTAREQ. Attempted to read more data than exists in a record with an
unformatted READ statement or with a formatted sequential READ statement from a file
opened with a PAD='NO' specifier.

68 severe (68): Variable format expression value error

FOR$IOS_VFEVALERR. The value of a variable format expression was not within the range
acceptable for its intended use; for example, a field width was less than or equal to zero. A
value of 1 was assumed, except for a P edit descriptor, for which a value of zero was assumed.

NOTE
The ERR transfer is taken after completion of the I/O statement for error numbers 61, 63,
64, and 68. The resulting file status and record position are the same as if no error had
occurred. However, other I/O errors take the ERR transfer as soon as the error is
detected, so file status and record position are undefined.

691 error (69): Process interrupted (SIGINT)

FOR$IOS_SIGINT. The process received the signal SIGINT. Determine source of this interrupt
signal (described in signal(3)).

701 severe (70): Integer overflow

FOR$IOS_INTOVF. During an arithmetic operation, an integer value exceeded byte, word, or
longword range. The result of the operation was the correct low-order part. Consider specifying
a larger integer data size (modify source program or, for an INTEGER declaration, possibly use
the integer-size[:]size option).

711 severe (71): Integer divide by zero

FOR$IOS_INTDIV. During an integer arithmetic operation, an attempt was made to divide by
zero. The result of the operation was set to the dividend, which is equivalent to division by 1.

721 error (72): Floating overflow

FOR$IOS_FLTOVF. During an arithmetic operation, a floating-point value exceeded the largest
representable value for that data type. See Data Representation for ranges of the various data
types.

731 error (73): Floating divide by zero

FOR$IOS_FLTDIV. During a floating-point arithmetic operation, an attempt was made to divide
by zero.

741 error (74): Floating underflow

Intel® Fortran Compiler Classic and Intel® Fortran Compiler Developer Guide and Reference 1

663

Numbe
r

Severity Level, Number, and Message Text; Condition Symbol and Explanation

FOR$IOS_FLTUND. During an arithmetic operation, a floating-point value became less than the
smallest finite value for that data type. Depending on the values of the fpe[:]n option, the
underflowed result was either set to zero or allowed to gradually underflow. See the Data
Representation for ranges of the various data types.

751 error (75): Floating point exception

FOR$IOS_SIGFPE. A floating-point exception occurred. Possible causes include:
• Division by zero.
• Overflow.
• An invalid operation, such as subtraction of infinite values, multiplication of zero by infinity

without signs), division of zero by zero or infinity by infinity.
• Conversion of floating-point to fixed-point format when an overflow prevents conversion.

761 error (76): IOT trap signal

FOR$IOS_SIGIOT. Core dump file created. Examine core dump for possible cause of this IOT
signal.

771 severe (77): Subscript out of range

FOR$IOS_SUBRNG. An array reference was detected outside the declared array bounds.

781 error (78): Process killed

FOR$IOS_SIGTERM. The process received a signal requesting termination of this process.
Determine the source of this software termination signal.

791 error (79): Process quit

FOR$IOS_SIGQUIT. The process received a signal requesting termination of itself. Determine
the source of this quit signal.

801 severe (80): wrong number of arguments

FOR$IOS_WRONUMARG.

811 severe (81): invalid argument to math library

FOR$IOS_INVARGMAT.

821 severe (82): undefined exponentiation

FOR$IOS_UNDEXP.

831 severe (83): logarithm of zero or negative value

FOR$IOS_LOGZERNEG.

841 severe (84): square root of negative value

FOR$IOS_SQUROONEG.

851 info (85): output conversion overflows field, unit "number", file "string"

FOR$IOS_OUTCONOVE.

871 severe (87): significance lost in math library

FOR$IOS_SIGLOSMAT.

881 severe (88): floating overflow in math library

FOR$IOS_FLOOVEMAT.

89 1 error (89): floating underflow in math library

 1 Intel® Fortran Compiler Classic and Intel® Fortran Compiler Developer Guide and Reference

664

Numbe
r

Severity Level, Number, and Message Text; Condition Symbol and Explanation

FOR$IOS_FLOUNDMAT.

901 info (90): INQUIRE of internal unit-number is always an error (NOTE: unit identifies a
file)

FOR$IOS_IOSTAT_INTERNAL. The file name specified for an INQUIRE statement is an internal
unit-number.

911 info (91): INQUIRE of internal unit-number is always an error (NOTE: unit does not
identify a file)

FOR$IOS_IOSTAT_INTERNAL_UNIT. The unit number specified for an INQUIRE statement is an
internal unit-number.

93 severe (93): adjustable array dimension error

FOR$IOS_ADJARRDIM.

94 severe (94): invalid key match specifier for key direction, unit "number", file "string"

FOR$IOS_INVMATKEY .

951 info (95): Floating-point conversion failed

FOR$IOS_FLOCONFAI. The attempted unformatted read or write of non-native floating-point
data failed because the floating-point value:
• Exceeded the allowable maximum value for the equivalent native format and was set equal

to infinity (plus or minus).
• Was infinity (plus or minus) and was set to infinity (plus or minus).
• Was invalid and was set to not a number (NaN).

Very small numbers are set to zero (0). This error could be caused by the specified non-native
floating-point format not matching the floating-point format found in the specified file. Check
the following:
• The correct file was specified.
• The record layout matches the format Intel® Fortran is expecting.
• The ranges for the data being used (see Data Representation).
• The correct non-native floating-point data format was specified (see Supported Native and

Non-native Numeric Formats).

96 info (96): F_UFMTENDIAN environment variable was ignored:erroneous syntax

FOR$IOS_UFMTENDIAN. Syntax for specifying whether little endian or big endian conversion is
performed for a given Fortran unit was incorrect. Even though the program will run, the results
might not be correct if you do not change the value of F_UFMTENDIAN. For correct syntax, see
Environment Variable F_UFMTENDIAN Method.

97 severe (97): write exceeds the record length of the file, unit "number", file "string"

FOR$IOS_WRIEXCEEDRECL.

98 severe (98): cannot allocate memory for the file buffer - out of memory

FOR_S_NOMEMFORIO. This error often occurs during a file I-O operation such as OPEN, READ,
or WRITE. Either increase the amount of memory available to the program, or reduce its
demand.

99 severe (99): FORT_FMT_RECL environment variable has erroneous syntax

FOR$IOS_INVFMTRECL.

100 severe (100): FORT_UFMT_RECL environment variable has erroneous syntax

FOR$IOS_INVUFMTRECL.

Intel® Fortran Compiler Classic and Intel® Fortran Compiler Developer Guide and Reference 1

665

Numbe
r

Severity Level, Number, and Message Text; Condition Symbol and Explanation

101 severe (101): Asynchronous data transfer statement is not allowed to this unit, unit
"number", file "string"

FOR$IOS_AIONOTALLOWED.

102 severe (102): ID value is out of range, unit "number", file "string"

FOR$IOS_IDVALOUT.

103 severe (103): incorrect "string" specifier for connected file, unit "number", file
"string"

FOR$IOS_BADSPEC.

104 severe (104): incorrect "XXXXX=" specifier value for connected file

FOR$IOS_BADSPECVAL. The listed specifier value is invalid for the connected file. Possible
specifier values are one of the following:
• ACTION=
• ASSOCIATEVARIABLE=
• ASYNCHRONOUS=
• BUFFERED=
• DISPOSE=
• FORM=
• IOFOCUS=
• MAXREC=
• MODE=
• ORGANIZATION=
• POSITION=
• RECL=
• RECORDTYPE=
• SHARE=
• STATUS=
• TITLE=

105 severe (105): there is no data-edit-descriptor to match a data-item in the I/O list,
unit "number", file "string"

FOR$IOS_NODATAEDIT.

106 severe (106): FORT_BLOCKSIZE environment variable has erroneous syntax

FOR_S_INVBLOCKSIZE. Syntax for specifying the default block size value was incorrect. For
correct syntax, see Environment Variable FORT_BLOCKSIZE.

107 severe (107): FORT_BUFFERCOUNT environment variable has erroneous syntax

FOR_S_INVBUFRCNT. Syntax for specifying the default buffer count value was incorrect. For
correct syntax, see Environment Variable FORT_BUFFERCOUNT.

108 severe (108): Cannot stat file

FOR$IOS_CANSTAFILE. Make sure correct file and unit were specified.

109 info (109): stream data transfer statement is not allowed to an unopened unit

FOR$IOS_SIONOTOPEN. Stream data transfer statement is not allowed to an unopened unit.

110 severe (110): stream data transfer statement is not allowed to this unit, unit
"number", file "string"

FOR$IOS_SIONOTALLOWED.

 1 Intel® Fortran Compiler Classic and Intel® Fortran Compiler Developer Guide and Reference

666

Numbe
r

Severity Level, Number, and Message Text; Condition Symbol and Explanation

111 severe (111): position number is outside of the valid range, unit "number", file
"string"

FOR$IOS_POSNUMOUT.

112 severe (112): RECL= specifier may not be applied to stream access file, unit
"number", file "string"

FOR$IOS_STREAMRECL.

113 severe (113): BACKSPACE statement may not be applied to unformatted stream
access file, unit "number", file "string"

FOR$IOS_STREAMBCKSPC.

114 severe (114): A keyword was specified that is not allowed with unformatted I/O; unit
"number", file "string"

FOR$IOS_KWANDUNFMT.

115 severe (115): keyword value error in a CLOSE statement, unit "number", file "string"

FOR$IOS_KEYVALERRCLOSE.

116 severe (116): keyword value error in an I/O statement, unit "number", file "string"

FOR$IOS_KEYVALERRIO.

117 severe (117): If NEWUNIT appears in OPEN statement either FILE or STATUS (with
value SCRATCH) specifier shall appear

FOR$IOS_FILE_OR_SCRATCH.

118 severe (118): The 'RECL=' value in an OPEN statement exceeds the maximum allowed
for the file's record type.

FOR$IOS_MAX_FXD_RECL. The 'RECL=' value in an OPEN statement is too large for the file’s
record type.

1191 severe (119): The FORT_BUFFERING_THRESHOLD environment variable has
erroneous syntax

FOR$ IOS_INVTHRESHOLD. If specified, the FORT_BUFFERING_THRESHOLD environment
variable must be an integer value greater than zero and less than 2147483647.

120 severe (120): Operation requires seek ability

FOR$IOS_OPEREQSEE. Attempted an operation on a file that requires the ability to perform
seek operations on that file. Make sure the correct unit, directory path, and file were specified.

121 severe (121): Cannot access current working directory

FOR$IOS_CWDERROR. Cannot access the current working directory to open or access a file.
One of the following conditions occurred:
• The directory has been deleted or moved by another task.
• The getcwd system function failed due to an OS or file-system problem.

122 severe (122): invalid attempt to assign into a pointer that is not associated

FOR$IOS_UNASSOCPTR. Invalid attempt to assign into a pointer that is not associated.

123 severe (123): attempt to assign a scalar to an unallocated allocatable array

FOR$IOS_SCALTOUNALLOC.

1241 severe (124): Invalid command supplied to EXECUTE_COMMAND_LINE

Intel® Fortran Compiler Classic and Intel® Fortran Compiler Developer Guide and Reference 1

667

Numbe
r

Severity Level, Number, and Message Text; Condition Symbol and Explanation

FOR$ IOS_INVCMDECL. The command line passed to the EXECUTE_COMMAND_LINE intrinsic is
invalid.

NOTE
This error can be returned by CMDSTAT in an EXECUTE_COMMAND_LINE statement.

125 severe (125): A derived type variable in this statement requires a DT format specifier
because it has a component that is ALLOCATABLE, POINTER, or PRIVATE, unit
"number", file "string"

FOR$IOS_DT_REQUIRED.

126 severe (126): A non-advancing READ immediately following a non-advancing WRITE
on the same unit number is not allowed, unit "number"

FOR$IOS_NONADV_READ_AFTER_WRITE.

127 severe (127): User Defined I/O procedure returned error <user-iostat, message:
'<user-iomsg>'

FOR$IOS_UDIO_CHILD_IOSTAT_IOMSG. A child I/O action has set the IOMSG and IOSTAT
shown in this message.

128 info (128): Error stop – program terminated

FOR$IOS_ERROR_STOP. The user program has executed an ERROR STOP statement.

129 info (129): User Defined I/O procedure's IOMSG was truncated to fit IOMSG variable

FOR$IOS_UDIO_IOMSG_TRUNCATED. A child I/O action has set IOMSG and IOSTAT. The result
was too large to be held by the parent's IOMSG variable; non-blank text has been truncated.

1381 severe (138): Array index out of bounds

FOR$IOS_BRK_RANGE. An array subscript is outside the dimensioned boundaries of that array.
Set the check[:]bounds option and recompile.

1391 severe: (139): Array index out of bounds for index "number"

FOR$IOS_BRK_RANGE2. An array subscript is outside the dimensioned boundaries of that
array. Set the check[:]bounds option and recompile.

1401 error (140): Floating inexact

FOR$IOS_FLTINE. A floating-point arithmetic or conversion operation gave a result that differs
from the mathematically exact result. This trap is reported if the rounded result of an IEEE
operation is not exact.

1441 severe (144): Reserved operand

FOR$IOS_ROPRAND. The Intel® Fortran RTL encountered a reserved operand while executing
your program. Please report the problem to Intel.

1451 severe (145): Assertion error

FOR$IOS_ASSERTERR. The Intel® Fortran RTL encountered an assertion error. Please report the
problem to Intel.

1461 severe (146): Null pointer error

FOR$IOS_NULPTRERR. Attempted to use a pointer that does not contain an address. Modify the
source program, recompile, and relink.

 1 Intel® Fortran Compiler Classic and Intel® Fortran Compiler Developer Guide and Reference

668

Numbe
r

Severity Level, Number, and Message Text; Condition Symbol and Explanation

1471 severe (147): Stack overflow

FOR$IOS_STKOVF. The Intel® Fortran RTL encountered a stack overflow while executing your
program.

1481 severe (148): String length error

FOR$IOS_STRLENERR. During a string operation, an integer value appears in a context where
the value of the integer is outside the permissible string length range. Set the check[:]bounds
option and recompile.

1491 severe (149): Substring error

FOR$IOS_SUBSTRERR. An array subscript is outside the dimensioned boundaries of an array.
Set the check[:]bounds option and recompile.

1501 severe (150): Range error

FOR$IOS_RANGEERR. An integer value appears in a context where the value of the integer is
outside the permissible range.

1511 severe (151): Allocatable array is already allocated

FOR$IOS_INVREALLOC. An allocatable array must not already be allocated when you attempt
to allocate it. You must deallocate the array before it can again be allocated.

NOTE
This error can be returned by STAT in an ALLOCATE statement.

1521 severe (152): Unresolved contention for Intel Fortran RTL global resource

FOR$IOS_RESACQFAI. Failed to acquire an Intel® Fortran RTL global resource for a reentrant
routine. For a multithreaded program, the requested global resource is held by a different
thread in your program. For a program using asynchronous handlers, the requested global
resource is held by the calling part of the program (such as main program) and your
asynchronous handler attempted to acquire the same global resource.

1531 severe (153): Allocatable array or pointer is not allocated

FOR$IOS_INVDEALLOC. A Standard Fortran allocatable array or pointer must already be
allocated when you attempt to deallocate it. You must allocate the array or pointer before it can
again be deallocated.

NOTE
This error can be returned by STAT in an DEALLOCATE statement.

1541 severe (154): Array index out of bounds

FOR$IOS_RANGE. An array subscript is outside the dimensioned boundaries of that array. Set
the check[:]bounds option and recompile.

1551 severe (155): Array index out of bounds for index "number"

FOR$IOS_RANGE2. An array subscript is outside the dimensioned boundaries of that array. Set
the check[:]bounds option and recompile.

1561 severe (156): GENTRAP code = hex dec

Intel® Fortran Compiler Classic and Intel® Fortran Compiler Developer Guide and Reference 1

669

Numbe
r

Severity Level, Number, and Message Text; Condition Symbol and Explanation

FOR$IOS_DEF_GENTRAP. The Intel® Fortran RTL has detected an unknown GENTRAP code. The
cause is most likely a software problem due to memory corruption, or software signaling an
exception with an incorrect exception code. Try setting the check[:]bounds option and
recompile to see if that finds the problem.

1571 severe (157): Program Exception - access violation

FOR$IOS_ACCVIO. The program tried to read from or write to a virtual address for which it
does not have the appropriate access. Try setting the check[:]bounds option and recompile to
see if the problem is an out-of-bounds memory reference or a argument mismatch that causes
data to be treated as an address.

Other possible causes of this error include:
• Mismatches in C vs. STDCALL calling mechanisms, causing the stack to become corrupted.
• References to unallocated pointers.
• Attempting to access a protected (for example, read-only) address.

1581 severe (158): Program Exception - datatype misalignment

FOR$IOS_DTYPE_MISALIGN. The Intel® Fortran RTL has detected data that is not aligned on a
natural boundary for the data type specified. For example, a REAL(8) data item aligned on
natural boundaries has an address that is a multiple of 8. To ensure naturally aligned data, use
the align option.

This is an operating system error. See your operating system documentation for more
information.

1591 severe (159): Program Exception - breakpoint

FOR$IOS_PGM_BPT. The Intel® Fortran RTL has encountered a breakpoint in the program.

This is an operating system error. See your operating system documentation for more
information.

1601 severe (160): Program Exception - single step

FOR$IOS_PGM_SS. A trace trap or other single-instruction mechanism has signaled that one
instruction has been executed.

This is an operating system error. See your operating system documentation for more
information.

1611 severe (161): Program Exception - array bounds exceeded

FOR$IOS_PGM_BOUNDS. The program tried to access an array element that is outside the
specified boundaries of the array. Set the check[:]bounds option and recompile.

1621 severe (162): Program Exception - denormal floating-point operand

FOR$IOS_PGM_DENORM. A floating-point arithmetic or conversion operation has a
subnormalized number as an operand. A subnormalized number is smaller than the lowest
value in the normal range for the data type specified. See Data Representation for ranges for
floating-point types.

Either locate and correct the source code causing the subnormalized value or, if a
subnormalized value is acceptable, specify a different value for the fpe compiler option to allow
program continuation.

1631 severe (163): Program Exception - floating stack check

FOR$IOS_PGM_FLTSTK. During a floating-point operation, the floating-point register stack on
systems using IA-32 architecture overflowed or underflowed. This is a fatal exception. The most
likely cause is calling a REAL function as if it were an INTEGER function or subroutine, or calling
an INTEGER function or subroutine as if it were a REAL function.

 1 Intel® Fortran Compiler Classic and Intel® Fortran Compiler Developer Guide and Reference

670

Numbe
r

Severity Level, Number, and Message Text; Condition Symbol and Explanation

Carefully check that the calling code and routine being called agree as to how the routine is
declared. If you are unable to resolve the issue, please send a problem report with an example
to Intel.

1641 severe (164): Program Exception - integer divide by zero

FOR$IOS_PGM_INTDIV. During an integer arithmetic operation, an attempt was made to divide
by zero. Locate and correct the source code causing the integer divide by zero.

1651 severe (165): Program Exception - integer overflow

FOR$IOS_PGM_INTOVF. During an arithmetic operation, an integer value exceeded the largest
representable value for that data type. See Data Representation for ranges for INTEGER types.

1661 severe (166): Program Exception - privileged instruction

FOR$IOS_PGM_PRIVINST. The program tried to execute an instruction whose operation is not
allowed in the current machine mode.

This is an operating system error. See your operating system documentation for more
information.

1671 severe (167): Program Exception - in page error

FOR$IOS_PGM_INPGERR. The program tried to access a page that was not present, so the
system was unable to load the page. For example, this error might occur if a network
connection was lost while trying to run a program over the network.

This is an operating system error. See your operating system documentation for more
information.

1681 severe (168): Program Exception - illegal instruction

FOR$IOS_PGM_ILLINST. The program tried to execute an invalid instruction.

This is an operating system error. See your operating system documentation for more
information.

1691 severe (169): Program Exception - noncontinuable exception

FOR$IOS_PGM_NOCONTEXCP. The program tried to continue execution after a noncontinuable
exception occurred.

This is an operating system error. See your operating system documentation for more
information.

1701 severe (170): Program Exception - stack overflow

FOR$IOS_PGM_STKOVF. The Intel® Fortran RTL has detected a stack overflow while executing
your program. See your Release Notes for information on how to increase stack size.

1711 severe (171): Program Exception - invalid disposition

FOR$IOS_PGM_INVDISP. An exception handler returned an invalid disposition to the exception
dispatcher. Programmers using a high-level language should never encounter this exception.

This is an operating system error. See your operating system documentation for more
information.

1721 severe (172): Program Exception - exception code = hex dec

FOR$IOS_PGM_EXCP_CODE. The Intel® Fortran RTL has detected an unknown exception code.

This is an operating system error. See your operating system documentation for more
information.

Intel® Fortran Compiler Classic and Intel® Fortran Compiler Developer Guide and Reference 1

671

Numbe
r

Severity Level, Number, and Message Text; Condition Symbol and Explanation

1731 severe (173): A pointer passed to DEALLOCATE points to an array that cannot be
deallocated

FOR$IOS_INVDEALLOC2. A pointer that was passed to DEALLOCATE pointed to an explicit
array, an array slice, or some other type of memory that could not be deallocated in a
DEALLOCATE statement. Only whole arrays previous allocated with an ALLOCATE statement
may be validly passed to DEALLOCATE.

NOTE
This error can be returned by STAT in a DEALLOCATE statement.

1741 severe (174): SIGSEGV, message-text

FOR$IOS_SIGSEGV. One of two possible messages occurs for this error number:
•severe (174): SIGSEGV, segmentation fault occurred

This message indicates that the program attempted an invalid memory reference. Check the
program for possible errors.

•severe (174): SIGSEGV, possible program stack overflow occurred
The following explanatory text also appears:

Program requirements exceed current stacksize resource limit.

1751 severe (175): DATE argument to DATE_AND_TIME is too short (LEN=n), required
LEN=8

FOR$IOS_SHORTDATEARG. The number of characters associated with the DATE argument to
the DATE_AND_TIME intrinsic was shorter than the required length. You must increase the
number of characters passed in for this argument to be at least eight characters in length.
Verify that the TIME and ZONE arguments also meet their minimum lengths.

1761 severe (176): TIME argument to DATE_AND_TIME is too short (LEN=n), required
LEN=10

FOR$IOS_SHORTTIMEARG. The number of characters associated with the TIME argument to the
DATE_AND_TIME intrinsic was shorter than the required length. You must increase the number
of characters passed in for this argument to be at least ten characters in length. Verify that the
DATE and ZONE arguments also meet their minimum lengths.

1771 severe (177): ZONE argument to DATE_AND_TIME is too short (LEN=n), required
LEN=5

FOR$IOS_SHORTZONEARG. The number of characters associated with the ZONE argument to
the DATE_AND_TIME intrinsic was shorter than the required length. You must increase the
number of characters passed in for this argument to be at least five characters in length. Verify
that the DATE and TIME arguments also meet their minimum lengths.

1781 severe (178): Divide by zero

FOR$IOS_DIV. A floating-point or integer divide-by-zero exception occurred.

1791 severe (179): Cannot allocate array - overflow on array size calculation

FOR$IOS_ARRSIZEOVF. An attempt to dynamically allocate storage for an array failed because
the required storage size exceeds addressable memory.

NOTE
This error can be returned by STAT in an ALLOCATE statement.

 1 Intel® Fortran Compiler Classic and Intel® Fortran Compiler Developer Guide and Reference

672

Numbe
r

Severity Level, Number, and Message Text; Condition Symbol and Explanation

180 severe (180): SIGBUS, "string"

FOR$IOS_SIGBUSERR. This message is issued when a SIGBUS occurs.

181 error (181): Unlimited-format-item is *(format-item-list). Format-item in list must
not be empty

FOR$IOS_STAR_EMPTY.

1821 severe (182): floating invalid - possible uninitialized real/complex variable.

FOR$ IOS_FLTINV_UNINIT. An invalid floating-point operation failed invalid – likely caused by
an uninitialized real/complex variable.

183 warning (183): FASTMEM allocation is requested but the libmemkind library is not
linked in, so using the default allocator.

FOR$IOS_NOLIBMEMKINDWARN. An allocation requested FASTMEM but the libmemkind library
is not linked into the executable, so memory will be allocated from the default memory
allocator for that platform.

184 severe (184): FASTMEM allocation is requested but the libmemkind library is not
linked into the executable.

FOR$IOS_NOLIBMEMKINDWARN. An allocation request for FASTMEM failed because the
libmemkind library is not linked into the executable.

NOTE
This error can be returned by STAT in an ALLOCATE statement.

185 warning (185): FASTMEM allocation is requested but HBW memory is not available, so
using the default allocator.

FOR$IOS_NOFASTMEMWARN. An allocation requested FASTMEM but HBW memory is not
available on the node, so memory will be allocated from the default memory allocator for that
platform.

186 severe (186): FASTMEM allocation is requested but HBW memory is not available on
this node.

FOR$IOS_NOLIBMEMKINDWARN. An allocation request for FASTMEM failed because HBW
memory is not available on this node.

NOTE
This error can be returned by STAT in an ALLOCATE statement.

188 severe (188): An assignment was made from an object of one size to an object of a
different size that cannot be deallocated.

FOR$ IOS_INCOMPATIBLE_SIZES. An assignment was made from an object of one size to an
object of a different size that cannot be deallocated.

NOTE
This error can be returned by STAT in an ALLOCATE statement.

189 severe (189): LHS and RHS of an assignment statement have incompatible types.

Intel® Fortran Compiler Classic and Intel® Fortran Compiler Developer Guide and Reference 1

673

Numbe
r

Severity Level, Number, and Message Text; Condition Symbol and Explanation

FOR$ IOS_INCOMPATIBLE_TYPES. The left-hand side (LHS) of an assignment statement is not
type compatible with the right-hand side (RHS) of the assignment statement.

NOTE
This error can be returned by STAT in an ALLOCATE statement.

190 severe (190): For allocate(source=), source needs to be allocated.

FOR$ IOS_ALLOC_INVSOURCE. For allocate(source=), if source is a pointer then it should be
associated with a target. If it is allocatable, it should be allocated.

NOTE
This error can be returned by STAT in an ALLOCATE statement.

193 severe (193): Runtime Check Failure. The variable "string" is being used without
being defined

FOR$IOS_RTC_UNINIT_USE .

1941 severe (194): Runtime Check Failure. The variable "string" is being used in "string"
without being defined.

FOR$IOS_RTC_UNINIT_USE_SRC. The named variable in the named source file is being used
without first being initialized.

195 severe (195): An allocatable coarray cannot be allocated by an assignment statement

FOR$IOS_INVCOALLOC.

200 error (200): program aborting due to "string" event

FOR$IOS_PROABODUE.

201 severe (201): Intel Pentium fdiv flaw detected, please update the processor

FOR$IOS_FLAWEDPENT.

255 info (255): if a UDIO child sets IOMSG, it must set IOSTAT non-zero, unit "number",
file "string"

FOR$IOS_CHILDSTATMSG.

256 severe (256): Unformatted I/O to unit open for formatted transfers

FOR$IOS_UNFIO_FMT. Attempted unformatted I/O to a unit where the OPEN statement (FORM
specifier) indicated the file was formatted. Check that the correct unit (file) was specified. If the
FORM specifier was not present in the OPEN statement and the file contains unformatted data,
specify FORM='UNFORMATTED' in the OPEN statement. Otherwise, if appropriate, use formatted
I/O (such as list-directed or namelist I/O).

257 severe (257): Formatted I/O to unit open for unformatted transfers

FOR$IOS_FMTIO_UNF. Attempted formatted I/O (such as list-directed or namelist I/O) to a unit
where the OPEN statement indicated the file was unformatted (FORM specifier). Check that the
correct unit (file) was specified. If the FORM specifier was not present in the OPEN statement
and the file contains formatted data, specify FORM='FORMATTED' in the OPEN statement.
Otherwise, if appropriate, use unformatted I/O.

258 severe (258): direct-access I/O to unit open for keyed access, unit "number", file
"string"

 1 Intel® Fortran Compiler Classic and Intel® Fortran Compiler Developer Guide and Reference

674

Numbe
r

Severity Level, Number, and Message Text; Condition Symbol and Explanation

FOR$IOS_DIRIO_KEY.

259 severe (259): Sequential-access I/O to unit open for direct access

FOR$IOS_SEQIO_DIR. The OPEN statement for this unit number specified direct access and the
I/O statement specifies sequential access. Check the OPEN statement and make sure the I/O
statement uses the correct unit number and type of access.

260 severe (260): keyed-access I/O to unit open for direct access, unit "number", file
"string"

FOR$IOS_KEYIO_DIR.

261 severe (261): I/O to non-FORTRAN unit

FOR$IOS_IO_NONFOR.

264 severe (264): operation requires file to be on disk or tape

FOR$IOS_OPEREQDIS. Attempted to use a BACKSPACE statement on such devices as a
terminal.

265 severe (265): operation requires sequential file organization and access

FOR$IOS_OPEREQSEQ. Attempted to use a BACKSPACE statement on a file whose organization
was not sequential or whose access was not sequential. A BACKSPACE statement can only be
used for sequential files opened for sequential access.

2661 error (266): Fortran abort routine called

FOR$IOS_PROABOUSE. The program called the abort routine to terminate itself.

2681 severe (268): End of record during read

FOR$IOS_ENDRECDUR. An end-of-record condition was encountered during execution of a non-
advancing I/O READ statement that did not specify the EOR branch specifier.

269 severe (269): Another process has this file locked for shared/exclusive use, unit
"number", file "string"

FOR$IOS_SHAREDCONFLICT.

270 severe (270): A SHARE= lock request in an OPEN statement is incompatible with a
[NO]SHARED specifier and/or the file's open mode, unit "number", file "string"

FOR$IOS_INVALIDLOCKREQUEST.

271 severe (271): a UDIO child routine may not use POS= or REC=, unit "number", file
"string"

FOR$IOS_CHILDNOPOS.

272 severe (272): a UDIO child routine may not set IOSTAT to a negative value other than
-1 or -2, unit "number", file "string"

FOR$IOS_CHILDNEGSTAT.

273 info (273): if a UDIO child sets IOSTAT, it must set IOMSG, unit "number", file
"string"

FOR$IOS_CHILDMSGSTAT.

274 severe (274): OPEN operation is forbidden while in child IO

FOR$IOS_OPNDURCHILD.

275 severe (275): CLOSE operation is forbidden while in child IO

Intel® Fortran Compiler Classic and Intel® Fortran Compiler Developer Guide and Reference 1

675

Numbe
r

Severity Level, Number, and Message Text; Condition Symbol and Explanation

FOR$IOS_CLSDURCHILD.

276 severe (276): BACKSPACE operation is forbidden while in child IO

FOR$IOS_BACKDURCHILD.

277 severe (277): ENDFILE operation is forbidden while in child IO

FOR$IOS_ENDDURCHILD.

278 severe (278): REWIND operation is forbidden while in child IO

FOR$IOS_REWDURCHILD.

279 info (279): Image "number" detected some other images had stopped

FOR$IOS_SOME_WERE_STOPPED.

280 info (280): Image "number" had a memory error

FOR$IOS_ICAF_ERROR_MEM.

281 info (281): Image "number" got an error from MPI

FOR$IOS_ICAF_ERROR_RMA.

282 info (282): Image "number" detected an invalid operation

FOR$IOS_ICAF_INVALID_OP.

283 info (283): Image "number" detected an overflow

FOR$IOS_OVERFLOW.

284 info (284): Image "number" asked to do an unimplemented action

FOR$IOS_UNIMPLEMENTED.

285 info (285): Image "number" detected some other images had failed

FOR$IOS_SOME_WERE_FAILED.

286 info (286): Image "number" detected some other images had stopped and some had
failed

FOR$IOS_STOPPED_AND_FAILED.

287 info (287): Image "number" could not get an MPI communicator to use

FOR$IOS_NO_COMM. This problem with MPI will prevent formation of a TEAM.

288 info (288): Image "number" detected an invalid new team ID

FOR$IOS_BAD_NEW_TEAM_ID. This pertains to the FORM TEAM statement.

289 info (289): Image "number" was given an invalid new image ID

FOR$IOS_BAD_NEW_IMAGE_ID. This pertains to the FORM TEAM statement.

290 info (290): Image "number" was given a duplicate new image ID

FOR$IOS_DUPLICATE_NEW_ID. This pertains to the FORM TEAM statement.

291 info (291): Image "number" detected new image IDs are not dense

FOR$IOS_NEW_IDS_NOT_DENSE. This pertains to the FORM TEAM statement.

292 info (292): Image "number" detected new image IDs did not start at 1

 1 Intel® Fortran Compiler Classic and Intel® Fortran Compiler Developer Guide and Reference

676

Numbe
r

Severity Level, Number, and Message Text; Condition Symbol and Explanation

FOR$IOS_NEW_IDS_NOT_FROM_1. This pertains to the FORM TEAM statement.

293 info (293): Image "number" can't change to that team

FOR$IOS_CANT_CHANGE_TO_TEAM. This pertains to the FORM TEAM statement.

294 info (294): Image "number"'s parent team is not active

FOR$IOS_ICAF_PARENT_NOT_ACTIVE. This pertains to the FORM TEAM statement. The user
tried an operation on an image, but the image's team is not active, so the operation failed.

295 info (295): Image "number" detected that current team is not active

FOR$IOS_CURRENT_NOT_ACTIVE. This pertains to the FORM TEAM statement. The user tried
an operation which needs the current team to be active, but it isn't.

2961 info (296): "number" floating inexact traps

FOR$IOS_FLOINEEXC. The total number of floating-point inexact data traps encountered during
program execution was number. This summary message appears at program completion.

2971 info (297): "number" floating invalid traps

FOR$IOS_FLOINVEXC. The total number of floating-point invalid data traps encountered during
program execution was number. This summary message appears at program completion.

2981 info (298): "number" floating overflow traps

FOR$IOS_FLOOVFEXC. The total number of floating-point overflow traps encountered during
program execution was number. This summary message appears at program completion.

2991 info (299): "number" floating divide-by-zero traps

FOR$IOS_FLODIV0EXC. The total number of floating-point divide-by-zero traps encountered
during program execution was number. This summary message appears at program
completion.

3001 info (300): "number" floating underflow traps

FOR$IOS_FLOUNDEXC. The total number of floating-point underflow traps encountered during
program execution was number. This summary message appears at program completion.

301 info (301): Image "number" detected that new team is not active

FOR$IOS_ICAF_NEW_TEAM_ACTIVE.

302 info (302): Image "number" detected bad team nesting

FOR$IOS_ICAF_BAD_TEAM_NESTING.

303 info (303): Image "number" was given an bad image ID

FOR$IOS_ICAF_BAD_ID.

304 info (304): Image "number" was given a bad team ID

FOR$IOS_ICAF_BAD_TEAM_ID.

305 info (305): Image "number" had an internal error, invalid team variable

FOR$IOS_ICAF_BAD_TEAM_VAR.

306 info (306): Image "number" could not define the reduction

FOR$IOS_ICAF_REDUCTION_DEF_FAIL. Pertains to user-defined reduction operations.

307 info (307): Image "number" did not recognize that reduction

Intel® Fortran Compiler Classic and Intel® Fortran Compiler Developer Guide and Reference 1

677

Numbe
r

Severity Level, Number, and Message Text; Condition Symbol and Explanation

FOR$IOS_ICAF_UNKNOWN_REDUCTION. Pertains to user-defined reduction operations.

308 info (308): Image "number" detected a bad argument

FOR$IOS_ICAF_ERROR_BAD_ARG.

309 info (309): Image "number" had an internal error

FOR$IOS_ICAF_INTERNAL_ERROR.

310 info (310): Image "number" had a pipe IO error

FOR$IOS_ICAF_ERROR_PIPE.

311 info (311): Image "number" used feature not supported on this architecture

FOR$IOS_ICAF_NOT_SUPPORTED_IA32. Coarray features are not supported on IA-32
architecture for the 2003 Standard or later.

312 info (312): Image "number" had an internal error configuring dynamic memory

FOR$IOS_ICAF_INTERNAL_DYN_CONFIG. Pertains to indirect pointers (one where the pointer is
the address of memory on another image).

313 info (313): Image "number" internal error attaching dynamic memory

FOR$IOS_ICAF_ERROR_DYN_ATTACH. Pertains to indirect pointers (one where the pointer is
the address of memory on another image).

314 info (314): Image "number" internal error detaching dynamic memory

FOR$IOS_ICAF_ERROR_DYN_DETACH. Pertains to indirect pointers (one where the pointer is
the address of memory on another image).

315 info (315): Image "number" used an unknown reduction operator

FOR$IOS_UNKNOWN_REDUCTION_OP.

316 info (316): Image "number" unknown datatype for reduction operator

FOR$IOS_UNKNOWN_FTYPE_REDUCE.

317 info (317): Image "number" non-arithmetic datatype for reduction operator

FOR$IOS_NONARITH_TYPE_REDUCE.

318 info (318): Image "number" (len,root) arguments didn't match image 1's

FOR$IOS_MISMATCHBROADCAST. This pertains to the BROADCAST operation.

319 info (319): Image "number" (len,root, op) arguments didn't match image 1's

FOR$IOS_MISMATCHBROADCAST_OP. This pertains to the BROADCAST operation.

320 error (320): Image "number" ERROR STOP statement is not supported

FOR$IOS_NO_ERROR_STOP.

321 info (321): Image "number" Double initialization of coarray support

FOR$IOS_DOUBLE_INIT.

322 info (322): Environment variable '%s' should be defined to 'YES' or 'NO'

FOR$IOS_ENV_VAR_NEEDS_YES_OR_NO.

323 error (323): Image "number" had internal error in critical region support

FOR$IOS_INTERNAL_ERROR_CRITICAL.

 1 Intel® Fortran Compiler Classic and Intel® Fortran Compiler Developer Guide and Reference

678

Numbe
r

Severity Level, Number, and Message Text; Condition Symbol and Explanation

324 error (324): Image "number" could not force unlock of critical region held by failed
image

FOR$IOS_FORCE_UNLOCK_FAIL.

325 error (325): Image "number"; can't do this operation on an inactive team

FOR$IOS_TEAM_NOT_ACTIVE.

326 error (326): Image "number"; more sub-teams than images

FOR$IOS_TOO_MANY_SUBTEAMS.

327 error (327): Image "number"; mix of default new ids and specified new ids

FOR$IOS_MIXED_DEFAULT_IDS.

328 error (328): Image "number": may not delete or free active team variable

FOR$IOS_TEAM_ACTIVE_NO_FREE.

329 error (329): Image "number": the specified team does not exist

FOR$IOS_NO_SUCH_TEAM.

330 error (330): Image "number": a failed image means a 'hole' in the new image-ids

FOR$IOS_HOLE_IN_IMAGE_IDS.

331 error (331): Image "number": may only change to a team which is the result of FORM
TEAM

FOR$IOS_NOT_FROM_FORM_TEAM.

332 error (332): Image "number": there are no non-failed images for this operation

FOR$IOS_NO_LIVE_IMAGES.

333 error (333): Image "number": team object has wrong version number

FOR$IOS_BAD_TEAM_VERSION.

334 error (334): Image "number": specified invalid team

FOR$IOS_SPECIFY_BAD_TEAM.

335 warning (335): Image "number": the DIM argument "number" to THIS_IMAGE is out-
of-range

FOR$IOS_OUT_OF_COBOUNDS.

399 severe (399): Diagnostic message buffer overflow, hex message number was "hex-
number"

FOR$IOS_MSGBUFOVF.

450 info (450): forrtl:

FOR$IOS_FORRTL_XXX.

451 info (451): forrtl: info ("number"):

FOR$IOS_FORRTL_INFO.

452 info (452): forrtl: warning ("number"):

FOR$IOS_FORRTL_WARNING.

453 info (453): forrtl: error ("number"):

Intel® Fortran Compiler Classic and Intel® Fortran Compiler Developer Guide and Reference 1

679

Numbe
r

Severity Level, Number, and Message Text; Condition Symbol and Explanation

FOR$IOS_FORRTL_ERROR.

454 info (454): forrtl: severe ("number"):

FOR$IOS_FORRTL_SEVERE.

455 info (455): forrtl

FOR$IOS_FORRTL.

496 warning (496): BACKSPACE is a no-op on a terminal device

FOR$IOS_BACKSPCON.

497 warning (497): EOF is a no-op on a terminal device

FOR$IOS_EOFFILECON.

498 warning (498): ENDFILE is a no-op on a terminal device

FOR$IOS_ENDFILECON.

499 warning (499): REWIND is a no-op on terminal device

FOR$IOS_REWINDCON.

500 severe (500): Message not found

FOR$IOS_ MSG_NOT_FOUND. An internal error occurred in error-message processing.

501 severe (501): Insufficient memory to allocate Fortran RTL message

FOR$IOS_NO_MEMORY_0.

502 severe (502): Insufficient memory to allocate Fortran RTL message buffer, message
#"number"

FOR$IOS_NO_MEMORY_1.

503 severe (503): Insufficient memory to allocate Fortran RTL message buffer, message
#"number" = hex "hex-number"

FOR$IOS_NO_MEMORY_2.

504 severe (504): FormatMessage failed for system message number "number"

FOR$IOS_MSG_FAILED .

505 info (505): Intel(r) Visual Fortran runtime error

FOR$IOS_VISUAL_ERROR.

506 info (506): The allocation of dynamic common "string" of size "string" in procedure
"string" failed

FOR$IOS_ALLOC_DYN_COMM.

508 info (508): The current size of dynamic common "string" is "string"

FOR$IOS_CURR_SIZE_COMM.

509 info (509): The declared size in procedure "string" is "string" bytes

FOR$IOS_DECL_SIZE.

510 info (510): Heap Allocation Failure while creating common "string" in procedure
"string"

FOR$IOS_HEAP_ALLOC.

 1 Intel® Fortran Compiler Classic and Intel® Fortran Compiler Developer Guide and Reference

680

Numbe
r

Severity Level, Number, and Message Text; Condition Symbol and Explanation

512 info (512): Intel(r) Visual Fortran runtime error

FOR$IOS_VISUAL_FORTRAN.

514 info (514): , line "string", position "number"

FOR$IOS_LINE_AND_POS.

515 info (515): "string"Allocate Dynamic Common Error - "string"

FOR$IOS_ALLOC_COMM_ERR.

516 info (516): Allocation Failure

FOR$IOS_ALLOC_FAIL.

517 info (517): Inconsistent Common Size

FOR$IOS_INC_COMM_SIZE.

518 info (518): Empty Heap

FOR$IOS_EMPTY_HEAP.

519 info (519): Incrementally linked image--PC correlation disabled

FOR$IOS_INCR_LINKED.

520 info (520): Stack trace terminated abnormally

FOR$IOS_TRACE_ABNORMAL.

521 info (521): Stop - Program terminated

FOR$IOS_STOP_TERMINATED.

522 info (522): Return code

FOR$IOS_RETURN_CODE.

523 info (523): File name missing or blank - please enter file name

FOR$IOS_NAME_MISSING.

524 info (524): UNIT "number"?

FOR$IOS_UNIT_D.

525 warning (525): IEEE_DIVIDE_BY_ZERO is signaling

FOR$IOS_STOP_EX_ZERODIV.

526 warning (526): IEEE_INVALID is signaling

FOR$IOS_STOP_EX_INVAL.

527 warning (527): IEEE_OVERFLOW is signaling

FOR$IOS_STOP_EX_OVRFL.

528 warning (528): IEEE_UNDERFLOW is signaling

FOR$IOS_STOP_EX_UNDFL.

529 Info (529): Attempt to close a unit which was not open.

FOR$IOS_SYNERRNAM. The unit number specified on a CLOSE statement is not currently open.

530 info (530): FILE= specifier ignored when STATUS has value SCRATCH

Intel® Fortran Compiler Classic and Intel® Fortran Compiler Developer Guide and Reference 1

681

Numbe
r

Severity Level, Number, and Message Text; Condition Symbol and Explanation

FOR$IOS_NAMED_SCRATCH.

531 error (531): SEGMENTED record length includes control bytes, must be greater than
4, unit "number", file "string"

FOR$IOS_SEGINCRLEN.

540 severe (540): Array or substring subscript expression out of range

FOR$IOS_F6096. An expression used to index an array was smaller than the lower dimension
bound or larger than the upper dimension bound.

541 severe (541): CHARACTER substring expression out of range

FOR$IOS_F6097. An expression used to index a character substring was illegal.

542 severe (542): Label not found in assigned GOTO list

FOR$IOS_F6098. The label assigned to the integer-variable name was not specified in the label
list of the assigned GOTO statement.

543 severe (543): INTEGER arithmetic overflow

FOR$IOS_F6099. This error occurs whenever integer arithmetic results in overflow.

544 severe (544): INTEGER overflow on input

FOR$IOS_F6100. An integer item exceeded the legal size limits.
• An INTEGER (1) item must be in the range -127 to 128.
• An INTEGER (2) item must be in the range -32,767 to 32,768.
• An INTEGER (4) item must be in the range -2,147,483,647 to 2,147,483,648.

545 severe (545): Invalid INTEGER

FOR$IOS_F6101. Either an illegal character appeared as part of an integer, or a numeric
character larger than the radix was used in an alternate radix specifier.

546 severe (546): REAL indefinite (uninitialized or previous error)

FOR$IOS_F6102. An invalid real number was read from a file, an internal variable, or the
console. This can happen if an invalid number is generated by passing an illegal argument to an
intrinsic function -- for example, SQRT(-1) or ASIN(2). If the invalid result is written and then
later read, the error will be generated.

547 severe (547): Invalid REAL

FOR$IOS_F6103. An illegal character appeared as part of a real number.

548 severe (548): REAL math overflow

FOR$IOS_F6104. A real value was too large. Floating-point overflows in either direct or
emulated mode generate NaN (Not-A-Number) exceptions, which appear in the output field as
asterisks (*) or the letters NAN.

549 severe (549): No matching CASE found for SELECT CASE

FOR$IOS_F6105.

550 severe (550): INTEGER assignment overflow

FOR$IOS_F6106. This error occurs when assignment to an integer is out of range.

551 severe (551): Formatted I/O not consistent with OPEN options

FOR$IOS_F6200. The program tried to perform formatted I/O on a unit opened with
FORM='UNFORMATTED' or FORM='BINARY'.

 1 Intel® Fortran Compiler Classic and Intel® Fortran Compiler Developer Guide and Reference

682

Numbe
r

Severity Level, Number, and Message Text; Condition Symbol and Explanation

552 severe (552): List-directed I/O not consistent with OPEN options

FOR$IOS_F6201. The program tried to perform list-directed I/O on a file that was not opened
with FORM='FORMATTED' and ACCESS='SEQUENTIAL'.

553 severe (553): Terminal I/O not consistent with OPEN options

FOR$IOS_F6202. When a special device such as CON, LPT1, or PRN is opened in an OPEN
statement, its access must be sequential and its format must be either formatted or binary. By
default ACCESS='SEQUENTIAL' and FORM='FORMATTED' in OPEN statements.

To generate this error the device's OPEN statement must contain an option not appropriate for
a terminal device, such as ACCESS='DIRECT' or FORM='UNFORMATTED'.

554 severe (554): Direct I/O not consistent with OPEN options

FOR$IOS_F6203. A REC=option was included in a statement that transferred data to a file that
was opened with the ACCESS='SEQUENTIAL' option.

555 severe (555): Unformatted I/O not consistent with OPEN options

FOR$IOS_F6204. If a file is opened with FORM='FORMATTED', unformatted or binary data
transfer is prohibited.

556 severe (556): A edit descriptor expected for CHARACTER

FOR$IOS_F6205. The A edit descriptor was not specified when a character data item was read
or written using formatted I/O.

557 severe (557): E, F, D, or G edit descriptor expected for REAL

FOR$IOS_F6206. The E, F, D, or G edit descriptor was not specified when a real data item was
read or written using formatted I/O.

558 severe (558): I edit descriptor expected for INTEGER

FOR$IOS_F6207. The I edit descriptor was not specified when an integer data item was read or
written using formatted I/O.

559 severe (559): L edit descriptor expected for LOGICAL

FOR$IOS_F6208. The L edit descriptor was not specified when a logical data item was read or
written using formatted I/O.

560 severe (560): File already open: parameter mismatch

FOR$IOS_F6209. An OPEN statement specified a connection between a unit and a filename that
was already in effect. In this case, only the BLANK= specifier can have a different setting.

561 severe (561): Namelist I/O not consistent with OPEN options

FOR$IOS_F6210. The program tried to perform namelist I/O on a file that was not opened with
FORM='FORMATTED' and ACCESS='SEQUENTIAL'.

562 severe (562): IOFOCUS option illegal with non-window unit

FOR$IOS_F6211. IOFOCUS was specified in an OPEN or INQUIRE statement for a non-window
unit. The IOFOCUS option can only be used when the unit opened or inquired about is a
QuickWin child window.

563 severe (563): IOFOCUS option illegal without QuickWin

FOR$IOS_F6212. IOFOCUS was specified in an OPEN or INQUIRE statement for a non-QuickWin
application. The IOFOCUS option can only be used when the unit opened or inquired about is a
QuickWin child window.

Intel® Fortran Compiler Classic and Intel® Fortran Compiler Developer Guide and Reference 1

683

Numbe
r

Severity Level, Number, and Message Text; Condition Symbol and Explanation

564 severe (564): TITLE illegal with non-window unit

FOR$IOS_F6213. TITLE was specified in an OPEN or INQUIRE statement for a non-window unit.
The TITLE option can only be used when the unit opened or inquired about is a QuickWin child
window.

565 severe (565): TITLE illegal without QuickWin

FOR$IOS_F6214. TITLE was specified in an OPEN or INQUIRE statement for a non-QuickWin
application. The TITLE option can only be used when the unit opened or inquired about is a
QuickWin child window.

566 severe (566): KEEP illegal for scratch file

FOR$IOS_F6300. STATUS='KEEP' was specified for a scratch file. This is illegal because scratch
files are automatically deleted at program termination.

567 severe (567): SCRATCH illegal for named file

FOR$IOS_F6301. STATUS='SCRATCH' should not be used in a statement that includes a
filename.

568 severe (568): Multiple radix specifiers

FOR$IOS_F6302. More than one alternate radix for numeric I/O was specified. F6302 can
indicate an error in spacing or a mismatched format for data of different radices.

569 severe (569): Illegal radix specifier

FOR$IOS_F6303. A radix specifier was not between 2 and 36, inclusive. Alternate radix
constants must be of the form n#ddd... where n is a radix from 2 to 36 inclusive and ddd... are
digits with values less than the radix. For example, 3#12 and 34#7AX are valid constants with
valid radix specifiers. 245#7A and 39#12 do not have valid radix specifiers and generate error
569 if input.

570 severe (570): Illegal STATUS value

FOR$IOS_F6304. An illegal value was used with the STATUS option.

STATUS accepts the following values:
• 'KEEP' or 'DELETE'' when used with CLOSE statements
• 'OLD', 'NEW', 'SCRATCH', or 'UNKNOWN' when used with OPEN statements

571 severe (571): Illegal MODE value

FOR$IOS_F6305. An illegal value was used with the MODE option.

MODE accepts the values 'READ', 'WRITE', or 'READWRITE'.

572 severe (572): Illegal ACCESS value

FOR$IOS_F6306. An illegal value was used with the ACCESS option.

ACCESS accepts the values 'SEQUENTIAL' and 'DIRECT'.

573 severe (573): Illegal BLANK value

FOR$IOS_F6307. An illegal value was used with the BLANK option.

BLANK accepts the values 'NULL' and 'ZERO'.

574 severe (574): Illegal FORM value

FOR$IOS_F6308. An illegal value was used with the FORM option.

FORM accepts the following values: 'FORMATTED', 'UNFORMATTED', and 'BINARY'.

 1 Intel® Fortran Compiler Classic and Intel® Fortran Compiler Developer Guide and Reference

684

Numbe
r

Severity Level, Number, and Message Text; Condition Symbol and Explanation

575 severe (575): Illegal SHARE value

FOR$IOS_F6309. An illegal value was used with the SHARE option.

SHARE accepts the values 'COMPAT', 'DENYRW', 'DENYWR', 'DENYRD', and 'DENYNONE'.

576 severe (576): illegal LOCKMODE value

FOR$IOS_F6310.

577 severe (577): Illegal record number

FOR$IOS_F6311. An invalid number was specified as the record number for a direct-access file.

The first valid record number for direct-access files is 1.

578 severe (578): No unit number associated with *

FOR$IOS_F6312. In an INQUIRE statement, the NUMBER option was specified for the file
associated with * (console).

579 severe (579): illegal RECORDS value

FOR$IOS_F6313.

580 severe (580): Illegal unit number

FOR$IOS_F6314. An illegal unit number was specified.

Legal unit numbers can range from 0 through 2**31-1, inclusive.

581 severe (581): Illegal RECL value

FOR$IOS_F6315. A negative or zero record length was specified for a direct file.

The smallest valid record length for direct files is 1.

582 severe (582): Array already allocated

FOR$IOS_F6316. The program attempted to ALLOCATE an already allocated array.

583 severe (583): Array size zero or negative

FOR$IOS_F6317. The size specified for an array in an ALLOCATE statement must be greater
than zero.

584 severe (584): Non-HUGE array exceeds 64K

FOR$IOS_F6318.

585 severe (585): Array not allocated

FOR$IOS_F6319. The program attempted to DEALLOCATE an array that was never allocated.

586 severe (586): BACKSPACE illegal on terminal device

FOR$IOS_F6400. A BACKSPACE statement specified a unit connected to a terminal device such
as a terminal or printer.

587 severe (587): EOF illegal on terminal device

FOR$IOS_F6401. An EOF intrinsic function specified a unit connected to a terminal device such
as a terminal or printer.

588 severe (588): ENDFILE illegal on terminal device

FOR$IOS_F6402. An ENDFILE statement specified a unit connected to a terminal device such as
a terminal or printer.

Intel® Fortran Compiler Classic and Intel® Fortran Compiler Developer Guide and Reference 1

685

Numbe
r

Severity Level, Number, and Message Text; Condition Symbol and Explanation

589 severe (589): REWIND illegal on terminal device

FOR$IOS_F6403. A REWIND statement specified a unit connected to a terminal device such as
a terminal or printer.

590 severe (590): DELETE illegal for read-only file

FOR$IOS_F6404. A CLOSE statement specified STATUS='DELETE' for a read-only file.

591 severe (591): External I/O illegal beyond end of file

FOR$IOS_F6405. The program tried to access a file after executing an ENDFILE statement or
after it encountered the end-of-file record during a read operation.

A BACKSPACE, REWIND, or OPEN statement must be used to reposition the file before
execution of any I/O statement that transfers data.

592 severe (592): Truncation error: file closed

FOR$IOS_F6406.

593 severe (593): Terminal buffer overflow

FOR$IOS_F6407. More than 131 characters were input to a record of a unit connected to the
terminal (keyboard). Note that the operating system may impose additional limits on the
number of characters that can be input to the terminal in a single record.

594 severe (594): Comma delimiter disabled after left repositioning

FOR$IOS_F6408. If you have record lengths that exceed the buffer size associated with the
record, (for instance, the record is a file with the buffer set by BLOCKSIZE in the OPEN
statement), either you should not do left tabbing within the record, or you should not use
commas as field delimiters. This is because commas are disabled as input field delimiters if left
tabbing leaves the record positioned in a previous buffer.

For example, consider you have a file LONG.DAT that is one continuous record with data fields
separated by commas. You then set the buffer associated with the file to 512 bytes, read more
than one buffer size of data, tab left to data in the previous buffer, and attempt to read further
data, as follows:

 INTEGER value(300)
 OPEN (1, FILE = 'LONG.DAT', BLOCKSIZE = 512)s
 READ (1, 100) (value(i), i = 1, 300)s
100 FORMAT (290I2,TL50,10I2)
In this case, error 594 occurs.

595 severe (595): LOCKING illegal on sequential file

FOR$IOS_F6409.

596 severe (596): file already locked or unlocked

FOR$IOS_F6410.

597 severe (597): file deadlocked

FOR$IOS_F6411.

599 severe (599): File already connected to a different unit

FOR$IOS_F6413. The program tried to connect an already connected file to a new unit.

A file can be connected to only one unit at a time.

600 severe (600): Access not allowed

 1 Intel® Fortran Compiler Classic and Intel® Fortran Compiler Developer Guide and Reference

686

Numbe
r

Severity Level, Number, and Message Text; Condition Symbol and Explanation

FOR$IOS_F6414.

This error can be caused by one of the following:
• The filename specified in an OPEN statement was a directory.
• An OPEN statement tried to open a read-only file for writing.
• The file was opened with SHARE='DENYRW' by another process.

601 severe (601): File already exists

FOR$IOS_F6415. An OPEN statement specified STATUS='NEW' for a file that already exists.

602 severe (602): File not found

FOR$IOS_F6416. An OPEN statement specified STATUS='OLD' for a specified file or a directory
path that does not exist.

603 severe (603): Too many open files

FOR$IOS_F6417. The program exceeded the number of open files the operating system allows.

604 severe (604): Too many units connected

FOR$IOS_F6418. The program exceeded the number of units that can be connected at one
time. Units are connected with the OPEN statement.

605 severe (605): Illegal structure for unformatted file

FOR$IOS_F6419. The file was opened with FORM='UNFORMATTED' and ACCESS='SEQUENTIAL',
but its internal physical structure was incorrect or inconsistent. Possible causes: the file was
created in another mode or by a non-Fortran program.

606 severe (606): Unknown unit number

FOR$IOS_F6420. A statement such as BACKSPACE or ENDFILE specified a file that had not yet
been opened. (The READ and WRITE statements do not cause this problem because they
prompt you for a file if the file has not been opened yet.)

607 severe (607): File read-only or locked against writing

FOR$IOS_F6421. The program tried to transfer data to a file that was opened in read-only
mode or locked against writing.

The error message may indicate a CLOSE error when the fault is actually coming from WRITE.
This is because the error is not discovered until the program tries to write buffered data when it
closes the file.

608 severe (608): No space left on device

FOR$IOS_F6422. The program tried to transfer data to a file residing on a device (such as a
hard disk) that was out of storage space.

609 severe (609): Too many threads

FOR$IOS_F6423. Too many threads were active simultaneously. At most, 32 threads can be
active at one time. Close any unnecessary processes or child windows within your application.

610 severe (610): Invalid argument

FOR$IOS_F6424.

611 severe (611): BACKSPACE illegal for SEQUENTIAL write-only files

FOR$IOS_F6425. The BACKSPACE statement is not allowed in files opened with MODE='WRITE'
(write-only status) because BACKSPACE requires reading the previous record in the file to
provide positioning.

Intel® Fortran Compiler Classic and Intel® Fortran Compiler Developer Guide and Reference 1

687

Numbe
r

Severity Level, Number, and Message Text; Condition Symbol and Explanation

Resolve the problem by giving the file read access or by avoiding the BACKSPACE statement.
Note that the REWIND statement is valid for files opened as write-only.

612 severe (612): File not open for reading or file locked

FOR$IOS_F6500. The program tried to read from a file that was not opened for reading or was
locked.

613 severe (613): End of file encountered

FOR$IOS_F6501. The program tried to read more data than the file contains.

614 severe (614): Positive integer expected in repeat field

FOR$IOS_F6502. When the i*c form is used in list-directed input, the i must be a positive
integer. For example, consider the following statement:

 READ(*,*) a, b
Input 2*56.7 is accepted, but input 2.1*56.7 returns error 614.

615 severe (615): Multiple repeat field

FOR$IOS_F6503. In list-directed input of the form i*c, an extra repeat field was used. For
example, consider the following:

 READ(*,*) I, J, K
Input of 2*1*3 returns this error. The 2*1 means send two values, each 1; the *3 is an error.

616 severe (616): Invalid number in input

FOR$IOS_F6504. Some of the values in a list-directed input record were not numeric. For
example, consider the following:

 READ(*,*) I, J
The preceding statement would cause this error if the input were: 123 'abc'.

617 severe (617): Invalid string in input

FOR$IOS_F6505. A string item was not enclosed in single quotation marks.

618 severe (618): Comma missing in COMPLEX input

FOR$IOS_F6506. When using list-directed input, the real and imaginary components of a
complex number were not separated by a comma.

619 severe (619): T or F expected in LOGICAL read

FOR$IOS_F6507. The wrong format was used for the input field for logical data.

The input field for logical data consists of optional blanks, followed by an optional decimal point,
followed by a T for true or F for false. The T or F may be followed by additional characters in
the field, so that .TRUE. and .FALSE. are acceptable input forms.

620 severe (620): Too many bytes read from unformatted record

FOR$IOS_F6508. The program tried to read more data from an unformatted file than the
current record contained. If the program was reading from an unformatted direct file, it tried to
read more than the fixed record length as specified by the RECL option. If the program was
reading from an unformatted sequential file, it tried to read more data than was written to the
record.

621 severe (621): H or apostrophe edit descriptor illegal on input

 1 Intel® Fortran Compiler Classic and Intel® Fortran Compiler Developer Guide and Reference

688

Numbe
r

Severity Level, Number, and Message Text; Condition Symbol and Explanation

FOR$IOS_F6509. Hollerith (H) or apostrophe edit descriptors were encountered in a format
used by a READ statement.

622 severe (622): Illegal character in hexadecimal input

FOR$IOS_F6510. The input field contained a character that was not hexadecimal.

Legal hexadecimal characters are 0 - 9 and A - F.

623 severe (623): Variable name not found

FOR$IOS_F6511. A name encountered on input from a namelist record is not declared in the
corresponding NAMELIST statement.

624 severe (624): Invalid NAMELIST input format

FOR$IOS_F6512. The input record is not in the correct form for NAMELIST input.

625 severe (625): Wrong number of array dimensions

FOR$IOS_F6513. In NAMELIST input, an array name was qualified with a different number of
subscripts than its declaration, or a non-array name was qualified.

626 severe (626): Array subscript exceeds allocated area

FOR$IOS_F6514. A subscript was specified in NAMELIST input which exceeded the declared
dimensions of the array.

627 severe (627): Invalid subrange in NAMELIST input

FOR$IOS_F6515. A character item in namelist input was qualified with a subrange that did not
meet the requirement that 1 <= e1 <= e2 <= len (where "len" is the length of the character
item, "e1" is the leftmost position of the substring, and "e2" is the rightmost position of the
substring).

628 severe (628): Substring range specified on non-CHARACTER item

FOR$IOS_F6516. A non-CHARACTER item in namelist input was qualified with a substring
range.

629 severe (629): Internal file overflow

FOR$IOS_F6600. The program either overflowed an internal-file record or tried to write to a
record beyond the end of an internal file.

630 severe (630): Direct record overflow

FOR$IOS_F6601. The program tried to write more than the number of bytes specified in the
RECL option to an individual record of a direct-access file.

631 severe (631):Numeric field bigger than record size

FOR$IOS_F6602. The program tried to write a non-CHARACTER item across a record boundary
in list-directed or namelist output. Only character constants can cross record boundaries.

632 severe (632): Heap space limit exceeded

FOR$IOS_F6700. The program ran out of heap space. The ALLOCATE statement and various
internal functions allocate memory from the heap. This error will be generated when the last of
the heap space is used up.

633 severe (633): Scratch file name limit exceeded

FOR$IOS_F6701. The program exhausted the template used to generate unique scratch-file
names. The maximum number of scratch files that can be open at one time is 26.

Intel® Fortran Compiler Classic and Intel® Fortran Compiler Developer Guide and Reference 1

689

Numbe
r

Severity Level, Number, and Message Text; Condition Symbol and Explanation

634 severe (634): D field exceeds W field in ES edit descriptor

FOR$IOS_F6970. The specified decimal length d exceeds the specified total field width w in an
ES edit descriptor.

635 severe (635): D field exceeds W field in EN edit descriptor

FOR$IOS_F6971. The specified decimal length d exceeds the specified total field width w in an
EN edit descriptor.

636 severe (636): Exponent of 0 not allowed in format

FOR$IOS_F6972.

637 severe (637): Integer expected in format

FOR$IOS_F6980. An edit descriptor lacked a required integer value. For example, consider the
following:

 WRITE(*, 100) I, J
 100 FORMAT (I2, TL, I2)
The preceding code will cause this error because an integer is expected after TL.

638 severe (638): Initial left parenthesis expected in format

FOR$IOS_F6981. A format did not begin with a left parenthesis (().

639 severe (639): Positive integer expected in format

FOR$IOS_F6982. A zero or negative integer value was used in a format.

Negative integer values can appear only with the P edit descriptor. Integer values of 0 can
appear only in the d and m fields of numeric edit descriptors.

640 severe (640): Repeat count on nonrepeatable descriptor

FOR$IOS_F6983. One or more BN, BZ, S, SS, SP, T, TL, TR, /, $, :, or apostrophe (') edit
descriptors had repeat counts associated with them.

641 severe (641): Integer expected preceding H, X, or P edit descriptor

FOR$IOS_F6984. An integer did not precede a (nonrepeatable) H, X, or P edit descriptor.

The correct formats for these descriptors are nH, nX, and kP, respectively, where n is a positive
integer and k is an optionally signed integer.

642 severe (642): N or Z expected after B in format

FOR$IOS_F6985. To control interpretation of embedded and trailing blanks within numeric input
fields, you must specify BN (to ignore them) or BZ (to interpret them as zeros).

643 severe (643): Format nesting limit exceeded

FOR$IOS_F6986. More than sixteen sets of parentheses were nested inside the main level of
parentheses in a format.

644 severe (644): '.' expected in format

FOR$IOS_F6987. No period appeared between the w and d fields of a D, E, F, or G edit
descriptor.

645 severe (645): Unexpected end of format

FOR$IOS_F6988. An incomplete format was used.

 1 Intel® Fortran Compiler Classic and Intel® Fortran Compiler Developer Guide and Reference

690

Numbe
r

Severity Level, Number, and Message Text; Condition Symbol and Explanation

Improperly matched parentheses, an unfinished Hollerith (H) descriptor, or another incomplete
descriptor specification can cause this error.

646 severe (646): Unexpected character in format

FOR$IOS_F6989. A character that cannot be interpreted as part of a valid edit descriptor was
used in a format. For example, consider the following:

 WRITE(*, 100) I, J
 100 FORMAT (I2, TL4.5, I2)
The code will generate this error because TL4.5 is not a valid edit descriptor. An integer must
follow TL.

647 severe (647): M field exceeds W field in I edit descriptor

FOR$IOS_F6990. In syntax Iw.m, the value of m cannot exceed the value of w.

648 severe (648): Integer out of range in format

FOR$IOS_F6991. An integer value specified in an edit descriptor was too large to represent as a
4-byte integer.

649 severe (649): format not set by ASSIGN

FOR$IOS_F6992. The format specifier in a READ, WRITE, or PRINT statement was an integer
variable, but an ASSIGN statement did not properly assign it the statement label of a FORMAT
statement in the same program unit.

650 severe (650): Separator expected in format

FOR$IOS_F6993. Within format specifications, edit descriptors must be separated by commas
or slashes (/).

651 severe (651): %c or $: nonstandard edit descriptor in format

FOR$IOS_F6994.

652 severe (652): Z: nonstandard edit descriptor in format

FOR$IOS_F6995. Z is not a standard edit descriptor in format.

If you want to transfer hexadecimal values, you must use the edit descriptor form Zw[.m],
where w is the field width and m is the minimum number of digits that must be in the field
(including leading zeros).

653 severe (653): DOS graphics not supported under Windows NT

FOR$IOS_F6996.

654 severe (654): Graphics error

FOR$IOS_F6997. An OPEN statement in which IOFOCUS was TRUE, either explicitly or by
default, failed because the new window could not receive focus. The window handle may be
invalid, or closed, or there may be a memory resource problem.

655 severe (655): Using QuickWin is illegal in console application

FOR$IOS_F6998. A call to QuickWin from a console application was encountered during
execution.

656 severe (656): Illegal 'ADVANCE' value

FOR$IOS_F6999. The ADVANCE option can only take the values 'YES' and 'NO'.
ADVANCE='YES' is the default. ADVANCE is a READ statement option.

Intel® Fortran Compiler Classic and Intel® Fortran Compiler Developer Guide and Reference 1

691

Numbe
r

Severity Level, Number, and Message Text; Condition Symbol and Explanation

657 severe (657): DIM argument to SIZE out of range

FOR$IOS_F6702. The argument specified for DIM must be greater than or equal to 1, and less
than or equal to the number of dimensions in the specified array. Consider the following:

 i = SIZE (array, DIM = dim)
In this case, 1 <= dim <= n, where n is the number of dimensions in array.

658 severe (658): Undefined POINTER used as argument to ASSOCIATED function

FOR$IOS_F6703. A POINTER used as an argument to the ASSOCIATED function must be
defined; that is, assigned to a target, allocated, or nullified.

659 severe (659): Reference to uninitialized POINTER

FOR$IOS_F6704. Except in an assignment statement, a pointer must not be referenced until it
has been initialized: assigned to a target, allocated or nullified.

660 severe (660): Reference to POINTER which is not associated

FOR$IOS_F6705. Except in an assignment statement and certain procedure references, a
pointer must not be referenced until it has been associated: either assigned to a target or
allocated.

661 severe (661): Reference to uninitialized POINTER 'pointer'

FOR$IOS_F6706. Except in an assignment statement, a pointer must not be referenced until it
has been initialized: assigned to a target, allocated or nullified.

662 severe (662): reference to POINTER "pointer" which is not associated

FOR$IOS_F6707. Except in an assignment statement and certain procedure references, a
pointer must not be referenced until it has been associated: either assigned to a target or
allocated.

663 severe (663): Out of range: substring starting position "pos" is less than 1

FOR$IOS_F6708. A substring starting position must be a positive integer variable or expression
that indicates a position in the string: at least 1 and no greater than the length of the string.

664 severe (664): Out of range: substring ending position "pos" is greater than string
length 'len'

FOR$IOS_F6709. A substring ending position must be a positive integer variable or expression
that indicates a position in the string: at least 1 and no greater than the length of the string.

665 severe (665): Subscript "number" of "string" (value "var") is out of range
('first:last')

FOR$IOS_F6710. The subscript for a substring within a string is not a valid string position: at
least 1 and no greater than the length of the string.

666 severe (666): Subscript "number" of "string" (value "var") is out of range ('first:*')

FOR$IOS_F6711. The subscript for a substring within a string is not a valid string position: at
least 1 and no greater than the length of the string.

667 severe (667): VECTOR argument to PACK has incompatible character length

FOR$IOS_F6712. The character length of elements in the VECTOR argument to PACK is not the
same as the character length of elements in the array to be packed.

668 severe (668): VECTOR argument to PACK is too small

 1 Intel® Fortran Compiler Classic and Intel® Fortran Compiler Developer Guide and Reference

692

Numbe
r

Severity Level, Number, and Message Text; Condition Symbol and Explanation

FOR$IOS_F6713. The VECTOR argument to PACK must have at least as many elements as
there are true elements in MASK (the array that controls packing).

669 severe (669): SOURCE and PAD arguments to RESHAPE have different character
lengths

FOR$IOS_F6714. The character length of elements in the SOURCE and PAD arguments to PACK
must be the same.

670 severe (670): Element "number" of SHAPE argument to RESHAPE is negative

FOR$IOS_F6715. The SHAPE vector specifies the shape of the reshaped array. Since an array
cannot have a negative dimension, SHAPE cannot have a negative element.

671 severe (671): SOURCE too small for specified SHAPE in RESHAPE, and no PAD

FOR$IOS_F6716. If there is no PAD array, the SOURCE argument to RESHAPE must have
enough elements to make an array of the shape specified by SHAPE.

672 severe (672): Out of memory

FOR$IOS_F6717. The system ran out of memory while trying to make the array specified by
RESHAPE. If possible, reset your virtual memory size through the Windows* Control Panel, or
close unnecessary applications and deallocate all allocated arrays that are no longer needed.

673 severe (673): SHAPE and ORDER arguments to RESHAPE have different sizes ('size1'
and 'size2')

FOR$IOS_F6718. ORDER specifies the order of the array dimensions given in SHAPE, and they
must be vectors of the same size.

674 severe (674): Element "n" of ORDER argument to RESHAPE is out of range (range)

FOR$IOS_F6719. The ORDER argument specifies the order of the dimensions of the reshaped
array, and it must be a permuted list of (1, 2, ..., "n") where "n" is the highest dimension in the
reshaped array.

675 severe (675): Value "n" occurs twice in ORDER argument to RESHAPE

FOR$IOS_F6720. The ORDER vector specifies the order of the dimensions of the reshaped
array, and it must be a permuted list of (1, 2, ..., "n") where "n" is the highest dimension in the
reshaped array. No dimension can occur twice.

676 severe (676): Impossible nextelt overflow in RESHAPE

FOR$IOS_F6721.

677 severe (677): Invalid value "dim" for argument DIM for SPREAD of rank 'rank' source

FOR$IOS_F6722. The argument specified for DIM to SPREAD must be greater than or equal to
1, and less than or equal to one larger than the number of dimensions (rank) of SOURCE.
Consider the following statement:

 result = SPREAD (SOURCE= array, DIM = dim, NCOPIES = k)
In this case, 1 <= dim <= n+ 1, where nis the number of dimensions in array.

678 severe (678): Complex zero raised to power zero

FOR$IOS_F6723. Zero of any type (complex, real, or integer) cannot be raised to zero power.

679 severe (679): Complex zero raised to negative power

FOR$IOS_F6724. Zero of any type (complex, real, or integer) cannot be raised to a negative
power. Raising to a negative power inverts the operand.

Intel® Fortran Compiler Classic and Intel® Fortran Compiler Developer Guide and Reference 1

693

Numbe
r

Severity Level, Number, and Message Text; Condition Symbol and Explanation

680 severe (680): Impossible error in NAMELIST input

FOR$IOS_F6725.

681 severe (681):DIM argument to CSHIFT ("dim") is out of range

FOR$IOS_F6726. The optional argument DIM specifies the dimension along which to perform
the circular shift, and must be greater than or equal to 1 and less than or equal to the number
of dimensions in the array to be shifted. That is, 1 <= DIM <= n, where nis the number of
dimensions in the array to be shifted.

682 severe (682): DIM argument ("dim") to CSHIFT is out of range (1:"n")

FOR$IOS_F6727. The optional argument DIM specifies the dimension along which to perform
the circular shift, and must be greater than or equal to 1 and less than or equal to the number
of dimensions in the array to be shifted. That is, 1 <= DIM <= "n", where "n"is the number of
dimensions in the array to be shifted.

683 severe (683): Shape mismatch (dimension "dim") between ARRAY and SHIFT in
CSHIFT

FOR$IOS_F6728. The SHIFT argument to CSHIFT must be either scalar or an array one
dimension smaller than the shifted array. If an array, the shape of the SHIFT must conform to
the shape of the array being shifted in every dimension except the one being shifted along.

684 severe (684): Internal error - bad arguments to CSHIFT_CA

FOR$IOS_F6729.

685 severe (685): Internal error - bad arguments to CSHIFT_CAA

FOR$IOS_F6730.

686 severe (686): DATE argument to DATE_AND_TIME is too short (LEN="len")

FOR$IOS_F6731. The character DATE argument must have a length of at least eight to contain
the complete value.

687 severe (687): TIME argument to DATE_AND_TIME is too short (LEN="len")

FOR$IOS_F6732. The character TIME argument must have a length of at least ten to contain
the complete value.

688 severe (688): ZONE argument to DATE_AND_TIME is too short (LEN="len")

FOR$IOS_F6733. The character ZONE argument must have a length of at least five to contain
the complete value.

689 severe (689): VALUES argument to DATE_AND_TIME is too small ("size" elements)

FOR$IOS_F6734. The integer VALUES argument must be a one-dimensional array with a size of
at least eight to hold all returned values.

690 severe (690): Out of range: DIM argument to COUNT has value "dim"

FOR$IOS_F6735. The optional argument DIM specifies the dimension along which to count true
elements of MASK, and must be greater than or equal to 1 and less than or equal to the
number of dimensions in MASK. That is, 1 <= DIM <= "n", where "n" is the number of
dimensions in MASK.

691 severe (691): Out of range: DIM argument to COUNT has value "dim" with MASK of
rank "rank"

 1 Intel® Fortran Compiler Classic and Intel® Fortran Compiler Developer Guide and Reference

694

Numbe
r

Severity Level, Number, and Message Text; Condition Symbol and Explanation

FOR$IOS_F6736. The optional argument DIM specifies the dimension along which to count true
elements of MASK, and must be greater than or equal to 1 and less than or equal to the
number of dimensions (rank) in MASK. That is, 1 <= DIM <= "n", where "n"is the number of
dimensions in MASK.

692 severe (692): Out of range: DIM argument to PRODUCT has value "dim"

FOR$IOS_F6737. The optional argument DIM specifies the dimension along which to compute
the product of elements in an array, and must be greater than or equal to 1 and less than or
equal to the number of dimensions in the array. That is, 1 <= DIM <= "n", where "n"is the
number of dimensions in array holding the elements to be multiplied.

693 severe (693): Out of range: DIM argument to PRODUCT has value "dim" with ARRAY
of rank "rank"

FOR$IOS_F6738. The optional argument DIM specifies the dimension along which to compute
the product of elements in an array, and must be greater than or equal to 1 and less than or
equal to the number of dimensions (rank) of the array. That is, 1 <= DIM <= "n", where "n"is
the number of dimensions in array holding the elements to be multiplied.

694 severe (694): Out of range: DIM argument to SUM has value "dim" with ARRAY of
rank "rank"

FOR$IOS_F6739. The optional argument DIM specifies the dimension along which to sum the
elements of an array, and must be greater than or equal to 1 and less than or equal to the
number of dimensions (rank) of the array. That is, 1 <= DIM <= "n", where "n"is the number
of dimensions in array holding the elements to be summed.

695 severe (695): Real zero raised to zero power

FOR$IOS_F6740. Zero of any type (real, complex, or integer) cannot be raised to zero power.

696 severe (696): Real zero raised to negative power

FOR$IOS_F6741. Zero of any type (real, complex, or integer) cannot be raised to a negative
power. Raising to a negative power inverts the operand.

697 severe (697): Out of range: DIM argument to SUM has value "dim"

FOR$IOS_F6742. The optional argument DIM specifies the dimension along which to sum the
elements of an array, and must be greater than or equal to 1 and less than or equal to the
number of dimensions in the array. That is, 1 <= DIM <= "n", where "n"is the number of
dimensions in array holding the elements to be summed.

698 severe (698): DIM argument ("dim") to EOSHIFT is out of range (1:"n")

FOR$IOS_F6743. The optional argument DIM specifies the dimension along which to perform
an end-off shift in an array, and must be greater than or equal to 1 and less than or equal to
the number of dimensions in the array. That is, 1 <= DIM <= "n", where "n"is the number of
dimensions in array holding the elements to be shifted.

699 severe (699): Shape mismatch (dimension "dim") between ARRAY and BOUNDARY in
EOSHIFT

FOR$IOS_F6744. The BOUNDARY argument to EOSHIFT must be either scalar or an array one
dimension smaller than the shifted array. If an array, the shape of the BOUNDARY must
conform to the shape of the array being shifted in every dimension except the one being shifted
along.

700 severe (700): DIM argument to EOSHIFT is out of range ("dim")

Intel® Fortran Compiler Classic and Intel® Fortran Compiler Developer Guide and Reference 1

695

Numbe
r

Severity Level, Number, and Message Text; Condition Symbol and Explanation

FOR$IOS_F6745. The optional argument DIM specifies the dimension along which to perform
an end-off shift in an array, and must be greater than or equal to 1 and less than or equal to
the number of dimensions in the array. That is, 1 <= DIM <= "n", where "n"is the number of
dimensions in array holding the elements to be shifted.

701 severe (701): Shape mismatch (dimension "dim") between ARRAY and SHIFT in
EOSHIFT

FOR$IOS_F6746. The SHIFT argument to EOSHIFT must be either scalar or an array one
dimension smaller than the shifted array. If an array, the shape of the SHIFT must conform to
the shape of the array being shifted in every dimension except the one being shifted along.

702 severe (702): BOUNDARY argument to EOSHIFT has wrong LEN ("len1 instead of
len2")

FOR$IOS_F6747. The character length of elements in the BOUNDARY argument and in the
array being end-off shifted must be the same.

703 severe (703): BOUNDARY has LEN "len" instead of "len" to EOSHIFT

FOR$IOS_F6748.

704 severe (704): Internal error - bad arguments to EOSHIFT

FOR$IOS_F6749.

705 severe (705): GETARG: value of argument "number" is out of range

FOR$IOS_F6750. The value used for the number of the command-line argument to retrieve
with GETARG must be 0 or a positive integer. If the number of the argument to be retrieved is
greater than the actual number of arguments, blanks are returned, but no error occurs.

706 severe (706): FLUSH: value of LUNIT "number" is out of range

FOR$IOS_F6751. The unit number specifying which I/O unit to flush to its associated file must
be an integer between 0 and 2**31-1, inclusive. If the unit number is valid, but the unit is not
opened, error F6752 is generated.

707 severe (707): FLUSH: Unit "number" is not connected

FOR$IOS_F6752. The I/O unit specified to be flushed to its associated file is not connected to a
file.

708 severe (708): Invalid string length ("len") to ICHAR

FOR$IOS_F6753. The character argument to ICHAR must have length of one.

709 severe (709): Invalid string length ("len") to IACHAR

FOR$IOS_F6754. The character argument to IACHAR must have length of one.

710 severe (710): Integer zero raised to negative power

FOR$IOS_F6755. Zero of any type (integer, real, or complex) cannot be raised to a negative
power. Raising to a negative power inverts the operand.

711 severe (711): INTEGER zero raised to zero power

FOR$IOS_F6756. Zero of any type (integer, real, or complex) cannot be raised to zero power.

712 severe (712): SIZE argument ("size") to ISHFTC intrinsic out of range

FOR$IOS_F6757. The argument SIZE must be positive and must not exceed the bit size of the
integer being shifted. The bit size of this integer can be determined with the function BIT_SIZE.

713 severe (713): SHIFT argument ("shift") to ISHFTC intrinsic out of range

 1 Intel® Fortran Compiler Classic and Intel® Fortran Compiler Developer Guide and Reference

696

Numbe
r

Severity Level, Number, and Message Text; Condition Symbol and Explanation

FOR$IOS_F6758. The argument SHIFT to ISHFTC must be an integer whose absolute value is
less than or equal to the number of bits being shifted: either all bits in the number being
shifted or a subset specified by the optional argument SIZE.

714 severe (714): Out of range: DIM argument to LBOUND has value "dim"

FOR$IOS_F6759. The optional argument DIM specifies the dimension whose lower bound is to
be returned, and must be greater than or equal to 1 and less than or equal to the number of
dimensions in the array. That is, 1 <= DIM <= "n", where "n" is the number of dimensions in
array.

715 severe (715): Out of range: DIM argument ("dim") to LBOUND greater than ARRAY
rank "rank"

FOR$IOS_F6760. The optional argument DIM specifies the dimension whose lower bound is to
be returned, and must be greater than or equal to 1 and less than or equal to the number of
dimensions (rank) in the array. That is, 1 <= DIM <= "n", where "n" is the number of
dimensions in array.

716 severe (716): Out of range: DIM argument to MAXVAL has value "dim"

FOR$IOS_F6761. The optional argument DIM specifies the dimension along which maximum
values are returned, and must be greater than or equal to 1 and less than or equal to the
number of dimensions in the array. That is, 1 <= DIM <= "n", where "n" is the number of
dimensions in array.

717 severe (717): Out of range: DIM argument to MAXVAL has value "dim" with ARRAY of
rank "rank"

FOR$IOS_F6762. The optional argument DIM specifies the dimension along which maximum
values are returned, and must be greater than or equal to 1 and less than or equal to the
number of dimensions (rank) in the array. That is, 1 <= DIM <= "n", where "n" is the number
of dimensions in array.

718 severe (718): Cannot allocate temporary array -- out of memory

FOR$IOS_F6763. There is not enough memory space to hold a temporary array.

Dynamic memory allocation is limited by several factors, including swap file size and memory
requirements of other applications that are running. If you encounter an unexpectedly low limit,
you may need to reset your virtual memory size through the Windows Control Panel or redefine
the swap file size. Allocated arrays that are no longer needed should be deallocated.

719 severe (719): Attempt to DEALLOCATE part of a larger object

FOR$IOS_F6764. An attempt was made to DEALLOCATE a pointer to an array subsection or an
element within a derived type. The whole data object must be deallocated; parts cannot be
deallocated.

720 severe (720): Pointer in DEALLOCATE is ASSOCIATED with an ALLOCATABLE array

FOR$IOS_F6765. Deallocating a pointer associated with an allocatable target is illegal. Instead,
deallocate the target the pointer points to, which frees memory and disassociates the pointer.

721 severe (721): Attempt to DEALLOCATE an object which was not allocated

FOR$IOS_F6766. You cannot deallocate an array unless it has been previously allocated. You
cannot deallocate a pointer whose target was not created by allocation. The intrinsic function
ALLOCATED can be used to determine whether an allocatable array is currently allocated.

722 severe (722): Cannot ALLOCATE scalar POINTER -- out of memory

FOR$IOS_F6767. There is not enough memory space to allocate the pointer.

Intel® Fortran Compiler Classic and Intel® Fortran Compiler Developer Guide and Reference 1

697

Numbe
r

Severity Level, Number, and Message Text; Condition Symbol and Explanation

Dynamic memory allocation is limited by several factors, including swap file size and memory
requirements of other applications that are running. If you encounter an unexpectedly low limit,
you may need to reset your virtual memory size through the Windows* Control Panel or
redefine the swap file size. Allocated arrays that are no longer needed should be deallocated.

723 severe (723): DEALLOCATE: object not allocated/associated

FOR$IOS_F6768. You cannot deallocate an array unless it has been previously allocated. You
cannot deallocate a pointer whose target was not created by allocation, or a pointer that has
undefined association status.

The intrinsic function ALLOCATED can be used to determine whether an allocatable array is
currently allocated.

724 severe (724): Cannot ALLOCATE POINTER array -- out of memory

FOR$IOS_F6769. There is not enough memory space to allocate the POINTER array.

Dynamic memory allocation is limited by several factors, including swap file size and memory
requirements of other applications that are running. If you encounter an unexpectedly low limit,
you may need to reset your virtual memory size through the Windows* Control Panel or
redefine the swap file size. Allocated arrays that are no longer needed should be deallocated.

725 severe (725): DEALLOCATE: Array not allocated

FOR$IOS_F6770. It is illegal to DEALLOCATE an array that is not allocated. You can check the
allocation status of an array before deallocating with the ALLOCATED function.

726 severe (726): DEALLOCATE: Character array not allocated

FOR$IOS_F6771. It is illegal to DEALLOCATE an array that is not allocated. You can check the
allocation status of an array before deallocating with the ALLOCATED function.

727 severe (727): Cannot ALLOCATE allocatable array -- out of memory

FOR$IOS_F6772. There is not enough memory space to hold the array.

Dynamic memory allocation is limited by several factors, including swap file size and memory
requirements of other applications that are running. If you encounter an unexpectedly low limit,
you may need to reset your virtual memory size through the Windows* Control Panel or
redefine the swap file size. Allocated arrays that are no longer needed should be deallocated.

728 severe (728): Cannot allocate automatic object -- out of memory

FOR$IOS_F6773. There is not enough memory space to hold the automatic data object.

Dynamic memory allocation is limited by several factors, including swap file size and memory
requirements of other applications that are running. If you encounter an unexpectedly low limit,
you may need to reset your virtual memory size through the Windows* Control Panel or
redefine the swap file size. Allocated arrays that are no longer needed should be deallocated.

An automatic data object is an object that is declared in a procedure subprogram or interface,
is not a dummy argument, and depends on a nonconstant expression. For example:

 SUBROUTINE EXAMPLE (N)
 DIMENSION A (N, 5), B(10*N)
The arrays A and B in the example are automatic data objects.

729 severe (729): DEALLOCATE failure: ALLOCATABLE array is not ALLOCATED

FOR$IOS_F6774. It is illegal to DEALLOCATE an array that is not allocated. You can check the
allocation status of an array before deallocating with the ALLOCATED function.

730 severe (730): Out of range: DIM argument to MINVAL has value "dim"

 1 Intel® Fortran Compiler Classic and Intel® Fortran Compiler Developer Guide and Reference

698

Numbe
r

Severity Level, Number, and Message Text; Condition Symbol and Explanation

FOR$IOS_F6775. The optional argument DIM specifies the dimension along which minimum
values are returned, and must be greater than or equal to 1 and less than or equal to the
number of dimensions in the array. That is, 1 <= DIM <= "n", where "n"is the number of
dimensions in array.

731 severe (731): Out of range: DIM argument to MINVAL has value "dim" with ARRAY of
rank "rank"

FOR$IOS_F6776. The optional argument DIM specifies the dimension along which minimum
values are returned, and must be greater than or equal to 1 and less than or equal to the
number of dimensions (rank) in the array. That is, 1 <= DIM <= "n", where "n"is the number
of dimensions in array.

732 severe (732): P argument to MOD is double precision zero

FOR$IOS_F6777. MOD(A,P) is computed as A - INT(A,P) * P. P cannot be zero.

733 severe (733): P argument to MOD is integer zero

FOR$IOS_F6778. MOD(A,P) is computed as A - INT(A,P) * P. P cannot be zero.

734 severe (734): P argument to MOD is real zero

FOR$IOS_F6779. MOD(A,P) is computed as A - INT(A,P) * P. P cannot be zero.

735 severe (735): P argument to MODULO is real zero

FOR$IOS_F6780. MODULO(A,P) for real numbers is computed as A - FLOOR(A,P) * P. So, P
cannot be zero.

736 severe (736): P argument to MODULO is zero

FOR$IOS_F6781. In the function, MODULO(A,P), P cannot be zero.

737 severe (737): Argument S to NEAREST is zero

FOR$IOS_F6782. The sign of the S argument to NEAREST(X,S) determines the direction of the
search for the nearest number to X, and cannot be zero.

738 severe (738): Heap storage exhausted

FOR$IOS_F6783.

739 severe (739): PUT argument to RANDOM_SEED is too small

FOR$IOS_F6784. The integer array PUT must be greater than or equal to the number of
integers the processor uses to set the seed value. This number can be determined by calling
RANDOM_SEED with the SIZE argument. For example:

 INTEGER, ALLOCATABLE SEED
 CALL RANDOM_SEED() ! initialize processor
 CALL RANDOM_SEED(SIZE = K) ! get size of seed
 ALLOCATE SEED(K) ! allocate array
 CALL RANDOM_SEED(PUT = SEED) ! set the seed

NOTE
RANDOM_SEED can be called with at most one argument at a time.

740 severe (740): GET argument to RANDOM_SEED is too small

Intel® Fortran Compiler Classic and Intel® Fortran Compiler Developer Guide and Reference 1

699

Numbe
r

Severity Level, Number, and Message Text; Condition Symbol and Explanation

FOR$IOS_F6785. The integer array GET must be greater than or equal to the number of
integers the processor uses to set the seed value. This number can be determined by calling
RANDOM_SEED with the SIZE argument. For example:

 INTEGER, ALLOCATABLE SEED
 CALL RANDOM_SEED() ! initialize processor
 CALL RANDOM_SEED(SIZE = K) ! get size of seed
 ALLOCATE SEED(K) ! allocate array
 CALL RANDOM_SEED(GET = SEED) ! get the seed

NOTE
RANDOM_SEED can be called with at most one argument at a time.

741 severe (741): Recursive I/O reference

FOR$IOS_F6786.

742 severe (742): Argument to SHAPE intrinsic is not PRESENT

FOR$IOS_F6787.

743 severe (743): Out of range: DIM argument to UBOUND had value "dim"

FOR$IOS_F6788. The optional argument DIM specifies the dimension whose upper bound is to
be returned, and must be greater than or equal to 1 and less than or equal to the number of
dimensions in the array. That is, 1 <= DIM <= "n", where "n" is the number of dimensions in
array.

744 severe (744): DIM argument ("dim") to UBOUND greater than ARRAY rank "rank"

FOR$IOS_F6789. The optional argument DIM specifies the dimension whose upper bound is to
be returned, and must be greater than or equal to 1 and less than or equal to the number of
dimensions (rank) in the array. That is, 1 <= DIM <= "n", where "n" is the number of
dimensions in array.

745 severe (745): Out of range: UBOUND of assumed-size array with DIM==rank ("rank")

FOR$IOS_F6790. The optional argument DIM specifies the dimension whose upper bound is to
be returned.

An assumed-size array is a dummy argument in a subroutine or function, and the upper bound
of its last dimension is determined by the size of actual array passed to it. Assumed-size arrays
have no determined shape, and you cannot use UBOUND to determine the extent of the last
dimension. You can use UBOUND to determine the upper bound of one of the fixed dimensions,
in which case you must pass the dimension number along with the array name.

746 severe (746): Out of range: DIM argument ("dim") to UBOUND greater than ARRAY
rank

FOR$IOS_F6791. The optional argument DIM specifies the dimension whose upper bound is to
be returned, and must be greater than or equal to 1 and less than or equal to the number of
dimensions (rank) in the array. That is, 1 <= DIM <= "n", where "n" is the number of
dimensions in array.

747 severe (747): Shape mismatch: Dimension "shape" extents are "ext1" and "ext2"

FOR$IOS_F6792.

748 severe (748): Illegal POSITION value

FOR$IOS_F6793. An illegal value was used with the POSITION specifier.

 1 Intel® Fortran Compiler Classic and Intel® Fortran Compiler Developer Guide and Reference

700

Numbe
r

Severity Level, Number, and Message Text; Condition Symbol and Explanation

POSITION accepts the following values:
• 'ASIS' (the default)
• 'REWIND' - on Fortran I/O systems, this is the same as 'ASIS'
• 'APPEND'

749 severe (749): Illegal ACTION value

FOR$IOS_F6794. An illegal value was used with the ACTION specifier.

ACTIO accepts the following values:
• 'READ'
• 'WRITE'
• 'READWRITE' - the default

750 severe (750): DELIM= specifier not allowed for an UNFORMATTED file

FOR$IOS_F6795. The DELIM specifier is only allowed for files connected for formatted data
transfer. It is used to delimit character constants in list-directed an namelist output.

751 severe (751): Illegal DELIM value

FOR$IOS_F6796. An illegal value was used with the DELIM specifier.

DELIM accepts the following values:
• 'APOSTROPHE'
• 'QUOTE'
• 'NONE' - the default

752 severe (752): PAD= specifier not allowed for an UNFORMATTED file

FOR$IOS_F6797. The PAD specifier is only allowed for formatted input records. It indicates
whether the formatted input record is padded with blanks when an input list and format
specification requires more data than the record contains.

753 severe (753): Illegal PAD= value

FOR$IOS_F6798. An illegal value was used with the PAD specifier.

PAD accepts the following values:
• 'NO'
• 'YES' - the default

754 severe (754): Illegal CARRIAGECONTROL=value

FOR$IOS_F6799. An illegal value was used with the CARRIAGECONTROL specifier.

CARRIAGECONTROL accepts the following values:
• 'FORTRAN' - default if the unit is connected to a terminal or console
• 'LIST' - default for formatted files
• 'NONE' - default for unformatted files

755 severe (755): SIZE= specifier only allowed with ADVANCE='NO'

FOR$IOS_F6800. The SIZE specifier can only appear in a formatted, sequential READ
statement that has the specifier ADVANCE='NO' (indicating non-advancing input).

756 severe (756): Illegal character in binary input

FOR$IOS_F6801.

757 severe (757): Illegal character in octal input

Intel® Fortran Compiler Classic and Intel® Fortran Compiler Developer Guide and Reference 1

701

Numbe
r

Severity Level, Number, and Message Text; Condition Symbol and Explanation

FOR$IOS_F6802.

758 severe (758): End of record encountered

FOR$IOS_F6803.

759 severe (759): Illegal subscript in namelist input record

FOR$IOS_F6804.

760 severe (760): Error reported by 'EnumSystemLocales'

FOR$IOS_ LOCALE_ENUM_ERR.

761 severe (761): Cannot set environment variable "string"

FOR$IOS_ENV_VAR_SET_ERR.

762 info (762): Error freeing internal data structure.

FOR$IOS_IMPL_MEM_ERR.

763 severe (763): SIZE specifier must be integer type

FOR$IOS_SIZEBADTYPE.

764 info (764): PAD= specifier not allowed with 'f77rtl'

FOR$IOS_F77NOPAD.

765 warning (765): Destination string too small for result

FOR$IOS_DSTTOOSMALL.

766 info (766): Empty arg in retrieved command

FOR$IOS_ARGCERR.

767 warning (767): Environment variable is not defined

FOR$IOS_NOSUCHVAR.

768 warning (768): Internal file write-to-self; undefined results

FOR$IOS_WRITE_TO_SELF.

769 warning (769): RECL value must be a positive number

FOR$IOS_BAD_RECL_VAL.

770 warning (770): File-path is longer than Windows limit of 260

FOR$IOS_WINPATHLIM.

771 severe (771): A SYNC ALL statement could not perform a synchronization of all
images

FOR$IOS_SYNC_ALL_ERR.

772 severe (772): Image number "number" is not a valid image number; valid numbers
are 1 to "number"

FOR$IOS_IMAGE_OUT_OF_RANGE. A reference has been made to an image number that is not
a valid image number.

774 severe (774): Image-set array expression must not contain repeated values

FOR$IOS_IMG_SET_REPEATED. A SYNC IMAGES <image-list> statement was attempted. The
<image-list> contains duplicate values. This is not permitted by the standard.

 1 Intel® Fortran Compiler Classic and Intel® Fortran Compiler Developer Guide and Reference

702

Numbe
r

Severity Level, Number, and Message Text; Condition Symbol and Explanation

775 severe (775): The lock variable in a LOCK statement is already locked by the
executing image

FOR$IOS_LC_VAR_IS_LOCKED. An attempt was made to use a LOCK statement on a lock.
However, that lock has already been locked by this image.

776 severe (776): The lock variable in an UNLOCK statement is not already locked by the
executing image

FOR$IOS_LC_VAR_NOT_LOCKED. An attempt was made to use an UNLOCK statement on a
lock. However, that lock is currently unlocked; it has not been locked by this image.

777 severe (777): The lock variable in a LOCK statement is already locked by another
image

FOR$IOS_LC_VAR_LOCKED_OTHER_IMAGE. An attempt was made to use a LOCK statement on
a lock. However, that lock is already locked by another image.

778 severe (778): One of the images to be synchronized with has terminated

FOR$IOS_LC_STOPPED_IMAGE. The code has tried to synchronize with a set of images using a
SYNC statement. One of the images to be synchronized with has already terminated.

779 info (779): In coarray image "number"

FOR$IOS_FORRTL_IMAGE_IS. This is issued as part of the stack traceback from a fatal error.
The image listed is the one in which the error happened.

780 severe (780): The lock variable in an UNLOCK statement is locked by another image

FOR$IOS_LC_VAR_UNLOCKED_OTHER_IMAGE. An attempt was made to use a coarray UNLOCK
operation on a lock. However, that lock is locked by another image.

This may be the result of an error in the program that causes the code to think it has a lock
when it does not.

781 error (781): Only image 1 may read from unit '*'

FOR$IOS_ONLY_IMAGE_L_IO. It is a coarray rule that only image 1 may read from the
'console'.

782 severe (782): One of the images to be synchronized with has failed

FOR$IOS_LC_FAILED_IMAGE. A BARRIER operation was performed and one of the images
failed; the barrier completed with the remaining images.

783 severe (783): The lock variable in an UNLOCK statement is locked by a failed image

FOR$IOS_LC_UNLOCK_FAILED_IMAGE. The UNLOCK has failed.

784 error (784): EOR= must not be specified when the specifier ADVANCE='YES' also
appears

FOR$IOS_EOR_ADVANCE.

785 warning (785): File-path is longer than Intel(r) Fortran limit of 4096

FOR$IOS_FTNPATHLIM.

787 warning (787): Possible security issue: GetSystemDirectory call failed

FOR$IOS_NO_SYS_DIR. The cmd.exe used is not the one in the system directory.

Footnotes:
1 Identifies errors not returned by IOSTAT.

Intel® Fortran Compiler Classic and Intel® Fortran Compiler Developer Guide and Reference 1

703

Signal Handling on Linux*

A signal is an abnormal event generated by one of various sources, such as:

• A user of a terminal.
• Program or hardware error.
• Request of another program.
• When a process is stopped to allow access to the control terminal.

You can optionally set certain events to issue signals, for example:

• When a process resumes after being stopped
• When the status of a child process changes
• When input is ready at the terminal

Some signals terminate the receiving process if no action is taken (optionally creating a core file), while
others are simply ignored unless the process has requested otherwise.

Except for certain signals, calling the signal or sigaction routine allows specified signals to be ignored or
causes an interrupt (transfer of control) to the location of a user-written signal handler.

You can establish one of the following actions for a signal with a call to signal:

• Ignore the specified signal (identified by number).
• Use the default action for the specified signal, which can reset a previously established action.
• Transfer control from the specified signal to a procedure to receive the signal, specified by name.

Calling the signal routine lets you change the action for a signal, such as intercepting an operating system
signal and preventing the process from being stopped.

The table below shows the signals that the Intel® Fortran RTL arranges to catch when a program is started:

Signal Intel® Fortran RTL message

SIGFPE Floating-point exception (number 75)

SIGINT Process interrupted (number 69)

SIGIOT IOT trap signal (number 76)

SIGQUIT Process quit (number 79)

SIGSEGV Segmentation fault (number 174)

SIGTERM Process killed (number 78)

Calling the signal routine (specifying the numbers for these signals) results in overwriting the signal-
handling facility set up by the Intel® Fortran RTL. The only way to restore the default action is to save the
returned value from the first call to signal.

When using a debugger, it may be necessary to enter a command to allow the Intel® Fortran RTL to receive
and handle the appropriate signals.

Override the Default Runtime Library Exception Handler

To override the default runtime library exception handler on Linux*, your application must call signal to
change the action for the signal of interest.

For example, assume that you want to change the signal action to cause your application to call abort() and
generate a core file.

The following example adds a function named clear_signal_ to call signal() and change the action for
the SIGABRT signal:

#include <signal.h>
 void clear_signal_() { signal (SIGABRT, SIG_DFL); }

 int myabort_() {

 1 Intel® Fortran Compiler Classic and Intel® Fortran Compiler Developer Guide and Reference

704

 abort();
 return 0;
}

A call to the clear_signal() local routine must be added to main. Make sure that the call appears before
any call to the local myabort() routine:

program aborts
integer i

call clear_signal()

i = 3
if (i < 5) then
call myabort()
end if
end

Advanced Exception and Termination Handling

This section provides information about exception and termination handling issues.

To employ some of the exception handling techniques presented, you will need a C language compiler, which
has support for try-except constructs or some other form of support for structured exception handling.

Default Exception Handling

The Intel® Fortran runtime system provides minimal default support for exception handling, console event
handling, and application termination rundown.

The default exception handling support provided depends on the type of application (project type) being
developed:

• A default exception handler is included with Fortran Console, Fortran QuickWin, and Fortran Standard
Graphics applications.

• No default exception handler is included with Fortran Windows or Fortran DLL applications or with C
Console applications that contain Fortran procedures.

When you use the default exception handler, all events are enabled. You cannot connect or disconnect
individual events from the default Fortran exception handler. However, you can disable the Fortran exception
handler, and enable your own. To disable the exception handler, set the FOR_IGNORE_EXCEPTIONS
environment variable to TRUE.

Most exceptions captured by the Intel® Fortran default handler are dealt with as severe errors. When an
exception occurs, the Fortran runtime system will display an error message and traceback output as
described in Understand Runtime Errors. A runtime error with a severe error (as described in Runtime
Message Display and Format) causes the Intel® Fortran runtime system to terminate the application. Most I/O
programming errors are also severe and will terminate an application.

I/O programming errors are not exceptions and cannot be caught by an exception handler. An unhandled I/O
programming error is reported through a different mechanism in the Intel® Fortran runtime system.
Regardless of the application (project) type, unhandled I/O programming error will generate an error
message and traceback output.

See Also
Runtime Message Display and Format
Understand Runtime Errors
Understand Project Types

Intel® Fortran Compiler Classic and Intel® Fortran Compiler Developer Guide and Reference 1

705

Default Console Event Handling

When the Intel® Fortran runtime system is initialized, it establishes a default console event handler through
the SetConsoleCtrlHandler Windows API routine. The default handler will respond to the following event
types:

• CTRL_C_EVENT
• CTRL_BREAK_EVENT
• CTRL_CLOSE_EVENT
These event types will result in an orderly program abort with an appropriate diagnostic message. To disable
this default call to SetConsoleCtrlHandler, set an environment variable named
FOR_DISABLE_CONSOLE_CTRL_HANDLER to the value YES (Y or y), or TRUE (T or t), or a number greater
than zero.

Other console events such as a CTRL_LOGOFF_EVENT or CTRL_SHUTDOWN_EVENT are not handled by the
default handler. The handler is notified of these events but returns FALSE to the operating system. This
allows an Intel® Fortran application activated as a Windows* service to continue execution when a user logs
off.

See Also
Establishing Console Event Handlers

Default Termination Handling

When a Fortran Console, Fortran QuickWin, or Fortran Standard Graphics application terminates execution,
either by normal termination or due to a severe error or exception, the following actions are taken by the
Fortran runtime system:

• Any Open files are closed and the requested DISPOSITION operations are performed.
• With a QuickWin application, any open QuickWin windows are closed.
• The C runtime exit() routine is called with the status code to return to the operating system. The C

runtime exit() routine will call the Windows API routine ExitProcess to terminate the process. (See
crt0dat.c in the C runtime sources).

In a Fortran DLL or Fortran Windows* application, any unhandled I/O programming errors will cause the
following actions:

• Any Open files are closed and the requested DISPOSITION operations are performed.
• The C runtime exit() routine is called with the status code to return to the operating system. The C

runtime exit() routine will call the Windows API routine ExitProcess to terminate the process. (See
crt0dat.c in the C runtime sources.)

Any unhandled exceptions that occur in a Fortran DLL or Fortran Windows application will have application
dependent behavior. Since there is no Fortran default handler present, the behavior depends on what you
provide for a handler. If you do not explicitly provide a handler, the default mechanisms provided in your
main program will determine the behavior. In a Fortran Windows* application, the C runtime system will
terminate the application.

Handlers for the Application Types

To understand how Intel® Fortran handlers are incorporated into your application, and how you might
incorporate your own handlers, you should understand how each application type is constructed. This section
describes handlers for the various application (project) types.

Fortran Console Applications
Fortran Console applications resemble C applications, with the Intel® Fortran runtime system providing the C
main() function.

 1 Intel® Fortran Compiler Classic and Intel® Fortran Compiler Developer Guide and Reference

706

The entry point for a console application is specified as the C library's mainCRTStartup() routine (see
module crt0.c in the C runtime sources). This initializes the C runtime system, wraps the Fortran runtime
system main() in a try-except construct using the C runtime's exception filter (_XcptFilter()), and calls
the Fortran runtime system main() routine in runtime module for_main.c. In simplified form, it looks like
this:

 mainCRTStartup() {
 C initialization code here
 __try {
 more initialization code here
 mainret = main() /* calls Fortran runtime main() */
 exit(mainret)
 } __except (_XcptFilter())
 { _exit (GetExceptionCode()) }
 }

In the Fortran runtime system, main() initializes the Fortran runtime system (if not already initialized),
wraps a try-except construct around MAIN__ (the entry point to the Fortran code) with a filter expression
that invokes the Fortran runtime system default handler on exceptions, and calls MAIN__. It also wraps a try-
finally construct around all of this so runtime system clean up gets done (with for_rtl_finish_) when the
program exits. In simplified form, it looks like this:

 main() {
 __try {
 __try {
 for_rtl_init()
 MAIN__
 } __except (expression-invoking-fortran-default-handler)
 { }
 } __finally { for_rtl_finish() }
 }

In the Fortran code, symbol MAIN__ is the entry point called by the runtime system's main() routine. MAIN__
has the code to do any further runtime initialization or checks. For example, if the user compiled with the
non-default fpe[:]0 option, there would be a call to FOR_SET_FPE to tell the runtime system how to setup/
react to floating-point exceptions.

Fortran QuickWin and Standard Graphics Applications
A Fortran QuickWin (including Fortran Standard Graphics) application is a specialized windows application
where Intel® Fortran provides the WinMain() function.

The entry point for a QuickWin application is specified as the C library WinMainCRTStartup() routine (see
module crt0.c in the C runtime sources). This gets the C runtime initialized, wraps the Intel® Fortran
defined WinMain() in a try-except construct using the C runtime exception filter (_XcptFilter()) and calls
the Intel® Fortran defined WinMain() routine. In simplified form, it looks like this:

 WinMainCRTStartup() {
 C initialization code here
 __try {
 more initialization code here
 mainret = WinMain() /* calls qwin library WinMain() */
 exit(mainret)
 } __except (_XcptFilter())
 { _exit (GetExceptionCode()) }
 }

Intel® Fortran Compiler Classic and Intel® Fortran Compiler Developer Guide and Reference 1

707

In the QuickWin library, WinMain() performs some initialization specific to QuickWin, creates a new thread
which begins execution at QWINForkMain, and then sits in a message loop directing the action. The message
loop is wrapped in a try-except-finally construct which invokes the Fortran runtime system default handler if
an exception occurs, and calls for_rtl_finish_ at exit. QWINForkMain() running in the other thread calls the
Fortran runtime system main(), which in turn calls MAIN__. In simplified form, it looks like this:

 WinMain() {
 Initialization code here
 BeginThreadEx (..., QWINForkMain, ...)
 __try {
 __try {
 the message loop...
 for_rtl_finish()
 return (msg.wParam)
 } __except (expression-invoking-default-fortran-handler)
 { }
 } __finally {
 for_rtl_finish()
 return (msg.wParam)
 }
 }

QWINForkMain resembles the following:

 QWINForkMain() {
 main() /* calls the CVF rtl main() which calls MAIN__ */
 cleanup and exit...
 }

The routines main() and MAIN__ are the same as previously described for a Fortran Console application.

Fortran DLL Applications
A Fortran DLL is a collection of one or more routines that you generally call from some other main program.
As such, the routines execute in the structure and environment created by the code which calls into the DLL.
You can provide DLL initialization through a DllMain() function, but you probably would control general
application initialization from the main program.

There are no automatic provisions for any exception handler in a DLL. There is no environment initialization
except what you provide. Of course, if your main application is also written in Fortran, you will get the default
Fortran handlers provided by that application type.

Fortran Windows* Applications
A Fortran Windows* application has as its entry point WinMainCRTStartup() and each user writes the code
for the WinMain function declaration and interface. Examples are provided to show how to do this in Fortran
code. The compiler still generates symbol MAIN__ with the initialization code in place, but nothing calls
MAIN__. Also, nothing connects up to the runtime system's main() so there's no try-except construct to
hook in the default Intel® Fortran handler, and no runtime system initialization or cleanup. In simplified form,
it looks like this:

 WinMainCRTStartup() {
 C initialization code
 __try {
 more initialization code
 mainret = WinMain() /* calls the user's WinMain() */
 exit(mainret)

 1 Intel® Fortran Compiler Classic and Intel® Fortran Compiler Developer Guide and Reference

708

 } __except (_XcptFilter())
 { _exit (GetExceptionCode()) }
 }

The Fortran code contains:

 integer(4) function WinMain(HANDLE, HANDLE, LPSTR, int)
 ...
 ! whatever Fortran the user codes here...
 ...
 end

See Also
for_rtl_finish_
FOR_SET_FPE

Provide Your Own Exception or Termination Handler

For Fortran Console, Fortran QuickWin, and Fortran Standard Graphics applications, the default exception and
termination handlers are probably sufficient to meet most needs. As described in Handlers for the Application
(Project) Types, Fortran DLL and Fortran Windows* applications do not have default handlers.

Whenever the default exception and termination handlers do not meet all your needs, consider providing
your own handler. This is really a question you need to answer for each specific application. Some examples:

• Suppose your application creates some files during the course of its execution and you do not want to
leave them on the disk if an unexpected error or exception occurs. The default termination actions only
cause the files to be closed if you specifically opened them with DISPOSE='DELETE'. But suppose you do
not want them deleted under normal termination. If an unexpected event occurs, you need to get control
so you can clean up these files as needed.

• Perhaps your application can recover from a particular situation, for example, an integer divide-by-zero
operation. You want to gain control if that exception occurs and deal with it.

• Perhaps you just want to output an application-specific error message when an exception occurs.
• You are building a Fortran DLL to run under a Visual Basic* GUI and you do not want the DLL to crash the

application if an exception occurs in the DLL.
• Your code takes a lock on a global resource and you want to be sure and release the resource if an

unexpected event occurs.

The list of possibilities is endless and only the application developer can anticipate particular needs.

The most general way to establish your own handler is to use Windows* structured exception handling
capabilities (SEH). For lighter-weight exception handling requirements, you can use SIGNALQQ.

See Also
Use SIGNALQQ
SIGNALQQ
Handlers for the Application (Project) Types
Establish Console Event Handlers
Use Windows* Structured Exception Handling (SEH) Overview
List of Runtime Error Messages

Use Windows* Structured Exception Handling

Windows* provides a robust exception and termination handling mechanism called Structured Exception
Handling (SEH). Structured exception handling requires support in both the operating system and compilers.
Unfortunately, Intel® Fortran does not include extensions for SEH support, but you can still take advantage of
this powerful tool. By introducing a bit of C code in your application, you can use SEH to meet your exception
handling needs.

A good reference on this subject is Chapter 16 in the book Advanced Windows (Third Edition) by Jeffrey
Richter.

Intel® Fortran Compiler Classic and Intel® Fortran Compiler Developer Guide and Reference 1

709

Custom Handlers for Fortran Console, Fortran QuickWin, and Fortran Standard Graphics
Applications
Fortran Console and Fortran QuickWin (and Fortran Standard Graphics) applications have the full benefit of
the Fortran default exception and error handling processing facilities. You may, however, want to supplement
or replace the default facilities.

Contain Errors and Exceptions in Fortran DLL Applications
If you are building a Fortran DLL and intend to call it from a main program written in some other language,
you want to be careful that errors and exceptions in the DLL do not crash your main application.

Here are a few basic principles to keep in mind if you are building a Fortran DLL:

• Construct your library routines so that they return a status to the caller and let the caller decide what to
do.

• To return an expected status to the caller, you need to be defensive in your library code, so consider these
other principles:

• Where it makes sense, have the library code check input arguments passed in from the caller to make
sure they are valid for whatever the library routine is going to do with them.

For example, suppose the routine implements some numerical algorithm that has a valid domain of inputs
it can act on and still produce well-defined behavior. You can check the input arguments before you
execute the algorithm and avoid unexpected behavior that might otherwise result (such as unexpected
floating-point exceptions).

You can use Fortran intrinsic procedures like ISNAN and FP_CLASS to detect exceptional IEEE numbers.

Your DLL code needs to return a status to the caller indicating the problem and let the caller take the
appropriate action (for example: gracefully shut down the application, try again with different input, etc.).

• In your library code, always check the success or failure of calls to I/O routines and dynamic memory
allocation/deallocation.

In Fortran, the I/O statements have optional ERR, END, EOR, and IOSTAT arguments that you can use to
determine if the I/O requested was successful.

Dynamic memory ALLOCATE and DEALLOCATE statements have an optional STAT specifier that allows you
to obtain the status of the dynamic memory allocation/deallocation and prevent program termination.

• If you do not specify an action to take on an error, the Fortran runtime system has no choice but to deal
with the error as an unhandled severe error and terminate the program.

For a specific example of using IOSTAT and ERR to deal gracefully with an OPEN statement that gets a
file-not-found error, see Use the IOSTAT Specifier and Fortran Exit Codes. You can do the same sort of
thing in your code, but just return the status back to your Visual Basic* or other non-Fortran main
program and let it decide what to do.

• Try to write your DLL code so unexpected program exceptions cannot occur, but devise a strategy for
dealing with unexpected exceptions if they do happen.

The most effective alternative for dealing with an exception is to use Windows Structured Exception
Handling support to gain control when an exception happens. Wrap all your DLL routine calls in C try/
except constructs and have the except() filter expression call a routine you define which determines how
to respond.

Enable Floating-point Traps in Fortran DLL Applications
Before you can worry about how you will handle a floating-point trap condition occurring in a DLL, you have
to consider the problem of unmasking those traps so they can occur. If you are compiling with fpe[:]3 and
polling the floating-point status word to check for exceptions, you do not have to worry about the problem of
unmasking traps. You do not want traps unmasked in that case.

 1 Intel® Fortran Compiler Classic and Intel® Fortran Compiler Developer Guide and Reference

710

If your strategy is to compile with fpe[:]0 and allow traps on floating-point exceptions, you need to take
action to unmask the traps in the floating-point control word because most other languages mask traps by
default.

Recall that a Fortran Console or Fortran QuickWin (or Standard Graphics) application would automatically
have unmasked traps for you because the Fortran runtime system provides the main program and calls your
MAIN__, which executes some prolog code before the actual application code starts.

You do not have that in a Fortran DLL called by some other language. Different languages establish different
initial environments. You must provide the desired initial environment yourself.

Custom Handlers for Fortran Windows* Applications
Fortran Windows* applications are not hooked up to the Fortran default exception handling processing
facilities. Fortran Windows* applications are considered to be an area devoted to full customization, and the
Fortran runtime system tries to "stay out of the way," so you can do whatever you want in your code.

See Also
ISNAN
FP_CLASS
ALLOCATE
DEALLOCATE

Establish Console Event Handlers

Usually, Control-C event handling is not reliable due to the threaded nature of processes executing on the
Windows operating systems. Depending on what is happening at the instant a user enters the Control-C, an
event handler may or may not get the opportunity to execute.

In any case, there are two ways to establish a handler if you want to do so. You can use the Windows* API
routine SetConsoleCtrlHandler directly or you can use SIGNALQQ to establish a handler for the C SIGINT
or SIGBREAK signals.

The Intel® Fortran runtime system establishes a console event handler through a call to
SetConsoleCtrlHandler as part of its runtime initialization processing. See Default Console Event Handling
for a description of this handler's behavior.

If you call SetConsoleCtrlHandler to establish your own event handler, your handler will be called first on
console events.

If you establish a handler through SIGNALQQ with SIGINT or SIGBREAK, the C runtime system will establish
its own internal handler for console events through a call to SetConsoleCtrlHandler, and it will record
your routine as the desired action to take upon occurrence of an event. When an event is delivered to the C
runtime handler, it will reset the action for the signal to SIG_DFL and then call your handler routine.

You must call SIGNALQQ again to reset the action to your routine if you want to continue from the control
event. Your handler is called with the signal code (either SIGINT or SIGBREAK) as the argument. After your
routine returns to the C runtime event handler, the C handler will return the value TRUE to the operating
system indicating the event has been handled.

See Also
SIGNALQQ
Default Console Event Handling

Use SIGNALQQ

For lightweight exception handling requirements, a handler established with SIGNALQQ may meet your
needs. This section describes how signal handling with SIGNALQQ works in detail and also how the Fortran
runtime routine GETEXCEPTIONPTRSQQ works.

Reference is made to C runtime sources provided with Microsoft* Visual C++*. The discussion is worth
reviewing even if you do not have Visual C++* available.

Intel® Fortran Compiler Classic and Intel® Fortran Compiler Developer Guide and Reference 1

711

C-Style Signal Handling Overview
Many Fortran applications were developed on UNIX* systems where C-style signal handling was the usual
way of dealing with exceptions. When ported to Windows*, these applications can continue to use the C
signal interface. SIGNALQQ will work with any application type using pure Fortran or mixed Fortran and C
code.

SIGNALQQ is just a Fortran jacket to the C runtime signal() function. When you call SIGNALQQ, you are
actually registering your signal handler (or action) for a particular signal with the C runtime system. The C
runtime system simply stores your handler (or action) in an internal exception action table or variable where
it associates your handler with the desired signal. The operating system has no knowledge of this
association.

If you have Visual C++* available, you can look at the code for the C runtime signal routine
in ...\MICROSOFT VISUAL STUDIO .NET\VC7\CRT\SRC\WINSIG.C and see how the table is managed. The
table itself is defined and initialized in source file WINXFLTR.C, available in the same folder. When a signal
occurs, the C runtime system checks its internal table to see if you have registered a handler for the
particular signal. It calls your routine if you have assigned a handler.

Signal is Really SEH Again
Notice that it is the C runtime system that calls your handler when a signal occurs, not the operating system.
So how did the C runtime get the exception delivered to it? Recall that the entry point of your image is either
mainCRTStartup or WinMainCRTStartup, depending on the application type. Refer to Handlers for the
Application (Project) Types and look at these entry points (or look at source file Crt0.c in the C runtime
sources). Notice that they wrap a try-except construct around a call to either main() or WinMain() and that
the filter expression associated with the __except construct calls a function _XcptFilter. _XcptFilter is
passed two arguments that are the operating system supplied exception information.

When an exception occurs, the operating system looks at the list of exception filters and, starting with the
inner-most nested try-except construct, evaluates except filter expressions until it finds one which does not
return EXCEPTION_CONTINUE_SEARCH. If your application type includes main from the Fortran runtime
system and thus the except construct associated with main, the Fortran runtime filter will be evaluated
before the C runtime filter. The Fortran filter expression will check to see if you have established your own
handler with SIGNALQQ. If it finds there is such a handler, or if you have set the environment variable
FOR_IGNORE_EXCEPTIONS, it will return EXCEPTION_CONTINUE_SEARCH to allow the C runtime exception
filter the opportunity to deal with the exception and find your handler. If you have not established your own
handler or set the environment variable, the Fortran runtime will perform its default exception handling
processing.

The C filter function, _XcptFilter, compares the exception code from the operating system with its
mapping of operating system exceptions to C signal codes. If it finds a match in the table, it uses the
exception action entry in the table corresponding to the signal code. This is the same table where your
SIGNALQQ handler is recorded as the action for the requested signal code. If you have established a handler,
it will be called from _XcptFilter. Before your handler is called, _XcptFilter resets the specified action
for the signal to SIG_DFL in the exception action table. If you try to continue from the exception and you
want your handler invoked on the next occurrence of the signal, you must call SIGNALQQ again to
reestablish your handler as the action for that signal. When your handler routine is finished executing and
returns to _XcptFilter, the value EXCEPTION_CONTINUE_EXECUTION is returned to the operating system
by _XcptFilter. The operating system will then resume execution at the point of the exception. If you do
not want to continue execution, your handler should take appropriate action to shut down the application.

Not every operating system exception code maps to a C signal code. You can see the mapping in source
WINXFLTR.C if you have it. Here is the list if you do not have WINXFLTR.C:

Operating System Exception Code C Signal Number

STATUS_ACCESS_VIOLATION SIGSEGV

 1 Intel® Fortran Compiler Classic and Intel® Fortran Compiler Developer Guide and Reference

712

Operating System Exception Code C Signal Number

STATUS_ILLEGAL_INSTRUCTION SIGILL

STATUS_PRIVILEGED_INSTRUCTION SIGILL

STATUS_FLOAT_DENORMAL_OPERAND SIGFPE

STATUS_FLOAT_DIVIDE_BY_ZERO SIGFPE

STATUS_FLOAT_INEXACT_RESULT SIGFPE

STATUS_FLOAT_INVALID_OPERATION SIGFPE

STATUS_FLOAT_OVERFLOW SIGFPE

STATUS_FLOAT_STACK_CHECK SIGFPE

STATUS_FLOAT_UNDERFLOW SIGFPE

How GETEXCEPTIONPTRSQQ Works
When the C runtime exception filter function _XcptFilter calls your handler that you established with
SIGNALQQ, the only argument passed to your handler is the C signal number. The C runtime system also
saves a pointer to the exception information supplied by the operating system. This pointer is named
_pxcptinfoptrs and you can retrieve it through the Fortran runtime routine GETEXCEPTIONPTRSQQ. See C
header file signal.h for the public definition of _pxcptinfoptrs.

The value returned by GETEXCEPTIONPTRSQQ can be used in your handler routine to generate a traceback
with TRACEBACKQQ. GETEXCEPTIONPTRSQQ just returns _pxcptinfoptrs. This pointer is only valid while
you are executing within the evaluation of the C runtime filter function _XcptFilter because the exception
information is on the program stack, so do not use GETEXCEPTIONPTRSQQ in any other context.

See Also
SIGNALQQ
GETEXCEPTIONPTRSQQ
Handlers for the Application (Project) Types
TRACEBACKQQ

Language Reference
This document contains the complete description of the Intel® Fortran programming language, which includes
Fortran 2018, Fortran 2008, Fortran 2003, Fortran 95, and Fortran 90. It contains information on language
syntax and semantics, on adherence to various Fortran standards, and on extensions to those standards.

For information about the Fortran standards, visit the Fortran Standards Committee website.

This manual is intended for experienced applications programmers who have a basic understanding of
Fortran concepts and the Standard Fortran language.

Some familiarity with your operating system is helpful. This manual is not a Fortran or programming tutorial.

NOTE
macOS is no longer supported for Intel® Fortran Compiler Classic (ifort).

This document contains the following sections:

Intel® Fortran Compiler Classic and Intel® Fortran Compiler Developer Guide and Reference 1

713

https://j3-fortran.org/

Section Content

New Language Features Describes any general new features for this release
and points you to summaries of Fortran Standard
features, such as Fortran 2018 features.

New Features for ifx Describes the major new features that have been
added for ifx in this release.

Language Reference Conventions Describes language conventions that are used in
the Language Reference.

Program Elements and Source Forms Describes Fortran program elements, the Fortran
character set, and source forms.

Data Types, Constants, and Variables Describes intrinsic data types and constants,
derived data types, and variables (scalars, arrays,
and coarrays).

Expressions and Assignment Statements Summarizes forms of Fortran expressions and
describes assignment statements, which are used
to define or redefine variables.

Specification Statements Summarizes the various specification statements,
which are used to declare the attributes of data
objects. Also discusses various type declarations
and array declarations.

Dynamic Allocation Summarizes dynamic allocation for data objects,
and the effects of allocation and deallocation on
variables, allocatable arrays, and pointer targets.

Execution Control Summarizes constructs (such as DO constructs)
and statements (such as branch statements and
image control statements) that can transfer control
within a program.

Program Units and Procedures Describes program units (including modules,
module procedures, and intrinsic modules),
subroutines and functions, argument association,
and procedure interfaces.

Intrinsic Procedures Describes argument keywords used in intrinsic
procedures, and provides an overview of intrinsic
procedures. Also includes categories and lists of
intrinsic procedures.

Data Transfer I/O Statements Summarizes data transfer input/output (I/O)
statements, including components of data transfer
I/O statements, forms for READ and WRITE
statements, and user-defined derived-type I/O.

I/O Formatting Describes the rules for I/O formatting, such as
specification format and format descriptors (data,
control, and string edit).

File Operation I/O Statements Summarizes auxiliary I/O statements INQUIRE and
OPEN that you can use to perform file operations,
such as file inquiry, and file connection and
positioning.

Compilation Control Statements Summarizes compilation control statements
INCLUDE and OPTIONS.

 1 Intel® Fortran Compiler Classic and Intel® Fortran Compiler Developer Guide and Reference

714

Section Content

Directive Enhanced Compilation Summarizes general compiler directives and
OpenMP* Fortran compiler directives, including
syntax for both. Also includes relevant rules for
both kinds of directives.

Scope and Association Describes scope, which refers to the area in which a
name is recognized, and association, which allows
different names to refer to the same entity in a
particular region of a program.

Deleted and Obsolescent Language Features Describes deleted and obsolescent features
specified in various Fortran standards.

Additional Language Features Describes some statements and language features
supported for programs written in older versions of
Fortran.

Additional Character Sets Describes the additional character sets that you can
use in programs.

Data Representation Models Describes data representation models for numeric
intrinsic functions, and the model for bit data.

Library Modules and Runtime Library Routines Summarizes Fortran library modules and the
runtime library routines.

Summary of Language Extensions Summarizes Intel® Fortran extensions to the
ANSI/ISO Fortran 2003 Standard.

A to Z Reference Contains language summary tables and descriptions
of all Intel® Fortran statements, intrinsics,
directives, and module library routines.

While most descriptions are listed in alphabetical
order within this section, the following routines
have their own sections:
• Quickwin routines and graphics routines
• Portability routines
• Serial port I/O routines
• NLS routines
• POSIX* routines
• Dialog routines
• Component Object Module (COM) routines
• Automation server routines
• Miscellaneous Runtime Routines

Glossary Contains abbreviated definitions of some commonly
used terms in this manual.

For a summary of Fortran 2018 features in this release, see Fortran 2018 Features.

For a summary of Fortran 2008 features in this release, see Fortran 2008 Features.

For a summary of Fortran 2003 features in this release, see Fortran 2003 Features.

New Features for ifx and ifort
There are no general new features for both ifort and ifx in this release.

Intel® Fortran Compiler Classic and Intel® Fortran Compiler Developer Guide and Reference 1

715

New Features
There are no general new features for both ifort and ifx in this release.

New OpenMP* Features
There are no new OpenMP features for both ifort and ifx in this release.

For a summary of Fortran 2023 features, see Fortran 2023 Features.

For a summary of Fortran 2018 features, see Fortran 2018 Features.

For a summary of Fortran 2008 features, see Fortran 2008 Features.

For a summary of Fortran 2003 features, see Fortran 2003 Features.

For information on new compiler options in this release, see the Release Notes for the product.

For information about the Fortran standards, visit the Fortran Standards Committee website.

For information about the OpenMP* standards, see the OpenMP website.

New Features for ifx Only
ifx is now fully compliant with Fortran 2018, and it has feature parity with ifort.

New Features
• Option -ffp-accuracy (Linux) and /Qfp-accuracy (Windows), which let you specify the required

accuracy (precision) for floating-point operations and library calls. . For more information, see ffp-
accuracy, Qfp-accuracy.

• Option -ftarget-register-alloc-mode (Linux) and /Qtarget-register-alloc-mode (Windows),
which let you specify a register allocation mode for specific hardware for use by supported target
backends . For more information, see ftarget-register-alloc-mode, Qtarget-register-alloc-mode.

• Option -fopenmp-concurrent-host-device-compile (Linux)
and /Qopenmp-concurrent-host-device-compile (Windows), which let you specify the format of
device code stored in a resulting object. This is an experimental feature. For more information, see
fopenmp-concurrent-host-device-compile, Qopenmp-concurrent-host-device-compile.

• Option -fopenmp-do-concurrent-maptype-modifier (Linux)
and /Qopenmp-do-concurrent-maptype-modifier (Windows), which let you specify the data
movement for variables referenced inside the DO CONCURRENT region when it is auto-offloaded. For
more information, see fopenmp-do-concurrent-maptype-modifier, Qopenmp-do-concurrent-maptype-
modifier.

• Option [q or Q]mkl-sycl-impl, which lets you link to one or more specific Intel® oneAPI Math Kernel
(oneMKL) SYCL libraries. For more information, see qmkl-sycl-impl, Qmkl-sycl-impl.

• Option -fmaintain-32-byte-stack-align (Linux) and /Qmaintain-32-byte-stack-align
(Windows), which tell the compiler to realign the stack to 32-byte if stack alignment is uncertain for
functions with external linkage, and retain 32-byte alignment for other functions. For more information,
see fmaintain-32-byte-stack-align, Qmaintain-32-byte-stack-align.

• Option -fstrict-overflow (Linux) and /Qstrict-overflow (Windows), which determine whether
strict overflow is enabled for signed addition, subtraction, and multiplication wrap arounds using twos-
complement representation. For more information, see fstrict-overflow, Qstrict-overflow.

• Option -fopenmp-target-default-sub-group-size (Linux)
and /Qopenmp-target-default-sub-group-size (Windows), which let you specify a default sub-group
size globally for single program multiple data (SPMD) kernels that are generated for OpenMP* target
constructs when offloading to SPIR64-based devices. For more information, see fopenmp-target-default-
sub-group-size, Qopenmp-target-default-sub-group-size.

 1 Intel® Fortran Compiler Classic and Intel® Fortran Compiler Developer Guide and Reference

716

https://j3-fortran.org/
https://www.openmp.org/%20

New OpenMP* Features
• You can now specify a THREAD_LIMIT clause in the TARGET and TEAMS directives. For more information,

see THREAD_LIMIT.
• You can now specify a NOWAIT clause in construct directives: DO, DO SIMD, SCOPE, SECTIONS, SINGLE,

and WORKSHARE.
• You can now specify a COPYPRIVATE clause in a SINGLE directive. For more information, see SINGLE.
• You can now specify a LOOP construct in a DO CONCURRENT directive. For more information, see LOOP.

Previous Features Added to ifx
• Option -fpreview-breaking-changes, which lets a user tell the compiler that they are willing to give up

backward compatibility guarantees and lets the compiler enable new backward breaking changes that will
appear in the next major release.. For more information, see fpreview-breaking-changes.

• Option -fopenmp-target-loopopt (Linux) and /Qopenmp-target-loopopt (Windows), which enable
the loop optimizer and auto-vectorization for OpenMP* offloading device compilation when option O2 or
higher is set or specified. For more information, see fopenmp-target-loopopt, Qopenmp-target-loopopt.

• Option -fopenmp-target-simd (Linux) and /Qopenmp-target-simd (Windows), which enable OpenMP*
SIMD loop vectorization for OpenMP offloading device compilation when option level O2 or higher is set or
specified. For more information, see fopenmp-target-simd, Qopenmp-target-simd.

• Option [q or Q]opt-prefetch-distance, which specifies the prefetch distance to be used for compiler-
generated prefetches inside loops.. For more information, see qopt-prefetch-distance, Qopt-prefetch-
distance.

• Option [q or Q]opt-prefetch-loads-only, which tells the compiler to only insert prefetches based on
the loads inside the loop. Stores are ignored. For more information, see qopt-prefetch-loads-only, Qopt-
prefetch-loads-only.

• You can now specify an ALLOCATE clause in the SCOPE directive. For more information, see ALLOCATE
Clause.

• You can now specify a HINT clause in the ATOMIC and CRITICAL directives. For more information, see
HINT Clause.

• METADIRECTIVE directive

Specifies variant OpenMP directives, one of which may conditionally replace the metadirective based on
the OpenMP context enclosing the metadirective. For more information, see METADIRECTIVE.

• You can now specify the MAP map-type-modifier PRESENT in the DECLARE MAPPER directive. For more
information, see DECLARE MAPPER.

• You can now specify contexts and context selectors. For more information, see OpenMP* Contexts.
Context selectors are permitted in the MATCH clause in the DECLARE VARIANT directive. For more
information, see DECLARE VARIANT.

• For DEPOBJ directives, the previous syntax for clause DESTROY has been deprecated. The new syntax is
DESTROY (destroy-var). For more information, see DEPOBJ.

• In a TASKLOOP directive, you can now specify modifier STRICT for clauses GRAINSIZE and NUM_TASKS.
For more information, see TASKLOOP.

• The ORDER clause replaces the ORDER (CONCURRENT) clause. For more information, see ORDER Clause.
• You can now specify an ORDER clause in the DISTRIBUTE directive. For more information, see

DISTRIBUTE Clause.
• GROUPPRIVATE directive

Specifies that a variable is replicated once per group of threads participating in a parallel region. For more
information, see GROUPPRIVATE.

• DEVICE_TYPE clause

Specifies whether a version of a procedure or a copy of a data entity is to be available on a HOST device,
a non-HOST device, or both. For more information, see DEVICE_TYPE.

• Option -fopenmp-device-code-split (Linux) and /Qopenmp-device-code-split (Windows), which
enable parallel compilation of SPIR-V* kernels for OpenMP offload Ahead-Of-Time compilation. For more
information, see fopenmp-device-code-split, Qopenmp-device-code-split.

Intel® Fortran Compiler Classic and Intel® Fortran Compiler Developer Guide and Reference 1

717

• Option -fopenmp-max-parallel-link-jobs (Linux) and /Qopenmp-max-parallel-link-jobs
(Windows), which determine the maximum number of parallel actions to be performed during device
linking steps, where applicable.. For more information, see fopenmp-max-parallel-link-jobs, Qopenmp-
max-parallel-link-jobs.

• Option fsanitize, which enables the specified code sanitizer to detect certain issues at runtime. For
more information, see fsanitize.

• Option fprofile-ml-use, which enables the use of a pre-trained machine learning model to predict
branch execution probabilities driving profile-guided optimizations. For more information, see fprofile-ml-
use.

• Options -mno-gather (Linux) and /Qgather- (Windows), which disable the generation of gather
instructions in auto-vectorization. For more information, see mno-gather, Qgather-.

• Options -mno-scatter (Linux) and /Qscatter- (Windows), which disable the generation of scatter
instructions in auto-vectorization. For more information, see mno-scatter, Qscatter-.

• Options -mauto-arch (Linux) and /Qauto-arch (Windows), which tell the compiler to generate multiple,
feature-specific auto-dispatch code paths for x86 architecture processors if there is a performance benefit.
For more information, see mauto-arch, Qauto-arch.

• Option -flink-huge-device-code, which tells the compiler to place device code later in the linked
binary. This is to prevent 32-bit PC-relative relocations between surrounding Executable and Linkable
Format (ELF) sections when the device code is larger than 2GB. For more information, see flink-huge-
device-code. Previous option -fsycl-link-huge-device-code is now deprecated and will be removed
in a future release.

• Option fopenmp-default-allocator (and Qopenmp-default-allocator), which tells the compiler that
all Fortran ALLOCATE statements should be treated as though there was an explicit OpenMP ALLOCATE
directive that preceded them. For more information, see fopenmp-default-allocator, Qopenmp-default-
allocator.

• Enhancement to option -check uninit for Linux. For more information, see option check.
• ALLOCATORS directive

Specifies memory allocators to be used to allocate variables in the associated Fortran ALLOCATE
statement and to use in their deallocation. For more information, see ALLOCATORS.

• TILE directive

Tiles (or blocks) one or more loops of a loop-nest. For more information, see TILE.
• Iterators are now supported in the DEPEND clause.
• Optional END construct directives are now supported with strictly structured block construct bodies.
• ASSUMES directive

Provides hints to the optimizer about the current compilation unit and all the code it can reach through
procedure calls. For more information, see ASSUMES.

• ERROR directive

Causes the compiler or runtime system to process an error condition. For more information, see ERROR.
• NOTHING directive

Provides documentary clarity in conditionally compiled code or conditional OpenMP code. It has no effect
on the semantics or execution of the program. For more information, see NOTHING .

• new clauses LINK and INDIRECT for directive DECLARE TARGET

The LINK clause maps the list items for specific device executions, supporting functions called in a
TARGET region that refer to the list items. The INDIRECT clause determines whether procedures specified
in an ENTER clause can be called by an indirect device invocation. For more information, see DECLARE
TARGET.

• PREFETCH DATA directive for OpenMP

Suggests to the compiler to preload data into cache. Preloading data in cache minimizes the effects of
memory latency. This is an Intel® language extension. For more information, see PREFETCH DATA.

• DEPOBJ construct

 1 Intel® Fortran Compiler Classic and Intel® Fortran Compiler Developer Guide and Reference

718

Initializes, updates, or uninitializes an OpenMP depend object. For more information, see DEPOBJ.
• INTEROP clause for DISPATCH

For more information, see DISPATCH.
• DEPEND types MUTEXINOUTSET, INOUTSET, and DEPOBJ

For more information, see DEPEND.
• DECLARE MAPPER with variable length arrays

For more information, see DECLARE MAPPER.
• PREFER_TYPE in the APPEND_ARGS clause of DECLARE VARIANT

For more information, see DECLARE VARIANT.
• SCOPE construct

For more information, see SCOPE.
• Compiler option flto

Enables whole program link time optimization (LTO). For more information, see flto.

Note that this option is equivalent to option [Q]ipo on ifort.
• OpenMP 5.1 feature: UNROLL construct

Partially or fully unrolls a DO loop. For more information, see UNROLL.
• OpenMP 5.1 feature: You can now specify PRESENT as a map-type-modifier in a MAP clause. For more

information, see MAP .
• OpenMP 5.1 feature: SCAN directive (previously in ifort)

Specifies a scan computation that updates each list item in each iteration of the loop. For more
information, see SCAN .

• Compiler option fopenmp-target-do-concurrent and Qopenmp-target-do-concurrent

This option determines whether a DO CONCURRENT construct is automatically converted into an OpenMP*
TARGET region. For more information, see fopenmp-target-do-concurrent, Qopenmp-target-do-
concurrent.

• Support for ATTRIBUTES directives DLLIMPORT and DLLEXPORT

These directives enable you to create and use dynamic libraries in the Windows environment.
• Fortran 2018 coarray features and coarrays with allocatable fields

Coarrays, including Fortran 2018 teams and events, are now fully supported.
• Support for Fortran 2018 C interoperability

All C interoperability features, including assumed rank arrays and C array descriptors are now supported.
• Support for compiler option check bounds

Array bounds checking is now supported
• Support for general directive !DIR$ ASSUME

The !DIR$ ASSUME directive is now supported for the check and assume options that ifx supports.
• Support for compiler option [Q]init

This option allows classes of variables to be initialized to zero or IEEE exceptional values.
• Support for dynamic COMMON

Compiler option [Q]dyncom allows COMMON blocks to be allocated dynamically instead of statically.
• F2008 Parameterized derived types (PDTs).
• IEEE compares (-assume ieee_compares).
• The DIM argument of many array intrinsics can now be a present optional argument.
• VAX union and structures (Intel language extension).
• The argument to the C_LOC function in the intrinsic module ISO_C_BINDING now conforms to the Fortran

standard definition.
• DECLARE MAPPER directive

Intel® Fortran Compiler Classic and Intel® Fortran Compiler Developer Guide and Reference 1

719

Declares a user-defined mapper for the specified type, and optionally declares a map-identifier which can
be used in a MAP clause on other directives or in a motion-clause of a TARGET UPDATE directive. For more
information, see DECLARE MAPPER.

• FIRSTPRIVATE and PRIVATE clauses have been added to the TARGET directive, and implicit-behaviors
ALLOC, TO, TOFROM, FROM, FIRSTPRIVATE, NONE and default have been added to the DEFAULTMAP
clause of the TARGET directive. For more information, see TARGET.

• You can now specify implicit-behavior in the DEFAULTMAP clause for the TARGET directive. For more
information, see TARGET.

• You can now specify the TO clause for the DECLARE TARGET directive. For more information, see
DECLARE TARGET.

• ifx provides improved debugging of CPU and offloaded code.
• Variable expressions are supported in FORMAT specifiers. See Variable Format Expressions.
• Option [q or Q]opt-for-throughput

Determines how the compiler optimizes for throughput depending on whether the program is to run in
single-job or multi-job mode. For more information see qopt-for-throughput, Qopt-for-throughput.

• You can now specify the DEPEND clause and the NOWAIT clause in an OpenMP* TASKWAIT directive.
• You can now specify PRIMARY as a PROC_BIND specifier in an OpenMP* PARALLEL directive.
• Option -fopenmp-target-buffers=default|4G and /Qopenmp-target-buffers:default|4G

Specifying 4G enables a way to overcome the problem where some offload SPIR_V devices produce
incorrect code when a target object is greater than 4GB. For more information see fopenmp-target-
buffers, Qopenmp-target-buffers.

• Option -fopenmp has been deprecated, use option -qopenmp or option -fiopenmp.
• You can now specify BLOCK constructs.
• You can now specify intrinsic routine EXECUTE_COMMAND_LINE.
• You can now specify intrinsic routine FINDLOC.
• You can now specify the BACK argument in MAXLOC and MINLOC intrinsic routines.
• You can now specify the IN_REDUCTION clause and the HAS_DEVICE_ADDR clause in the TARGET

directive.
• You can now specify the ALIGN clause in an ALLOCATE directive.
• You can now specify the ALIGN modifier in an ALLOCATE clause.
• You can now specify the MASKED construct (without the FILTER clause) as an alternate to MASTER, which

has been deprecated.
• You can now specify OpenMP* combined constructs with MASKED or MASTER in them.
• Preprocessor cmake macro __INTEL_LLVM_COMPILER

Is replaced by the version of the compiler in format VVVVMMUU. For more information on the macro and
format, see Using Predefined Preprocessor Symbols.

• Enhancement to the DECLARE VARIANT directive

You can now specify clauses ADJUST_ARGS and APPEND_ARGS and you can specify one or more
architectures in the MATCH (context-selector-specification) for the directive. For more information,
including what architecture values you can specify, see DECLARE VARIANT.

• Intel-specific OpenMP* memory allocators

You can now specify additional predefined memory spaces that are Intel extensions to the OpenMP*
standard. For more information, see OpenMP* Memory Spaces and Allocators.

• TASK and DEFAULT OpenMP* reduction modifiers

You can now specify TASK and DEFAULT in REDUCTION clauses. For more information, see REDUCTION.
• USE_DEVICE_ADDR clause

Indicates that list iems in the structured block of the construct are references to the device address of the
item if the item has corresponding storage in the device data environment. For more information, see
TARGET DATA.

• Compiler option fopenmp-targets and Qopenmp-targets

 1 Intel® Fortran Compiler Classic and Intel® Fortran Compiler Developer Guide and Reference

720

Enables offloading to a specified GPU target if OpenMP* features have been enabled. For more
information, see fopenmp-targets, Qopenmp-targets.

• ALLOCATE clause

Specifies the memory allocator to be used for one or more private variables or common blocks of a
construct. For more information, see ALLOCATE Clause.

• ALLOCATE directive

Specifies memory allocators to use for object allocation and deallocation. For more information, see
ALLOCATE Directive.

• DECLARE VARIANT directive

Identifies a variant of a base procedure and specifies the context in which this variant is used. For more
information, see DECLARE VARIANT.

• DISPATCH directive

Determines if a variant of a procedure is called for a given function or subroutine call. For more
information, see DISPATCH.

• INTEROP directive

Identifies a foreign runtime context and identifies runtime characteristics of that context, enabling
interoperability with it. For more information, see INTEROP.

• LOOP construct

Specifies that the iterations of the associated loops can execute concurrently. For more information, see
LOOP.

• ORDER (CONCURRENT) clause

Indicates that the iterations of the loop may execute in any order or simultaneously. For more
information, see LOOP and DO Directive.

• PARALLEL LOOP directive

Specifies a shortcut for indicating that a loop or loop nest can execute concurrently across multiple
threads. For more information, see PARALLEL LOOP.

• REQUIRES directive

Lists the features that an implementation must support so that the program compiles and runs correctly.
For more information, see REQUIRES.

• TARGET PARALLEL LOOP directive

Specifies a shortcut for specifying a parallel loop inside a TARGET construct that contains no other
statements than the parallel loop. For more information, see TARGET PARALLEL LOOP.

• TARGET TEAMS LOOP construct

Specifies a shortcut for specifying a TEAMS LOOP construct inside a TEAMS construct that contains no
other statements. For more information, see TARGET TEAMS LOOP.

• TEAMS construct

You can now specify a TEAMS construct outside of a TARGET region. For more information about about the
construct, see TEAMS.

• TEAMS LOOP construct

Specifies a shortcut for specifying a LOOP construct inside a TEAMS construct. For more information, see
TEAMS LOOP.

Language Reference Conventions
The following conventions are used in the Language Reference.

Intel® Fortran Compiler Classic and Intel® Fortran Compiler Developer Guide and Reference 1

721

This color Indicates Intel extensions (non-standard features)
that may or may not be implemented by other
compilers. Features defined by the Fortran
Standards or the OpenMP Standards are shown in
black.

this type Indicates command-line or option arguments and
Glossary terms.

Fortran This term refers to language information that is
common to previously supported Fortran standards,
Fortran 2018, and the Intel® Fortran Compiler.

Fortran 2018 This term refers to language features specific to
ISO/IEC 1539-1:2018 (Fortran 2018).

integer This term refers to the INTEGER(KIND=1),
INTEGER(KIND=2), INTEGER (INTEGER(KIND=4)),
and INTEGER(KIND=8) data types as a group.

INTEGER This term refers to the default data type of objects
declared to be INTEGER. INTEGER is equivalent to
INTEGER(KIND=4), unless a compiler option
specifies otherwise.

real This term refers to the REAL (REAL(KIND=4)),
DOUBLE PRECISION (REAL(KIND=8)), and
REAL(KIND=16) data types as a group.

REAL This term refers to the default data type of objects
declared to be REAL. REAL is equivalent to
REAL(KIND=4), unless a compiler option specifies
otherwise.

complex This term refers to the COMPLEX
(COMPLEX(KIND=4)), DOUBLE COMPLEX
(COMPLEX(KIND=8)), and COMPLEX(KIND=16)
data types as a group.

COMPLEX This term refers to the default data type of objects
declared to be COMPLEX. COMPLEX is equivalent to
COMPLEX(KIND=4), unless a compiler option
specifies otherwise.

logical This term refers to the LOGICAL(KIND=1),
LOGICAL(KIND=2), LOGICAL (LOGICAL(KIND=4)),
and LOGICAL(KIND=8) data types as a group.

LOGICAL This term refers to the default data type of objects
declared to be LOGICAL. LOGICAL is equivalent to
LOGICAL(KIND=4), unless a compiler option
specifies otherwise.

< Tab> This symbol indicates a non-printing tab character.

^ This symbol indicates a non-printing blank
character.

In the Language Reference, the information applies to all supported operating systems and architectures
unless it is otherwise labeled.

 1 Intel® Fortran Compiler Classic and Intel® Fortran Compiler Developer Guide and Reference

722

Program Elements and Source Forms
A Fortran program consists of one or more program units. A program unit is usually a sequence of
statements that define the data environment and the steps necessary to perform calculations; it is
terminated by an END statement.

A keyword in a Fortran program can either be a part of the syntax of a statement (statement keyword), or it
can be the name of a dummy argument (argument keyword).

Names identify entities within a Fortran program unit. In earlier versions of Fortran, names were called
"symbolic names". A designator identifies a subobject, such as an array element or section, or a derived type
component.

Character sets show the characters you can use in Fortran programs.

Fortran programs can be in free, fixed, or tab format.

For more information, see the individual topics in this section.

Program Units

A Fortran program consists of one or more program units. A program unit is usually a sequence of
statements that define the data environment and the steps necessary to perform calculations; it is
terminated by an END statement.

A program unit can be either a main program, an external subprogram, a module, a submodule, or a block
data program unit. An executable program contains one main program, and, optionally, any number of the
other kinds of program units. Program units can be separately compiled.

An external subprogram is a function or subroutine that is not contained within a main program, a module,
a submodule, or another subprogram. It defines a procedure to be performed and can be invoked from other
program units of the Fortran program. Modules, submodules, and block data program units are not
executable, so they are not considered to be procedures. (Modules and submodules can contain module
procedures, though, which are executable.)

Modules contain definitions that can be made accessible to other program units: data and type definitions,
definitions of procedures (called module subprograms), and procedure interfaces. Module subprograms can
be either functions or subroutines. They can be invoked by other module subprograms in the module, or by
other program units that access the module.

A submodule extends a module or another submodule. It can contain the definitions of procedures declared
in a module or submodule.

A block data program unit specifies initial values for data objects in named common blocks. In Standard
Fortran, this type of program unit can be replaced by a module program unit.

Main programs, external subprograms, and module subprograms can contain internal subprograms. The
entity that contains the internal subprogram is its host. Internal subprograms can be invoked only by their
host or by other internal subprograms in the same host. Internal subprograms must not contain internal
subprograms.

The following sections discuss Statements, Names, and Keywords.

See Also
Program Units and Procedures

Statements

Program statements are grouped into two general classes: executable and nonexecutable. An executable
statement specifies an action to be performed. A nonexecutable statement describes program attributes,
such as the arrangement and characteristics of data, as well as editing and data-conversion information.

Intel® Fortran Compiler Classic and Intel® Fortran Compiler Developer Guide and Reference 1

723

Order of Statements in a Program Unit
The following figure shows the required order of statements in a Fortran program unit. In this figure, vertical
lines separate statement types that can be interspersed. For example, you can intersperse DATA statements
with executable constructs.

Horizontal lines indicate statement types that cannot be interspersed. For example, you cannot intersperse
DATA statements with CONTAINS statements.

Required Order of Statements

PUBLIC and PRIVATE statements are only allowed in the scoping units of modules. In Standard Fortran,
NAMELIST statements can appear only among specification statements. However, Intel® Fortran allows them
to also appear among executable statements.

The following table shows other statements restricted from different types of scoping units.

Statements Restricted in Scoping Units

Scoping Unit Restricted Statements

Main program ENTRY, IMPORT, and RETURN statements

Module1 ENTRY, FORMAT, IMPORT, OPTIONAL, and INTENT
statements, statement functions, and executable
statements

 1 Intel® Fortran Compiler Classic and Intel® Fortran Compiler Developer Guide and Reference

724

Scoping Unit Restricted Statements

Submodule1 ENTRY, FORMAT, IMPORT, OPTIONAL, and INTENT
statements, statement functions, and executable
statements

Block data program unit CONTAINS, ENTRY, IMPORT, and FORMAT
statements, interface blocks, statement functions,
and executable statements

Internal subprogram CONTAINS, IMPORT, and ENTRY statements

Interface body CONTAINS, DATA, ENTRY, IMPORT2, SAVE, and
FORMAT statements, statement functions, and
executable statements

BLOCK construct CONTAINS, DATA, ENTRY, and IMPORT statements,
statement functions, and these specification
statements: COMMON, EQUIVALENCE, IMPLICIT,
INTENT (or its equivalent attribute), NAMELIST,
OPTIONAL (or its equivalent attribute), and VALUE
(or its equivalent attribute)

1 The scoping unit of a module does not include any module subprograms that the module contains.
2 An IMPORT statement can appear only in an interface body that is not a separate module procedure
interface body.

See Also
Scope for details on scoping units

Keywords
A keyword can either be a part of the syntax of a statement (statement keyword), or it can be the name of a
dummy argument (argument keyword). Examples of statement keywords are WRITE, INTEGER, DO, and
OPEN. Examples of argument keywords are arguments to the intrinsic functions.

In the intrinsic function UNPACK (vector, mask, field), for example, vector, mask, and field are argument
keywords. They are dummy argument names, and any variable may be substituted in their place. Dummy
argument names and real argument names are discussed in topic Program Units and Procedures.

Keywords are not reserved. The compiler recognizes keywords by their context. For example, a program can
have an array named IF, read, or Goto, even though this is not good programming practice. The only
exception is the keyword PARAMETER. If you plan to use variable names beginning with PARAMETER in an
assignment statement, you need to use compiler option altparam.

Using keyword names for variables makes programs harder to read and understand. For readability, and to
reduce the possibility of hard-to-find bugs, avoid using names that look like parts of Fortran statements.
Rules that describe the context in which a keyword is recognized are discussed in topic Program Units and
Procedures.

Argument keywords are a feature of Standard Fortran that let you specify dummy argument names when
calling intrinsic procedures, or anywhere an explicit interface for the procedure is accessible. Argument
keywords permit specifying actual arguments in an order, and may be required in an argument list containing
an optional argument that is not passed in a procedure invocation.. Using argument keywords can make a
program more readable and easy to follow. This is described more fully in topic Program Units and
Procedures. The syntax statements in the A-Z Reference show the dummy keywords you can use for each
Fortran procedure.

See Also
altparam compiler option

Intel® Fortran Compiler Classic and Intel® Fortran Compiler Developer Guide and Reference 1

725

Program Units and Procedures

Names

Names identify entities within a Fortran program unit (such as variables, function results, common blocks,
named constants, procedures, program units, namelist groups, and dummy arguments). In FORTRAN 77,
names were called "symbolic names".

A name can contain letters, digits, underscores (_), and the dollar sign ($) special character. The first
character must be a letter or a dollar sign.

In Fortran 2008 and later, a name can contain up to 63 characters.

The length of a module name (in MODULE and USE statements) may be restricted by your file system.

NOTE
Be careful when defining names that contain dollar signs. A dollar sign can be a symbol for command
or symbol substitution in various shell and utility commands.

In an executable program, the names of the following entities are global and must be unique in the entire
program:

• Program units
• External procedures
• Common blocks
• Modules

Examples
The following examples demonstrate valid and invalid names:

Valid Names

NUMBER

FIND_IT

X

Invalid Names

5Q Begins with a numeral.

B.4 Contains a special character other than _ or $.

_WRONG Begins with an underscore.

The following are all valid examples of using names:

 INTEGER (SHORT) K ! K names an integer variable,
 ! SHORT is a named constant
 SUBROUTINE EXAMPLE ! EXAMPLE names the subroutine
 LABEL: DO I = 1,N ! LABEL names the DO block

Character Sets
Intel® Fortran supports the following characters:

• The Fortran character set, which consists of the following:

• All uppercase and lowercase letters (A through Z and a through z)
• The numerals 0 through 9

 1 Intel® Fortran Compiler Classic and Intel® Fortran Compiler Developer Guide and Reference

726

• The underscore (_)
• The following special characters:

Character Name Character Name

blank or <Tab> Blank (space) or tab ; Semicolon

= Equal sign ! Exclamation point

+ Plus sign " Quotation mark or quote

- Minus sign % Percent sign

* Asterisk & Ampersand

/ Slash ~ Tilde

\ Backslash < Less than

(Left parenthesis > Greater than

) Right parenthesis ? Question mark

[Left square bracket ' Apostrophe

] Right square bracket ` Grave accent

{ Left curly bracket ^ Circumflex accent

} Right curly bracket | Vertical line

, Comma $ Dollar sign (currency
symbol)

. Period or decimal point # Number sign

: Colon @ Commercial at
• Other printable characters

Printable characters include the tab character (09 hex), ASCII characters with codes in the range 20(hex)
through 7E(hex), and characters in certain special character sets.

Printable characters that are not in the Standard Fortran character set can only appear in comments,
character constants, Hollerith constants, character string edit descriptors, and input/output records.

Uppercase and lowercase letters are treated as equivalent when used to specify program behavior (except in
character constants and Hollerith constants).

See Also
Data Types, Constants, and Variables for further details on character sets and default character
types
ASCII and Key Code Charts for Windows*
ASCII Character Set for Linux*

Source Forms
Within a program, source code can be in free, fixed, or tab form. Fixed or tab forms must not be mixed with
free form in the same source program, but different source forms can be used in different source programs.
Intel® Fortran supports compiler directives FREEFORM and NOFREEFORM, which let you toggle between fixed
and free format in the same source file.

All source forms allow lowercase characters to be used as an alternative to uppercase characters.

Several characters are indicators in source code (unless they appear within a comment or a Hollerith or
character constant). The following are rules for indicators in all source forms:

Intel® Fortran Compiler Classic and Intel® Fortran Compiler Developer Guide and Reference 1

727

• Comment indicator

A comment indicator can precede the first statement of a program unit and appear anywhere within a
program unit. If the comment indicator appears within a source line, the comment extends to the end of
the line.

An all blank line is also a comment line.

Comments have no effect on the interpretation of the program unit.

For more information, see comment indicators in free source form, or fixed and tab source forms.
• Statement separator

More than one statement (or partial statement) can appear on a single source line if a statement
separator is placed between the statements. The statement separator is a semicolon character (;).

Consecutive semicolons (with or without intervening blanks) are considered to be one semicolon.

If a semicolon is the first character on a line, the last character on a line, or the last character before a
comment, it is ignored.

• Continuation indicator

A statement can be continued for more than one line by placing a continuation indicator on the line.

The Fortran Standard does not put a limit on the number of continuation lines, but limits the number of
characters in a statement to 1,000,000.

Comments can occur within a continued statement, but comment lines cannot be continued.

For more information, see continuation indicators in free source form, or fixed and tab source forms.

The following table summarizes characters used as indicators in source forms.

Indicators in Source Forms

Source Item Indicator 1 Source Form Position

Comment ! All forms Anywhere in source
code

Comment line ! Free At the beginning of the
source line

!, C, or * Fixed In column 1

Tab In column 1

Continuation line 2 & Free At the end of the source
line

Any character except
zero or blank

Fixed In column 6

Any digit except zero Tab After the first tab

Statement separator ; All forms Between statements on
the same line

Statement label 1 to 5 decimal digits Free Before a statement

Fixed In columns 1 through 5

Tab Before the first tab

A debugging statement3 D Fixed In column 1

 1 Intel® Fortran Compiler Classic and Intel® Fortran Compiler Developer Guide and Reference

728

Source Item Indicator 1 Source Form Position

Tab In column 1

1 If the character appears in a Hollerith or character constant, it is not an indicator and is ignored.
2 The Fortran Standard does not limit the number of continuation lines, but limits the number of
characters in a statement to 1,000,000.
3 Fixed and tab forms only.

Source form and line length can be changed at any time by using the FREEFORM, NOFREEFORM, or
FIXEDFORMLINESIZE directives. The change remains in effect until the end of the file, or until changed
again.

You can also select free source form by using compiler option free.

Source code can be written so that it is useable for all source forms.

Statement Labels
A statement label (or statement number) identifies a statement so that other statements can refer to it,
either to get information or to transfer control. A label can precede any statement that is not part of another
statement.

A statement label must be one to five decimal digits long; blanks and leading zeros are ignored. An all-zero
statement label is invalid, and a blank statement cannot be labeled.

Labeled FORMAT and labeled executable statements are the only statements that can be referred to by other
statement. FORMAT statements are referred to only in the format specifier of an I/O statement or in an
ASSIGN statement. Two statements within a scoping unit cannot have the same label.

See Also
free compiler option

Free Source Form

In free source form, statements are not limited to specific positions on a source line. In Standard Fortran, a
free form source line can contain from 0 to 10,000 characters.

Blank characters are significant in free source form. The following are rules for blank characters:

• Blank characters must not appear in lexical tokens, except within a character context. For example, there
can be no blanks between the exponentiation operator **. Blank characters can be used freely between
lexical tokens to improve legibility. Intel® Fortran allows the line to be of any length.

• Blank characters must be used to separate names, constants, or labels from adjacent keywords, names,
constants, or labels. For example, consider the following statements:

 INTEGER NUM
 GO TO 40
 20 DO K=1,8

The blanks are required after INTEGER, TO, 20, and DO.
• Some adjacent keywords must have one or more blank characters between them. Others do not require

any; for example, BLOCK DATA can also be spelled BLOCKDATA. The following list shows which keywords
have optional or required blanks:

Optional Blanks Required Blanks

BLOCK DATA ABSTRACT INTERFACE

DOUBLE COMPLEX CASE DEFAULT

DOUBLE PRECISION CHANGE TEAM

Intel® Fortran Compiler Classic and Intel® Fortran Compiler Developer Guide and Reference 1

729

Optional Blanks Required Blanks

ELSE IF CLASS DEFAULT

ELSE WHERE CLASS IS

END ASSOCIATE DO CONCURRENT

END BLOCK DO WHILE

END BLOCK DATA ERROR STOP

END CRITICAL EVENT POST

END DO EVENT WAIT

END ENUM FAIL IMAGE

END FILE FORM TEAM

END FORALL IMPLICIT type-specifier

END FUNCTION IMPLICIT NONE

END IF INTERFACE ASSIGNMENT

END INTERFACE INTERFACE OPERATOR

END MODULE MODULE PROCEDURE

END PROCEDURE prefix1 [prefix …] FUNCTION

END PROGRAM prefix1 [prefix …] type-specifier [prefix...]
FUNCTION

END SELECT prefix1 [prefix …] SUBROUTINE

END SUBMODULE RANK DEFAULT

END SUBROUTINE SYNC ALL

END TEAM SYNC IMAGES

END TYPE SYNC MEMORY

END WHERE SYNC TEAM

GO TO type-specifier FUNCTION

IN OUT type-specifier prefix1 [prefix …] FUNCTION

SELECT CASE

SELECT RANK

SELECT TYPE

1prefix is ELEMENTAL or IMPURE or MODULE or NON_RECURSIVE or PURE or RECURSIVE. No prefix can be
specified more than once. You cannot specify both IMPURE and PURE. You cannot specify both
NON_RECURSIVE and RECURSIVE.

For information on statement separators (;) in all forms, see Source Forms.

 1 Intel® Fortran Compiler Classic and Intel® Fortran Compiler Developer Guide and Reference

730

Comment Indicator
In free source form, the exclamation point character (!) indicates a comment if it is within a source line, or a
comment line if it is the first character in a source line.

Continuation Indicator
In free source form, the ampersand character (&) indicates a continuation line (unless it appears in a
Hollerith or character constant, or within a comment). The continuation line is the first noncomment line
following the ampersand. A comment line cannot be continued, but a comment can appear in a continuation
line.

A line cannot contain a single "&" as the only non-blank character or as the only non-blank character before
an "!" that begins a comment. The Fortran Standard limits a statement to a total of 1,000,000 characters,
but it does not limit the number of continuation lines.

The following shows a continued statement:

 TCOSH(Y) = EXP(Y) + & ! The initial statement line
 EXP(-Y) ! A continuation line

If the first nonblank character on the next noncomment line is an ampersand, the statement continues at the
character following the ampersand. For example, the preceding example can be written as follows:

 TCOSH(Y) = EXP(Y) + &
 & EXP(-Y)

If a lexical token must be continued, the first nonblank character on the next noncomment line must be an
ampersand followed immediately by the rest of the token. For example:

 TCOSH(Y) = EXP(Y) + EX&
 &P(-Y)

If you continue a character constant, an ampersand must be the first non-blank character of the continued
line; the statement continues with the next character following the ampersand. For example:

 ADVERTISER = "Davis, O'Brien, Chalmers & Peter&
 &son"
 ARCHITECT = "O'Connor, Emerson, and Dickinson&
 & Associates"

If the ampersand is omitted on the continued line, the statement continues with the first non-blank character
in the continued line. So, in the preceding example, the whitespace before "Associates" would be ignored.

The ampersand cannot be the only nonblank character in a line, or the only nonblank character before a
comment; an ampersand in a comment is ignored.

See Also
Source Forms for details on the general rules for all source forms

Fixed and Tab Source Forms

In the Fortran standard, fixed source form is identified as obsolescent.

In fixed and tab source forms, there are restrictions on where a statement can appear within a line.

By default, a statement can extend to character position 72. In this case, any text following position 72 is
ignored and no warning message is printed. You can specify compiler option extend-source to extend source
lines to character position 132.

Except in a character context, blanks are not significant and can be used freely throughout the program for
maximum legibility.

Intel® Fortran Compiler Classic and Intel® Fortran Compiler Developer Guide and Reference 1

731

Some Fortran compilers use blanks to pad short source lines out to 72 characters. By default, Intel® Fortran
does not. If portability is a concern, you can use the concatenation operator to prevent source lines from
being padded by other Fortran compilers (see the example in "Continuation Indicator" below) or you can
force short source lines to be padded by using compiler option pad-source.

Comment Indicator
In fixed and tab source forms, the exclamation point character (!) indicates a comment if it is within a source
line. It must not appear in column 6 of a fixed form line; that column is reserved for a continuation indicator.

The letter C (or c), an asterisk (*), or an exclamation point (!) indicates a comment line when it appears in
column 1 of a source line.

Continuation Indicator
In fixed and tab source forms, a continuation line is indicated by one of the following:

• For fixed form: Any character (except a zero or blank) in column 6 of a source line
• For tab form: Any digit (except zero) after the first tab

The compiler considers the characters following the continuation indicator to be part of the previous line. The
Fortran Standard limits a statement to 1,000,000 characters.

If a zero or blank is used as a continuation indicator, the compiler considers the line to be an initial line of a
Fortran statement.

The statement label field of a continuation line must be blank (except in the case of a debugging statement).

When long character or Hollerith constants are continued across lines, portability problems can occur. Use the
concatenation operator to avoid such problems. For example:

 PRINT *, 'This is a very long character constant '//
 + 'which is safely continued across lines'

Use this same method when initializing data with long character or Hollerith constants. For example:

 CHARACTER*(*) LONG_CONST
 PARAMETER (LONG_CONST = 'This is a very long '//
 + 'character constant which is safely continued '//
 + 'across lines')
 CHARACTER*100 LONG_VAL
 DATA LONG_VAL /LONG_CONST/

Hollerith constants must be converted to character constants before using the concatenation method of line
continuation.

The Fortran Standard requires that, within a program unit, the END statement cannot be continued, and no
other statement in the program unit can have an initial line that appears to be the program unit END
statement. In these instances, Intel Fortran produces warnings when standards checking is requested.

Debugging Statement Indicator
In fixed and tab source forms, the statement label field can contain a statement label, a comment indicator,
or a debugging statement indicator.

The letter D indicates a debugging statement when it appears in column 1 of a source line. The initial line of
the debugging statement can contain a statement label in the remaining columns of the statement label field.

If a debugging statement is continued onto more than one line, every continuation line must begin with a D
and a continuation indicator.

By default, the compiler treats debugging statements as comments. However, you can specify compiler
option d-lines to force the compiler to treat debugging statements as source text to be compiled.

 1 Intel® Fortran Compiler Classic and Intel® Fortran Compiler Developer Guide and Reference

732

See Also
Source Forms for details on the general rules for all source forms
d-lines compiler option
extend-source compiler option
pad-source compiler option

Fixed-Format Lines

In fixed source form, a source line has columns divided into fields for statement labels, continuation
indicators, statement text, and sequence numbers. Each column represents a single character.

The column positions for each field follow:

Field Column

Statement label 1 through 5

Continuation indicator 6

Statement 7 through 72 (or 132 with compiler option extend-
source)

Sequence number 73 through 80

By default, a sequence number or other identifying information can appear in columns 73 through 80 of any
fixed-format line in an Intel® Fortran program. The compiler ignores the characters in this field.

If you extend the statement field to position 132, the sequence number field does not exist.

NOTE
If you use the sequence number field, do not use tabs anywhere in the source line, or the compiler
may interpret the sequence numbers as part of the statement field in your program.

See Also
Source Forms
Fixed and Tab Source Forms
extend-source compiler option

Tab-Format Lines

In tab source form, you can specify a statement label field, a continuation indicator field, and a statement
field, but not a sequence number field.

The following figure shows equivalent source lines coded with tab and fixed source form.

Intel® Fortran Compiler Classic and Intel® Fortran Compiler Developer Guide and Reference 1

733

Line Formatting Example

The statement label field precedes the first tab character. The continuation indicator field and statement field
follow the first tab character.

The continuation indicator is any nonzero digit. The statement field can contain any Fortran statement. A
Fortran statement cannot start with a digit.

If a statement is continued, a continuation indicator must be the first character (following the first tab) on
the continuation line.

Many text editors and terminals advance the terminal print carriage to a predefined print position when you
press the <Tab> key. However, the Intel® Fortran compiler does not interpret the tab character in this way. It
treats the tab character in a statement field the same way it treats a blank character. In the source listing
that the compiler produces, the tab causes the character that follows to be printed at the next tab stop
(usually located at columns 9, 17, 25, 33, and so on).

NOTE
If you use the sequence number field, do not use tabs anywhere in the source line, or the compiler
may interpret the sequence numbers as part of the statement field in your program.

See Also
Source Forms for details on the general rules for all source forms
Fixed and Tab Source Forms for details on the general rules for fixed and tab source forms

Source Code Useable for All Source Forms

To write source code that is useable for all source forms (free, fixed, or tab), follow these rules:

Blanks Treat as significant (see Free Source Form).

Statement labels Place in column positions 1 through 5 (or before the
first tab character).

Statements Start in column position 7 (or after the first tab
character).

 1 Intel® Fortran Compiler Classic and Intel® Fortran Compiler Developer Guide and Reference

734

Comment indicator Use only !. Place anywhere except in column
position 6 (or immediately after the first tab
character).

Continuation indicator Use only &. Place in column position 73 of the initial
line and each continuation line, and in column 6 of
each continuation line (no tab character can
precede the ampersand in column 6).

The following example is valid for all source forms:

Column:
12345678...
 73

! Define the user function MY_SIN
 DOUBLE PRECISION FUNCTION MY_SIN(X)
 MY_SIN = X - X**3/FACTOR(3) + X**5/FACTOR(5) &
 & - X**7/FACTOR(7)
 CONTAINS
 INTEGER FUNCTION FACTOR(N)
 FACTOR = 1
 DO 10 I = N, 1, -1
 10 FACTOR = FACTOR * I
 END FUNCTION FACTOR
 END FUNCTION MY_SIN

Data Types, Constants, and Variables
Each constant, variable, array, expression, or function reference in a Fortran statement has a data type. The
data type of these items can be inherent in their construction, implied by convention, or explicitly declared.

Each data type has the following properties:

• A name

The names of the intrinsic data types are predefined, while the names of derived types are defined in
derived-type definitions. Data objects (constants, variables, or parts of constants or variables) are
declared using the name of the data type.

• A set of associated values

Each data type has a set of valid values. Integer and real data types have a range of valid values.
Complex and derived types have sets of values that are combinations of the values of their individual
components.

• A way to represent constant values for the data type

A constant is a data object with a fixed value that cannot be changed during program execution. The
value of a constant can be a numeric value, a logical value, or a character string.

A constant that does not have a name is a literal constant. A literal constant must be of intrinsic type and
it cannot be array-valued.

A constant that has a name is a named constant. A named constant can be of any type, including derived
type, and it can be array-valued. A named constant has the PARAMETER attribute and is specified in a
type declaration statement or PARAMETER statement.

• A set of operations to manipulate and interpret these values

The data type of a variable determines the operations that can be used to manipulate it. Besides intrinsic
operators and operations, you can also define operators and operations.

See Also
Type Declarations

Intel® Fortran Compiler Classic and Intel® Fortran Compiler Developer Guide and Reference 1

735

Defined Operations
PARAMETER attribute and statement
Expressions for details on valid operations for data types

Intrinsic Data Types
Intel® Fortran provides the following intrinsic data types:

• INTEGER

The following kind parameters are available for data of type integer:

• INTEGER([KIND=]1) or INTEGER*1
• INTEGER([KIND=]2) or INTEGER*2
• INTEGER([KIND=]4) or INTEGER*4
• INTEGER([KIND=]8) or INTEGER*8

• REAL

The following kind parameters are available for data of type real:

• REAL([KIND=]4) or REAL*4
• REAL([KIND=]8) or REAL*8
• REAL([KIND=]16) or REAL*16

• DOUBLE PRECISION

No kind parameter is permitted for data declared with type DOUBLE PRECISION. This data type is the
same as REAL([KIND=]8).

• COMPLEX

The following kind parameters are available for data of type complex:

• COMPLEX([KIND=]4) or COMPLEX*8
• COMPLEX([KIND=]8) or COMPLEX*16
• COMPLEX([KIND=]16) or COMPLEX*32

• DOUBLE COMPLEX

No kind parameter is permitted for data declared with type DOUBLE COMPLEX. This data type is the same
as COMPLEX([KIND=]8).

• LOGICAL

The following kind parameters are available for data of type logical:

• LOGICAL([KIND=]1) or LOGICAL*1
• LOGICAL([KIND=]2) or LOGICAL*2
• LOGICAL([KIND=]4) or LOGICAL*4
• LOGICAL([KIND=]8) or LOGICAL*8

• CHARACTER

There is one kind parameter available for data of type character: CHARACTER([KIND=]1).
• BYTE

This is a 1-byte value; the data type is equivalent to INTEGER([KIND=]1).

The intrinsic function KIND can be used to determine the kind type parameter of a representation method.

For more portable programs, you should not use the forms INTEGER([KIND=]n) or REAL([KIND=]n). You
should instead define a PARAMETER constant using the SELECTED_INT_KIND or SELECTED_REAL_KIND
function, whichever is appropriate. For example, the following statements define a PARAMETER constant for
an INTEGER kind that has 9 digits:

 INTEGER, PARAMETER :: MY_INT_KIND = SELECTED_INT_KIND(9)
 ...
 INTEGER(MY_INT_KIND) :: J
 ...

Note that the syntax :: is used in type declaration statements.

The following sections describe the intrinsic data types and forms for literal constants for each type.

 1 Intel® Fortran Compiler Classic and Intel® Fortran Compiler Developer Guide and Reference

736

See Also
KIND intrinsic function
Declaration Statements for Noncharacter Types for details on declaration statements for intrinsic
numeric and logical data types
Declaration Statements for Character Types for details on declaration statements for intrinsic
character data types
Expressions for details on operations for intrinsic data types
Data Type Storage Requirements table for details on storage requirements for intrinsic data types

Integer Data Types

Integer data types can be specified as follows:

INTEGER

INTEGER([KIND=]n)

INTEGER*n

n Is a constant expression that evaluates to kind 1, 2, 4, or 8.

If a kind parameter is specified, the integer has the kind specified. If a kind parameter is not specified,
integer constants are interpreted as follows:

• If the integer constant is within the default integer kind range, the kind is default integer.
• If the integer constant is outside the default integer kind range, the kind of the integer constant is the

smallest integer kind that holds the constant.

Default integer is affected by compiler option integer-size, the INTEGER compiler directive, and the OPTIONS
statement.

The intrinsic inquiry function KIND returns the kind type parameter, if you do not know it. You can use the
intrinsic function SELECTED_INT_KIND to find the kind values that provide a given range of integer values.
The decimal exponent range is returned by the intrinsic function RANGE.

Examples
The following examples show ways an integer variable can be declared.

An entity-oriented example is:

 INTEGER, DIMENSION(:), POINTER :: days, hours
 INTEGER(2), POINTER :: k, limit
 INTEGER(1), DIMENSION(10) :: min

An attribute-oriented example is:

 INTEGER days, hours
 INTEGER(2) k, limit
 INTEGER(1) min
 DIMENSION days(:), hours(:), min (10)
 POINTER days, hours, k, limit

An integer can be used in certain cases when a logical value is expected, such as in a logical expression
evaluating a condition, as in the following:

 INTEGER I, X
 READ (*,*) I
 IF (I) THEN
 X = 1
 END IF

See Also
integer-size compiler option

Intel® Fortran Compiler Classic and Intel® Fortran Compiler Developer Guide and Reference 1

737

Integer Constants

An integer constant is a whole number with no decimal point. It can have a leading sign and is interpreted as
a decimal number.

Integer constants take the following form:

[s]n[n...][_k]

s Is a sign; required if negative (-), optional if positive (+).

n Is a decimal digit (0 through 9). Any leading zeros are ignored.

k Is the optional kind parameter: 1 for INTEGER(1), 2 for INTEGER(2),
4 for INTEGER(4), or 8 for INTEGER(8). It must be preceded by an
underscore (_).

The named constants for INTEGER kind values are defined in the
intrinsic module ISO_FORTRAN_ENV: INT8=1, INT16=2, INT32=4,
and INT64=8.

An unsigned constant is assumed to be nonnegative.

Integer constants are interpreted as decimal values (base 10) by default. To specify a constant that is not in
base 10, use the following extension syntax:

[s] [[base] #] nnn...

s Is an optional plus (+) or minus (-) sign.

base Is any constant from 2 through 36.

If base is omitted but # is specified, the integer is interpreted in base
16. If both base and # are omitted, the integer is interpreted in base
10.

For bases 11 through 36, the letters A through Z represent numbers
greater than 9. For example, for base 36, A represents 10, B
represents 11, C represents 12, and so on, through Z, which
represents 35. The case of the letters is not significant.

The value of nnn cannot be bigger than 2**31-1. The value is
extended with zeroes on the left or truncated on the left to make it
the correct size. A minus sign for s negates the value.

Note that compiler option integer-size can affect the KIND type parameter of INTEGER data and integer
constants.

Examples

Valid Integer (base 10) Constants

0

-127

+32123

47_2

Invalid Integer (base 10) Constants

9999999999999999999 Number too large.

3.14 Decimal point not allowed; this is a valid REAL
constant.

 1 Intel® Fortran Compiler Classic and Intel® Fortran Compiler Developer Guide and Reference

738

32,767 Comma not allowed.

33_3 3 is not a valid kind type for integers.

The following seven integers are all assigned a value equal to 3,994,575 decimal:

 I = 2#1111001111001111001111
 m = 7#45644664
 J = +8#17171717
 K = #3CF3CF
 n = +17#2DE110
 L = 3994575
 index = 36#2DM8F

The following seven integers are all assigned a value equal to -3,994,575 decimal:

 I = -2#1111001111001111001111
 m = -7#45644664
 J = -8#17171717
 K = -#3CF3CF
 n = -17#2DE110
 L = -3994575
 index = -36#2DM8F

You can use integer constants to assign values to data. The following table shows assignments to different
data and lists the integer and hexadecimal values in the data:

Fortran Assignment Integer Value in Data Hexadecimal Value in DataLOGICAL(1)X
INTEGER(1)X
X = -128 -128 Z'80'
X = 127 127 Z'7F'
X = 255 -1 Z'FF'

LOGICAL(2)X
INTEGER(2)X
X = 255 255 Z'FF'
X = -32768 -32768 Z'8000'
X = 32767 32767 Z'7FFF'
X = 65535 -1 Z'FFFF'

See Also
Numeric Expressions
integer-size compiler option

Real Data Types

Real data types can be specified as follows:

REAL

REAL([KIND=]n)

REAL*n

DOUBLE PRECISION

n Is a constant expression that evaluates to kind 4, 8, or 16.

The named constants for REAL kind values are defined in the intrinsic
module ISO_FORTRAN_ENV: REAL32=4, REAL64=8, and
REAL128=16.

If a kind parameter is specified, the real constant has the kind specified. If a kind parameter is not specified,
the kind is default real.

Intel® Fortran Compiler Classic and Intel® Fortran Compiler Developer Guide and Reference 1

739

Default real is affected by compiler options specifying real size and by the REAL directive.

The default KIND for DOUBLE PRECISION is affected by compiler option double-size. If this compiler option is
not specified, default DOUBLE PRECISION is REAL(8).

No kind parameter is permitted for data declared with type DOUBLE PRECISION.

The intrinsic inquiry function KIND returns the kind type parameter. The intrinsic inquiry function RANGE
returns the decimal exponent range, and the intrinsic function PRECISION returns the decimal precision. You
can use the intrinsic function SELECTED_REAL_KIND to find the kind values that provide a given precision
and exponent range.

Examples
The following examples show how real variables can be declared.

An entity-oriented example is:

 REAL (KIND = high), OPTIONAL :: testval
 REAL, SAVE :: a(10), b(20,30)

An attribute-oriented example is:

 REAL (KIND = high) testval
 REAL a(10), b(20,30)
 OPTIONAL testval
 SAVE a, b

See Also
real-size compiler option

General Rules for Real Constants

A real constant approximates the value of a mathematical real number. The value of the constant can be
positive, zero, or negative.

The following is the general form of a real constant with no exponent part:

[s]n[n...][_k]

A real constant with an exponent part has one of the following forms:

[s]n[n...]E[s]nn...[_k]

[s]n[n...]D[s]nn...

[s]n[n...]Q[s]nn...

s Is a sign; required if negative (-), optional if positive (+).

n Is a decimal digit (0 through 9). A decimal point must appear if the
real constant has no exponent part.

k Is the optional kind parameter: 4 for REAL(4), 8 for REAL(8), or 16 for
REAL(16). It must be preceded by an underscore (_).

Description
Leading zeros (zeros to the left of the first nonzero digit) are ignored in counting significant digits. For
example, in the constant 0.00001234567, all of the nonzero digits, and none of the zeros, are significant.
(See the following sections for the number of significant digits each kind type parameter typically has).

The exponent represents a power of 10 by which the preceding real or integer constant is to be multiplied
(for example, 1.0E6 represents the value 1.0 * 10**6).

A real constant with no exponent part and no kind type parameter is (by default) a single-precision
(REAL(4)) constant. You can change the default behavior by specifying compiler option fpconstant.

 1 Intel® Fortran Compiler Classic and Intel® Fortran Compiler Developer Guide and Reference

740

If the real constant has no exponent part, a decimal point must appear in the string (anywhere before the
optional kind parameter). If there is an exponent part, a decimal point is optional in the string preceding the
exponent part; the exponent part must not contain a decimal point.

The exponent letter E denotes a single-precision real (REAL(4)) constant, unless the optional kind parameter
specifies otherwise. For example, -9.E2_8 is a double-precision constant (which can also be written as
-9.D2).

The exponent letter D denotes a double-precision real (REAL(8)) constant.

The exponent letter Q denotes a quad-precision real (REAL(16)) constant.

A minus sign must appear before a negative real constant; a plus sign is optional before a positive constant.
Similarly, a minus sign must appear between the exponent letter (E, D, or Q) and a negative exponent,
whereas a plus sign is optional between the exponent letter and a positive exponent.

If the real constant includes an exponent letter, the exponent field cannot be omitted, but it can be zero.

To specify a real constant using both an exponent letter and a kind parameter, the exponent letter must be E,
and the kind parameter must follow the exponent part.

See Also
fpconstant compiler option

REAL(4) Constants

A single-precision REAL constant occupies four bytes of memory. The number of digits is unlimited, but
typically only the leftmost seven digits are significant.

IEEE* IEEE binary32 format is used.

Note that compiler option real-size can affect REAL data.

Examples
Valid REAL(4) Constants

3.14159

3.14159_4

621712._4

-.00127

+5.0E3

2E-3_4

Invalid REAL(4) Constants

1,234,567. Commas not allowed.

325E-47 Too small for REAL; this is a valid DOUBLE
PRECISION constant.

-47.E47 Too large for REAL; this is a valid DOUBLE
PRECISION constant.

625._6 6 is not a valid kind for reals.

100 Decimal point is missing; this is a valid integer
constant.

Intel® Fortran Compiler Classic and Intel® Fortran Compiler Developer Guide and Reference 1

741

$25.00 Special character not allowed.

See Also
General Rules for Real Constants
real-size compiler option
Compiler Reference > Data and I/O section: Data Representation

REAL(8) or DOUBLE PRECISION Constants

A REAL(8) or DOUBLE PRECISION constant has more than twice the accuracy of a REAL(4) number, and
greater range.

A REAL(8) or DOUBLE PRECISION constant occupies eight bytes of memory. The number of digits that
precede the exponent is unlimited, but typically only the leftmost 15 digits are significant.

IEEE* binary64 format is used.

Note that compiler option double-size can affect DOUBLE PRECISION data.

The default KIND for DOUBLE PRECISION is affected by compiler option double-size.

Examples
Valid REAL(8) or DOUBLE PRECISION Constants

123456789D+5

123456789E+5_8

+2.7843D00

-.522D-12

2E200_8

2.3_8

3.4E7_8

Invalid REAL(8) or DOUBLE PRECISION Constants

-.25D0_2 2 is not a valid kind for reals.

+2.7182812846182 No D exponent designator is present; this is a valid
single-precision constant.

123456789.D400 Too large for any double-precision format.

123456789.D-400 Too small for any double-precision format.

See Also
General Rules for Real Constants
double-size compiler option
Compiler Reference > Data and I/O section: Data Representation

REAL(16) Constants

A REAL(16) constant has more than four times the accuracy of a REAL(4) number, and a greater range.

A REAL(16) constant occupies 16 bytes of memory. The number of digits that precede the exponent is
unlimited, but typically only the leftmost 33 digits are significant.

IEEE* binary128 format is used.

 1 Intel® Fortran Compiler Classic and Intel® Fortran Compiler Developer Guide and Reference

742

Examples
Valid REAL(16) Constants

123456789Q4000

-1.23Q-400

+2.72Q0

1.88_16

Invalid REAL(16) Constants

1.Q5000 Too large.

1.Q-5000 Too small.

See Also
General Rules for Real Constants
Compiler Reference > Data and I/O section: Data Representation

Complex Data Types

Complex data types can be specified as follows:

COMPLEX

COMPLEX([KIND=]n)

COMPLEX*s

DOUBLE COMPLEX

n Is a constant expression that evaluates to kind 4, 8, or 16.

s Is 8, 16, or 32. COMPLEX(4) is specified as COMPLEX*8; COMPLEX(8)
is specified as COMPLEX*16; COMPLEX(16) is specified as
COMPLEX*32.

If a kind parameter is specified, the complex constant has the kind specified. If no kind parameter is
specified, the kind of both parts is default real, and the constant is of type default complex.

Default complex is affected by compiler option real-size and by the REAL directive.

The default KIND for DOUBLE COMPLEX is affected by compiler option double-size. If the compiler option is
not specified, default DOUBLE COMPLEX is COMPLEX(8).

No kind parameter is permitted for data declared with type DOUBLE COMPLEX.

A complex number of any kind is made up of a real part and an imaginary part. The REAL and AIMAG
intrinsic functions return the real and imaginary parts of a complex number respectively. The CMPLX intrinsic
constructs a complex number from two real numbers. The %re and %im complex part designators access the
real and imaginary parts of a complex number respectively.

Examples
The following examples show how complex variables can be declared.

An entity-oriented example is:

 COMPLEX (4), DIMENSION (8) :: cz, cq
An attribute-oriented example is:

 COMPLEX(4) cz, cq
 DIMENSION(8) cz, cq

Intel® Fortran Compiler Classic and Intel® Fortran Compiler Developer Guide and Reference 1

743

The following shows an example of the parts of a complex number:

 COMPLEX (4) :: ca = (1.0, 2.0)
 REAL (4) :: ra = 3.0, rb = 4.0
 PRINT *, REAL (ca), ca%RE ! prints 1.0, 1.0
 PRINT *, AIMAG (ca), ca%IM ! prints 2.0, 2.0
 PRINT *, CMPLX (ra, rb) ! prints (3.0, 4.0)
 ca = CMPLX (ra, AIMAG (ca))
 PRINT *, ca ! prints (3.0, 2.0)
 ca%im = rb
 PRINT *, ca ! prints (3.0, 4.0)

See Also
AIMAG intrinsic
CMPLX intrinsic
REAL intrinsic

General Rules for Complex Constants

A complex constant approximates the value of a mathematical complex number. The constant is a pair of
real or integer values, separated by a comma, and enclosed in parentheses. The first constant represents the
real part of that number; the second constant represents the imaginary part.

The following is the general form of a complex constant:

(c,c)

c Is as follows:

• For COMPLEX(4) constants, c is an integer or REAL(4) constant.
• For COMPLEX(8) constants, c is an integer, REAL(4) constant, or

DOUBLE PRECISION (REAL(8)) constant. At least one of the pair
must be DOUBLE PRECISION.

• For COMPLEX(16) constants, c is an integer, REAL(4) constant,
REAL(8) constant, or REAL(16) constant. At least one of the pair
must be a REAL(16) constant.

Note that the comma and parentheses are required.

COMPLEX(4) Constants

A COMPLEX(4) constant is a pair of integer or single-precision real constants that represent a complex
number.

A COMPLEX(4) constant occupies eight bytes of memory and is interpreted as a complex number.

If the real and imaginary part of a complex literal constant are both real, the kind parameter value is that of
the part with the greater decimal precision.

The rules for REAL(4) constants apply to REAL(4) constants used in COMPLEX constants. (See General Rules
for Complex Constants and REAL(4) Constants for the rules on forming REAL(4) constants.)

The REAL(4) constants in a COMPLEX constant have IEEE* binary32 format.

Note that compiler option real-size can affect COMPLEX data.

Examples
Valid COMPLEX(4) Constants

(1.7039,-1.70391)

(44.36_4,-12.2E16_4)

 1 Intel® Fortran Compiler Classic and Intel® Fortran Compiler Developer Guide and Reference

744

(+12739E3,0.)

(1,2)

Invalid COMPLEX(4) Constants

(1.23,) Missing second integer or single-precision real
constant.

(1.0, 2H12) Hollerith constant not allowed.

See Also
General Rules for Complex Constants
real-size compiler option

COMPLEX(8) or DOUBLE COMPLEX Constants

A COMPLEX(8) or DOUBLE COMPLEX constant is a pair of constants that represents a complex number. One
of the pair must be a double-precision real constant, the other can be an integer, single-precision real, or
double-precision real constant.

A COMPLEX(8) or DOUBLE COMPLEX constant occupies 16 bytes of memory and is interpreted as a complex
number.

The rules for DOUBLE PRECISION (REAL(8)) constants also apply to the double precision portion of
COMPLEX(8) or DOUBLE COMPLEX constants. (See General Rules for Complex Constants and REAL(8) or
DOUBLE PRECISION Constants for the rules on forming DOUBLE PRECISION constants.)

The DOUBLE PRECISION constants in a COMPLEX(8) or DOUBLE COMPLEX constant have IEEE* binary64
format.

The default KIND for DOUBLE COMPLEX is affected by compiler option double-size.

Examples
Valid COMPLEX(8) or DOUBLE COMPLEX Constants

(1.7039,-1.7039D0)

(547.3E0_8,-1.44_8)

(1.7039E0,-1.7039D0)

(+12739D3,0.D0)

Invalid COMPLEX(8) or DOUBLE COMPLEX Constants

(1.23D0,) Second constant missing.

(1D1,2H12) Hollerith constants not allowed.

(1,1.2) Neither constant is DOUBLE PRECISION; this is a
valid single-precision constant.

See Also
General Rules for Complex Constants
double-size

COMPLEX(16) Constants

A COMPLEX(16) constant is a pair of constants that represents a complex number. One of the pair must be a
REAL(16) constant, the other can be an integer, single-precision real, double-precision real, or REAL(16)
constant.

Intel® Fortran Compiler Classic and Intel® Fortran Compiler Developer Guide and Reference 1

745

A COMPLEX(16) constant occupies 32 bytes of memory and is interpreted as a complex number.

The rules for REAL(16) constants apply to REAL(16) constants used in COMPLEX constants. (See General
Rules for Complex Constants and REAL(16) Constants for the rules on forming REAL(16) constants.)

The REAL(16) constants in a COMPLEX constant have IEEE* binary128 format.

Note that compiler option real-size can affect COMPLEX data.

Examples
Valid COMPLEX(16) Constants

(1.7039,-1.7039Q2)

(547.3E0_16,-1.44)

(+12739D3,0.Q0)

Invalid COMPLEX(16) Constants

(1.23Q0,) Second constant missing.

(1D1,2H12) Hollerith constants not allowed.

(1.7039E0,-1.7039D0) Neither constant is REAL(16); this is a valid double-
precision constant.

See Also
General Rules for Complex Constants
real-size compiler option

Logical Data Types

Logical data types can be specified as follows:

LOGICAL

LOGICAL([KIND=]n)

LOGICAL*n

n Is a constant expression that evaluates to kind 1, 2, 4, or 8.

The named constants for LOGICAL kind values are defined in the
intrinsic module ISO_FORTRAN_ENV: LOGICAL8=1,
LOGICAL16=2,LOGICAL32=4, and LOGICAL64=8.

If a kind parameter is specified, the logical constant has the kind specified. If no kind parameter is specified,
the kind of the constant is default logical.

Examples
The following examples show how logical variables can be declared.

An entity-oriented example is:

 LOGICAL, ALLOCATABLE :: flag1, flag2
 LOGICAL (KIND = byte), SAVE :: doit, dont

An attribute-oriented example is:

 LOGICAL flag1, flag2
 LOGICAL (KIND = byte) doit, dont
 ALLOCATABLE flag1, flag2
 SAVE doit, dont

 1 Intel® Fortran Compiler Classic and Intel® Fortran Compiler Developer Guide and Reference

746

Logical Constants

A logical constant represents only the logical values true or false, and takes one of the following forms:

.TRUE.[_k]

.FALSE.[_k]

k Is the optional kind parameter: 1 for LOGICAL(1), 2 for LOGICAL(2), 4
for LOGICAL(4), or 8 for LOGICAL(8). It must be preceded by an
underscore (_).

The numeric value of .TRUE. and .FALSE. can be -1 and 0 or 1 and 0 depending on compiler option fpscomp
[no]logicals. Logical data can take on integer data values. Logical data type ranges correspond to their
comparable integer data type ranges. For example, the LOGICAL(2) range is the same as the INTEGER(2)
range.

Character Data Type

The character data type can be specified as follows:

CHARACTER ([LEN=] len)

CHARACTER (LEN= len, KIND= n)

CHARACTER (len, [KIND=] n)

CHARACTER (KIND= n [, LEN= len])

CHARACTER* len [,]

n Is a constant expression that evaluates to kind 1.

len Is a string length (not a kind). For more information, see Declaration
Statements for Character Types.

If no kind type parameter is specified, the kind of the constant is default character.

On Windows systems, several Multi-Byte Character Set (MBCS) functions are available to manipulate special
non-English characters.

Character Constants

A character constant is a character string enclosed in delimiters (apostrophes or quotation marks). It takes
one of the following forms:

[k_]'[ch...]' [C]

[k_]"[ch...]" [C]

k Is the optional kind parameter: 1 (the default). It must be followed by
an underscore (_). Note that in character constants, the kind must
precede the constant.

ch Is an ASCII character.

C Is a C string specifier. C strings can be used to define NUL-terminated
strings. For more information, see C Strings in Character Constants.

Description
The value of a character constant is the string of characters between the delimiters. The value does not
include the delimiters, but does include all blanks or tabs within the delimiters.

If a character constant is delimited by apostrophes, use two consecutive apostrophes ('') to place an
apostrophe character in the character constant.

Intel® Fortran Compiler Classic and Intel® Fortran Compiler Developer Guide and Reference 1

747

Similarly, if a character constant is delimited by quotation marks, use two consecutive quotation marks ("")
to place a quotation mark character in the character constant.

The length of the character constant is the number of characters between the delimiters, but two consecutive
delimiters are counted as one character.

The length of a character constant must be in the range of 0 to 7188. Each character occupies one byte of
memory.

If a character constant appears in a numeric context (such as an expression on the right side of an arithmetic
assignment statement), it is considered a Hollerith constant.

A zero-length character constant is represented by two consecutive apostrophes or quotation marks.

Examples
Valid Character Constants

"WHAT KIND TYPE? "

'TODAY''S DATE IS: '

"The average is: "

''

Invalid Character Constants

'HEADINGS No trailing apostrophe.

'Map Number:" Beginning delimiter does not match ending
delimiter.

See Also
Declaration Statements for Character Types

C Strings in Character Constants

String values in the C language are terminated with null characters (CHAR(0)) and can contain nonprintable
characters (such as backspace).

Nonprintable characters are specified by escape sequences. An escape sequence is denoted by using the
backslash (\) as an escape character, followed by a single character indicating the nonprintable character
desired.

This type of string is specified by using a standard string constant followed by the character C. The standard
string constant is then interpreted as a C-language constant. Backslashes are treated as escapes, and a null
character is automatically appended to the end of the string (even if the string already ends in a null
character).

The following table shows the escape sequences that are allowed in character constants:

C-Style Escape Sequences

Escape Sequence Represents

\a or \A A bell

\b or \B A backspace

\f or \F A formfeed

\n or \N A new line

\r or \R A carriage return

 1 Intel® Fortran Compiler Classic and Intel® Fortran Compiler Developer Guide and Reference

748

Escape Sequence Represents

\t or \T A horizontal tab

\v or \V A vertical tab

\xhh or \Xhh A hexadecimal bit pattern

\ooo An octal bit pattern

\0 A null character

\\ A backslash

If a string contains an escape sequence that isn't in this table, the backslash is ignored.

A C string must also be a valid Fortran string. If the string is delimited by apostrophes, apostrophes in the
string itself must be represented by two consecutive apostrophes ('').

For example, the escape sequence \'string causes a compiler error because Fortran interprets the
apostrophe as the end of the string. The correct form is \''string.

If the string is delimited by quotation marks, quotation marks in the string itself must be represented by two
consecutive quotation marks ("").

The sequences \ooo and \xhh allow any ASCII character to be given as a one- to three-digit octal or a one-
to two-digit hexadecimal character code. Each octal digit must be in the range 0 to 7, and each hexadecimal
digit must be in the range 0 to F. For example, the C strings '\010'C and '\x08'C both represent a
backspace character followed by a null character.

The C string '\\abcd'C is equivalent to the string '\abcd' with a null character appended. The string ''C
represents the ASCII null character.

Character Substrings

A character substring is a contiguous segment of a character string. It takes one of the following forms:

v ([e1]:[e2])

a (s [, s] . . .) ([e1]:[e2])

v Is a character scalar constant, or the name of a character scalar
variable or character structure component.

e1 Is a scalar integer (or other numeric) expression specifying the
leftmost character position of the substring; the starting point.

e2 Is a scalar integer (or other numeric) expression specifying the
rightmost character position of the substring; the ending point.

a Is the name of a character array.

s Is a subscript expression.

Both e1 and e2 must be within the range 1,2, ..., len, where len is the length of the parent character string.
If e1 exceeds e2, the substring has length zero.

Description
Character positions within the parent character string are numbered from left to right, beginning at 1.

If the value of the numeric expression e1 or e2 is not of type integer, it is converted to integer before use
(any fractional parts are truncated).

If e1 is omitted, the default is 1. If e2 is omitted, the default is len. For example, NAMES(1,3)(:7) specifies
the substring starting with the first character position and ending with the seventh character position of the
character array element NAMES(1,3).

Intel® Fortran Compiler Classic and Intel® Fortran Compiler Developer Guide and Reference 1

749

Examples
Consider the following example:

 CHARACTER*8 C, LABEL
 LABEL = 'XVERSUSY'
 C = LABEL(2:7)

LABEL(2:7) specifies the substring starting with the second character position and ending with the seventh
character position of the character variable assigned to LABEL, so C has the value 'VERSUS'.

Consider the following example:

 TYPE ORGANIZATION
 INTEGER ID
 CHARACTER*35 NAME
 END TYPE ORGANIZATION
 TYPE(ORGANIZATION) DIRECTOR
 CHARACTER*25 BRANCH, STATE(50)

The following are valid substrings based on this example:

 BRANCH(3:15) ! parent string is a scalar variable
 STATE(20) (1:3) ! parent string is an array element
 DIRECTOR%NAME(:) ! parent string is a structure component

Consider the following example:

 CHARACTER(*), PARAMETER :: MY_BRANCH = "CHAPTER 204"
 CHARACTER(3) BRANCH_CHAP
 BRANCH_CHAP = MY_BRANCH(9:11) ! parent string is a character constant

BRANCH_CHAP is a character string of length 3 that has the value '204'.

See Also
Arrays
Array Elements
Structure Components

Derived Data Types
You can create derived data types from intrinsic data types or previously defined derived types.

A derived type is resolved into "ultimate" components that are either of intrinsic type or are pointers.

The set of values for a specific derived type consists of all possible sequences of component values permitted
by the definition of that derived type. Structure constructors are used to specify values of derived types.

Nonintrinsic assignment for derived-type entities must be defined by a subroutine with an ASSIGNMENT
interface. Any operation on derived-type entities must be defined by a function with an OPERATOR interface.
Arguments and function values can be of any intrinsic or derived type.

A derived type can be parameterized by type parameters. Each type parameter is defined to be either a kind
or a length type parameter, and can have a default value.

Derived-Type Definition

A derived-type definition specifies the name of a user-defined type and the types of its components. For
more information on the syntax of a derived-type definition, see TYPE. For more information on derived-type
definitions for polymorphic objects, see CLASS.

See Also
Derived-Type Assignment Statements
Defining Generic Operators for details on OPERATOR interfaces
Defining Generic Assignment for details on ASSIGNMENT interfaces

 1 Intel® Fortran Compiler Classic and Intel® Fortran Compiler Developer Guide and Reference

750

TYPE Statement (Derived Types)
Parameterized Derived-Type Declarations
Records for details on record structures

Default Initialization

Default initialization occurs if initialization appears in a derived-type component definition.

The specified initialization of the component will apply even if the definition is PRIVATE.

Default initialization applies to dummy arguments with INTENT(OUT). It does not imply the derived-type
component has the SAVE attribute.

Explicit initialization in a type declaration statement overrides default initialization.

To specify default initialization of an array component, use a constant expression that includes one of the
following:

• An array constructor
• A single scalar that becomes the value of each array element

Pointers can have an association status of associated, disassociated, or undefined. If no default initialization
status is specified, the status of the pointer is undefined. To specify disassociated status for a pointer
component, use =>NULL(). To default initialize a pointer component as associated with the target T, use =>
T.

Examples
You do not have to specify initialization for each component of a derived type. For example:

 TYPE REPORT
 CHARACTER (LEN=20) REPORT_NAME
 INTEGER DAY
 CHARACTER (LEN=3) MONTH
 INTEGER :: YEAR = 1995 ! Only component with default
 END TYPE REPORT ! initialization

Consider the following:

 TYPE (REPORT), PARAMETER :: NOV_REPORT = REPORT ("Sales", 15, "NOV", 1996)
In this case, the explicit initialization in the type declaration statement overrides the YEAR component of
NOV_REPORT.

The default initial value of a component can also be overridden by default initialization specified in the type
definition. For example:

 TYPE MGR_REPORT
 TYPE (REPORT) :: STATUS = NOV_REPORT
 INTEGER NUM
 END TYPE MGR_REPORT
 TYPE (MGR_REPORT) STARTUP

In this case, the STATUS component of STARTUP gets its initial value from NOV_REPORT, overriding the
initialization for the YEAR component.

See Also
Initialization expressions

Procedure Pointers as Derived-Type Components

A component of derived type can be a procedure pointer. A procedure pointer component definition takes the
following form:

PROCEDURE ([proc-interface]), proc-attr [, proc-attr]... :: proc-decl-list

Intel® Fortran Compiler Classic and Intel® Fortran Compiler Developer Guide and Reference 1

751

proc-interface (Optional) Is the name of an interface or a type specifier.

proc-attr Is one of the following attributes:

• PUBLIC
• PRIVATE
• POINTER (required)
• NOPASS or PASS [(arg-name)]

where arg-name is the name of a dummy argument.

PASS and NOPASS refer to passed-object dummy arguments. They are
mutually exclusive. You can only specify one or the other in a proc-attr list,
not both.

If you specify NOPASS, procedures will not have have passed-object dummy
arguments. NOPASS is required if the interface is implicit.

The PASS attribute can be used to confirm the default (as the first argument),
The NOPASS attribute prevents passing the object as an argument.

Each proc-attr can only appear once in a given component definition.

proc-decl-list Is one or more of the following:

procedure-name [=> null-init]

where null-init is a reference to intrinsic function NULL with no arguments.

If => null-init appears, the procedure must have the POINTER attribute.

Examples
The following example defines a type that represents a list of procedures with the same interface, which can
be called at some future time:

TYPE PROCEDURE_LIST
 PROCEDURE (PROC_INTERFACE), POINTER :: PROC
 TYPE (PROCEDURE_LIST), POINTER :: NEXT => NULL()
END TYPE PROCEDURE_LIST
ABSTRACT INTERFACE
 SUBROUTINE PROC_INTERFACE
 ...
 END SUBROUTINE PROC_INTERFACE
END INTERFACE

A procedure pointer can be pointer-assigned to a procedure pointer variable, invoked directly, or passed as
an actual argument. For example:

TYPE (PROCEDURE_LIST) :: a, b(6)
PROCEDURE (PROC_INTERFACE), POINTER :: R
...
R => a%PROC
CALL SUBROUTINE_NEXT(a%PROC)
CALL b(i)%PROC

Type-Bound Procedures
In a derived-type definition, you can optionally specify
a type-bound-procedure-part, which declares one or
more type-bound procedures. These procedures
consist of a CONTAINS statement, optionally followed
by a PRIVATE statement, and one or more procedure
binding statements. Type-bound procedures take the
following form:

 1 Intel® Fortran Compiler Classic and Intel® Fortran Compiler Developer Guide and Reference

752

Syntax
CONTAINS
 [PRIVATE]
 proc-binding-spec
 [proc-binding-spec]...

proc-binding-spec Is one of the following:

• specific-binding
• generic-binding
• final-binding

specific-binding A specific type-bound procedure binds a procedure to a type or it
specifies a deferred binding to an abstract type. It takes one of the
following forms:

PROCEDURE (interface-name), binding-attr-list :: binding-name [,
binding-name]...

PROCEDURE [[, binding-attr-list] ::] binding-name [=> procedure-
name] [, [binding-name [=> procedure-name]]…]

generic-binding Is GENERIC [, access-spec] :: generic-spec => binding-name-list

A generic type-bound procedure defines a generic interface that is
bound to the type. For more information, see the GENERIC statement.

final-binding Is FINAL [::] final-subroutine-list

An extensible derived type can have one or more "final subroutines"
associated with it. A final subroutine can be executed to perform
clean-up operations after a data entity of that type is finalized (ceases
to exist). For more information, see the FINAL statement.

interface-name (Optional) Is the interface for the procedure. It must be the name of
an abstract interface or a procedure that has an explicit interface.
interface-name can only be specified if the binding has the DEFERRED
attribute.

binding-attr-list (Optional) Is one or more of the following. The same attribute can
only appear once for the same binding:

• PASS [(arg-name)]

Defines the "passed-object dummy argument" of the procedure. If
arg-name is specified, the interface of the binding must have a
dummy argument named arg-name.

• NOPASS

Indicates that the procedure has no passed-object dummy
argument. Use this keyword if the procedure pointer component
has an implicit interface or has no arguments. PASS and NOPASS
cannot both be specified for the same binding.

• access-spec

Is the PUBLIC or PRIVATE attribute. An access-spec can only
appear in the specification part of a module.

• NON_OVERRIDABLE

Intel® Fortran Compiler Classic and Intel® Fortran Compiler Developer Guide and Reference 1

753

Determines whether a binding can be overridden in an extended
type. You must not specify NON_OVERRIDABLE for a binding with
the DEFERRED attribute.

• DEFERRED

Indicates that the procedure is deferred. Deferred bindings must
only be specified for derived-type definitions with the ABSTRACT
attribute. A procedure with the DEFERRED binding attribute must
specify an interface-name. An overriding binding can have the
DEFERRED attribute only if the binding it overrides is deferred.

The NON_OVERRIDABLE and DEFERRED binding attributes must
not both be specified for the same procedure.

binding-name Is the name of the type-bound procedure. It is referred to in the same
way as a component of a type.

procedure-name (Optional) Is the name of the actual procedure that implements
binding-name. It is the name of an accessible module procedure or an
external procedure that has an explicit interface. It defines the
interface for the procedure, and the procedure to be executed when
the procedure is referenced.

generic-spec Is one of the following:

• generic-name

generic-spec can be the name of a previously declared accessible
generic-name, in which case this statement extends that interface.
For more information, see Defining Generic Names for Procedures.

• OPERATOR (op)

op is an intrinsic or a user-defined operator. For more information,
see Defining Generic Operators.

• ASSIGNMENT (=)

See Defining Generic Assignment.
• defined-io-spec, which is one of the following:

• READ (FORMATTED)
• READ (UNFORMATTED)
• WRITE (FORMATTED)
• WRITE (UNFORMATTED)

See Defined I/O Procedures.

The default accessibility of type-bound procedures is public even if the components are private. You can
change this by including the PRIVATE statement following the CONTAINS statement. The default accessibility
of type-bound procedures can be changed only in the specification part of a module.

If neither => procedure-name nor interface-name appears, the procedure-name is the same as the binding-
name. If => procedure-name appears, you must specify the double-colon separator and you must not
specify an interface-name.

In general, the invoking variable, the passed-object dummy argument, is passed as an additional argument.
By default, this is the first dummy argument of the actual procedure. So, the first argument in the argument
list becomes the second argument, etc.

 1 Intel® Fortran Compiler Classic and Intel® Fortran Compiler Developer Guide and Reference

754

A passed-object dummy argument can be changed by declaring the type-bound procedure with the PASS
(arg-name) attribute. In this case, the variable is passed as the named argument. The PASS attribute can
also be used to confirm the default as the first argument. The NOPASS attribute prevents passing the object
as an argument.

When PASS is in effect, the call passes B to the first argument of the procedure, C to the second argument,
and D to the third argument.

Consider the following:

TYPE MY_TYPE
... ! Component declarations
CONTAINS
 PROCEDURE :: PROC1 => MY_PROC
 PROCEDURE :: PROC2, PROC3 => MY_PROC3
 PROCEDURE :: PROC4 => MY_PROC4, PROC5 => MY_PROC5
END TYPE MY_TYPE

This binds MY_PROC with the PROC1.

If B is a scalar variable of type MY_TYPE, an example of a type-bound call is:

CALL B%PROC1(C, D)

See Also
TYPE
Passed-Object Dummy Arguments
PROCEDURE statement

Type Extension

Type extension lets you create new derived types by extending pre-existing derived types.

Any derived type can be extended using the EXTENDS keyword, except for types with the SEQUENCE or
BIND(C) attributes. SEQUENCE types and BIND(C) types (as well as intrinsic types) are non-extensible.

The extended type either inherits or overrides each type-bound procedure of the parent type. An overriding
procedure must be compatible with the parent procedure; in particular, each dummy argument must have
the same type except for the passed-object dummy argument which must have the new type. A type-bound
procedure that is declared to be NON_OVERRIDABLE cannot be overridden during type extension.

The extended type inherits all the components and parameters of the parent type and they are known by the
same name. The extended type can also specify additional components.

For example, consider the following derived-type definition:

TYPE PERSON_INFO
 INTEGER :: AGE
 CHARACTER (LEN = 60) :: NAME
END TYPE PERSON_INFO

Derived type PERSON_INFO (the parent type) can be extended to create a new type as follows:

TYPE, EXTENDS (PERSON_INFO) :: EMPLOYEE_DATA
 INTEGER :: ID
 REAL :: SALARY
END TYPE EMPLOYEE_DATA

Extended type EMPLOYEE_DATA inherits all the components in type PERSON_INFO, as well as additional
components ID and SALARY.

See Also
TYPE
Passed-Object Dummy Arguments

Intel® Fortran Compiler Classic and Intel® Fortran Compiler Developer Guide and Reference 1

755

Parameterized Derived-Type Declarations

A derived type is parameterized if the derived TYPE statement has type parameter names or it inherits any
type parameters.

The type parameters must be listed in the type definition. You must specify a type and you must specify
whether they are KIND or LEN parameters. A type parameter definition takes the following form:

INTEGER [kind-selector], type-param-attr-spec :: type-param-decl-list

kind-selector (Optional) Is one of the kind type parameter numbers allowed for integer data
types. For more information, see Integer Data Types.

If you do not specify kind-selector, default integer kind is assumed.

type-param-attr-spec Is KIND or LEN.

type-param-decl-list Is one or more of the following separated by commas:

type-param-name [= init-spec]

type-param-name Is the name of the type parameter. Each type-param-name must match one of
the type-param-name parameters listed in the derived TYPE statement.

init-spec (Optional) Must be a scalar integer constant expression.

If init-spec is specified, the type parameter has a default value that is specified by the expression init-spec. If
necessary, the value of init-spec is converted to an integer value of the same kind as the type parameter in
accordance with the rules of intrinsic assignment.

Explicit values for the type parameters are normally specified when an object of the parameter type is
declared.

Within the type definition, kind type parameters may be used in constant expressions and specification
expressions. Length type parameters may be used in specification expressions but not in constant
expressions. The type parameters need not be used anywhere in the derived type.

Kind type parameters also participate in generic resolution Unambiguous Generic Procedure References. A
single generic can include two specific procedures that have interfaces distinguished only by the value of a
kind type parameter of a dummy argument.

An explicit interface is required if a parameterized derived type is used as a dummy argument. In a SELECT
TYPE construct, the kind type parameter values of a type guard statement must be the same as those of the
dynamic type of the selector. A BIND(C) type and a SEQUENCE type must not have type parameters.

Advantages to Using This Feature

Adding type parameters to a derived type allows you to declare objects of similar types that differ depending
on the kind and length parameters used in the object declaration. For example, the type definition matrix
below has two type parameters, a kind parameter k and a length parameter b.

TYPE matrix (k, b)
 INTEGER, KIND :: k = 4
 INTEGER (8), LEN :: b
 REAL (k) :: element (b,b)
END TYPE matrix

The user can declare a matrix named square of 10 by 10 elements of REAL(8) with the following declaration:

TYPE (matrix (8, 10)) :: square
The user can declare another matrix named big_square of 100 by 100 elements of REAL(4) with the
following declaration:

TYPE (matrix (100)) :: square ! k defaults to 4
See Also
SELECT TYPE
SEQUENCE

 1 Intel® Fortran Compiler Classic and Intel® Fortran Compiler Developer Guide and Reference

756

Parameterized TYPE Statements

A derived type-spec (see Type Declarations) in a parameterized type declaration has the general form:

type-name [(type-param-spec-list)]

type-name Is an accessible derived type.

type-param-spec-list Is one or more of the following separate by commas:

[keyword =] type-param-value

keyword Is the name of a type parameter for the type type-name.

type-param-value Is a scalar integer expression or an asterisk "*" or a colon ":".

A type-param-spec-list must appear only if the type is parameterized. There must be at most one type-
param-spec corresponding to each parameter of the type. If a type parameter does not have a default value,
there must be a type-param-spec corresponding to that type parameter.

The following topics in this section include cumulative examples demonstrating various kinds of
parameterized TYPE statements.

Examples
Consider the following:

TYPE matrix (k, d1, d2)
 INTEGER, KIND :: k = kind (0.0) ! k has a default value
 INTEGER (selected_int_kind (12)), LEN :: d1, d2 ! Non-default kind for d1
 REAL (k) :: element (d1 ,d2)
END TYPE
! dim is an integer variable
TYPE(matrix(k = KIND(0d0), d1=200+5, d2=dim)) :: my_matrix1
! k has a default value and so the type-param-spec can be omitted
TYPE(matrix(d1=2*dim, d2=dim)) :: my_matrix2
TYPE(matrix(KIND(0d0), :, :)), pointer :: my_deferred_matrix
TYPE(matrix(KIND(0d0), *, *)) :: my_assumed_matrix

Each keyword must be the name of one of the parameters of the type. Similar to keyword arguments in
procedure calls, "keyword=" can be omitted only if "keyword=" has been omitted for each preceding type
parameter. If a keyword appears, the value corresponds to the type parameter named by the keyword. If
keywords do not appear, the value corresponds to type parameters in type parameter order. If necessary, the
value is converted according to the rules of intrinsic assignment to a value of the same kind as the type
parameter.

See Also
Parameterized Derived-Type Declarations

Structure Constructors for Parameterized Derived Types

A type-param-spec-list must be given when constructing a parameterized derived type. See Parameterized
TYPE Statements.

The syntax takes the following form:

derived-type-spec ([comp-spec-list])

derived-type-spec Is a derived type-spec. See Type Declarations for details on derived type
specifications.

comp-spec-list Is a list of one or more component specifications.

Intel® Fortran Compiler Classic and Intel® Fortran Compiler Developer Guide and Reference 1

757

Example
Matrix (kind (0.0),1,3) :: my_matrix
my_matrix = matrix (kind (0.0),1,3) ([1.0,2.0,3.0])

See Also
Parameterized Derived-Type Declarations
Parameterized TYPE Statements
Structure Constructors

Type Parameter Order for Parameterized Derived Types

The type parameter order of a non-extended type is the order of the type parameter list in the derived type
definition. The type parameter order of an extended type consists of the order of its parent type followed by
the order of the type parameter list in the derived type definition.

A type parameter declared in an extended type must not have the same name as any accessible component
or type parameter of its parent type.

Examples
Consider the following:

Type :: t1 (k1,k2)
 Integer, kind :: k1,k2
 Real(k1) :: a(k2)
End type

Type, extends (t1) :: t2(k3)
 Integer, kind :: k3
 Logical(k3) flag
End type

The type parameter order for type t1 is k1, then k2.

The type parameter order for type t2 is k1, then k2, then k3.

See Also
Parameterized Derived-Type Declarations
Parameterized TYPE Statements

Deferred-Length Type Parameters for Parameterized Derived Types

Similar to deferred character lengths and deferred array bounds, the length type parameters of a derived
type can be deferred. A deferred-length type parameter is specified when type-param-value in the type-
param-spec is a colon (":").

A derived type object with a deferred-length type parameter must have an ALLOCATABLE or POINTER
attribute. The value of a deferred type parameter is deferred until allocation or association.

When the dummy argument is allocatable or a pointer, the actual argument must have deferred the same
type parameters as the dummy argument.

TYPE(matrix(k=KIND(0.0), d1= :, d2= :)), pointer :: my_mtrx_ptr, my_mtrx_alloc
TYPE(matrix(KIND(0.0), 100, 200)), target :: my_mtrx_tgt
TYPE(matrix(KIND(0.0), 1, 2)) :: my_mtrx_src

my_mtrx_ptr => my_mtrx_tgt ! Gets values from target
! my_mtrx_ptr has d1= 100 and d2 = 200.

ALLOCATE(matrix(KIND(0.0), 10, 20) :: my_mtrx_alloc) ! Gets values from allocation
! my_mtrx_alloc has d1=10 and d2=20
DEALLOCATE(my_mtrx_alloc)

 1 Intel® Fortran Compiler Classic and Intel® Fortran Compiler Developer Guide and Reference

758

ALLOCATE(my_mtrx_alloc, source=my_mtrx_src) ! Gets values from allocation
! my_mtrx_alloc has d1=1 and d2=2

All non-deferred type parameter values of the declared type of the pointer object that correspond to non-
deferred type parameters of the pointer target must agree. If a pointer object has non-deferred type
parameters that correspond to deferred type parameters of a pointer target, the pointer target must not
have undefined association status.

Deferred type parameters of functions, including function procedure pointers, have no values. Instead, they
indicate that those type parameters of the function result will be determined by execution of the function, if it
returns an allocated allocatable result or an associated pointer result.

If an ALLOCATE statement specifies a derived type object with deferred type parameters, it must either have
the derived-type specification or a source-expr (a scalar expression). The kind type parameter values and the
non-deferred length type parameter values in the derived-type specification or source-expr must be the
same as the corresponding values of the derived type object.

TYPE(matrix(k=KIND(0.0), d1= 100, d2= :)), pointer :: my_mtrx_alloc
TYPE(matrix(KIND(0.0), 1, 2)) :: my_mtrx_src

ALLOCATE(my_mtrx_alloc, source=my_mtrx_src) ! Illegal - d1 is not deferred
! my_mtrx_src must have the same value for d1

See Also
Parameterized Derived-Type Declarations
Parameterized TYPE Statements
ALLOCATE
ALLOCATABLE
POINTER - Fortran

Assumed-Length Type Parameters for Parameterized Derived Types

The length type parameter is assumed when an asterisk is used as a type-param-value in a type-param-
spec. An asterisk may be used only in the declaration of a dummy argument, in the associate name in a
SELECT TYPE statement, or in the allocation of a dummy argument. The value is taken from that of the
actual argument.

Type(matrix(KIND(0d0), 10, :)), pointer :: y(:)
Call print_matrix(y)
...
Subroutine print_matrix(x)

 ! d1 here is assumed and its value '10' is obtained from the actual argument
 Type(matrix(k= KIND(0d0), d1=*, d2=:), pointer :: x(:)
 ALLOCATE(matrix(KIND(0.0), *, 10) :: x(10))
 ...
End Subroutine

All length type parameters of the dummy argument must be assumed for a final subroutine. All length type
parameters of the first dummy argument to a user-defined I/O subroutine must be assumed. All of the length
type parameters of a passed-object dummy argument must be assumed. In a SELECT TYPE construct, each
length type parameter in a type-guard-stmt must be assumed.

Array Constructors
If type-spec in an array constructor specifies a parameterized derived type, all ac-value expressions in the
array constructor must be of that derived type and must have the same kind type parameter values as
specified by type-spec. Also, type-spec specifies the declared type and type parameters of the array
constructor.

Intel® Fortran Compiler Classic and Intel® Fortran Compiler Developer Guide and Reference 1

759

Each ac-value expression in the array constructor must be compatible with intrinsic assignment to a variable
of this type and type parameter. Each value is converted to the type parameters of the array constructor in
accordance with the rules of intrinsic assignment.

If type-spec is omitted, each ac-value expression in the array constructor must have the same length type
parameters; in which case, the declared type and type parameters of the array constructor are those of the
ac-value expressions.

Type Parameter Inquiry
The value of a derived-type parameter can be accessed from outside the type definition, using the same
notation as component access.

print *,'No: of Rows =',my_matrix%d1
print *,'No: of Columns =',my_matrix%d2

Unlike components, a type parameter inquiry cannot be used on the left-hand side of an assignment, and
type parameters are effectively always public. The value of a deferred type parameter of an unallocated
allocatable, or of a pointer that is not associated with a target, is undefined and must not be inquired about.
The length type parameters of an optional dummy argument that is not present must not be the subject of
an inquiry.

The type parameters of intrinsic types can also be inquired using this syntax. The result is always scalar,
even if the object is an array.

REAL(selected_real_kind(10,20)) :: z(100)
..
PRINT *,z%kind ! A single value is printed

This is same as calling KIND(z). However, the type parameter inquiry can be used even when the intrinsic
function is not available.

Subroutine write_centered(ch, len)
 Character(*), intent(inout) :: ch
 Integer, intent(in) :: len
 Integer :: i
 Do i=1, (len – ch%len)/2
 ...
! The inquiry ch%len cannot be replaced with len(ch) since len is the
! name of a dummy argument

See Also
Parameterized Derived-Type Declarations
Parameterized TYPE Statements
SELECT TYPE

Structure Components

A reference to a component of a derived-type structure takes the following form:

parent [(s-list)] [image-selector] [%component [(s-list)] [image-selector]] ... %component [(s-list)] [image-
selector]

parent Is the name of a scalar or array of derived type. The percent sign (%)
is called a component selector.

s-list Is a list of one or more subscripts. If the list contains subscript triplets
or vector subscripts, the reference is to an array section.

Each subscript must be a scalar integer (or other numeric) expression
with a value that is within the bounds of its dimension.

 1 Intel® Fortran Compiler Classic and Intel® Fortran Compiler Developer Guide and Reference

760

The number of subscripts in any s-list must equal the rank of the
immediately preceding parent or component.

image-selector Is an image selector if the parent or component is a coarray. For more
information, see Image Selectors.

component Is the name of a component of the immediately preceding parent or
component.

Description
Each parent or component (except the rightmost) must be of derived type.

The parent or one of the components can have nonzero rank (be an array). Any component to the right of a
parent or component of nonzero rank must not have the POINTER attribute.

The rank of the structure component is the rank of the part (parent or component) with nonzero rank (if
any); otherwise, the rank is zero. The type and type parameters (if any) of a structure component are those
of the rightmost part name.

The structure component must not be referenced or defined before the declaration of the parent object.

If the parent object has the INTENT, TARGET, or PARAMETER attribute, the structure component also has the
attribute.

If the rightmost component is of type C_PTR or C_FUNPTR from the intrinsic module ISO_C_BINDING, or of
type TEAM_TYPE from the intrinsic module ISO_FORTRAN_ENV, each parent or component must not have an
image-selector.

Examples
The following example shows a derived-type definition with two components:

 TYPE EMPLOYEE
 INTEGER ID
 CHARACTER(LEN=40) NAME
 END TYPE EMPLOYEE

The following shows how to declare CONTRACT to be of type EMPLOYEE:

 TYPE(EMPLOYEE) :: CONTRACT
Note that both examples started with the keyword TYPE. The first (initial) statement of a derived-type
definition is called a derived-type statement, while the statement that declares a derived-type object is called
a TYPE statement.

The following example shows how to reference component ID of parent structure CONTRACT:

 CONTRACT%ID
The following example shows a derived type with a component that is a previously defined type:

 TYPE DOT
 REAL X, Y
 END TYPE DOT

 TYPE SCREEN
 TYPE(DOT) C, D
 END TYPE SCREEN

The following declares a variable of type SCREEN:

 TYPE(SCREEN) M

Intel® Fortran Compiler Classic and Intel® Fortran Compiler Developer Guide and Reference 1

761

Variable M has components M%C and M%D (both of type DOT); M%C has components M%C%X and M%C
%Y of type REAL.

The following example shows a derived type with a component that is an array:

 TYPE CAR_INFO
 INTEGER YEAR
 CHARACTER(LEN=15), DIMENSION(10) :: MAKER
 CHARACTER(LEN=10) MODEL, BODY_TYPE*8
 REAL PRICE
 END TYPE
 ...
 TYPE(CAR_INFO) MY_CAR

Note that MODEL has a character length of 10, but BODY_TYPE has a character length of 8. You can assign a
value to a component of a structure; for example:

 MY_CAR%YEAR = 2020
The following shows an array structure component:

 MY_CAR%MAKER
In the preceding example, if a subscript list (or substring) was appended to MAKER, the reference would not
be to an array structure component, but to an array element or section.

Consider the following:

 MY_CAR%MAKER(2) (4:10)
In this case, the component is substring 4 to 10 of the second element of array MAKER.

Consider the following:

 TYPE CHARGE
 INTEGER PARTS(40)
 REAL LABOR
 REAL MILEAGE
 END TYPE CHARGE

 TYPE(CHARGE) MONTH
 TYPE(CHARGE) YEAR(12)

Some valid array references for this type follow:

 MONTH%PARTS(I) ! An array element
 MONTH%PARTS(I:K) ! An array section
 YEAR(I)%PARTS ! An array structure component (a whole array)
 YEAR(J)%PARTS(I) ! An array element
 YEAR(J)%PARTS(I:K) ! An array section
 YEAR(J:K)%PARTS(I) ! An array section
 YEAR%PARTS(I) ! An array section

The following example shows a derived type with a pointer component that is of the type being defined:

 TYPE NUMBER
 INTEGER NUM

 TYPE(NUMBER), POINTER :: START_NUM => NULL()
 TYPE(NUMBER), POINTER :: NEXT_NUM => NULL()

 END TYPE
A type such as this can be used to construct linked lists of objects of type NUMBER. Note that the pointers
are given the default initialization status of disassociated.

 1 Intel® Fortran Compiler Classic and Intel® Fortran Compiler Developer Guide and Reference

762

The following example shows a private type:

 TYPE, PRIVATE :: SYMBOL
 LOGICAL TEST
 CHARACTER(LEN=50) EXPLANATION
 END TYPE SYMBOL

This type is private to the module. The module can be used by another scoping unit, but type SYMBOL is not
available.

The following example shows how to dereference an array of structures with a coarray structure component
that is a real array:

 TYPE REAL_ARRAY
 REAL,ALLOCATABLE :: RA(:)
 END TYPE

 TYPE CO_ARRAY
 TYPE(REAL_ARRAY) :: CA[*]
 END TYPE

 TYPE STRUCT
 TYPE(CO_ARRAY) :: COMP
 END TYPE

 TYPE(STRUCT) :: ARRAY(10, 10)

 ALLOCATE(ARRAY(5,10)%COMP%CA%RA(10))
 ARRAY(5,10)%COMP%CA[5]%RA(:) = 0

See Also
Array Elements for details on references to array elements
Array Sections for details on references to array sections
Modules and Module Procedures for examples of derived types in modules

Structure Constructors

A structure constructor lets you specify scalar values of a derived type. It takes the following form:

d-name (comp-spec)

d-name Is the name of the derived type. It cannot be an abstract type.

comp-spec Is a component specification. Only one comp-spec can be specified for
a component. However, you can specify more than one comp-spec in a
constructor. A component specification takes the following form:

[keyword=] comp-data-source

keyword Is the name of a component of the derived type d-name.

comp-data-source Is one of the following:

• expr
• data-target
• proc-target

expr Is an expression specifying component values. The values must agree
in number and order with the components of the derived type. If
necessary, values are converted (according to the rules of
assignment), to agree with their corresponding components in type
and kind parameters.

Intel® Fortran Compiler Classic and Intel® Fortran Compiler Developer Guide and Reference 1

763

data-target Is a data pointer component. It must have the same rank as its
corresponding component.

proc-target Is a procedure pointer component.

Description
A structure constructor must not appear before its derived type is defined.

If keyword= appears, any expr is assigned to the component named by the keyword. If keyword= is omitted,
each comp-data-source is assigned to the corresponding component in component order. The keyword= can
be omitted from a comp-spec only if the keyword= has been omitted from each preceding comp-spec in the
constructor, if any.

If a component of the derived type is an array, the shape in the expression list must conform to the shape of
the component array.

If a component of the derived type is a pointer, the value in the expression list must evaluate to an object
that would be a valid target in a pointer assignment statement. (A constant is not a valid target in a pointer
assignment statement.)

If all the values in a structure constructor are constant expressions, the constructor is a derived-type
constant expression.

The type name and all components of the type for which a comp-spec appears must be accessible in the
scoping unit containing the structure constructor.

For a pointer component, the corresponding comp-data-source must be an allowable data-target or proc-
target for such a pointer in a pointer assignment statement. If the comp-data-source is a pointer, the
association of the component is that of the pointer; otherwise, the component is pointer-associated with the
comp-data-source.

If a component with default initialization has no corresponding comp-data-source, then the default
initialization is applied to that component.

If a component of a derived type is allocatable, the corresponding constructor expression must either be a
reference to the intrinsic function NULL with no arguments or an allocatable entity of the same rank, or it
must evaluate to an entity of the same rank.

If the expression is a reference to the intrinsic function NULL, the corresponding component of the
constructor has a status of unallocated.

If the expression is an allocatable entity, the corresponding component of the constructor has the same
allocation status as that allocatable entity. If the entity is allocated, the constructor component has the same
dynamic type, bounds, and value. If a length parameter of the component is deferred, its value is the same
as the corresponding parameter of the expression.

If the component is allocatable and the expression is not an allocatable entity, the component has an
allocation status of allocated, and the same bounds as the expression. If the component has a deferred
length parameter, its value is the same as the corresponding length parameter of the expression. If the
component is polymorphic, it has the same dynamic type and value. Otherwise, the value is converted, if
necessary, to the declared type of the component.

Examples
Consider the following derived-type definition:

 TYPE EMPLOYEE
 INTEGER ID
 CHARACTER(LEN=40) NAME
 END TYPE EMPLOYEE

 1 Intel® Fortran Compiler Classic and Intel® Fortran Compiler Developer Guide and Reference

764

This can be used to produce the following structure constructor:

 EMPLOYEE(3472, "John Doe")
The following example shows a type with a component of derived type:

 TYPE ITEM
 REAL COST
 CHARACTER(LEN=30) SUPPLIER
 CHARACTER(LEN=20) ITEM_NAME
 END TYPE ITEM

 TYPE PRODUCE
 REAL MARKUP
 TYPE(ITEM) FRUIT
 END TYPE PRODUCE

In this case, you must use an embedded structure constructor to specify the values of that component; for
example:

 PRODUCE(.70, ITEM (.25, "Daniels", "apple"))

See Also
Pointer Assignments
Procedure Pointers

Binary, Octal, Hexadecimal, and Hollerith Constants
Binary, octal, hexadecimal, and Hollerith constants are nondecimal constants. They have no intrinsic data
type, but assume a numeric data type depending on their use.

Standard Fortran allows unsigned binary, octal, and hexadecimal constants to be used in DATA statements;
the constant must correspond to an integer scalar variable. These constants can also appear as arguments to
certain standard intrinsic functions as indicated in their individual descriptions.

Binary, octal, and decimal constants are also permitted as real or integer ac-values in array constructors, as
real or integer values in PARAMETER statements, as real or integer values on the right-hand side (RHS) of
assignment statements, and as integer values in ENUMERATION statements.

Each digit of a binary, octal, or hexadecimal literal constant represents a sequence of bits, according to its
numerical interpretation (see Model for Bit Data) with s in the model equal to the following:

• one for binary constants
• three for octal constants
• four for hexadecimal constants

A binary, octal, or hexadecimal literal constant represents a sequence of bits that consists of the
concatenation of the sequences of bits represented by its digits, in the order that the digits are specified. The
positions of bits in the sequence are numbered from right to left, with the position of the rightmost bit being
zero.

The length of a sequence of bits is the number of bits in the sequence. The position of the leftmost nonzero
bit is interpreted to be at least m - 1, where m is the maximum value that could result from invoking the
intrinsic function STORAGE SIZE with an argument that is a real or an integer scalar of any kind supported
by the processor.

In Intel® Fortran, binary, octal, hexadecimal, and Hollerith constants can appear wherever numeric constants
are allowed.

See Also
Bit Sequence Comparisons

Intel® Fortran Compiler Classic and Intel® Fortran Compiler Developer Guide and Reference 1

765

Binary Constants

A binary constant is an alternative way to represent a numeric constant. A binary constant takes one of the
following forms:

B'd[d...]'

B"d[d...]"

d Is a binary (base 2) digit (0 or 1).

You can specify up to 128 binary digits in a binary constant.

Examples

Valid Binary Constants

B'0101110'

B"1"

Invalid Binary Constants

B'0112' The character 2 is invalid.

B10011' No apostrophe after the B.

"1000001" No B before the first quotation mark.

See Also
Alternative Syntax for Binary, Octal, and Hexadecimal Constants

Octal Constants

An octal constant is an alternative way to represent numeric constants. An octal constant takes one of the
following forms:

O'd[d...]'

O"d[d...]"

d Is an octal (base 8) digit (0 through 7).

You can specify up to 128 bits (43 octal digits) in octal constants.

Examples

Valid Octal Constants

O'07737'

O"1"

Invalid Octal Constants

O'7782' The character 8 is invalid.

O7772' No apostrophe after the O.

"0737" No O before the first quotation mark.

See Also
Alternative Syntax for Binary, Octal, and Hexadecimal Constants

 1 Intel® Fortran Compiler Classic and Intel® Fortran Compiler Developer Guide and Reference

766

Hexadecimal Constants

A hexadecimal constant is an alternative way to represent numeric constants. A hexadecimal constant takes
one of the following forms:

Z'd[d...]'

Z"d[d...]"

d Is a hexadecimal (base 16) digit (0 through 9, or an uppercase or
lowercase letter in the range of A to F).

You can specify up to 128 bits (32 hexadecimal digits) in hexadecimal constants.

Examples

Valid Hexadecimal Constants

Z'AF9730'

Z"FFABC"

Z'84'

Invalid Hexadecimal Constants

Z'999.' Decimal not allowed.

ZF9" No quotation mark after the Z.

See Also
Alternative Syntax for Binary, Octal, and Hexadecimal Constants

Hollerith Constants

A Hollerith constant is a string of printable ASCII characters preceded by the letter H. Before the H, there
must be an unsigned, nonzero default integer constant stating the number of characters in the string
(including blanks and tabs).

Hollerith constants are strings of 1 to 2000 characters. They are stored as byte strings, one character per
byte.

Examples

Valid Hollerith Constants

16HTODAY'S DATE IS:

1HB

4H ABC

Invalid Hollerith Constants

3HABCD Wrong number of characters.

0H Hollerith constants must contain at least one
character.

Determine the Data Type of Nondecimal Constants

Binary, octal, hexadecimal, and Hollerith constants have no intrinsic data type. In most cases, the default
integer data type is assumed.

Intel® Fortran Compiler Classic and Intel® Fortran Compiler Developer Guide and Reference 1

767

However, these constants can assume a numeric data type depending on the context of their use. When the
constant is used with a binary operator (including the assignment operator), the data type of the constant is
the data type of the other operand. For example:

Statement Data Type of Constant Length of Constant (in bytes)

INTEGER(2) ICOUNT, I2ARRAY
(3)

INTEGER(4) JCOUNT

INTEGER(4) N

REAL(8) DOUBLE

REAL(4) RAFFIA, RALPHA

INTEGER,PARAMETER :: TWENTY
= Z'14'

INTEGER(4) 4

RAFFIA =
B'1001100111111010011'

REAL(4) 4

RAFFIA = Z'99AF2' REAL(4) 4

RALPHA = 4HABCD REAL(4) 4

DOUBLE =
B'1111111111100110011010'

REAL(8) 8

DOUBLE = Z'FFF99A' REAL(8) 8

DOUBLE = 8HABCDEFGH REAL(8) 8

I2ARRAY = [Z'A4', O'15',
B'10101']

INTEGER(2) 2

JCOUNT = ICOUNT +
B'011101110111'

INTEGER(2) 2

JCOUNT = ICOUNT + O'777' INTEGER(2) 2

JCOUNT = ICOUNT + 2HXY INTEGER(2) 2

IF (N .EQ. B'1010100') GO
TO 10

INTEGER(4) 4

IF (N .EQ. O'123') GO TO 10 INTEGER(4) 4

IF (N. EQ. 1HZ) GO TO 10 INTEGER(4) 4

When a specific data type (generally integer) is required, that type is assumed for the constant. For example:

Statement Data Type of Constant Length of Constant (in bytes)

Y(IX) = Y(O'15') + 3. INTEGER(4) 4

Y(IX) = Y(1HA) + 3. INTEGER(4) 4

ENUMERATION :: RED=0'10' INTEGER(4) 4

When a nondecimal constant is used as an actual argument, the following occurs:

 1 Intel® Fortran Compiler Classic and Intel® Fortran Compiler Developer Guide and Reference

768

• When binary, octal, and hexadecimal constants are specified as arguments to intrinsic functions, and the
description of the function specifies the interpretation of such constants, that specified interpretation is
used.

• For binary, octal, and hexadecimal constants in other actual argument contexts, if the value fits in a
default integer, that integer kind is used. Otherwise, the smallest integer kind large enough to hold the
value is used.

• For Hollerith constants, a numeric data type of sufficient size to hold the length of the constant is
assumed.

For example:

Statement Data Type of Constant Length of Constant (in bytes)

CALL APAC(Z'34BC2') INTEGER(4) 4

CALL APAC(9HABCDEFGHI) REAL(16) 9

When a binary, octal, or hexadecimal constant is used in any other context, the default integer data type is
assumed. In the following examples, default integer is INTEGER(4):

Statement Data Type of Constant Length of Constant (in bytes)

IF (Z'AF77') 1,2,3 INTEGER(4) 4

IF (2HAB) 1,2,3 INTEGER(4) 4

I = O'7777' - Z'A39'1 INTEGER(4) 4

I = 1HC - 1HA INTEGER(4) 4

J = .NOT. O'73777' INTEGER(4) 4

J = .NOT. 1HB INTEGER(4) 4

1 When two typeless constants are used in an operation, they both take default integer type.

When nondecimal constants are not the same length as the length implied by a data type, the following
occurs:

• Binary, octal, and hexadecimal constants

These constants can specify up to 16 bytes of data. When the length of the constant is less than the
length implied by the data type, the leftmost digits have a value of zero.

When the length of the constant is greater than the length implied by the data type, the constant is
truncated on the left. An error results if any nonzero digits are truncated.

The Data Type Storage Requirements table lists the number of bytes that each data type requires.
• Hollerith constants

When the length of the constant is less than the length implied by the data type, blanks are appended to
the constant on the right.

When the length of the constant is greater than the length implied by the data type, the constant is
truncated on the right. If any characters other than blank characters are truncated, a warning occurs.

Each Hollerith character occupies one byte of memory.

Enumerations and Enumerators
An enumeration defines the name of a group of related values and the name of each value within the group.
It takes the following form:

ENUM, BIND(C)

 ENUMERATOR [::] c1 [= expr][, c2 [= expr]]...

 [ENUMERATOR [::] c3 [= expr][, c4 [= expr]]...]...

Intel® Fortran Compiler Classic and Intel® Fortran Compiler Developer Guide and Reference 1

769

END ENUM

c1,c2,c3,c4 Is the name of the enumerator being defined.

expr Is an optional scalar integer constant expression specifying the value
for the enumerator.

If = appears in an enumerator, a double-colon separator must appear before the enumerator or list of
enumerators.

The compiler ensures that the integer kind declared for the enumerator is compatible with the integer type
used by the corresponding C enumeration. The processor uses the same representation for the types
declared by all C enumeration specifiers that specify the same values in the same order.

An enumerator is treated as if it were explicitly declared with the PARAMETER attribute.

The order in which the enumerators appear in an enumerator definition is significant.

If you do not explicitly assign each enumerator a value by specifying an expr, the compiler assigns a value
according to the following rules:

• If the enumerator is the first enumerator in the enumerator definition, the enumerator has the value 0.
• If the enumerator is not the first enumerator in the enumerator definition, its value is the result of adding

one to the value of the immediately preceding enumerator in the enumerator definition.

You can define the enumerators in multiple ENUMERATOR statements or in one ENUMERATOR statement. The
order in which the enumerators are declared in an enumeration definition is significant, but the number of
ENUMERATOR statements is not.

Examples
The following example shows an enumeration definition:

ENUM, BIND(C)
 ENUMERATOR ORANGE
 ENUMERATOR :: RED = 5, BLUE = 7
 ENUMERATOR GREEN
END ENUM

The kind type parameter for this enumeration is processor dependent, but the processor must select a kind
sufficient to represent the values of the enumerators.

The order of the enumerators is significant if the values are not assigned explicitly. In the above example,
the value of ORANGE becomes defined as a named constant with the value zero and the value of GREEN
becomes defined as a named constant with the value 8. Note that if RED was the enumerator preceding
GREEN, the value of GREEN would be 6 rather than 8.

The following declaration may be considered to be equivalent to the above enumeration definition:

INTEGER(SELECTED_INT_KIND(4)), PARAMETER :: ORANGE = 0, RED = 5, BLUE = 7, GREEN = 8
An entity of the same kind type parameter value can be declared using the intrinsic function KIND with one
of the enumerators as its argument, for example:

INTEGER(KIND(BLUE)) :: X

Variables
A variable is a data object whose value can be changed (defined or redefined) at any point in a program. A
variable can be any of the following:

• A scalar

A scalar is a single object that has a single value; it can be of any intrinsic or derived (user-defined) type.
• An array

An array is a collection of scalar elements of any intrinsic or derived type. All elements must have the
same type and kind parameters.

 1 Intel® Fortran Compiler Classic and Intel® Fortran Compiler Developer Guide and Reference

770

• A subobject designator

A subobject is part of an object. The following are subobjects:

An array element

An array section

A structure component

A character substring

For example, B(3) is a subobject (array element) designator for array B. A subobject cannot be a variable
if its parent object is a constant.

• A reference to a function that returns a data pointer

A reference to a function that returns a data pointer is treated as a variable and is permitted in any
variable-definition context .

The name of a variable is associated with a single storage location.

A designator is a name followed by zero or more component selectors, complex part selectors, array section
selectors, array element selectors, image selectors, and substring selectors.

Variables are classified by data type, as constants are. The data type of a variable indicates the type of data
it contains, including its precision, and implies its storage requirements. When data of any type is assigned to
a variable, it is converted to the data type of the variable (if necessary).

A variable is defined when you give it a value. A variable can be defined before program execution by a DATA
statement or a type declaration statement. During program execution, variables can be defined or redefined
in assignment statements and input statements, or undefined (for example, if an I/O error occurs). When a
variable is undefined, its value is unpredictable.

When a variable becomes undefined, all variables associated by storage association also become undefined.

An object with subobjects, such as an array, can only be defined when all of its subobjects are defined.
Conversely, when at least one of its subobjects are undefined, the object itself, such as an array or derived
type, is undefined.

See Also
Type Declarations

DATA statement
Data Type of a Numeric Expressions
Storage Association for details on storage association of variables

Data Types of Scalar Variables

The data type of a scalar variable can be explicitly declared in a type declaration statement. If no type is
declared, the variable has an implicit data type based on predefined typing rules or definitions in an IMPLICIT
statement.

An explicit declaration of data type takes precedence over any implicit type. Implicit type specified in an
IMPLICIT statement takes precedence over predefined typing rules.

See Also
Specification of Data Type
Implicit Typing Rules

Specification of Data Type

Type declaration statements explicitly specify the data type of scalar variables. For example, the following
statements associate VAR1 with a 16-byte complex storage location, and VAR2 with an 8-byte double-
precision storage location:

 COMPLEX(8) VAR1
 REAL(8) VAR2

Intel® Fortran Compiler Classic and Intel® Fortran Compiler Developer Guide and Reference 1

771

NOTE
If no kind parameter is specified for a data type, the default kind is used. The default kind can be
affected by compiler options that affect the size of variables.

You can explicitly specify the data type of a scalar variable only once.

If no explicit data type specification appears, any variable with a name that begins with the letter in the
range specified in the IMPLICIT statement becomes the data type of the variable.

Character type declaration statements specify that given variables represent character values with the length
specified. For example, the following statements associate the variable names INLINE, NAME, and NUMBER
with storage locations containing character data of lengths 72, 12, and 9, respectively:

 CHARACTER(72) INLINE
 CHARACTER NAME*12, NUMBER*9

In single subprograms, assumed-length character arguments can be used to process character strings with
different lengths. The assumed-length character argument has its length specified with an asterisk, for
example:

 CHARACTER(*) CHARDUMMY
The argument CHARDUMMY assumes the length of the actual argument.

See Also
Type Declarations

Assumed-length character arguments
IMPLICIT statement
Declaration Statements for Character Types

Implicit Typing Rules

By default, all variables, named constants, and functions with names beginning with I, J, K, L, M, or N are
assumed to be of default integer type. Variables, named constants, and functions with names beginning with
any other letter are assumed to be of default real type. For example:

Real Variables Integer Variables

ALPHA JCOUNT

BETA ITEM_1

TOTAL_NUM NTOTAL

Names beginning with a dollar sign ($) are implicitly INTEGER.

You can override the default data type implied in a name by specifying data type in either an IMPLICIT
statement or a type declaration statement.

See Also
Type Declarations

IMPLICIT statement

Arrays

An array is a set of scalar elements that have the same type and kind parameters. Any object that is
declared with an array specification is an array. Arrays can be declared by using a type declaration
statement, or by using a DIMENSION, COMMON, ALLOCATABLE, POINTER, or TARGET statement.

 1 Intel® Fortran Compiler Classic and Intel® Fortran Compiler Developer Guide and Reference

772

An array can be referenced by element (using subscripts), by section (using a section subscript list), or as a
whole. A subscript list (appended to the array name) indicates which array element or array section is being
referenced.

A section subscript list consists of subscripts, subscript triplets, or vector subscripts. At least one subscript in
the list must be a subscript triplet or vector subscript.

When an array name without any subscripts appears in an intrinsic operation (for example, addition), the
operation applies to the whole array (all elements in the array).

An array has the following properties:

• Data type

An array can have any intrinsic or derived type. The data type of an array (like any other variable) is
specified in a type declaration statement or implied by the first letter of its name. All elements of the
array have the same type and kind parameters. If a value assigned to an individual array element is not
the same as the type of the array, it is converted to the array's type.

• Rank

The rank of an array is the number of dimensions in the array. An array can have up to 31 dimensions. A
rank-one array represents a column of data (a vector), a rank-two array represents a table of data
arranged in columns and rows (a matrix), a rank-three array represents a table of data on multiple pages
(or planes), and so forth.

• Bounds

Arrays have a lower and upper bound in each dimension. These bounds determine the range of values
that can be used as subscripts for the dimension. The value of either bound can be positive, negative, or
zero.

The bounds of a dimension are defined in an array specification.
• Size

The size of an array is the total number of elements in the array (the product of the array's extents).

The extent is the total number of elements in a particular dimension. The extent is determined as follows:
upper bound - lower bound + 1. If the value of any of an array's extents is zero, the array has a size of
zero.

• Shape

The shape of an array is determined by its rank and extents, and can be represented as a rank-one array
(vector) where each element is the extent of the corresponding dimension.

Two arrays with the same shape are said to be conformable. A scalar is conformable to an array of any
shape.

The name and rank of an array must be specified when the array is declared. The extent of each dimension
can be constant, but does not need to be. The extents can vary during program execution if the array is a
dummy argument array, an automatic array, an array pointer, or an allocatable array.

A whole array is referenced by the array name. Individual elements in a named array are referenced by a
scalar subscript or list of scalar subscripts (if there is more than one dimension). A section of a named array
is referenced by a section subscript.

This section also discusses:

• Whole Arrays
• Array Elements
• Array Sections
• Array Constructors

Intel® Fortran Compiler Classic and Intel® Fortran Compiler Developer Guide and Reference 1

773

Examples
The following are examples of valid array declarations:

 DIMENSION A(10, 2, 3) ! DIMENSION statement
 ALLOCATABLE B(:, :) ! ALLOCATABLE statement
 POINTER C(:, :, :) ! POINTER statement
 REAL, DIMENSION (2, 5) :: D ! Type declaration with
 ! DIMENSION attribute

Consider the following array declaration:

 INTEGER L(2:11,3)
The properties of array L are as follows:

Data type: INTEGER

Rank: 2 (two dimensions)

Bounds: First dimension: 2 to 11

Second dimension: 1 to 3

Size: 30; the product of the extents: 10 x 3

Shape: (/10,3/) (or 10 by 3); a vector of the extents 10
and 3

The following example shows other valid ways to declare this array:

DIMENSION L(2:11,3)
INTEGER, DIMENSION(2:11,3) :: L
COMMON L(2:11,3)

The following example shows references to array elements, array sections, and a whole array:

REAL B(10) ! Declares a rank-one array with 10 elements

INTEGER C(5,8) ! Declares a rank-two array with 5 elements in
 ! dimension one and 8 elements in dimension two
...
B(3) = 5.0 ! Reference to an array element
B(2:5) = 1.0 ! Reference to an array section consisting of
 ! elements: B(2), B(3), B(4), B(5)
...
C(4,8) = I ! Reference to an array element
C(1:3,3:4) = J ! Reference to an array section consisting of
 ! elements: C(1,3) C(1,4)
 ! C(2,3) C(2,4)
 ! C(3,3) C(3,4)/

B = 99 ! Reference to a whole array consisting of
 ! elements: B(1), B(2), B(3), B(4), B(5),
 ! B(6), B(7), B(8), B(9), and B(10)

See Also
DIMENSION attribute
Intrinsic data types
Derived data types
Declaration Statements for Arrays for details on array specifications
Categories of Intrinsic Functions for details on intrinsic functions that perform array operations

 1 Intel® Fortran Compiler Classic and Intel® Fortran Compiler Developer Guide and Reference

774

Whole Arrays

A whole array is a named array; it is either a named constant or a variable. It is referenced by using the
array name (without any subscripts).

If a whole array appears in a nonexecutable statement, the statement applies to the entire array. For
example:

INTEGER, DIMENSION(2:11,3) :: L ! Specifies the type and
 ! dimensions of array L

If a whole array appears in an executable statement, the statement applies to all of the elements in the
array. For example:

 L = 10 ! The value 10 is assigned to all the
 ! elements in array L
 WRITE *, L ! Prints all the elements in array L

Array Elements

An array element is one of the scalar data items that make up an array. A subscript list (appended to the
array or array component) determines which element is being referred to. A reference to an array element
takes the following form:

array(subscript-list)

array Is the name of the array.

subscript-list Is a list of one or more subscripts separated by commas. The number
of subscripts must equal the rank of the array.

Each subscript must be a scalar integer (or other numeric) expression
with a value that is within the bounds of its dimension.

Description
Each array element inherits the type, kind type parameter, and certain attributes (INTENT, PARAMETER, and
TARGET) of the parent array. An array element cannot inherit the POINTER attribute.

If an array element is of type character, it can be followed by a substring range in parentheses; for example:

 ARRAY_D(1,2) (1:3) ! Elements are substrings of length 3
However, by convention, such an object is considered to be a substring rather than an array element.

The following are some valid array element references for an array declared as REAL B(10,20): B(1,3),
B(10,10), and B(5,8).

You can use functions and array elements as subscripts. For example:

 REAL A(3, 3)
 REAL B(3, 3), C(89), Z
 B(2, 2) = 4.5 ! Assigns the value 4.5 to element B(2, 2)
 Z = 7.0
 C(INT(Z)*2 + 1) = 2.0 ! Element 15 of C = 2.0
 A(1,2) = B(INT(C(15)), INT(SQRT(4))) ! Element A(1,2) = element B(2,2) = 4.5

For information on forms for array specifications, see Declaration Statements for Arrays.

Array Element Order
The elements of an array form a sequence known as array element order. The position of an element in this
sequence is its subscript order value.

Intel® Fortran Compiler Classic and Intel® Fortran Compiler Developer Guide and Reference 1

775

The elements of an array are stored as a linear sequence of values. A one-dimensional array is stored with its
first element in the first storage location and its last element in the last storage location of the sequence. A
multidimensional array is stored so that the leftmost subscripts vary most rapidly. This is called the order of
subscript progression.

The following figure shows array storage in one, two, and three dimensions:

Array Storage

For example, in two-dimensional array BAN, element BAN(1,2) has a subscript order value of 4; in three-
dimensional array BOS, element BOS(1,1,1) has a subscript order value of 1.

In an array section, the subscript order of the elements is their order within the section itself. For example, if
an array is declared as B(20), the section B(4:19:4) consists of elements B(4), B(8), B(12), and B(16). The
subscript order value of B(4) in the array section is 1; the subscript order value of B(12) in the section is 3.

See Also
Array association
Character Constants for details on substrings
Structure Components for details on arrays as structure components
Storage Association for details on storage sequence association

Array Sections

An array section is a portion of an array that is an array itself. It is an array subobject. A section subscript
list (appended to the array or array component) determines which portion is being referred to. A reference to
an array section takes the following form:

array(sect-subscript-list)

 1 Intel® Fortran Compiler Classic and Intel® Fortran Compiler Developer Guide and Reference

776

array Is the name of the array.

sect-subscript-list Is a list of one or more section subscripts (subscripts, subscript
triplets, or vector subscripts) indicating a set of elements along a
particular dimension.

At least one of the items in the section subscript list must be a
subscript triplet or vector subscript. A subscript triplet specifies array
elements in increasing or decreasing order at a given stride. A vector
subscript specifies elements in any order.

Each subscript and subscript triplet must be a scalar integer (or other
numeric) expression. Each vector subscript must be a rank-one
integer expression.

Description
If no section subscript list is specified, the rank and shape of the array section is the same as the parent
array.

Otherwise, the rank of the array section is the number of vector subscripts and subscript triplets that appear
in the list. Its shape is a rank-one array where each element is the number of integer values in the sequence
indicated by the corresponding subscript triplet or vector subscript.

If any of these sequences is empty, the array section has a size of zero. The subscript order of the elements
of an array section is that of the array object that the array section represents.

Each array section inherits the type, kind type parameter, and certain attributes (INTENT, PARAMETER, and
TARGET) of the parent array. An array section cannot inherit the POINTER attribute.

If an array (or array component) is of type character, it can be followed by a substring range in parentheses.
Consider the following declaration:

 CHARACTER(LEN=15) C(10,10)
In this case, an array section referenced as C(:,:) (1:3) is an array of shape (10,10), whose elements are
substrings of length 3 of the corresponding elements of C.

The following shows valid references to array sections. Note that the syntax (/.../) denotes an array
constructor.

 REAL, DIMENSION(20) :: B
 ...
 PRINT *, B(2:20:5) ! The section consists of elements
 ! B(2), B(7), B(12), and B(17)

 K = (/3, 1, 4/)
 B(K) = 0.0 ! Section B(K) is a rank-one array with shape (3) and
 ! size 3. (0.0 is assigned to B(1), B(3), and B(4).)

See Also
INTENT attribute
PARAMETER attribute
TARGET attribute
Array constructors
Character Substrings
Structure components for details on array sections as structure components

Subscript Triplets

A subscript triplet is a set of three values representing the lower bound of the array section, the upper
bound of the array section, and the increment (stride) between them. It takes the following form:

Intel® Fortran Compiler Classic and Intel® Fortran Compiler Developer Guide and Reference 1

777

[first-bound] : [last-bound] [:stride]

first-bound Is a scalar integer (or other numeric) expression representing the first
value in the subscript sequence. If omitted, the declared lower bound
of the dimension is used.

last-bound Is a scalar integer (or other numeric) expression representing the last
value in the subscript sequence. If omitted, the declared upper bound
of the dimension is used.

When indicating sections of an assumed-size array, this subscript must
be specified.

stride Is a scalar integer (or other numeric) expression representing the
increment between successive subscripts in the sequence. It must
have a nonzero value. If it is omitted, it is assumed to be 1.

The stride has the following effects:

• If the stride is positive, the subscript range starts with the first subscript and is incremented by the value
of the stride, until the largest value less than or equal to the second subscript is attained.

For example, if an array has been declared as B(6,3,2), the array section specified as B(2:4,1:2,2) is a
rank-two array with shape (3,2) and size 6. It consists of the following six elements:

 B(2,1,2) B(2,2,2)
 B(3,1,2) B(3,2,2)
 B(4,1,2) B(4,2,2)

If the first subscript is greater than the second subscript, the range is empty.
• If the stride is negative, the subscript range starts with the value of the first subscript and is decremented

by the absolute value of the stride, until the smallest value greater than or equal to the second subscript
is attained.

For example, if an array has been declared as A(15), the array section specified as A(10:3:-2) is a rank-
one array with shape (4) and size 4. It consists of the following four elements:

 A(10)
 A(8)
 A(6)
 A(4)

If the second subscript is greater than the first subscript, the range is empty.

If a range specified by the stride is empty, the array section has a size of zero.

A subscript in a subscript triplet need not be within the declared bounds for that dimension if all values used
to select the array elements are within the declared bounds. For example, if an array has been declared as
A(15), the array section specified as A(4:16:10) is valid. The section is a rank-one array with shape (2) and
size 2. It consists of elements A(4) and A(14).

If the subscript triplet does not specify bounds or stride, but only a colon (:), the entire declared range for
the dimension is used.

If you leave out all subscripts, the section defaults to the entire extent in that dimension. For example:

 REAL A(10)
 A(1:5:2) = 3.0 ! Sets elements A(1), A(3), A(5) to 3.0
 A(:5:2) = 3.0 ! Same as the previous statement
 ! because the lower bound defaults to 1
 A(2::3) = 3.0 ! Sets elements A(2), A(5), A(8) to 3.0
 ! The upper bound defaults to 10
 A(7:9) = 3.0 ! Sets elements A(7), A(8), A(9) to 3.0
 ! The stride defaults to 1
 A(:) = 3.0 ! Same as A = 3.0; sets all elements of
 ! A to 3.0

 1 Intel® Fortran Compiler Classic and Intel® Fortran Compiler Developer Guide and Reference

778

See Also
Array Sections

Vector Subscripts

A vector subscript is a one-dimensional (rank one) array of integer values (within the declared bounds for
the dimension) that selects a section of a whole (parent) array. The elements in the section do not have to be
in order and the section can contain duplicate values.

For example, A is a rank-two array of shape (4,6). B and C are rank-one arrays of shape (2) and (3),
respectively, with the following values:

 B = (/1,4/) ! Syntax (/.../) denotes an array constructor
 C = (/2,1,1/) ! This constructor produces a many-one array section

Array section A(3,B) consists of elements A(3,1) and A(3,4). Array section A(C,1) consists of elements
A(2,1), A(1,1), and A(1,1). Array section A(B,C) consists of the following elements:

 A(1,2) A(1,1) A(1,1)
 A(4,2) A(4,1) A(4,1)

An array section with a vector subscript that has two or more elements with the same value is called a
many-one array section. For example:

 REAL A(3, 3), B(4)
 INTEGER K(4)
 ! Vector K has repeated values
 K = (/3, 1, 1, 2/)
 ! Sets all elements of A to 5.0
 A = 5.0
 B = A(3, K)

The array section A(3,K) consists of the elements:

 A(3, 3) A(3, 1) A(3, 1) A(3, 2)
A many-one section must not appear on the left of the equal sign in an assignment statement, or as an input
item in a READ statement.

The following assignments to C also show examples of vector subscripts:

 INTEGER A(2), B(2), C(2)
 ...
 B = (/1,2/)
 C(B) = A(B)
 C = A((/1,2/))

An array section with a vector subscript must not be any of the following:

• An internal file
• An actual argument associated with a dummy array that is defined or redefined (if the INTENT attribute is

specified, it must be INTENT(IN))
• The target in a pointer assignment statement

If the sequence specified by the vector subscript is empty, the array section has a size of zero.

See Also
Array sections
Array constructors

Array Constructors

An array constructor can be used to create and assign values to rank-one arrays and array constants. An
array constructor takes one of the following forms:

(/ac-spec/)

Intel® Fortran Compiler Classic and Intel® Fortran Compiler Developer Guide and Reference 1

779

[ac-spec]

ac-spec Is one of the following:

type-spec ::

or

[type-spec ::] ac-value-list

type-spec Is a type specifier.

ac-value-list Is a list of one or more expressions or implied-DO loops.

An implied-DO loop in an array constructor takes the following form:

(ac-value-list, [integer-type-spec::] do-variable = expr1, expr2 [,expr3])

integer-type-spec Is INTEGER [kind-selector].

kind-selector Is ([KIND=] n).

n Is a constant expression whose value is 1, 2, 4, or 8.

do-variable Is the name of a scalar integer variable. Its scope is that of the
implied-DO loop.

expr Is a scalar integer expression. The expr1 and expr2 specify a range of
values for the loop; expr3 specifies the stride. The expr3 must be a
nonzero value; if it is omitted, it is assumed to be 1.

Description
If type-spec is omitted and the type of the ac-values is not CHARACTER, each ac-value-list expression must
have the same type and kind type parameters, and the same length parameters. In this case, the array
constructed has the same type as the ac-value-list expressions. If type-spec is omitted and the ac-values are
type CHARACTER, the length type parameter of the constructor is the maximum length of the ac-values.

If type-spec appears, it specifies the type and type parameters of the array constructor. Each ac-value-list
expression must be compatible with intrinsic assignment to a variable of this type and type parameters. Each
value is converted to the type parameters of the array constructor in accordance with the rules of intrinsic
assignment.

If type-spec specifies an intrinsic type, each ac-value-list expression must be of an intrinsic type that
conforms with a variable of type type-spec.

If type-spec specifies a derived type, all ac-value-list expressions must be of that derived type and must
have the same kind type parameter values as specified by type-spec.

A do-variable of an implied-DO that is in another implied-do must not appear as the do-variable of a
containing implied-DO.

If the sequence of values specified by the array constructor is empty (an empty array expression or the
implied-DO loop produces no values), the rank-one array has a size of zero.

An ac-value is interpreted as follows:

Form of ac-value Result

A scalar expression Its value is an element of the new array.

An array expression The values of the elements in the expression (in
array element order) are the corresponding
sequence of elements in the new array.

 1 Intel® Fortran Compiler Classic and Intel® Fortran Compiler Developer Guide and Reference

780

Form of ac-value Result

An implied-DO loop It is expanded to form a list of array elements
under control of the DO variable (like a DO
construct).

The following shows the three forms of an ac-value:

 C1 = (/4,8,7,6/) ! A scalar expression
 C2 = (/B(I, 1:5), B(I:J, 7:9)/) ! An array expression
 C3 = (/(I, INTEGER :: I=1, 4)/) ! An implied-DO loop

You can also mix these forms, for example:

 C4 = (/4, A(1:5), (I, I=1, 4), 7/)
If every expression in an array constructor is a constant expression, the array constructor is a constant
expression.

If type-spec is omitted, Intel® Fortran allows the character expressions to be of different character lengths.
The length of the resultant character array is the maximum of the lengths of the individual character
expressions. For example:

print *,len ((/'a','ab','abc','d'/))
print *,'++'//(/'a','ab','abc','d'/)//'--'

This causes the following to be displayed:

 3
 ++a --++ab --++abc--++d --

If an implied-DO loop is contained within another implied-DO loop (nested), they cannot have the same DO
variable (do-variable).

To define arrays of more than one dimension, use the RESHAPE intrinsic function.

The following are alternative forms for array constructors:

• Square brackets (instead of parentheses and slashes) to enclose array constructors; for example, the
following two array constructors are equivalent:

 INTEGER C(4)
 C = (/4,8,7,6/)
 C = [4,8,7,6]

• A colon-separated triplet (instead of an implied-DO loop) to specify a range of values and a stride; for
example, the following two array constructors are equivalent:

 INTEGER D(3)
 D = (/1:5:2/) ! Triplet form - also [1:5:2]
 D = (/(I, I=1, 5, 2)/) ! implied-DO loop form

The stride is optional; it defaults to 1. For example, the following two array constructors are equivalent:

 INTEGER E(5)
 E = (/1:5/) ! Triplet form with default stride – also [1:5]
 E = (/(I, I=1, 5)/) ! implied-DO loop form

Examples
The following example shows an array constructor using an implied-DO loop:

 INTEGER ARRAY_C(10)
 ARRAY_C = (/(I, I=30, 48, 2)/)

Intel® Fortran Compiler Classic and Intel® Fortran Compiler Developer Guide and Reference 1

781

The values of ARRAY_C are the even numbers 30 through 48.

Implied-DO expressions and values can be mixed in the value list of an array constructor. For example:

 INTEGER A(10)
 A = (/1, 0, (I, I = -1, -6, -1), -7, -8 /)
 ! Mixed values and implied-DO in value list.

This example sets the elements of A to the values, in order, 1, 0, -1, -2, -3, -4, -5, -6, -7, -8.

The following example shows an array constructor of derived type that uses a structure constructor:

TYPE EMPLOYEE
 INTEGER ID
 CHARACTER(LEN=30) NAME
END TYPE EMPLOYEE
TYPE(EMPLOYEE) CC_4T(4)
CC_4T = (/EMPLOYEE(2732,"JONES"), EMPLOYEE(0217,"LEE"), &
 EMPLOYEE(1889,"RYAN"), EMPLOYEE(4339,"EMERSON")/)

The following example shows how the RESHAPE intrinsic function can be used to create a multidimensional
array:

 E = (/2.3, 4.7, 6.6/)
 D = RESHAPE(SOURCE = (/3.5, (/2.0, 1.0/), E/), SHAPE = (/2,3/))

D is a rank-two array with shape (2,3) containing the following elements:

 3.5 1.0 4.7
 2.0 2.3 6.6

The following shows another example:

 INTEGER B(2,3), C(8)
 ! Assign values to a (2,3) array.
 B = RESHAPE((/1, 2, 3, 4, 5, 6/),(/2,3/))
 ! Convert B to a vector before assigning values to
 ! vector C.
 C = (/ 0, RESHAPE(B,(/6/)), 7 /)

Consider the following derived-type definition:

TYPE EMPLOYEE
 INTEGER AGE
 CHARACTER (LEN = 60) NAME
END TYPE EMPLOYEE

The following equivalent lines use the above type to construct a derived-type array value:

(/ EMPLOYEE (45, 'OLIVER'), EMPLOYEE (30, 'ONEIL') /)
[EMPLOYEE (45, 'OLIVER'), EMPLOYEE (30, 'ONEIL')]

The following example shows an array constructor that specifies a length type parameter:

(/ CHARACTER(LEN=8) :: 'Andrews', 'Donahue', 'Dehenney' , 'Washington' /)
In this constructor, without the type specification, Intel® Fortran makes all of the array elements length 10,
that is, as long as the longest character element.

See Also
Execution Control
Subscript triplets
Derived types
Structure constructors
Array Elements for details on array element order

 1 Intel® Fortran Compiler Classic and Intel® Fortran Compiler Developer Guide and Reference

782

Array Assignment Statements for details on another way to assign values to arrays
Declaration Statements for Arrays for details on array specifications

Coarrays

Coarrays and synchronization constructs are defined by the Fortran 2008 Standard and extended by Fortran
2018 and Fortran 2023. These constructs support parallel programming using a Single Program Multiple Data
(SPMD) model.

NOTE
Coarrays are only supported on 64-bit architectures.

You must specify compiler option [Q]coarray to enable coarrays in your program.

A Fortran program containing coarrays is interpreted as if it were replicated a fixed number of times and all
copies were executed asynchronously.

Each replication is called an "image", and each image has its own set of data objects. The number of images
is set at runtime, but it can also be set by a compiler option or an environment variable.

The array syntax of Fortran is extended with additional trailing subscripts in square brackets, called
cosubscripts, to provide a clear representation of references to data that is spread across images. References
without square brackets are to local data, so source code that can run independently is uncluttered. The
cosubscripts in square brackets are called image selectors. Image selectors can contain other specifiers in
addition to the cosubscripts. Any appearance of image selectors indicates communication between images.

A team is an ordered set of images. Each image is identified by a unique image index, numbered from 1 to
the number of images on the team. The set of all images at program start up is called the initial team. A
team of images can be divided into subteams by executing a FORM TEAM statement. The team executing the
FORM TEAM statement is the parent team of the teams created by the FORM TEAM statement. Each child
team of a parent team is identified by a team number, which is a positive integer value specified on the
FORM TEAM statement. The initial team has no parent team.

While the program is executing, each image executes on a current team. At program start-up, the current
team is the initial team, which consists of all images. An image's current team changes when a CHANGE
TEAM statement is executed, causing the images of the current team to begin executing as images on
subteams of the current team; the subteam an image is on becomes its current team. When an END TEAM
statement is executed by an image, the image's current team becomes the team that was current just before
the corresponding CHANGE TEAM statement was executed. Image indices are relative to the current team,
unless a different team is specified.

Usually, each image resides on one processor. However, several images may share a processor and one
image can execute on a cluster.

To reference any array variable that is coindexed, a subscript list must be present. If no subscript list is
present, then the coindexed object must be a scalar.

Examples
Consider the following statement:

real, dimension(500), codimension[*] :: a,b
This statement declares two objects a and b, each as a coarray. A coarray always has the same shape on
each image. In this case, each image has two real coarrays of size 500.

Consider that an image executes the following statement:

a(:) = b(:)[q]
In this case, the coarray b on image q is copied into coarray a on the executing image.

Intel® Fortran Compiler Classic and Intel® Fortran Compiler Developer Guide and Reference 1

783

Consider the coindexed reference x[k]. If x is a rank 1 array, this reference to x on image k is incorrect
syntax: a subscript list must be present. The correct form is x(:)[k] to access the entire array x on image
k. If x is a scalar, then the syntax x[k] is correct.

See Also
Image Control Statements
Image Selectors
Use Coarrays

Image Selectors

An image selector determines the image index for a coindexed object. It takes the following form:

lbracket cosubscript-list [, selector-spec-list] rbracket

lbracket Is a left bracket "[". This is required.

cosubscript Is a scalar integer expression. Its value must be within the cobounds
for its codimension. The number of cosubscripts must be equal to the
corank of the object. If the lower bound is not specified, it is assumed
to be 1.

selector-spec Is TEAM=team-var

or TEAM_NUMBER=scalar-integer-expression

or STAT=stat-var

team-var Is a scalar of type TEAM_TYPE defined in the intrinsic module
ISO_FORTRAN_ENV.

stat-var Is a scalar integer variable with an exponent range of at least 4
(KIND=2 or greater). stat-var cannot be coindexed.

rbracket Is a right bracket "]". This is required.

Considering the cobounds and bounds, respectively, the cosubscript list in an image selector determines the
image index in the same way that a subscript list in an array element determines the subscript order value.

The selector-specs may appear in any order in the selector-spec-list. TEAM= and TEAM_NUMBER must not
both be specified. A given selector-spec may appear at most once.

If TEAM= is specified, team-var must be the current team or an ancestor team. If TEAM_NUMBER= appears
and the initial team is not the current team, scalar-integer-expression must have a value of -1 indicating the
initial team, or a positive integer value that identifies a sibling team of the current team.

If the initial team is the current team and TEAM_NUMBER appears, scalar-integer-expression must have the
value -1. If TEAM or TEAM_NUMBER is specified, the team of the image selector is the specified team; the
image index specified by the cosubscript list applies to the specified team. Otherwise, the team of the image
selector is the current team.

If the image selector specifies TEAM_NUMBER=, and the value of scalar-integer-expression is a positive
integer that is not that of the current team, the coarray object must be established on an ancestor team or
be an associating entity on the enclosing CHANGE TEAM construct. Otherwise, the coarray object must be
established in the specified team, or in an ancestor of that team.

An image selector must specify an image index value that is not greater than the number of images on the
specified team.

When a statement containing an image selector with STAT= specified is executed, stat-var becomes defined
with value STAT_FAILED_IMAGE defined in the intrinsic module ISO_FORTRAN_ENV if the object referenced
by the image selector is on a failed image. Otherwise, stat-var becomes defined with the value zero.

A stat-var in an image selector cannot depend on the evaluation of any other entity in the same statement.
An expression cannot depend on the value of any stat-var that is specified in the same statement. The value
of stat-var cannot depend on execution of any part of the statement, other than if the object is on a failed
image.

 1 Intel® Fortran Compiler Classic and Intel® Fortran Compiler Developer Guide and Reference

784

Examples
Assume that there are 16 images and the coarray C is declared as follows:

REAL :: C(15)[5,*]
C(:)[1,4] is valid because it selects image 16, but C(:)[2,4] is invalid because it selects image 17.

C(1)[2, 1, STAT=istatus] will cause istatus to become defined with the value STAT_FAILED_IMAGE if image 6
has failed; otherwise, istatus becomes defined with the value zero.

Consider the following program:

 PROGRAM main
 USE, INTRINSIC :: ISO_FORTRAN_ENV
 TYPE (TEAM_TYPE) :: initial, odd_even
 REAL :: ca[4:*], x, y, z
 INTEGER :: me
 initial = GET_TEAM (CURRENT_TEAM)
 me = THIS_IMAGE ()
 FORM TEAM (2-MOD(me, 2), odd_even, NEW_INDEX=(me+1)/2)
 . . .
 CHANGE TEAM (odd_even, ae[2,*]=>ca)
 x = ca[2,3, TEAM=initial]
 y = ae[2,4, TEAM_NUMBER=2]
 x = ae[2,2]

 . . .
 END TEAM
 . . .
 END PROGRAM

Assuming there are 16 images, ca is then a 4x4 coarray. The FORM TEAM statement divides the images into
two teams. Team 1 contains images [1, 3, …, 15] and team 2 contains images [2, 4, …, 16] with image
indices on the new teams [1, 2, …, 8] respectively.

The CHANGE TEAM statement has an associating entity ae which is a 2x4 coarray on each team executing
the CHANGE TEAM construct. Within the CHANGE TEAM construct for team 1, ae[1, 1] is ca[1, 1], ae[2, 1] is
ca[3, 1], ae[1, 2] is ca[1, 2], ae[2,2] is ca[3,2], ae[1,3] is ca[1,3], ae[2, 3] is ca[3,3], ae[1,4] is ca[1,4] and
ae[2,4] is ca[3,4], and for team 2, ae[1, 1] is ca[2, 1], ae[2, 1] is ca[4, 1], ae[1, 2] is ca[2, 2], ae[2,2] is
ca[4,2], ae[1,3] is ca[2,3], ae[2, 3] is ca[4,3], ae[1,4] is ca[2,4] and ae[2,4] is ca[4,4].

The first statement in the CHANGE TEAM construct assigns x the value of ca[2,3] on the initial team, which is
on image 10 on the initial team. The second statement in the CHANGE TEAM construct assigns y the value of
ae[2, 2] on team number 2 that is on image 8 of team 2; it is the same as ca[4,4], that is on image 16 of
the initial team. The third statement in the CHANGE TEAM construct assigns z the value of ae[2,2]. ae[2,2] is
on image 4 of both team 1 and team 2; on team 1 it is the same as ca[3,2] on image 7 of the initial team,
and on team 2 it is the same as ca[4,2], which is on image 8 of the initial team.

See Also
Coarrays
ISO_FORTRAN_ENV Module
FORM TEAM
CHANGE TEAM

Established Coarrays

An established coarray is a coarray that is accessible using an image selector. The following can be said about
coarrays:

• Nonallocatable coarrays that have the SAVE attribute are established in the initial team.

Intel® Fortran Compiler Classic and Intel® Fortran Compiler Developer Guide and Reference 1

785

• Allocated allocatable coarrays are established in the team that allocates them. Unallocated allocatable
coarrays are not established.

• An associating entity that appears in a coarray association in a CHANGE TEAM statement is a coarray that
is established in the team that becomes the current team after the CHANGE TEAM statement has been
executed.

• A coarray that is established a team in which a CHANGE TEAM statement is executed is established in the
team that executes the CHANGE TEAM statement.

• A nonallocatable coarray that is an associating entity in an ASSOCIATE, SELECT RANK, or SELECT TYPE
construct is established in the team that executes that construct.

• Nonallocatable coarrays that are dummy arguments are established in the team that invokes the
procedure. A nonallocatable dummy argument coarray is not established in any ancestor team even if the
corresponding actual argument is established in one or more of the ancestor teams.

Deferred-Coshape Coarrays

A deferred-coshape(allocatable) coarray has cobounds that are determined by allocation or argument
association.

An allocatable coarray has the ALLOCATABLE attribute and a deferred-coshape specification.

A deferred-coshape specification is indicated by a colon (:).

The corank of an allocatable coarray is equal to the number of colons in its deferred-coshape specification.

The cobounds of an unallocated allocatable coarray are undefined. No part of such a coarray can be
referenced or defined; however, the coarray may appear as an argument to an intrinsic inquiry function.

The cobounds of an allocated allocatable coarray are those specified when the coarray is allocated.

The cobounds of an allocatable coarray are unaffected by any subsequent redefinition or undefinition of the
variables on which the cobounds' expressions depend.

See Also
Coarrays

Explicit-Coshape Coarrays

An explicit-coshape coarray is a named coarray that has its corank and cobounds declared by an explicit-
coshape specification.

An explicit-coshape specification takes the following form:

[[lower-cobound:] upper-cobound,] ... [lower-cobound:] *

lc Is a specification expression indicating the lower cobound of the
coarray. The expression can have a positive, negative, or zero value.
If necessary, the value is converted to integer type.

If the lower bound is not specified, it is assumed to be 1.

uc Is a specification expression indicating the upper cobound of the
coarray. The expression can have a positive, negative, or zero value.
If necessary, the value is converted to integer type. The upper
cobound must not be less than the lower cobound (lc), if specified.

A nonallocatable coarray must have a coarray specification (coarray-spec) that is an explicit-coshape
specification.

The corank is equal to one plus the number of upper cobounds.

A lower cobound or upper cobound that is not a constant expression must appear only in a subprogram or
interface body.

If an explicit-coshape coarray is a local variable of a subprogram and has cobounds that are not constant
expressions, the cobounds are determined on entry to a procedure defined by the subprogram, by evaluating
the cobounds expressions . The cobounds of such a coarray are unaffected by the redefinition or undefinition
of any variable during execution of the procedure.

 1 Intel® Fortran Compiler Classic and Intel® Fortran Compiler Developer Guide and Reference

786

The values of each lower cobound and upper cobound determine the cobounds of the coarray along a
particular codimension. The cosubscript range of the coarray in that codimension is the set of integer values
between and including the lower and upper cobounds.

Examples
The following are examples of variables with coarray specifications (coarray-specs):

A [*]
AA [2:*]
B [2, 3, *]
C [3:5, -2:7, *]

See Also
Coarrays

Reference Coarray Images

Data on other images is normally referenced by cosubscripts enclosed in square brackets.

For coarray images, each set of cosubscripts maps to an image index, which is an integer between one and
the number of images, in the same way as a set of array subscripts maps to a position in array element
order.

To find the image index for the invoking image on the current team, specify intrinsic function THIS_IMAGE()
with no arguments.

To find the image index for the executing image on an ancestor team, specify intrinsic function THIS_IMAGE
(team) where team is a team variable for an ancestor team.

To find the set of cosubscript indices for a coarray z that corresponds to the executing image on the current
team, specify THIS_IMAGE(z).

To find the set of cosubscript indices for a coarray z that corresponds to the executing image on an ancestor
team described by the team variable team_var, specify THIS_IMAGE(z, team_var).

To find the value of the cosubscript dim in the sequence of cosubscripts for the coarray z on the current team
specify THIS_IMAGE (z, dim).

To find the cosubscript dim in the sequence of cosubscript values for a coarray z that would specify the
executing image on an ancestor team described by the team variable team_var, specify THIS_IMAGE (z,
dim,team_var).

To find the image index in the current team that corresponds to a set of cosubscript indices sub for a coarray
z, specify intrinsic function IMAGE_INDEX(z, sub).

To find the image index on the ancestor team described by team_var that corresponds to a set of cosubscript
indices sub for a coarray z, specify intrinsic function IMAGE_INDEX(z, sub, team_var).

To find the image index on the sibling team numbered 4 that corresponds to a set of cosubscript indices sub
for a coarray z, specify intrinsic function IMAGE_INDEX(z, sub, 4).

To find the number of images, specify intrinsic function NUM_IMAGES.

See Also
THIS_IMAGE
IMAGE_INDEX
NUM_IMAGES

Specify Data Objects for Coarray Images

Each image has its own set of data objects, all of which can be accessed in the normal way.

The rank, bounds, extents, size, and shape of a whole coarray are provided by the data in parentheses in its
declaration or allocation. Its corank, cobounds, and coextents are provided by the data in square brackets in
its declaration or allocation. Any subobject of the coarray that is a coarray has the same corank, cobounds,
and coextents. The cosize of a coarray is always equal to the number of images.

Intel® Fortran Compiler Classic and Intel® Fortran Compiler Developer Guide and Reference 1

787

Objects can be declared with codimensions in square brackets immediately following dimensions in
parentheses or in place of them, for example:

real :: a[*], d[*] ! Scalar coarrays
real, dimension(50), codimension[50,*] :: x ! An array coarray
integer :: n(100)[*]
character :: b(40)[40,0:*]
type(para) :: w[30,*]

Unless the coarray is allocatable, the form for the dimensions in square brackets is the same as that for
dimensions in parentheses in an assumed-size array.

The total number of subscripts plus cosubscripts is limited to 31. Note that the Fortran 2018 Standard limits
the total number of subscripts plus cosubscripts to 15.

You can address a coarray on another image by using subscripts in square brackets following any subscripts
in parentheses, for example:

b(6)[4,7] = n(6)[4]
e[4] = c
b(:)[3,4] = c[2]

Any object whose designator includes square brackets is called a coindexed object. Each subscript in square
brackets must be a scalar integer expression.

Subscripts in parentheses must be used whenever the parent array has nonzero rank. For example, for a(:)
[2,3], you cannot specify a[2,3].

See Also
NUM_IMAGES

Variable-Definition Context

A variable can appear in different contexts that imply definition or undefinition of the variable. A reference to
a function that returns a data pointer is permitted in such variable-definition contexts.

When a function returns a data pointer, that pointer is always associated with a variable that has the TARGET
attribute, either by pointer assignment or by allocation. If a reference to a function that returns a data
pointer appears in a variable-definition context, the definable target (with which the function result is
associated) is the variable that becomes defined or undefined.

This section describes the different variable-definition contexts in which a function reference returning a data
pointer can be used. It also describes the contexts in which data pointer function references are not allowed.

Assignment Statement
Function references returning a data pointer can be used on the left-hand side of an assignment statement.
References to type bound and generic procedures are also permitted on the left-hand side of an intrinsic
assignment. If the variable on the left-hand side is polymorphic, it must be an allocatable. Therefore, a
function returning a polymorphic pointer cannot be used on the left-hand side.

In the following example, function STORAGE returns a data pointer to either the module variable OUTSIDE or
to an element of VAR into which a value is stored:

MODULE TMOD
 PUBLIC

 INTEGER, PARAMETER :: N = 10
 INTEGER, TARGET :: VAR(N)
 INTEGER, TARGET :: OUTSIDE
 CONTAINS
 FUNCTION STORAGE(KEY) RESULT(LOC)
 INTEGER, INTENT(IN) :: KEY
 INTEGER, POINTER :: LOC

 1 Intel® Fortran Compiler Classic and Intel® Fortran Compiler Developer Guide and Reference

788

 IF(KEY .LT. 1 .OR. KEY .GE. N) THEN
 LOC=> OUTSIDE
 ELSE
 LOC => VAR(KEY)
 ENDIF
 END FUNCTION
END MODULE

PROGRAM MAIN
 USE TMOD
 OUTSIDE = -1
 STORAGE(1) = 11
 STORAGE(0) = 0
 PRINT *, VAR(1), OUTSIDE ! prints 11, 0
END

The following example shows generic resolution on the left-hand side of an assignment statement:

MODULE MYMODULE
 TYPE :: VEC
 INTEGER :: X(3)
 CONTAINS
 GENERIC :: GET => GETELEMENT, GETARRAY
 PROCEDURE :: GETELEMENT
 PROCEDURE :: GETARRAY
 END TYPE VEC
 CONTAINS
 FUNCTION GETELEMENT(THIS, EL) RESULT(P)
 IMPLICIT NONE
 CLASS(VEC), TARGET :: THIS
 INTEGER, INTENT(IN) :: EL
 INTEGER, POINTER :: P
 P => THIS%X(EL)
 END FUNCTION GETELEMENT

 FUNCTION GETARRAY(THIS) RESULT(P)
 IMPLICIT NONE
 CLASS(VEC), TARGET :: THIS
 INTEGER, POINTER :: P(:) ! array pointer
 P => THIS%X
 END FUNCTION GETARRAY
END MODULE MYMODULE

PROGRAM TEST
 USE MYMODULE
 IMPLICIT NONE
 TYPE(VEC) :: MYVEC
 INTEGER :: Y(3)
 MYVEC%X = [1,2,3]
 Y = [6,7,8]

 ! expected output 1 2 1 2 3
 WRITE(6,*) MYVEC%GET(1), MYVEC%GET(2), MYVEC%GET()

 ! change any array element
 MYVEC%GET(1) = 4
 MYVEC%GET(2) = 5
 MYVEC%GET(3) = 6

Intel® Fortran Compiler Classic and Intel® Fortran Compiler Developer Guide and Reference 1

789

 ! check modified values
 ! expected output 4 5 4 5 6
 WRITE(6,*) MYVEC%GET(1), MYVEC%GET(2), MYVEC%GET()

 MYVEC%GET() = Y ! array pointer returned

 ! check modified values
 WRITE(6,*) MYVEC%GET() ! expected output 6 7 8
END PROGRAM TEST

Argument Association
A function reference returning a data pointer can be used as an actual argument in a reference to a
procedure with an explicit interface. If the corresponding dummy argument has the INTENT (OUT) or INTENT
(INOUT) attribute, then the pointer function is used in a variable definition context.

The following example uses the function STORAGE, which was defined in the above section "Assignment
Statement":

FUNCTION STORAGE(KEY) RESULT(LOC)
 INTEGER, INTENT(IN) :: KEY
 INTEGER, POINTER :: LOC
..
END FUNCTION
..
STORAGE(2) = 10
CALL CHANGE_VAL(STORAGE(2)) ! pass storage(2) as actual argument
PRINT *, VAR(2) ! prints 50
..
SUBROUTINE CHANGE_VAL(X)
 INTEGER, INTENT(OUT) :: X
 X = X*5
END SUBROUTINE CHANGE_VAL

The following example shows that the target of the function pointer can get modified inside the subroutine
without using the dummy argument corresponding to the function reference:

 MODULE M200C2
 INTEGER, TARGET :: X = 42
 CONTAINS
 FUNCTION FX()
 INTEGER, POINTER :: FX
 FX => X
 END FUNCTION
 END MODULE

 PROGRAM Q1
 USE M200C2
 CALL TEST(X, FX())
 ! note that corresponding dummy is not INTENT (OUT) or INTENT(INOUT).
 ! FX() is not used in a variable definition context but it still
 ! denotes a variable.
 CONTAINS
 SUBROUTINE TEST(A, B)
 INTEGER, TARGET :: B
 A = A*10
 PRINT *, A, B ! prints 420 420
 END SUBROUTINE
 END PROGRAM

 1 Intel® Fortran Compiler Classic and Intel® Fortran Compiler Developer Guide and Reference

790

SELECT RANK, SELECT TYPE, and ASSOCIATE Construct
A pointer function reference can appear as a variable that is the selector in a SELECT RANK, SELECT TYPE, or
ASSOCIATE construct and the associate name of that construct can appear in a variable-definition context.
For example:

PROGRAM MAIN
 INTEGER, TARGET :: DATA = 123

 ASSOCIATE (ALIAS => FX1())
 ALIAS = 456
 PRINT *, ALIAS, DATA ! prints 456 456
 END ASSOCIATE

 SELECT TYPE (ALIAS =>FX2())
 TYPE IS (INTEGER)
 ALIAS = 789
 PRINT *, ALIAS, DATA ! prints 789 789
 END SELECT

 CONTAINS
 FUNCTION FX1()
 INTEGER, POINTER :: FX1
 FX1 => DATA
 END FUNCTION FX1
 FUNCTION FX2()
 CLASS(*),POINTER :: FX2
 FX2 => DATA
 END FUNCTION FX2
END PROGRAM MAIN

In the following example, FX1() in the ASSOCIATE statement and FX2() in the SELECT TYPE statement, is a
variable and every reference to ALIAS is a reference to the associated variable, so the assignment also
changes the value of ALIAS:

PROGRAM MAIN
 INTEGER, TARGET :: DATA = 123

 ASSOCIATE (ALIAS => FX1())
 DATA = 0
 PRINT *, ALIAS, DATA ! prints 0 0
 END ASSOCIATE

 SELECT TYPE (ALIAS => FX2())
 TYPE IS (INTEGER)
 DATA = 1
 PRINT *, ALIAS, DATA ! prints 1 1
 END SELECT

 CONTAINS

 FUNCTION FX1 ()
 INTEGER, POINTER :: FX1
 FX1 => DATA
 END FUNCTION FX1

 FUNCTION FX2()
 CLASS(*),POINTER :: FX2
 FX2 => DATA

Intel® Fortran Compiler Classic and Intel® Fortran Compiler Developer Guide and Reference 1

791

 END FUNCTION FX2

END PROGRAM MAIN

Input/Output Statements
A pointer function reference can be used as an input item in a READ statement.

A function reference returning a character pointer can be used as an internal file variable in a WRITE
statement.

A scalar integer pointer function reference can be an IOSTAT= or a SIZE= specifier in an input/output
statement. A scalar character pointer function reference can be an IOMSG= specifier in an input/output
statement.

A function returning a scalar pointer, whose datatype matches the specifier, can be specified in an INQUIRE
statement except for the three specifiers FILE=, ID=, and UNIT=.

A function returning a scalar integer pointer can be a NEWUNIT= specifier in an OPEN statement.

Consider the following example:

...
 CHARACTER(50), TARGET :: V(33)
 INTEGER, TARGET :: I
 ..
 FUNCTION RET_CHAR(INDEX) RESULT (DCV)
 CHARACTER(50), POINTER :: DCV
 INTEGER :: INDEX
 DCV => V(INDEX)
 END FUNCTION
 FUNCTION RET_INT() RESULT (P)
 INTEGER, POINTER :: P
 P => I
 END FUNCTION
 ...
! an input item in a read stmt
 READ (6, *) RET_INT()
 READ 10, RET_INT()

! an internal file variable in a write stmt
 WRITE (RET_CHAR(10), FMT=*) 666

! an IOSTAT=, SIZE=, or IOMSG= specifier in an I/O statement
 READ (10, FMT=*, IOSTAT=RET_INT(), SIZE=RET_INT(), &
 IOMSG=RET_CHAR(6)) STR

! a specifier in an inquire statement except FILE=, ID=, and UNIT=
 OPEN(NEWUNIT = NUM, FILE = 'A.TXT', ACTION = 'READ')
 INQUIRE(NUM, &
 ACCESS = RET_CHAR(2), &
 EXIST = RET_CHAR(10), &
 ID = 13, &
 IOSTAT = RET_CHAR(14), &
 SIZE = RET_CHAR(30))
 CLOSE(NUM, STATUS = 'DELETE')

! a NEWUNIT= SPECIFIER in an OPEN statement
 OPEN(NEWUNIT = RET_INT(1), STATUS = 'SCRATCH')
 CLOSE(RET_INT(1), STATUS = 'DELETE') ! allowed on CLOSE

 1 Intel® Fortran Compiler Classic and Intel® Fortran Compiler Developer Guide and Reference

792

STAT=, ERRMSG=, and ACQUIRED_LOCK= Specifiers and STAT and ERRMSG Arguments to
Intrinsic Procedures
A scalar integer pointer function reference can be used as a STAT= variable. A scalar character pointer
function reference can be used as an ERRMSG= variable.

STAT= and ERRMSG= are allowed in CHANGE TEAM, END TEAM, CRITICAL, EVENT POST, EVENT WAIT, FORM
TEAM, SYNC ALL, SYNC IMAGES, SYNC MEMORY, SYNC TEAM, LOCK, UNLOCK, ALLOCATE, and DEALLOCATE
statements.

A STAT= specifier is allowed in an image selector. Collective and atomic procedures have an optional STAT
argument, and the MOVE_ALLOC intrinsic has optional STAT and ERRMSG arguments.

A scalar logical pointer function reference can be an ACQUIRED_LOCK= specifier in a LOCK statement.

The following example uses RET_CHAR and RET_INT, which were defined in the above section "Input/Output
Statements":

 TYPE(EVENT_TYPE) :: ET[*]
 TYPE(LOCK_TYPE) :: LT[*]
 INTEGER, POINTER :: AR(:)
 ALLOCATE(AR(2), STAT=RET_INT())
 DEALLOCATE(AR, STAT=RET_INT())

 EVENT POST (EV[THIS_IMAGE() + 1], STAT=RET_INT(), ERRMSG=RET_CHAR())
 EVENT WAIT(EV, STAT=RET_INT(), ERRMSG=RET_CHAR())
 LOCK(LT, ACQUIRED_LOCK=GET_LOGICAL(), STAT=RET_INT(), &
 ERRMSG=RET_CHAR())
 UNLOCK(LT, STAT=RET_INT(), ERRMSG=RET_CHAR())
 SYNC IMAGES(*,STAT=RET_INT(), ERRMSG=RET_CHAR())
 SYNC ALL(STAT=RET_INT(), ERRMSG=RET_CHAR())
 SYNC MEMORY(STAT=RET_INT(), ERRMSG=RET_CHAR())

Execution of EVENT POST and EVENT WAIT statements
An event variable of type EVENT_TYPE from the ISO_FORTRAN_ENV module becomes defined by the
successful execution of an EVENT POST or an EVENT WAIT statement.

Execution of a FORM TEAM statement
A team variable of type TEAM_TYPE from the intrinsic module ISO_FORTRAN_ENV becomes defined by the
successful execution of a FORM TEAM statement.

Execution of a LOCK or UNLOCK statement
A lock variable of LOCK_TYPE from the ISO_FORTRAN_ENV module becomes defined by the successful
execution of an UNLOCK statement, or a LOCK statement without an ACQUIRED_LOCK= specifier. Successful
execution of a LOCK statement with an ACQUIRED_LOCK= specifier causes the specified logical variable to
become defined. If it is defined with the value true, the lock variable in the LOCK statement also becomes
defined.

Disallowed Contexts
The Fortran Standard defines both a "variable" and a "variable name". For function F, F is a variable name;
F(7) is a function. If F returns a data pointer, F(7) is a variable and can be used in a variable-definition
context.

For the following variable-definition contexts, the Fortran Standard specifies that a "variable name" must be
used and not a "variable":

• The pointer object in a NULLIFY statement

Intel® Fortran Compiler Classic and Intel® Fortran Compiler Developer Guide and Reference 1

793

• A data pointer object or procedure pointer object in a pointer assignment statement
• The DO variable in a DO statement or an implied DO construct
• A variable name in a NAMELIST statement if the NAMELIST group name appears in a NML= specifier in a

READ statement
• The object in an ALLOCATE or DEALLOCATE statement
• An event variable in an EVENT POST or EVENT WAIT statement
• The lock variable in a LOCK or UNLOCK statement

A function reference can return a pointer to any data object, even one that cannot be stored into, for
example, a USE associated PROTECTed object or a constant. This will not be caught at compile time. It is
possible that the target of the pointer function is a local variable from a different subprogram or a private
USE associated variable, in which case the pointer returned has an undefined association status.

A More Complex Example
The following example has pointer functions that return data pointers to parameterized derived type objects.
The pointer function results are automatic objects whose length type parameters depend on the dummy
arguments:

MODULE TMOD
 PUBLIC
 TYPE PDT(K, L)
 INTEGER, KIND :: K
 INTEGER, LEN :: L
 INTEGER :: FIELD(L)
 END TYPE PDT
END MODULE
PROGRAM MAIN
 USE TMOD
 IMPLICIT NONE
 TYPE(PDT(4,2)), TARGET :: PDTOBJ1, OBJ
 TYPE(PDT(2,2)), POINTER :: ACTARG
 CHARACTER(10), TARGET :: C1

 BAR() = PDT(4,2)((/5,3/))
 PRINT *, PDTOBJ1%FIELD ! prints 5 3

 AUTO_RES(ACTARG) = PDT(4,2)((/6,4/))
 PRINT *, PDTOBJ1%FIELD ! prints 6 4

 AUTO_CHAR(10) = "TEST"
 PRINT *, C1 ! prints TEST
 CONTAINS
 FUNCTION BAR() RESULT(LOC)
 TYPE(PDT(4,2)), POINTER :: LOC
 LOC => PDTOBJ1
 END FUNCTION
 FUNCTION AUTO_CHAR(DUM1) RESULT(LOC)
 INTEGER, INTENT(IN) :: DUM1
 CHARACTER(DUM1), POINTER :: LOC
 LOC => C1
 END FUNCTION

 FUNCTION AUTO_RES(DUM1) RESULT(LOC)
 TYPE(PDT(4,:)), POINTER, INTENT(IN) :: DUM1
 TYPE(PDT(4,DUM1%L)), POINTER :: LOC

 1 Intel® Fortran Compiler Classic and Intel® Fortran Compiler Developer Guide and Reference

794

 LOC => PDTOBJ1
 END FUNCTION
END PROGRAM

Expressions and Assignment Statements
An expression represents either a data reference or a computation, and is formed from operators, operands,
and parentheses. The result of an expression is either a scalar value or an array of scalar values.

An assignment causes variables to be defined or redefined.

For more information, see the individual topics in this section.

Expressions
An expression represents either a data reference or a computation, and is formed from operators, operands,
and parentheses. The result of an expression is either a scalar value or an array of scalar values.

If the value of an expression is of intrinsic type, it has a kind type parameter. (If the value is of intrinsic type
CHARACTER, it also has a length parameter.) If the value of an expression is of derived type, it has no kind
type parameter.

An operand is a scalar or array. An operator can be either intrinsic or defined. An intrinsic operator is known
to the compiler and is always available to any program unit. A defined operator is described explicitly by a
user in a function subprogram and is available to each program unit that uses the subprogram.

The simplest form of an expression (a primary) can be any of the following:

• A constant; for example, 4.2
• A subobject of a constant; for example, 'LMNOP' (2:4)
• A variable; for example, VAR_1
• A structure constructor; for example, EMPLOYEE(3472, "JOHN DOE")
• An array constructor; for example, (/12.0,16.0/)
• A function reference; for example, COS(X)
• Another expression in parentheses; for example, (I+5)

Any variable or function reference used as an operand in an expression must be defined at the time the
reference is executed. If the operand is a pointer, it must be associated with a target object that is defined.
An integer operand must be defined with an integer value rather than a statement label value. All of the
characters in a character data object reference must be defined.

When a reference to an array or an array section is made, all of the selected elements must be defined.
When a structure is referenced, all of the components must be defined.

In an expression that has intrinsic operators with an array as an operand, the operation is performed on each
element of the array. In expressions with more than one array operand, the arrays must be conformable
(they must have the same shape). The operation is applied to corresponding elements of the arrays, and the
result is an array of the same shape (the same rank and extents) as the operands.

In an expression that has intrinsic operators with a pointer as an operand, the operation is performed on the
value of the target associated with the pointer.

For defined operators, operations on arrays and pointers are determined by the procedure defining the
operation.

A scalar is conformable with any array. If one operand of an expression is an array and another operand is a
scalar, it is as if the value of the scalar were replicated to form an array of the same shape as the array
operand. The result is an array of the same shape as the array operand.

See Also
Arrays
Derived data types
Defining Generic Operators for details on function subprograms that define operators

Intel® Fortran Compiler Classic and Intel® Fortran Compiler Developer Guide and Reference 1

795

POINTER statement for details on pointers

Numeric Expressions

Numeric expressions express numeric computations, and are formed with numeric operands and numeric
operators. The evaluation of a numeric operation yields a single numeric value.

The term numeric includes logical data, because logical data is treated as integer data when used in a
numeric context. The default for .TRUE. is -1; .FALSE. is 0. Note that the default can change if compiler
option fpscomp logicals is used.

Numeric operators specify computations to be performed on the values of numeric operands. The result is a
scalar numeric value or an array whose elements are scalar numeric values. The following are numeric
operators:

Operator Function

** Exponentiation

* Multiplication

/ Division

+ Addition or unary plus (identity)

- Subtraction or unary minus (negation)

Unary operators operate on a single operand. Binary operators operate on a pair of operands. The plus and
minus operators can be unary or binary. When they are unary operators, the plus or minus operators precede
a single operand and denote a positive (identity) or negative (negation) value, respectively. The
exponentiation, multiplication, and division operators are binary operators.

Valid numeric operations must have results that are defined by the arithmetic used by the processor. For
example, raising a negative-valued base to a real power is invalid.

Numeric expressions are evaluated in an order determined by a precedence associated with each operator, as
follows (see also Summary of Operator Precedence):

Operator Precedence

** Highest

* and / .

Unary + and - .

Binary + and - Lowest

Operators with equal precedence are evaluated in left-to-right order. However, exponentiation is evaluated
from right to left. For example, A**B**C is evaluated as A**(B**C). B**C is evaluated first, then A is raised
to the resulting power.

Normally, two operators cannot appear together. However, Intel® Fortran allows two consecutive operators if
the second operator is a plus or minus.

Examples
In the following example, the exponentiation operator is evaluated first because it takes precedence over the
multiplication operator:

A**B*C is evaluated as (A**B)*C
Ordinarily, the exponentiation operator would be evaluated first in the following example. However, because
Intel Fortran allows the combination of the exponentiation and minus operators, the exponentiation operator
is not evaluated until the minus operator is evaluated:

A**-B*C is evaluated as A**(-(B*C))

 1 Intel® Fortran Compiler Classic and Intel® Fortran Compiler Developer Guide and Reference

796

Note that the multiplication operator is evaluated first, since it takes precedence over the minus operator.

When consecutive operators are used with constants, the unary plus or minus before the constant is treated
the same as any other operator. This can produce unexpected results. In the following example, the
multiplication operator is evaluated first, since it takes precedence over the minus operator:

X/-15.0*Y is evaluated as X/-(15.0*Y)

See Also
fpscomp compiler option

Parentheses in Numeric Expressions

You can use parentheses to force a particular order of evaluation. When part of an expression is enclosed in
parentheses, that part is evaluated first. The resulting value is used in the evaluation of the remainder of the
expression.

In the following examples, the numbers below the operators indicate a possible order of evaluation.
Alternative evaluation orders are possible in the first three examples because they contain operators of equal
precedence that are not enclosed in parentheses. In these cases, the compiler is free to evaluate operators of
equal precedence in any order, as long as the result is the same as the result gained by the algebraic left-to-
right order of evaluation.

 4 + 3 * 2 - 6/2 = 7
 ^ ^ ^ ^
 2 1 4 3
 (4 + 3) * 2 - 6/2 = 11
 ^ ^ ^ ^
 1 2 4 3
 (4 + 3 * 2 - 6)/2 = 2
 ^ ^ ^ ^
 2 1 3 4
 ((4 + 3) * 2 - 6)/2 = 4
 ^ ^ ^ ^
 1 2 3 4

Expressions within parentheses are evaluated according to the normal order of precedence. In expressions
containing nested parentheses, the innermost parentheses are evaluated first.

Nonessential parentheses do not affect expression evaluation, as shown in the following example:

 4 + (3 * 2) - (6/2)
However, using parentheses to specify the evaluation order is often important in high-accuracy numerical
computations. In such computations, evaluation orders that are algebraically equivalent may not be
computationally equivalent when processed by a computer (because of the way intermediate results are
rounded off).

Parentheses can be used in argument lists to force a given argument to be treated as an expression, rather
than as the address of a memory item.

Data Type of Numeric Expressions

If every operand in a numeric expression is of the same data type, the result is also of that type.

If operands of different data types are combined in an expression, the evaluation of that expression and the
data type of the resulting value depend on the ranking associated with each data type. The following table
shows the ranking assigned to each data type:

Data Type Ranking

LOGICAL(1) and BYTE Lowest

LOGICAL(2) .

Intel® Fortran Compiler Classic and Intel® Fortran Compiler Developer Guide and Reference 1

797

Data Type Ranking

LOGICAL(4) .

LOGICAL(8) .

INTEGER(1) .

INTEGER(2) .

INTEGER(4) .

INTEGER(8) .

REAL(4) .

REAL(8)1 .

REAL(16) .

COMPLEX(4) .

COMPLEX(8)2 .

COMPLEX(16) Highest

1 DOUBLE PRECISION
2 DOUBLE COMPLEX

The data type of the value produced by an operation on two numeric operands of different data types is the
data type of the highest-ranking operand in the operation. For example, the value resulting from an
operation on an integer and a real operand is of real type. However, an operation involving a COMPLEX(4) or
COMPLEX(8) data type and a DOUBLE PRECISION data type produces a COMPLEX(8) result.

The data type of an expression is the data type of the result of the last operation in that expression, and is
determined according to the following conventions:

• Integer operations: Integer operations are performed only on integer operands. (Logical entities used in a
numeric context are treated as integers.) In integer arithmetic, any fraction resulting from division is
truncated, not rounded. For example, the result of 9/10 is 0, not 1.

• Real operations: Real operations are performed only on real operands or combinations of real, integer, and
logical operands. Any integer operands present are converted to real data type by giving each a fractional
part equal to zero. The expression is then evaluated using real arithmetic. However, in the statement Y =
(I /J)*X, an integer division operation is performed on I and J, and a real multiplication is performed on
that result and X.

If one operand is a higher-precision real (REAL(8) or REAL(16)) type, the other operand is converted to
that higher-precision real type before the expression is evaluated.

When a single-precision real operand is converted to a double-precision real operand, low-order binary
digits are set to zero. This conversion does not increase accuracy; conversion of a decimal number does
not produce a succession of decimal zeros. For example, a REAL variable having the value 0.3333333 is
converted to approximately 0.3333333134651184D0. It is not converted to either
0.3333333000000000D0 or 0.3333333333333333D0.

• Complex operations: In operations that contain any complex operands, integer operands are converted to
real type, as previously described. The resulting single-precision or double-precision operand is
designated as the real part of a complex number and the imaginary part is assigned a value of zero. The
expression is then evaluated using complex arithmetic and the resulting value is of complex type.
Operations involving a COMPLEX(4) or COMPLEX(8) operand and a DOUBLE PRECISION operand are
performed as COMPLEX(8) operations; the DOUBLE PRECISION operand is not rounded.

 1 Intel® Fortran Compiler Classic and Intel® Fortran Compiler Developer Guide and Reference

798

These rules also generally apply to numeric operations in which one of the operands is a constant. However,
if a real or complex constant is used in a higher-precision expression, additional precision will be retained for
the constant. The effect is as if a DOUBLE PRECISION (REAL(8)) or REAL(16) representation of the constant
were given. For example, the expression 1.0D0 + 0.3333333 is treated as if it is 1.0D0 +
dble(0.3333333).

Character Expressions

A character expression consists of a character operator (//) that concatenates two operands of type
character. The evaluation of a character expression produces a single value of that type.

The result of a character expression is a character string whose value is the value of the left character
operand concatenated to the value of the right operand. The length of a character expression is the sum of
the lengths of the values of the operands. For example, the value of the character expression 'AB'//'CDE'
is 'ABCDE', which has a length of five.

Parentheses do not affect the evaluation of a character expression; for example, the following character
expressions are equivalent:

 ('ABC'//'DE')//'F'
 'ABC'//('DE'//'F')
 'ABC'//'DE'//'F'

Each of these expressions has the value ' ABCDEF'.

If a character operand in a character expression contains blanks, the blanks are included in the value of the
character expression. For example, 'ABC '//'D E'//'F ' has a value of 'ABC D EF '.

Relational Expressions

A relational expression consists of two or more expressions whose values are compared to determine
whether the relationship stated by the relational operator is satisfied. The following are relational operators:

Operator Relationship

.LT. or < Less than

.LE. or <= Less than or equal
to

.EQ. or == Equal to

.NE. or /= Not equal to

.GT. or > Greater than

.GE. or >= Greater than or
equal to

The result of the relational expression is .TRUE. if the relation specified by the operator is satisfied; the result
is .FALSE. if the relation specified by the operator is not satisfied.

Relational operators are of equal precedence. Numeric operators and the character operator // have a higher
precedence than relational operators.

In a numeric relational expression, the operands are numeric expressions. Consider the following example:

 APPLE+PEACH > PEAR+ORANGE
This expression states that the sum of APPLE and PEACH is greater than the sum of PEAR and ORANGE. If
this relationship is valid, the value of the expression is .TRUE.; if not, the value is .FALSE.

Operands of type complex can only be compared using the equal operator (== or .EQ.) or the not equal
operator (/= or .NE.). Complex entities are equal if their corresponding real and imaginary parts are both
equal.

Intel® Fortran Compiler Classic and Intel® Fortran Compiler Developer Guide and Reference 1

799

In a character relational expression, the operands are character expressions. In character relational
expressions, less than (< or .LT.) means the character value precedes in the ASCII collating sequence, and
greater than (> or .GT.) means the character value follows in the ASCII collating sequence. For example:

 'AB'//'ZZZ' .LT. 'CCCCC'
This expression states that 'ABZZZ' is less than 'CCCCC'. In this case, the relation specified by the operator
is satisfied, so the result is .TRUE..

Character operands are compared one character at a time, in order, starting with the first character of each
operand. If the two character operands are not the same length, the shorter one is padded on the right with
blanks until the lengths are equal; for example:

 'ABC' .EQ. 'ABC '
 'AB' .LT. 'C'

The first relational expression has the value .TRUE. even though the lengths of the expressions are not equal,
and the second has the value .TRUE. even though 'AB' is longer than 'C'.

A relational expression can compare two numeric expressions of different data types. In this case, the value
of the expression with the lower-ranking data type is converted to the higher-ranking data type before the
comparison is made.

See Also
Data Type of Numeric Expressions

Logical Expressions

A logical expression consists of one or more logical operators and logical, numeric, or relational operands.
The following are logical operators:

Operator Example Meaning

.AND. A .AND. B Logical conjunction: the
expression is true if both A and B
are true.

.OR. A .OR. B Logical disjunction (inclusive OR):
the expression is true if either A,
B, or both, are true.

.NEQV. A .NEQV. B Logical inequivalence (exclusive
OR): the expression is true if
either A or B is true, but false if
both are true.

.XOR. A .XOR. B Same as .NEQV.

.EQV. A .EQV. B Logical equivalence: the
expression is true if both A and B
are true, or both are false.

.NOT.1 .NOT. A Logical negation: the expression
is true if A is false and false if A is
true.

1 .NOT. is a unary operator.

Periods cannot appear consecutively except when the second operator is .NOT. For example, the following
logical expression is valid:

 A+B/(A-1) .AND. .NOT. D+B/(D-1)

Data Types Resulting from Logical Operations
Logical operations on logical operands produce single logical values (.TRUE. or .FALSE.) of logical type.

 1 Intel® Fortran Compiler Classic and Intel® Fortran Compiler Developer Guide and Reference

800

Logical operations on integers produce single values of integer type. The operation is carried out bit-by-bit on
corresponding bits of the internal (binary) representation of the integer operands.

Logical operations on a combination of integer and logical values also produce single values of integer type.
The operation first converts logical values to integers, then operates as it does with integers.

Logical operations cannot be performed on other data types.

Evaluation of Logical Expressions
Logical expressions are evaluated according to the precedence of their operators. Consider the following
expression:

 A*B+C*ABC == X*Y+DM/ZZ .AND. .NOT. K*B > TT
This expression is evaluated in the following sequence:

 (((A*B)+(C*ABC)) == ((X*Y)+(DM/ZZ))) .AND. (.NOT. ((K*B) > TT))
As with numeric expressions, you can use parentheses to alter the sequence of evaluation.

When operators have equal precedence, the compiler can evaluate them in any order, as long as the result is
the same as the result gained by the algebraic left-to-right order of evaluation (except for exponentiation,
which is evaluated from right to left).

You should not write logical expressions whose results might depend on the evaluation order of
subexpressions. The compiler is free to evaluate subexpressions in any order. In the following example,
either (A(I)+1.0) or B(I)*2.0 could be evaluated first:

 (A(I)+1.0) .GT. B(I)*2.0
Some subexpressions might not be evaluated if the compiler can determine the result by testing other
subexpressions in the logical expression. Consider the following expression:

 A .AND. (F(X,Y) .GT. 2.0) .AND. B
If the compiler evaluates A first, and A is false, the compiler might determine that the expression is false and
might not call the subprogram F(X,Y).

See Also
Summary of Operator Precedence

Defined Operations

When operators are defined for functions, the functions can then be referenced as defined operations.

The operators are defined by using a generic interface block specifying OPERATOR, followed by the defined
operator (in parentheses).

A defined operation is not an intrinsic operation. However, you can use a defined operation to extend the
meaning of an intrinsic operator.

For defined unary operations, the function must contain one argument. For defined binary operations, the
function must contain two arguments.

Interpretation of the operation is provided by the function that defines the operation.

A Standard Fortran defined operator can contain up to 31 letters, and is enclosed in periods (.), or it may be
an intrinsic operator.

An intrinsic operator can be followed by a defined unary operator.

The result of a defined operation can have any type. The type of the result (and its value) must be specified
by the defining function.

Intel® Fortran Compiler Classic and Intel® Fortran Compiler Developer Guide and Reference 1

801

Examples
The following examples show expressions containing defined operators:

 .COMPLEMENT. A
 X .PLUS. Y .PLUS. Z
 M * .MINUS. N

See Also
Defining Generic Operators
Summary of Operator Precedence

Summary of Operator Precedence

The following table shows the precedence of all intrinsic and defined operators:

Precedence of Expression Operators

Category Operator Precedence

Defined Unary Operators Highest

Numeric ** .

Numeric * or / .

Numeric Unary + or - .

Numeric Binary + or - .

Character // .

Relational .EQ., .NE., .LT., .LE., .GT., .GE., =
=, /=, <, <=, >, >=

.

Logical .NOT. .

Logical .AND. .

Logical .OR. .

Logical .XOR., .EQV., .NEQV. .

Defined Binary Operators Lowest

Constant and Specification Expressions

A constant expression is an expression that is evaluated when a program is compiled. It can be used as a
kind type parameter, a named constant, or to specify an initial value for an entity.

A specification expression is a scalar, integer expression that is restricted specifications such as length type
parameters and array bounds.

Constant and specification expressions can appear in specification statements, with some restrictions.

Constant Expressions

A constant expression is an expression that you can use as a kind type parameter, a named constant, or to
specify an initial value for an entity. It is evaluated when a program is compiled.

In a constant expression, each operation is intrinsic and each primary is one of the following:

 1 Intel® Fortran Compiler Classic and Intel® Fortran Compiler Developer Guide and Reference

802

• A constant or subobject of a constant
• A specification inquiry where each designator or function argument is one of the following:

• A constant expression
• A variable whose properties inquired about are not assumed, deferred, or defined by an expression

that is not a constant expression
• A reference to the transformational function IEEE_SELECTED_REAL_KIND from the intrinsic module

IEEE_ARITHMETIC, where each argument is a constant expression
• A kind type parameter of the derived type being defined
• A DO variable within an array constructor where each scalar integer expression of the corresponding DO

loop is an constant expression
• Another constant expression enclosed in parentheses, where each subscript, section subscript, substring

starting and ending point, and type parameter value is a constant expression

If a constant expression invokes an inquiry function for a type parameter or an array bound of an object, the
type parameter or array bound must be specified in a prior specification statement (or to the left of the
inquiry function in the same statement). The previous specification cannot be in the same entity declaration.

If a reference to a generic entity is included in a constant expression that is in the specification part of a
module or submodule, that generic entity shall have no specific procedures defined subsequent to the
constant expression in the module or submodule.

Examples

Valid constant Expressions

-1 + 3

SIZE(B) ! B is a named constant

7_2

INT(J, 4) ! J is a named constant

SELECTED_INT_KIND (2)

Invalid constant Expressions

SUM(A) Not an allowed function.

A/4.1 - K**1.2 Exponential does not have integer power (A and K
are named constants).

HUGE(4.0) Argument is not an integer.

See Also
Array constructors
Specification Expressions
Structure constructors
Intrinsic procedures

Specification Expressions

A specification expression is a restricted scalar integer expression that you can use in specifications such as
length type parameters and array bounds. Unless a specification expression is in an interface body, the
specification part of a subprogram or BLOCK construct, a derived type definition, or the declaration type spec
of a FUNCTION statement, it must be a constant expression.

In a restricted expression, each operation is intrinsic or defined by a specification function and each primary
is one of the following:

• A constant or subobject of a constant
• An object designator with a base object that is one of the following:

Intel® Fortran Compiler Classic and Intel® Fortran Compiler Developer Guide and Reference 1

803

• A dummy argument that does not have the OPTIONAL or INTENT (OUT) attribute
• In a common block
• Made accessible by use or host association
• A local variable of the procedure containing the BLOCK construct in which the restricted expression

appears
• A local variable of an outer BLOCK construct containing the BLOCK construct in which the restricted

expression appears
• An array constructor where each element and each scalar integer expression of each DO loop is a

restricted expression
• A structure constructor whose components are restricted expression
• A specification inquiry where each designator or function argument is a restricted expression or a variable

whose properties inquired about are not one of the following:

• Dependent on the upper bound of the last dimension of an assumed-size array
• Deferred
• Defined by an expression that is not a restricted expression

• A specification inquiry that is a constant expression
• A reference to the PRESENT intrinsic function
• A reference to any other intrinsic function where each argument is a restricted expression
• A reference to an intrinsic transformational function from the intrinsic module ISO_C_BINDING where

each argument is a restricted expression
• A reference to a specification function where each argument is a restricted expression
• A type parameter of the derived type being defined
• A DO variable within an array constructor, where each scalar integer expression of the corresponding

implied-DO is a restricted expression
• A restricted expression enclosed in parentheses, where each subscript, section subscript, substring

starting and ending point, and type parameter value is a restricted expression, and where any final
subroutine that is invoked is pure

A specification inquiry is a reference to one of the following:

• An intrinsic inquiry function other than PRESENT
• A type parameter inquiry
• An intrinsic inquiry function from the modules IEEE_ARITHMETIC or IEEE_EXCEPTIONS
• The function C_SIZEOF from the intrinsic module ISO_C_BINDING
• The COMPILER_VERSION or COMPILER_OPTIONS inquiry function from the intrinsic module

ISO_FORTRAN_ENV

Specification functions can be used in specification expressions to determine the attributes of data objects.

A function is a specification function if it is a pure function, does not have a dummy procedure argument, and
is not one of the following:

• An standard intrinsic function
• An internal function
• A statement function
• A function with a dummy procedure argument

Evaluation of a specification expression must not directly or indirectly cause invocation of a procedure
defined by the subprogram in which it appears.

NOTE
The requirement that specification functions be pure ensures that they cannot have side effects that
could affect other objects being declared in the same specification.

The restriction that specification functions cannot be internal ensures that they cannot use host
association to inquire about other objects being declared in the same specification. The restriction
against recursion prevents the creation of a new instance of a procedure during construction of that
procedure.

A variable in a specification expression must have its type and type parameters (if any) specified in one of
the following ways:

 1 Intel® Fortran Compiler Classic and Intel® Fortran Compiler Developer Guide and Reference

804

• By a previous declaration in the same scoping unit
• By the implicit typing rules currently in effect for the scoping unit
• By host or use association

If a variable in a specification expression is typed by the implicit typing rules, its appearance in any
subsequent type declaration statement must confirm the implied type and type parameters.

If a specification expression includes a specification inquiry that depends on a type parameter or an array
bound or cobound of an entity specified in the same specification statement, the type parameter or array
bound or cobound must be specified in a previous specification statement (or to the left of the inquiry
function in the same statement). The previous specification cannot be in the same entity declaration unless
the specification inquiry appears in an initialization. If a specification expression includes a reference to the
value of an element of an array specified in the same specification statement, the array must be completely
specified in previous declarations.

In the specification part of a module or submodule, if a specification expression includes a reference to a
generic entity, that generic entity must have no specific procedures defined in the module or submodule
subsequent to the specification expression.

In a specification expression, the number of arguments for a function reference is limited to 255.

Examples
The following shows valid specification expressions:

 POPCNT(I) + J ! I and J are scalar integer variables
 UBOUND(ARRAY_B,20) ! ARRAY_B is an assumed-shape dummy array

See Also
Array constructors
Structure constructors
Constant Expressions
Intrinsic procedures
Implicit typing rules
Use and host association
PURE procedures

Assignments
An assignment causes variables to be defined or redefined.

Assignment is specified by the following:

• An intrinsic assignment statement

This lets you assign a value to a nonpointer variable.
• A defined assignment statement

This lets you specify an assignment operation.
• Pointer assignment

This lets you associate a pointer with a target.
• Masked array assignment

This kind of assignment is denoted by a WHERE construct or statement. It lets you perform an array
operation on selected elements in an array.

• Element array assignment

This kind of assignment is denoted by a FORALL construct or statement. It is a generalization of masked
array assignment. It allows more general array shapes to be assigned, especially if it is used in construct
form.

Note that the ASSIGN statement assigns a label to an integer variable. It is discussed elsewhere.

Intel® Fortran Compiler Classic and Intel® Fortran Compiler Developer Guide and Reference 1

805

Intrinsic Assignment Statements

Intrinsic assignment is used to assign a value to a nonpointer variable. In the case of pointers, intrinsic
assignment is used to assign a value to the target associated with the pointer variable. The value assigned to
the variable (or target) is determined by evaluation of the expression to the right of the equal sign.

An intrinsic assignment statement takes the following form:

variable = expression

variable Is the name of a scalar or array of intrinsic or derived type (with no
defined assignment). The array cannot be an assumed-size array, and
neither the scalar nor the array can be declared with the PARAMETER
or INTENT(IN) attribute.

expression Is of intrinsic type or the same derived type as variable. Its shape
must conform with variable. If necessary, it is converted to the same
type and kind as variable.

Description
Before a value is assigned to the variable, the expression part of the assignment statement and any
expressions within the variable are evaluated. No definition of expressions in the variable can affect or be
affected by the evaluation of the expression part of the assignment statement.

NOTE
When the runtime system assigns a value to a scalar integer or character variable and the variable is
shorter than the value being assigned, the assigned value may be truncated and significant bits (or
characters) lost. This truncation can occur without warning, and can cause the runtime system to pass
incorrect information back to the program.

The following rules apply to intrinsic assignment statements:

• The variable and expression must be conformable unless the variable is an allocatable array that has the
same rank as the expression, and is neither a coarray nor a coindexed object.

• If the expression is an array, then the variable must also be an array.
• If the variable is polymorphic, it must be allocatable and it must not be a coarray. The polymorphic

variable must be type compatible with the expression and of the same rank. If it is allocated but the
dynamic type differs from that of the expression, it is deallocated. If it is not allocated or becomes
deallocated, it is allocated with the dynamic type of the expression.

• If the variable is a pointer, it must be associated with a definable target. The shape of the target and
expression must conform and their type and kind parameters must match.

• If the variable is of type character, the expression must have the same kind type parameter.
• If the variable is of derived type:

• Each kind type parameter of the variable must have the same value as the corresponding kind type
parameter of the expression.

• Each length type parameter of the variable must have the same value as the corresponding type
parameter of the expression unless the variable is an allocatable array and its corresponding type
parameter is deferred.

• If the variable is a coindexed object, each deferred-length type parameter must have the same value as
the corresponding type parameter of the expression. Also, the variable must not be polymorphic, and it
must not have an allocatable ultimate component.

• If the type of the assignment is C_PTR, C_FUNPTR, or TEAM_TYPE, the variable becomes undefined if
variable and expression are not on the same image.

See Also
Arrays

 1 Intel® Fortran Compiler Classic and Intel® Fortran Compiler Developer Guide and Reference

806

Pointers
Derived data types
Defining Generic Assignment for details on subroutine subprograms that define assignment
Examples of Intrinsic Assignment to Polymorphic Variables

Numeric Assignment Statements

For numeric assignment statements, the variable and expression must be numeric type. The expression may
also be of logical type.

The expression must yield a value that conforms to the range requirements of the variable. For example, a
real expression that produces a value greater than 32767 is invalid if the entity on the left of the equal sign
is an INTEGER(2) variable.

Significance can be lost if an INTEGER(4) value, which can exactly represent values of approximately the
range -2*10**9 to +2*10**9, is converted to REAL(4) (including the real part of a complex constant), which
is accurate to only about seven digits.

If the variable has the same data type as that of the expression on the right, the statement assigns the value
directly. If the data types are different, the value of the expression is converted to the data type of the
variable before it is assigned.

The following table summarizes the data conversion rules for numeric assignment statements.

Conversion Rules for Numeric Assignment Statements

Scalar Memory Reference (V) Expression (E)

Integer or Real Complex

Integer V=INT(E) V=INT(REAL(E))

Imaginary part of E is not used.

REAL

(KIND=4)

V=REAL(E) V=REAL(REAL(E))

Imaginary part of E is not used.

REAL

(KIND=8)

V=DBLE(E) V=DBLE(REAL(E))

Imaginary part of E is not used.

REAL

(KIND=16)

V=QEXT(E) V=QEXT(REAL(E))

Imaginary part of E is not used.

COMPLEX

(KIND=4)

V=CMPLX(REAL(E), 0.0) V=CMPLX(REAL(REAL(E)),
REAL(AIMAG(E)))

COMPLEX

(KIND=8)

V=CMPLX(DBLE(E), 0.0) V=CMPLX(DBLE(REAL(E)),
DBLE(AIMAG(E)))

COMPLEX

(KIND=16)

V=CMPLX(QEXT(E), 0.0) V=CMPLX(QEXT(REAL(E)),
QEXT(AIMAG(E)))

If the expression (E) is of type logical, it is first converted to type integer as follows:

• If E evaluates to .TRUE. the result is -1 or 1 depending on the setting of the compiler option
fpscomp logicals

• Otherwise the result is 0

The result of this conversion is then interpreted according to the above table.

Intel® Fortran Compiler Classic and Intel® Fortran Compiler Developer Guide and Reference 1

807

Examples
Valid Numeric Assignment Statements

BETA = -1./(2.*X)+A*A /(4.*(X*X))

PI = 3.14159

SUM = SUM + 1.

ARRAY_A = ARRAY_B + ARRAY_C + SCALAR_I ! Valid if all arrays conform in shape

Invalid Numeric Assignment Statements

3.14 = A - B Entity on the left must be a variable.

ICOUNT = A//B(3:7) Implicitly typed data types do not match.

SCALAR_I = ARRAY_A(:) Shapes do not match.

See Also
INT
REAL
DBLE
QEXT
CMPLX
AIMAG

Logical Assignment Statements

For logical assignment statements, the variable must be of logical type and the expression can be of logical
or numeric type.

If the expression is of numeric type, it is converted to integer if necessary, then the value is interpreted
as .TRUE. or .FALSE. according to the setting of the compiler option fpscomp logicals.

Examples
The following examples demonstrate valid logical assignment statements:

PAGEND = .FALSE.
PRNTOK = LINE .LE. 132 .AND. .NOT. PAGEND
ABIG = A.GT.B .AND. A.GT.C .AND. A.GT.D
LOGICAL_VAR = 123 ! Assigns .TRUE. to LOGICAL_VAR

Character Assignment Statements

For character assignment statements, the variable and expression must be of character type and have the
same kind parameter.

The variable and expression can have different lengths. If the length of the expression is greater than the
length of the variable, the character expression is truncated on the right. If the length of the expression is
less than the length of the variable, the character expression is filled on the right with blank characters.

If you assign a value to a character substring, you do not affect character positions in any part of the
character scalar variable not included in the substring. If a character position outside of the substring has a
value previously assigned, it remains unchanged. If the character position is undefined, it remains undefined.

 1 Intel® Fortran Compiler Classic and Intel® Fortran Compiler Developer Guide and Reference

808

Examples
Valid Character Assignment Statements. (All variables are of type character.)

FILE = 'PROG2'

REVOL(1) = 'MAR'//'CIA'

LOCA(3:8) = 'PLANT5'

TEXT(I,J+1)(2:N-1) = NAME//X

Invalid Character Assignment Statements

'ABC' = CHARS Left element must be a character variable, array
element, or substring reference.

CHARS = 25 Expression does not have a character data type.

STRING=5HBEGIN Expression does not have a character data type.
(Hollerith constants are numeric, not character.)

Derived-Type Assignment Statements

In derived-type assignment statements, the variable and expression must be of the same derived type.
There must be no accessible interface block with defined assignment for objects of this derived type.

The derived-type assignment is performed as if each component of the expression is assigned to the
corresponding component of the variable. Pointer assignment is performed for pointer components, and
intrinsic assignment is performed for nonpointer components.

Examples
The following example shows derived-type assignment:

TYPE DATE
 LOGICAL(1) DAY, MONTH
 INTEGER(2) YEAR
END TYPE DATE

TYPE(DATE) TODAY, THIS_WEEK(7)
TYPE APPOINTMENT
...
 TYPE(DATE) APP_DATE
END TYPE

TYPE(APPOINTMENT) MEETING

DO I = 1,7
 CALL GET_DATE(TODAY)
 THIS_WEEK(I) = TODAY
END DO
MEETING%APP_DATE = TODAY

See Also
Derived types
Pointer assignments

Array Assignment Statements

Array assignment is permitted when the array expression on the right has the same shape as the array
variable on the left, or the expression on the right is a scalar.

Intel® Fortran Compiler Classic and Intel® Fortran Compiler Developer Guide and Reference 1

809

If the expression is a scalar, and the variable is an array, the scalar value is assigned to every element of the
array.

If the expression is an array, the variable must also be an array. The array element values of the expression
are assigned (element by element) to corresponding elements of the array variable.

A many-one array section is a vector-valued subscript that has two or more elements with the same value.
In intrinsic assignment, the variable cannot be a many-one array section because the result of the
assignment is undefined.

Examples

In the following example, X and Y are arrays of the same shape:

 X = Y
The corresponding elements of Y are assigned to those of X element by element; the first element of Y is
assigned to the first element of X, and so forth. The processor can perform the element-by-element
assignment in any order.

The following example shows a scalar assigned to an array:

 B(C+1:N, C) = 0
This sets the elements B (C+1,C), B (C+2,C),...B (N,C) to zero.

The following example causes the values of the elements of array A to be reversed:

 REAL A(20)
 ...
 A(1:20) = A(20:1:-1)

See Also
Arrays
Array constructors
WHERE for details on masked array assignment
FORALL for details on element array assignment

Examples of Intrinsic Assignment to Polymorphic Variables

Intrinsic assignment to an allocatable polymorphic variable is allowed. The variable must be type compatible
with the expression and of the same rank. If it is allocated but the dynamic type differs from that of the
expression, it is deallocated. If it is not allocated or becomes deallocated, it is allocated with the dynamic
type of the expression.

Syntax:

assignment-stmt is variable = expr

variable is an allocatable polymorphic and expr is not necessarily an allocatable, but variable and expr must
be type compatible.

A polymorphic entity that is not an unlimited polymorphic entity is type compatible with entities of the same
declared type or any of its extensions. Even though an unlimited polymorphic entity is not considered to have
a declared type, it is type compatible with all entities.

variable and expr must be of the same rank.

If expr is a scalar and variable is allocated, then expr is treated as an array with the same bounds as
variable, so the bounds of variable would remain unchanged. It is an error if variable is unallocated when
expr is a scalar.

In the examples below, we have the following types:

Type type1
End type

 1 Intel® Fortran Compiler Classic and Intel® Fortran Compiler Developer Guide and Reference

810

Type type2
End type

Type, extends(type1) :: type3
End type

Example of same type and same size:

If variable is the same type and size as expr then just do the assignment.

Class(type1), allocatable :: var
Class(type1), allocatable :: expr
Allocate(expr, source=type1())
Allocate(var, source=type1())
var = expr ! No deallocation of var, simple assignment

Example of same type and different size:

If variable is the same type as expr but their sizes are not the same then deallocate var, reallocate it, and
then do the assignment.

Class(type1), allocatable :: var(:)
Class(type1), allocatable :: expr(:)
Allocate(var(5), source=type1())
Allocate(expr(6), source=type1())
var = expr ! var deallocated and then
 ! allocated to the size of expr - then
 ! the usual assignment is performed

Example of different types or shape and same size:

If variable and expr are of different types or shapes but of the same size, then do the assignment and update
the type/bounds of var to be same as that of expr, only if type1 and type3 are type compatible.

Class(type1), allocatable :: var(:,:)
Class(type1), allocatable :: expr(:,:)
Allocate(var(2,3), source=type1())
Allocate(expr(3,2), source=type3())
var = expr ! No deallocation
 ! simple assignment with var
 ! bounds updated

Example of different types or shape and different size:

If variable and expr are of different types or shapes and of different sizes, then deallocate var and allocate it
with the same type and shape as expr, only if type1 and type3 are type compatible.

Class(type1), allocatable :: var(:,:)
Class(type3), allocatable :: expr(:,:)
Allocate(var(2,4), source=type1())
Allocate(expr(3,3), source=type3())
var = expr ! var deallocated and then
 ! allocated to the size of expr and
 ! then the usual assignment var
 ! has dynamic type set to type3

Example of incompatible types on Left-Hand Side (LHS) and Right-Hand Side (RHS):

If LHS and RHS are type incompatible then you get an error.

Class(type1), allocatable :: var
Class(type2), allocatable :: expr
Allocate(var,source=type1())
Allocate(expr,source=type2())
var = expr ! This is an error

Intel® Fortran Compiler Classic and Intel® Fortran Compiler Developer Guide and Reference 1

811

Example of unallocated allocatable polymorphic on the LHS:

If var is unallocated then expr must be a scalar or it is a shape mismatch error.

Class(*), allocatable :: var(:)
var = 5 ! This is an error

Otherwise, allocate var with same dynamic type, shape, and size as expr.

Class(*), allocatable :: var
var = 5 ! This is valid

Example of unlimited polymorphic on the LHS:

Unlimited polymorphic allocatable on the LHS is type compatible with any type. If var is of a different size
than expr, var is deallocated and then allocated with the type and shape of expr.

Class(*), allocatable :: var
Class(type2), allocatable :: expr
Allocate(var, source=type1())
Allocate(expr, source=type2())
var = expr ! var is an unlimited polymorphic
 ! so it is type compatible with
 ! any type expr

Defined Assignment Statements

Defined assignment specifies an assignment operation. It is defined by a subroutine subprogram containing a
generic interface block that specifies ASSIGNMENT(=). The subroutine is specified in a SUBROUTINE or
ENTRY statement that has two nonoptional dummy arguments.

Defined elemental assignment is indicated by specifying ELEMENTAL in the SUBROUTINE statement.

The dummy arguments represent the variable and expression, in that order. The rank (and shape, if either or
both are arrays), type, and kind parameters of the variable and expression in the assignment statement
must match those of the corresponding dummy arguments. If the second dummy argument has the POINTER
or ALLOCATABLE attribute, the subroutine cannot be invoked directly by a defined assignment operator. This
is because the right-hand side of the assignment is an expression, and as such, cannot have the TARGET,
POINTER, or ALLOCATABLE attribute.

The dummy arguments must not both be numeric, or of type logical or character with the same kind
parameter.

If the variable in an elemental assignment is an array, the defined assignment is performed element-by-
element, in any order, on corresponding elements of the variable and expression. If the expression is scalar,
it is treated as if it were an array of the same shape as the variable with every element of the array equal to
the scalar value of the expression.

See Also
Subroutines
Derived data types
Defining Generic Assignment for details on subroutine subprograms that define assignment
Numeric Expressions for details on intrinsic operations
Character Expressions for details on intrinsic operations

Pointer Assignments

In ordinary assignment involving pointers, the pointer is an alias for its target. In pointer assignment, the
pointer is associated with a target. If the target is undefined or disassociated, the pointer acquires the same
status as the target. Pointer assignment has the following form:

pointer-object [(s-spec)] => target

 1 Intel® Fortran Compiler Classic and Intel® Fortran Compiler Developer Guide and Reference

812

pointer-object Is a variable name or structure component declared with the POINTER
attribute.

s-spec Is a shape specification consisting of bounds information in the form
"[lower-bound]:" or "[lower-bound] :upper-bound".

target Is a variable or expression. Its type and kind parameters, and rank
must be the same as pointer-object unless bounds remapping is
specified. It cannot be an array section with a vector subscript.

Description
If the target is a variable, it must have the POINTER or TARGET attribute, or be a subobject whose parent
object has the TARGET attribute.

If the target is an expression, the result must be a pointer.

If the target is not a pointer (it has the TARGET attribute), the pointer object is associated with the target.

If the target is a pointer (it has the POINTER attribute), its status determines the status of the pointer object,
as follows:

• If the pointer is associated, the pointer object is associated with the same object as the target
• If the pointer is disassociated, the pointer object becomes disassociated
• If the pointer is undefined, the pointer object becomes undefined

A pointer must not be referenced or defined unless it is associated with a target that can be referenced or
defined.

When pointer assignment occurs, any previous association between the pointer object and a target is
terminated.

Pointers can also be assigned for a pointer structure component by execution of a derived-type intrinsic
assignment statement or a defined assignment statement.

Pointers can also become associated by using the ALLOCATE statement to allocate the pointer.

Pointers can become disassociated by deallocation, nullification of the pointer (using the DEALLOCATE or
NULLIFY statements), or by reference to the NULL intrinsic function.

Pointer assignment for arrays allows lower bounds to be specified. The specified lower bounds can be any
scalar integer expressions.

Remapping of the elements of a rank-one array or a simply contiguous array target is permitted. The
mapping is in array-element order and the target array must be large enough. The specified bounds may be
any scalar integer expressions.

Examples
The following are examples of pointer assignments:

 HOUR => MINUTES(1:60) ! target is an array
 M_YEAR => MY_CAR%YEAR ! target is a structure component
 NEW_ROW%RIGHT => CURRENT_ROW ! pointer object is a structure component
 PTR => M ! target is a variable
 POINTER_C => NULL () ! reference to NULL intrinsic

The following example shows a target as a pointer:

 INTEGER, POINTER :: P, N
 INTEGER, TARGET :: M
 INTEGER S
 M = 14

Intel® Fortran Compiler Classic and Intel® Fortran Compiler Developer Guide and Reference 1

813

 N => M ! N is associated with M
 P => N ! P is associated with M through N
 S = P + 5

The value assigned to S is 19 (14 + 5).

You can use the intrinsic function ASSOCIATED to find out if a pointer is associated with a target or if two
pointers are associated with the same target. For example:

 REAL C (:), D(:), E(5)
 POINTER C, D
 TARGET E
 LOGICAL STATUS
 ! Pointer assignment.
 C => E
 ! Pointer assignment.
 D => E
 ! Returns TRUE; C is associated.
 STATUS = ASSOCIATED (C)
 ! Returns TRUE; C is associated with E.
 STATUS = ASSOCIATED (C, E)
 ! Returns TRUE; C and D are associated with the
 ! same target.
 STATUS = ASSOCIATED (C, D)

The following example shows how to specify lower bounds on a pointer:

REAL, TARGET :: A(4,4)
POINTER P
P (0:,0:) => A ! LBOUND (P) == [0,0]
 ! UBOUND (P) == [3,3]

The following example shows pointer remapping of the elements of a rank-one array:

REAL, TARGET :: V(100)
POINTER P
INTEGER N
P(1:N,1:2*N) => V(1:2*N*N)

See Also
Arrays
ALLOCATE statement
CONTIGUOUS
DEALLOCATE statement
NULLIFY statement
NULL intrinsic function
POINTER attribute
TARGET attribute
Defined assignments
Intrinsic Assignments for details on derived-type intrinsic assignments

Specification Statements
A specification statement is a nonexecutable statement that declares the attributes of data objects. In
Standard Fortran, many of the attributes that can be defined in specification statements can also be
optionally specified in type declaration statements.

The following are specification statements:

 1 Intel® Fortran Compiler Classic and Intel® Fortran Compiler Developer Guide and Reference

814

• Type Declarations

Explicitly specify the properties (for example: data type, rank, and extent) for data objects or functions.
• ALLOCATABLE attribute and statement

Specifies that an array is an allocatable array with a deferred shape. The shape of an allocatable array is
determined when an ALLOCATE statement is executed, dynamically allocating space for the array.

• ASYNCHRONOUS attribute and statement

Specifies that a variable can be used for asynchronous input and output.
• AUTOMATIC and STATIC attributes and statements

Control the storage allocation of variables in subprograms.
• BIND attribute and statement

Specifies that an object is interoperable with C and has external linkage.
• CODIMENSION attribute and statement

Specifies that an entity is a coarray.
• COMMON statement

Defines one or more contiguous areas, or blocks, of physical storage (called common blocks) that can be
accessed by any of the scoping units in an executable program. COMMON statements also define the
order in which variables and arrays are stored in each common block, which can prevent misaligned data
items.

• CONTIGUOUS attribute and statement

Specifies that the target of a pointer or an assumed-sized array is contiguous.
• DATA statement

Assigns initial values to variables before program execution.
• DIMENSION attribute and statement

Specifies that an object is an array, and defines the shape of the array.
• EQUIVALENCE statement

Specifies that a storage area is shared by two or more objects in a program unit. This causes total or
partial storage association of the objects that share the storage area.

• EXTERNAL attribute and statement

Allows an external or dummy procedure to be used as an actual argument.
• IMPLICIT statement

Overrides the default implicit typing rules for names.
• INTENT attribute and statement

Specifies the intended use of one or more dummy arguments.
• INTRINSIC attribute and statement

Allows the specific name of an intrinsic procedure to be used as an actual argument. Certain specific
function names cannot be used. For more information, see Intrinsic Functions Not Allowed as Actual
Arguments.

• NAMELIST statement

Associates a name with a list of variables. This group name can be referenced in some input/output
operations.

• OPTIONAL attribute and statement

Allows dummy arguments to be omitted in a procedure reference.
• PARAMETER attribute and statement

Defines a named constant.
• POINTER attribute and statement

Specifies that an object or a procedure is a pointer (a dynamic variable).
• PRIVATE and PUBLIC and attributes and statements

Specifies the accessibility of entities in a module. (These attributes are also called accessibility attributes.)
• PROTECTED attribute and statement

Specifies limitations on the use of module entities.

Intel® Fortran Compiler Classic and Intel® Fortran Compiler Developer Guide and Reference 1

815

• SAVE attribute and statement

Causes the values and definition of objects to be retained after execution of a RETURN or END statement
in a subprogram.

• TARGET attribute and statement

Specifies that an object can become the target of a pointer.
• VALUE attribute and statement

Specifies a type of argument association for a dummy argument.
• VOLATILE attribute and statement

Specifies that the value of an object is entirely unpredictable, based on information local to the current
program unit.

See Also
BLOCK DATA statement
PROGRAM statement
Derived data types
DATA
Initialization expressions
Intrinsic Data Types
Implicit Typing Rules
Specification of Data Type

Type Declarations
A type declaration is a nonexecutable statement specifying the data type of one or more variables. The
declaration can be specified in an INTEGER, REAL, DOUBLE PRECISION, COMPLEX, DOUBLE COMPLEX,
CHARACTER, LOGICAL, or TYPE statement. A type declaration statement may also specify attributes for the
variables.

Declarations for Noncharacter Types

The following table shows the data types that can appear in noncharacter type declarations.

Noncharacter Data Types

BYTE1

LOGICAL2

LOGICAL([KIND=]1) (or LOGICAL*1)

LOGICAL([KIND=]2) (or LOGICAL*2)

LOGICAL([KIND=]4) (or LOGICAL*4)

LOGICAL([KIND=]8) (or LOGICAL*8)

INTEGER3

INTEGER([KIND=]1) (or INTEGER*1)

INTEGER([KIND=]2) (or INTEGER*2)

INTEGER([KIND=]4) (or INTEGER*4)

INTEGER([KIND=]8) (or INTEGER*8)

REAL4

REAL([KIND=]4) (or REAL*4)

 1 Intel® Fortran Compiler Classic and Intel® Fortran Compiler Developer Guide and Reference

816

Noncharacter Data Types

DOUBLE PRECISION (REAL([KIND=]8) or REAL*8)

REAL([KIND=]16) (or REAL*16)

COMPLEX5

COMPLEX([KIND=]4) (or COMPLEX*8)

DOUBLE COMPLEX (COMPLEX([KIND=]8) or COMPLEX*16)

COMPLEX([KIND=]16) (or COMPLEX*32)

1 Same as INTEGER(1).
2 This is treated as default logical.
3 This is treated as default integer.
4 This is treated as default real.
5 This is treated as default complex.

In noncharacter type declarations, you can optionally specify the name of the data object or function as v*n,
where n is the length (in bytes) of v. The length specified overrides the length implied by the data type.

The value for n must be a valid length for the type of v. The type specifiers BYTE, DOUBLE PRECISION, and
DOUBLE COMPLEX have one valid length, so the n specifier is invalid for them.

For an array specification, the n must be placed immediately following the array name; for example, in an
INTEGER declaration, IVEC*2(10) is an INTEGER(2) array of 10 elements.

Note that certain compiler options can affect the defaults for numeric and logical data types.

Examples
In a noncharacter type declaration, a subsequent kind parameter overrides any initial kind parameter. For
example, consider the following statements:

INTEGER(KIND=2) I, J, K, M12*4, Q, IVEC*4(10)
REAL(KIND=8) WX1, WXZ, WX3*4, WX5, WX6*4
REAL(KIND=8) PI/3.14159E0/, E/2.72E0/, QARRAY(10)/5*0.0,5*1.0/

In the first statement, M12*4 and IVEC*4 override the KIND=2 specification. In the second statement,
WX3*4 and WX6*4 override the KIND=8 specification. In the third statement, QARRAY is initialized with
implicit conversion of the REAL(4) constants to a REAL(8) data type.

See Also
Type Declarations for details on the general form and rules for type declarations

Declarations for Character Types

A CHARACTER type specifier can be immediately followed by an optional KIND type parameter and the length
of the character object or function. It takes one of the following forms:

Keyword Forms

CHARACTER ([LEN=] len)

CHARACTER [([LEN=] len [, [KIND=] n])]

CHARACTER [(KIND= n [, LEN= len])]

Obsolete Form

CHARACTER* len[,]

len Is a length type parameter. It can have one of the following values:

Intel® Fortran Compiler Classic and Intel® Fortran Compiler Developer Guide and Reference 1

817

• A scalar integer expression
• *
• :

The following rules also apply:

• In keyword forms

The len is a specification expression, an asterisk (*), or a colon (:).
If no length is specified, the default length is 1.

If the length evaluates to a negative value, the length of the
character entity is zero.

• In the obsolete form

The len is a specification expression or an asterisk enclosed in
parentheses, or a scalar integer literal constant (with no kind
parameter). The comma is permitted only if no double colon (::)
appears in the type declaration statement.

This form can also (optionally) be specified following the name of
the data object or function (v*len). In this case, the length
specified overrides any length following the CHARACTER type
specifier.

The largest valid value for len in both forms is 2**31-1 on IA-32
architecture; 2**63-1 on Intel® 64 architecture. Negative values are
treated as zero.

n Is a scalar integer constant expression specifying a valid kind
parameter. Currently the only kind available is 1.

Description
An automatic object can appear in a character declaration. The object cannot be a dummy argument, and its
length must be declared with a specification expression that is not a constant expression.

The length specified for a character-valued statement function or statement function dummy argument of
type character must be an integer constant expression.

When an asterisk length specification *(*) is used for a function name or dummy argument, it assumes the
length of the corresponding function reference or actual argument. Similarly, when an asterisk length
specification is used for a named constant, the name assumes the length of the actual constant it represents.
For example, STRING assumes a 9-byte length in the following statements:

 CHARACTER*(*) STRING
 PARAMETER (STRING = 'VALUE IS:')

A function name must not be declared with a * length unless it is of type CHARACTER and is the name of the
result of an external function or the name of a dummy function.

A function name declared with a * length must not be an array, a pointer, recursive, elemental, or pure.

If the CHARACTER type declaration statement specifies a colon (:) length, the length type parameter is a
deferred type parameter. An entity or component with a deferred type parameter must specify the
ALLOCATABLE or POINTER attribute. A deferred type parameter is a length type parameter whose value can
change during execution of the program.

The obsolete form is an obsolescent feature in the Fortran standard.

Examples
In the following example, the character string last_name is given a length of 20:

 CHARACTER (LEN=20) last_name

 1 Intel® Fortran Compiler Classic and Intel® Fortran Compiler Developer Guide and Reference

818

In the following example, stri is given a length of 12, while the other two variables retain a length of 8.

 CHARACTER *8 strg, strh, stri*12
In the following example, a dummy argument strh will assume the length of the associated actual argument,
while the other two variables retain a length of 8:

 CHARACTER *8 strg, strh(*), stri
The following examples show ways to specify strings of known length:

 CHARACTER*32 string1
 CHARACTER string2*32

The following examples show ways to specify strings of unknown length:

 CHARACTER string3*(*)
 CHARACTER*(*) string4

The following example declares an array NAMES containing 100 32-character elements, an array SOCSEC
containing 100 9-character elements, and a variable NAMETY that is 10 characters long and has an initial
value of 'ABCDEFGHIJ'.

 CHARACTER*32 NAMES(100),SOCSEC(100)*9,NAMETY*10 /'ABCDEFGHIJ'/
The following example includes a CHARACTER statement declaring two 8-character variables, LAST and
FIRST.

 INTEGER, PARAMETER :: LENGTH=4
 CHARACTER*(4+LENGTH) LAST, FIRST

The following example shows a CHARACTER statement declaring an array LETTER containing 26 one-
character elements. It also declares a dummy argument BUBBLE that has a passed length defined by the
calling program.

 CHARACTER LETTER(26), BUBBLE*(*)
In the following example, NAME2 is an automatic object:

 SUBROUTINE AUTO_NAME(NAME1)
 CHARACTER(LEN = *) NAME1
 CHARACTER(LEN = LEN(NAME1)) NAME2

The following example shows the handling of a deferred-length CHARACTER variables:

CHARACTER(:), ALLOCATABLE :: namea
namea = 'XYZ' ! Allocates namea as length 3 with value 'XYZ'
DEALLOCATE (namea)
ALLOCATE (CHARACTER(10)::namea) ! Allocates namea as length 10, no value
namea = 'ABCDEF' ! Reallocates namea to length 6 with value 'ABCDEF'

See Also
Obsolescent Language Features in the Fortran Standard
Data Types of Scalar Variables
Assumed-Length Character Arguments for details on asterisk length specifications
Type Declarations for details on the general form and rules for type declaration statements

Declarations for Derived Types

A derived-type declaration specifies the properties of objects and functions of derived (user-defined) type.

The derived type must be defined before you can specify objects of that type in a TYPE type declaration.

An object of derived type must not have the PUBLIC attribute if its type is PRIVATE.

Intel® Fortran Compiler Classic and Intel® Fortran Compiler Developer Guide and Reference 1

819

A structure constructor specifies values for derived-type objects.

Examples
The following are examples of derived-type declarations:

 TYPE(EMPLOYEE) CONTRACT
 ...
 TYPE(SETS), DIMENSION(:,:), ALLOCATABLE :: SUBSET_1

The following example shows a public type with private components:

 TYPE LIST_ITEMS
 PRIVATE
 ...
 TYPE(LIST_ITEMS), POINTER :: NEXT, PREVIOUS
 END TYPE LIST_ITEMS

See Also
TYPE
Use and host association
PUBLIC
PRIVATE
Structure constructors
Type Declarations for details on the general form and rules for type declarations

Declarations for Arrays

An array declaration (or array declarator) declares the shape of an array. It takes the following form:

(a-spec)

a-spec Is one of the following array specifications:

• Explicit-shape
• Assumed-shape
• Assumed-size
• Deferred-shape
• Assumed-rank
• Implied-shape

The array specification can be appended to the name of the array when the array is declared.

Examples
The following examples show array declarations:

SUBROUTINE SUB(N, C, D, Z)
 REAL, DIMENSION(N, 15) :: IARRY ! An explicit-shape array
 REAL C(:), D(0:) ! An assumed-shape array
 REAL, POINTER :: B(:,:) ! A deferred-shape array pointer
 REAL, ALLOCATABLE, DIMENSION(:) :: K ! A deferred-shape allocatable array
 REAL :: Z(N,*) ! An assumed-size array
 INTEGER, PARAMETER :: R(*) = [1,2,3] ! An implied-shape constant array

See Also
Type Declarations for details on the general form and rules for type declaration statements

Explicit-Shape Specifications

An explicit-shape array is declared with explicit values for the bounds in each dimension of the array. An
explicit-shape specification takes the following form:

 1 Intel® Fortran Compiler Classic and Intel® Fortran Compiler Developer Guide and Reference

820

([dl:] du[, [dl:] du] ...)

dl Is a specification expression indicating the lower bound of the
dimension. The expression can have a positive, negative, or zero
value. If necessary, the value is converted to integer type.

If the lower bound is not specified, it is assumed to be 1.

du Is a specification expression indicating the upper bound of the
dimension. The expression can have a positive, negative, or zero
value. If necessary, the value is converted to integer type.

The bounds can be specified as constant or nonconstant expressions, as follows:

• If the bounds are constant expressions, the subscript range of the array in a dimension is the set of
integer values between and including the lower and upper bounds. If the lower bound is greater than the
upper bound, the range is empty, the extent in that dimension is zero, and the array has a size of zero.

• If the bounds are nonconstant expressions, the array must be declared in a procedure. The bounds can
have different values each time the procedure is executed, since they are determined when the procedure
is entered.

The bounds are not affected by any redefinition or undefinition of the variables in the specification
expression that occurs while the procedure is executing.

The following explicit-shape arrays can specify nonconstant bounds:

• An automatic array (the array is a local variable)
• An adjustable array (the array is a dummy argument to a subprogram)

The following are examples of explicit-shape specifications:

INTEGER I(3:8, -2:5) ! Rank-two array; range of dimension one is
... ! 3 to 8, range of dimension two is -2 to 5
SUBROUTINE SUB(A, B, C)
 INTEGER :: B, C
 REAL, DIMENSION(B:C) :: A ! Rank-one array; range is B to C

Consider the following:

 INTEGER M(10, 10, 10)
 INTEGER K(-3:6, 4:13, 0:9)

M and K are both explicit-shape arrays with a rank of 3, a size of 1000, and the same shape (10,10,10).
Array M uses the default lower bound of 1 for each of its dimensions. So, when it is declared only the upper
bound needs to be specified. Each of the dimensions of array K has a lower bound other than the default, and
the lower bounds as well as the upper bounds are declared.

Automatic Arrays
An automatic array is an explicit-shape array that is a local variable. Automatic arrays are only allowed in
function and subroutine subprograms, and are declared in the specification part of the subprogram. At least
one bound of an automatic array must be a nonconstant specification expression. The bounds are determined
when the subprogram is called.

The following example shows automatic arrays:

SUBROUTINE SUB1 (A, B)
 INTEGER A, B, LOWER
 COMMON /BOUND/ LOWER
 ...
 INTEGER AUTO_ARRAY1(B)
 ...
 INTEGER AUTO_ARRAY2(LOWER:B)

Intel® Fortran Compiler Classic and Intel® Fortran Compiler Developer Guide and Reference 1

821

 ...
 INTEGER AUTO_ARRAY3(20, B*A/2)
END SUBROUTINE

Consider the following:

 SUBROUTINE EXAMPLE (N, R1, R2)
 DIMENSION A (N, 5), B(10*N)
 ...
 N = IFIX(R1) + IFIX(R2)

When the subroutine is called, the arrays A and B are dimensioned on entry into the subroutine with the
value of the passed variable N. Later changes to the value of N have no effect on the dimensions of array A or
B.

Adjustable Arrays
An adjustable array is an explicit-shape array that is a dummy argument to a subprogram. At least one
bound of an adjustable array must be a nonconstant specification expression. The bounds are determined
when the subprogram is called.

The array specification can contain integer variables that are either dummy arguments or variables in a
common block.

When the subprogram is entered, each dummy argument specified in the bounds must be associated with an
actual argument. If the specification includes a variable in a common block, the variable must have a defined
value. The array specification is evaluated using the values of the actual arguments, as well as any constants
or common block variables that appear in the specification.

The size of the adjustable array must be less than or equal to the size of the array that is its corresponding
actual argument.

To avoid possible errors in subscript evaluation, make sure that the bounds expressions used to declare
multidimensional adjustable arrays match the bounds as declared by the caller.

In the following example, the function calculates the sum of the elements of a rank-two array. Notice how the
dummy arguments M and N control the iteration:

 FUNCTION THE_SUM(A, M, N)
 DIMENSION A(M, N)
 SUMX = 0.0
 DO J = 1, N
 DO I = 1, M
 SUMX = SUMX + A(I, J)
 END DO
 END DO
 THE_SUM = SUMX
 END FUNCTION

The following are examples of calls on THE_SUM:

DIMENSION A1(10,35), A2(3,56)
SUM1 = THE_SUM(A1,10,35)
SUM2 = THE_SUM(A2,3,56)

The following example shows how the array bounds determined when the procedure is entered do not
change during execution:

DIMENSION ARRAY(9,5)
L = 9
M = 5
CALL SUB(ARRAY,L,M)

 1 Intel® Fortran Compiler Classic and Intel® Fortran Compiler Developer Guide and Reference

822

END

SUBROUTINE SUB(X,I,J)
 DIMENSION X(-I/2:I/2,J)
 X(I/2,J) = 999
 J = 1
 I = 2
END

The assignments to I and J do not affect the declaration of adjustable array X as X(-4:4,5) on entry to
subroutine SUB.

See Also
Specification expressions

Assumed-Shape Specifications

An assumed-shape array is a dummy argument array that assumes the shape of its associated actual
argument array. An assumed-shape specification takes the following form:

([dl]:[, [dl]:] ...)

dl Is a specification expression indicating the lower bound of the
dimension. The expression can have a positive, negative, or zero
value. If necessary, the value is converted to integer type.

If the lower bound is not specified, it is assumed to be 1.

The rank of the array is the number of colons (:) specified.

The value of the upper bound is the extent of the corresponding dimension of the associated actual argument
array + lower-bound - 1.

Examples
The following is an example of an assumed-shape specification:

INTERFACE
 SUBROUTINE SUB(M)
 INTEGER M(:, 1:, 5:)
 END SUBROUTINE
END INTERFACE
INTEGER L(20, 5:25, 10)

CALL SUB(L)
SUBROUTINE SUB(M)
 INTEGER M(:, 1:, 5:)
END SUBROUTINE

Array M has the same extents as array L, but array M has bounds (1:20, 1:21, 5:14).

Note that an explicit interface is required when calling a routine that expects an assumed-shape or pointer
array.

Consider the following:

 SUBROUTINE ASSUMED(A)
 REAL A(:, :, :)

Intel® Fortran Compiler Classic and Intel® Fortran Compiler Developer Guide and Reference 1

823

Array A has rank 3, indicated by the three colons (:) separated by commas (,). However, the extent of each
dimension is unspecified. When the subroutine is called, A takes its shape from the array passed to it. For
example, consider the following:

 REAL X (4, 7, 9)
 ...
 CALL ASSUMED(X)

This declaration gives A the dimensions (4, 7, 9). The actual array and the assumed-shape array must have
the same rank.

Consider the following:

 SUBROUTINE ASSUMED(A)
 REAL A(3:, 0:, -2:)
 ...

If the subroutine is called with the same actual array X(4, 7, 9), as in the previous example, the lower and
upper bounds of A would be:

A(3:6, 0:6, -2:6)

Assumed-Size Specifications

An assumed-size array is a dummy argument array that assumes the size (only) of its associated actual
argument array, or the associate name of a RANK (*) block in a SELECT RANK construct. The rank and
extents can differ for the actual and dummy arrays. An assumed-size specification takes the following form:

([expli-shape-spec,] [expli-shape-spec,] ... [dl:] *)

expli-shape-spec Is an explicit-shape specification.

dl Is a specification expression indicating the lower bound of the
dimension. The expression can have a positive, negative, or zero
value. If necessary, the value is converted to integer type.

If the lower bound is not specified, it is assumed to be 1.

* Is the upper bound of the last dimension.

The rank of the array is the number of explicit-shape specifications plus 1.

The size of the array is assumed from the actual argument associated with the assumed-size dummy array
as follows:

• If the actual argument is an array of type other than default character, the size of the dummy array is the
size of the actual array.

• If the actual argument is an array element of type other than default character, the size of the dummy
array is a + 1 - s, where s is the subscript order value and a is the size of the actual array.

• If the actual argument is a default character array, array element, or array element substring, and it
begins at character storage unit b of an array with n character storage units, the size of the dummy array
is as follows:

 MAX(INT((n + 1 - b)/y), 0)
The y is the length of an element of the dummy array.

An assumed-size array can only be used as a whole array reference in the following cases:

• When it is an actual argument in a procedure reference that does not require the shape
• In the intrinsic function LBOUND

Because the actual size of an assumed-size array is unknown, an assumed-size array cannot be used as any
of the following in an I/O statement:

• An array name in the I/O list

 1 Intel® Fortran Compiler Classic and Intel® Fortran Compiler Developer Guide and Reference

824

• A unit identifier for an internal file
• A runtime format specifier

Examples
The following is an example of an assumed-size specification:

 SUBROUTINE SUB(A, N)
 REAL A, N
 DIMENSION A(1:N, *)
 ...

The following example shows that you can specify lower bounds for any of the dimensions of an assumed-
size array, including the last:

 SUBROUTINE ASSUME(A)
 REAL A(-4:-2, 4:6, 3:*)

See Also
Array Elements

Assumed-Rank Specifications

An assumed-rank array is a dummy argument whose rank is inherited from the actual argument associated
with it, or it is the associate name of a RANK DEFAULT block of a SELECT RANK construct. It can have zero
rank.

You declare an assumed-rank object (a dummy variable) by using DIMENSION(..) or (..)array bounds in its
declaration.

Its rank is assumed from its effective argument, which means it is passed by descriptor.

An assumed-rank entity must not have the CODIMENSION or VALUE attribute. It can have the CONTIGUOUS
attribute.

An assumed-rank variable name must not appear in a designator or expression except as one of the
following:

• An actual argument corresponding to a dummy argument that is assumed-rank
• The argument of the C_LOC function in the ISO_C_BINDING intrinsic module
• The first argument in a reference to an intrinsic inquiry function
• The selector of a SELECT RANK construct

If an assumed-size or nonallocatable, nonpointer, assumed-rank array is an actual argument corresponding
to a dummy argument that is an INTENT(OUT) assumed-rank array, it must not be polymorphic, finalizable,
of a type with an allocatable ultimate component, or of a type for which default initialization is specified.

You can find the rank of an assumed-rank object by using the RANK intrinsic.

If a procedure has an assumed-rank argument, the procedure must have an explicit interface.

When an assumed-rank object is passed from Fortran to a BIND(C) routine, it is passed by C descriptor. A
Fortran procedure that has the BIND(C) language-binding-spec attribute will also receive an assumed-rank
object by C descriptor.

Examples
The following shows an assumed-rank object:

SUBROUTINE sub (foo, bar)
! As sub does not have BIND, foo and bar are passed by "normal" descriptor
REAL, DIMENSION(..) :: foo
INTEGER :: bar(..)

INTERFACE
 SUBROUTINE csub (baz) BIND(C)
 REAL, DIMENSION(..) :: baz

Intel® Fortran Compiler Classic and Intel® Fortran Compiler Developer Guide and Reference 1

825

 END SUBROUTINE
END INTERFACE

CALL baz(foo) ! Passed by C descriptor
See Also
Argument Association
RANK

Deferred-Shape Specifications

A deferred-shape array is an array pointer or an allocatable array.

The array specification contains a colon (:) for each dimension of the array. No bounds are specified. The
bounds (and shape) of allocatable arrays and array pointers are determined when space is allocated for the
array during program execution.

An array pointer is an array declared with the POINTER attribute. Its bounds and shape are determined when
it is associated with a target by pointer assignment, or when the pointer is allocated by execution of an
ALLOCATE statement.

In pointer assignment, the lower bound of each dimension of the array pointer is the result of the LBOUND
intrinsic function applied to the corresponding dimension of the target. The upper bound of each dimension is
the result of the UBOUND intrinsic function applied to the corresponding dimension of the target.

An actual argument that is a pointer can be associated with a nonpointer dummy argument. Normally, a
pointer dummy argument can be associated only with a pointer actual argument. However, a pointer dummy
argument with INTENT(IN) can be argument associated with a non-pointer actual argument with the TARGET
attribute. During the execution of the procedure, it is pointer associated with the actual argument.

A function result can be declared to have the pointer attribute.

An allocatable array is declared with the ALLOCATABLE attribute. Its bounds and shape are determined when
the array is allocated by execution of an ALLOCATE statement.

Examples
The following are examples of deferred-shape specifications:

 REAL, ALLOCATABLE :: A(:,:) ! Allocatable array
 REAL, POINTER :: C(:), D (:,:,:) ! Array pointers

If a deferred-shape array is declared in a DIMENSION or TARGET statement, it must be given the
ALLOCATABLE or POINTER attribute in another statement. For example:

 DIMENSION P(:, :, :)
 POINTER P

 TARGET B(:,:)
 ALLOCATABLE B

If the deferred-shape array is an array of pointers, its size, shape, and bounds are set in an ALLOCATE
statement or in the pointer assignment statement when the pointer is associated with an allocated target. A
pointer and its target must have the same rank.

For example:

 REAL, POINTER :: A(:,:), B(:), C(:,:)
 INTEGER, ALLOCATABLE :: I(:)
 REAL, ALLOCATABLE, TARGET :: D(:, :), E(:)
 ...
 ALLOCATE (A(2, 3), I(5), D(SIZE(I), 12), E(98))
 C => D ! Pointer assignment statement
 B => E(25:56) ! Pointer assignment to a section
 ! of a target

 1 Intel® Fortran Compiler Classic and Intel® Fortran Compiler Developer Guide and Reference

826

A pointer dummy argument with INTENT(IN) can be argument associated with a non-pointer actual
argument with the TARGET attribute. It is pointer associated with the actual argument, so the following
example prints “17".

program test
 integer, target :: j = 17
 call f (j)
contains
 subroutine f (i)
 integer, intent (in), pointer :: i
 print *,i
 end subroutine f
end program test

See Also
POINTER attribute
ALLOCATABLE attribute
ALLOCATE statement
Pointer assignment
LBOUND intrinsic function
UBOUND intrinsic function

Implied-Shape Specifications

An implied-shape array is a named constant that takes its shape from the constant expression in its
declaration. An implied-shape specification takes the following form:

([dl:] du [, [dl:] du] ...)

dl Is a specification expression indicating the lower bound of the
dimension. The expression can have a positive, negative, or zero
value. If necessary, the value is converted to integer type.

If the lower bound is not specified, it is assumed to be 1.

du Is the upper bound of the dimension or *.

The constant expression in the implied-shape declaration must be an array.

The rank of the array must be the same as the rank of the constant expression in its declaration.

The extent of each dimension of an implied-shape array is the same as the extent of the corresponding
dimension of the constant expression.

The value of the upper bound is 1 less than the sum of the lower bound and the extent.

Examples
The following examples show implied-shape specifications:

 INTEGER, PARAMETER :: R(*) = [1,2,3]
 ! means SHAPE (R) is [3]

 integer, parameter :: x (0:*,1:*) = reshape ([1,2,3,4], [2,2])
 ! means dimensions of X are 0 to 1 and 1 to 2

 REAL :: M (2:*, -1:*)
 PARAMETER (M = RESHAPE ([R,R], [3,2]))
 ! means dimensions of M are 2 to 4 and -1 to 0

 integer, parameter :: Y (0:*,1:2) = reshape ([1,2,3,4], [2,2])
 ! means dimensions of Y are 0 to 1 and 1 to 2

Intel® Fortran Compiler Classic and Intel® Fortran Compiler Developer Guide and Reference 1

827

Effects of Equivalency and Interaction with COMMON Statements
When you make an element of one array equivalent to an element of another array, the EQUIVALENCE
statement also sets equivalences between the other elements of the two arrays.

When you make one character substring equivalent to another character substring, the EQUIVALENCE
statement also sets associations between the other corresponding characters in the character entities.

A common block can extend beyond its original boundaries if variables or arrays are associated with entities
stored in the common block. However, a common block can only extend beyond its last element; the
extended portion cannot precede the first element in the block.

COMMON and EQUIVALENCE are obsolescent language features in Standard Fortran.

For more information, see the topics in this section.

Make Arrays Equivalent

When you make an element of one array equivalent to an element of another array, the EQUIVALENCE
statement also sets equivalences between the other elements of the two arrays. Thus, if the first elements of
two equal-sized arrays are made equivalent, both arrays share the same storage. If the third element of a 7-
element array is made equivalent to the first element of another array, the last five elements of the first
array overlap the first five elements of the second array.

Two or more elements of the same array should not be associated with each other in one or more
EQUIVALENCE statements. For example, you cannot use an EQUIVALENCE statement to associate the first
element of one array with the first element of another array, and then attempt to associate the fourth
element of the first array with the seventh element of the other array.

Consider the following example:

 DIMENSION TABLE (2,2), TRIPLE (2,2,2)
 EQUIVALENCE(TABLE(2,2), TRIPLE(1,2,2))

These statements cause the entire array TABLE to share part of the storage allocated to TRIPLE. The
following table shows how these statements align the arrays:

Equivalence of Array Storage

Array TRIPLE Array TABLE

Array Element Element Number Array Element Element Number

TRIPLE(1,1,1) 1

TRIPLE(2,1,1) 2

TRIPLE(1,2,1) 3

TRIPLE(2,2,1) 4 TABLE(1,1) 1

TRIPLE(1,1,2) 5 TABLE(2,1) 2

TRIPLE(2,1,2) 6 TABLE(1,2) 3

TRIPLE(1,2,2) 7 TABLE(2,2) 4

TRIPLE(2,2,2) 8

Each of the following statements also aligns the two arrays as shown in the above table:

 EQUIVALENCE(TABLE, TRIPLE(2,2,1))
 EQUIVALENCE(TRIPLE(1,1,2), TABLE(2,1))

 1 Intel® Fortran Compiler Classic and Intel® Fortran Compiler Developer Guide and Reference

828

You can also make arrays equivalent with nonunity lower bounds. For example, an array defined as A(2:3,4)
is a sequence of eight values. A reference to A(2,2) refers to the third element in the sequence. To make
array A(2:3,4) share storage with array B(2:4,4), you can use the following statement:

 EQUIVALENCE(A(3,4), B(2,4))
The entire array A shares part of the storage allocated to array B. The following table shows how these
statements align the arrays. The arrays can also be aligned by the following statements:

EQUIVALENCE(A, B(4,1))
EQUIVALENCE(B(3,2), A(2,2))

Equivalence of Arrays with Nonunity Lower Bounds

Array B Array A

Array Element Element Number Array Element Element Number

B(2,1) 1

B(3,1) 2

B(4,1) 3 A(2,1) 1

B(2,2) 4 A(3,1) 2

B(3,2) 5 A(2,2) 3

B(4,2) 6 A(3,2) 4

B(2,3) 7 A(2,3) 5

B(3,3) 8 A(3,3) 6

B(4,3) 9 A(2,4) 7

B(2,4) 10 A(3,4) 8

B(3,4) 11

B(4,4) 12

Only in the EQUIVALENCE statement can you identify an array element with a single subscript (the linear
element number), even though the array was defined as multidimensional. For example, the following
statements align the two arrays as shown in the above table:

 DIMENSION B(2:4,1:4), A(2:3,1:4)
 EQUIVALENCE(B(6), A(4))

Make Substrings Equivalent

When you make one character substring equivalent to another character substring, the EQUIVALENCE
statement also sets associations between the other corresponding characters in the character entities; for
example:

 CHARACTER NAME*16, ID*9
 EQUIVALENCE(NAME(10:13), ID(2:5))

Intel® Fortran Compiler Classic and Intel® Fortran Compiler Developer Guide and Reference 1

829

These statements cause character variables NAME and ID to share space (see the following figure). The
arrays can also be aligned by the following statement:

 EQUIVALENCE(NAME(9:9), ID(1:1))

Equivalence of Substrings

If the character substring references are array elements, the EQUIVALENCE statement sets associations
between the other corresponding characters in the complete arrays.

 1 Intel® Fortran Compiler Classic and Intel® Fortran Compiler Developer Guide and Reference

830

Character elements of arrays can overlap at any character position. For example, the following statements
cause character arrays FIELDS and STAR to share storage (see the following figure).

 CHARACTER FIELDS(100)*4, STAR(5)*5
 EQUIVALENCE(FIELDS(1)(2:4), STAR(2)(3:5))

Equivalence of Character Arrays

Intel® Fortran Compiler Classic and Intel® Fortran Compiler Developer Guide and Reference 1

831

The EQUIVALENCE statement cannot assign the same storage location to two or more substrings that start at
different character positions in the same character variable or character array. The EQUIVALENCE statement
also cannot assign memory locations in a way that is inconsistent with the normal linear storage of character
variables and arrays.

EQUIVALENCE and COMMON Interaction

A common block can extend beyond its original boundaries if variables or arrays are associated with entities
stored in the common block. However, a common block can only extend beyond its last element; the
extended portion cannot precede the first element in the block.

Examples
The following two figures demonstrate valid and invalid extensions of the common block, respectively.

A Valid Extension of a Common Block

An Invalid Extension of a Common Block

The second example is invalid because the extended portion, B(1), precedes the first element of the common
block.

The following example shows a valid EQUIVALENCE statement and an invalid EQUIVALENCE statement in the
context of a common block.

 COMMON A, B, C
 DIMENSION D(3)
 EQUIVALENCE(B, D(1)) ! Valid, because common block is extended
 ! from the end.

 COMMON A, B, C
 DIMENSION D(3)
 EQUIVALENCE(B, D(3)) ! Invalid, because D(1) would extend common
 ! block to precede A's location.

 1 Intel® Fortran Compiler Classic and Intel® Fortran Compiler Developer Guide and Reference

832

Dynamic Allocation
Data objects can be static or dynamic. If a data object is static, a fixed amount of memory storage is created
for it at compile time and is not freed until the program exits. If a data object is dynamic, memory storage
for the object can be created (allocated), altered, or freed (deallocated) as a program executes.

Pointers, classes, deferred length character, allocatable scalars and arrays, and automatic arrays are dynamic
data objects.

No storage space is created for a pointer until it is allocated with an ALLOCATE statement or until it is
assigned to an allocated target. The storage space allocated is uninitialized.

An ALLOCATE statement can also be used to create storage for an allocatable array. A DEALLOCATE
statement can be used to free the storage space reserved in a previous ALLOCATE statement. It also causes
any pointers to become disassociated.

An unsaved allocatable that is declared in the specification part of a procedure or BLOCK construct and has a
status of allocated when the procedure or BLOCK terminates is automatically deallocated at that time.

A pointer can be dynamically disassociated from a target by using a NULLIFY statement.

Automatic arrays differ from allocatable arrays in that they are automatically allocated and deallocated
whenever you enter or leave a procedure, respectively.

Dynamic allocation occurs at runtime and is handled by the Fortran runtime library. Several restrictions on
allocation and deallocation must be observed when these operations on a specific object are performed in
program units that are separately compiled. When allocation and deallocation of an object are split between
procedures in static code and dynamic shared libraries (.so files on Linux*) or dynamic-link libraries (DLLs on
Windows*), the following applies:

• If the dynamic library is compiled with the [q or Q]openmp compiler option, then the main program
must be compiled and linked with [q or Q]openmp to include the OpenMP memory handling routines in
the program.

• If the dynamic library allocates data in High bandwidth (HBW) memory on Linux*, then the program must
be linked with the libmemkind library to include the HBW memory handling routines in the program.

NOTE
Dynamic memory allocation is limited by several factors, including swap file size and memory
requirements of other applications that are running. Dynamic allocations that are too large or
otherwise attempt to use the protected memory of other applications result in General Protection Fault
errors.

If you encounter an unexpectedly low limit, you may need to reset your virtual memory size through
the Control Panel or redefine the swap file size.

Some programming techniques can help minimize memory requirements, such as using one large
array instead of two or more individual arrays. Allocated arrays that are no longer needed should be
deallocated.

See Also
qopenmp, Qopenmp compiler option
Pointer Assignments
Automatic arrays
NULL intrinsic function, which can also be used to disassociate a pointer
TARGET

Effects of Allocation

When you allocate allocatable variables, allocatable arrays, and pointer targets, it can have various effects on
your program.

Intel® Fortran Compiler Classic and Intel® Fortran Compiler Developer Guide and Reference 1

833

For more information, see the topics in this section.

Allocation of Allocatable Variables

The status of an allocatable variable becomes "allocated" under the following conditions:

• If it is allocated by an ALLOCATE statement
• If it is allocated during assignment
• If it is allocated by the intrinsic subroutine MOVE_ALLOC

An allocatable variable with allocated status can be referenced, defined, or deallocated; allocating it causes
an error condition in the ALLOCATE statement. The intrinsic function ALLOCATED returns TRUE for such a
variable.

The status of an allocatable variable becomes "unallocated" under the following conditions:

• If it is not allocated
• If it is deallocated
• If it is unallocated by the intrinsic subroutine MOVE_ALLOC
• If it goes out of scope and does not have the SAVE attribute

An allocatable variable with unallocated status must not be referenced or defined. It must not be supplied as
an actual argument corresponding to a nonallocatable dummy argument, except to certain intrinsic inquiry
functions. It can be allocated with the ALLOCATE statement. Deallocating it causes an error condition in the
DEALLOCATE statement. The intrinsic function ALLOCATED returns FALSE for such a variable.

At the beginning of execution of a program, allocatable variables are unallocated.

When the allocation status of an allocatable variable changes, the allocation status of any associated
allocatable variable also changes accordingly. Allocation of an allocatable variable establishes values for the
deferred type parameters of all associated allocatable variables.

An unsaved allocatable local variable of a procedure has a status of unallocated at the beginning of each
invocation of the procedure. An unsaved local variable of a construct has a status of unallocated at the
beginning of each execution of the construct.

When an object of derived type is created by an ALLOCATE statement, any allocatable ultimate components
have an allocation status of unallocated unless the SOURCE= specifier appears and the corresponding
component of the SOURCE= expression is allocated.

The intrinsic function ALLOCATED can be used to determine whether a variable is allocated or unallocated.

Allocation of Allocatable Arrays

The bounds (and shape) of an allocatable array are determined when it is allocated. Subsequent redefinition
or undefinition of any entities in the bound expressions does not affect the array specification.

If the lower bound is greater than the upper bound, that dimension has an extent of zero, and the array has
a size of zero. If the lower bound is omitted, it is assumed to be 1.

When an array is allocated, it is definable. If you try to allocate a currently allocated allocatable array, an
error occurs.

If an allocatable variable is a coarray, the corank is declared, but the cobounds are determined when it is
allocated.

The intrinsic function ALLOCATED can be used to determine whether an allocatable array is currently
allocated; for example:

 REAL, ALLOCATABLE :: E(:,:)
 ...
 IF (.NOT. ALLOCATED(E)) ALLOCATE(E(2:4,7))

Allocation Status
During program execution, the allocation status of an allocatable array is one of the following:

 1 Intel® Fortran Compiler Classic and Intel® Fortran Compiler Developer Guide and Reference

834

• Not currently allocated

The array was never allocated or the last operation on it was a deallocation. Such an array must not be
referenced or defined.

• Currently allocated

The array was allocated by an ALLOCATE statement. Such an array can be referenced after it is defined,
or it can be deallocated.

If an allocatable array has the SAVE attribute, it has an initial status of "not currently allocated". If the array
is then allocated, its status changes to "currently allocated". It keeps that status until the array is
deallocated.

If an allocatable array does not have the SAVE attribute, it has the status of "not currently allocated" at the
beginning of each invocation of the procedure where it is declared, or upon entry of a construct where it is
declared. If the array's status changes to "currently allocated", it is deallocated if the procedure is terminated
by execution of a RETURN or END statement if it is declared in the specification part of a procedure, or upon
termination of the construct where it is declared.

Example: Allocating Virtual Memory
The following example shows a program that performs virtual memory allocation. This program uses Fortran
standard-conforming statements instead of calling an operating system memory allocation routine.

! Program accepts an integer and displays square root values

 INTEGER(4) :: N
 READ (5,*) N ! Reads an integer value
 CALL MAT(N)
 END

! Subroutine MAT uses the typed integer value to display the square
! root values of numbers from 1 to N (the number read)

 SUBROUTINE MAT(N)
 REAL(4), ALLOCATABLE :: SQR(:) ! Declares SQR as a one-dimensional
 ! allocatable array
 ALLOCATE (SQR(N)) ! Allocates array SQR

 DO J=1,N
 SQR(J) = SQRT(REAL(J)) ! REAL converts integer to default REAL
 ENDDO

 WRITE (6,*) SQR ! Displays calculated values
 DEALLOCATE (SQR) ! Deallocates array SQR
 END SUBROUTINE MAT

See Also
ALLOCATED intrinsic function
ALLOCATE statement

Allocation of Pointer Targets

When a pointer is allocated, the pointer is associated with a target and can be used to reference or define the
target. The target can be an array or a scalar, depending on how the pointer was declared.

Other pointers can become associated with the pointer target (or part of the pointer target) by pointer
assignment.

In contrast to allocatable arrays, a pointer can be allocated a new target even if it is currently associated with
a target. The previous association is broken and the pointer is then associated with the new target.

Intel® Fortran Compiler Classic and Intel® Fortran Compiler Developer Guide and Reference 1

835

If the previous target was created by allocation, it becomes inaccessible unless it can still be referred to by
other pointers that are currently associated with it.

The intrinsic function ASSOCIATED can be used to determine whether a pointer is currently associated with a
target. The association status of the pointer must be defined. For example:

 REAL, TARGET :: TAR(0:50)
 REAL, POINTER :: PTR(:)
 PTR => TAR
 ...
 IF (ASSOCIATED(PTR,TAR))...

See Also
POINTER statement and attribute
Pointer assignments
ASSOCIATED intrinsic function

Effects of Deallocation

When you deallocate allocatable variables, allocatable arrays, and pointer targets, it can have various effects
on your program.

For more information, see the topics in this section.

Deallocation of Allocatable Variables

Deallocating an unallocated allocatable variable causes an error condition in the DEALLOCATE statement.

Deallocating an allocatable variable results in undefined behavior if either or both of the following is true:

• The variable, or any subobject of the variable, is construct associated with an associating entity.
• The variable, or any subobject of the variable, is argument associated with a dummy argument.

Deallocating an allocatable variable with the TARGET attribute causes the pointer association status of any
pointer associated with it to become undefined.

When the execution of a procedure is terminated by execution of a RETURN or END statement, an unsaved
allocatable local variable of the procedure retains its allocation and definition status if it is a function result
variable or a subobject of one; otherwise, it is deallocated.

When the execution of a BLOCK construct terminates at the END BLOCK statement, an unsaved allocatable
variable declared in the block and whose allocation status is allocated is deallocated.

If an executable construct references a function whose result is either allocatable or a structure with a
subobject that is allocatable, and the function reference is executed, an allocatable result and any subobject
that is an allocated allocatable entity in the result returned by the function is deallocated after execution of
the innermost executable construct containing the reference.

If a function whose result is either allocatable or a structure with an allocatable subobject is referenced in the
specification part of a scoping unit, and the function reference is executed, an allocatable result and any
subobject that is an allocated allocatable entity in the result returned by the function is deallocated before
execution of the executable constructs of the scoping unit.

When a procedure is invoked, any allocated allocatable object that is an actual argument corresponding to an
INTENT (OUT) allocatable dummy argument is deallocated. Any allocated allocatable object that is a
subobject of an actual argument corresponding to an INTENT (OUT) dummy argument is deallocated.

When an intrinsic assignment statement is executed, any noncoarray allocated allocatable subobject of the
variable is deallocated before the assignment takes place.

When a variable of derived type is deallocated, any allocated allocatable subobject is deallocated.

If an allocatable component is a subobject of a finalizable object, that object is finalized before the
component is automatically deallocated.

The effect of automatic deallocation is the same as that of a DEALLOCATE statement without a dealloc-opt
argument.

 1 Intel® Fortran Compiler Classic and Intel® Fortran Compiler Developer Guide and Reference

836

When a DEALLOCATE statement is executed for which an object is a coarray, there is an implicit
synchronization of all images. On each image, execution of the segment following the statement is delayed
until all other images have executed the same statement the same number of times. If the coarray is a
dummy argument, its ultimate argument must be the same coarray on every image.

There is also an implicit synchronization of all images in association with the deallocation of a coarray or
coarray subcomponent caused by the execution of a RETURN or END statement.

The intrinsic function ALLOCATED can be used to determine whether a variable is allocated or unallocated.

Consider the following example:

SUBROUTINE PROCESS
 REAL, ALLOCATABLE :: TEMP(:)
 REAL, ALLOCATABLE, SAVE :: X(:)
 ...
END SUBROUTINE PROCESS

Upon return from subroutine PROCESS, the allocation status of X is preserved because X has the SAVE
attribute. TEMP does not have the SAVE attribute, so it will be deallocated if it was allocated. On the next
invocation of PROCESS, TEMP will have an allocation status of unallocated.

Deallocation of Allocatable Arrays

If the DEALLOCATE statement specifies an array that is not currently allocated, an error occurs.

If an allocatable array with the TARGET attribute is deallocated, the association status of any pointer
associated with it becomes undefined.

If a RETURN or END statement terminates a procedure, an allocatable array has one of the following
allocation statuses:

• It keeps its previous allocation and association status if the following is true:

• It has the SAVE attribute.
• It is in the scoping unit of a module that is accessed by another scoping unit that is currently

executing.
• It is accessible by host association.

• It remains allocated if it is accessed by use association.
• Otherwise, its allocation status is deallocated.

If a BLOCK construct contains a declaration of an allocatable object and that object also has the SAVE
attribute, it retains is previous allocation status when the END BLOCK statement is executed. Otherwise, its
allocation status is deallocated when the block construct is terminated.

The intrinsic function ALLOCATED can be used to determine whether an allocatable array is currently
allocated; for example:

SUBROUTINE TEST
 REAL, ALLOCATABLE, SAVE :: F(:,:)

 REAL, ALLOCATABLE :: E(:,:,:)
 ...
 IF (.NOT. ALLOCATED(E)) ALLOCATE(E(2:4,7,14))
END SUBROUTINE TEST

Note that when subroutine TEST is exited, the allocation status of F is maintained because F has the SAVE
attribute. Since E does not have the SAVE attribute, it is deallocated. On the next invocation of TEST, E will
have the status of "not currently allocated".

See Also
Host association
TARGET statement and attribute
RETURN statement
END statement

Intel® Fortran Compiler Classic and Intel® Fortran Compiler Developer Guide and Reference 1

837

SAVE statement

Deallocation of Pointer Targets

A pointer must not be deallocated unless it has a defined association status. If the DEALLOCATE statement
specifies a pointer that has undefined association status, or a pointer whose target was not created by
allocation, an error occurs.

A pointer must not be deallocated if it is associated with an allocatable array, or it is associated with a portion
of an object (such as an array element or an array section).

If a pointer is deallocated, the association status of any other pointer associated with the target (or portion of
the target) becomes undefined.

Execution of a RETURN or END statement in a subprogram causes the pointer association status of any
pointer declared or accessed in the procedure to become undefined, unless any of the following applies to the
pointer:

• It has the SAVE attribute.
• It is in the scoping unit of a module that is accessed by another scoping unit which is currently executing.
• It is accessible by host association.
• It is in blank common.
• It is in a named common block that appears in another scoping unit that is currently executing.
• It is the return value of a function declared with the POINTER attribute.

If the execution of a RETURN or END statement in a subprogram causes the target of a pointer to become
undefined or unallocated, the pointer becomes undefined.

Completion of a BLOCK construct causes the association status of an unsaved pointer declared in the
specification part of that construct to become undefined. Completion of a BLOCK construct that causes the
target of a pointer to become undefined causes the pointer to become undfined.

If the association status of a pointer becomes undefined, it cannot subsequently be referenced or defined.

Examples
The following example shows deallocation of a pointer:

 INTEGER ERR
 REAL, POINTER :: PTR_A(:)
 ...
 ALLOCATE (PTR_A(10), STAT=ERR)
 ...
 DEALLOCATE(PTR_A)

See Also
POINTER statement and attribute
COMMON statement
NULL intrinsic function
Host association
TARGET statement and attribute
RETURN statement
END statement
SAVE statement

Execution Control
Execution of a program consists of the asynchronous execution of the program in a fixed number of one or
more of its images. Each image has its own execution environment, including floating-point status, a set of
data objects, input/output units, and procedure pointers.

 1 Intel® Fortran Compiler Classic and Intel® Fortran Compiler Developer Guide and Reference

838

A program normally executes statements in the order in which they are written. Executable control
constructs and statements, and procedure invocations, modify this normal execution by transferring control
to another statement in the program, or by selecting blocks (groups) of constructs and statements for
execution or repetition.

Procedures may be invoked by the CALL statement (subroutine), during expression evaluation (function), or
as part of data definition and handling (user-defined operators and FINAL procedures). There are many ways
to define a procedure: for example, external, internal, contained, type-bound, defined operator or
assignment, and module. All procedures have one entry point; procedures usually return to their caller.

The control constructs ASSOCIATE, CASE, DO, IF, SELECT RANK, and SELECT TYPE contain blocks and can be
named. The name must be a unique identifier in the scoping unit, and must appear on the initial line and
terminal line of the construct. On the initial line, the name is separated from the statement keyword by a
colon (:).

A block can contain any executable Fortran statement except an END statement. You can transfer control out
of a block, but you cannot transfer control into another block.

DO loops cannot partially overlap blocks. The DO statement and its terminal statement must appear together
in a statement block.

The following are execution control statements or constructs:

• ASSOCIATE construct

Creates a temporary association between a named entity and a variable or the value of an expression.
The association lasts for the duration of the block.

• BLOCK construct

Executes a block of statements or constructs that can contain declarations.
• CALL statement

Transfers control to a subroutine subprogram.
• CASE construct

Conditionally executes one block of constructs or statements depending on the value of a scalar
expression in a SELECT CASE statement.

• CONTINUE statement

Primarily used to terminate a labeled DO construct when the construct would otherwise end improperly
with either a GO TO, arithmetic IF, or other prohibited control statement.

• CRITICAL construct

Limits execution of a block to one image at a time.
• DO construct

Controls the repeated execution of a block of statements or constructs. The following statements are used
in DO constructs:

• DO CONCURRENT statement

Specifies that there are no data dependencies between the iterations of a DO loop.
• DO WHILE statement

Executes the range of a DO construct while a specified condition remains true.
• CYCLE statement

Interrupts the current execution cycle of the innermost (or named) DO construct.
• EXIT statement

Terminates execution of a DO construct
• END statement

Marks the end of a program unit.
• IF construct and IF statement

The IF construct conditionally executes one block of statements or constructs. The IF statement
conditionally executes one statement. The decision to transfer control or to execute the statement or
block is based on the evaluation of a logical expression within the IF statement or construct.

• PAUSE statement

Intel® Fortran Compiler Classic and Intel® Fortran Compiler Developer Guide and Reference 1

839

Temporarily suspends program execution until the user or system resumes execution.

These statements are deleted features in the Fortran Standard. Intel® Fortran fully supports features
deleted in the Fortran Standard.

• RETURN statement

Transfers control from a subprogram to the calling program unit.
• SELECT RANK construct

Selects for execution at most one of its constituent blocks based on the rank of an assumed-rank variable.
• SELECT TYPE construct

Selects for execution at most one of its constituent blocks based on the dynamic type of an expression
specified.

• STOP and ERROR STOP statement

The STOP statement initiates normal termination of an image before the execution of an END statement
of the main program. The ERROR STOP statement initiates error termination.

Program Termination
Program termination may involve flushing I/O buffers, closing open I/O files, writing of a STOP code or an
ERROR STOP code, or reporting an error status on one or more images. There are two types of image
termination, normal termination and error termination.

Normal termination occurs when an image executes a STOP statement or an END [PROGRAM] statement. If
there are multiple images running, execution of STOP or END [PROGRAM] statement effects only the image
that executes the statement; it has no effect on other images. When an image initiates normal termination,
its image status becomes STOPPED, and it waits until all other active images initiate normal termination at
which time all images terminate execution. While an image has the status STOPPED, its coarrays are still
accessible for reference or definition by other active images.

Error termination of one image causes termination of all other images. Error termination is not initiated if an
error condition occurs during the execution of an I/O statement which specifies either an IOSTAT= or ERR=
specifier, during the execution of an image control statement that specifies a STAT= specifier, or during a
reference to an intrinsic function with a present STAT argument. Otherwise, if an error condition occurs, error
termination is initiated.

A program terminates execution when all images that have not failed terminate execution.

Branch Statements Overview
Branching affects the normal execution sequence by transferring control to a labeled statement in the same
scoping unit. The transfer statement is called the branch statement, while the statement to which the
transfer is made is called the branch target statement. A branch target statement inside a construct may
only be branched to from within the same block of the construct that contains the branch target statement.

Any executable statement can be a branch target statement, except for the following:

• CASE statement
• ELSE statement
• ELSE IF statement
• END FORALL statement
• END WHERE statement
• RANK case statement
• A statement in a FORALL or WHERE construct
• A type-guard statement (TYPE IS, CLASS IS, or CLASS DEFAULT)

Certain restrictions apply to the following statements:

Statement Restriction

DO terminal statement The branch must be taken from within its nonblock
DO construct1.

 1 Intel® Fortran Compiler Classic and Intel® Fortran Compiler Developer Guide and Reference

840

Statement Restriction

END ASSOCIATE The branch must be taken from within its
ASSOCIATE construct.

END BLOCK The branch must be taken from within its BLOCK
construct.

END DO The branch must be taken from within its block DO
construct.

END IF The branch should be taken from within its IF
construct2.

END SELECT The branch must be taken from within its SELECT
CASE, SELECT RANK, or SELECT TYPE construct.

1If the terminal statement is shared by more than one nonblock DO construct, the branch can only be
taken from within the innermost DO construct.
2You can branch to an END IF statement from outside the IF construct; this is a deleted feature in the
Fortran Standard. Intel® Fortran fully supports features deleted in the Fortran Standard.

The following are branch statements:

• GOTO - Unconditional statement

Transfers control to the same branch target statement every time it executes.
• GOTO - COMPUTED statement

Transfers control to one of a set of labeled branch target statements based on the value of an expression.
• CALL statement with an alternate return specified

Transfers control to one of the alternate return branch target statements based on the value of the
expression on the RETURN statement executed in the called subroutine to return control to the caller.

• An input/output statement with an END=, EOR=, or ERR= specifier

Transfers control to the specified labeled branch target statement if an end of file condition (END=), an
end of record condition (EOR=), or an error condition (ERR=) occurs during execution of the input/output
statement.

• ASSIGN and assigned GO TO statements

Assigns a label to an integer variable. Subsequently, this variable can be used as a branch target
statement by an assigned GO TO statement or as a format specifier in a formatted input/output
statement.

These statements are deleted features in Fortran 95. Intel® Fortran fully supports features deleted in
Fortran 95.

• IF - Arithmetic statement

Conditionally transfers control to one of three statements, based on the value of an arithmetic expression.

See Also
ASSOCIATE
BLOCK
DO Statement
FORALL
IF constructs
SELECT CASE
SELECT RANK
SELECT TYPE
WHERE

Intel® Fortran Compiler Classic and Intel® Fortran Compiler Developer Guide and Reference 1

841

Effects of DO Constructs
This section discusses ways you can use DO loops and their effects on your program.

For more information, see the topics in this section.

Iteration Loop Control

DO iteration loop control takes the following form:

do-var = expr1, expr2 [, expr3]

do-var Is the name of a scalar variable of type integer or real. It cannot be
the name of an array element or structure component.

expr Is a scalar numeric expression of type integer, logical, or real. If it is
not the same type as do-var, it is converted to that type.

Description
A DO variable or expression of type real is a deleted feature in the Fortran Standard. Intel® Fortran fully
supports features deleted in the Fortran Standard.

The following steps are performed in iteration loop control:

1. The expressions expr1, expr2, and expr3 are evaluated to respectively determine the initial, terminal,
and increment parameters.

The increment parameter (expr3) is optional and must not be zero. If an increment parameter is not
specified, it is assumed to be of type default integer with a value of 1.

2. The DO variable (do-var) becomes defined with the value of the initial parameter (expr1).
3. The iteration count is determined as follows:

 MAX(INT((expr2 - expr1 + expr3)/expr3), 0)
The iteration count is zero if either of the following is true:

 expr1 > expr2 and expr3 > 0
 expr1 < expr2 and expr3 < 0

4. The iteration count is tested. If the iteration count is zero, the loop terminates and the DO construct
becomes inactive. (Compiler option f66 can affect this.) If the iteration count is nonzero, the range of
the loop is executed.

5. The iteration count is decremented by one, and the DO variable is incremented by the value of the
increment parameter, if any.

After termination, the DO variable retains its last value (the one it had when the iteration count was tested
and found to be zero).

The DO variable must not be redefined or become undefined during execution of the DO range.

If you change variables in the initial, terminal, or increment expressions during execution of the DO
construct, it does not affect the iteration count. The iteration count is fixed each time the DO construct is
entered.

Examples
The following example specifies 25 iterations:

 DO 100 K=1,50,2
K=49 during the final iteration, K=51 after the loop.

The following example specifies 27 iterations:

 DO 350 J=50,-2,-2

 1 Intel® Fortran Compiler Classic and Intel® Fortran Compiler Developer Guide and Reference

842

J=-2 during the final iteration, J=-4 after the loop.

The following example specifies 9 iterations:

 DO NUMBER=5,40,4
NUMBER=37 during the final iteration, NUMBER=41 after the loop. The terminating statement of this DO loop
must be END DO.

See Also
f66
Deleted and Obsolescent Language Features for details on obsolescent features in Standard
Fortran, as well as features deleted in Standard Fortran

Nested DO Constructs

A DO construct can contain one or more complete DO constructs (loops). The range of an inner nested DO
construct must lie completely within the range of the next outer DO construct. Nested nonblock DO
constructs can share a labeled terminal statement.

The following figure shows correctly and incorrectly nested DO constructs:

Intel® Fortran Compiler Classic and Intel® Fortran Compiler Developer Guide and Reference 1

843

In a nested DO construct, you can transfer control from an inner construct to an outer construct. However,
you cannot transfer control from an outer construct to an inner construct.

If two or more nested DO constructs share the same terminal statement, you can transfer control to that
statement only from within the range of the innermost construct. Any other transfer to that statement
constitutes a transfer from an outer construct to an inner construct, because the shared statement is part of
the range of the innermost construct.

When the nested DO constructs contain no statements between the DO statements in the nest of DO
constructs, the nest is called “perfectly nested”. When perfectly nested DO constructs are modified by a
COLLAPSE clause in any of these OpenMP* directives:

• !$OMP DISTRIBUTE
• !$OMP DO
• !$OMP SIMD

There are restrictions on which general compiler directives (see General Compiler Directives) and OpenMP
Fortran compiler directives (see OpenMP Fortran Compiler Directives) can appear before the DO statements
in the nested DO construct:

• Any OpenMP or general directives that are allowed to affect DO loops are allowed prior to the first DO loop
of the "perfectly nested" DO construct.

• It is an error if any of these directives are between any of the perfectly nested DO loop statements for the
loops affected by the COLLAPSE clause.

Examples
In the following example, COLLAPSE (1) on affects the DO I loop. Therefore general directives before the DO
J loop, which is at level 2, are allowed:

!$OMP SIMD collapse (1)
!dir$ prefetch … ! this is allowed since it is before the start
 ! of the perfectly nested DO construct

 do i = …
 !dir$ loop count … ! this is allowed since collapse only applies
 ! to the i-loop, not the j-loop
 do j = …
 enddo ! end for j-loop
 enddo ! end for i-loop

In the following example, COLLAPSE (2) affects the DO I loop and the DO J loop but not the DO k loop.

!$OMP SIMD collapse (2)
!dir$ prefetch … ! this is allowed since it is before the start
 ! of the perfectly nested DO construct
 do i = …
 do j = …
 !dir$ loop count … ! this is allowed since collapse only applies to
 ! the i-loop and the j-loop, not the k-loop
 do k= ….
 enddo ! end for k-loop
 enddo ! end for j-loop
 enddo ! end for i-loop

In the following example, COLLAPSE (2) affects the DO I loop and the DO J loop so there can be no directives
before the DO J loop.

!$OMP SIMD collapse (2)
!dir$ prefetch … ! this is allowed since it is before the start
 ! of the perfectly nested DO construct
 do i = …
 !dir$ loop count … ! this is not allowed: it is breaks the perfectness
 ! of the i-loop and the nj-loop collapsing

 1 Intel® Fortran Compiler Classic and Intel® Fortran Compiler Developer Guide and Reference

844

 do j = …
 enddo ! end for j-loop
 enddo ! end for i-loop

See Also
!$OMP DISTRIBUTE
!$OMP DO
!$OMP SIMD
Rules for General Directives that Affect DO loops

Extended Range

A DO construct has an extended range if both of the following are true:

• The DO construct contains a control statement that transfers control out of the construct.
• Another control statement returns control back into the construct after execution of one or more

statements.

The range of the construct is extended to include all executable statements between the destination
statement of the first transfer and the statement that returns control to the construct.

The following rules apply to a DO construct with extended range:

• A transfer into the range of a DO statement is permitted only if the transfer is made from the extended
range of that DO statement.

• The extended range of a DO statement must not change the control variable of the DO statement.

Intel® Fortran Compiler Classic and Intel® Fortran Compiler Developer Guide and Reference 1

845

The following figure shows valid and invalid extended range control transfers:

Control Transfers and Extended Range

Image Control Statements
Execution of an image control statement divides the execution sequence on an image into segments. The
following are image control statements:

• The SYNC ALL statement
• The SYNC IMAGES statement
• The SYNC MEMORY statement
• The SYNC TEAM statement
• An ALLOCATE or DEALLOCATE statement that has a coarray allocatable object
• The CHANGE TEAM and END TEAM statements
• The CRITICAL and END CRITICAL statements
• The EVENT POST and EVENT WAIT statements

 1 Intel® Fortran Compiler Classic and Intel® Fortran Compiler Developer Guide and Reference

846

• The FORM TEAM statement
• The LOCK and UNLOCK statements
• Any statement that completes execution of a block or procedure and which results in the implicit

deallocation of a coarray
• A CALL statement that references the intrinsic subroutine MOVE_ALLOC with coarray arguments
• The STOP statement
• The END statement of a main program

A SYNC MEMORY statement is executed for all image control statements except CRITICAL, END CRITICAL,
EVENT POST, EVENT WAIT, LOCK, and UNLOCK.

During an execution of a statement that invokes more than one procedure, at most one invocation can cause
execution of an image control statement other than CRITICAL or END CRITICAL.

NOTE
Collective actions may hang if images have stopped or failed and the other images have not all
detected the stop or fail; for more information, see FAILED_IMAGES.

See Also
Execution Segments for Images
FAILED_IMAGES

STAT= and ERRMSG= Specifiers in Image Control Statements

If the STAT= specifier appears in an image control statement, successful execution of the statement causes
the specified variable to become defined with the value zero. In a given image control statement, the stat-
var in a STAT= specifier, the err-var in an ERRMSG= specifier, the log-var in an ACQUIRED_LOCK= specifier,
and an event variable or lock variable must not depend on one another.

If the STAT= specifier appears in an EVENT WAIT or a SYNC MEMORY statement and an error occurs, stat-var
is defined with a processor-dependent positive value that is different from the value of
STAT_STOPPED_IMAGE or STAT_FAILED_IMAGE.

The images involved in the execution of an END TEAM, FORM TEAM, or SYNC ALL statement are the images
of the current team. The images involved in the execution of a CHANGE TEAM or SYNC TEAM statement are
those of the specified team.The images involved in the execution of a SYNC IMAGES statement are the
specified images and the image executing the SYNC IMAGES statement. The images involved in the
execution of an EVENT POST statement are the image executing the statement and the image on which the
event variable is located.

If the STAT= specifier appears in a CHANGE TEAM, END TEAM, EVENT POST, FORM TEAM, SYNC ALL, SYNC
IMAGES, or SYNC TEAM statement and execution of one of these statements involves synchronization with
an image that has initiated normal termination, the variable becomes defined with the value of the constant
STAT_STOPPED_IMAGE in the intrinsic module ISO_FORTRAN_ENV. Otherwise, if no other error condition
occurs and one of the involved images has failed, the STAT= specifier becomes defined with the value
STAT_FAILED_IMAGE in the intrinsic module ISO_FORTRAN_ENV. If any other error condition occurs during
execution of one of these statements, the variable becomes defined with a processor-dependent positive
integer value that is different from the value of STAT_STOPPED_IMAGE or STAT_FAILED_IMAGE.

If the STAT= specifier appears in a SYNC ALL, SYNC IMAGES, or SYNC TEAM statement and the error
STAT_STOPPED_IMAGES occurs, the effect of executing the statement is the same as that of executing the
SYNC_MEMORY statement.

If the STAT= specifier appears in a LOCK statement and the lock variable is located on an image that has
failed, the specified variable becomes defined with the value STAT_FAILED_IMAGE. If the lock variable is
locked by the executing image, the specified variable becomes defined with the value of STAT_LOCKED.
Otherwise, if the lock variable is unlocked because the image that locked it has failed, the specified STAT=
variable becomes defined with the value STAT_UNLOCKED_FAILED_IMAGE defined in the intrinsic module
ISO_FORTRAN_ENV.

If the STAT= specifier appears in an UNLOCK statement and the lock variable is located on an image that has
failed, the specifier becomes defined with the value STAT_FAILED_IMAGE. Otherwise, if the lock variable has
the value unlocked, the variable specified by the STAT= specifier becomes defined with the value of

Intel® Fortran Compiler Classic and Intel® Fortran Compiler Developer Guide and Reference 1

847

STAT_UNLOCKED. If the STAT= specifier appears in an UNLOCK statement and the lock variable is locked by
a different image, the specified variable becomes defined with the value STAT_LOCKED_OTHER_IMAGE. The
named constants STAT_LOCKED, STAT_UNLOCKED, and STAT_LOCKED_OTHER_IMAGE are defined in the
intrinsic module ISO_FORTRAN_ENV.

If any other error condition occurs during execution of a LOCK or UNLOCK statement, the specified variable
becomes defined with a positive integer value that is different from STAT_LOCKED, STAT_UNLOCKED,
STAT_UNLOCKED_FAILED_IMAGE, and STAT_LOCKED_OTHER_IMAGE.

If an image completes execution of a CRITICAL statement that has a STAT= specifier and the previous image
that entered the CRITICAL construct failed during execution of the construct, the specifier becomes defined
with the value STAT_FAILED_IMAGE and the execution of the construct executes normally. If any other error
occurs during execution of the construct, the specifier becomes defined with a positive integer value other
different from STAT_FAILED_IMAGE.

If an error condition occurs during execution of an image control statement that does not contain the STAT=
specifier, error termination is initiated.

If an ERRMSG= specifier appears in an image control statement, and an error condition occurs during
execution of that statement, the processor will assign an explanatory message to the specified variable. If no
such condition occurs, the processor will not change the value or definition status of the variable.

The set of error conditions that can occur during execution of an image control statement is processor
dependent.

See Also
ISO_FORTRAN_ENV Module

Execution Segments for Images

On each image, a segment is the sequence of statements executed before the first execution of an image
control statement, between the execution of two image control statements, or after the last execution of an
image control statement.

The segment executed immediately before the execution of an image control statement includes the
evaluation of all expressions within that image control statement.

A coarray can be referenced or defined by execution of an atomic subroutine during the execution of a
segment that is unordered, relative to the execution of a segment in which the coarray is referenced or
defined by execution of an atomic subroutine. An event variable can be referenced or defined during the
execution of a segment that is unordered relative to the execution of another segment in which that event
variable is defined. Otherwise, the following rules apply:

• If a variable is defined on an image in a segment, it must not be referenced, defined, or become
undefined in a segment on another image unless the segments are ordered.

• If the allocation of an allocatable subobject of a coarray or the pointer association of a pointer subobject
of a coarray is changed on an image in a segment, that subobject must not be referenced or defined in a
segment on another image unless the segments are ordered.

• If a procedure invocation on image P is in execution in segments Pi, Pi+1, ..., Pk and defines a noncoarray
dummy argument, the effective argument must not be referenced, defined, or become undefined on
another image Q in a segment Qj unless Qj precedes Pi or succeeds Pk (because a copy of the actual
argument may be passed to the procedure)

Incorrect sequencing of image control statements can suspend execution indefinitely. For example, one
image might be executing a SYNC ALL statement while another is executing an ALLOCATE statement for a
coarray.

See Also
Image Control Statements

Program Units and Procedures
A Fortran program consists of one or more program units. There are four types of program units:

 1 Intel® Fortran Compiler Classic and Intel® Fortran Compiler Developer Guide and Reference

848

• Main program

The program unit that denotes the beginning of execution. It may or may not have a PROGRAM statement
as its first statement.

• External procedures

Program units that are either user-written functions or subroutines.
• Modules and submodules

Program units that contain declarations, type definitions, procedures, or interfaces that can be shared by
other program units. A module can be extended by one or more program units called submodules. A
submodule can in turn be extended by one or more submodules.

• Block data program units

Program units that provide initial values for variables in named common blocks.

A program unit does not have to contain executable statements; for example, it can be a module containing
interface blocks for subroutines.

A procedure can be invoked during program execution to perform a specific task. It specifies the EXTERNAL
attribute for all procedure entities in the procedure declaration list. A procedure declaration is denoted by a
PROCEDURE statement.

There are several kinds of procedures, as follows:

Kind of Procedure Description

External Procedure A procedure that is not part of any other program
unit.

Module Procedure A procedure defined within a module.

Internal Procedure1 A procedure (other than a statement function)
contained within a main program, function,
subroutine, or module procedure.

Intrinsic Procedure A procedure defined by the Fortran language.

Dummy Procedure A dummy argument specified as a procedure or
appearing in a procedure reference. A dummy
procedure with the POINTER attribute is a dummy
procedure pointer.

Procedure Pointer A procedure that has the EXTERNAL and POINTER
attributes. It may be pointer associated with an
external procedure, a module procedure, an
intrinsic procedure, or a dummy procedure that is
not a procedure pointer.

Statement function A computing procedure defined by a single
statement.

1 The program unit or module procedure that contains an internal procedure is called its host.

A function is invoked in an expression using the name of the function or a defined operator. It returns a
single value (function result) that is used to evaluate the expression.

A subroutine is invoked in a CALL statement or by a defined assignment statement. It does not directly
return a value, but values can be passed back to the calling program unit through arguments (or variables)
known to the calling program.

Recursion (direct or indirect) is permitted for functions and subroutines. Prior to Fortran 2018, procedures
had to be declared RECURSIVE. Fortran 2018 made recursion the default, and introduced the
NON_RECURSIVE keyword. Intel® Fortran, by default, compiles procedures as non-recursive unless they are
explicitly declared RECURSIVE. This default can be overridden by using the assume recursion option or the
standard-semantics option on the command line; it can be changed in an OPTIONS statement.

Intel® Fortran Compiler Classic and Intel® Fortran Compiler Developer Guide and Reference 1

849

A procedure interface refers to the properties of a procedure that interact with or are of concern to the calling
program. A procedure interface can be explicitly defined in interface blocks. All program units, except block
data program units, can contain interface blocks.

See Also
Program structure
Intrinsic procedures
Scope
standard-semantics compiler option
assume recursion compiler option
RECURSIVE and NON_RECURSIVE keyword

Main Program
A main program is a program unit whose first statement is not a SUBROUTINE, FUNCTION, MODULE,
SUBMODULE, or BLOCK DATA statement. Program execution always begins with the first executable
statement in the main program, so there must be exactly one main program unit in every executable
program. For more information, see PROGRAM.

Procedure Characteristics
The characteristics of a procedure are as follows:

• Whether it is classified as a function or subroutine
• The characteristics of its result value if it is a function
• The characteristics of its dummy arguments
• Whether it is pure
• Whether it is impure
• Whether it is elemental
• Whether it has the BIND attribute

Characteristics of Dummy Arguments
Each dummy argument has the characteristic that it is a dummy data object, a dummy procedure, or an
asterisk indicating an alternate return indicator.

The characteristics of a dummy data object are as follows:

• Its type and type parameters (if any)
• Its shape
• Its intent
• Its corank
• Its codimensions
• Whether it is optional
• Whether it is allocatable
• Whether it has the ASYNCHRONOUS, CONTIGUOUS, VALUE, or VOLATILE attribute
• Whether it is a pointer or a target
• Whether it is polymorphic
• Whether or not it is assumed rank or assumed type

If a type parameter of an object or a bound of an array is not a constant expression, a characteristic is the
exact dependence on the entities in the expression. Another characteristic is whether a shape, size, or type
parameter is assumed or deferred.

The characteristics of a dummy procedure are as follows:

• Whether it is optional
• The explicitness of its interface
• Its characteristics as a procedure if the interface is explicit

 1 Intel® Fortran Compiler Classic and Intel® Fortran Compiler Developer Guide and Reference

850

• Whether it is a pointer

An asterisk indicating an alternate return indicator has no characteristics.

Characteristics of Function Results
The characteristics of a function result are as follows:

• Its type, type parameters (if any), and rank
• Whether it is allocatable
• Whether it has the CONTIGUOUS attribute
• Whether it is a pointer
• Whether it is a procedure pointer
• Whether it is polymorphic

If a function result is an array that is not allocatable or a pointer, a characteristic is its shape.

If a type parameter of a function result or a bound of a function result array is not a constant expression, a
characteristic is the exact dependence on the entities in the expression.

If type parameters of a function result are deferred, a characteristic is which parameters are deferred.
Another characteristic is whether the length of a character function result is assumed.

Modules and Module Procedures
A module program unit contains specifications and definitions that can be made accessible to other program
units. There are two types of modules, intrinsic and nonintrinsic. Intrinsic modules are included in the Fortran
library; nonintrinsic modules are user-defined.

For the module to be accessible, the other program units must reference its name in a USE statement, and
the module entities must be public. This module reference lets the program unit access the public definitions,
specifications, and procedures in the module. Entities in a module are public by default, unless the USE
statement specifies otherwise or the PRIVATE attribute is specified for the module entities.

A module reference causes use association between the using program unit and the entities in the module.

A submodule extends a module or another submodule. It provides additional structuring facilities for
modules. Data objects and procedure pointers declared in a module implicitly have the SAVE attribute.

For more information on module program units, see MODULE. For more information about submodule
program units, see SUBMODULE.

A module procedure is a procedure declared and defined in a module, between its CONTAINS and END
statements. For more information, see MODULE PROCEDURE.

See Also
PRIVATE attribute
PUBLIC attribute
Use association

Separate Module Procedures

A separate module procedure is a module procedure that is declared in a separate interface body. To
denote separate module procedures, you must specify the keyword MODULE as a prefix in the initial
statement of both of the following:

• A separate module procedure body
• A separate interface body

The interface block that contains the separate interface body must be nonabstract.

A separate interface body can be declared in a module or a submodule. The corresponding separate module
procedure may be defined (implemented) in the same module or submodule or a descendent of the module
or submodule. A separate module procedure can only be defined once.

Intel® Fortran Compiler Classic and Intel® Fortran Compiler Developer Guide and Reference 1

851

Usually, the separate interface body is specified in a module and the separate module procedure is defined in
a descendent submodule. This provides the advantage that changes to the definition of the separate module
procedure, but not the separate interface body, require only recompilation of the submodule containing the
separate module procedure and relinking. If the procedure definition is in a module, any change to the
definition requires recompilation of all program units using that module.

In the following example, FOO is a separate module procedure whose interface is specified in module M while
the procedure body is defined in submodule A:

module M
 type tt
 real r
 end type tt

 interface
 real module function FOO (arg)
 type(tt), intent(in) :: arg
 end function FOO
 end interface
end module M

submodule (M) A
contains
 real module function FOO (arg) result(res)
 type(tt), intent(in) :: arg
 res = arg%r
 end function FOO
end submodule A

A separate module procedure is accessible by use association only if its interface body is declared in a
module and it is public (for example, FOO in the above example). If a separate module interface is declared
in a submodule, the module procedure is only accessible in that submodule or its descendent submodules.

A separate module procedure interface body (either in a module or submodule) has access to entities in its
host through host association.

NOTE
For an interface body that is not a separate interface body, IMPORT statements are required to make
entities accessible by host association. However, IMPORT statements are not permitted in a separate
interface body.

The initial statement of a separate module procedure body can take one of the two following forms:

• MODULE appears as a prefix for a FUNCTION or SUBROUTINE statement

The following shows an example using this form:

submodule (M) A
contains
 real module function foo (arg) result(res)
 type(tt), intent(in) :: arg
 res = arg%r
 end function foo
end submodule A

With this form, a separate module procedure must specify the same characteristics and dummy argument
names as its corresponding separate interface body.

They must both be functions or subroutines; they must both be pure or not; they must both be elemental
or not. The characteristics of its dummy arguments and the characteristics of the function result must also
be the same.

 1 Intel® Fortran Compiler Classic and Intel® Fortran Compiler Developer Guide and Reference

852

NON_RECURSIVE or RECURSIVE can appear only if NON_RECURSIVE or RECURSIVE appear respectively
as a prefix in the corresponding separate interface body.

Note that the restrictions of matching dummy argument names and matching PURE, NON_RECURSIVE,
and RECURSIVE specifications only apply to separate module procedures. For an external procedure, the
procedure definition and its interface body can differ with regard to dummy argument names, to whether
it is pure, and to whether or not it is recursive.

A procedure defined in a submodule with the BIND attribute cannot have a binding label (that is, BIND(C,
NAME="a-binding-label") unless it is a separate module procedure and its interface is declared in the
ancestor module. The binding label specified in a separate module procedure definition must match the
binding label specified in the separate interface body.

For this form, the result variable name for a function is determined by the FUNCTION statement in the
module subprogram. The result variable name in the interface is ignored.

• MODULE PROCEDURE statement

This has the following form:

MODULE PROCEDURE procedure-name
 [specification-part]
 [execution-part]
 [internal-subprogram-part]
END [PROCEDURE [procedure-name]]

The following shows an example using this form:

submodule (M) A
contains
 module procedure foo
 foo = arg%r
 end procedure foo
end submodule A

This syntax avoids the redeclaration of the function or subroutine in the separate module procedure
definition and just takes the characteristics, dummy argument names, and the function result variable
name from the separate interface body.

A separate module procedure does not have to be defined. The separate module procedure interface can be
used to specify an explicit interface; however, the procedure must not be called.

NOTE
Two modules cannot have USE statements that reference each other because circular reference is not
allowed. However, you can solve that problem by putting at least one side of the USEs in submodules.
This is because submodules cannot be referenced by use association and the USE statements in
submodules are effectively hidden.

Examples
See the examples in SUBMODULE.

See Also
MODULE
SUBMODULE

Intrinsic Modules
Intrinsic modules, like other module program units, contain specifications and definitions that can be made
accessible to other program units. The intrinsic modules are part of the Fortran library.

An intrinsic module is specified in a USE statement, as follows:

USE, INTRINSIC :: mod-name [, rename-list] ...

Intel® Fortran Compiler Classic and Intel® Fortran Compiler Developer Guide and Reference 1

853

USE, INTRINSIC :: mod-name, ONLY : [, only-list]

mod-name Is the name of the intrinsic module.

rename-list See the description in USE.

only-list See the description in USE.

Procedures and types defined in an intrinsic module are not themselves intrinsic.

An intrinsic module can have the same name as other global entities, such as program units, common blocks,
or external procedures. A scoping unit must not access both an intrinsic module and a non-intrinsic module
with the same name.

When INTRINSIC is used, mod-name must be the name of an intrinsic module. If NON_INTRINSIC is used,
mod-name must be the name of an nonintrinsic module. If neither is specified, mod-name must be the name
of an intrinsic or nonintrinsic module. If both are provided, the nonintrinsic module is used.

The following intrinsic modules are included in the Fortran library: ISO_C_BINDING, ISO_FORTRAN_ENV, and
IEEE Intrinsic Modules.

ISO_C_BINDING Module

The ISO_C_BINDING intrinsic module provides access to data entities that are useful in mixed-language
programming. It takes the following form:

USE, INTRINSIC :: ISO_C_BINDING
This intrinsic module provides access to the following data entities:

• Named Constants
• Derived Types

Derived type C_PTR is interoperable with any C object pointer type. Derived type C_FUNPTR is
interoperable with any C function pointer type.

• Intrinsic Module Procedures

See Also
Standard Tools for Interoperability

Named Constants in the ISO_C_BINDING Module

The ISO_C_BINDING named constants represent kind type parameters of data representations compatible
with C types.

Intrinsic-Type Constants
The following table shows interoperable Fortran types and C Types.

Fortran Type Named Constant for the KIND C Type

INTEGER C_INT int

C_SHORT short int

C_LONG long int

C_LONG_LONG long long int

C_SIGNED_CHAR signed char, unsigned char

C_SIZE_T size_t

C_INT8_T int8_t

 1 Intel® Fortran Compiler Classic and Intel® Fortran Compiler Developer Guide and Reference

854

Fortran Type Named Constant for the KIND C Type

C_INT16_T int16_t

C_INT32_T int32_t

C_INT64_T int64_t

C_INT_LEAST8_T int_least8_t

C_INT_LEAST16_T int_least16_t

C_INT_LEAST32_T int_least32_t

C_INT_LEAST64_T int_least64_t

C_INT_FAST8_T int_fast8_t

C_INT_FAST16_T int_fast16_t

C_INT_FAST32_T int_fast32_t

C_INT_FAST64_T int_fast64_t

C_INTMAX_T intmax_t

C_INTPTR_T intptr_t

C_PTRDIFF_T ptrdiff_t

REAL C_FLOAT float

C_DOUBLE double

C_LONG_DOUBLE long double

COMPLEX C_FLOAT_COMPLEX float _Complex

C_DOUBLE_COMPLEX double _Complex

C_LONG_DOUBLE_COMPLEX long double _Complex

LOGICAL1 C_BOOL _Bool

CHARACTER2 C_CHAR char

1 Use compiler option fpscomp logicals so that .TRUE. is 1 and .FALSE. is 0 as defined for C's _Bool.

2For character type, the length type parameter must be omitted or it must be specified by a constant
expression whose value is one.

For example, an integer type with the kind type parameter C_LONG is interoperable with the C integer type
"long" or any C type derived from "long".

The value of C_INT will be a valid value for an integer kind type parameter on the processor. The values for
the other integer named constants (C_INT*) will be a valid value for an integer kind type parameter on the
processor, if any, or one of the following:

• -1 if the C processor defines the corresponding C type and there is no interoperating Fortran processor
kind

• -2 if the C processor does not define the corresponding C type

Intel® Fortran Compiler Classic and Intel® Fortran Compiler Developer Guide and Reference 1

855

The values of C_FLOAT, C_DOUBLE, and C_LONG_DOUBLE will be a valid value for a real kind type parameter
on the processor, if any, or one of the following:

• -1 if the C processor's type does not have a precision equal to the precision of any of the Fortran
processor's real kinds

• -2 if the C processor's type does not have a range equal to the range of any of the Fortran processor's
real kinds

• -3 if the C processor's type has neither the precision or range equal to the precision or range of any of the
Fortran processor's real kinds

• -4 if there is no interoperating Fortran processor or kind for other reasons

The values of C_FLOAT_COMPLEX, C_DOUBLE_COMPLEX, and C_LONG_DOUBLE_COMPLEX will be the same
as those of C_FLOAT, C_DOUBLE, and C_LONG_DOUBLE, respectively.

The value of C_BOOL will be a valid value for a logical kind parameter on the processor, if any, or -1.

The value of C_CHAR is the character kind.

Character Constants
The following table shows interoperable named constants and C characters:

Fortran Named Constant Definition C Character

C_NULL_CHAR null character '\0'

C_ALERT alert '\a'

C_BACKSPACE backspace '\b'

C_FORM_FEED form feed '\f'

C_NEW_LINE new line '\n'

C_CARRIAGE_RETURN carriage return '\r'

C_HORIZONTAL_TAB horizontal tab '\t'

C_VERTICAL_TAB vertical tab '\v'

Derived-Type Constants
The constant C_NULL_PTR is of type C_PTR; it has the value of a C null data pointer. The constant
C_NULL_FUNPTR is of type C_FUNPTR; it has the value of a C null function pointer.

Intrinsic Module Procedures - ISO_C_BINDING

The following procedures are provided with the ISO_C_BINDING intrinsic module:

• C_ASSOCIATED
• C_F_POINTER
• C_F_PROCPOINTER
• C_F_STRPOINTER
• C_FUNLOC
• C_LOC
• C_SIZEOF
• F_C_STRING

C_F_POINTER and C_F_STRPOINTER are impure, the other procedures are pure.

 1 Intel® Fortran Compiler Classic and Intel® Fortran Compiler Developer Guide and Reference

856

ISO_FORTRAN_ENV Module

The ISO_FORTRAN_ENV intrinsic module provides information about the Fortran runtime environment. It
takes the following form:

USE, INTRINSIC :: ISO_FORTRAN_ENV
This intrinsic module provides access to the following data entities:

• Named Constants
• Derived Types
• Intrinsic Module Procedures

Named Constants in the ISO_FORTRAN_ENV Module

The ISO_FORTRAN_ENV intrinsic module provides the following named constants that you can use to get
information on the Fortran environment. They are all scalars of type default integer.

Named Constant Definition

ATOMIC_INT_KIND The kind type parameter used when defining
integer variables used in atomic operations.

ATOMIC_LOGICAL_KIND The kind type parameter used when defining logical
variables used in atomic operations.

CHARACTER_KINDS The kind type parameter supported by the
processor that is used when defining variables of
type character. This is a default integer array
constant. The rank of the array is one, its lower
bound is one, and its size is the number of
character kinds supported. In Intel® Fortran, its
value is [1].

CHARACTER_STORAGE_SIZE The size of the character storage unit expressed in
bits.

CURRENT_TEAM Identifies the current team of images when used as
the LEVEL argument to the GET_TEAM intrinsic
function.

ERROR_UNIT Identifies the preconnected external unit used for
error reporting.

FILE_STORAGE_SIZE The size of the file storage unit expressed in bits.
To use this constant, compiler option assume
byterecl must be enabled.

INITIAL_TEAM Identifies the initial team of images when used as
the LEVEL argument to the GET_TEAM intrinsic
function.

INPUT_UNIT Identifies the preconnected external unit as the one
specified by an asterisk in a READ statement. To
use this constant, compiler option assume
noold_unit_star must be enabled.

INT8
INT16
INT32
INT64

The kind type parameters that specify an INTEGER
type whose storage size is 8 bits, 16 bits, 32 bits,
and 64 bits, respectively. If, for any of these
constants, the processor supports more than one
kind of that size, the kind value is determined by
the processor. If the processor supports no kind of
a particular size, that constant is equal to -2 if the

Intel® Fortran Compiler Classic and Intel® Fortran Compiler Developer Guide and Reference 1

857

Named Constant Definition

processor supports a kind with larger size;
otherwise, -1. In Intel Fortran, their respective
values are 1, 2, 4, and 8.

INTEGER_KINDS The kind type parameter supported by the
processor that is used when defining variables of
type integer. This is a default integer array
constant. The rank of the array is one, its lower
bound is one, and its size is the number of integer
kinds supported. In Intel Fortran its value is [1, 2,
4, 8].

IOSTAT_END The value assigned to the variable specified in an
IOSTAT= specifier if an end-of-file condition occurs
during execution of an input/output statement and
no error condition occurs.

IOSTAT_EOR The value assigned to the variable specified in an
IOSTAT= specifier if an end-of-record condition
occurs during execution of an input/output
statement and no error condition occurs.

IOSTAT_INQUIRE_INTERNAL_UNIT The value assigned to the variable specified in an
IOSTAT= specifier in an INQUIRE statement if the
unit number identifies an internal unit. This is a
negative value, indicating an error condition.

LOGICAL_KINDS The kind type parameter supported by the
processor that is used when defining variables of
type logical. This is a default integer array constant.
The rank of the array is one, its lower bound is one,
and its size is the number of logical kinds
supported. In Intel® Fortran its value is [1, 2, 4, 8].

LOGICAL8
LOGICAL16
LOGICAL32
LOGICAL64

The kind type parameter supported by the
processor that is used when defining variables of
type logical. This a default integer array constant.
The rank of the array is one, it’s lower bound is
one, and its size is the number of logical kinds
supported by the processor. In Intel Fortran its
value is [1, 2, 4, 8].

NUMERIC_STORAGE_SIZE The size of the numeric storage unit expressed in
bits.

OUTPUT_UNIT Identifies the preconnected external unit as the one
specified by an asterisk in a WRITE statement. To
use this constant, compiler option assume
noold_unit_star must be enabled.

PARENT_TEAM Identifies the parent team of images when used as
the LEVEL argument to the GET_TEAM intrinsic
function.

REAL_KINDS The kind type parameter supported by the
processor that is used when defining variables of
type real. This is a default integer array constant.
The rank of the array is one, its lower bound is one,
and its size is the number of real kinds supported.
In Intel Fortran its value is [4, 8, 16].

 1 Intel® Fortran Compiler Classic and Intel® Fortran Compiler Developer Guide and Reference

858

Named Constant Definition

REAL16
REAL32
REAL64
REAL128

The kind type parameters that specify a real type
whose storage size is 16 bits, 32 bits, 64 bits, and
128 bits, respectively. If, for any of these
constants, the processor supports more than one
kind of that size, the kind value is determined by
the processor. If the processor supports no kind of
a particular size, that constant is equal to -2 if the
processor supports kinds of a larger size;
otherwise, -1. In Intel Fortran, their respective
values are -2, 4, 8, and 16.

STAT_FAILED_IMAGE The value assigned to the variable specified in a
STAT= specifier of an image control statement or
coindexed object reference, or the STAT argument
of a collective or atomic subroutine if an image
involved in the execution of that statement,
reference, or subroutine has failed.

STAT_LOCKED The value assigned to the variable specified in a
STAT= specifier of a LOCK statement if the lock
variable is locked by the executing image.

STAT_LOCKED_OTHER_IMAGE The value assigned to the variable specified in a
STAT= specifier of an UNLOCK statement if the lock
variable is locked by another image.

STAT_STOPPED_IMAGE The value assigned to the variable specified in a
STAT= specifier of a statement if execution of the
statement requires synchronization with an image
that has initiated normal termination (an image
control statement). It is the value assigned to the
STAT variable of a collective subroutine if the
current team contains images that inititiated
normal termination.

STAT_UNLOCKED The value assigned to the variable specified in a
STAT= specifier of an UNLOCK statement if the lock
variable is unlocked.

STAT_UNLOCKED_FAILED_IMAGE The value assigned to the STAT= specifier of a
LOCK statement if the lock variable is unlocked
because the image that locked it has failed.

Derived Types in the ISO_FORTRAN_ENV Module

The ISO_FORTRAN_ENV intrinsic module provides the following predefined derived types.

EVENT_TYPE This is a derived type with private components. It is
an extensible type with no type parameters. Each
component that is nonallocatable is initialized by
default.

A scalar variable of type EVENT_TYPE is an event
variable. The value of an event variable contains its
event count, which is modified by a sequence of
EVENT POST and EVENT WAIT statements. A
modification to the event count is as if the intrinsic
ATOMIC_ADD were executed with a variable that
stores the count as its ATOM argument.

Intel® Fortran Compiler Classic and Intel® Fortran Compiler Developer Guide and Reference 1

859

A coarray that is of type EVENT_TYPE can be
referenced or defined during execution of a
segment that is unordered relative to the execution
of another segment in which that coarray is
defined. The event count is an integer of
ATOMIC_INT_KIND. The initial value of the event
count of a variable of type EVENT_TYPE is zero.

A named entity with declared type EVENT_TYPE, or
which has a noncoarray potential subobject
component with declared type EVENT_TYPE, must
be a variable. A component with type EVENT_TYPE
must be a data component.

A named variable with declared type EVENT_TYPE
must be a coarray. A named variable with a
noncoarray potential subobject component of type
EVENT TYPE must be a coarray.

An event variable must not appear in a variable-
definition context except as the event-var
argument in an EVENT POST or EVENT WAIT
statement, as an allocatable object, or as an actual
argument in a reference to a procedure with an
explicit interface if the corresponding dummy
argument has INTENT(INOUT).

A variable with a nonpointer subobject of type
EVENT_TYPE must not appear in a variable-
definition context except as an allocatable object in
an ALLOCATE statement without a SOURCE=
specifier, as an allocatable object in a DEALLOCATE
statement, or as an actual argument in a reference
to a procedure with an explicit interface if the
corresponding dummy argument has
INTENT(INOUT).

If EXTENDS appears in a TYPE statement and the
type being defined has a potential subobject
component of type EVENT_TYPE, its parent type
must be EVENT_TYPE or LOCK_TYPE, or have a
potential subobject component of type EVENT_TYPE
or LOCK_TYPE.

LOCK_TYPE This is a derived type with private components;
none of the components can be allocatable or a
pointer. It is an extensible type with no type
parameters. It does not have the BIND (C) attribute
or type parameters, and is not a sequence type. All
components have default initialization.

A scalar variable of type LOCK_TYPE is a lock
variable. A lock variable can have one of two
states: locked or unlocked. The unlocked state is
represented by the one value that is the initial
value of a LOCK_TYPE variable. The locked state is
represented by all other values. The value of a lock
variable can be changed with the LOCK and
UNLOCK statements.

A named variable of type LOCK_TYPE must be a
coarray. A named variable with a noncoarray sub-
component of type LOCK_TYPE must also be a
coarray.

 1 Intel® Fortran Compiler Classic and Intel® Fortran Compiler Developer Guide and Reference

860

A named constant cannot be of type LOCK_TYPE,
nor can it have a noncoarrray potential subobject
component with a declared type of LOCK_TYPE.

If EXTENDS appears in TYPE statement and the
type being defined has a potential subobject
component of type LOCK_TYPE, its parent type
must be EVENT_TYPE or LOCK_TYPE, or have a
potential subobject component of type EVENT_TYPE
or LOCK_TYPE.

A lock variable must not appear in a variable
definition context except as the lock-variable in a
LOCK or UNLOCK statement, as an allocatable
object, or as an actual argument in a reference to a
procedure with an explicit interface where the
corresponding dummy argument has INTENT
(INOUT).

A variable with a subobject of type LOCK_TYPE
must not appear in a variable definition context
except as an allocatable object or as an actual
argument in a reference to a procedure with an
explicit interface where the corresponding dummy
argument has INTENT (INOUT).

TEAM_TYPE This is an extensible derived type with private
components whose values can identify a team of
images. It has no type parameters, and the non-
allocatable components are initialized by default.
The initial values identify no team.

A variable of type TEAM_TYPE, or a component of a
derived type whose type is TEAM_TYPE is not
permitted to be a coarray.

Intrinsic Module Procedures - ISO_FORTRAN_ENV

The following procedures are provided with the ISO_FORTRAN_ENV intrinsic module:

• COMPILER_OPTIONS
• COMPILER_VERSION

IEEE Intrinsic Modules and Procedures

Fortran includes IEEE intrinsic modules that support IEEE arithmetic and exception handling. The modules
contain derived data types that include named constants for controlling the level of support, and intrinsic
module procedures.

To include an IEEE module in your program, specify the intrinsic module name in a USE statement; for
example:

USE,INTRINSIC :: IEEE_ARITHMETIC
You must include the INTRINSIC attribute or the processor will look for a non-intrinsic module. Once you
include a module, all related intrinsic procedures are defined.

Determining Availability of IEEE Features
Before using a particular IEEE feature, you can determine whether your processor supports it by using the
IEEE inquiry functions (listed in below section Restrictions for IEEE Intrinsic Procedures).

For example:

Intel® Fortran Compiler Classic and Intel® Fortran Compiler Developer Guide and Reference 1

861

• To determine whether IEEE arithmetic is available for a particular kind of real, use intrinsic module
function IEEE_SUPPORT_DATATYPE.

• To determine whether you can change a rounding mode, use intrinsic module function
IEEE_SUPPORT_ROUNDING.

• To determine whether a divide operation will be supported with the accuracy specified by the IEEE
standard, use intrinsic module function IEEE_SUPPORT_DIVIDE.

• To determine whether you can control halting after an exception has occurred, use intrinsic module
function IEEE_SUPPORT_HALTING.

• To determine which exceptions are supported in a scoping unit, use intrinsic module function
IEEE_SUPPORT_FLAG.

• To determine whether all IEEE features are supported, use intrinsic module function
IEEE_SUPPORT_STANDARD.

The compiler establishes the initial IEEE floating-point environment. The user can affect this initial
environment with several different command-line options. For the IEEE intrinsic module procedures to work
as defined by the Fortran Standard, the following command lines options must be set as follows:

• Option /fpe:3 (Windows*) or -fpe3 (Linux*) must be set to disable all floating-point exceptions.
• Option /Qftz- (Windows*) or -no-ftz (Linux*) must be set to disable flushing subnormal results to zero

(notice that all optimization levels, except O0, set ftz so the user has to explicitly set "no ftz").
• Option /fp:precise (Windows*) or option -fp-model=precise (Linux*) must be set to disable floating-

point exception semantics.

Restrictions for IEEE Intrinsic Procedures
The following intrinsic procedures can only be invoked if IEEE_SUPPORT_DATATYPE is true for their
arguments of type REAL:

IEEE_CLASS IEEE_REM

IEEE_COPY_SIGN IEEE_RINT

IEEE_FMA IEEE_SCALB

IEEE_IS_FINITE IEEE_SET_ROUNDING_MODE 3

IEEE_NEGATIVE IEEE_SIGNALING_EQ

IEEE_INT IEEE_SIGNALING_GE

IEEE_IS_NORMAL IEEE_SIGNALING_GT

IEEE_LOGB IEEE_SIGNALING_LE

IEEE_MAX_NUM IEEE_SIGNALING_LT

IEEE_MAX_NUM_MAG IEEE_SIGNALING_NE

IEEE_MIN_NUM IEEE_SIGNBIT

IEEE_MIN_NUM_MAG IEEE_SUPPORT_DENORMAL

IEEE_NEXT_AFTER IEEE_SUPPORT_DIVIDE

IEEE_NEXT_DOWN 1 IEEE_SUPPORT_INF

IEEE_NEXT_UP 1 IEEE_SUPPORT_IO

IEEE_QUIET_EQ IEEE_SUPPORT_NAN

IEEE_QUIET_GE IEEE_SUPPORT_ROUNDING

 1 Intel® Fortran Compiler Classic and Intel® Fortran Compiler Developer Guide and Reference

862

IEEE_QUIET_GT IEEE_SUPPORT_SQRT

IEEE_QUIET_LE IEEE_SUPPORT_SUBNORMAL

IEEE_QUIET_LT IEEE_SUPPORT_UNORDERED

IEEE_QUIET_NE IEEE_SUPPORT_VALUE

IEEE_REAL 2 IEEE_VALUE

1 IEEE_SUPPORT_INF() must be true if IEEE_NEXT_DOWN is called with the argument -HUGE (X) or if
IEEE_NEXT_UP is called with the argument HUGE (X).
2 IEEE_SUPPORT_DATATYPE (IEEE_REAL (A, KIND)) must also be true.
3 IEEE_SUPPORT_ROUNDING(ROUND_VALUE, X) must also be true.

For example, the IEEE_IS_NORMAL(X) function can only be invoked if IEEE_SUPPORT_DATATYPE(X) has the
value true. Consider the following:

USE, INTRINSIC :: IEEE_ARITHMETIC
...
 IF IEEE_SUPPORT_DATATYPE(X) THEN
 IF IEEE_IS_NORMAL(X) THEN
 PRINT *, ' X is a "normal" '
 ELSE
 PRINT *, ' X is not "normal" '
 ENDIF
 ELSE
 PRINT *, ' X is not a supported IEEE type '
 ENDIF
...

Certain other IEEE intrinsic module procedures have similar restrictions:

• IEEE_IS_NAN(X) can only be invoked if IEEE_SUPPORT_NAN(X) has the value true.
• IEEE_SET_HALTING_MODE(FLAG, HALTING) can only be invoked if IEEE_SUPPORT_HALTING(FLAG) has

the value true.
• IEEE_GET_UNDERFLOW_MODE(GRADUAL) can only be invoked if

IEEE_SUPPORT_UNDERFLOW_CONTROL(X) is true for some X.

For intrinsic module function IEEE_CLASS(X), some of the possible return values also have restrictions. These
restrictions are also true for argument CLASS in intrinsic module function IEEE_VALUE(X, CLASS):

• IEEE_POSITIVE_INF and IEEE_NEGATIVE_INF can only be returned if IEEE_SUPPORT_INF(X) has the
value true.

• IEEE_POSITIVE_DENORMAL, IEEE_POSITIVE_SUBNORMAL, IEEE_NEGATIVE_SUBNORMAL, and
IEEE_NEGATIVE_DENORMAL can only be returned if IEEE_SUPPORT_DENORMAL(X) and
IEEE_SUPPORT_SUBNORMAL(X) have the value true.

• IEEE_SIGNALING_NAN and IEEE_QUIET_NAN can only be returned if IEEE_SUPPORT_NAN(X) has the
value true.

IEEE_ARITHMETIC Intrinsic Module

The IEEE_ARITHMETIC module contains derived data types that include named constants for controlling the
level of support, and intrinsic module procedures.

The derived types in the intrinsic modules have components that are private. The IEEE_ARITHMETIC intrinsic
module supports IEEE arithmetic and features. It defines the following derived types:

• IEEE_CLASS_TYPE: Identifies a class of floating-point values. Its values are the following named
constants:

IEEE_SIGNALING_NAN IEEE_NEGATIVE_NORMAL

Intel® Fortran Compiler Classic and Intel® Fortran Compiler Developer Guide and Reference 1

863

IEEE_QUIET_NAN IEEE_POSITIVE_DENORMAL

IEEE_POSITIVE_INF IEEE_NEGATIVE_DENORMAL

IEEE_NEGATIVE_INF IEEE_POSITIVE_ZERO

IEEE_POSITIVE_NORMAL IEEE_NEGATIVE_ZERO

IEEE_OTHER_VALUE
• IEEE_ROUND_TYPE: Identifies a rounding mode. Its values are the following named constants:

IEEE_AWAY 1 IEEE_OTHER 4

IEEE_DOWN 2 IEEE_TO_ZERO 5

IEEE_NEAREST 3 IEEE_UP 6

1 Corresponds to ISO/IEC 60559:2020 rounding attribute roundTiesToAway. Intel hardware does not
support this mode.
2 Corresponds to ISO/IEC 60559:2020 rounding attribute roundTowardNegative.
3 Corresponds to ISO/IEC 60559:2020 rounding attribute roundTiesToEven.
4 Specifies the rounding mode does not conform to the IEEE standard.
5 Corresponds to ISO/IEC 60559:2020 rounding attribute roundTowardZero.
6 Corresponds to ISO/IEC 60559:2020 rounding attribute roundTowardPositive.

The IEEE_ARITHMETIC intrinsic module also defines the following operators:

• Elemental operator = = for two values of one of the above types to return true if the values are the same;
otherwise, false.

• Elemental operator /= for two values of one of the above types to return true if the values differ;
otherwise, false.

The IEEE_ARITHMETIC module includes support for IEEE_EXCEPTIONS module, and public entities in
IEEE_EXCEPTIONS module are also public in the IEEE_ARITHMETIC module.

To see a summary of all the IEEE_ARITHMETIC intrinsic procedures, see IEEE Intrinsic Modules Quick
Reference Tables

IEEE_EXCEPTIONS Intrinsic Module

The IEEE_EXCEPTIONS module contains derived data types that include named constants for controlling the
level of support, and intrinsic module procedures.

The derived types in the intrinsic modules have components that are private. The IEEE_EXCEPTIONS intrinsic
module supports the setting, clearing, saving, restoring, or testing of exception flags. It defines the following
derived types:

• IEEE_FLAG_TYPE: Identifies an exception flag for errors that occur during an IEEE arithmetic operation or
assignment. Its values are the following named constants:

IEEE_INVALID IEEE_DIVIDE_BY_ZERO

IEEE_OVERFLOW IEEE_INEXACT

IEEE_UNDERFLOW

Each of the above exceptions has a flag whose value is either quiet or signaling. The initial value is quiet
and it signals when the associated exception occurs. To determine the value of a flag, use intrinsic module
subroutine IEEE_GET_FLAG. To change the status for a flag, use intrinsic module subroutine
IEEE_SET_FLAG or IEEE_SET_STATUS.

If a flag is signaling on entry to a procedure, the processor sets it to quiet on entry and restores it to
signaling on return.

 1 Intel® Fortran Compiler Classic and Intel® Fortran Compiler Developer Guide and Reference

864

If a flag is quiet on entry to a procedure with access to modules IEEE_ARITHMETIC or IEEE_EXCEPTIONS,
and is signaling on return, the processor will not restore it to quiet.

The IEEE_FLAG_TYPE module also defines the following named array constants:

• IEEE_USUAL=(/IEEE_OVERFLOW,IEEE_DIVIDE_BY_ZERO, IEEE_INVALID/)
• IEEE_ALL=(/IEEE_USUAL,IEEE_UNDERFLOW,IEEE_INEXACT/)

• IEEE_MODES_TYPE: The floating-point modes are the values of the rounding modes, underflow mode,
and halting mode. They can be saved in a variable of type IEEE_MODES_TYPE by calling the subroutine
IEEE_GET_MODES and restored by calling the subroutine IEEE_SET_MODES.

• IEEE_STATUS_TYPE: The floating-point status can be saved in a variable of type IEEE_STATUS_TYPE by
calling the subroutine IEEE_GET_STATUS and restored by calling the subroutine IEEE_SET_STATUS.

The IEEE_ARITHMETIC module includes support for IEEE_EXCEPTIONS module, and public entities in
IEEE_EXCEPTIONS module are also public in the IEEE_ARITHMETIC module.

To see a summary of all the IEEE_EXCEPTIONS intrinsic procedures, see IEEE Intrinsic Modules Quick
Reference Tables

IEEE_FEATURES Intrinsic Module

The IEEE_FEATURES module contains derived data types that include named constants for controlling the
level of support, and intrinsic module procedures.

The derived types in the intrinsic modules have components that are private. The IEEE_FEATURES intrinsic
module supports specification of essential IEEE features. It defines the following derived type:

• IEEE_FEATURES_TYPE: Specifies IEEE features. Its values are the following named constants:

IEEE_DATATYPE IEEE_INF

IEEE_DIVIDE IEEE_NAN

IEEE_ROUNDING IEEE_INEXACT_FLAG

IEEE_SQRT IEEE_INVALID_FLAG

IEEE_SUBNORMAL IEEE_UNDERFLOW_FLAG

IEEE_HALTING

IEEE Intrinsic Modules Quick Reference Tables

This topic contains quick reference tables showing categories of IEEE intrinsic modules, a summary of the
IEEE_ARITHMETIC intrinsic procedures, and a summary of the IEEE_EXCEPTIONS intrinsic procedures.

Categories of Intrinsic Module Functions
Category Sub-category Description

IEEE Arithmetic Test IEEE values or provide features:

IEEE_CLASS, IEEE_COPY_SIGN, IEEE_FMA, IEEE_INT,
IEEE_IS_FINITE, IEEE_IS_NAN, IEEE_IS_NORMAL,
IEEE_IS_NEGATIVE, IEEE_LOGB, IEEE_MAX_NUM,
IEEE_MAX_NUM_MAG, IEEE_MIN_NUM,
IEEE_MIN_NUM_MAG, IEEE_NEXT_AFTER,
IEEE_QUIET_EQ, IEEE_QUIET_GE, IEEE_QUIET_GT,
IEEE_QUIET_LE, IEEE_QUIET_LT, IEEE_QUIET_NE,
IEEE_REAL, IEEE_REM, IEEE_RINT, IEEE_SCALB,
IEEE_SIGNALING_EQ, IEEE_SIGNALING_GE,
IEEE_SIGNALING_GT, IEEE_SIGNALING LE,
IEEE_SIGNALING _LT, IEEE_SIGNALING_NE,
IEEE_UNORDERED, IEEE_VALUE, IEEE_NEXT_DOWN,
IEEE_NEXT_UP, IEEE_SIGNBIT

Intel® Fortran Compiler Classic and Intel® Fortran Compiler Developer Guide and Reference 1

865

Category Sub-category Description

Inquiry Returns whether the processor supports certain
exceptions or IEEE features:

IEEE_SUPPORT_DATATYPE, IEEE_SUPPORT_DENORMAL,
IEEE_SUPPORT_DIVIDE, IEEE_SUPPORT_INF,
IEEE_SUPPORT_IO, IEEE_SUPPORT_NAN,
IEEE_SUPPORT_SQRT, IEEE_SUPPORT_STANDARD,
IEEE_SUPPORT_SUBNORMAL,
IEEE_SUPPORT_UNDERFLOW_CONTROL

Transformational Returns the kind type parameter of an IEEE value, or
whether the processor supports certain IEEE features:

IEEE_SELECTED_REAL_KIND, IEEE_SUPPORT_FLAG,
IEEE_SUPPORT_HALTING, IEEE_SUPPORT_ROUNDING

Summary of IEEE_ARITHMETIC Procedures

Procedure Class Value Returned or Result

IEEE_CLASS (X) E The IEEE class

IEEE_COPY_SIGN (X, Y) E An argument with a copied sign;
the IEEE copySign function

IEEE_FMA (A, B, C) E Fused multiply-add

IEEE_GET_ROUNDING_MODE
(ROUND_VALUE [, RADIX]) SI The current IEEE rounding mode

IEEE_GET_UNDERFLOW_MODE
(GRADUAL) SI The current underflow mode

IEEE_INT (A, ROUND [, KIND]) E Conversion to INTEGER data type

IEEE_IS_FINITE (X) E Whether a value is finite

IEEE_IS_NAN (X) E Whether a value is NaN

IEEE_IS_NEGATIVE (X) E Whether a value is negative

IEEE_IS_NORMAL (X) E Whether a value is normal

IEEE_LOGB (X)
E

An exponent in IEEE floating-
point format; the IEEE logB
function

IEEE_MAX_NUM (X, Y) E The maximum numeric value

IEEE_MAX_NUM_MAG (X, Y) E The maximum magnitude
numeric value

IEEE_MIN_NUM (X, Y) E The minimum numeric value

IEEE_MIN_NUM_MAG (X, Y) E The minimum magnitude numeric
value

IEEE_NEXT_AFTER (X, Y)
E

The next representable value
after X toward Y; the IEEE
nextAfter function

IEEE_NEXT_DOWN (X) E The next lower adjacent machine
number

 1 Intel® Fortran Compiler Classic and Intel® Fortran Compiler Developer Guide and Reference

866

Procedure Class Value Returned or Result

IEEE_NEXT_UP (X) E The next higher adjacent
machine number

IEEE_QUIET_EQ (A, B) E Quiet compare for equality

IEEE_QUIET_GE (A, B) E Quiet compare for greater than
or equal

IEEE_QUIET_GT (A, B) E Quiet compare for greater than

IEEE_QUIET_LE (A, B) E Quiet compare for less than or
equal

IEEE_QUIET_LT (A, B) E Quiet compare for less than

IEEE_QUIET_NE (A, B) E Quiet compare for inequality

IEEE_REAL (A [, KIND]) E Conversion to REAL data type

IEEE_REM (X, Y) E The result of a remainder
operation; the IEEE rem function

IEEE_RINT (X [, ROUND])
E

An integer value rounded
according to the current or
specified rounding mode

IEEE_SCALB (X, I) E The value of X multiplied by
2**I; the IEEE scalB function

IEEE_SELECTED_REAL_KIND ([P]
[, R]) T The kind type parameter for an

IEEE real

IEEE_SET_ROUNDING_MODE
(ROUND_VALUE [, RADIX]) SI Sets the IEEE rounding mode

IEEE_SET_UNDERFLOW_MODE
(GRADUAL) SI Sets the current underflow mode

IEEE_SIGNALING_EQ (A, B) E Signaling compare for equality

IEEE_SIGNALING_GE (A, B) E Signaling compare for greater
than or equal

IEEE_SIGNALING_GT (A, B) E Signaling compare for greater
than

IEEE_SIGNALING_LE (A, B) E Signaling compare for less than
or equal

IEEE_SIGNALING_LT (A, B) E Signaling compare for less than

IEEE_SIGNALING_NE (A, B) E Signaling compare for inequality

IEEE_SIGNBIT (X) E Tests the sign bit of X

IEEE_SUPPORT_DATATYPE ([X]) I Whether IEEE arithmetic is
supported

IEEE_SUPPORT_DENORMAL ([X]) I Whether subnormal numbers are
supported

IEEE_SUPPORT_DIVIDE ([X]) I Whether divide accuracy
compares to IEEE standard

Intel® Fortran Compiler Classic and Intel® Fortran Compiler Developer Guide and Reference 1

867

Procedure Class Value Returned or Result

IEEE_SUPPORT_INF ([X]) I Whether IEEE infinities are
supported

IEEE_SUPPORT_IO ([X])
I

Whether IEEE base conversion
rounding is supported during
formatted I/O

IEEE_SUPPORT_NAN ([X]) I Whether IEEE Not-A-Number is
supported

IEEE_SUPPORT_ROUNDING
(ROUND_VALUE [, X]) T Whether a particular rounding

mode is supported

IEEE_SUPPORT_SQRT ([X]) I Whether IEEE square root is
supported

IEEE_SUPPORT_STANDARD ([X]) I Whether all IEEE capabilities are
supported

IEEE_SUPPORT_SUBNORMAL
([X]) I Whether subnormal numbers are

supported

IEEE_SUPPORT_UNDERFLOW_CO
NTROL(X) I Whether control of underflow

mode is supported

IEEE_UNORDERED (X, Y)
E

Whether one or both arguments
are NaN; the IEEE unordered
function

IEEE_VALUE (X, CLASS) E An IEEE value

Key to Classes

E-Elemental function

I-Inquiry

SI-Impure Subroutine

T-Transformational

Summary of IEEE_EXCEPTIONS Procedures

Procedure Class Value Returned or Result

IEEE_GET_FLAG (FLAG,
FLAG_VALUE) ES Whether an exception flag is

signaling

IEEE_GET_HALTING_MODE
(FLAG, HALTING) ES The current halting mode for an

exception

IEEE_GET_MODES (MODES) SI The current IEEE floating-point
modes

IEEE_GET_STATUS
(STATUS_VALUE) SI The current state of the floating-

point environment

IEEE_SET_FLAG (FLAG,
FLAG_VALUE) SP Assigns a value to an exception

flag

IEEE_SET_HALTING_MODE
(FLAG, HALTING) SP Controls the halting mode after

an exception

 1 Intel® Fortran Compiler Classic and Intel® Fortran Compiler Developer Guide and Reference

868

Procedure Class Value Returned or Result

IEEE_SET_MODES (MODES) SI Restores the current IEEE
floating-point modes

IEEE_SET_STATUS
(STATUS_VALUE) SI Restores the state of the floating-

point environment

IEEE_SUPPORT_FLAG (FLAG [,
X]) T Whether an exception is

supported

IEEE_SUPPORT_HALTING (FLAG) T Whether halting after and
exception is supported

Key to Classes

ES-Elemental subroutine

SI-Impure Subroutine

SP-Pure Subroutine

T-Transformational

Block Data Program Units Overview
A block data program unit provides initial values for nonpointer variables in named common blocks. For more
information, see BLOCK DATA.

Examples
An example of a block data program unit follows:

 BLOCK DATA WORK
 COMMON /WRKCOM/ A, B, C (10,10)
 DATA A /1.0/, B /2.0/, C /100*0.0/
 END BLOCK DATA WORK

Functions, Subroutines, and Statement Functions
Functions, subroutines, and statement functions are user-written subprograms that perform computing
procedures. The computing procedure can be either a series of arithmetic operations or a series of Fortran
statements. A single subprogram can perform a computing procedure in several places in a program, to avoid
duplicating a series of operations or statements in each place.

The following table shows the statements that define these subprograms, and how control is transferred to
the subprogram:

Subprogram Defining Statements Control Transfer Method

Function FUNCTION or ENTRY Function reference1

Subroutine SUBROUTINE or ENTRY CALL statement2

Statement function Statement function definition Function reference

1 A function can also be invoked by a defined operation (see Defining Generic Operators).
2 A subroutine can also be invoked by a defined assignment (see Defining Generic Assignment).

A function reference is used in an expression to invoke a function; it consists of the function name and its
actual arguments. The function reference returns a value to the calling expression that is used to evaluate
the expression.

Intel® Fortran Compiler Classic and Intel® Fortran Compiler Developer Guide and Reference 1

869

See Also
ENTRY statement
CALL statement

General Rules for Function and Subroutine Subprograms

A subprogram can be an external, module, or internal subprogram.

The END statement for an external, module, or internal subroutine is of the form END [SUBROUTINE
[NAME]]. The END statement for an external, module, or internal function is END [FUNCTION [NAME]]. The
definition of a separate module procedure that begins with a MODULE PROCEDURE statement must end with
an END PROCEDURE [name] statement.

If a subprogram name appears after the END statement, it must be the same as the name specified in the
SUBROUTINE, FUNCTION, or MODULE PROCEDURE statement.

Function and subroutine subprograms can change the values of their arguments, and the calling program can
use the changed values.

A SUBROUTINE or FUNCTION statement can be optionally preceded by an OPTIONS statement.

Dummy arguments (except for dummy pointers or dummy procedures) can be specified with an intent and
can be made optional.

Before Fortran 2018, subroutines and functions were assumed to be non-recursive by default. Procedures
had to be explicitly declared as RECURSIVE, either with the RECURSIVE keyword in the SUBROUTINE or
FUNCTION statement, by specifying an option on the command line, or in an OPTIONS statement.

Fortran 2018 made subroutines and functions recursive by default. Non-recursive procedures can be declared
as such with the NON_RECURSIVE keyword. Intel® Fortran currently treats procedures that are not
specifically declared as RECURSIVE or NON_RECURSIVE as non-recursive. To get the Fortran 2018 default
recursion behavior, specify the assume recursion or standard-semantics compiler option. This behavior
will change in a later release.

See Also
RECURSIVE and NONRECURSIVE
PURE
User-defined ELEMENTAL procedures
Module procedures
Separate module procedures
Internal procedures
External procedures
Optional arguments
INTENT attribute
standard-semantics compiler option
assume recursion compiler option

Recursive Procedures

A recursive procedure is a function or subroutine that references itself, either directly or indirectly. For more
information, see RECURSIVE.

Pure Procedures

A pure procedure is a procedure that has no side effects. For more information, see PURE.

Impure Procedures

An impure procedure is a user-defined procedure that has side effects. For more information, see IMPURE.

 1 Intel® Fortran Compiler Classic and Intel® Fortran Compiler Developer Guide and Reference

870

Elemental Procedures

An elemental procedure is a user-defined procedure defined on scalar arguments that may be called with
array arguments. An elemental procedure is pure unless you specify that it is impure. For more information,
see PURE, ELEMENTAL, and IMPURE.

Functions Overview

A function subprogram is invoked in an expression and returns a single value (a function result) that is used
to evaluate the expression. For more information, see FUNCTION.

RESULT Keyword Overview

If you use the RESULT keyword in a FUNCTION statement, you can specify a local variable name for the
function result. For more information, see RESULT.

Function References

Functions are invoked by a function reference in an expression or by a defined operation.

A function reference takes the following form:

fun ([a-arg [, a-arg] ...])

fun Is the name of the function subprogram, a dummy procedure, or a
procedure pointer.

a-arg Is an actual argument optionally preceded by [keyword=], where
keyword is the name of a dummy argument in the explicit interface
for the function. The keyword is assigned a value when the procedure
is invoked.

Each actual argument must be a variable, an expression, or the name
of a procedure. (It must not be the name of an internal procedure,
statement function, or the generic name of a procedure.)

Description
When a function is referenced, each actual argument is associated with the corresponding dummy argument
by its position in the argument list or by the name of its keyword. The arguments must agree in type and
kind parameters.

Execution of the function produces a result that is assigned to the function name or to the result name,
depending on whether the RESULT keyword was specified.

The program unit uses the result value to complete the evaluation of the expression containing the function
reference.

If positional arguments and argument keywords are specified, the argument keywords must appear last in
the actual argument list.

If a dummy argument is optional, the actual argument can be omitted.

If a dummy argument is specified with the INTENT attribute, its use may be limited. A dummy argument
whose intent is not specified is subject to the limitations of its associated actual argument.

An actual argument associated with a dummy procedure must be the specific name of a procedure, or be
another dummy procedure. Certain specific intrinsic function names must not be used as actual arguments
(see table Specific Functions Not Allowed as Actual Arguments in Intrinsic Procedures). Specific names for
intrinsic functions are an obsolescent feature in the Fortran standard.

Intel® Fortran Compiler Classic and Intel® Fortran Compiler Developer Guide and Reference 1

871

Examples
Consider the following example:

 X = 2.0
 NEW_COS = COS(X) ! A function reference

Intrinsic function COS calculates the cosine of 2.0. The value -0.4161468 is returned (in place of COS(X))
and assigned to NEW_COS.

See Also
INTENT attribute
Defining Generic Operators
Dummy Procedure Arguments
Intrinsic Procedures
Optional arguments
RESULT keyword
FUNCTION statement
Argument Association for details on procedure arguments

Subroutines Overview

A subroutine subprogram is invoked in a CALL statement or by a defined assignment statement, and does
not return a particular value. For more information, see SUBROUTINE.

Statement Functions Overview

A statement function is a procedure defined by a single statement in the same program unit in which the
procedure is referenced. For more information, see Statement Function.

Entry Points in Subprograms

The ENTRY statement provides multiple entry points within a subprogram. It is not executable and must
precede any CONTAINS statement (if any) within the subprogram. For more information on the ENTRY
statement, see ENTRY.

Entry Points in Function Subprograms

If the ENTRY statement is contained in a function subprogram, it defines an additional function. The name of
the function is the name specified in the ENTRY statement, and its result variable is the entry name or the
name specified by RESULT (if any).

If the entry result variable has the same characteristics as the FUNCTION statement's result variable, their
result variables identify the same variable, even if they have different names. Otherwise, the result variables
are storage associated and must all be nonpointer scalars of intrinsic type, in one of the following groups:

Group 1 Type default integer, default real, double precision
real, default complex, double complex, or default
logical

Group 2 Type REAL(16) and COMPLEX(16)

Group 3 Type default character (with identical lengths)

All entry names within a function subprogram are associated with the name of the function subprogram.
Therefore, defining any entry name or the name of the function subprogram defines all the associated names
with the same data type. All associated names with different data types become undefined.

 1 Intel® Fortran Compiler Classic and Intel® Fortran Compiler Developer Guide and Reference

872

If RECURSIVE, NONRECURSIVE, ELEMENTAL, PURE, or IMPURE are specified in the FUNCTION statement, all
entry points in the FUNCTION have these attributes. The interface of the function defined by the ENTRY
statement is explicit within the function subprogram.

Examples
The following example shows a function subprogram that computes the hyperbolic functions SINH, COSH,
and TANH:

REAL FUNCTION TANH(X)
 TSINH(Y) = EXP(Y) - EXP(-Y)
 TCOSH(Y) = EXP(Y) + EXP(-Y)

 TANH = TSINH(X)/TCOSH(X)
 RETURN

 ENTRY SINH(X)
 SINH = TSINH(X)/2.0
 RETURN

 ENTRY COSH(X)
 COSH = TCOSH(X)/2.0
 RETURN
END

See Also
RESULT keyword

Entry Points in Subroutine Subprograms

If the ENTRY statement is contained in a subroutine subprogram, it defines an additional subroutine. The
name of the subroutine is the name specified in the ENTRY statement.

If RECURSIVE, NONRECURSIVE, ELEMENTAL, PURE, or IMPURE are specified in the SUBROUTINE statement,
all entry points in the subroutine have these attributes. The interface of the subroutine defined by the ENTRY
statement is explicit within the subroutine subprogram.

Examples
The following example shows a main program calling a subroutine containing an ENTRY statement:

PROGRAM TEST
 ...
 CALL SUBA(A, B, C) ! A, B, and C are actual arguments
 ... ! passed to entry point SUBA
END
SUBROUTINE SUB(X, Y, Z)
 ...
 ENTRY SUBA(Q, R, S) ! Q, R, and S are dummy arguments
 ... ! Execution starts with this statement
END SUBROUTINE

The following example shows an ENTRY statement specifying alternate returns:

CALL SUBC(M, N, *100, *200, P)
...
SUBROUTINE SUB(K, *, *)
 ...
 ENTRY SUBC(J, K, *, *, X)
 ...
 RETURN 1
 RETURN 2
END

Intel® Fortran Compiler Classic and Intel® Fortran Compiler Developer Guide and Reference 1

873

Note that the CALL statement for entry point SUBC includes actual alternate return arguments. The RETURN
1 statement transfers control to statement label 100 and the RETURN 2 statement transfers control to
statement label 200 in the calling program.

External Procedures
External procedures are user-written functions or subroutines. They are located outside of the main program
and can't be part of any other program unit.

External procedures can be invoked by the main program or any procedure of an executable program.

External procedures can include internal subprograms (defining internal procedures). Internal subprograms
are defined in the internal-subprogram-part that appears after a CONTAINS statement.

An external procedure can reference itself (directly or indirectly) if it has the RECURSIVE function attribute.

The interface of an external procedure is implicit unless an interface block is supplied for the procedure.

See Also
Functions, Subroutines, and Statement Functions
Procedure Interfaces

Internal Procedures
Internal procedures are functions or subroutines that are defined in the internal-subprogram-part of a main
program, a subroutine or function program unit, or a module procedure in a program unit. The program unit
or module procedure in which the internal procedure appears is called its host.

An internal procedure takes the following form:

CONTAINS

internal-subprogram

[internal-subprogram] ...

internal-subprogram Is a function or subroutine subprogram that defines the procedure. An
internal subprogram must not contain any other internal subprograms.

Description
Internal procedures are the same as external procedures, except for the following:

• An internal procedure can be called from its host, or it can be invoked through a procedure pointer or a
dummy procedure outside its host.

If it references a data object from its host, the object must have the SAVE attribute (implicitly or
explicitly), be allocated if it is allocatable, and be associated if it is a pointer when the host program unit is
not active in the call list.

• An internal procedure has access to host entities by host association; that is, names declared in the host
program unit are useable within the internal procedure.

• An internal procedure must not contain an ENTRY statement.
• The name of the internal procedure is not a global name.

An internal procedure can reference itself (directly or indirectly); it can be referenced in the execution part of
its host and in the execution part of any internal procedure contained in the same host (including itself).

The interface of an internal procedure is always explicit.

Examples
The following example shows an internal procedure:

PROGRAM COLOR_GUIDE
...
 CONTAINS

 1 Intel® Fortran Compiler Classic and Intel® Fortran Compiler Developer Guide and Reference

874

 FUNCTION HUE(BLUE) ! An internal procedure
 ...
 END FUNCTION HUE
END PROGRAM

The following example program contains an internal subroutine find, which performs calculations that the
main program then prints. The variables a, b, and c declared in the host program are also known to the
internal subroutine.

 program INTERNAL
 ! shows use of internal subroutine and CONTAINS statement
 real a,b,c
 call find
 print *, c
 contains
 subroutine find
 read *, a,b
 c = sqrt(a**2 + b**2)
 end subroutine find
 end

See Also
Functions, Subroutines, and Statement Functions
Host association
Procedure Interfaces
CONTAINS statement

Argument Association in Procedures
Procedure arguments provide a way for different program units to access the same data.

When a procedure is referenced in an executable program, the program unit invoking the procedure can use
one or more actual arguments to pass values to the procedure's dummy arguments. The dummy arguments
are associated with their corresponding actual arguments when control passes to the subprogram.

In general, when control is returned to the calling program unit, the last value assigned to a dummy
argument is assigned to the corresponding actual argument.

An actual argument can be a variable, expression, or procedure name. The type and kind parameters, and
rank of the actual argument must match those of its associated dummy argument.

A dummy argument is either a dummy data object, a dummy procedure or procedure pointer, or an alternate
return specifier (*). Except for alternate return specifiers, dummy arguments can be optional.

If argument keywords are not used, argument association is positional. The first dummy argument becomes
associated with the first actual argument, and so on. If argument keywords are used, arguments are
associated by the keyword name, so actual arguments can be in a different order than dummy arguments.

A keyword is required for an argument only if a preceding optional argument is omitted or if the argument
sequence is changed.

A scalar dummy argument can be associated with only a scalar actual argument.

If a dummy argument is an array, it must be no larger than the array that is the actual argument. You can
use adjustable or assumed shape arrays to process arrays of different sizes and shapes in a single
subprogram.

An actual argument associated with a dummy argument that is allocatable or a pointer must have the same
type parameters as the dummy argument.

A dummy argument referenced as a subprogram must be associated with an actual argument that has been
declared EXTERNAL or INTRINSIC in the calling routine.

If a scalar dummy argument is of type character, its length must not be greater than the length of its
associated actual argument.

Intel® Fortran Compiler Classic and Intel® Fortran Compiler Developer Guide and Reference 1

875

If the character dummy argument's length is specified as *(*) (assumed length), it uses the length of the
associated actual argument.

Once an actual argument has been associated with a dummy argument, no action can be taken that affects
the value or availability of the actual argument, except indirectly through the dummy argument. For
example, if the following statement is specified:

 CALL SUB_A (B(2:6), B(4:10))
B(4:6) must not be defined, redefined, or become undefined through either dummy argument, since it is
associated with both arguments. However, B(2:3) is definable through the first argument, and B(7:10) is
definable through the second argument.

Similarly, if any part of the actual argument is defined through a dummy argument, the actual argument can
only be referenced through that dummy argument during execution of the procedure. For example, if the
following statements are specified:

 MODULE MOD_A
 REAL :: A, B, C, D
 END MODULE MOD_A

 PROGRAM TEST
 USE MOD_A
 CALL SUB_1 (B)
 ...
 END PROGRAM TEST

 SUBROUTINE SUB_1 (F)
 USE MOD_A
 ...
 WRITE (*,*) F
 END SUBROUTINE SUB_1

Variable B must not be directly referenced during the execution of SUB_1 because it is being defined through
dummy argument F. However, B can be indirectly referenced through F (and directly referenced when SUB_1
completes execution).

The ultimate argument is the effective argument if the effective argument is not a dummy argument or a
subobject of a dummy argument. If the effective argument is a dummy argument, the ultimate argument is
the ultimate argument of that dummy argument. If the effective argument is a subobject of a dummy
argument, the ultimate argument is the corresponding subobject of the ultimate argument of that dummy
argument.

Consider the following sequence of subroutine calls:

INTEGER :: X(100)
CALL SUBA (X)
...
SUBROUTINE SUBA(A)
INTEGER :: A(:)
CALL SUBB (A(1:5), A(5:1:-1))
...
SUBROUTINE SUBB(B, C)
INTEGER :: B(:), C(:)

The ultimate argument of B is X(1:5). The ultimate argument of C is X(5:1:-1), which is not the same object
as the ultimate argument of B.

The following sections provide more details on arguments.

See Also
CALL for details on argument keywords in subroutine references
Function References for details on argument keywords in function references

 1 Intel® Fortran Compiler Classic and Intel® Fortran Compiler Developer Guide and Reference

876

Optional Arguments

Dummy arguments can be made optional if they are declared with the OPTIONAL attribute. In this case, an
actual argument does not have to be supplied for it in a procedure reference.

If argument keywords are not used, argument association is positional. The first dummy argument becomes
associated with the first actual argument, and so on. If argument keywords are used, arguments are
associated by the keyword name, so actual arguments can be in a different order than dummy arguments. A
keyword is required for an argument only if a preceding optional argument is omitted or if the argument
sequence is changed.

Positional arguments (if any) must appear first in an actual argument list, followed by keyword arguments (if
any). If an optional argument is the last positional argument, it can simply be omitted if desired.

However, if the optional argument is to be omitted but it is not the last positional argument, keyword
arguments must be used for any subsequent arguments in the list.

Optional arguments must have explicit procedure interfaces so that appropriate argument associations can
be made.

The PRESENT intrinsic function can be used to determine if an actual argument is associated with an optional
dummy argument in a particular reference.

A dummy argument or an entity that is host associated with a dummy argument is not present if any of the
following are true for the dummy argument:

• It does not correspond to an actual argument.
• It corresponds to an actual argument that is not present.
• It does not have the ALLOCATABLE or POINTER attribute, and corresponds to one of the following:

• An actual argument that has the ALLOCATABLE attribute and is not allocated
• An actual argument that has the POINTER attribute and is disassociated

The following example shows optional arguments:

 PROGRAM RESULT
 TEST_RESULT = LGFUNC(A, B=D)
 ...
 CONTAINS
 FUNCTION LGFUNC(G, H, B)
 OPTIONAL H, B
 ...
 END FUNCTION
 END

In the function reference, A is a positional argument associated with required dummy argument G. The
second actual argument D is associated with optional dummy argument B by its keyword name (B). No
actual argument is associated with optional argument H.

The following shows another example:

 ! Arguments can be passed out of order, but must be
 ! associated with the correct dummy argument.
 CALL EXT1 (Z=C, X=A, Y=B)
 . . .
 END

 SUBROUTINE EXT1(X,Y,Z)
 REAL X, Y
 REAL, OPTIONAL :: Z
 . . .
 END SUBROUTINE

In this case, argument A is associated with dummy argument X by explicit assignment. Once EXT1 executes
and returns, A is no longer associated with X, B is no longer associated with Y, and C is no longer associated
with Z.

Intel® Fortran Compiler Classic and Intel® Fortran Compiler Developer Guide and Reference 1

877

If you pass an omitted dummy argument as the actual argument to a procedure, the corresponding dummy
argument is considered to be omitted as well. This rule applies to both intrinsic and non-intrinsic procedures.
For example:

CALL SUB1()
CONTAINS
 SUBROUTINE SUB1(B)
 LOGICAL, OPTIONAL :: B
 PRINT *, INDEX('Fortran','r',BACK=B) ! Prints 3
 CALL SUB2(B) ! Same as CALL SUB2()
 END SUBROUTINE SUB1

 SUBROUTINE SUB2(C)
 LOGICAL, OPTIONAL :: C
 PRINT *, PRESENT(C) ! Prints F
 END SUBROUTINE SUB2
END

See Also
OPTIONAL attribute
PRESENT intrinsic function
Argument association for details on general rules for procedure argument association
CALL for details on argument keywords in subroutine references
Function References for details on argument keywords in function references

Array Arguments

Arrays are sequences of elements. Each element of an actual array is associated with the element of the
dummy array that has the same position in array element order.

If the dummy argument is an explicit-shape or assumed-size array, the size of the dummy argument array
must not exceed the size of the actual argument array.

The type and kind parameters of an explicit-shape or assumed-size dummy argument must match the type
and kind parameters of the actual argument, but their ranks need not match.

If the dummy argument is an assumed-shape array, the size of the dummy argument array is equal to the
size of the actual argument array. The associated actual argument must not be an assumed-size array or a
scalar (including a designator for an array element or an array element substring).

If the actual argument is an array section with a vector subscript, the associated dummy argument must not
be defined and it must not have the INTENT (OUT), INTENT (INOUT), VOLATILE, or ASYNCHRONOUS
attribute.

If an actual argument is an array section or an assumed-shape array, and the corresponding dummy
argument has either the VOLATILE or ASYNCHRONOUS attribute, that dummy argument must be an
assumed-shape array.

If an actual argument is a pointer array, and the corresponding dummy argument has either the VOLATILE or
ASYNCHRONOUS attribute, that dummy argument must be an assumed-shape array or a pointer array.

The declaration of an array used as a dummy argument can specify the lower bound of the array.

If a dummy argument is allocatable, the actual argument must be allocatable and the type parameters and
ranks must agree. An example of an allocatable function with allocatable arrays appears in FUNCTION.

Dummy argument arrays declared as assumed-shape, deferred-shape, or pointer arrays require an explicit
interface visible to the caller.

See Also
Arrays
Array association
Procedure Interfaces

 1 Intel® Fortran Compiler Classic and Intel® Fortran Compiler Developer Guide and Reference

878

Argument association for details on general rules for procedure argument association
Array Elements for details on array element order
Explicit-Shape Specifications for details on explicit-shape arrays
Assumed-Shape Specifications for details on assumed-shape arrays
Assumed-Size Specifications for details on assumed-size arrays

Pointer Arguments

An argument is a pointer if it is declared with the POINTER attribute.

When a procedure is invoked, the dummy argument pointer receives the pointer association status of the
actual argument. If the actual argument is currently associated, the dummy argument becomes associated
with the same target.

The pointer association status of the dummy argument can change during the execution of the procedure,
and any such changes are reflected in the actual argument.

If both the dummy and actual arguments are pointers, an explicit interface is required.

A dummy argument that is a pointer can be associated only with an actual argument that is a pointer.
However, an actual argument that is a pointer can be associated with a nonpointer dummy argument. In this
case, the actual argument is associated with a target and the dummy argument, through argument
association, also becomes associated with that target.

If the dummy argument does not have the TARGET or POINTER attribute, any pointers associated with the
actual argument do not become associated with the corresponding dummy argument when the procedure is
invoked.

If the dummy argument has the TARGET attribute, and is either a scalar or assumed-shape array, and the
corresponding actual argument has the TARGET attribute but is not an array section with a vector subscript,
the following occurs:

• Any pointer associated with the actual argument becomes associated with the corresponding dummy
argument when the procedure is invoked.

• Any pointers associated with the dummy argument remain associated with the actual argument when
execution of the procedure completes.

If the dummy argument has the TARGET attribute, and is an explicit-shape or assumed-size array, and the
corresponding actual argument has the TARGET attribute but is not an array section with a vector subscript,
association of actual and corresponding dummy arguments when the procedure is invoked or when execution
is completed is processor dependent.

If the dummy argument has the TARGET attribute and the corresponding actual argument does not have that
attribute or is an array section with a vector subscript, any pointer associated with the dummy argument
becomes undefined when execution of the procedure completes.

See Also
POINTER statement and attribute
Pointer assignments
TARGET statement and attribute
Argument association for details on general rules for procedure argument association

Passed-Object Dummy Arguments

A procedure component or a binding procedure (type-bound procedure) can be declared to have a passed-
object dummy argument. This kind of argument is associated with a special actual argument, which is not
explicitly written in the actual argument list. The appropriate actual argument is then added to the argument
list.

A passed-object dummy argument must be a scalar. It must not be a pointer, must not be allocatable, and all
its length type parameters must be assumed. Its declared type must be the type in which the component or
binding procedure appears.

The determination of the passed-object dummy argument depends on the following:

Intel® Fortran Compiler Classic and Intel® Fortran Compiler Developer Guide and Reference 1

879

• The PASS and NOPASS attributes specified or in effect
• The interface of the procedure component or binding procedure

The following rules apply to PASS and NOPASS:

• PASS and NOPASS are mutually exclusive. You can only specify one of these attributes for the same
procedure component or binding.

• If you specify PASS (arg-name), dummy argument arg-name is the passed-object dummy argument. The
interface of the procedure pointer component or binding procedure must have a dummy argument named
arg-name.

• If NOPASS is specified, there is no passed-object dummy argument.
• NOPASS must be specified if the procedure component or binding procedure has an implicit interface.
• If you do not specify PASS or NOPASS, or you specify PASS without arg-name, the first dummy argument

of a procedure pointer component or binding procedure is the passed-object dummy argument. In this
case, there must be at least one dummy argument.

The following shows an example of a passed-object dummy argument:

TYPE my_type
 INTEGER :: count
 PROCEDURE(abs_iface),POINTER, PASS (me) :: proc_ptr
END TYPE
ABSTRACT INTERFACE
 SUBROUTINE abs_iface (da, me)
 IMPORT my_type
 REAL :: da
 CLASS(my_type) :: me
 END SUBROUTINE
END INTERFACE
. . .
TYPE (my_type) :: var
my_var => my_subroutine
CALL my_var%proc_ptr (100.0)

The above call statement is the same as CALL my_subroutine (100.0, var).

See Also
TYPE
Passed-Object Dummy Arguments

Assumed-Length Character Arguments

An assumed-length character argument is a dummy argument that assumes the length attribute of its
corresponding actual argument. An asterisk (*) specifies the length of the dummy character argument.

A character array dummy argument can also have an assumed length. The length of each element in the
dummy argument is the length of the elements in the actual argument. The assumed length and the array
declarator together determine the size of the assumed-length character array.

The following example shows an assumed-length character argument:

 INTEGER FUNCTION ICMAX(CVAR)
 CHARACTER*(*) CVAR
 ICMAX = 1
 DO I=2,LEN(CVAR)
 IF (CVAR(I:I) .GT. CVAR(ICMAX:ICMAX)) ICMAX=I
 END DO
 RETURN
 END

The function ICMAX finds the position of the character with the highest ASCII code value. It uses the length
of the assumed-length character argument to control the iteration. Intrinsic function LEN determines the
length of the argument.

 1 Intel® Fortran Compiler Classic and Intel® Fortran Compiler Developer Guide and Reference

880

The length of the dummy argument is determined each time control transfers to the function. The length of
the actual argument can be the length of a character variable, array element, substring, or expression. Each
of the following function references specifies a different length for the dummy argument:

 CHARACTER VAR*10, CARRAY(3,5)*20
 ...
 I1 = ICMAX(VAR)
 I2 = ICMAX(CARRAY(2,2))
 I3 = ICMAX(VAR(3:8))
 I4 = ICMAX(CARRAY(1,3)(5:15))
 I5 = ICMAX(VAR(3:4)//CARRAY(3,5))

See Also
LEN intrinsic function
Argument association for details on general rules for procedure argument association

Character Constant and Hollerith Arguments

If an actual argument is a character constant (for example, 'ABCD'), the corresponding dummy argument
must be of type character. If an actual argument is a Hollerith constant (for example, 4HABCD), the
corresponding dummy argument must have a numeric data type.

The following example shows character and Hollerith constants being used as actual arguments:

 SUBROUTINE S(CHARSUB, HOLLSUB, A, B)
 EXTERNAL CHARSUB, HOLLSUB
 ...
 CALL CHARSUB(A, 'STRING')
 CALL HOLLSUB(B, 6HSTRING)

The subroutines CHARSUB and HOLLSUB are themselves dummy arguments of the subroutine S. Therefore,
the actual argument 'STRING' in the call to CHARSUB must correspond to a character dummy argument,
and the actual argument 6HSTRING in the call to HOLLSUB must correspond to a numeric dummy argument.

See Also
Argument association for details on general rules for procedure argument association

Alternate Return Arguments

Alternate return (dummy) arguments can appear in a subroutine argument list. They cause execution to
transfer to a labeled statement rather than to the statement immediately following the statement that called
the routine. The alternate return is indicated by an asterisk (*). (An alternate return is an obsolescent
feature in Standard Fortran.)

There can be any number of alternate returns in a subroutine argument list, and they can be in any position
in the list.

An actual argument associated with an alternate return dummy argument is called an alternate return
specifier; it is indicated by an asterisk (*) or ampersand (&) followed by the label of an executable branch
target statement in the same scoping unit as the CALL statement.

Alternate returns cannot be declared optional.

You can also use the RETURN statement to specify alternate returns.

The following example shows alternate return actual and dummy arguments:

 CALL MINN(X, Y, *300, *250, Z)
 ...
 SUBROUTINE MINN(A, B, *, *, C)

See Also
Argument association for details on general rules for procedure argument association
SUBROUTINE statement

Intel® Fortran Compiler Classic and Intel® Fortran Compiler Developer Guide and Reference 1

881

CALL statement
RETURN statement
Deleted and Obsolescent Language Features

Dummy Procedure Arguments

If an actual argument is a procedure, its corresponding dummy argument is a dummy procedure or a
procedure pointer. Dummy procedures can appear in function or subroutine subprograms.

The actual argument must be the specific name of an external, module, intrinsic, a procedure pointer, or
another dummy procedure. If the specific name is also a generic name, only the specific name is associated
with the dummy argument. Not all specific intrinsic procedures can appear as actual arguments. (For more
information, see table Specific Functions Not Allowed as Actual Arguments in Intrinsic Procedures.) Specific
names for intrinsic functions are an obsolescent feature in the Fortran standard.

The actual argument and corresponding dummy procedure must both be subroutines or both be functions.

If the interface of the dummy procedure is explicit, the type and kind parameters, and rank of the associated
actual procedure must be the same as that of the dummy procedure.

If the interface of the dummy procedure is implicit and the procedure is referenced as a subroutine, the
actual argument must be a subroutine, a procedure pointer associated with a subroutine, or a dummy
procedure.

If the interface of the dummy procedure is implicit and the procedure is referenced as a function or is
explicitly typed, the actual argument must be a function, a procedure pointer associated with a function, or a
dummy procedure.

Dummy procedures can be declared optional, but they must not be declared with an intent.

The following is an example of a procedure used as an argument:

 REAL FUNCTION LGFUNC(BAR)
 INTERFACE
 REAL FUNCTION BAR(Y)
 REAL, INTENT(IN) :: Y
 END
 END INTERFACE
 ...
 LGFUNC = BAR(2.0)
 ...
 END FUNCTION LGFUNC

See Also
Argument association for details on general rules for procedure argument association

Coarray Dummy Arguments

If a dummy argument is a coarray, the corresponding actual argument must be a coarray and must have the
VOLATILE attribute if and only if the dummy argument has the VOLATILE attribute.

If a dummy argument is an array coarray that has the CONTIGUOUS attribute or is not of assumed shape,
the corresponding actual argument must be simply contiguous.

Examples
When a procedure is invoked on a particular image, each dummy coarray is associated with its ultimate
argument on the image. During the execution of the procedure, this image can access the coarray
corresponding to the ultimate argument on any other image. For example, consider the following:

INTERFACE
 SUBROUTINE MY_SUB(Y)
 REAL :: Y[*]
 END SUBROUTINE MY_SUB
END INTERFACE

 1 Intel® Fortran Compiler Classic and Intel® Fortran Compiler Developer Guide and Reference

882

...
REAL :: B(700)[:]
...
CALL MY_SUB(B(10))

When subroutine MY_SUB is invoked, the executing image has access through the syntax Y[P] to B(10) on
image P.

Each invocation of a procedure with a nonallocatable coarray dummy argument establishes a dummy coarray
for the image with its own bounds and cobounds. During the execution of the procedure, this image may use
its own bounds and cobounds to access the coarray corresponding to the ultimate argument on any other
image. For example, consider the following:

INTERFACE
 SUBROUTINE MY_SUB(Y,I)
 INTEGER :: I
 REAL :: Y(I,I)[I,*]
 END SUBROUTINE MY_SUB
END INTERFACE
...
REAL :: B(1000)[:]
...
CALL MY_SUB(B,10)

When subroutine MY_SUB is invoked, the executing image has access through the syntax Y(1,2)[3,4] to
B(11) on the image with image index 33.

See Also
Image Control Statements

References to Generic Procedures

Generic procedures are procedures with different specific names that can be accessed under one generic
(common) name. In FORTRAN 77, generic procedures were limited to intrinsic procedures. In the current
Fortran standard, you can use generic interface blocks to specify generic properties for intrinsic and user-
defined procedures.

If you refer to a procedure by using its generic name, the selection of the specific routine is based on the
number of arguments and the type and kind parameters, and rank of each argument.

All procedures given the same generic name must be subroutines, or all must be functions. Any two must
differ enough so that any invocation of the procedure is unambiguous.

The following sections describe references to generic intrinsic functions and show an example of using
intrinsic function names.

See Also
Unambiguous Generic Procedure References
Intrinsic procedures
Resolving Procedure References
Defining Generic Names for Procedures for details on user-defined generic procedures

References to Generic Intrinsic Functions

The generic intrinsic function name COS lists six specific intrinsic functions that calculate cosines: COS,
DCOS, QCOS, CCOS, CDCOS, and CQCOS. These functions return different values: REAL(4), REAL(8),
REAL(16), COMPLEX(4), COMPLEX(8), and COMPLEX(16) respectively.

If you invoke the cosine function by using the generic name COS, the compiler selects the appropriate
routine based on the arguments that you specify. For example, if the argument is REAL(4), COS is selected;
if it is REAL(8), DCOS is selected; and if it is COMPLEX(4), CCOS is selected.

Intel® Fortran Compiler Classic and Intel® Fortran Compiler Developer Guide and Reference 1

883

You can also explicitly refer to a particular routine. For example, you can invoke the double-precision cosine
function by specifying DCOS.

Procedure selection occurs independently for each generic reference, so you can use a generic reference
repeatedly in the same program unit to access different intrinsic procedures.

You cannot use generic function names to select intrinsic procedures if you use them as follows:

• The name of a statement function
• A dummy argument name, a common block name, or a variable or array name

When an intrinsic function is passed as an actual argument to a procedure, its specific name must be used,
and when called, its arguments must be scalar. Not all specific intrinsic functions can appear as actual
arguments. (For more information, see table Specific Functions Not Allowed as Actual Arguments in Intrinsic
Procedures.) Specific names for intrinsic functions are an obsolescent feature in the Fortran standard.

A reference to a generic intrinsic procedure name in a program unit does not prevent use of the name for
other purposes elsewhere in the program.

Normally, an intrinsic procedure name refers to the Fortran library procedure with that name. However, the
name can refer to a user-defined procedure when the name appears in an EXTERNAL statement.

NOTE
If you call an intrinsic procedure by using the wrong number of arguments or an incorrect argument
type, the compiler assumes you are referring to an external procedure. For example, intrinsic
procedure SIN requires one argument; if you specify two arguments, such as SIN(10,4), the compiler
assumes SIN is external and not intrinsic.

The data type of an intrinsic procedure does not change if you use an IMPLICIT statement to change the
implied data type rules.

Intrinsic and user-defined procedures cannot have the same name if they appear in the same program unit.

An intrinsic generic name can be extended or redefined in a generic interface block. If a generic interface has
the same generic interface as an intrinsic procedure, the intrinsic is not accessible through the generic name
if the intrinsic procedure and the procedures in the interface are not all functions or all subroutines. If an
invocation of a generic name can resolve to both an intrinsic procedure and a specific procedure in the
generic interface, the specific procedure in the interface is invoked.

Examples
The following example shows the local and global properties of an intrinsic function name. It uses the name
SIN in different procedures as follows:

• The name of a statement function
• The generic name of an intrinsic function
• The specific name of an intrinsic function
• The name of a user-defined function

Using and Redefining an Intrinsic Function Name

! Compare ways of computing sine
 PROGRAM SINES
 DOUBLE PRECISION X, PI
 PARAMETER (PI=3.141592653589793238D0)
 COMMON V(3)

! Define SIN as a statement function
 SIN(X) = COS(PI/2-X)
 print *
 print *, " Way of computing SIN(X)"
 print *

 1 Intel® Fortran Compiler Classic and Intel® Fortran Compiler Developer Guide and Reference

884

 print *, " X Statement Intrinsic Intrinsic User's "
 print *, " function DSIN SIN as arg SIN "
 print *
 DO X = -PI, PI, PI/2
 CALL COMPUT(X)
! References the statement function SIN
 WRITE (6,100) X, SIN(X), V
 END DO
100 FORMAT (5F12.7)
 END

 SUBROUTINE COMPUT(Y)
 DOUBLE PRECISION Y

! Use intrinsic function SIN - double-precision DSIN will be passed
! as an actual argument
 INTRINSIC SIN
 COMMON V(3)

! Makes the generic name SIN reference the double-precision sine DSIN
 V(1) = SIN(Y)

! Use intrinsic function SIN as an actual argument - will pass DSIN
 CALL SUB(REAL(Y),SIN)
 END

 SUBROUTINE SUB(A,S)

! Declare SIN as name of a user function
 EXTERNAL SIN
! Declare SIN as type DOUBLE PRECISION
 DOUBLE PRECISION SIN
 COMMON V(3)

! Evaluate intrinsic function SIN passed as the dummy argument
 V(2) = S(A)

! Evaluate user-defined SIN function
 V(3) = SIN(A)
 END

! Define the user SIN function
 DOUBLE PRECISION FUNCTION SIN(X)
 INTEGER FACTOR
 SIN = X - X**3/FACTOR(3) + X**5/FACTOR(5) &
 - X**7/FACTOR(7)
 END

! Compute the factorial of N
 INTEGER FUNCTION FACTOR(N)
 FACTOR = 1
 DO I=N,1,-1
 FACTOR = FACTOR * I
 END DO
 END

Intel® Fortran Compiler Classic and Intel® Fortran Compiler Developer Guide and Reference 1

885

 The statement function named SIN is defined in terms of the generic function name COS. Because the
argument of COS is double precision, the double-precision cosine function is evaluated. The statement
function SIN is itself single precision.

 The statement function SIN is called.

 The name SIN is declared intrinsic so that the single-precision intrinsic sine function can be passed as an
actual argument at 5.

 The generic function name SIN is used to refer to the double-precision sine function.

 The single-precision intrinsic sine function is used as an actual argument.

 The name SIN is declared a user-defined function name.

 The type of SIN is declared double precision.

 The single-precision sine function passed at 5 is evaluated.

 The user-defined SIN function is evaluated.

 The user-defined SIN function is defined as a simple Taylor series using a user-defined function FACTOR to
compute the factorial function.

See Also
EXTERNAL attribute
INTRINSIC attribute
Intrinsic procedures
Names for details on the scope of names

References to Elemental Intrinsic Procedures

An elemental intrinsic procedure has scalar dummy arguments that can be called with scalar or array actual
arguments. If actual arguments are array-valued, they must have the same shape. There are many
elemental intrinsic functions, but only one elemental intrinsic subroutine (MVBITS).

If the actual arguments are scalar, the result is scalar. If the actual arguments are array-valued, the scalar-
valued procedure is applied element-by-element to the actual argument, resulting in an array that has the
same shape as the actual argument.

The values of the elements of the resulting array are the same as if the scalar-valued procedure had been
applied separately to the corresponding elements of each argument.

For example, if A and B are arrays of shape (5,6), MAX(A, 0.0, B) is an array expression of shape (5,6)
whose elements have the value MAX(A (i, j), 0.0, B (i, j)), where i = 1, 2,..., 5, and j = 1, 2,..., 6.

A reference to an elemental intrinsic procedure is an elemental reference if one or more actual arguments
are arrays and all array arguments have the same shape.

Examples
Consider the following:

 REAL, DIMENSION (2) :: a, b
 a(1) = 4; a(2) = 9
 b = SQRT(a) ! sets b(1) = SQRT(a(1)), and b(2) = SQRT(a(2))

See Also
Arrays
Intrinsic procedures for details on elemental procedures

 1 Intel® Fortran Compiler Classic and Intel® Fortran Compiler Developer Guide and Reference

886

References to Non-Fortran Procedures

When a procedure is called, Fortran (by default) passes the address of the actual argument, and its length if
it is of type character. To call non-Fortran procedures, you may need to pass the actual arguments in a form
different from that used by Fortran.

The built-in functions %REF and %VAL let you change the form of an actual argument. You must specify
these functions in the actual argument list of a CALL statement or function reference. You cannot use them in
any other context.

%LOC computes the internal address of a storage item.

The intrinsic module ISO_C_BINDING provides a standard set of mechanisms for calling C functions from
Fortran, and for writing Fortran procedures called from C.

Procedure Interfaces
Every procedure has an interface, which consists of the name and characteristics of a procedure, the name
and characteristics of each dummy argument, and the generic identifier (if any) by which the procedure can
be referenced. The characteristics of a procedure are fixed, but the remainder of the interface can change in
different scoping units.

If these properties are all known within the scope of the calling program, the procedure interface is explicit;
otherwise, it is implicit (deduced from its reference and declaration). The following table shows which
procedures have implicit or explicit interfaces:

Kind of Procedure Interface

External procedure Implicit 1

Module procedure Explicit

Internal procedure Explicit

Intrinsic procedure Explicit

Dummy procedure Implicit 1

Statement function Implicit

1 This kind of procedure is explicit in a scoping unit other than its own if an interface body for the
procedure is supplied or is accessible.

The interface of a recursive subroutine or function is explicit within the subprogram that defines it.

An explicit interface can come from any of the following:

• An interface block
• The procedure's definition in a module
• An internal procedure

A procedure must not access through use association its own interface.

An abstract interface lets you give a name to a set of characteristics and argument keyword names that
create an explicit interface to a procedure. It does not declare any actual procedure to have those
characteristics.

Depending on the characteristics of the procedure and its dummy arguments, an explicit interface may be
required to be visible to its caller. For more information see Procedures that Require Explicit Interfaces.

You can use a PROCEDURE declaration statement to declare procedure pointers, dummy procedures, and
external procedures. It specifies the EXTERNAL attribute for all procedure entities in the procedure
declaration list.

You can use the IMPORT statement to make host entities accessible in the interface body of an interface
block.

You can specify the ALLOCATABLE, OPTIONAL, or POINTER attributes for a dummy argument in a procedure
interface that has the BIND attribute.

Intel® Fortran Compiler Classic and Intel® Fortran Compiler Developer Guide and Reference 1

887

Examples
An example of an interface block follows:

 INTERFACE
 SUBROUTINE Ext1 (x, y, z)
 REAL, DIMENSION (100,100) :: x, y, z
 END SUBROUTINE Ext1

 SUBROUTINE Ext2 (x, z)
 REAL x
 COMPLEX (KIND = 4) z (2000)
 END SUBROUTINE Ext2

 FUNCTION Ext3 (p, q)
 LOGICAL Ext3
 INTEGER p (1000)
 LOGICAL q (1000)
 END FUNCTION Ext3
 END INTERFACE

See Also
INTERFACE
ABSTRACT INTERFACE
PROCEDURE
IMPORT

Procedures that Require Explicit Interfaces

When a procedure is referenced, it must have an explicit interface in the following cases:

• If a reference to the procedure appears in one of the following:

• An actual argument that is specified with a keyword
• In a context that requires it to be PURE

• If the procedure has a dummy argument that is one of the following:

• An object that has the ALLOCATABLE, ASYNCHRONOUS, OPTIONAL, POINTER, TARGET, VALUE, or
VOLATILE attribute

• An assumed-shape array
• A polymorphic object (an object declared with a CLASS statement)
• A coarray (an object declared with a CODIMENSION attribute or statement)
• An object of a parameterized derived type
• An object of assumed-rank or assumed-type

• If the procedure has any of the following:

• A result that is an array, a pointer, or is allocatable (functions only)
• A result whose length is neither assumed nor a constant (character functions only)

• If a reference to the procedure appears as follows:

• With an argument keyword
• As a reference by its generic name
• As a defined assignment (subroutines only)
• In an expression as a defined operator (functions only)
• In a context that requires it to be pure

• If the procedure is elemental
• If the procedure has the BIND attribute

Statement functions do not require an explicit interface.

See Also
Optional arguments

 1 Intel® Fortran Compiler Classic and Intel® Fortran Compiler Developer Guide and Reference

888

Array arguments
Pointer arguments
CALL for details on argument keywords in subroutine references
Function references for details on argument keywords in function references
Pure procedures
Elemental procedures
Procedure Interfaces
Defining Generic Names for Procedures for details on user-defined generic procedures
Defining Generic Operators for details on defined operators
Defining Generic Assignment for details on defined assignment
Parameterized Derived-Type Declarations

Explicit and Abstract Interfaces

An explicit interface defines characteristics for external, procedure pointer, or dummy procedures. It can also
be used to define a generic name for procedures, a new operator for functions, and a new form of
assignment for subroutines. For more information, see INTERFACE.

An abstract interface defines a subprogram whose name can be used in a PROCEDURE declaration statement
to declare subprograms with identical arguments and characteristics. For more information, see ABSTRACT
INTERFACE and PROCEDURE.

Define Generic Names for Procedures

An interface block or a GENERIC statement can be used to specify a generic name to reference all of the
procedures within the interface block.

The initial line for such an interface block takes the following form:

INTERFACE generic-name

generic-name Is the generic name. It can be the same as any of the procedure
names in the interface block, or the same as any accessible generic
name (including a generic intrinsic name).

A generic name can be the same as a derived-type name. In this
case, all of the procedures in the interface block must be functions.

A generic interface can be used to extend or redefine a generic intrinsic procedure.

The procedures that are given the generic name must be the same kind of subprogram: all must be
functions, or all must be subroutines.

Any procedure reference involving a generic procedure name must be resolvable to one specific procedure; it
must be unambiguous. For more information, see Unambiguous Generic Procedure References.

The following is an example of a procedure interface block defining a generic name:

INTERFACE GROUP_SUBS
 SUBROUTINE INTEGER_SUB (A, B)
 INTEGER, INTENT(INOUT) :: A, B
 END SUBROUTINE INTEGER_SUB

 SUBROUTINE REAL_SUB (A, B)
 REAL, INTENT(INOUT) :: A, B
 END SUBROUTINE REAL_SUB

 SUBROUTINE COMPLEX_SUB (A, B)
 COMPLEX, INTENT(INOUT) :: A, B
 END SUBROUTINE COMPLEX_SUB
END INTERFACE

Intel® Fortran Compiler Classic and Intel® Fortran Compiler Developer Guide and Reference 1

889

The three subroutines can be referenced by their individual specific names or by the group name
GROUP_SUBS.

The following example shows a reference to INTEGER_SUB:

INTEGER V1, V2
CALL GROUP_SUBS (V1, V2)

Consider the following:

 INTERFACE LINE_EQUATION

 SUBROUTINE REAL_LINE_EQ(X1,Y1,X2,Y2,M,B)
 REAL,INTENT(IN) :: X1,Y1,X2,Y2
 REAL,INTENT(OUT) :: M,B
 END SUBROUTINE REAL_LINE_EQ

 SUBROUTINE INT_LINE_EQ(X1,Y1,X2,Y2,M,B)
 INTEGER,INTENT(IN) :: X1,Y1,X2,Y2
 INTEGER,INTENT(OUT) :: M,B
 END SUBROUTINE INT_LINE_EQ

 END INTERFACE
In this example, LINE_EQUATION is the generic name which can be used for either REAL_LINE_EQ or
INT_LINE_EQ. Fortran selects the appropriate subroutine according to the nature of the arguments passed to
LINE_EQUATION. Even when a generic name exists, you can always invoke a procedure by its specific name.
In the previous example, you can call REAL_LINE_EQ by its specific name (REAL_LINE_EQ), or its generic
name LINE_EQUATION.

The following statement adds subroutine COMPLEX_LINE to the generic interface LINE_EQUATION. Note that
there must be an accessible explicit interface for COMPLEX_LINE.

 GENERIC :: LINE_EQUATION => COMPLEX_LINE

See Also
INTERFACE statement for details on interface blocks
GENERIC statement for an alternate to interface blocks for declaring generic procedures

Define Generic Operators

An interface block or a GENERIC statement can be used to define a generic operator. The only procedures
allowed in the interface block are functions that can be referenced as defined operations.

The initial line for such an interface block takes the following form:

INTERFACE OPERATOR (op)

op Is one of the following:

• A defined unary operator (one argument)
• A defined binary operator (two arguments)
• An extended intrinsic operator (number of arguments must be

consistent with the intrinsic uses of that operator)

The functions within the interface block must have one or two nonoptional arguments with the INTENT(IN)
and/or the VALUE attribute, and the function result must not be of type character with assumed length. A
defined operation is treated as a reference to the function.

The following shows the form (and an example) of a defined unary and defined binary operation:

Operation Form Example

Defined Unary .defined-operator. operand1 .MINUS. C

 1 Intel® Fortran Compiler Classic and Intel® Fortran Compiler Developer Guide and Reference

890

Operation Form Example

Defined Binary operand2 .defined-operator.
operand3

B .MINUS. C

1 The operand corresponds to the function's dummy argument.
2 The left operand corresponds to the first dummy argument of the function.
3 The right operand corresponds to the second argument.

For intrinsic operator symbols, the generic properties include the intrinsic operations they represent. Both
forms of each relational operator have the same interpretation, so extending one form (such as >=) defines
both forms (>= and .GE.).

The following is an example of a procedure interface block defining a new operator:

 INTERFACE OPERATOR(.BAR.)
 FUNCTION BAR(A_1)
 INTEGER, INTENT(IN) :: A_1
 INTEGER :: BAR
 END FUNCTION BAR
 END INTERFACE

The following example shows a way to reference function BAR by using the new operator:

 INTEGER B
 I = 4 + (.BAR. B)

The following is an example of a procedure interface block with a defined operator extending an existing
operator:

 INTERFACE OPERATOR(+)
 FUNCTION LGFUNC (A, B)
 LOGICAL, INTENT(IN) :: A(:), B(SIZE(A))
 LOGICAL :: LGFUNC(SIZE(A))
 END FUNCTION LGFUNC
 END INTERFACE

The following example shows two equivalent ways to reference function LGFUNC:

 LOGICAL, DIMENSION(1:10) :: C, D, E
 N = 10
 E = LGFUNC(C(1:N), D(1:N))
 E = C(1:N) + D(1:N)

The following generic statement extends the operator + to include the function MY_SUM. There must be a an
accessible explicit interface for MY_SUM.

 GENERIC :: OPERATOR(+)=> MY_SUM
See Also
INTENT attribute
INTERFACE for details on interface blocks
GENERIC statement
Expressions for details on intrinsic operators
Defined Operations for details on defined operators and operations

Define Generic Assignment

An interface block or a GENERIC statement can be used to define generic assignment. The only procedures
allowed in the interface block are subroutines that can be referenced as defined assignments.

The initial line for such an interface block takes the following form:

INTERFACE ASSIGNMENT (=)

Intel® Fortran Compiler Classic and Intel® Fortran Compiler Developer Guide and Reference 1

891

The subroutines within the interface block must have two nonoptional arguments, the first with intent OUT or
INOUT, and the second with the INTENT(IN) and/or the VALUE attribute.

A defined assignment is treated as a reference to a subroutine. The left side of the assignment corresponds
to the first dummy argument of the subroutine; the right side of the assignment, enclosed in parentheses,
corresponds to the second argument. A defined assignment procedure with an ALLOCATABLE or POINTER
dummy argument cannot be directly invoked through defined assignment; the right-hand side of the
assignment operator becomes an expression, and an expression cannot have the ALLOCATABLE, POINTER, or
TARGET attribute.

The ASSIGNMENT keyword extends or redefines an assignment operation if both sides of the equal sign are
of the same derived type.

Defined elemental assignment is indicated by specifying ELEMENTAL in the SUBROUTINE statement.

Any procedure reference involving generic assignment must be resolvable to one specific procedure; it must
be unambiguous. For more information, see Unambiguous Generic Procedure References.

The following is an example of a procedure interface block defining assignment:

 INTERFACE ASSIGNMENT (=)
 SUBROUTINE BIT_TO_NUMERIC (NUM, BIT)
 INTEGER, INTENT(OUT) :: NUM
 LOGICAL, INTENT(IN) :: BIT(:)
 END SUBROUTINE BIT_TO_NUMERIC

 SUBROUTINE CHAR_TO_STRING (STR, CHAR)
 USE STRING_MODULE ! Contains definition of type STRING
 TYPE(STRING), INTENT(OUT) :: STR ! A variable-length string
 CHARACTER(*), INTENT(IN) :: CHAR
 END SUBROUTINE CHAR_TO_STRING
 END INTERFACE

The following example shows two equivalent ways to reference subroutine BIT_TO_NUMERIC:

 CALL BIT_TO_NUMERIC(X, (NUM(I:J)))
 X = NUM(I:J)

The following example shows two equivalent ways to reference subroutine CHAR_TO_STRING:

 CALL CHAR_TO_STRING(CH, '432C')
 CH = '432C'

The following generic statement adds subroutine STRING_TO_CHAR to the defined assignment operator.
There must be an accessible explicit interface for STRING_TO_CHAR.

 GENERIC :: ASSIGNMENT (=) => STRING_TO_CHAR

See Also
Defined Assignments
INTENT attribute
GENERIC statement
INTERFACE statement for details on interface blocks

Interoperability of Procedures and Procedure Interfaces
A Fortran procedure is interoperable if it has the BIND attribute.

A Fortran procedure interface is interoperable with a C function prototype if the following is true:

• The interface has the BIND attribute
• One of the following is true:

• The interface describes a function whose result variable is a scalar that is interoperable with the result
of the prototype.

• The interface describes a subroutine and the prototype has a result type of void.

 1 Intel® Fortran Compiler Classic and Intel® Fortran Compiler Developer Guide and Reference

892

• The number of dummy arguments of the interface is equal to the number of formal parameters of the
prototype.

• Any dummy argument with the VALUE attribute is interoperable with the corresponding formal parameter
of the prototype.

• Any dummy argument without the VALUE attribute corresponds to a formal parameter of the prototype
that is of a pointer type, and one of the following is true:

• The dummy argument is interoperable with an entity of the referenced type of the formal parameter.
• The dummy argument is a nonallocatable nonpointer variable of type CHARACTER with assumed

character length and the formal parameter is a pointer to the C descriptior descriptor CFI_cdesc_t.
• The dummy argument is allocatable, assumed-shape, assumed-rank, or a pointer without the

CONTIGUOUS attribute, and the formal parameter is a pointer to the C descriptior descriptor
CFI_cdesc_t.

• The dummy argument is assumed-type and not allocatable, assumed-shape, assumed-rank, or a
pointer, and the formal parameter is a pointer to void.

• Each allocatable or pointer dummy argument of type CHARACTER has deferred character length.
• The prototype does not have variable arguments as denoted by an ellipsis (...).

In an invocation of an interoperable procedure whose Fortran interface has an assumed-shape or assumed-
rank dummy argument with the CONTIGUOUS attribute, the associated effective argument can be an array
that is not contiguous or it can be the address of a C descriptor for such an array.

If the procedure is invoked from Fortran or the procedure is a Fortran procedure, the Fortran processor will
handle the difference in contiguity.

If the procedure is invoked from C or the procedure is a C procedure, the C code within the procedure must
be able to handle the situation of receiving a discontiguous argument.

An actual argument that is absent in a reference to an interoperable procedure is indicated by a
corresponding formal parameter with the value of a null pointer. An optional dummy argument that is absent
in a reference to an interoperable procedure from a C function is indicated by a corresponding argument with
the value of a null pointer.

The following rules also apply:

• C functions must not invoke a function pointer whose value is the result of a reference to C_FUNLOC with
a noninteroperable argument.

• When passing an argument to a C procedure where the corresponding C formal parameter is a C
descriptor, Fortran must pass a C descriptor and, on return, ensure that any updates to the C descriptor
are reflected in Fortran.

• If the interface specifies that the dummy argument is CONTIGUOUS, the passed argument (and the C
descriptor’s description of that argument, if relevant) must be contiguous.

• A Fortran procedure with BIND(C) that has a dummy argument that is assumed-length CHARACTER or is
allocatable, assumed-shape, assumed-rank, or a pointer without CONTIGUOUS must accept that
argument as a C descriptor and make sure that on return, the C descriptor reflects any changes made to
the argument during execution of the Fortran procedure.

• A Fortran procedure with one of the following arguments must accept that argument as a C descriptor and
make sure that on return, the C descriptor reflects any changes made to the argument during execution
of the Fortran procedure:

• A dummy argument that is assumed-length CHARACTER
• A dummy argument that is allocatable, assumed-shape, assumed-rank, or a pointer without

CONTIGUOUS

Procedure Pointers
A procedure pointer has the POINTER attribute and points to a procedure instead of a data object. It can be
associated with an external procedure, a module procedure, an intrinsic procedure, or a dummy procedure
that is not a procedure pointer. It can have an implicit or explicit interface, but the interface cannot be
generic or elemental.

A procedure pointer can be one of the following:

• A named pointer (described below)
• A derived-type component (See Procedure Pointers as Derived-Type Components.)

Intel® Fortran Compiler Classic and Intel® Fortran Compiler Developer Guide and Reference 1

893

Procedure Pointers as Named Pointers
You can declare a procedure pointer in a procedure declaration statement by including the POINTER attribute.
For example:

PROCEDURE(QUARK), POINTER :: Q => NULL()
The above declares Q to be a procedure pointer with interface QUARK; it also initializes Q to be a
disassociated pointer.

A named procedure pointer can also be declared by specifying the POINTER attribute in addition to the
normal procedure declaration.

The following example uses a type declaration statement to declare a procedure pointer:

POINTER :: MyP
INTERFACE
 SUBROUTINE MyP(c,d)
 REAL, INTENT(INOUT) :: c
 REAL, INTENT(IN) :: d
 END SUBROUTINE MyP
END INTERFACE
REAL, EXTERNAL, POINTER :: MyR

The above specifies that MyP is a pointer to a subroutine with an explicit interface. It also specifies that MyR
is a pointer to a scalar REAL function with an implicit interface.

Note that in a type declaration statement, you must specify the EXTERNAL attribute as well as the POINTER
attribute when declaring the procedure pointer.

See Also
INTERFACE
ABSTRACT INTERFACE
PROCEDURE

Intrinsic Procedures
Intrinsic procedures are functions and subroutines that are included in the Fortran library. The following are
classes of intrinsic procedures:

• Elemental procedures

These procedures have scalar dummy arguments that can be called with scalar or array actual arguments.
There are many elemental intrinsic functions and one elemental intrinsic subroutine (MVBITS). All
elemental intrinsic procedures are pure.

If the arguments are all scalar, the result is scalar. If an actual argument is array-valued, the intrinsic
procedure is applied to each element of the actual argument, resulting in an array that has the same
shape as the actual argument.

If there is more than one array-valued argument, they must all have the same shape.

Many algorithms involving arrays can now be written conveniently as a series of computations with whole
arrays. For example, consider the following:

 a = b + c
 ... ! a, b, c, and s are all arrays of similar shape
 s = sum(a)

The above statements can replace entire DO loops.

Consider the following:

 real, dimension (5,5) :: x,y
 . . . ! Assign values to x
 y = sin(x) ! Pass the entire array as an argument

 1 Intel® Fortran Compiler Classic and Intel® Fortran Compiler Developer Guide and Reference

894

In this example, since the SIN(X) function is an elemental procedure, it operates element-by-element on
the array x when you pass it the name of the whole array.

• Inquiry functions

These functions have results that depend on the properties of their principal argument, not the value of
the argument (the argument value can be undefined).

• Transformational functions

These functions have one or more array-valued dummy or actual arguments, an array result, or both. The
intrinsic function is not applied elementally to an array-valued actual argument; instead it changes
(transforms) the argument array into another array.

• Nonelemental procedures

These procedures must be called with only scalar arguments; they return scalar results. All subroutines
(except MVBITS) are nonelemental.

• Atomic subroutines

These subroutines perform an action on a variable (its atom argument) atomically. When an atomic
subroutine is executed, it is as if the subroutine were executed instantaneously without overlapping other
atomic actions that might occur asynchronously. For information on the semantics of atomic subroutines,
see Overview of Atomic Subroutines.

• Collective subroutines

These subroutines perform a cooperative calculation on a team of images and require no synchronization.
For information on the semantics of collective subroutines, see Overview of Collective Subroutines.

The intrinsic subroutine MVBITS, and the subroutine MOVE_ALLOC with a noncoarray argument FROM, are
pure. All other intrinsic subroutines are impure.

Intrinsic procedures are invoked the same way as other procedures, and follow the same rules of argument
association.

The intrinsic procedures have generic (or common) names, and many of the intrinsic functions have specific
names. (Some intrinsic functions are both generic and specific.)

In general, generic functions accept arguments of more than one data type; the data type of the result is the
same as that of the arguments in the function reference. For elemental functions with more than one
argument, all arguments must be of the same type (except for the function MERGE).

When an intrinsic function is passed as an actual argument to a procedure, its specific name must be used,
and when called, its arguments must be scalar. Some specific intrinsic functions are not allowed as actual
arguments in all circumstances. The following table lists specific functions that cannot be passed as actual
arguments or as targets in procedure pointer assignment statements.

Starting with Fortran 2018, specific names of intrinsic functions that also have generic names are
obsolescent.

Specific Intrinsic Functions Not Allowed as Actual Arguments

AIMAX0 FLOATJ JFIX MAX0

AIMIN0 FLOATK JIDINT MAX1

AJMAX0 FP_CLASS JIFIX MIN0

AJMIN0 HFIX JINT MIN1

AKMAX0 IADDR JIQINT NARGS

AKMIN0 IARGC JMAX0 QCMPLX

AMAX0 ICHAR JMAX1 QEXT

AMAX1 IDINT JMIN0 QEXTD

AMIN0 IFIX JMIN1 QMAX1

AMIN1 IIDINT JNUM QMIN1

Intel® Fortran Compiler Classic and Intel® Fortran Compiler Developer Guide and Reference 1

895

CHAR IIFIX JZEXT QNUM

CMPLX IINT KIDINT QREAL

DBLE IIQINT KIFIX RAN

DBLEQ IJINT KINT RANF

DCMPLX IMAX0 KIQINT REAL

DFLOTI IMAX1 KMAX0 RNUM

DFLOTJ IMIN0 KMAX1 SECNDS

DFLOTK IMIN1 KMIN0 SHIFTL

DMAX1 INT KMIN1 SHIFTR

DMIN1 INT1 KNUM SNGL

DNUM INT2 KZEXT SNGLQ

DREAL INT4 LGE ZEXT

DSHIFTL INT8 LGT

DSHIFTR INUM LLE

FLOAT IQINT LLT

FLOATI IZEXT LOC

Note that none of the intrinsic subroutines can be passed as actual arguments or as targets in procedure
pointer assignment statements.

The A to Z Reference contains the descriptions of all intrinsics listed in alphabetical order. Each reference
entry indicates whether the procedure is inquiry, elemental, transformational, or nonelemental, and whether
it is a function or a subroutine.

See Also
Argument association
MERGE
Optional arguments
Data representation models
References to Generic Intrinsic Functions
References to Elemental Intrinsic Procedures

Argument Keywords in Intrinsic Procedures
For all intrinsic procedures, the arguments shown are the names you must use as keywords when using the
keyword form for actual arguments. For example, a reference to function CMPLX(X, Y, KIND) can be written
as follows:

Using positional arguments: CMPLX(F, G, L)

Using argument keywords: 1 CMPLX(KIND=L, Y=G, X=F)

1 Note that argument keywords can be written in any order.

Some argument keywords are optional (denoted by square brackets). The following describes some of the
most commonly used optional arguments:

 1 Intel® Fortran Compiler Classic and Intel® Fortran Compiler Developer Guide and Reference

896

BACK Specifies that a string scan is to be in reverse order
(right to left).

DIM Specifies a selected dimension of an array
argument.

KIND Specifies the kind type parameter of the function
result.

MASK Specifies that a mask can be applied to the
elements of the argument array to exclude the
elements that are not to be involved in an
operation.

Examples
The syntax for the DATE_AND_TIME intrinsic subroutine shows four optional positional arguments: DATE,
TIME, ZONE, and VALUES. The following shows some valid ways to specify these arguments:

 ! Keyword example
 CALL DATE_AND_TIME (ZONE=Z)

 ! Positional example
 CALL DATE_AND_TIME (DATE, TIME, ZONE)

See Also
CALL for details on argument keywords in subroutine references
Function references for details on argument keywords in function references
Argument Association

Overview of Atomic Subroutines
Atomic subroutines are impure intrinsic procedures that perform an action on their atom argument
atomically. If a reference to an atomic subroutine has an old argument, the value to be assigned to that
argument is also determined atomically with the action performed on the atom argument. The evaluation or
definition of any other argument is not performed atomically.

The stat argument, if present, has a value of zero if no error condition occurs during the subroutine
reference.

If stat is present and an error condition occurs, any INTENT(INOUT) or INTENT(OUT) argument becomes
undefined. If the atom argument is on a failed image, stat, if present, becomes defined with the value
STAT_FAILED_IMAGE from the intrinsic module ISO_FORTRAN_ENV and an error condition occurs. If any
other error condition occurs, stat becomes defined with a processor-dependent positive integer value other
than that of STAT_FAILED_IMAGE.

If an error condition occurs and stat is not present, error termination is initiated.

For a list of all atomic intrinsic subroutines, including links to the subroutine's full description, see Atomic
Intrinsic Subroutines.

Overview of Collective Subroutines
Collective subroutines are impure intrinsic subroutines that perform a calculation on a team of images,
assigning the result to one of the images or all of the images on the current team. Synchronization is not
required. When the collective subroutine is invoked, it is invoked by the same statement on all active images
of the current team. Corresponding references to the subroutine participate in the same collective operation.

The sequence of invocations of collective subroutines must be the same across all active images of the
current team. A collective subroutine cannot be invoked anywhere an image control statement is not
permitted. For example, a pure procedure or a critical construct cannot contain a reference to a collective
subroutine.

Intel® Fortran Compiler Classic and Intel® Fortran Compiler Developer Guide and Reference 1

897

If argument a in an invocation of a collective subroutine is a coarray, it must ultimately be the same coarray
on each active image of the current team.

If argument stat is present in the reference to a collective subroutine on one image, it must be present in
corresponding references on all images of the current team.

Successful execution of a collective subroutine causes the value of stat, if present, to become defined with
the value 0.

If an error condition occurs during the reference to the collective subroutine and stat is present, stat is
assigned a positive value and argument a becomes undefined. If stat is present and the current team
contains a stopped image, an error condition occurs and stat becomes defined with the value
STAT_STOPPED_IMAGE defined in the intrinsic module ISO_FORTRAN_ENV. Otherwise, if the current team
contains a failed image, an error condition occurs and stat becomes defined with the value
STAT_FAILED_IMAGE from ISO_FORTRAN_ENV. If any other error condition occurs, stat becomes defined
with a positive integer value other than STAT_STOPPED_IMAGE or STAT_FAILED_IMAGE.

If stat is not present in a reference to a collective subroutine and an error condition occurs during the
reference, error termination is initiated.

If argument errmsg is present when an error condition occurs, it becomes defined with an explanatory
message, padded with blanks or truncated as necessary. If no error condition occurs, the value and definition
status of errmsg is not changed.

Internal synchronization occurs during a reference to a collective subroutine, but a statement containing a
reference to a collective subroutine is not an image control statement.

For a list of all collective intrinsic subroutines, including links to the subroutine's full description, see
Collective Intrinsic Subroutines.

Overview of Bit Functions
Integer data types are represented internally in binary two's complement notation. Bit positions in the binary
representation are numbered from right (least significant bit) to left (most significant bit); the rightmost bit
position is numbered 0.

The intrinsic functions IAND, IOR, IEOR, and NOT operate on all of the bits of their argument (or arguments).
Bit 0 of the result comes from applying the specified logical operation to bit 0 of the argument. Bit 1 of the
result comes from applying the specified logical operation to bit 1 of the argument, and so on for all of the
bits of the result.

The functions ISHFT and ISHFTC shift binary patterns.

The functions IBSET, IBCLR, BTEST, and IBITS and the subroutine MVBITS operate on bit fields.

A bit field is a contiguous group of bits within a binary pattern. Bit fields are specified by a starting bit
position and a length. A bit field must be entirely contained in its source operand.

For example, the integer 47 is represented by the following:

Binary pattern: 0...0101111

Bit position: n...6543210

Where n is the number of bit positions in the
numeric storage unit.

You can refer to the bit field contained in bits 3 through 6 by specifying a starting position of 3 and a length
of 4.

Negative integers are represented in two's complement notation. For example, the integer -47 is represented
by the following:

Binary pattern: 1...1010001

Bit position: n...6543210

 1 Intel® Fortran Compiler Classic and Intel® Fortran Compiler Developer Guide and Reference

898

Where n is the number of bit positions in the
numeric storage unit.

The value of bit position n is as follows:

 1 for a negative number
 0 for a non-negative number

All the high-order bits in the pattern from the last significant bit of the value up to bit n are the same as bit
n.

IBITS and MVBITS operate on general bit fields. Both the starting position of a bit field and its length are
arguments to these intrinsics. IBSET, IBCLR, and BTEST operate on 1-bit fields. They do not require a length
argument.

For IBSET, IBCLR, and BTEST, the bit position range is as follows:

• 0 to 63 for INTEGER(8) and LOGICAL(8)
• 0 to 31 for INTEGER(4) and LOGICAL(4)
• 0 to 15 for INTEGER(2) and LOGICAL(2)
• 0 to 7 for BYTE, INTEGER(1), and LOGICAL(1)

For IBITS, the bit position can be any number. The length range is 0 to 63 on Intel® 64 architecture; 0 to 31
on IA-32 architecture.

The following example shows IBSET, IBCLR, and BTEST:

 I = 4
 J = IBSET (I,5)
 PRINT *, 'J = ',J
 K = IBCLR (J,2)
 PRINT *, 'K = ',K
 PRINT *, 'Bit 2 of K is ',BTEST(K,2)
 END

The results are: J = 36, K = 32, and Bit 2 of K is F.

For optimum selection of performance and memory requirements, Intel® Fortran provides the following
integer data types:

Data Type Storage Required (in bytes)

INTEGER(1) 1

INTEGER(2) 2

INTEGER(4) 4

INTEGER(8) 8

The bit manipulation functions each have a generic form that operates on all of these integer types and a
specific form for each type.

When you specify the intrinsic functions that refer to bit positions or that shift binary patterns within a
storage unit, be careful that you do not create a value that is outside the range of integers representable by
the data type. If you shift by an amount greater than or equal to the size of the object you're shifting, the
result is 0.

Consider the following:

 INTEGER(2) I,J
 I = 1
 J = 17
 I = ISHFT(I,J)

Intel® Fortran Compiler Classic and Intel® Fortran Compiler Developer Guide and Reference 1

899

The variables I and J have INTEGER(2) type. Therefore, the generic function ISHFT maps to the specific
function IISHFT, which returns an INTEGER(2) result. INTEGER(2) results must be in the range -32768 to
32767, but the value 1, shifted left 17 positions, yields the binary pattern 1 followed by 17 zeros, which
represents the integer 131072. In this case, the result in I is 0.

The previous example would be valid if I was INTEGER(4), because ISHFT would then map to the specific
function JISHFT, which returns an INTEGER(4) value.

If ISHFT is called with a constant first argument, the result will either be the default integer size or the
smallest integer size that can contain the first argument, whichever is larger.

Categories and Lists of Intrinsic Procedures
This section describes the categories of generic intrinsic functions (including a summarizing table) and lists
the intrinsic subroutines.

Intrinsic procedures are fully described (in alphabetical order) in the A to Z Reference.

Categories of Intrinsic Functions

Generic intrinsic functions can be divided into categories, as shown in the following table:

Categories of Intrinsic Functions

Category Subcategory Description

Numeric Computation Elemental functions that perform
type conversions or simple
numeric operations: ABS, AIMAG,
AINT, AMAX0, AMIN0, ANINT,
CEILING, CMPLX, CONJG, DBLE,
DCMPLX, DFLOAT, DIM, DNUM,
DPROD, DREAL, FLOAT, FLOOR,
IFIX, IMAG, INT, INUM, JNUM,
KNUM MAX, MAX1, MIN, MIN1,
MOD, MODULO, NINT, QCMPLX,
QEXT, QFLOAT, QNUM, QREAL,
REAL, RNUM, SIGN, SNGL, ZEXT

Nonelemental function that
provides a pseudorandom
number: RAN

Elemental function that generates
a random number: RANF

Manipulation1 Elemental functions that return
values related to the components
of the model values associated
with the actual value of the
argument: EXPONENT,
FRACTION, NEAREST,
RRSPACING, SCALE,
SET_EXPONENT, SPACING

Inquiry1 Functions that return scalar
values from the models
associated with the type and kind
parameters of their arguments2:
DIGITS, EPSILON, HUGE, ILEN,
MAXEXPONENT, MINEXPONENT,
PRECISION, RADIX, RANGE,
SIZEOF, TINY

 1 Intel® Fortran Compiler Classic and Intel® Fortran Compiler Developer Guide and Reference

900

Category Subcategory Description

Transformational Functions that perform vector
and matrix multiplication:
DOT_PRODUCT, MATMUL

System Functions that return information
about a process or processor:
MCLOCK, SECNDS

Kind type Functions that return kind type
parameters: KIND,
SELECTED_CHAR_KIND,
SELECTED_INT_KIND,
SELECTED_REAL_KIND

Mathematical Elemental functions that perform
mathematical operations: ACOS,
ACOSD, ACOSH, ASIN, ASIND,
ASINH, ATAN, ATAN2, ATAN2D,
ATAND, ATANH, BESSEL_J0,
BESSEL_J1, BESSEL_JN,
BESSEL_Y0, BESSEL_Y1,
BESSEL_YN, COS, COSD,
COSH,COTAN, COTAND, EXP,
EXP10, GAMMA, HYPOT, LOG,
LOG10, LOG_GAMMA, SIN, SIND,
SINH, SQRT, TAN, TAND, TANH

Bit Manipulation Elemental functions that perform
bit operations, such as single-bit
processing, logical and shift
operations, and allowing bit
subfields to be referenced: AND,
BGE, BGT, BLE, BLT, BTEST,
DSHIFTL, DSHIFTR, IAND,
IBCHNG, IBCLR, IBITS, IBSET,
IEOR, IOR, ISHA, ISHC, ISHFT,
ISHFTC, ISHL, IXOR,LSHIFT,
MASKL, MASKR, MERGE_BITS,
NOT, OR, RSHIFT, SHIFTA,
SHIFTL, SHIFTR, XOR

Inquiry Function that lets you determine
bit size and storage size:
BIT_SIZE, STORAGE_SIZE

Representation Elemental functions that return
information on bit representation
of integers: LEADZ, POPCNT,
POPPAR, TRAILZ

Character Comparison Elemental functions that make a
lexical comparison of the
character-string arguments and
return a default logical result:
LGE, LGT, LLE, LLT

Intel® Fortran Compiler Classic and Intel® Fortran Compiler Developer Guide and Reference 1

901

Category Subcategory Description

Conversion Elemental functions that take
character arguments and return
integer, ASCII, or character
values4: ACHAR, CHAR, IACHAR,
ICHAR

String handling Functions that perform
operations on character strings,
return lengths of arguments, and
search for certain arguments:
Elemental: ADJUSTL, ADJUSTR,
INDEX, LEN_TRIM, SCAN,
VERIFY; Nonelemental: REPEAT,
TRIM

Inquiry Functions that return the length
of an argument or information
about command-line arguments:
COMMAND_ARGUMENT_COUNT,
IARG, IARGC, LEN, NARGS,
NUMARG

Array Construction Functions that construct new
arrays from the elements of
existing arrays: Elemental:
MERGE; Nonelemental: PACK,
SPREAD, UNPACK

Inquiry Functions that let you determine
if an array argument is allocated,
and return the size or shape of
an array, and the lower and
upper bounds of subscripts along
each dimension: ALLOCATED,
IS_CONTIGUOUS, LBOUND,
RANK, SHAPE, SIZE, UBOUND

Location Transformational functions that
find the geometric locations of
the maximum and minimum
values of an array, and find the
location of a specified value in an
array: MAXLOC, MINLOC,
FINDLOC

Manipulation Transformational functions that
shift an array, transpose an array,
or change the shape of an array:
CSHIFT, EOSHIFT, RESHAPE,
TRANSPOSE

Reduction Transformational functions that
perform operations on arrays.
The functions "reduce" elements
of a whole array to produce a
scalar result, or they can be
applied to a specific dimension of
an array to produce a result array
with a rank reduced by one: ALL,

 1 Intel® Fortran Compiler Classic and Intel® Fortran Compiler Developer Guide and Reference

902

Category Subcategory Description

ANY, COUNT, IALL, IANY, IPARITY,
MAXVAL, MINVAL, NORM2,
PARITY, PRODUCT, REDUCE, SUM

Coarray Inquiry Functions that return execution
status of an image, convert
cosubscripts, or return sizes of
codimensions, or lower or upper
cobounds:

Elemental: IMAGE_STATUS

Nonelemental: COSHAPE,
IMAGE_INDEX, LCOBOUND,
UCOBOUND

Transformational Functions that return the number
of images or cosubscripts, return
image indices of failed or stopped
images, a team number, or a
team variable: NUM_IMAGES,
THIS_IMAGE, FAILED_IMAGES,
STOPPED_IMAGES,
TEAM_NUMBER, GET_TEAM

Polymorphic Inquiry Functions that let you determine
the dynamic type of an object:
EXTENDS_TYPE_OF,
SAME_TYPE_AS

Miscellaneous Functions that do the following:
• Check for pointer association

(ASSOCIATED)
• Return an address

(BADDRESS or IADDR)
• Return the size of a level of

the memory cache
(CACHESIZE)

• Check for end-of-file (EOF)
• Return error functions (ERF,

ERFC,and ERFC_SCALED)
• Return the class of a floating-

point argument (FP_CLASS)
• Return the INTEGER KIND

that will hold an address
(INT_PTR_KIND)

• Check for end-of-file condition
(IS_IOSTAT_END)

• Check for end-of-record
condition (IS_IOSTAT_EOR)

• Test for Not-a-Number values
(ISNAN)

• Return the internal address of
a storage item (LOC)

• Return a logical value of an
argument (LOGICAL)

• Allocate memory (MALLOC)
• Return a new line character

(NEW_LINE)

Intel® Fortran Compiler Classic and Intel® Fortran Compiler Developer Guide and Reference 1

903

Category Subcategory Description

• Return a disassociated pointer
(NULL)

• Test that a value is safe to
convert (OUT_OF_RANGE)

• Check for argument presence
(PRESENT)

• Convert a bit pattern
(TRANSFER)

1 All of the numeric manipulation, and many of the numeric inquiry functions are defined by the model
sets for integers and reals.
2 The value of the argument does not have to be defined.
3 For more information on bit functions, see Bit functions.
4 The Intel® Fortran processor character set is ASCII, so ACHAR = CHAR and IACHAR = ICHAR.

The following table summarizes the generic intrinsic functions and indicates whether they are elemental,
inquiry, or transformational functions. Optional arguments are shown within square brackets.

Some intrinsic functions are specific with no generic association. These functions are listed below.

Summary of Generic Intrinsic Functions

Generic Function Class Value Returned

ABS (A) E The absolute value of an
argument

ACHAR (I [,KIND]) E The character in the specified
position of the ASCII character
set

ACOS (X) E The arccosine (in radians) of the
argument

ACOSD (X) E The arccosine (in degrees) of the
argument

ACOSH (X) E The hyperbolic arccosine of the
argument

ADJUSTL (STRING) E The specified string with leading
blanks removed and placed at
the end of the string

ADJUSTR (STRING) E The specified string with trailing
blanks removed and placed at
the beginning of the string

AIMAG (Z) E The imaginary part of a complex
argument

AINT (A [,KIND]) E A real value truncated to a whole
number

ALL (MASK) or ALL (MASK, DIM) T .TRUE. if all elements of the
masked array are true

ALLOCATED ([ARRAY=]array) or
ALLOCATED ([SCALAR=]scalar)

I The allocation status of the
argument array or scalar

 1 Intel® Fortran Compiler Classic and Intel® Fortran Compiler Developer Guide and Reference

904

Generic Function Class Value Returned

AMAX0 (A1, A2 [, A3,...]) E The maximum value in a list of
integers (returned as a real
value)

AMIN0 (A1, A2 [, A3,...]) E The minimum value in a list of
integers (returned as a real
value)

AND (I, J) E See IAND

ANINT (A [, KIND]) E A real value rounded to a whole
number

ANY (MASK) or ANY (MASK,
DIM])

T .TRUE. if any elements of the
masked array are true

ASIN (X) E The arcsine (in radians) of the
argument

ASIND (X) E The arcsine (in degrees) of the
argument

ASINH (X) E The hyperbolic arcsine of the
argument

ASSOCIATED (POINTER
[,TARGET])

I .TRUE. if the pointer argument is
associated or the pointer is
associated with the specified
target

ATAN (X) E The arctangent (in radians) of the
argument

ATAN2 (Y, X) E The arctangent (in radians) of the
arguments

ATAN2D (Y, X) E The arctangent (in degrees) of
the arguments

ATAND (X) or ATAND (Y, X) E The arctangent (in degrees) of
the argument

ATANH (X) E The hyperbolic arctangent of the
argument

BADDRESS (X) I The address of the argument

BESSEL_J0 (X) E A Bessel function of the first kind,
order 0

BESSEL_J1 (X) E A Bessel function of the first kind,
order 1

BESSEL_JN (N, X) E A Bessel function of the first kind,
order N

BESSEL_JN (N1, N2, X) T A Bessel function of the first kind

BESSEL_Y0 (X) E A Bessel function of the second
kind, order 0

BESSEL_Y1 (X) E A Bessel function of the second
kind, order 1

Intel® Fortran Compiler Classic and Intel® Fortran Compiler Developer Guide and Reference 1

905

Generic Function Class Value Returned

BESSEL_YN (N, X) E A Bessel function of the second
kind, order N

BESSEL_YN (N1, N2, X) T A Bessel function of the second
kind

BGE (I, J) E Bitwise greater than or equal to

BGT (I, J) E Bitwise greater than

BIT_SIZE (I) I The number of bits (s) in the bit
model

BLE (I, J) E Bitwise less than or equal to

BLT (I, J) E Bitwise less than

BTEST (I, POS) E .TRUE. if the specified position of
argument I is one

CEILING (A [,KIND]) E The smallest integer greater than
or equal to the argument value

CHAR (I [,KIND]) E The character in the specified
position of the processor
character set

CMPLX (X [, KIND]) or CMPLX (X
[, Y, KIND])

E The corresponding complex value
of the argument(s)

COMMAND_ARGUMENT_COUNT
()

I The number of command
arguments

CONJG (Z) E The conjugate of a complex
number

COS (X) E The cosine of the argument,
which is in radians

COSD (X) E The cosine of the argument,
which is in degrees

COSH (X) E The hyperbolic cosine of the
argument

COSHAPE (COARRAY [,KIND]) I The sizes of codimensions of a
coarray.

COTAN (X) E The cotangent of the argument,
which is in radians

COTAND (X) E The cotangent of the argument,
which is in degrees

COUNT (MASK [, DIM, KIND]) T The number of .TRUE. elements
in the argument array

CSHIFT (ARRAY, SHIFT [,DIM]) T An array that has the elements of
the argument array circularly
shifted

DBLE (A) E The corresponding double
precision value of the argument

 1 Intel® Fortran Compiler Classic and Intel® Fortran Compiler Developer Guide and Reference

906

Generic Function Class Value Returned

DFLOAT (A) E The corresponding double
precision value of the integer
argument

DIGITS (X) I The number of significant digits
in the model for the argument

DIM (X, Y) E The positive difference between
the two arguments

DOT_PRODUCT (VECTOR_A,
VECTOR_B)

T The dot product of two rank-one
arrays (also called a vector
multiply function)

DREAL (A) E The corresponding double-
precision value of the double
complex argument

DSHIFTL (ILEFT, IRIGHT, ISHIFT) E The upper (leftmost) 64 bits of a
left-shifted 128-bit integer

DSHIFTR (ILEFT, IRIGHT, ISHIFT) E The lower (rightmost) 64 bits of a
right-shifted 128-bit integer

EOF (A) I .TRUE. or .FALSE. depending on
whether a file is beyond the end-
of-file record

EOSHIFT (ARRAY, SHIFT
[,BOUNDARY] [,DIM])

T An array that has the elements of
the argument array end-off
shifted

EPSILON (X) I The number that is almost
negligible when compared to one

ERF (X) E The error function of an
argument

ERFC (X) E The complementary error
function of an argument

ERFC_SCALED (X) E The scaled complementary error
function of an argument

EXP (X) E The exponential ex for the
argument x

EXPONENT (X) E The value of the exponent part of
a real argument

EXTENDS_TYPE_OF (A, MOLD) I Whether one dynamic type is an
extension of another dynamic
type

FAILED_IMAGES ([TEAM, KIND]) T Image indices of images known
to have failed on the specified or
current team

FINDLOC (ARRAY, VALUE, DIM [,
MASK, KIND, BACK]) or FINDLOC
(ARRAY, VALUE [, MASK, KIND,
BACK])

T Location of a specified value in an
array.

Intel® Fortran Compiler Classic and Intel® Fortran Compiler Developer Guide and Reference 1

907

Generic Function Class Value Returned

FLOAT (X) E The corresponding real value of
the integer argument

FLOOR (A [,KIND]) E The largest integer less than or
equal to the argument value

FP_CLASS (X) E The class of the IEEE floating-
point argument

FRACTION (X) E The fractional part of a real
argument

GAMMA (X) E A gamma function

GET_TEAM ([LEVEL]) T Team variable describing the
specified team

HUGE (X) I The largest number in the model
for the argument

HYPOT (X, Y) E A Euclidean distance function

IACHAR (C [,KIND]) E The position of the specified
character in the ASCII character
set

IADDR (X) E See BADDRESS

IAND (I, J) E The logical AND of the two
arguments

IALL (ARRAY, DIM [, MASK]) or
IALL (ARRAY [, MASK])

T The result of a bitwise AND
operation

IANY (ARRAY, DIM [, MASK]) or
IANY (ARRAY [, MASK])

T The result of a bitwise OR
operation

IBCLR (I, POS) E The specified position of
argument I cleared (set to zero)

IBCHNG (I, POS) E The reversed value of a specified
bit

IBITS (I, POS, LEN) E The specified substring of bits of
argument I

IBSET (I, POS) E The specified bit in argument I
set to one

ICHAR (C [, KIND]) E The position of the specified
character in the processor
character set

IEOR (I, J) E The logical exclusive OR of the
corresponding bit arguments

IFIX (X) E The corresponding integer value
of the real argument rounded as
if it were an implied conversion in
an assignment

 1 Intel® Fortran Compiler Classic and Intel® Fortran Compiler Developer Guide and Reference

908

Generic Function Class Value Returned

ILEN (I) I The length (in bits) in the two's
complement representation of an
integer

IMAG (Z) E See AIMAG

IMAGE_INDEX (COARRAY, SUB)
or IMAGE_INDEX (COARRAY,
SUB, TEAM) or IMAGE_INDEX
(COARRAY, SUB, TEAM_NUMBER)

T The index of the corresponding
image on the current team, or
the team specified by TEAM or
TEAM_NUMBER if present.

IMAGE_STATUS (IMAGE [,
TEAM])

E Execution status of the specified
image number on the specified or
current team

INDEX (STRING, SUBSTRING [,
BACK, KIND])

E The position of the specified
substring in a character
expression

INT (A [, KIND]) E The corresponding integer value
(truncated) of the argument

IOR (I, J) E The logical inclusive OR of the
corresponding bit arguments

IPARITY (ARRAY, DIM [, MASK])
or IPARITY (ARRAY [, MASK])

T The result of a bitwise exclusive
OR operation

IS_CONTIGUOUS (ARRAY) I The contiguity of an array

IS_IOSTAT_END (I) E .TRUE. for an end-of-file
condition

IS_IOSTAT_EOR (I) E .TRUE. for an end-of-record
condition

ISHA (I, SHIFT) E Argument I shifted left or right
by a specified number of bits

ISHC (I, SHIFT) E Argument I rotated left or right
by a specified number of bits

ISHFT (I, SHIFT) E The logical end-off shift of the
bits in argument I

ISHFTC (I, SHIFT [,SIZE]) E The logical circular shift of the
bits in argument I

ISHL (I, SHIFT) E Argument I logically shifted left
or right by a specified number of
bits

ISNAN (X) E Tests for Not-a-Number (NaN)
values

IXOR (I, J) E See IEOR

KIND (X) I The kind type parameter of the
argument

LBOUND (ARRAY [, DIM, KIND]) I The lower bounds of an array (or
one of its dimensions)

Intel® Fortran Compiler Classic and Intel® Fortran Compiler Developer Guide and Reference 1

909

Generic Function Class Value Returned

LEADZ (I) E The number of leading zero bits
in an integer

LEN (STRING [,KIND]) I The length (number of
characters) of the argument
character string

LEN_TRIM (STRING [,KIND]) E The length of the specified string
without trailing blanks

LGE (STRING_A, STRING_B) E A logical value determined by a >
or = comparison of the
arguments

LGT (STRING_A, STRING_ B) E A logical value determined by a >
comparison of the arguments

LLE (STRING_A, STRING_B) E A logical value determined by a <
or = comparison of the
arguments

LLT (STRING_A, STRING_B) E A logical value determined by a <
comparison of the arguments

LOC (A) I The internal address of the
argument.

LOG (X) E The natural logarithm of the
argument

LOG10 (X) E The common logarithm (base 10)
of the argument

LOG_GAMMA (X) E The logarithm of the absolute
value of the gamma function

LOGICAL (L [,KIND]) E The logical value of the argument
converted to a logical of type
KIND

LSHIFT (I, POSITIVE_SHIFT) E See ISHFT

LSHFT (I, POSITIVE_SHIFT) E Same as LSHIFT; see ISHFT

MALLOC (I) E The starting address for the block
of memory allocated

MASKL (I [,KIND]) E A left-justified mask

MASKR (I [,KIND]) E A right-justified mask

MATMUL (MATRIX_A, MATRIX_B) T The result of matrix multiplication
(also called a matrix multiply
function)

MAX (A1, A2 [, A3,...]) E The maximum value in the set of
arguments

MAX1 (A1, A2 [, A3,...]) E The maximum value in the set of
real arguments (returned as an
integer)

 1 Intel® Fortran Compiler Classic and Intel® Fortran Compiler Developer Guide and Reference

910

Generic Function Class Value Returned

MAXEXPONENT (X) I The maximum exponent in the
model for the argument

MAXLOC (ARRAY, DIM [, MASK,
KIND, BACK]) or MAXLOC
(ARRAY [, MASK, KIND, BACK])

T The rank-one array that has the
location of the maximum element
in the argument array

MAXVAL (ARRAY, DIM [, MASK])
or MAXVAL (ARRAY [, MASK])

T The maximum value of the
elements in the argument array

MERGE (TSOURCE, FSOURCE,
MASK)

E An array that is the combination
of two conformable arrays (under
a mask)

MERGE_BITS (I, J, MASK) E The merge of bits under a mask

MIN (A1, A2 [, A3,...]) E The minimum value in the set of
arguments

MIN1 (A1, A2 [, A3,...]) E The minimum value in the set of
real arguments (returned as an
integer)

MINEXPONENT (X) I The minimum exponent in the
model for the argument

MINLOC (ARRAY, DIM [, MASK,
KIND, BACK]) or MINLOC (ARRAY
[, MASK, KIND, BACK])

T The rank-one array that has the
location of the minimum element
in the argument array

MINVAL (ARRAY, DIM [, MASK])
or MINVAL (ARRAY [, MASK])

T The minimum value of the
elements in the argument array

MOD (A, P) E The remainder of the arguments
(has the sign of the first
argument)

MODULO (A, P) E The modulo of the arguments
(has the sign of the second
argument)

NEAREST (X, S) E The nearest different machine-
representable number in a given
direction

NEW_LINE (A) I A new line character

NINT (A [,KIND]) E A real value rounded to the
nearest integer

NORM2 (X) or NORM2 (X, DIM) T The L2 norm of an array

NOT (I) E The logical complement of the
argument

NULL ([MOLD]) T A disassociated pointer

NUM_IMAGES () or NUM_IMAGES
(team) or NUM_IMAGES
(team_number)

T The number of images on the
current or specified team

OR (I, J) E See IOR

Intel® Fortran Compiler Classic and Intel® Fortran Compiler Developer Guide and Reference 1

911

Generic Function Class Value Returned

OUT_OF_RANGE (X, MOLD [,
ROUND])

E Indicates if a value can be safely
converted

PACK (ARRAY, MASK [,VECTOR]) T A packed array of rank one
(under a mask)

PARITY (MASK) or PARITY
(MASK, DIM)

T The result of an exclusive OR
operation

POPCNT (I) E The number of 1 bits in the
integer argument

POPPAR (I) E The parity of the integer
argument

PRECISION (X) I The decimal precision (real or
complex) of the argument

PRESENT (A) I .TRUE. if an actual argument has
been provided for an optional
dummy argument

PRODUCT (ARRAY, DIM [,MASK])
or PRODUCT (ARRAY [, MASK])

T The product of the elements of
the argument array

QEXT (A) E The corresponding REAL(16)
precision value of the argument

QFLOAT (A) E The corresponding REAL(16)
precision value of the integer
argument

RADIX (X) I The base of the model for the
argument

RANGE (X) I The decimal exponent range of
the model for the argument

RANF () T A random number between 0.0
and RAND_MAX

RANK (A) I The rank of a data object

REAL (A [, KIND]) E The corresponding real value of
the argument

REDUCE (ARRAY, OPERATION [,
MASK] [, IDENTITY] [,
ORDERED]) or REDUCE (ARRAY,
OPERATION, DIM [, MASK] [,
IDENTITY] [, ORDERED])

T Generalized array reduction

REPEAT (STRING, NCOPIES) T The concatenation of zero or
more copies of the specified
string

RESHAPE (SOURCE, SHAPE [,
PAD,ORDER])

T An array that has a different
shape than the argument array,
but the same elements

RRSPACING (X) E The reciprocal of the relative
spacing near the argument

 1 Intel® Fortran Compiler Classic and Intel® Fortran Compiler Developer Guide and Reference

912

Generic Function Class Value Returned

RSHIFT (I, NEGATIVE_SHIFT) E See ISHFT

RSHFT (I, N EGATIVE_SHIFT) E Same as RSHIFT; see ISHFT

SAME_TYPE_AS (A, B) I Whether two dynamic types are
the same.

SCALE (X, I) E The value of the exponent part
(of the model for the argument)
changed by a specified value

SCAN (STRING, SET [, BACK,
KIND])

E The position of the specified
character (or set of characters)
within a string

SELECTED_CHAR_KIND (NAME) T The value of the kind type
parameter of the character set
named by the argument

SELECTED_INT_KIND (R) T The integer kind parameter of the
argument

SELECTED_REAL_KIND ([P, R,
RADIX])

T The real kind parameter of the
argument; one of the optional
arguments must be specified

SET_EXPONENT (X, I) E The value of the exponent part
(of the model for the argument)
set to a specified value

SHAPE (SOURCE [,KIND]) I The shape (rank and extents) of
an array or scalar

SHIFTA (I, SHIFT) E A right shift with fill

SHIFTL (I, SHIFT) E Argument IVALUE shifted left by
a specified number of bits

SHIFTR (I, SHIFT) E Argument IVALUE shifted right by
a specified number of bits

SIGN (A, B) E A value with the sign transferred
from its second argument

SIN (X) E The sine of the argument, which
is in radians

SIND (X) E The sine of the argument, which
is in degrees

SINH (X) E The hyperbolic sine of the
argument

SIZE (ARRAY [, DIM, KIND]) I The size (total number of
elements) of the argument array
(or one of its dimensions)

SIZEOF (X) I The bytes of storage used by the
argument

SNGL (X) E The corresponding real value of
the argument

Intel® Fortran Compiler Classic and Intel® Fortran Compiler Developer Guide and Reference 1

913

Generic Function Class Value Returned

SPACING (X) E The value of the absolute spacing
of model numbers near the
argument

SPREAD (SOURCE, DIM,
NCOPIES)

T A replicated array that has an
added dimension

SQRT (X) E The square root of the argument

STOPPED_IMAGES ([TEAM,
KIND])

T Image indices of stopped images
on the specified or current team

STORAGE_SIZE (A [,KIND]) I The storage size in bits

SUM (ARRAY, DIM [, MASK]) or
SUM (ARRAY [, MASK])

T The sum of the elements of the
argument array

TAN (X) E The tangent of the argument,
which is in radians

TAND (X) E The tangent of the argument,
which is in degrees

TANH (X) E The hyperbolic tangent of the
argument

TEAM_NUMBER ([TEAM]) T The team number of the specified
team

THIS_IMAGE ([TEAM]) or
THIS_IMAGE (COARRAY [,
TEAM]) or THIS_IMAGE
(COARRAY, DIM [, TEAM)

T The index of the invoking image
on the specified team or the
cosubscripts for the image on the
specified team

TINY (X) I The smallest positive number in
the model for the argument

TRAILZ (I) E The number of trailing zero bits
in an integer

TRANSFER (SOURCE, MOLD
[,SIZE])

T The bit pattern of SOURCE
converted to the type and kind
parameters of MOLD

TRANSPOSE (MATRIX) T The matrix transpose for the
rank-two argument array

TRIM (STRING) T The argument with trailing blanks
removed

UBOUND (ARRAY [, DIM, KIND]) I The upper bounds of an array (or
one of its dimensions)

UNPACK (VECTOR, MASK, FIELD) T An array (under a mask)
unpacked from a rank-one array

VERIFY (STRING, SET [, BACK,
KIND])

E The position of the first character
in a string that does not appear
in the given set of characters

XOR (I, J) E See IEOR

 1 Intel® Fortran Compiler Classic and Intel® Fortran Compiler Developer Guide and Reference

914

Generic Function Class Value Returned

ZEXT (X [,KIND]) E A zero-extended value of the
argument

Key to Classes

E-Elemental

I-Inquiry

T-Transformational

The following table lists specific functions that have no generic function associated with them and indicates
whether they are elemental, nonelemental, or inquiry functions. Optional arguments are shown within square
brackets.

Specific Functions with No Generic Association

Generic Function Class Value Returned

CACHESIZE (N) I The size of a level of the memory
cache

DCMPLX (X, Y) E The corresponding double
complex value of the argument

DNUM (I) E The corresponding REAL(8) value
of a character string

DPROD (X, Y) E The double-precision product of
two real arguments

DREAL (A) E The corresponding double-
precision value of the double-
complex argument

IARG () I See IARGC

IARGC () I The index of the last command-
line argument

INT_PTR_KIND () I The INTEGER kind that will hold
an address

INUM (I) E The corresponding INTEGER(2)
value of a character string

JNUM (I) E The corresponding INTEGER(4)
value of a character string

KNUM (I) E The corresponding INTEGER(8)
value of a character string

MCLOCK () I The sum of the current process's
user time and the user and
system time of all its child
processes

NARGS () I The total number of command-
line arguments, including the
command

NUMARG () I See IARGC

Intel® Fortran Compiler Classic and Intel® Fortran Compiler Developer Guide and Reference 1

915

Generic Function Class Value Returned

QCMPLX (X, Y) E The corresponding COMPLEX(16)
value of the argument

QNUM (I) E The corresponding REAL(16)
value of a character string

QREAL (A) E The corresponding REAL(16)
value of the real part of a
COMPLEX(16) argument

RAN (I) N The next number from a
sequence of pseudorandom
numbers (uniformly distributed in
the range 0 to 1)

RNUM (I) E The corresponding REAL(4) value
of a character string

SECNDS (X) E The system time of day (or
elapsed time) as a floating-point
value in seconds

Key to Classes

E-Elemental

I-Inquiry

N-Nonelemental

Intrinsic Subroutines

The following table lists the intrinsic subroutines. Optional arguments are shown within square brackets. All
these subroutines are nonelemental except for MVBITS. All of these subroutines, with the exception of
MVBITS, and MOVE_ALLOC with a noncoarray FROM argument, are impure. None of the intrinsic subroutines
can be passed as actual arguments.

Intrinsic Subroutines

Subroutine Value Returned or Result

ATOMIC_ADD (atom, value [, stat]) Performs atomic addition.

ATOMIC_AND (atom, value [, stat]) Performs atomic bitwise AND.

ATOMIC_CAS (atom, old, compare, new [,stat]) Performs atomic compare and swap.

ATOMIC_DEFINE (atom, value [, stat]) Defines a variable atomically.

ATOMIC_FETCH_ADD (atom, value, old [, stat]) Performs atomic fetch and addition.

ATOMIC_FETCH_AND (atom, value, old [, stat]) Performs atomic fetch and bitwise AND.

ATOMIC_FETCH_OR (atom, value, old [, stat]) Performs atomic fetch and bitwise OR.

ATOMIC_FETCH_XOR (atom, value, old [, stat]) Performs atomic fetch and bitwise exclusive OR.

ATOMIC_OR (atom, value [, stat]) Performs atomic bitwise OR.

ATOMIC_REF (value, atom [, stat]) References a variable atomically.

ATOMIC_XOR (atom, value [, stat]) Performs atomic bitwise exclusive OR.

CO_BROADCAST (a, source_image [, stat, errmsg]) Broadcasts a value to other images.

 1 Intel® Fortran Compiler Classic and Intel® Fortran Compiler Developer Guide and Reference

916

Subroutine Value Returned or Result

CO_MAX (a, result_image [, stat, errmsg]) Computes maximum value across images.

CO_MIN (a, result_image [, stat, errmsg]) Computes minimum value across images.

CO_REDUCE (a, operation [, result_image, stat,
errmsg])

Performs a generalized reduction across images.

CO_SUM (a, result_image [, stat, errmsg]) Performs a sum reduction across images.

CPU_TIME (time) Returns the processor time in seconds.

DATE (buf) Returns the ASCII representation of the current
date (in dd-mmm-yy form).

DATE_AND_TIME ([date] [,time] [,zone] [,values]) Returns the date and time information from the
real-time clock.

ERRSNS ([io_err] [,sys_err] [,stat] [,unit] [,cond]) Returns information about the most recently
detected error condition.

EVENT_QUERY (event, count [, stat]) Queries an event count.

EXECUTE_COMMAND_LINE (command [, wait,
exitstat, cmdstat, cmdmsg])

Executes the command line.

EXIT ([status]) Image exit status is optionally returned; the
program is terminated, all files closed, and control
is returned to the operating system.

FREE (a) Frees memory that is currently allocated.

GETARG (n, buffer [,status]) Returns the specified command line argument
(where the command itself is argument number
zero).

GET_COMMAND ([command, length, status,
errmsg])

Returns the entire command that was used to
invoke the program.

GET_COMMAND_ARGUMENT (n [, value, length,
status, errmsg)

Returns a command line argument of the command
that invoked the program.

GET_ENVIRONMENT_VARIABLE (name [, value,
length, status, trim_name, errmsg])

Returns the value of an environment variable.

IDATE (i, j, k) Returns three integer values representing the
current month, day, and year.

MM_PREFETCH (address [,hint] [,fault]
[,exclusive])

Returns data from the specified address on one
memory cache line.

MOVE_ALLOC (from, to [, stat, errmsg]) Causes an allocation to be moved from one
allocatable object to another.

MVBITS (from, frompos, len, to, topos)1 Causes a sequence of bits (bit field) to be copied
from one location to another.

RANDOM_INIT (repeatable, image_distinct) Initializes the pseudorandom number generator
used by RANDOM_NUMBER.

RANDOM_NUMBER (harvest) Returns a pseudorandom number taken from a
sequence of pseudorandom numbers uniformly
distributed within the range 0.0 to 1.0.

Intel® Fortran Compiler Classic and Intel® Fortran Compiler Developer Guide and Reference 1

917

Subroutine Value Returned or Result

RANDOM_SEED ([size] [,put] [,get]) Causes the initialization or retrieval of the
pseudorandom number generator seed value.

RANDU (i1, i2, x) Returns a pseudorandom number as a single-
precision value (within the range 0.0 to 1.0).

SYSTEM_CLOCK ([count] [,count_rate]
[,count_max])

Returns data from the processors real-time clock.

TIME (buf) Returns the ASCII representation of the current
time (in hh:mm:ss form).

1 An elemental subroutine

Data Transfer I/O Statements
Input/Output (I/O) statements can be used for data transfer, file connection, file inquiry, and file positioning.

This section discusses data transfer and contains information on the following topics:

• An overview of records and files
• Components of data transfer statements
• Data transfer input statements:

• READ

Data can be input from external sequential or direct-access records, or from internal records.
• ACCEPT

This statement is the same as a formatted, sequential READ statement, except that an ACCEPT
statement must never be connected to user-specified I/O units.

• Data transfer output statements:

• WRITE

Data can be output to external sequential or direct-access records, or to internal records.
• PRINT and TYPE

The PRINT statement is the same as a formatted, sequential WRITE statement, except that the PRINT
statement must never transfer data to user-specified I/O units.

TYPE is a synonym for PRINT. All forms and rules for the PRINT statement also apply to the TYPE
statement.

• REWRITE

It rewrites the current record and it can be formatted or unformatted.

File connection, file inquiry, and file positioning I/O statements are discussed in File Operation I O
Statements.

Records and Files
A record is a sequence of values or a sequence of characters. There are three kinds of Fortran records, as
follows:

• Formatted

A record containing formatted data that requires translation from internal to external form. Formatted I/O
statements have explicit format specifiers (which can specify list-directed formatting) or namelist
specifiers (for namelist formatting). Only formatted I/O statements can read formatted data.

• Unformatted

A record containing unformatted data that is not translated from internal form. An unformatted record can
also contain no data. The internal representation of unformatted data is processor- dependent. Only
unformatted I/O statements can read unformatted data.

 1 Intel® Fortran Compiler Classic and Intel® Fortran Compiler Developer Guide and Reference

918

• Endfile

The last record of a file. An endfile record can be explicitly written to a sequential file by an ENDFILE
statement.

A file is a sequence of records. There are two types of Fortran files, as follows:

• External

A file that exists in a medium (such as computer disks or terminals) external to the executable program.

Records in an external file must be either all formatted or all unformatted. There are two ways to access
records in external files: sequential and direct access.

In sequential access, records are processed in the order in which they appear in the file. In direct access,
records are selected by record number, so they can be processed in any order.

• Internal

Memory (internal storage) that behaves like a file. This type of file provides a way to transfer and convert
data in memory from one format to another. The contents of these files are stored as scalar character
variables.

See Also
Unit Specifier (UNIT=)

Components of Data Transfer Statements
Data transfer statements take one of the following forms:

io-keyword (io-control-list) [io-list]

io-keywordformat [, io-list]

io-keyword Is one of the following: ACCEPT, PRINT (or TYPE), READ, REWRITE, or
WRITE.

io-control-list Is one or more of the following input/output (I/O) control specifiers:

[UNIT=]io-unit ASYNCHRONO
US

IOMSG SIZE

[FMT=]format END IOSTAT

[NML=]group EOR POS

ADVANCE ERR REC

io-list Is an I/O list, which can contain variables (except for assumed-size
arrays) or implied-DO lists. Output statements can contain constants
or expressions.

format Is the nonkeyword form of a control-list format specifier (no FMT=).

If a format specifier ([FMT=]format) or namelist specifier ([NML=]group) is present, the data transfer
statement is called a formatted I/O statement; otherwise, it is an unformatted I/O statement.

If a record specifier (REC=) is present, the data transfer statement is a direct-access I/O statement;
otherwise, it is a sequential-access I/O statement.

If an error, end-of-record, or end-of-file condition occurs during data transfer, file positioning and execution
are affected, and certain control-list specifiers (if present) become defined. (For more information, see
Branch Specifiers.)

Following sections describe the I/O control list and I/O lists.

I/O Control List

The I/O control list specifies one or more of the following:

Intel® Fortran Compiler Classic and Intel® Fortran Compiler Developer Guide and Reference 1

919

• The I/O unit to act upon ([UNIT=]io-unit)

This specifier must be present; the rest are optional.
• The format (explicit or list-directed) to use for data editing; if explicit, the keyword form must appear

([FMT=]
• The namelist group name to act upon ([NML=]group)
• The number of a record to access (REC=)
• The name of a variable that contains the completion status of an I/O operation (IOSTAT=)
• The label of the statement that receives control if an error (ERR=), end-of-file (END=), or end-of-record

(EOR=) condition occurs
• Whether you want to use advancing or nonadvancing I/O (ADVANCE=)
• The number of characters read from a record (SIZE=)
• Whether you want to use asynchronous or synchronous I/O (ASYNCHRONOUS=)
• The identifier for a pending data transfer operation (ID=)
• The identifier for the file position in file storage units in a stream file (POS=)
• The name of a variable that contains an error message (IOMSG=)

No control specifier can appear more than once, and the list must not contain both a format specifier and
namelist group name specifier.

Control specifiers can take any of the following forms:

• Keyword form

When the keyword form (for example, UNIT=io-unit) is used for all control-list specifiers in an I/O
statement, the specifiers can appear in any order.

• Nonkeyword form

When the nonkeyword form (for example, io-unit) is used for all control-list specifiers in an I/O statement,
the io-unit specifier must be the first item in the control list. If a format specifier or namelist group name
specifier is used, it must immediately follow the io-unit specifier.

• Mixed form

When a mix of keyword and nonkeyword forms is used for control-list specifiers in an I/O statement, the
nonkeyword values must appear first. Once a keyword form of a specifier is used, all specifiers to the right
must also be keyword forms.

Unit Specifier (UNIT=)

The unit specifier identifies the I/O unit to be accessed. It takes the following form:

[UNIT=]io-unit

io-unit For external files, it identifies a logical unit and is one of the following:

• A scalar integer expression that refers to a specific file, I/O device,
or pipe. If necessary, the value is converted to integer data type
before use. The integer is in the range 0 through 2,147,483,647
(2**31-1), equal to the value of one of the constants INPUT_UNIT,
OUTPUT_UNIT or ERROR_UNIT from intrinsic module
ISO_FORTRAN_ENV, or a value returned by a NEWUNIT= specifier
from an OPEN statement.

Units 5, 6, and 0 are associated with preconnected units.
• An asterisk (*). This is the default (or implicit) external unit, which

is preconnected for formatted sequential access. You can also
preconnect files by using an environment variable.

For internal files, it identifies a scalar or array character variable that
is an internal file. An internal file is designated internal storage space
(a variable buffer) that is used with formatted (including list-directed)
sequential READ and WRITE statements.

The io-unit must be specified in a control list. If the keyword UNIT is omitted, the io-unit must be first in the
control list.

 1 Intel® Fortran Compiler Classic and Intel® Fortran Compiler Developer Guide and Reference

920

A unit number is assigned either explicitly through an OPEN statement or implicitly by the system. If a READ
statement implicitly opens a file, the file's status is STATUS='OLD'. If a WRITE statement implicitly opens a
file, the file's status is STATUS='UNKNOWN'.

If the internal file is a scalar character variable, the file has only one record; its length is equal to that of the
variable.

If the internal file is an array character variable, the file has a record for each element in the array; each
record's length is equal to one array element.

An internal file can be read only if the variable has been defined and a value assigned to each record in the
file. If the variable representing the internal file is a pointer, it must be associated; if the variable is an
allocatable array, it must be currently allocated.

Before data transfer, an internal file is always positioned at the beginning of the first character of the first
record.

See Also
OPEN statement

Format Specifier (FMT=)

The format specifier indicates the format to use for data editing. It takes the following form:

[FMT=]format

format Is one of the following:

• The statement label of a FORMAT statement

The FORMAT statement must be in the same scoping unit as the
data transfer statement.

• An asterisk (*), indicating list-directed formatting
• A scalar default integer variable that has been assigned the label of

a FORMAT statement (through an ASSIGN statement)

The FORMAT statement must be in the same scoping unit as the
data transfer statement.

• A character expression (which can be an array or character
constant) containing the runtime format

A default character expression must evaluate to a valid format
specification. If the expression is an array, it is treated as if all the
elements of the array were specified in array element order and
were concatenated.

• The name of a numeric array (or array element) containing the
format

If the keyword FMT is omitted, the format specifier must be the second specifier in the control list; the io-unit
specifier must be first.

If a format specifier appears in a control list, a namelist group specifier must not appear.

See Also
FORMAT statement
Interaction between FORMAT statements and I/O lists
Rules for List-Directed Sequential READ Statements for details on list-directed input
Rules for List-Directed Sequential WRITE Statements for details on list-directed output

Namelist Specifier (NML=)

The namelist specifier indicates namelist formatting and identifies the namelist group for data transfer. It
takes the following form:

[NML=]group

Intel® Fortran Compiler Classic and Intel® Fortran Compiler Developer Guide and Reference 1

921

group Is the name of a namelist group previously declared in a NAMELIST
statement.

If the keyword NML is omitted, the namelist specifier must be the second specifier in the control list; the io-
unit specifier must be first.

If a namelist specifier appears in a control list, a format specifier must not appear.

See Also
Rules for Namelist Sequential READ Statements for details on namelist input
Rules for Namelist Sequential WRITE Statements for details on namelist output
READ
WRITE

Record Specifier (REC=)

The record specifier identifies the number of the record for data transfer in a file connected for direct access.
It takes the following form:

REC=r

r Is a scalar numeric expression indicating the record number. The
value of the expression must be greater than or equal to 1, and less
than or equal to the maximum number of records allowed in the file.

If necessary, the value is converted to integer data type before use.

If REC is present, no END specifier, * format specifier, or namelist group name can appear in the same
control list.

See Also
Alternative Syntax for a Record Specifier

I/O Status Specifier (IOSTAT=)

The I/O status specifier designates a variable to store a value indicating the status of a data transfer
operation. It takes the following form:

IOSTAT=i-var

i-var Is a scalar integer variable. When a data transfer statement is
executed, i-var is set to one of the following values:

A positive integer Indicating an error condition
occurred.

A negative integer Indicating an end-of-file or end-
of-record condition occurred.
The negative integers differ
depending on which condition
occurred.

Zero Indicating no error, end-of-file,
or end-of-record condition
occurred.

Execution continues with the statement following the data transfer statement, or the statement identified by
a branch specifier (if any).

An end-of-file condition occurs only during execution of a sequential READ statement; an end-of-record
condition occurs only during execution of a nonadvancing READ statement.

 1 Intel® Fortran Compiler Classic and Intel® Fortran Compiler Developer Guide and Reference

922

See Also
List of Runtime Error Messages
IS_IOSTAT_END function
IS_IOSTAT_EOR function
CLOSE
READ
WRITE

Branch Specifiers (END=, EOR=, ERR=)

A branch specifier identifies a branch target statement that receives control if an error, end-of-file, or end-of-
record condition occurs. There are three branch specifiers, taking the following forms:

ERR=label

END=label

EOR=label

label Is the label of the branch target statement that receives control when
the specified condition occurs.

The branch target statement must be in the same scoping unit as the
data transfer statement.

The following rules apply to these specifiers:

• ERR

The error specifier can appear in a sequential access READ or WRITE statement, a direct-access READ
statement, or a REWRITE statement.

If an error condition occurs, the position of the file is indeterminate, and execution of the statement
terminates.

If IOSTAT was specified, the IOSTAT variable becomes defined as a positive integer value. If SIZE was
specified (in a nonadvancing READ statement), the SIZE variable becomes defined as an integer value. If
a label was specified, execution continues with the labeled statement.

• END

The end-of-file specifier can appear only in a sequential access READ statement.

An end-of-file condition occurs when no more records exist in a file during a sequential read, or when an
end-of-file record produced by the ENDFILE statement is encountered. End-of-file conditions do not occur
in direct-access READ statements.

If an end-of-file condition occurs, the file is positioned after the end-of-file record, and execution of the
statement terminates.

If IOSTAT was specified, the IOSTAT variable becomes defined as a negative integer value. If a label was
specified, execution continues with the labeled statement.

• EOR

The end-of-record specifier can appear only in a formatted, sequential access READ statement that has
the specifier ADVANCE='NO'(nonadvancing input).

An end-of-record condition occurs when a nonadvancing READ statement tries to transfer data from a
position after the end of a record.

If an end-of-record condition occurs, the file is positioned after the current record, and execution of the
statement terminates.

If IOSTAT was specified, the IOSTAT variable becomes defined as a negative integer value. If PAD='YES'
was specified for file connection, the record is padded with blanks (as necessary) to satisfy the input item
list and the corresponding data edit descriptor. If SIZE was specified, the SIZE variable becomes defined
as an integer value. If a label was specified, execution continues with the labeled statement.

Intel® Fortran Compiler Classic and Intel® Fortran Compiler Developer Guide and Reference 1

923

If one of the conditions occurs, no branch specifier appears in the control list, but an IOSTAT specifier
appears, execution continues with the statement following the I/O statement. If neither a branch specifier
nor an IOSTAT specifier appears, the program terminates.

See Also
I/O Status Specifier
Branch Statements
Compiler Reference section: Error Handling for details on error processing

Advance Specifier (ADVANCE=)

The advance specifier determines whether nonadvancing I/O occurs for a data transfer statement. It takes
the following form:

ADVANCE=c-expr

c-expr Is a scalar character expression that evaluates to 'YES' for advancing
I/O or 'NO' for nonadvancing I/O. The default value is 'YES'.

Trailing blanks in the expression are ignored. The values specified are
without regard to case.

The ADVANCE specifier can appear only in a formatted, sequential data transfer statement that specifies an
external unit. It must not be specified for list-directed or namelist data transfer, for a data transfer statement
within a DO CONCURRENT block, nor for a data transfer statement within a DO CONCURRENT block.

Advancing I/O always positions a file at the end of a record, unless an error condition occurs. Nonadvancing
I/O can position a file at a character position within the current record.

See Also
Compiler Reference: Data and I/O: Fortran I/O: Advancing and Nonadvancing Record I/O

Asynchronous Specifier (ASYNCHRONOUS=)

The asynchronous specifier determines whether asynchronous I/O occurs for a data transfer statement. It
takes the following form:

ASYNCHRONOUS=i-expr

i-expr Is a scalar character constant expression that evaluates to 'YES' for
asynchronous I/O or 'NO' for synchronous I/O. The value 'YES' should
not appear unless the data transfer statement specifies a file unit
number for io-unit. The default value is 'NO'.

Trailing blanks in the expression are ignored. The values specified are
without regard to case.

Asynchronous I/O is permitted only for external files opened with an OPEN statement that specifies
ASYNCHRONOUS='YES'.

When an asynchronous I/O statement is executed, the pending I/O storage sequence for the data transfer
operation is defined to be:

• The set of storage units specified by the I/O item list or by the NML= specifier
• The storage units specified by the SIZE= specifier

Character Count Specifier (SIZE=)

The character count specifier defines a variable to contain the count of the characters transferred by data
edit descriptors during execution of the current input statement. It takes the following form:

SIZE=i-var

i-var Is a scalar integer variable.

 1 Intel® Fortran Compiler Classic and Intel® Fortran Compiler Developer Guide and Reference

924

If PAD='YES' was specified for file connection, blanks inserted as padding are not counted.

For input statements, the SIZE= specifier can appear only in a formatted, sequential READ statement that
has the specifier ADVANCE='NO' (nonadvancing input). It must not be specified for list-directed or namelist
data transfer.

For asynchronous nonadvancing input, the storage units specified in the SIZE= specifier become defined with
the count of the characters transferred when the corresponding wait operation is executed.

ID Specifier (ID=)

The ID specifier identifies a pending data transfer operation for a specified unit. It takes the following form:

ID=id-var

id-var Is a scalar integer variable to be used as an identifier.

This specifier can only be used if the value of ASYNCHRONOUS=i-expr
is 'YES'.

If an ID specifier is used in a data transfer statement, a wait operation is performed for the operation. If it is
omitted, wait operations are performed for all pending data transfers for the specified unit.

If an error occurs during the execution of a data transfer statement containing an ID specifier, the variable
specified becomes undefined.

In an INQUIRE statement, the ID= specifier identifies a pending asynchronous data transfer. It is is used with
the PENDING specifier to determine whether a specific asynchronous pending data transfer is completed.

POS Specifier (POS=)

The POS specifier identifies the file position in file storage units in a stream file (ACCESS='STREAM'). It takes
the following form:

POS=p

p Is a scalar integer expression that specifies the file position. It can
only be specified for a file opened for stream access. If omitted, the
stream I/O occurs starting at the next file position after the current
file position.

Each file storage unit has a unique file position, represented by a positive integer. The first file storage unit is
a file is at file position 1. The position of each subsequent file storage unit is one greater than that of its
preceding file storage unit.

For a formatted file, the file storage unit is an eight-bit byte. For an unformatted file, the file storage unit is
an eight-bit byte (if option assume byterecl is specified) or a 32-bit word (if option assume nobyterecl, the
default, is specified).

I/O Message Specifier (IOMSG=)

The I/O message specifier designates a variable to contain the message to be returned when an I/O error
occurs. It takes the following form:

IOMSG=msg-var

msg-var Is a scalar default character variable.

If an error (ERR=), end-of-file (END=), or end-of-record (EOR=) condition occurs during execution of an I/O
statement, msg-var is assigned an explanatory message.

If no error occurs, the value of the variable remains unchanged.

Intel® Fortran Compiler Classic and Intel® Fortran Compiler Developer Guide and Reference 1

925

I/O Lists

In a data transfer statement, the I/O list specifies the entities whose values will be transferred. An input list
is made up of implied-do lists and simple lists of variables (except for assumed-size arrays). An output list is
made up of implied-do lists, expressions, and simple lists of variables (except for assumed-size arrays).

In input statements, the I/O list cannot contain constants and expressions because these do not specify
named memory locations that can be referenced later in the program.

However, constants and expressions can appear in the I/O lists for output statements because the compiler
can use temporary memory locations to hold these values during the execution of the I/O statement.

If an input item is a pointer, it must be currently associated with a definable target; data is transferred from
the file to the associated target. If an output item is a pointer, it must be currently associated with a target;
data is transferred from the target to the file.

If an input or output item is an array, it is treated as if the elements (if any) were specified in array element
order. For example, if ARRAY_A is an array of shape (2,1), the following input statements are equivalent:

 READ *, ARRAY_A
 READ *, ARRAY_A(1,1), ARRAY_A(2,1)

However, no element of that array can affect the value of any expression in the input list, nor can any
element appear more than once in an input list. For example, the following input statements are invalid:

 INTEGER B(50)
 ...
 READ *, B(B)
 READ *, B(B(1):B(10))

If an input or output item is an allocatable array, it must be currently allocated.

If an input or output item is a derived type, the following rules apply:

• Any derived-type component must be in the scoping unit containing the I/O statement.
• The derived type must not have a pointer component.
• In a formatted I/O statement, a derived type is treated as if all of the components of the structure were

specified in the same order as in the derived-type definition.
• In an unformatted I/O statement, a derived type is treated as a single object.

Simple List Items in I/O Lists

In a data transfer statement, a simple list of items takes the following form:

item [, item] ...

item Is one of the following:

• For input statements: a variable name

The variable must not be an assumed-size array, unless one of the
following appears in the last dimension: a subscript, a vector
subscript, or a section subscript specifying an upper bound.

• For output statements: a variable name, expression, or constant

Any expression must not attempt further I/O operations on the
same logical unit. For example, it must not refer to a function
subprogram that performs I/O on the same logical unit.

The data transfer statement assigns values to (or transfers values from) the list items in the order in which
the items appear, from left to right.

When multiple array names are used in the I/O list of an unformatted input or output statement, only one
record is read or written, regardless of how many array name references appear in the list.

 1 Intel® Fortran Compiler Classic and Intel® Fortran Compiler Developer Guide and Reference

926

Examples
The following example shows a simple I/O list:

 WRITE (6,10) J, K(3), 4, (L+4)/2, N
When you use an array name reference in an I/O list, an input statement reads enough data to fill every item
of the array. An output statement writes all of the values in the array.

Data transfer begins with the initial item of the array and proceeds in the order of subscript progression, with
the leftmost subscript varying most rapidly. The following statement defines a two-dimensional array:

 DIMENSION ARRAY(3,3)
If the name ARRAY appears with no subscripts in a READ statement, that statement assigns values from the
input record(s) to ARRAY(1,1), ARRAY(2,1), ARRAY(3,1), ARRAY(1,2), and so on through ARRAY(3,3).

An input record contains the following values:

 1,3,721.73
The following example shows how variables in the I/O list can be used in array subscripts later in the list:

 DIMENSION ARRAY(3,3)
 ...
 READ (1,30) J, K, ARRAY(J,K)

When the READ statement is executed, the first input value is assigned to J and the second to K, establishing
the subscript values for ARRAY(J,K). The value 721.73 is then assigned to ARRAY(1,3). Note that the
variables must appear before their use as array subscripts.

Consider the following derived-type definition and structure declaration:

 TYPE EMPLOYEE
 INTEGER ID
 CHARACTER(LEN=40) NAME
 END TYPE EMPLOYEE
 ...
 TYPE(EMPLOYEE) :: CONTRACT ! A structure of type EMPLOYEE

The following statements are equivalent:

 READ *, CONTRACT

 READ *, CONTRACT%ID, CONTRACT%NAME
The following shows more examples:

 ! A variable and array element in iolist:
 REAL b(99)
 READ (*, 300) n, b(n) ! n and b(n) are the iolist
 300 FORMAT (I2, F10.5) ! FORMAT statement telling what form the input data has

 ! A derived type and type element in iolist:
 TYPE YOUR_DATA
 REAL a
 CHARACTER(30) info
 COMPLEX cx
 END TYPE YOUR_DATA
 TYPE (YOUR_DATA) yd1, yd2

Intel® Fortran Compiler Classic and Intel® Fortran Compiler Developer Guide and Reference 1

927

 yd1.a = 2.3
 yd1.info = "This is a type demo."
 yd1.cx = (3.0, 4.0)
 yd2.cx = (4.5, 6.7)
 ! The iolist follows the WRITE (*,500).
 WRITE (*, 500) yd1, yd2.cx
 ! The format statement tells how the iolist will be output.
 500 FORMAT (F5.3, A21, F5.2, ',', F5.2, ' yd2.cx = (', F5.2,
 ',',F5.2, ')')
 ! The output looks like:
 ! 2.300This is a type demo 3.00, 4.00 yd2.cx = (4.50, 6.70)

The following example uses an array and an array section:

 ! An array in the iolist:
 INTEGER handle(5)
 DATA handle / 5*0 /
 WRITE (*, 99) handle
 99 FORMAT (5I5)
 ! An array section in the iolist.
 WRITE (*, 100) handle(2:3)
 100 FORMAT (2I5)

The following shows another example:

 PRINT *,'(I5)', 2*3 ! The iolist is the expression 2*3.
The following example uses a namelist:

 ! Namelist I/O:
 INTEGER int1
 LOGICAL log1
 REAL r1
 CHARACTER (20) char20
 NAMELIST /mylist/ int1, log1, r1, char20
 int1 = 1
 log1 = .TRUE.
 r1 = 1.0
 char20 = 'NAMELIST demo'
 OPEN (UNIT = 4, FILE = 'MYFILE.DAT', DELIM = 'APOSTROPHE')
 WRITE (UNIT = 4, NML = mylist)
 ! Writes the following:
 ! &MYLIST
 ! INT1 = 1,
 ! LOG1 = T,
 ! R1 = 1.000000,
 ! CHAR20 = 'NAMELIST demo '
 ! /
 REWIND(4)
 READ (4, mylist)

See Also
I/O Lists for details on the general rules for I/O lists

Implied-DO Lists in I/O Lists

In a data transfer statement, an implied-DO list acts as though it were a part of an I/O statement within a
DO loop. It takes the following form:

(list, do-var = expr 1, expr 2 [, expr 3])

 1 Intel® Fortran Compiler Classic and Intel® Fortran Compiler Developer Guide and Reference

928

list Is a list of variables, expressions, or constants (see Simple List Items
in I/O Lists).

do-var Is the name of a scalar integer or real variable. The variable must not
be one of the input items in list.

expr Are scalar numeric expressions of type integer or real. They do not all
have to be the same type, or the same type as the DO variable.

The implied-DO loop is initiated, executed, and terminated in the same way as a DO construct.

The list is the range of the implied-DO loop. Items in that list can refer to do-var, but they must not change
the value of do-var.

Two nested implied-DO lists must not have the same (or an associated) DO variable.

Use an implied-DO list to do the following:

• Specify iteration of part of an I/O list
• Transfer part of an array
• Transfer array items in a sequence different from the order of subscript progression

If the I/O statement containing an implied-DO list terminates abnormally (with an END, EOR, or ERR branch
or with an IOSTAT value other than zero), the DO variable becomes undefined.

Examples
The following two output statements are equivalent:

 WRITE (3,200) (A,B,C, I=1,3) ! An implied-DO list

 WRITE (3,200) A,B,C,A,B,C,A,B,C ! A simple item list
The following example shows nested implied-DO lists. Execution of the innermost list is repeated most often:

 WRITE (6,150) ((FORM(K,L), L=1,10), K=1,10,2)
The inner DO loop is executed 10 times for each iteration of the outer loop; the second subscript (L)
advances from 1 through 10 for each increment of the first subscript (K). This is the reverse of the normal
array element order. Note that K is incremented by 2, so only the odd-numbered rows of the array are
output.

In the following example, the entire list of the implied-DO list (P(1), Q(1,1), Q(1,2)...,Q(1,10)) are read
before I is incremented to 2:

 READ (5,999) (P(I), (Q(I,J), J=1,10), I=1,5)
The following example uses fixed subscripts and subscripts that vary according to the implied-DO list:

 READ (3,5555) (BOX(1,J), J=1,10)
Input values are assigned to BOX(1,1) through BOX(1,10), but other elements of the array are not affected.

The following example shows how a DO variable can be output directly:

 WRITE (6,1111) (I, I=1,20)
Integers 1 through 20 are written.

Consider the following:

 INTEGER mydata(25)
 READ (10, 9000) (mydata(I), I=6,10,1)
 9000 FORMAT (5I3)

In this example, the iolist specifies to put the input data into elements 6 through 10 of the array called
mydata. The third value in the implied-DO loop, the increment, is optional. If you leave it out, the increment
value defaults to 1.

Intel® Fortran Compiler Classic and Intel® Fortran Compiler Developer Guide and Reference 1

929

See Also
Execution Control
I/O Lists for details on the general rules for I/O lists

Forms for READ Statements
This section discusses the various forms you can specify for READ statements.

Forms for Sequential READ Statements

Sequential READ statements transfer input data from external sequential-access records. The statements can
be formatted with format specifiers (which can use list-directed formatting) or namelist specifiers (for
namelist formatting), or they can be unformatted.

A sequential READ statement takes one of the following forms:

Formatted:
READ (eunit, format [, advance] [, asynchronous] [, blank] [, decimal] [, id] [, pad] [, pos] [, round] [, size]
[, iostat] [, err] [, end] [, eor] [, iomsg]) [io-list]

READ form [, io-list]

Formatted - List-Directed:
READ (eunit, * [, asynchronous] [, blank] [, decimal] [, id] [, pad] [, pos] [, round] [, iostat] [, err] [, end]
[, iomsg]) [io-list]

READ * [, io-list]

Formatted - Namelist:
READ (eunit, nml-group [, asynchronous] [, blank] [, decimal] [, id] [, pad] [, pos] [, round] [, iostat] [, err]
[, end] [, iomsg])

READ nml

Unformatted:
READ (eunit [, asynchronous] [, id] [, pos] [, iostat] [, err] [, end] [, iomsg]) [io-list]

See Also
READ
I/O control-list specifiers
I/O lists

Rules for Formatted Sequential READ Statements

Formatted, sequential READ statements translate data from character to binary form by using format
specifications for editing (if any). The translated data is assigned to the entities in the I/O list in the order in
which the entities appear, from left to right.

Values can be transferred to objects of intrinsic or derived types. For derived types, values of intrinsic types
are transferred to the components of intrinsic types that ultimately make up these structured objects.

For data transfer, the file must be positioned so that the record read is a formatted record or an end-of-file
record.

If the number of I/O list items is less than the number of fields in an input record, the statement ignores the
excess fields.

 1 Intel® Fortran Compiler Classic and Intel® Fortran Compiler Developer Guide and Reference

930

If the number of I/O list items is greater than the number of fields in an input record, the input record is
padded with blanks. However, if PAD='NO' was specified for file connection, the input list and file specification
must not require more characters from the record than it contains. If more characters are required and
nonadvancing input is in effect, an end-of-record condition occurs.

If the file is connected for unformatted I/O, formatted data transfer is prohibited.

Examples
The following example shows formatted, sequential READ statements:

 READ (*, '(B)', ADVANCE='NO') C

 READ (FMT="(E2.4)", UNIT=6, IOSTAT=IO_STATUS) A, B, C

See Also
READ statement
Forms for Sequential READ Statements

Rules for List-Directed Sequential READ Statements

List-directed, sequential READ statements translate data from character to binary form by using the data
types of the corresponding I/O list item to determine the form of the data. The translated data is then
assigned to the entities in the I/O list in the order in which they appear, from left to right.

If a slash (/) is encountered during execution, the READ statement is terminated, and any remaining input
list items are unchanged.

If the file is connected for unformatted I/O, list-directed data transfer is prohibited.

List-Directed Records
A list-directed external record consists of a sequence of values and value separators. A value can be any of
the following:

• A constant

Each constant must be a literal constant of type integer, real, complex, logical, or character; or a
nondelimited character string. Binary, octal, hexadecimal, Hollerith, and named constants are not
permitted.

In general, the form of the constant must be acceptable for the type of the list item. The data type of the
constant determines the data type of the value and the translation from external to internal form. The
following rules also apply:

• A numeric list item can correspond only to a numeric constant, and a character list item can
correspond only to a character constant. If the data types of a numeric list element and its
corresponding numeric constant do not match, conversion is performed according to the rules for
arithmetic assignment (see the table in Numeric Assignment Statements). Conversion is not performed
between numeric and logical types unless compiler option assume old_logical_ldio is in effect. The
decimal point in a numeric constant can either be a period if DECIMAL='POINT' or a comma if
DECIMAL='COMMA'.

• A complex constant has the form of a pair of real or integer constants separated by a comma if
DECIMAL='POINT' or a semicolon if DECIMAL='COMMA' and enclosed in parentheses. Blanks can
appear between the opening parenthesis and the first constant, before and after the separating comma
or semicolon, and between the second constant and the closing parenthesis.

• A logical constant represents true values (.TRUE. or any value beginning with T, .T, t, or .t) or false
values (.FALSE. or any value beginning with F, .F, f, or .f).

A character string does not need delimiting apostrophes or quotation marks if the corresponding I/O list
item is of type default character, and the following is true:

Intel® Fortran Compiler Classic and Intel® Fortran Compiler Developer Guide and Reference 1

931

• The character string does not contain a blank, comma (,), or slash (/).
• The character string is not continued across a record boundary.
• The first nonblank character in the string is not an apostrophe or a quotation mark.
• The leading character is not a string of digits followed by an asterisk.

A nondelimited character string is terminated by the first blank, comma, slash, or end-of-record
encountered. Apostrophes and quotation marks within nondelimited character strings are transferred as
is.

• A null value

A null value is specified by two consecutive value separators (such as,,) or a nonblank initial value
separator. (A value separator before the end of the record does not signify a null value.)

A null value indicates that the corresponding list element remains unchanged. A null value can represent
an entire complex constant, but cannot be used for either part of a complex constant.

• A repetition of a null value (r*) or a constant (r*constant), where r is an unsigned, nonzero, integer literal
constant with no kind parameter, and no embedded blanks.

A value separator is any number of blanks, a slash, or a comma if DECIMAL='POINT' or a semicolon if
DECIMAL='COMMA', preceded or followed by any number of blanks. When any of these appear in a character
constant, they are considered part of the character constant, not value separators.

The end of a record is equivalent to a blank character, except when it occurs in a character constant. In this
case, the end of the record is ignored, and the character constant is continued with the next record (the last
character in the previous record is immediately followed by the first character of the next record).

Blanks at the beginning of a record are ignored unless they are part of a character constant continued from
the previous record. In this case, the blanks at the beginning of the record are considered part of the
constant.

Examples
Suppose the following statements are specified:

 CHARACTER*14 C
 DOUBLE PRECISION T
 COMPLEX D,E
 LOGICAL L,M
 READ (1,*) I,R,D,E,L,M,J,K,S,T,C,A,B

Then suppose the following external record is read:

 4 6.3 (3.4,4.2), (3, 2), T,F,,3*14.6,'ABC,DEF/GHI''JK'/
The following values are assigned to the I/O list items when DECIMAL='POINT':

I/O List Item Value Assigned

I 4

R 6.3

D (3.4,4.2)

E (3.0,2.0)

L .TRUE.

M .FALSE.

J Unchanged

 1 Intel® Fortran Compiler Classic and Intel® Fortran Compiler Developer Guide and Reference

932

I/O List Item Value Assigned

K 14

S 14.6

T 14.6D0

C ABC,DEF/GHI' JK

A Unchanged

B Unchanged

With DECIMAL='COMMA', the following external record produces the same values as in the table above:

4 6,3 (3,4;4,2); (3; 2); T;F;;3*14,6,'ABC,DEF/GHI''JK'/
The following example shows list-directed input and output:

 REAL a
 INTEGER i
 COMPLEX c
 LOGICAL up, down
 DATA a /2358.2E-8/, i /91585/, c /(705.60,819.60)/
 DATA up /.TRUE./, down /.FALSE./
 OPEN (UNIT = 9, FILE = 'listout', STATUS = 'NEW')
 WRITE (9, *) a, i
 WRITE (9, *) c, up, down
 REWIND (9)
 READ (9, *) a, i
 READ (9, *) c, up, down
 WRITE (*, *) a, i
 WRITE (*, *) c, up, down
 END

The preceding program produces the following output:

 2.3582001E-05 91585
 (705.6000,819.6000) T F

See Also
READ
Forms for Sequential READ Statements
Intrinsic Data Types for details on the literal constant forms of intrinsic data types
Rules for List-Directed Sequential WRITE Statements for details on list-directed output

Rules for Namelist Sequential READ Statements

Namelist, sequential READ statements translate data from external to internal form by using the data types
of the objects in the corresponding NAMELIST statement to determine the form of the data. The translated
data is assigned to objects in the namelist group by specifying the name of the object to which the data is to
be assigned.

The order of the object name and data pairs in the input records need not match the order of the objects in
the namelist var-list. The input need not specify all objects in the namelist var-list. They may specify a part
of an object more than once. Namelist group names and object names are case insensitive.

If a slash (/) is encountered during execution, the READ statement is terminated, and any remaining input
list items are unchanged. An ampersand (&) encountered during input is treated the same as a slash (/).

If the file is connected for unformatted I/O, namelist data transfer is prohibited.

Intel® Fortran Compiler Classic and Intel® Fortran Compiler Developer Guide and Reference 1

933

Namelist Records
A namelist external record takes the following form:

&group-nameobject = value [{, | ;} object = value] .../

group-name Is the name of the group containing the objects to be given values.
The name must have been previously defined in a NAMELIST
statement in the scoping unit. The name cannot contain embedded
blanks and must be contained within a single record.

object Is the name (or subobject designator) of an entity defined in the
NAMELIST declaration of the group name. The object name must not
contain embedded blanks except within the parentheses of a subscript
or substring specifier. Each object must be contained in a single
record.

value Is any of the following:

• A constant

Each constant must be a literal constant of type integer, real,
complex, logical, or character; or a delimited or nondelimited
character string. Binary, octal, hexadecimal, Hollerith, and named
constants are not permitted.

In general, the form of the constant must be acceptable for the
type of the list item. The data type of the constant determines the
data type of the value and the translation from external to internal
form. The following rules also apply:

• A numeric list item can correspond only to a numeric constant,
and a character list item can correspond only to a character
constant. If the data types of a numeric list element and its
corresponding numeric constant do not match, conversion is
performed according to the rules for arithmetic assignment (see
the table in Numeric Assignment Statements). Logical list items
and logical constants are not considered numeric, unless the
compiler option assume old_logical_ldio is specified. The
decimal point in a numeric constant can either be a period if
DECIMAL='POINT' or a comma if DECIMAL='COMMA'.

• A complex constant has the form of a pair of real or integer
constants separated by a comma if DECIMAL='POINT' or a
semicolon if DECIMAL='COMMA' and enclosed in parentheses.
Blanks can appear between the opening parenthesis and the
first constant, before and after the separating comma or
semicolon, and between the second constant and the closing
parenthesis.

• A logical constant represents true values (.TRUE. or any value
beginning with T, .T, t, or .t) or false values (.FALSE. or any
value beginning with F, .F, f, or .f).

Normally, a character string in a NAMELIST statement must be
delimited to be read. A delimited string is denoted by apostrophes
(DELIM=APOSTROPHE), or quotes (DELIM=QUOTE).

Intel® Fortran also allows setting DELIM=NONE, which is the
default for both input and output. In this case, non-delimited
strings are allowed under certain circumstances.

 1 Intel® Fortran Compiler Classic and Intel® Fortran Compiler Developer Guide and Reference

934

A character string does not need delimiting apostrophes or
quotation marks if the corresponding NAMELIST item is of type
default character and it complies with the following rules:

• The character string cannot contain a blank, tab, equal sign (=),
dollar sign ($), slash (/), new line, ampersand (&), or
exclamation point(!). A nondelimited character string is
terminated if one of these is encountered.

• Normally, a comma will also cause termination of the
nondelimited character string. However, if DECIMAL=COMMA is
specified, then the character string cannot contain semicolons
but it can contain commas. In this case, if a semicolon is
encountered the nondelimited character string is terminated.

• A null value

A null value is specified by two consecutive value separators (such
as two adjacent commas ",,") or a nonblank initial value separator.
(A value separator before the end of the record does not signify a
null value.)

A null value indicates that the corresponding list element remains
unchanged. A null value can represent an entire complex constant,
but cannot be used for either part of a complex constant.

• A repetition of a null value (r*) or a constant (r*constant), where r
is an unsigned, nonzero, integer literal constant with no kind
parameter, and no embedded blanks.

Blanks can precede or follow the beginning ampersand (&), follow the group name, precede or follow the
equal sign, or precede the terminating slash.

Comments (beginning with ! only) can appear anywhere in namelist input. The comment extends to the end
of the source line.

If an entity appears more than once within the input record for a namelist data transfer, the last value is the
one that is used.

If there is more than one object = value pair, they must be separated by value separators.

A value separator is any number of blanks, a slash, or a comma if DECIMAL='POINT' or a semicolon if
DECIMAL='COMMA', preceded or followed by any number of blanks. When any of these appear in a character
constant, they are considered part of the character constant, not value separators.

The end of a record is equivalent to a blank character, except when it occurs in a character constant. In this
case, the end of the record is ignored, and the character constant is continued with the next record (the last
character in the previous record is immediately followed by the first character of the next record).

Blanks at the beginning of a record are ignored unless they are part of a character constant continued from
the previous record. In this case, the blanks at the beginning of the record are considered part of the
constant.

When the name in the input record is an array variable or a variable of derived type, the effect is as if the
variable represented were expanded into a sequence of scalar list items of intrinsic data types. Each input
value following the equal sign must comply with format specifications for the intrinsic type of the list item in
the corresponding position in the expanded sequence.

The number of values following the equal sign must be equal to or less than the number of list items in the
expanded sequence. In the latter case (less than), the effect is as if null values have been added to match
any remaining list items in the expanded sequence.

Intel® Fortran Compiler Classic and Intel® Fortran Compiler Developer Guide and Reference 1

935

The string length in the NAMELIST statement is not checked against the size of the CHARACTER variable to
which it will be assigned. This means that an array of n elements written in a NAMELIST statement with
DELIM=NONE may not be read back as n values. For example, consider a three-element array ARR of three-
character elements with values "ABC","DEF","GHI". In DELIM=NONE form, it prints to the data file as follows:

ARR = ABCDEFGHI
If your program reads that data file, the value will be interpreted as one non-delimited string with the value
"ABCDEFGHI" because termination is caused by the trailing blank, tab, or new line.

In some cases, values can be read as more than one string; for example, if the values themselves have final
or internal blanks, tabs, or new lines. Consider that ARR contains strings "WX ","Y\tR", "S\nQ", where "\t" is
a tab character and "\n" is a newline character. In this case, the data file contains:

ARR = WX Y\tRS\nQ
The NAMELIST processing will interpret this as four non-delimited strings: "WX", "Y", "RS" and "Q".

NOTE
In NAMELIST declarations, you may get unexpected results if all of the following are true:

1. DELIM=NONE is in effect on input.
2. A character variable is followed by another variable.
3. The other variable is either an array variable that is subscripted or a string variable that is a

substring.
4. That subscript or substring expression contains blanks.

In Intel® Fortran, a list of values may follow the equal sign when the object is a single array element. In this
case, values are assigned to the specified array element and subsequent elements, in element sequence
order. For example, suppose the following input is read:

&ELEM
ARRAY_A(3)=34.54, 45.34, 87.63, 3*20.00
/

New values are assigned only to array ARRAY_A elements 3 through 8. The other element values are
unchanged.

Prompting for Namelist Group Information
During execution of a program containing a namelist READ statement, you can specify a question mark
character (?) or a question mark character preceded by an equal sign (=?) to get information about the
namelist group. The ? or =? must follow one or more blanks.

If specified for a unit capable of both input and output, the ? causes display of the group name and the
objects in that group. The =? causes display of the group name, objects within that group, and the current
values for those objects (in namelist output form). If specified for another type of unit, the symbols are
ignored.

For example, consider the following statements:

 NAMELIST /NLIST/ A,B,C
 REAL A /1.5/
 INTEGER B /2/
 CHARACTER*5 C /'ABCDE'/
 READ (5,NML=NLIST)
 WRITE (6,NML=NLIST)
 END

 1 Intel® Fortran Compiler Classic and Intel® Fortran Compiler Developer Guide and Reference

936

During execution, if a blank followed by ? is entered on a terminal device, the following values are displayed:

 &NLIST
 A
 B
 C
 /

If a blank followed by =? is entered, the following values are displayed:

 &NLIST
 A = 1.500000,
 B = 2,
 C = ABCDE
 /

Examples
Suppose the following statements are specified:

 NAMELIST /CONTROL/ TITLE, RESET, START, STOP, INTERVAL
 CHARACTER*10 TITLE
 REAL(KIND=8) START, STOP
 LOGICAL(KIND=4) RESET
 INTEGER(KIND=4) INTERVAL
 READ (UNIT=1, NML=CONTROL)

The NAMELIST statement associates the group name CONTROL with a list of five objects. The corresponding
READ statement reads the following input data from unit 1:

 &CONTROL
 TITLE='TESTT002AA',
 INTERVAL=1,
 RESET=.TRUE.,
 START=10.2,
 STOP =14.5
 /

The following values are assigned to objects in group CONTROL:

Namelist Object Value Assigned

TITLE TESTT002AA

RESET T

START 10.2

STOP 14.5

INTERVAL 1

It is not necessary to assign values to all of the objects declared in the corresponding NAMELIST group. If a
namelist object does not appear in the input statement, its value (if any) is unchanged.

Similarly, when character substrings and array elements are specified, only the values of the specified
variable substrings and array elements are changed. For example, suppose the following input is read:

&CONTROL TITLE(9:10)='BB' /
The new value for TITLE is TESTT002BB; only the last two characters in the variable change.

Intel® Fortran Compiler Classic and Intel® Fortran Compiler Developer Guide and Reference 1

937

The following example shows an array as an object:

 DIMENSION ARRAY_A(20)
 NAMELIST /ELEM/ ARRAY_A
 READ (UNIT=1,NML=ELEM)

Suppose the following input is read:

&ELEM
ARRAY_A=1.1, 1.2,, 1.4
/

The following values are assigned to the ARRAY_A elements:

Array Element Value Assigned

ARRAY_A(1) 1.1

ARRAY_A(2) 1.2

ARRAY_A(3) Unchanged

ARRAY_A(4) 1.4

ARRAY_A(5)...ARRAY(20) Unchanged

Nondelimited character strings that are written out by using a NAMELIST write may not be read in as
expected by a corresponding NAMELIST read. Consider the following:

NAMELIST/TEST/ CHARR
CHARACTER*3 CHARR(4)
DATA CHARR/'AAA', 'BBB', 'CCC', 'DDD'/
OPEN (UNIT=1, FILE='NMLTEST.DAT')
WRITE (1, NML=TEST)
END

The output file NMLTEST.DAT will contain:

&TEST CHARR = AAABBBCCCDDD/
If an attempt is then made to read the data in NMLTEST.DAT with a NAMELIST read using nondelimited
character strings, as follows:

NAMELIST/TEST/ CHARR
CHARACTER*3 CHARR(4)
DATA CHARR/4*' '/
OPEN (UNIT=1, FILE='NMLTEST.DAT')
READ (1, NML=TEST)
PRINT *, 'CHARR read in >', CHARR(1),'< >',CHARR(2),'< >',
1 CHARR(3), '< >', CHARR(4), '<'
END

The result is the following:

CHARR read in >AAA< > < > < > <
The 12 characters of input were read, truncated to 3 characters, and stored in CHARR(1). The other 3
elements of CHARR were unchanged.

See Also
NAMELIST
Alternative Form for Namelist External Records
Rules for Formatted Sequential READ Statements

 1 Intel® Fortran Compiler Classic and Intel® Fortran Compiler Developer Guide and Reference

938

Rules for Namelist Sequential WRITE Statements

Rules for Unformatted Sequential READ Statements

Unformatted, sequential READ statements transfer binary data (without translation) between the current
record and the entities specified in the I/O list. The value transferred from the file is called a field. Only one
record is read.

Objects of intrinsic or derived types can be transferred.

For data transfer, the file must be positioned so that the record read is an unformatted record or an end-of-
file record.

The unformatted, sequential READ statement reads a single record. Each field value in the record must be of
the same type as the corresponding entity in the input list, unless the field value is real or complex.

If the field value is real or complex, one complex field value can correspond to two real list entities, or two
real values can correspond to one complex list entity. The corresponding values and entities must have the
same kind parameter.

If the number of I/O list items is less than or equal to the number of fields in an input record, the READ
statement ignores the excess fields. If the number of I/O list items is greater than the number of fields in an
input record, an error occurs.

If a READ statement contains no I/O list, it skips over one full record, positioning the file to read the
following record on the next execution of a READ statement.

If the file is connected for formatted, list-directed, or namelist I/O, unformatted data transfer is prohibited.

You have previously been able to buffer the output (WRITEs) of variable length, unformatted, sequential files,
by specifying certain values for an OPEN statement, environment variable, or compiler option. You can now
do the same buffering for input (READs) of records. To enable buffering for the input of records, you can
specify any of the following:

• BUFFERED=YES in the file's OPEN statement
• Value YES (Y or y), or TRUE (T or t), or a number > 0 for the environment variable FORT_BUFFERED
• Setting buffered_io for the assume option

When any of the above are specified, the Fortran Runtime Library buffers all input records from variable
length, unformatted, sequential files, regardless of the size of the records in the file. In addition, if the
environment variable FORT_ BUFFERING_THRESHOLD has a positive value n, the following occurs:

• I/O list items with a size <= n are buffered and are moved one at a time from the runtime buffer to the
I/O list item

• I/O list items with a size > n are not buffered and are moved one at a time from the file to the I/O list
item

Determining the Size of I/O Buffers
If both the block size and the buffer count have been specified with positive values, their product determines
the size in bytes of the buffer for that I/O unit. If neither is specified, the default size of the buffer is 8KB
(8192 bytes). This is the initial size of the I/O buffer; the buffer may be expanded to hold a larger record.

If block size is not specified, the following occurs:

• The block size defaults to 128KB
• If the buffer count is not specified, it defaults to 1
• The initial default buffer size is 8KB
• If buffer count is specified, then the initial default buffer size is (8KB * buffercount)

If a block size is specified, the following occurs:

• The block size is the specified value, rounded up to 512-byte boundary
• If the buffer count is not specified, it defaults to 1
• The initial default buffer size is the block size, rounded up to 512-byte boundary
• If buffer count is specified, then the initial default buffer size is (block size * buffer count)

Intel® Fortran Compiler Classic and Intel® Fortran Compiler Developer Guide and Reference 1

939

Optimizing for Time or Space
When reading variable length, unformatted sequential records, the runtime system may optimize for time or
for space.

This optimization decision is made during runtime on a record-by-record basis using specifications made by
the program and the length of a given record. That is, one record may be optimized for time while another
record from the same file may be optimized for space.

The default behavior when reading records of this type whose length exceeds the specified block size, is to
not buffer the input records. You can override this default behavior by requesting that the input be buffered.

The following table shows the relationship between a file's specified block size and the length of its variable
length records. Note that the length of the individual record is the key:

record length >= block size record length < block size

buffering unspecified Optimizes for space Optimizes for time

OPEN (BUFFERED='YES') Optimizes for time Optimizes for time

OPEN (BUFFERED='NO') Optimizes for space Optimizes for time

If an input record's length is less than or equal to the specified block size, then by default, the runtime
system always optimizes for time rather than for space and the input is buffered.

If an input record’s length is greater than the specified block size, then the following occurs:

• By default, the runtime system always optimizes for space rather than time and the input is not buffered.
• If you request buffering of input, then the runtime system optimizes for time and the input is buffered.
• If you request no buffering of input, then the runtime system optimizes for space rather than time and the

input is not buffered.
• If you request dynamic buffering of input, the runtime system optimizes based on the size of the I/O list

item and some items are buffered and some are not.

Optimizing for time:

Traditionally, optimizing for time comes at the expense of using more memory.

When the runtime system optimizes for time, it buffers input. It reads as much data as possible during one
disk access into the runtime's internal buffer, extending it if necessary to hold the file's largest record. Fields
within the record are then moved to the user space in response to READs from the file. Typically, minimizing
file accesses is faster.

However, there are circumstances when optimizing for space can actually be faster than optimizing for time.

For example, consider you are reading records whose length exceeds the block size and the data is being
read into a contiguous array. Reading this huge array directly into a user's space is going to be faster than
reading it first into the runtime system's internal buffer, then moving the data to the user's space. In this
case, it is better to optimize for space; that is, you should not buffer the input record.

On the other hand, if the READ is being done into non-contiguous elements of an array, the traditional
method of optimizing for time becomes a huge win. Data being read into non-contiguous array elements
must be moved, or read, into the user's space one element at a time. In this case, you always want to
optimize for time; that is, you should buffer the input data.

If you are reading large, variable length, unformatted records, you should try both buffered and unbuffered
I/O to determine which delivers the better performance.

Optimizing for space:

Traditionally, optimizing for space comes at the expense of time.

 1 Intel® Fortran Compiler Classic and Intel® Fortran Compiler Developer Guide and Reference

940

When the runtime system optimizes for space, it wants to avoid creating a huge internal buffer in order to
hold a "very large" record. The size of a "very large" record is clearly subjective, but the rule of thumb here
is whether or not a record's size is greater than the specified block size.

If this is the case, the runtime system will read one field at a time from the record, directly into the I/O list
items. The optimal record for this optimization is one whose record length exceeds the default block size of
128 KB (or a user-specified block size) and contains "very large" fields.

Note that because fields are read one at a time from the file to the user space, very large records that
contain very small fields may see a serious performance issue. In these cases, it may be better to buffer the
input. If you are reading large, variable length, unformatted records, you should try both buffered and
unbuffered I/O to determine which delivers the better performance.

Optimizing unformatted sequential input based on field size - dynamic buffering:

Dynamic buffering is a hybrid solution that chooses the time/space trade-off on a per field basis. The decision
is based on a "field size threshold" supplied by the user, deciding, for every field in every record in the file,
regardless of the record length, whether or not to buffer a field from the file to the I/O list item. The runtime
system can do this because it knows the size of a field that is being requested before actually attempting to
read the field.

When a READ statement is first executed, a read from the file is issued to fill the buffer, regardless of its size.
This is necessary so that the runtime system can extract the record size from the first length control field.
(Each unformatted sequential record has 4-byte leading and trailing record lengths to facilitate reading both
forwards and backwards in the file.) From that point on, dynamic buffering decides whether or not to buffer a
field or to read it directly from the file to the I/O list item. If the buffer holds the beginning portion of a large
field, it will be moved to the start of the I/O list item and the remainder will be read directly from the file.

The following table shows the various buffering options for unformatted, sequential input:

Buffering Option How do I get this? What happens?

Non-buffered You get this kind of buffering by
default, or by specifying:

• OPEN (BUFFERED=NO)

- or -
• FORT_BUFFERED=NO

- or -
• assume nobuffered_io

When non-buffered is in effect:

• The runtime system does not
re-allocate its buffer to
accommodate large records.

• Records with lengths > the
block size:

• Are not buffered.
• All fields are moved one at

a time from the file to the
I/O list item.

• Records with lengths <= the
block size:

• Are buffered.
• All fields are moved one at

a time from the buffer to
the I/O list item.

Buffered You get this kind of buffering by
specifying:

• OPEN (BUFFERED=YES)

- or -
• FORT_BUFFERED=YES

- or -

When buffered is in effect:

• The runtime system re-
allocates its buffer to
accommodate the largest
record read.

• All input records are buffered.

Intel® Fortran Compiler Classic and Intel® Fortran Compiler Developer Guide and Reference 1

941

Buffering Option How do I get this? What happens?

• assume buffered_io • All fields are moved one at a
time from the buffer to the
I/O list item

Dynamic buffering You get this kind of buffering by
specifying:

• FORT_BUFFERING_THRESHOL
D=n

- and one of -
• OPEN (BUFFERED=YES)

- or -
• FORT_BUFFERED=YES

- or -
• assume buffered_io

When dynamic buffering is in
effect:

• The runtime system does not
re-allocate its buffer to
accommodate large records.

• All fields with a size <= n are
buffered and are moved one
at a time from the buffer to
the I/O list item.

• Fields with a size > n are not
buffered and are moved one
at a time from the file to the
I/O list item.

Examples
The following example shows an unformatted, sequential READ statement:

 READ (UNIT=6, IOSTAT=IO_STATUS) A, B, C

See Also
READ statement
Forms for Sequential READ Statements
Record Types

Forms for Direct-Access READ Statements

Direct-access READ statements transfer input data from external records with direct access. (The attributes
of a direct-access file are established by the OPEN statement.)

A direct-access READ statement can be formatted or unformatted, and takes one of the following forms:

Formatted:
READ (eunit, format, rec [, asynchronous] [, blank] [, decimal] [, id] [, pad] [, pos] [, round] [, size] [,
iostat] [, err] [, iomsg]) [io-list]

Unformatted:
READ (eunit, rec [, asynchronous] [, id] [, pos] [, iostat] [, err] [, iomsg]) [io-list]

See Also
READ
I/O control-list specifiers
I/O lists

Rules for Formatted Direct-Access READ Statements

Formatted, direct-access READ statements translate data from character to binary form by using format
specifications for editing (if any). The translated data is assigned to the entities in the I/O list in the order in
which the entities appear, from left to right.

 1 Intel® Fortran Compiler Classic and Intel® Fortran Compiler Developer Guide and Reference

942

Values can be transferred to objects of intrinsic or derived types. For derived types, values of intrinsic types
are transferred to the components of intrinsic types that ultimately make up these structured objects.

For data transfer, the file must be positioned so that the record read is a formatted record or an end-of-file
record.

If the number of I/O list items is less than the number of fields in an input record, the statement ignores the
excess fields.

If the number of I/O list items is greater than the number of fields in an input record, the input record is
padded with blanks. However, if PAD='NO' was specified for file connection, the input list and file specification
must not require more characters from the record than it contains. If more characters are required and
nonadvancing input is in effect, an end-of-record condition occurs.

If the format specification specifies another record, the record number is increased by one as each
subsequent record is read by that input statement.

Examples
The following example shows a formatted, direct-access READ statement:

 READ (2, REC=35, FMT=10) (NUM(K), K=1,10)

Rules for Unformatted Direct-Access READ Statements

Unformatted, direct-access READ statements transfer binary data (without translation) between the current
record and the entities specified in the I/O list. Only one record is read.

Objects of intrinsic or derived types can be transferred.

For data transfer, the file must be positioned so that the record read is an unformatted record or an end-of-
file record.

The unformatted, direct-access READ statement reads a single record. Each value in the record must be of
the same type as the corresponding entity in the input list, unless the value is real or complex.

If the value is real or complex, one complex value can correspond to two real list entities, or two real values
can correspond to one complex list entity. The corresponding values and entities must have the same kind
parameter.

If the number of I/O list items is less than the number of fields in an input record, the statement ignores the
excess fields. If the number of I/O list items is greater than the number of fields in an input record, an error
occurs.

If the file is connected for formatted, list-directed, or namelist I/O, unformatted data transfer is prohibited.

Examples
The following example shows unformatted, direct-access READ statements:

 READ (1, REC=10) LIST(1), LIST(8)
 READ (4, REC=58, IOSTAT=K, ERR=500) (RHO(N), N=1,5)

Forms for Stream READ Statements

The forms for stream READ statements take the same forms as sequential READ statements. A POS specifier
may be present to specify at what file position the READ will start.

You can impose a record structure on a formatted, sequential stream by using a new-line character as a
record terminator (see intrinsic function NEW_LINE). There is no record structure in an unformatted,
sequential stream.

The INQUIRE statement can be used with the POS specifier to determine the current file position in a stream
file.

Intel® Fortran Compiler Classic and Intel® Fortran Compiler Developer Guide and Reference 1

943

Examples
The following example shows stream READ statements:

 READ (12) I !stream reading without POS= specifier
 READ (12,POS=10) J !stream reading with POS= specifier

See Also
NEW_LINE

Forms and Rules for Internal READ Statements

Internal READ statements transfer input data from an internal file.

An internal READ statement can only be formatted. It must include format specifiers (which can use list-
directed formatting). Namelist formatting is also permitted.

An internal READ statement takes one of the following forms:

READ (iunit, format [, nml-group] [, iostat] [, err] [, end] [, iomsg]) [io-list]

READ (iunit, nml-group [, iostat] [, err] [, end] [, iomsg]) [io-list]

For more information on syntax, see READ.

Formatted, internal READ statements translate data from character to binary form by using format
specifications for editing (if any). The translated data is assigned to the entities in the I/O list in the order in
which the entities appear, from left to right.

This form of READ statement behaves as if the format begins with a BN edit descriptor. (You can override this
behavior by explicitly specifying the BZ edit descriptor.)

Values can be transferred to objects of intrinsic or derived types. For derived types, values of intrinsic types
are transferred to the components of intrinsic types that ultimately make up these structured objects.

Before data transfer occurs, the file is positioned at the beginning of the first record. This record becomes the
current record.

If the number of I/O list items is less than the number of fields in an input record, the statement ignores the
excess fields.

If the number of I/O list items is greater than the number of fields in an input record, the input record is
padded with blanks. However, if PAD='NO' was specified for file connection, the input list and file specification
must not require more characters from the record than it contains.

In list-directed and namelist formatting, character strings have no delimiters.

Examples
The following program segment reads a record and examines the first character to determine whether the
remaining data should be interpreted as decimal, octal, or hexadecimal. It then uses internal READ
statements to make appropriate conversions from character string representations to binary.

INTEGER IVAL
CHARACTER TYPE, RECORD*80
CHARACTER*(*) AFMT, IFMT, OFMT, ZFMT
PARAMETER (AFMT='(Q,A)', IFMT= '(I10)', OFMT= '(O11)', & ZFMT= '(Z8)')
ACCEPT AFMT, ILEN, RECORD
TYPE = RECORD(1:1)
IF (TYPE .EQ. 'D') THEN
 READ (RECORD(2:MIN(ILEN, 11)), IFMT) IVAL
ELSE IF (TYPE .EQ. 'O') THEN
 READ (RECORD(2:MIN(ILEN, 12)), OFMT) IVAL
ELSE IF (TYPE .EQ. 'X') THEN
 READ (RECORD(2:MIN(ILEN, 9)),ZFMT) IVAL
ELSE

 1 Intel® Fortran Compiler Classic and Intel® Fortran Compiler Developer Guide and Reference

944

 PRINT *, 'ERROR'
END IF
END

See Also
I/O control-list specifiers
I/O lists
Rules for List-Directed Sequential READ Statements for details on list-directed input
Rules for Namelist Sequential READ Statement for details on namelist input

Forms for WRITE Statements
This section discusses the various forms you can specify for WRITE statements.

Forms for Sequential WRITE Statements

Sequential WRITE statements transfer output data to external sequential access records. The statements can
be formatted by using format specifiers (which can use list-directed formatting) or namelist specifiers (for
namelist formatting), or they can be unformatted.

A sequential WRITE statement takes one of the following forms:

Formatted:
WRITE (eunit, format [, advance] [, asynchronous] [, decimal] [, id] [, pos] [, round] [, sign] [, iostat] [,
err] [, iomsg]) [io-list]

Formatted - List-Directed:
WRITE (eunit, * [, asynchronous] [, decimal] [, delim] [, id] [, pos] [, round] [, sign] [, iostat] [, err] [,
iomsg]) [io-list]

Formatted - Namelist:
WRITE (eunit, nml-group [, asynchronous] [, decimal] [, delim] [, id] [, pos] [, round] [, sign] [, iostat] [,
err] [, iomsg])

Unformatted:
WRITE (eunit [, asynchronous] [, id] [, pos] [, iostat] [, err] [, iomsg]) [io-list]

See Also
WRITE
I/O control-list specifiers
I/O lists

Rules for Formatted Sequential WRITE Statements

Formatted, sequential WRITE statements translate data from binary to character form by using format
specifications for editing (if any). The translated data is written to an external file that is connected for
sequential access.

Values can be transferred from objects of intrinsic or derived types. For derived types, values of intrinsic
types are transferred from the components of intrinsic types that ultimately make up these structured
objects.

The output list and format specification must not specify more characters for a record than the record size.
(Record size is specified by RECL in an OPEN statement.)

If the file is connected for unformatted I/O, formatted data transfer is prohibited.

Intel® Fortran Compiler Classic and Intel® Fortran Compiler Developer Guide and Reference 1

945

Examples
The following example shows formatted, sequential WRITE statements:

 WRITE (UNIT=8, FMT='(B)', ADVANCE='NO') C

 WRITE (*, "(F6.5)", ERR=25, IOSTAT=IO_STATUS) A, B, C

See Also
WRITE statement
Forms for Sequential WRITE Statements

Rules for List-Directed Sequential WRITE Statements

List-directed, sequential WRITE statements transfer data from binary to character form by using the data
types of the corresponding I/O list item to determine the form of the data. The translated data is then
written to an external file.

In general, values transferred as output have the same forms as values transferred as input. However, there
is no guarantee that a REAL internal value transferred as output and then transferred as input as a REAL
value will be the same internal value.

The following table shows the default output formats for each intrinsic data type:

Default Formats for List-Directed Output

Data Type Output Format

BYTE I5

LOGICAL(1) L2

LOGICAL(2) L2

LOGICAL(4) L2

LOGICAL(8) L2

INTEGER(1) I5

INTEGER(2) I7

INTEGER(4) I12

INTEGER(8) I22

REAL(4) 1PG15.7E2 2

REAL(8) 1PG24.15E3 2

REAL(16) 1PG43.33E4 2

COMPLEX(4) '(',1PG14.7E2,',',1PG14.7E2,')' 2

COMPLEX(8) '(',1PG23.15E3,',',1PG23.15E3,')' 2

COMPLEX(16) '(',1PG42.33E4,',',1PG42.33E4,')' 2

CHARACTER Aw1

1 Where w is the length of the character expression.

 1 Intel® Fortran Compiler Classic and Intel® Fortran Compiler Developer Guide and Reference

946

Data Type Output Format

2 If option assume noold_ldout_format is in effect, the compiler uses Fortran 2018 standard semantics
for output of integer and real values in list-directed and namelist-directed output. This means that for real
and complex values, the output is in E or F format depending on the magnitude of the value. For more
information, see the description of option assume.

By default, character constants are not delimited by apostrophes or quotation marks, and each internal
apostrophe or quotation mark is represented externally by one apostrophe or quotation mark.

This behavior can be changed by the DELIM specifier (in an OPEN statement) as follows:

• If the file is opened with the DELIM='QUOTE' specifier, character constants are delimited by quotation
marks and each internal quotation mark is represented externally by two consecutive quotation marks.

• If the file is opened with the DELIM='APOSTROPHE' specifier, character constants are delimited by
apostrophes and each internal apostrophe is represented externally by two consecutive apostrophes.

Each output statement writes one or more complete records.

If DECIMAL='POINT', the decimal point in a numeric value is displayed as a period, values are separated by
commas, and the separator between the real and imaginary parts of a complex value is a comma. If
DECIMAL='COMMA', the decimal point is displayed as a comma, values are separated by semicolons, and the
separator between the real and imaginary parts of a complex value is a semicolon.

A literal character constant or complex constant can be longer than an entire record. For complex constants,
the end of the record can occur between the comma or semicolon and the imaginary part, if the imaginary
part and closing right parenthesis cannot fit in the current record. For literal constants that are longer than
an entire record, the constant is continued onto as many records as necessary.

Each output record begins with a blank character for carriage control.

Slashes, octal values, null values, and repeated forms of values are not output.

If the file is connected for unformatted I/O, list-directed data transfer is prohibited.

Examples
Suppose the following statements are specified:

 DIMENSION A(4)
 DATA A/4*3.4/
 WRITE (1,*) 'ARRAY VALUES FOLLOW'
 WRITE (1,*) A,4

The following records are then written to external unit 1:

ARRAY VALUES FOLLOW
 3.400000 3.400000 3.400000 3.400000 4

The following shows another example:

 INTEGER i, j
 REAL a, b
 LOGICAL on, off
 CHARACTER(20) c
 DATA i /123456/, j /500/, a /28.22/, b /.0015555/
 DATA on /.TRUE./, off/.FALSE./
 DATA c /'Here''s a string'/
 WRITE (*, *) i, j
 WRITE (*, *) a, b, on, off
 WRITE (*, *) c
 END

Intel® Fortran Compiler Classic and Intel® Fortran Compiler Developer Guide and Reference 1

947

The preceding example produces the following output:

 123456 500
 28.22000 1.555500E-03 T F
Here's a string

See Also
Rules for Formatted Sequential WRITE Statements
Rules for List-Directed Sequential READ Statements for details on list-directed input

Rules for Namelist Sequential WRITE Statements

Namelist, sequential WRITE statements translate data from internal to external form by using the data types
of the objects in the corresponding NAMELIST statement to determine the form of the data. The translated
data is then written to an external file.

In general, values transferred as output have the same forms as values transferred as input. However, there
is no guarantee that a REAL internal value transferred as output and then transferred as input as a REAL
value will be the same internal value.

By default, character constants are not delimited by apostrophes or quotation marks, and each internal
apostrophe or quotation mark is represented externally by one apostrophe or quotation mark.

This behavior can be changed by the DELIM specifier (in an OPEN statement) as follows:

• If the file is opened with the DELIM='QUOTE' specifier, character constants are delimited by quotation
marks and each internal quotation mark is represented externally by two consecutive quotation marks.

• If the file is opened with the DELIM='APOSTROPHE' specifier, character constants are delimited by
apostrophes and each internal apostrophe is represented externally by two consecutive apostrophes.

Each output statement writes one or more complete records.

If DECIMAL='POINT', the decimal point in a numeric value is displayed as a period, values are separated by
commas, and the separator between the real and imaginary parts of a complex value is a comma. If
DECIMAL='COMMA', the decimal point is displayed as a comma, values are separated by semicolons, and the
separator between the real and imaginary parts of a complex value is a semicolon.

A literal character constant or complex constant can be longer than an entire record. For complex constants,
the end of the record can occur between the comma or semicolon and the imaginary part, if the imaginary
part and closing right parenthesis cannot fit in the current record. For literal constants that are longer than
an entire record, the constant is continued onto as many records as necessary.

Each output record begins with a blank character for carriage control, except for literal character constants
that are continued from the previous record.

Slashes, octal values, null values, and repeated forms of values are not output.

If the file is connected for unformatted I/O, namelist data transfer is prohibited.

Examples
Consider the following statements:

CHARACTER*19 NAME(2)/2*' '/
REAL PITCH, ROLL, YAW, POSITION(3)
LOGICAL DIAGNOSTICS
INTEGER ITERATIONS
TYPE MYTYPE
 INTEGER X
 REAL Y
 CHARACTER(5)Z
END TYPE MYTYPE
TYPE(MYTYPE) :: TYPEVAR = MYTYPE(1,2.0,'ABCDE')
NAMELIST /PARAM/ NAME, PITCH, ROLL, TYPEVAR, YAW, POSITION, &
 DIAGNOSTICS, ITERATIONS

 1 Intel® Fortran Compiler Classic and Intel® Fortran Compiler Developer Guide and Reference

948

...
READ (UNIT=1,NML=PARAM)
WRITE (UNIT=2,NML=PARAM)

Suppose the following input is read:

&PARAM
 NAME(2)(10:)='HEISENBERG',
 PITCH=5.0, YAW=0.0, ROLL=5.0,
 DIAGNOSTICS=.TRUE.
 ITERATIONS=10
/

The following is then written to the file connected to unit 2:

&PARAM
NAME = ' ', ' HEISENBERG',
PITCH = 5.000000,
ROLL = 5.000000,
TYPEVAR = 1, 2.0, 'ABCDE'
YAW = 0.0000000E+00,
POSITION = 3*0.0000000E+00,
DIAGNOSTICS = T,
ITERATIONS = 10
/

Note that character values are not enclosed in apostrophes unless the output file is opened with
DELIM='APOSTROPHE'. The value of POSITION is not defined in the namelist input, so the current value of
POSITION is written.

The following example declares a number of variables, which are placed in a namelist, initialized, and then
written to the screen with namelist I/O:

 INTEGER(1) int1
 INTEGER int2, int3, array(3)
 LOGICAL(1) log1
 LOGICAL log2, log3
 REAL real1
 REAL(8) real2
 COMPLEX z1, z2
 CHARACTER(1) char1
 CHARACTER(10) char2

 NAMELIST /example/ int1, int2, int3, log1, log2, log3, &
 & real1, real2, z1, z2, char1, char2, array

 int1 = 11
 int2 = 12
 int3 = 14
 log1 = .TRUE.
 log2 = .TRUE.
 log3 = .TRUE.
 real1 = 24.0
 real2 = 28.0d0
 z1 = (38.0,0.0)
 z2 = (316.0d0,0.0d0)
 char1 = 'A'
 char2 = '0123456789'
 array(1) = 41

Intel® Fortran Compiler Classic and Intel® Fortran Compiler Developer Guide and Reference 1

949

 array(2) = 42
 array(3) = 43
 WRITE (*, example)

The preceding example produces the following output:

 &EXAMPLE
 INT1 = 11,
 INT2 = 12,
 INT3 = 14,
 LOG1 = T,
 LOG2 = T,
 LOG3 = T,
 REAL1 = 24.00000,
 REAL2 = 28.0000000000000,
 Z1 = (38.00000,0.0000000E+00),
 Z2 = (316.0000,0.0000000E+00),
 CHAR1 = A,
 CHAR2 = 0123456789,
 ARRAY = 41, 42, 43
 /

See Also
NAMELIST
Rules for Formatted Sequential WRITE Statements
Rules for Namelist Sequential READ Statements

Rules for Unformatted Sequential WRITE Statements

Unformatted, sequential WRITE statements transfer binary data (without translation) between the entities
specified in the I/O list and the current record. Only one record is written.

Objects of intrinsic or derived types can be transferred.

This form of WRITE statement writes exactly one record. If there is no I/O item list, the statement writes one
null record.

If the file is connected for formatted, list-directed, or namelist I/O, unformatted data transfer is prohibited.

For a discussion of I/O buffering, see Rules for Unformatted Sequential READ Statements.

Examples
The following example shows an unformatted, sequential WRITE statement:

 WRITE (UNIT=6, IOSTAT=IO_STATUS) A, B, C

Forms for Direct-Access WRITE Statements

Direct-access WRITE statements transfer output data to external records with direct access. (The attributes
of a direct-access file are established by the OPEN statement.)

A direct-access WRITE statement can be formatted or unformatted, and takes one of the following forms:

Formatted:
WRITE (eunit, format, rec [, asynchronous] [, decimal] [, delim] [, id] [, pos] [, round] [, sign] [, iostat] [,
err] [, iomsg]) [io-list]

Unformatted:
WRITE (eunit, rec [, asynchronous] [, id] [, pos] [, iostat] [, err] [, iomsg]) [io-list]

 1 Intel® Fortran Compiler Classic and Intel® Fortran Compiler Developer Guide and Reference

950

See Also
WRITE
I/O control-list specifiers
I/O lists

Rules for Formatted Direct-Access WRITE Statements

Formatted, direct-access WRITE statements translate data from binary to character form by using format
specifications for editing (if any). The translated data is written to an external file that is connected for direct
access.

Values can be transferred from objects of intrinsic or derived types. For derived types, values of intrinsic
types are transferred from the components of intrinsic types that ultimately make up these structured
objects.

If the values specified by the I/O list do not fill a record, blank characters are added to fill the record. If the
I/O list specifies too many characters for the record, an error occurs.

If the format specification specifies another record, the record number is increased by one as each
subsequent record is written by that output statement.

Examples
The following example shows a formatted, direct-access WRITE statement:

 WRITE (2, REC=35, FMT=10) (NUM(K), K=1,10)

Rules for Unformatted Direct-Access WRITE Statements

Unformatted, direct-access WRITE statements transfer binary data (without translation) between the entities
specified in the I/O list and the current record. Only one record is written.

Objects of intrinsic or derived types can be transferred.

If the values specified by the I/O list do not fill a record, blank characters are added to fill the record. If the
I/O list specifies too many characters for the record, an error occurs.

If the file is connected for formatted, list-directed, or namelist I/O, unformatted data transfer is prohibited.

Examples
The following example shows unformatted, direct-access WRITE statements:

 WRITE (1, REC=10) LIST(1), LIST(8)

 WRITE (4, REC=58, IOSTAT=K, ERR=500) (RHO(N), N=1,5)

Forms for Stream WRITE Statements

The forms for stream WRITE statements take the same forms as sequential WRITE statements. A POS
specifier may be present to specify at what file position the WRITE will start.

After a formatted stream WRITE where no error occurred, the output file is truncated after the byte with the
largest POS value. An unformatted stream WRITE does not truncate the output file.

You can impose a record structure on a formatted, sequential stream by using a new-line character as a
record terminator (see intrinsic function NEW_LINE). There is no record structure in an unformatted,
sequential stream.

The INQUIRE statement can be used with the POS specifier to determine the current file position in a stream
file.

See Also
NEW_LINE

Intel® Fortran Compiler Classic and Intel® Fortran Compiler Developer Guide and Reference 1

951

Forms and Rules for Internal WRITE Statements

Internal WRITE statements transfer output data to an internal file.

An internal WRITE statement can only be formatted. It must include format specifiers (which can use list-
directed formatting). Namelist formatting is also permitted.

An internal WRITE statement takes one of the following forms:

WRITE (iunit, format [, iostat] [, err] [, iomsg]) [io-list]

WRITE (iunit, nml-group [, iostat] [, err] [, iomsg]) [io-list]

For more information on syntax, see WRITE.

Formatted, internal WRITE statements translate data from binary to character form by using format
specifications for editing (if any). The translated data is written to an internal file.

Values can be transferred from objects of intrinsic or derived types. For derived types, values of intrinsic
types are transferred from the components of intrinsic types that ultimately make up these structured
objects.

If the number of characters written in a record is less than the length of the record, the rest of the record is
filled with blanks. The number of characters to be written must not exceed the length of the record.

Character constants are not delimited by apostrophes or quotation marks, and each internal apostrophe or
quotation mark is represented externally by one apostrophe or quotation mark.

Examples
The following example shows an internal WRITE statement:

 INTEGER J, K, STAT_VALUE
 CHARACTER*50 CHAR_50
 ...
 WRITE (FMT=*, UNIT=CHAR_50, IOSTAT=STAT_VALUE) J, K

See Also
I/O control-list specifiers
I/O lists
Rules for List-Directed Sequential WRITE Statements for details on list-directed output
Rules for Namelist Sequential WRITE Statements for details on namelist output

User-Defined Derived-Type I/O
By default, when a derived-type object is in a formatted I/O statement, it is treated as if all of its
components were specified in the component order. The components must be accessible in the scope of the
I/O statement and they cannot be pointers or allocatables. In an unformatted I/O statement, a derived-type
object is treated as a single value in a processor-dependent form.

User-defined derived-type I/O lets you replace the default I/O processing for a derived-type object. For both
unformatted and formatted I/O, a procedures can be invoked that will handle the I/O of the derived type.
This is similar to defined operators and defined assignment.

For formatted I/O, the replacement occurs for list-directed formatting, namelist formatting, and for an
explicit format with the DT edit descriptor. Other edit descriptors in the explicit format do not have any effect
on user-defined I/O.

A procedure can be associated with defined I/O through generic bindings or generic interface blocks. The
procedure must conform to the interface that specifies its characteristics. It cannot directly or indirectly use
OpenMP* constructs. A defined I/O procedure can also call itself recursively.

An I/O statement that includes a derived-type object and causes a defined I/O procedure to be invoked is
called a parent I/O statement. An I/O statement that is executed while a parent statement is being
processed, and specifies the unit passed to a defined I/O procedure, is called a child I/O statement.

 1 Intel® Fortran Compiler Classic and Intel® Fortran Compiler Developer Guide and Reference

952

A defined I/O procedure can be invoked as a parent I/O statement for an external or internal file opened for
sequential, direct, or stream access.

This section also has information about how to resolve user-defined I/O procedure references.

Specify the User-Defined Derived Type

This section discusses various aspects of user-defined I/O, such as characteristics of defined I/O procedures
and resolving defined I/O procedure references.

DT Edit Descriptor in User-Defined I/O

The DT edit descriptor passes a character string and integer array to a defined I/O procedure. It takes the
following form:

DT [string] [(v-list)]

The string is a default character literal constant delimited by single quotes (' ') or double quotes (" "); no
kind parameter can be specified. Its length is the number of characters between the delimiters; two
consecutive delimiters are counted as one character. If string is not specified, a character string of length
zero is passed.

The v-list is a list of one or more signed or unsigned integer literal constants; no kind parameter can be
specified. If v-list is not specified, an integer array of length zero is passed.

A DT edit descriptor must correspond to a list item of a derived type. Also, there should be an accessible
interface to a corresponding defined FORMATTED I/O procedure for that derived type.

In a format statement, if the last closing parenthesis of the format string is reached and there are no
effective items left, then format processing terminates. But, if there are more items to be processed, then
format control reverts to the beginning of the format item which was terminated by the next-to-last right
parenthesis.

If there is no such preceding right parenthesis, it reverts to the first left parenthesis of the format
specification. During this format reversion, the right parenthesis that is part of a DT edit descriptor is not
considered as the next-to-last parenthesis. For example, consider the following:

write (10, '(F10.3, I5, DT "sample" (1, 2))') 10.1, 3, obj1, 4.7, 1, obj2
In the above case, format control reverts to the left parenthesis before F10.3 and not to DT.

Examples
The following are valid ways to specify the DT edit descriptor:

DT
DT "z8, i4, e10.2"
DT (1, -1, +1000)
DT 'spec1 type' (0)

Associate a Procedure with Defined I/O

This section discusses defined I/O procedures, generic bindings, and generic interface blocks.

Defined I/O Procedures

For a particular derived type and a particular set of kind-type parameter values, there are four possible sets
of characteristics for defined I/O procedures: formatted input, formatted output, unformatted input, and
unformatted output.

To specify that an I/O procedure should be used for derived-type I/O, specify one of the following with a
defined-io-generic-spec:

• A generic binding
• An interface block

Intel® Fortran Compiler Classic and Intel® Fortran Compiler Developer Guide and Reference 1

953

A defined-io-generic-spec is one of the following statements:

• READ (FORMATTED)
• READ (UNFORMATTED)
• WRITE (FORMATTED)
• WRITE (UNFORMATTED)

Generic Bindings

User-defined I/O procedures can be type-bound procedures that use a defined-io-generic-spec (see Defined
IO Procedures).

Consider the following:

TYPE LIST
TYPE(NODE), POINTER :: FIRST
CONTAINS
PROCEDURE :: FMTREAD => LIST_FMTREAD
PROCEDURE :: FMTWRITE => LIST_FMTWRITE
GENERIC,PUBLIC :: READ(FORMATTED) => FMTREAD
GENERIC,PUBLIC :: WRITE(FORMATTED) => FMTWRITE
END TYPE LIST

In the above example, LIST_FMTREAD and LIST_FMTWRITE are the type-bound defined I/O procedures. If
an object of type LIST is an effective item in a formatted READ statement, LIST_FMTREAD will be called to
perform the read operation.

See Also
Type-Bound Procedures In a derived-type definition, you can optionally specify a type-bound-
procedure-part, which declares one or more type-bound procedures. These procedures consist of
a CONTAINS statement, optionally followed by a PRIVATE statement, and one or more procedure
binding statements. Type-bound procedures take the following form:
Resolving Defined I/O Procedure References

Generic Interface Block

A generic interface block can be used to associate procedures with defined I/O. The generic identifier should
be the defined-io-generic-spec (see Defined IO Procedures). This is the only option for sequence or BIND(C)
types.

Consider the following:

MODULE EXAMPLE

TYPE LIST
INTEGER :: X
END TYPE

INTERFACE READ (FORMATTED)
MODULE PROCEDURE R1
END INTERFACE

CONTAINS

 SUBROUTINE R1 (DTV, UNIT, IOTYPE, V_LIST, IOSTAT, IOMSG)
 CLASS(LIST), INTENT(INOUT) :: DTV
 INTEGER, INTENT(IN) :: UNIT
 CHARACTER(*), INTENT(IN) :: IOTYPE
 INTEGER, INTENT(IN) :: V_LIST(:)
 INTEGER, INTENT(OUT) :: IOSTAT
 CHARACTER(*), INTENT(INOUT) :: IOMSG
 READ (UNIT, FMT=*, IOSTAT=IOSTAT, IOMSG=IOMSG) DTV%X

 1 Intel® Fortran Compiler Classic and Intel® Fortran Compiler Developer Guide and Reference

954

 END SUBROUTINE R1

END MODULE EXAMPLE

In the above example, R1 is the READ (FORMATTED) defined I/O procedure.

If an object of type LIST is an effective item in a formatted READ statement, R1 will be called.

See Also
TYPE Statement (Derived Types)
Defining Generic Names for Procedures

Characteristics of Defined I/O Procedures

Shown below are the four interfaces that specify the characteristics of the user-defined I/O procedures. The
actual specific procedure names and the names of the dummy arguments in these interfaces are arbitrary.

The following names are used in the interfaces:

dtv-type-spec Is one of the following:

• TYPE(d-name) for a sequence or BIND(C) type
• CLASS(d-name) for an extensible type

d-name is the name of the derived type. It cannot be an abstract
type. All length type parameters of the derived type must be
assumed.

var Is a scalar of the derived type. For output, it holds the value to be
written. For input, it will be altered in accordance with the values
read.

unit Is the scalar integer value of the I/O unit on which input or output is
taking place. It is a negative number for an internal file or for an
external unit that is a NEWUNIT value. It is a processor-dependent
number (which may be negative) for the '*' unit.

iotype Is the value 'LISTDIRECTED', 'NAMELIST', or 'DT'//string, where string
is the character string from the DT edit descriptor.

vlist Is a rank-one assumed-shape integer array whose value comes from
the parenthetical list of integers from the DT edit descriptor. For list-
directed formatting and namelist formatting, vlist is a zero-sized
integer array.

iostat Is a scalar integer variable that must be given a positive value if an
error condition occurs. If an end-of-file or end-of-record condition
occurs, it must be given the value IOSTAT_END or IOSTAT_EOR (from
the intrinsic module ISO_FORTRAN_ENV). In all other cases, it must
be given the value zero.

iomsg Is an assumed-length scalar character variable that must be set to an
explanatory message if iostat is given a nonzero value. Otherwise, it
must not be altered.

The following interfaces specify the characteristics of the user-defined I/O procedures:

SUBROUTINE my_read_formatted (var,unit,iotype,vlist,iostat,iomsg)
dtv-type-spec,INTENT(INOUT) :: var
INTEGER,INTENT(IN) :: unit
CHARACTER(*),INTENT(IN) :: iotype
INTEGER,INTENT(IN) :: vlist(:)

Intel® Fortran Compiler Classic and Intel® Fortran Compiler Developer Guide and Reference 1

955

INTEGER,INTENT(OUT) :: iostat
CHARACTER(*),INTENT(INOUT) :: iomsg
END

SUBROUTINE my_read_unformatted (var,unit,iostat,iomsg)
dtv-type-spec,INTENT(INOUT) :: var
INTEGER,INTENT(IN) :: unit
INTEGER,INTENT(OUT) :: iostat
CHARACTER(*),INTENT(INOUT) :: iomsg
END

SUBROUTINE my_write_formatted (var,unit,iotype,vlist,iostat,iomsg)
dtv-type-spec,INTENT(IN) :: var
INTEGER,INTENT(IN) :: unit
CHARACTER(*),INTENT(IN) :: iotype
INTEGER,INTENT(IN) :: vlist(:)
INTEGER,INTENT(OUT) :: iostat
CHARACTER(*),INTENT(INOUT) :: iomsg
END

SUBROUTINE my_write_unformatted (var,unit,iostat,iomsg)
dtv-type-spec,INTENT(IN) :: var
INTEGER,INTENT(IN) :: unit
INTEGER,INTENT(OUT) :: iostat
CHARACTER(*),INTENT(INOUT) :: iomsg
END

See Also
ISO_FORTRAN_ENV Module

Defined I/O Data Transfers

The following rules apply to defined I/O data transfers:

• During execution of a defined I/O procedure, there must be no I/O for an external unit except for the unit
argument. However, I/O is permitted for internal files.

• You cannot use user-defined I/O in combination with asynchronous I/O.
• No file-positioning commands are permitted in the defined I/O procedure. OPEN, CLOSE, BACKSPACE,

ENDFILE, and REWIND statements will not be executed. Any ADVANCE= specifier in a child statement is
ignored.

• A record positioning edit descriptor, such as TL and TR, used on the unit by a child data transfer
statement will not cause the record position to be positioned before the record position at the time the
defined I/O procedure was invoked.

• A child data transfer statement must not specify the ID=, POS=, or REC= specifier in an I/O control list.
• The file position on entry is treated as a left tab limit and there is no record termination on return.

However, a child statement with slash (/) edit descriptor, or explicit record termination by a list-directed
child I/O, is allowed.

• If the unit is associated with an external file (for example, non-negative, or equal to one of the constants
ERROR_UNIT, INPUT_UNIT, or OUTPUT_UNIT from the intrinsic module ISO_FORTRAN_ENV), the current
settings for the pad mode, sign mode, etc., can be discovered by using INQUIRE with PAD=, SIGN=, etc.
on the unit argument.

Note that INQUIRE must not be used if the unit is an internal unit passed to a user-defined derived-type
I/O procedure from a parent I/O statement. When an internal unit is used with the INQUIRE statement,
an error condition will occur, and the variable specified in an IOSTAT= specifier in the INQUIRE statement
will be assigned the value IOSTAT_INQUIRE_INTERNAL_UNIT from the intrinsic module
ISO_FORTRAN_ENV.

See Also
ISO_FORTRAN_ENV Module

 1 Intel® Fortran Compiler Classic and Intel® Fortran Compiler Developer Guide and Reference

956

User-Defined Derived-Type I/O

Resolve Defined I/O Procedure References

A generic interface for defined I/O of a derived-type object is one that has both of the following:

• A defined-io-generic-spec that is appropriate to the READ or WRITE direction and the form (formatted or
unformatted) of the data transfer (see Defined IO Procedures, Generic Bindings, and Generic Interface
Block).

• A specific interface whose var argument is compatible with the derived-type item.

Within the scope of a defined-io-generic-spec, if two procedures have that generic identifier, they must be
distinguishable.

For defined I/O procedures, only the var argument corresponds to something explicitly written in the
program, so it is the var that must be distinguishable.

Because var arguments are required to be scalar, they cannot differ in rank. So, the var must be
distinguishable in the type and kind type parameters.

You cannot have two procedures with the same defined-io-generic-spec.

See Also
Characteristics of Defined I/O Procedures

Recursive Defined I/O

A defined I/O procedure can invoke itself indirectly.

It can have an I/O statement that includes a derived-type object that results in the invocation of the same
procedure. In this case, the defined I/O procedure must be declared RECURSIVE.

Consider the following:

! This prints a linked list by calling write on the children
! of the list.

MODULE LIST_MODULE
 IMPLICIT NONE
 TYPE NODE
! This type declaration represents a singly-linked list that also
! contains a user-defined i/o procedure. The name of the procedure
! is arbitrary, but the order of arguments must conform to the
! standard definition.

 INTEGER :: VALUE = -1
 TYPE(NODE), POINTER :: NEXT_NODE => NULL()
 CONTAINS
 PROCEDURE :: PWF
GENERIC :: WRITE(FORMATTED) => PWF ! <=== GENERIC BINDING.
 END TYPE NODE
CONTAINS
RECURSIVE SUBROUTINE PWF(DTV, UNIT, IOTYPE, V_LIST, IOSTAT, IOMSG)
! These arguments are defined in the standard.
 CLASS(NODE), INTENT(IN) :: DTV
 INTEGER, INTENT(IN) :: UNIT
 CHARACTER(LEN=*), INTENT(IN) :: IOTYPE
 INTEGER, DIMENSION(:), INTENT(IN) :: V_LIST
 INTEGER :: IOSTAT
 CHARACTER(LEN=*), INTENT(INOUT) :: IOMSG

! The following is a child i/o statement that is called when user-defined i/o
! statement is invoked.
 WRITE(UNIT=UNIT, FMT='(I9)', IOSTAT=IOSTAT) DTV%VALUE

Intel® Fortran Compiler Classic and Intel® Fortran Compiler Developer Guide and Reference 1

957

 PRINT *, ASSOCIATED(DTV%NEXT_NODE)
 IF(IOSTAT /= 0)RETURN

! It is possible to recursively call the user-defined i/o routine.
 IF(ASSOCIATED(DTV%NEXT_NODE)
 WRITE(UNIT=UNIT, FMT='(/,DT)', IOSTAT=IOSTAT) DTV%NEXT_NODE
 END IF
 END SUBROUTINE PWF
END MODULE LIST_MODULE

PROGRAM LISTE
 USE LIST_MODULE
 IMPLICIT NONE
 INTEGER :: UNIT, IOSTAT, I
 TYPE(NODE), POINTER :: CUR, TO_PRINT

! Create the linked list
 ALLOCATE(CUR)
 CUR % VALUE = 999
 ALLOCATE(TO_PRINT)
 TO_PRINT => CUR

 DO I = 1,10
 ALLOCATE(CUR%NEXT_NODE)
 CUR % VALUE = I
 CUR => CUR%NEXT_NODE
 END DO
 CUR % NEXT_NODE => NULL()
! END CREATION OF LINKED LIST

 DO I = 1,15
 IF(ASSOCIATED(TO_PRINT)) THEN
 PRINT *, I, TO_PRINT%VALUE
 TO_PRINT => TO_PRINT % NEXT_NODE
 END IF
 END DO

! Call the user-defined i/o routine with dt format descriptor.
 WRITE(UNIT=UNIT, FMT='(DT)', IOSTAT=IOSTAT) CUR
END PROGRAM LISTE

See Also
RECURSIVE

Examples of User-Defined Derived-Type I/O

Example 1
The following example shows formatted defined I/O using the DT edit descriptor and both generic type-bound
and explicit interface procedures:

MODULE TYPES
 TYPE T
 INTEGER :: K(10)
 CONTAINS

! a generic type-bound procedure
 PROCEDURE :: UDIO_READ_ARRAY

 1 Intel® Fortran Compiler Classic and Intel® Fortran Compiler Developer Guide and Reference

958

 GENERIC :: READ (FORMATTED) => UDIO_READ_ARRAY
 END TYPE T

! an explicit interface
 INTERFACE WRITE(FORMATTED)
 MODULE PROCEDURE UDIO_WRITE_ARRAY
 END INTERFACE
 CONTAINS
 SUBROUTINE UDIO_READ_ARRAY (DTV, UNIT, IOTYPE, V_LIST, IOSTAT, IOMSG)
 CLASS(T), INTENT(INOUT) :: DTV
 INTEGER, INTENT(IN) :: UNIT
 CHARACTER(*), INTENT(IN) :: IOTYPE
 INTEGER, INTENT(IN) :: V_LIST (:)
 INTEGER, INTENT(OUT) :: IOSTAT
 CHARACTER(*), INTENT(INOUT) :: IOMSG

! This is the child I/O that gets performed when the procedure
! is called from a parent I/O – it uses list-directed input to read
! the array K

 READ (UNIT, FMT=*, IOSTAT=IOSTAT, IOMSG=IOMSG) DTV%K

 END SUBROUTINE UDIO_READ_ARRAY

 SUBROUTINE UDIO_WRITE_ARRAY (DTV, UNIT, IOTYPE, V_LIST, IOSTAT, IOMSG)
 CLASS(T), INTENT(IN) :: DTV
 INTEGER, INTENT(IN) :: UNIT
 CHARACTER(*), INTENT(IN) :: IOTYPE
 INTEGER, INTENT(IN) :: V_LIST (:)
 INTEGER, INTENT(OUT) :: IOSTAT
 CHARACTER(*), INTENT(INOUT) :: IOMSG

! This is the child I/O that gets performed when the procedure
! is called from a parent I/O – it uses list-directed output to write
! the array K

 WRITE (UNIT, FMT=*, IOSTAT=IOSTAT, IOMSG=IOMSG) DTV%K

 END SUBROUTINE UDIO_WRITE_ARRAY

 END MODULE TYPES

 PROGRAM TEST1
 USE TYPES
 TYPE (T) :: V
 INTEGER :: COUNTCHAR

 OPEN (1, FILE='TEST.INPUT', FORM='FORMATTED')
 READ (1, FMT='(DT)', ADVANCE='NO', SIZE=COUNTCHAR) V
 CLOSE(UNIT=1)
 WRITE(6, '(DT)') V

 END PROGRAM TEST1
Consider that procedure UDIO_READ_ARRAY reads an input file named TEST.INPUT that contains the
following:

1, 3, 5, 7, 9, 2, 4, 6, 8, 10

Intel® Fortran Compiler Classic and Intel® Fortran Compiler Developer Guide and Reference 1

959

In this case, the program TEST1 in procedure UDIO_WRITE_ARRAY prints:

 1 3 5 7 9 2
 4 6 8 10

Example 2
The following example shows list-directed formatted output and user-defined I/O:

MODULE M
 TYPE T
 REAL, POINTER :: R (:)
 CONTAINS
 PROCEDURE :: UDIO_WRITE_LD
 GENERIC :: WRITE(FORMATTED) => UDIO_WRITE_LD
 END TYPE T

CONTAINS
 SUBROUTINE UDIO_WRITE_LD (DTV, UNIT, IOTYPE, V_LIST, IOSTAT, IOMSG)
 CLASS(T), INTENT(IN) :: DTV
 INTEGER, INTENT(IN) :: UNIT
 CHARACTER(LEN=*), INTENT(IN) :: IOTYPE
 INTEGER, INTENT(IN) :: V_LIST (:)
 INTEGER, INTENT(OUT) :: IOSTAT
 CHARACTER(LEN=*), INTENT(INOUT) :: IOMSG
 IOSTAT = 0
 PRINT *, SIZE (DTV%R)
 WRITE (UNIT, *) DTV%R
 END SUBROUTINE UDIO_WRITE_LD
END MODULE M

PROGRAM TEST2
 USE M
 TYPE (T) :: X
 REAL, TARGET :: V (3)

 V = [SIN (1.0), COS (1.0), TAN (1.0)]
 X = T (R=V)
 PRINT *, X
END PROGRAM TEST2

TEST2 should print "3 0.8414710 0.5403023 1.557408".

Example 3
The following example shows user-defined derived-type NAMELIST input/output:

! PROGRAM: udio_nml_read_write.f90
!
! This program tests NAMELIST READ and WRITE. In the WRITE subroutine, there
! are FORMATTED WRITES as well as NAMELIST WRITES.
!
MODULE UDIO
 TYPE MYDT
 INTEGER F1
 INTEGER F2
 CONTAINS

 1 Intel® Fortran Compiler Classic and Intel® Fortran Compiler Developer Guide and Reference

960

 PROCEDURE :: MYSUBROUTINE
 GENERIC :: READ (FORMATTED) => MYSUBROUTINE
 END TYPE MYDT

 INTERFACE WRITE (FORMATTED)
 MODULE PROCEDURE :: WRITESUBROUTINE
 END INTERFACE
CONTAINS

 SUBROUTINE WRITESUBROUTINE (DTV, UNIT, IOTYPE, V_LIST, IOSTAT, IOMSG)
 CLASS (MYDT), INTENT(IN) :: DTV
 INTEGER*4, INTENT(IN) :: UNIT
 CHARACTER (LEN=*), INTENT(IN) :: IOTYPE
 INTEGER, INTENT(IN) :: V_LIST(:)
 INTEGER*4, INTENT(OUT) :: IOSTAT
 CHARACTER (LEN=*), INTENT(INOUT) :: IOMSG

 INTEGER I, J
 NAMELIST /SUBRT_NML/ I, J

 I=DTV%F1
 J=DTV%F2

 WRITE (UNIT, '(A,2I5.2)', IOSTAT=IOSTAT) IOTYPE, DTV%F1, DTV%F2
 WRITE (UNIT, NML=SUBRT_NML)
 END SUBROUTINE WRITESUBROUTINE

SUBROUTINE MYSUBROUTINE (DTV, UNIT, IOTYPE, V_LIST, IOSTAT, IOMSG)
 CLASS (MYDT), INTENT(INOUT) :: DTV
 INTEGER*4, INTENT(IN) :: UNIT
 CHARACTER (LEN=*), INTENT(IN) :: IOTYPE
 INTEGER, INTENT(IN) :: V_LIST(:)
 INTEGER*4, INTENT(OUT) :: IOSTAT
 CHARACTER (LEN=*), INTENT(INOUT) :: IOMSG

! X and Y are aliases for DTV%F1 and DTV%F2 since field references
! cannot be referenced in a NAMELIST statement

 INTEGER X, Y
 NAMELIST /SUBRT_NML/ X, Y

 READ (UNIT, *) DTV%F1, DTV%F2

 X = DTV%F1
 Y = DTV%F2

 READ (UNIT, NML=SUBRT_NML, IOSTAT=IOSTAT)

END SUBROUTINE MYSUBROUTINE

END MODULE UDIO

PROGRAM UDIO_PROGRAM
 USE UDIO
 TYPE (MYDT) :: MYDTV
 INTEGER :: A, B
 NAMELIST /MAIN_NML/ A, MYDTV, B

Intel® Fortran Compiler Classic and Intel® Fortran Compiler Developer Guide and Reference 1

961

 OPEN (10, FILE='udio_nml_read_write.in')
 READ (10, NML=MAIN_NML)
 WRITE (6, NML=MAIN_NML)
 CLOSE (10)

END PROGRAM UDIO_PROGRAM

The following shows input file 'udio_nml_read_write.in' on unit 10 read by MYSUBROUTINE:

&MAIN_NML
A=100
MYDTV=20 30
&SUBRT_NML
X=20
Y=30
/
/B=200
/

The following shows output to unit 6 by WRITESUBROUTINE:

&MAIN_NML
 A = 100,
 MYDTV=NAMELIST 20 30
&SUBRT_NML
 I = 20,
 J = 30
/
 /B = 200
/

Example 4
The following example shows user-defined derived-type UNFORMATTED input/output:

! PROGRAM: udio_unformatted_1.f90
!
! This test first writes unformatted data to a file via user-defined derived type output
! and then reads the data from the file via user-defined derived type input.
!
MODULE UNFORMATTED
 TYPE UNFORMATTED_TYPE
 INTEGER :: I
 CHARACTER*25 :: CHAR
 CONTAINS
 PROCEDURE :: MY_UNFMT_WRITE
 GENERIC :: WRITE (UNFORMATTED) => MY_UNFMT_WRITE
 END TYPE UNFORMATTED_TYPE

 INTERFACE READ (UNFORMATTED)
 MODULE PROCEDURE :: MY_UNFMT_READ
 END INTERFACE

CONTAINS
 SUBROUTINE MY_UNFMT_WRITE (DTV, UNIT, IOSTAT, IOMSG)
 CLASS (UNFORMATTED_TYPE), INTENT(IN) :: DTV
 INTEGER, INTENT(IN) :: UNIT
 INTEGER, INTENT(OUT) :: IOSTAT
 CHARACTER(LEN=*), INTENT(INOUT) :: IOMSG

 1 Intel® Fortran Compiler Classic and Intel® Fortran Compiler Developer Guide and Reference

962

 WRITE (UNIT=UNIT, IOSTAT=IOSTAT, IOMSG=IOMSG) DTV%I+1, DTV%CHAR
 END SUBROUTINE MY_UNFMT_WRITE

 SUBROUTINE MY_UNFMT_READ (DTV, UNIT, IOSTAT, IOMSG)
 CLASS (UNFORMATTED_TYPE), INTENT(INOUT) :: DTV
 INTEGER, INTENT(IN) :: UNIT
 INTEGER, INTENT(OUT) :: IOSTAT
 CHARACTER (LEN=*), INTENT(INOUT) :: IOMSG

 READ (UNIT=UNIT, IOSTAT=IOSTAT, IOMSG=IOMSG) DTV%I, DTV%CHAR
 DTV%I = 1-DTV%I
 END SUBROUTINE MY_UNFMT_READ

END MODULE UNFORMATTED

PROGRAM UNFORMATTED_WRITE_PROGRAM
 USE UNFORMATTED

 TYPE (UNFORMATTED_TYPE) :: READ_UNFORMATTED (1,2), UNFORMATTED_OBJECT (3:3,0:1)
 INTEGER :: IOSTAT
 CHARACTER(LEN=100) :: IOMSG

 UNFORMATTED_OBJECT (3, 1) = UNFORMATTED_TYPE (I=71, CHAR='HELLO WORLD.')
 UNFORMATTED_OBJECT (3, 0) = UNFORMATTED_TYPE (I=72, CHAR='WORLD HELLO.')

 OPEN (UNIT=71, FILE='MYUNFORMATTED_DATA.DAT', FORM='UNFORMATTED')
 WRITE (UNIT=71) UNFORMATTED_OBJECT
 CLOSE (UNIT=71)

 OPEN (UNIT=77, FILE='MYUNFORMATTED_DATA.DAT', FORM='UNFORMATTED')
 READ (UNIT=77) READ_UNFORMATTED
 CLOSE (UNIT=77)

 PRINT *, -READ_UNFORMATTED (:,1:2)%I .EQ. UNFORMATTED_OBJECT%I
 PRINT *, READ_UNFORMATTED%CHAR .EQ. UNFORMATTED_OBJECT%CHAR

END PROGRAM UNFORMATTED_WRITE_PROGRAM

The following shows output to unit * from program UNFORMATTED_WRITE_PROGRAM:

T T
 T T

I/O Formatting
A format appearing in an input or output (I/O) statement specifies the form of data being transferred and the
data conversion (editing) required to achieve that form. The format specified can be explicit or implicit.

Explicit format is indicated in a format specification that appears in a FORMAT statement or a character
expression (the expression must evaluate to a valid format specification).

The format specification contains edit descriptors, which can be data edit descriptors, control edit descriptors,
or string edit descriptors.

Implicit format is determined by the processor and is specified using list-directed or namelist formatting.

List-directed formatting is specified with an asterisk (*); namelist formatting is specified with a namelist
group name.

Intel® Fortran Compiler Classic and Intel® Fortran Compiler Developer Guide and Reference 1

963

List-directed formatting can be specified for advancing sequential files and internal files. Namelist formatting
can be specified only for advancing sequential files.

See Also
Rules for List-Directed Sequential READ Statements for details on list-directed input
Rules for List-Directed Sequential WRITE Statements for details on list-directed output
Rules for Namelist Sequential READ Statements for details on namelist input
Rules for Namelist Sequential WRITE Statements for details on namelist output

Format Specifications
A format specification can appear in a FORMAT statement or a character expression. In a FORMAT statement,
it is preceded by the keyword FORMAT. A format specification takes one of the following forms:

([format-items])

([format-items,] unlimited-format-item)

format-items Is format-items [[,] format-item]...

where format-item is one of the following:

[r] data-edit-desc
control-edit-desc
char-string-edit-desc
[r] (format-items)

r (Optional) Is an integer literal constant. This is called a repeat specification. The
range of r is 1 through 2147483647 (2**31-1). If r is omitted, it is assumed to
be 1.

data-edit-desc Is one of the data edit descriptors: I, B, O, Z, F, E, EN, ES, EX, D, DT, G, L, or A.

A repeat specification can precede any data edit descriptor.

control-edit-desc Is one of the control edit descriptors: T, TL, TR, X, S, SP, SS, BN, BZ, P, :, /, $, \,
and Q.

A repeat specification can precede the slash (/) edit descriptor.

char-string-edit-desc Is one of the string edit descriptors: H, 'c', and "c", where c is a character
constant.

unlimited-format-item Is * (format-items). The * indicates an unlimited repeat count.

If more than one edit descriptor is specified, they must be separated by commas or slashes (/).

A comma can be omitted in the following cases:

• Between a P edit descriptor and an immediately following F, E, EN, ES, EX, D, or G edit descriptor
• Before a slash (/) edit descriptor when the optional repeat specification is not present
• After a slash (/) edit descriptor
• Before or after a colon (:) edit descriptor

Description
A FORMAT statement must be labeled.

Named constants are not permitted in format specifications.

If the associated I/O statement contains an I/O list, the format specification must contain at least one data
edit descriptor or the control edit descriptor Q.

Blank characters can precede the initial left parenthesis, and additional blanks can appear anywhere within
the format specification. These blanks have no meaning unless they are within a character string edit
descriptor.

 1 Intel® Fortran Compiler Classic and Intel® Fortran Compiler Developer Guide and Reference

964

When a formatted input statement is executed, the setting of the BLANK specifier (for the relevant logical
unit) determines the interpretation of blanks within the specification. If the BN or BZ edit descriptors are
specified for a formatted input statement, they supersede the default interpretation of blanks. (For more
information on BLANK defaults, see BLANK Specifier in OPEN statements.)

For formatted input, you can use the comma as an external field separator. The comma terminates the input
of fields (for non-character data types) that are shorter than the number of characters expected. It can also
designate null (zero-length) fields.

The following table summarizes the edit descriptors that can be used in format specifications.

Summary of Edit Descriptors

Code Form Effect

A A[w] Transfers character or Hollerith
values.

B Bw[.m] Transfers binary values.

BN BN Ignores embedded and trailing
blanks in a numeric input field.

BZ BZ Treats embedded and trailing
blanks in a numeric input field as
zeros.

D Dw.d Transfers real values with D
exponents.

DT DT [string] [(v-list)] Passes a character string and an
integer array to a defined I/O
procedure.

E Ew.d[Ee] Transfers real values with E
exponents.

EN ENw.d[Ee] Transfers real values with
engineering notation.

ES ESw.d[Ee] Transfers real values with
scientific notation.

EX EXw.d[Ee] Transfers real values with
hexadecimal-significands.

F Fw.d Transfers real values with no
exponent.

G Gw.d[Ee] Transfers values of all intrinsic
types.

H nHch[ch...] Transfers characters following the
H edit descriptor to an output
record.

I Iw[.m] Transfers decimal integer values.

L Lw Transfers logical values: on input,
transfers characters; on output,
transfers T or F.

Intel® Fortran Compiler Classic and Intel® Fortran Compiler Developer Guide and Reference 1

965

Code Form Effect

O Ow[.m] Transfers octal values.

P kP Interprets certain real numbers
with a specified scale factor.

Q Q Returns the number of characters
remaining in an input record.

S S Reinvokes optional plus sign (+)
in numeric output fields; counters
the action of SP and SS.

SP SP Writes optional plus sign (+) into
numeric output fields.

SS SS Suppresses optional plus sign (+)
in numeric output fields.

T Tn Tabs to specified position.

TL TLn Tabs left the specified number of
positions.

TR TRn Tabs right the specified number
of positions.

X nX Skips the specified number of
positions.

Z Zw[.m] Transfers hexadecimal values.

$ $ Suppresses trailing carriage
return during interactive I/O.

: : Terminates format control if there
are no more items in the I/O list.

/ [r]/ Terminates the current record
and moves to the next record.

\ \ Continues the same record; same
as $.

'c'1 'c' Transfers the character literal
constant (between the delimiters)
to an output record.

1 These delimiters can also be quotation marks (").

Character Format Specifications
In data transfer I/O statements, a format specifier ([FMT=]format) can be a character expression that is a
character array, character array element, or character constant. This type of format is also called a runtime
format because it can be constructed or altered during program execution.

The expression must evaluate to a character string whose leading part is a valid format specification
(including the enclosing parentheses).

 1 Intel® Fortran Compiler Classic and Intel® Fortran Compiler Developer Guide and Reference

966

If the expression is a character array element, the format specification must be contained entirely within that
element.

If the expression is a character array, the format specification can continue past the first element into
subsequent consecutive elements.

If the expression is a character constant delimited by apostrophes, use two consecutive apostrophes ('') to
represent an apostrophe character in the format specification; for example:

 PRINT '("NUM can''t be a real number")'
Similarly, if the expression is a character constant delimited by quotation marks, use two consecutive
quotation marks ("") to represent a quotation mark character in the format specification.

To avoid using consecutive apostrophes or quotation marks, you can put the character constant in an I/O list
instead of a format specification, as follows:

 PRINT "(A)", "NUM can't be a real number"
The following shows another character format specification:

 WRITE (6, '(I12, I4, I12)') I, J, K
In the following example, the format specification changes with each iteration of the DO loop:

SUBROUTINE PRINT(TABLE)
REAL TABLE(10,5)
CHARACTER*5 FORCHR(0:5), RPAR*1, FBIG, FMED, FSML
DATA FORCHR(0),RPAR /'(',')'/
DATA FBIG,FMED,FSML /'F8.2,','F9.4,','F9.6,'/
DO I=1,10
 DO J=1,5
 IF (TABLE(I,J) .GE. 100.) THEN
 FORCHR(J) = FBIG
 ELSE IF (TABLE(I,J) .GT. 0.1) THEN
 FORCHR(J) = FMED
 ELSE
 FORCHR(J) = FSML
 END IF
 END DO
 FORCHR(5)(5:5) = RPAR
 WRITE (6,FORCHR) (TABLE(I,J), J=1,5)
END DO
END

The DATA statement assigns a left parenthesis to character array element FORCHR(0), and (for later use) a
right parenthesis and three F edit descriptors to character variables.

Next, the proper F edit descriptors are selected for inclusion in the format specification. The selection is
based on the magnitude of the individual elements of array TABLE.

A right parenthesis is added to the format specification just before the WRITE statement uses it.

NOTE
Format specifications stored in arrays are recompiled at runtime each time they are used. If a Hollerith
or character runtime format is used in a READ statement to read data into the format itself, that data
is not copied back into the original array, and the array is unavailable for subsequent use as a runtime
format specification.

Intel® Fortran Compiler Classic and Intel® Fortran Compiler Developer Guide and Reference 1

967

Examples
The following example shows a format specification:

 WRITE (*, 9000) int1, real1(3), char1
 9000 FORMAT (I5, 3F4.5, A16)
 ! I5, 3F5.2, A16 is the format list.

The following shows a format example using a character expression:

 WRITE (*, '(I5, 3F5.2, A16)')iolist
 ! I5, 3F4.5, A16 is the format list.

In the following example, the format list is put into an 80-character variable called MYLIST:

 CHARACTER(80) MYLIST
 MYLIST = '(I5, 3F5.2, A16)'
 WRITE (*, MYLIST) iolist

Consider the following two-dimensional array:

 1 2 3
 4 5 6

In this case, the elements are stored in memory in the order: 1, 4, 2, 5, 3, 6 as follows:

 CHARACTER(6) array(3)
 DATA array / '(I5', ',3F5.2', ',A16)' /
 WRITE (*, array) iolist

In the following example, the WRITE statement uses the character array element array(2) as the format
specifier for data transfer:

 CHARACTER(80) array(5)
 array(2) = '(I5, 3F5.2, A16)'
 WRITE (*, array(2)) iolist

See Also
Data Edit Descriptors
Control Edit Descriptors
Character String Edit Descriptors
Variable Format Expressions
Nested and Group Repeats
Print Formatted Records

Data Edit Descriptors
A data edit descriptor causes the transfer or conversion of data to or from its internal representation.

The part of a record that is input or output and formatted with data edit descriptors (or character string edit
descriptors) is called a field.

Forms for Data Edit Descriptors

A data edit descriptor takes one of the following forms:

[r]c

[r]cw

[r]cw.m

[r]cw.d

[r]cw.d[Ee]

 1 Intel® Fortran Compiler Classic and Intel® Fortran Compiler Developer Guide and Reference

968

r Is a repeat specification. The range of r is 1 through 2147483647
(2**31-1). If r is omitted, it is assumed to be 1.

c Is one of the following format codes: I, B, O, Z, F, E, EN, ES, EX, D, G,
L, or A.

w Is the total number of digits in the field (the field width). If omitted,
the system applies default values (see Default Widths for Data Edit
Descriptors). The range of w is 1 through 2147483647 (2**31-1) on
Intel® 64 architecture; 1 through 32767 (2**15-1) on IA-32
architecture. For I, B, O, Z, D, E, EN, ES, EX, F, and G, the range can
start at zero.

m Is the minimum number of digits that must be in the field (including
leading zeros). The range of m is 0 through 32767 (2**15-1) on
Intel® 64 architecture; 0 through 255 (2**8-1) on IA-32 architecture.
w.m applies to I, B, O, and Z format edit descriptors.

d Is the number of digits to the right of the decimal point (the
significant digits). The range of d is 0 through 255. If d exceeds 255
at compile time, a warning is issued and the value 255 is used. If d
exceeds 255 in a runtime format, no warning or error is issued and
the value 255 is used.

The number of significant digits is affected if a scale factor is specified
for the data edit descriptor. For the G edit descriptor, d must be
specified if w is not zero. w.d applies to F, E, EN, ES, EX, G, and D
format edit descriptors.

E Identifies an exponent field.

e Is the number of digits in the exponent. The range of e is 0 through
255. If e exceeds 255 at compile time, a warning is issued and the
value 255 is used. If e exceeds 255 in a runtime format, no warning
or error is issued and the value 255 is used. For the G edit descriptor,
if w is zero, e must not be specified.

Description
Standard Fortran allows the field width to be omitted only for the A descriptor. However, Intel® Fortran allows
the field width to be omitted for any data edit descriptor.

The r, w, m, d, and e must all be positive, unsigned, integer literal constants, or the digit 0 where allowed, or
variable format expressions -- no kind parameter can be specified. They must not be named constants.

Actual useful ranges for r, w, m, d, and e may be constrained by record sizes (RECL) and the file system.

The data edit descriptors have the following specific forms:

Integer: Iw[.m], Bw[.m], Ow[.m], and Zw[.m]

Real and complex: Fw.d, Ew.d[Ee], ENw.d[Ee], ESw.d[Ee], EXw.d[Ee],
Dw.d, and Gw.d[Ee]

Logical: Lw

Character: A[w]

The d must be specified with F, E, EN, ES, EX, D, and G field descriptors even if d is zero. The decimal point
is also required. You must specify both w and d.

Intel® Fortran Compiler Classic and Intel® Fortran Compiler Developer Guide and Reference 1

969

A repeat specification can simplify formatting. For example, the following two statements are equivalent:

20 FORMAT (E12.4,E12.4,E12.4,I5,I5,I5,I5)

20 FORMAT (3E12.4,4I5)

Examples
 ! This WRITE outputs three integers, each in a five-space field
 ! and four reals in pairs of F7.2 and F5.2 values.
 INTEGER(2) int1, int2, int3
 REAL(4) r1, r2, r3, r4
 DATA int1, int2, int3 /143, 62, 999/
 DATA r1, r2, r3, r4 /2458.32, 43.78, 664.55, 73.8/
 WRITE (*,9000) int1, int2, int3, r1, r2, r3, r4
 9000 FORMAT (3I5, 2(1X, F7.2, 1X, F5.2))

The following output is produced from the above code:

 143 62 999 2458.32 43.78 664.55 73.80

See Also
General rules for numeric editing
Nested and group repeats

General Rules for Numeric Editing

The following rules apply to input and output data for numeric editing (data edit descriptors I, B, O, Z, F, E,
EN, ES, EX, D, and G).

Rules for Input Processing
Leading blanks in the external field are ignored. If the input field is not a hexadecimal-significand number or
an IEEE exceptional value, the interpretation of embedded and trailing blanks is determined by the blank
interpretation mode. If BLANK='NULL' is in effect (or the BN edit descriptor has been specified) embedded
and trailing blanks are ignored; otherwise, they are treated as zeros. An all-blank field is treated as a value
of zero.

The following table shows how blanks are interpreted by default:

Type of Unit or File Default

An explicitly OPENed unit BLANK='NULL'

An internal file BLANK='NULL'

A preconnected file1 BLANK='NULL'

1 For interactive input from preconnected files, you should explicitly specify the BN or BZ edit descriptor to
ensure desired behavior.

A minus sign must precede a negative value in an external field; a plus sign is optional before a positive
value.

In input records, constants can include any valid kind parameter. Named constants are not permitted.

If the data field in a record contains fewer than w characters, an input statement will read characters from
the next data field in the record. You can prevent this by padding the short field with blanks or zeros, or by
using commas to separate the input data. The comma terminates the data field, and can also be used to
designate null (zero-length) fields. For more information, see Terminating Short Fields of Input Data.

 1 Intel® Fortran Compiler Classic and Intel® Fortran Compiler Developer Guide and Reference

970

Rules for Output Processing
The field width w must be large enough to include any leading plus or minus sign, and any decimal point or
exponent. For example, the field width for an E data edit descriptor must be large enough to contain the
following:

• For positive numbers: d + 5 or d + e + 3 characters
• For negative numbers: d + 6 or d + e + 4 characters

For D, E, EN, ES, EX, F, and I edit descriptors, a non-negative value can have a plus sign, depending on
which sign edit descriptor is in effect. If a value is negative, the leftmost nonblank character is a minus sign.

If the value is smaller than the field width specified, leading blanks are inserted (the value is right-justified).
If the value is too large for the field width specified, the entire output field is filled with asterisks (*).

When the value of the field width is zero, the compiler selects the smallest possible positive actual field width
that does not result in the field being filled with asterisks.

See Also
Forms for data edit descriptors
Format Specifications

Integer Editing

Integer editing is controlled by the I (decimal), B (binary), O (octal), and Z (hexadecimal) data edit
descriptors.

I Editing

The I edit descriptor transfers decimal integer values. It takes the following form:

Iw[.m]

The value of m (the minimum number of digits in the constant) must not exceed the value of w (the field
width), unless w is zero. The m has no effect on input, only output.

The specified I/O list item must be of type integer; logical and real items are also allowed if the compiler
option check format is not specified.

The G edit descriptor can be used to edit integer data; it follows the same rules as Iw.

Rules for Input Processing
On input, the I data edit descriptor transfers w characters from an external field and assigns their integer
value to the corresponding I/O list item. The external field data must be an integer constant. w must not be
zero.

If the value exceeds the range of the corresponding input list item, an error occurs.

The following shows input using the I edit descriptor (the symbol ^ represents a non-printing blank
character):

Format Input Value
I4 2788 2788
I3 -26 -26
I9 ^^^^^^312 312

Rules for Output Processing
On output, the I data edit descriptor transfers the value of the corresponding I/O list item, right-justified, to
an external field that is w characters long.

The field consists of zero or more blanks, followed by a sign (a plus sign is optional for positive values, a
minus sign is required for negative values), followed by an unsigned integer constant with no leading zeros.

Intel® Fortran Compiler Classic and Intel® Fortran Compiler Developer Guide and Reference 1

971

If m is specified, the unsigned integer constant will have at least m digits, padded with leading zeros if
necessary.

If the output list item has the value zero, and m is zero, the external field is filled with blanks; if w is also
zero, the external field is one blank.

If w is zero, the external field has the minimum number of characters necessary to represent the value, left
justifying the value with no leading blanks. If both w and m are zero and the internal value is zero, the
external field is one blank.

The following shows output using the I edit descriptor (the symbol ^ represents a non-printing blank
character):

Format Value Output
I3 284 284
I4 -284 -284
I4 0 ^^^0
I5 174 ^^174
I2 3244 **
I3 -473 ***
I7 29.812 An error; the decimal point is invalid
I4.0 0 ^^^^
I4.2 1 ^^01
I4.4 1 0001
I0 -473 -473
I0.4 242 0242

See Also
Forms for data edit descriptors
General rules for numeric editing

B Editing

The B data edit descriptor transfers binary (base 2) values. It takes the following form:

Bw[.m]

The value of m (the minimum number of digits in the constant) must not exceed the value of w (the field
width), unless w is zero. The m has no effect on input, only output.

The specified I/O list item can be of type integer, real, or logical.

Rules for Input Processing
On input, the B data edit descriptor transfers w characters from an external field and assigns their binary
value to the corresponding I/O list item. The external field must contain only binary digits (0 or 1) or blanks.
w must not be zero.

If the value exceeds the range of the corresponding input list item, an error occurs.

The following shows input using the B edit descriptor:

Format Input Value
B4 1001 9
B1 1 1
B2 ^0 0
B6 ^^^122 An error; the 2 is invalid in binary notation

Rules for Output Processing
On output, the B data edit descriptor transfers the binary value of the corresponding I/O list item, right-
justified, to an external field that is w characters long.

 1 Intel® Fortran Compiler Classic and Intel® Fortran Compiler Developer Guide and Reference

972

The field consists of zero or more blanks, followed by an unsigned integer constant (consisting of binary
digits) with no leading zeros. A negative value is transferred in internal form.

If w is zero, the external field has the minimum number of characters necessary to represent the value. If
both w and m are zero and the internal value is zero, the external field is one blank.

If m is specified, the unsigned integer constant must have at least m digits. If necessary, it is padded with
leading zeros.

If m is zero, and the output list item has the value zero, the external field is filled with blanks.

The following shows output using the B edit descriptor (the symbol ^ represents a non-printing blank
character):

Format Value Output
B4 9 1001
B2.2 1 01
B0 42 101010

See Also
Forms for data edit descriptors
General rules for numeric editing

O Editing

The O data edit descriptor transfers octal (base 8) values. It takes the following form:

Ow[.m]

The value of m (the minimum number of digits in the constant) must not exceed the value of w (the field
width), unless w is zero. The m has no effect on input, only output.

The specified I/O list item can be of type integer, real, or logical.

Rules for Input Processing
On input, the O data edit descriptor transfers w characters from an external field and assigns their octal
value to the corresponding I/O list item. The external field must contain only octal digits (0 through 7) or
blanks. w must not be zero.

If the value exceeds the range of the corresponding input list item, an error occurs.

The following shows input using the O edit descriptor (the symbol ^ represents a non-printing blank
character):

Format Input Value
O5 77777 32767
O4 77777 4095
O3 97^ An error; the 9 is invalid in octal notation

Rules for Output Processing
On output, the O data edit descriptor transfers the octal value of the corresponding I/O list item, right-
justified, to an external field that is w characters long.

The field consists of zero or more blanks, followed by an unsigned integer constant (consisting of octal digits)
with no leading zeros. A negative value is transferred in internal form without a leading minus sign.

If w is zero, the external field has the minimum number of characters necessary to represent the value. If
both w and m are zero and the internal value is zero, the external field is one blank.

If m is specified, the unsigned integer constant must have at least m digits. If necessary, it is padded with
leading zeros.

If m is zero, and the output list item has the value zero, the external field is filled with blanks.

Intel® Fortran Compiler Classic and Intel® Fortran Compiler Developer Guide and Reference 1

973

The following shows output using the O edit descriptor (the symbol ^ represents a non-printing blank
character):

Format Value Output
O6 32767 ^77777
O12 -32767 ^37777700001
O2 14261 **
O4 27 ^^33
O5 10.5 41050
O4.2 7 ^^07
O4.4 7 0007
O0 83 123

See Also
Forms for data edit descriptors
General rules for numeric editing

Z Editing

The Z data edit descriptor transfers hexadecimal (base 16) values. It takes the following form:

Zw[.m]

The value of m (the minimum number of digits in the constant) must not exceed the value of w (the field
width), unless w is zero. The m has no effect on input, only output.

The specified I/O list item can be of type integer, real, or logical.

Rules for Input Processing
On input, the Z data edit descriptor transfers w characters from an external field and assigns their
hexadecimal value to the corresponding I/O list item. The external field must contain only hexadecimal digits
(0 though 9 and A (a) through F(f)) or blanks. w must not be zero.

If the value exceeds the range of the corresponding input list item, an error occurs.

The following shows input using the Z edit descriptor:

Format Input Value
Z3 A94 2708
Z5 A23DEF 664542
Z5 95.AF2 An error; the decimal point is invalid

Rules for Output Processing
On output, the Z data edit descriptor transfers the hexadecimal value of the corresponding I/O list item,
right-justified, to an external field that is w characters long.

The field consists of zero or more blanks, followed by an unsigned integer constant (consisting of
hexadecimal digits) with no leading zeros. A negative value is transferred in internal form without a leading
minus sign.

If w is zero, the external field has the minimum number of characters necessary to represent the value. If
both w and m are zero and the internal value is zero, the external field is one blank.

If m is specified, the unsigned integer constant must have at least m digits. If necessary, it is padded with
leading zeros.

If m is zero, and the output list item has the value zero, the external field is filled with blanks.

 1 Intel® Fortran Compiler Classic and Intel® Fortran Compiler Developer Guide and Reference

974

The following shows output using the Z edit descriptor (the symbol ^ represents a non-printing blank
character):

Format Value Output
Z4 32767 7FFF
Z9 -32767 ^FFFF8001
Z2 16 10
Z4 -10.5 ****
Z3.3 2708 A94
Z6.4 2708 ^^0A94
Z0 14348303 DAF00F

See Also
Forms for data edit descriptors
General rules for numeric editing

Real and Complex Editing

Real and complex editing is controlled by the F, E, D, EN, ES, and EX data edit descriptors. The G, B, O, and
Z edit descriptors can also be used to edit real and complex data.

If no field width (w) is specified for a real data edit descriptor, the system supplies default values.

Real data edit descriptors can be affected by specified scale factors.

NOTE
Do not use the real data edit descriptors when attempting to parse textual input. These descriptors
accept some forms that are purely textual as valid numeric input values. For example, input values T
and F are treated as values -1.0 and 0.0, respectively, for .TRUE. and .FALSE.

See Also
Forms for data edit descriptors
General rules for numeric editing
Scale Factor Editing (P)
Default Widths for Data Edit Descriptors for details on system default values for data edit
descriptors

F Editing

The F data edit descriptor transfers real values. It takes the following form:

Fw.d

The value of d (the number of places after the decimal point) must not exceed the value of w (the field
width) unless w is zero. When w is zero, the processor selects the field width. On input, w must not be zero.

The specified I/O list item must be of type real, or it must be the real or imaginary part of a complex type.

Rules for Input Processing
On input, the F data edit descriptor transfers w characters from an external field and assigns their real value
to the corresponding I/O list item. The external field data must be an integer or real constant.

An input field is one of the following:

• An IEEE exception specification
• An hexadecimal-significand number
• An optional sign, followed by a string of one or more digits optionally containing a decimal symbol; any

blanks are interpreted as zeros.

The basic form can be followed by an exponent in one of the following forms:

Intel® Fortran Compiler Classic and Intel® Fortran Compiler Developer Guide and Reference 1

975

• A sign followed by one or more digits
• An E or D followed by zero or more blanks, followed by an optional sign and one or more digits

An exponent containing a D is processed in the same way as an exponent containing an E.

If the input field contains only an exponent letter or decimal point, it is treated as a zero value.

If the input field does not contain a decimal point or an exponent, it is treated as a real number of w digits,
with d digits to the right of the decimal point. (Leading zeros are added, if necessary.)

If the input field contains a decimal point, the location of that decimal point overrides the location specified
by the F descriptor.

If the field contains an exponent, that exponent is used to establish the magnitude of the value before it is
assigned to the list element.

An input field that is an IEEE exception specification consists of optional blanks, followed by either of the
following:

• An optional sign, followed by the string 'INF' or the string 'INFINITY'; this is an IEEE infinity

This form can not be used if the processor does not support IEEE infinities for the input variable.
• An optional sign, followed by the string 'NAN', optionally followed by zero or more alphanumeric

characters enclosed in parentheses, optionally followed by blanks; this is an IEEE Nan

This form can not be used if the processor does not support IEEE Nans for the input variable.

The NaN value is a quiet NaN if the only non-blank characters in the field are 'NAN' or 'NAN()'.

An input field that is a hexadecimal-significand number contains an optional sign, followed by the digit 0,
followed immediately by the letter X, followed by the hexadecimal significand followed by a hexadecimal
exponent. A hexadecimal significand is a string of one or more hexadecimal characters, optionally
containing a decimal symbol. The position of the hexadecimal point is indicated by the decimal symbol. The
hexadecimal point implicitly follows the last hexadecimal character if decimal symbol appears in the string. A
hexadecimal exponent is the letter P followed by a signed decimal digit string. Embedded blanks are not
allowed; trailing blanks are ignored. The value is equal to the significand multiplied by two raised to the
power of the exponent. If the optional sign is a minus, the value is negated.

The following shows input using the F edit descriptor:

Format Input Value
F8.5 123456789 123.45678
F8.5 -1234.567 -1234.56
F8.5 24.77E+2 2477.0
F5.2 1234567.89 123.45

Rules for Output Processing
On output, the F data edit descriptor transfers the real value of the corresponding I/O list item, right-justified
and rounded to d decimal positions, to an external field that is w characters long.

For an internal value that is an IEEE infinity, the output field consists of blanks, if needed, followed by a sign
(optional if the value is positive and descriptor SP is not in effect), followed by the letters 'Inf' or 'Infinity',
right justified within the field.

If w is less than 3, the field is filled with asterisks; otherwise, if w is less than 8, 'Inf' is produced.

For an internal value that is an IEEE NaN, the output field consists of blanks, if necessary, followed by the
letters 'NaN' and optionally followed by one to w − 5 alphanumeric characters enclosed in parentheses, right
justified within the field.

If w is less than 3, the field is filled with asterisks.

For an internal value that is neither an IEEE infinity nor an IEEE NaN, the w must be greater than or equal to
d+3 to allow for the following:

 1 Intel® Fortran Compiler Classic and Intel® Fortran Compiler Developer Guide and Reference

976

• A sign (optional if the value is positive and descriptor SP is not in effect)
• At least one digit to the left of the decimal point
• The decimal point
• The d digits to the right of the decimal point

A negative value that is not zero but rounds to zero on output is displayed with a leading minus sign. For
example, the value -0.00000001 in F5.1 format will be displayed as -0.0 rather than as 0.0. The setting of
compiler option assume [no]std_minus0_rounding can affect this behavior.

The following shows output using the F edit descriptor (the symbol ^ represents a non-printing blank
character):

Format Value Output
F8.5 2.3547188 ^2.35472
F9.3 8789.7361 ^8789.736
F2.1 51.44 **
F10.4 -23.24352 ^^-23.2435
F5.2 325.013 ******
F5.2 -.2 -0.20

See Also
Forms for data edit descriptors
General rules for numeric editing
assume compiler option

E and D Editing

The E and D data edit descriptors transfer real values in exponential form. They take the following form:

Ew.d[Ee]

Dw.d

where w is the total field width, d is the number of places after the decimal point, and e is the number of
digits in the exponent.

For the E edit descriptor, if w is zero, the processor selects the field width. If e is zero, the exponent part
contains the minimum number of digits needed to represent the value of the exponent.

For the D edit descriptor, if the value of w is zero, the processor selects the field width.

The specified I/O list item must be of type real, or it must be the real or imaginary part of a complex type.

Rules for Input Processing
On input, the E and D data edit descriptors transfer w characters from an external field and assigns their real
value to the corresponding I/O list item. The E and D descriptors interpret and assign input data in the same
way as the F data edit descriptor. On input, w cannot be zero. The e, if present, has no effect on input.

The following shows input using the E and D edit descriptors (the symbol ^ represents a non-printing blank
character):

Format Input Value
E9.3 734.432E3 734432.0
E12.4 ^^1022.43E 1022.43E-6
E15.3 52.3759663^^^^^ 52.3759663
E12.5 210.5271D+10 210.5271E10
BZ,D10.2 12345^^^^^ 12345000.0D0
D10.2 ^^123.45^^ 123.45D0
D15.3 367.4981763D+04 3.674981763D+06

If the I/O list item is single-precision real, the E edit descriptor treats the D exponent indicator as an E
indicator.

Intel® Fortran Compiler Classic and Intel® Fortran Compiler Developer Guide and Reference 1

977

Rules for Output Processing
On output, the E and D data edit descriptors transfer the real value of the corresponding I/O list item, right-
justified and rounded to d decimal positions, to an external field that is w characters long.

If w is greater than zero, it should be greater than or equal to d+7 to allow for the following:

• A sign (optional if the value is positive and descriptor SP is not in effect)
• An optional zero to the left of the decimal point
• The decimal point
• The d digits to the right of the decimal point
• The exponent

The exponent takes one of the following forms:

Edit Descriptor Absolute Value of
Exponent

Positive Form of
Exponent

Negative Form of
Exponent

Ew.d |exp| 99 E+nn E-nn

99 < |exp| 999 +nnn -nnn

Ew.dEe |exp| 10e - 1 E+n1n2...ne E-n1n2...ne

Dw.d |exp| 99 D+nn or E+nn D-nn or E-nn

99 < |exp| 999 +nnn -nnn

If an exponent exceeds its specified or implied width, or the number of characters produced exceeds the field
width, the entire field of width w is filled with asterisks.

The exponent field width (e) is optional for the E edit descriptor; if omitted, the default value is 2. If e is
specified, w should be greater than or equal to d+e+5, or zero.

NOTE
If w is greater than zero, it can be as small as d + 5 or d + e + 3, if the optional fields for the sign and
the zero are omitted.

For an internal value that is an IEEE infinity or an IEEE NaN, the form of the output field is the same as for
Fw.d.

A negative value that is not zero but rounds to zero on output is displayed with a leading minus sign. For
example, the value -0.01 in "-5P,E20.5" format will be displayed as -0.00 rather than as 0.00. The setting of
compiler option assume [no]std_minus0_rounding can affect this behavior.

The following shows output using the E and D edit descriptors (the symbol ^ represents a non-printing blank
character):

Format Value Output
E11.2 475867.222 ^^^0.48E+06
E11.5 475867.222 0.47587E+06
E12.3 0.00069 ^^^0.690E
E10.3 -0.5555 -0.556E+00
E5.3 56.12 *****
E14.5E4 -1.001 -0.10010E+0001
E13.3E6 0.000123 0.123E-000003
D14.3 0.0363 ^^^^^0.363D-01
D23.12 5413.87625793 ^^^^^0.541387625793D+04
D9.6 1.2 *********

 1 Intel® Fortran Compiler Classic and Intel® Fortran Compiler Developer Guide and Reference

978

See Also
Forms for data edit descriptors
General rules for numeric editing
Scale Factor Editing (P)
assume compiler option

EN Editing

The EN data edit descriptor transfers values by using engineering notation. It takes the following form:

ENw.d[Ee]

where w is the total field width, d is the number of places after the decimal point, and e is the number of
digits in the exponent.

If w is zero, the processor chooses the field width. If e is present and zero, the exponent part contains the
minimal number of digits needed to represent the exponent .

The specified I/O list item must be of type real, or it must be the real or imaginary part of a complex type.

Rules for Input Processing
On input, the EN data edit descriptor transfers w characters from an external field and assigns their real
value to the corresponding I/O list item. The EN descriptor interprets and assigns input data in the same way
as the F data edit descriptor. w cannot be zero on input. e, if present, has no effect on input.

The following shows input using the EN edit descriptor (the symbol ^ represents a non-printing blank
character):

Format Input Value
EN11.3 ^^5.321E+00 5.32100
EN11.3 -600.00E-03 -.60000
EN12.3 ^^^3.150E-03 .00315
EN12.3 ^^^3.829E+03 3829.0

Rules for Output Processing
On output, the EN data edit descriptor transfers the real value of the corresponding I/O list item, right-
justified and rounded to d decimal positions, to an external field that is w characters long if w is positive. The
real value is output in engineering notation, where the decimal exponent is divisible by 3 and the absolute
value of the significand is greater than or equal to 1 and less than 1000 (unless the output value is zero).

If w is greater than zero, it should be greater than or equal to d+9 to allow for the following:

• A sign (optional if the value is positive and descriptor SP is not in effect)
• One to three digits to the left of the decimal point
• The decimal point
• The d digits to the right of the decimal point
• The exponent

The exponent takes one of the following forms:

Edit Descriptor Absolute Value of
Exponent

Positive Form of
Exponent

Negative Form of
Exponent

ENw.d |exp| 99 E+nn E-nn

99 < |exp| 999 +nnn -nnn

ENw.dEe |exp| 10e - 1 E+n1n2...ne E-n1n2...ne

Intel® Fortran Compiler Classic and Intel® Fortran Compiler Developer Guide and Reference 1

979

If an exponent exceeds its specified or implied width, or the number of characters produced exceeds the field
width, the entire field of width w is filled with asterisks.

The exponent field width (e) is optional; if omitted, the default value is 2. If e is specified, w should be
greater than or equal to d + e + 5, or zero.

For an internal value that is an IEEE infinity or an IEEE NaN, the form of the output field is the same as for
Fw.d.

The following shows output using the EN edit descriptor (the symbol ^ represents a non-printing blank
character):

Format Value Output
EN11.2 475867.222 ^475.87E+03
EN11.5 475867.222 ***********
EN12.3 0.00069 ^690.000E-06
EN10.3 -0.5555 **********
EN11.2 0.0 ^000.00E-03

See Also
Forms for data edit descriptors
General rules for numeric editing

ES Editing

The ES data edit descriptor transfers values by using scientific notation. It takes the following form:

ESw.d[Ee]

where w is the total field width, d is the number of places after the decimal point, and e is the number of
digits in the exponent.

If w is zero, the processor selects the field width. If e is present and zero, the exponent part contains the
minimal number of digits needed to represent the exponent.

The specified I/O list item must be of type real, or it must be the real or imaginary part of a complex type.

Rules for Input Processing
On input, the ES data edit descriptor transfers w characters from an external field and assigns their real
value to the corresponding I/O list item. The ES descriptor interprets and assigns input data in the same way
as the F data edit descriptor. w cannot be zero for input. If e is present, it has no effect on input.

The following shows input using the ES edit descriptor (the symbol ^ represents a non-printing blank
character):

Format Input Value
ES11.3 ^^5.321E+00 5.32100
ES11.3 -6.000E-03 -.60000
ES12.3 ^^^3.150E-03 .00315
ES12.3 ^^^3.829E+03 3829.0

Rules for Output Processing
On output, the ES data edit descriptor transfers the real value of the corresponding I/O list item, right-
justified and rounded to d decimal positions, to an external field that is w characters long if w is positive. The
real value is output in scientific notation, where the absolute value of the significand is greater than or equal
to 1 and less than 10 (unless the output value is zero).

If w is greater than zero, it should be greater than or equal to d+7 to allow for the following:

• A sign (optional if the value is positive and descriptor SP is not in effect)
• One digit to the left of the decimal point

 1 Intel® Fortran Compiler Classic and Intel® Fortran Compiler Developer Guide and Reference

980

• The decimal point
• The d digits to the right of the decimal point
• The exponent

The exponent takes one of the following forms:

Edit Descriptor Absolute Value of
Exponent

Positive Form of
Exponent

Negative Form of
Exponent

ESw.d |exp| 99 E+nn E-nn

99 < |exp| 999 +nnn -nnn

ESw.dEe |exp| 10e - 1 E+n1n2...ne E-n1n2...ne

If an exponent exceeds its specified or implied width, or the number of characters produced exceeds the field
width, the entire field of width w is filled with asterisks.

The exponent field width (e) is optional; if omitted, the default value is 2. If e is specified, the w should be
greater than or equal to d + e + 5.

For an internal value that is an IEEE infinity or an IEEE NaN, the form of the output field is the same as for
Fw.d.

The following shows output using the ES edit descriptor (the symbol ^ represents a non-printing blank
character):

Format Value Output
ES11.2 473214.356 ^^^4.73E+05
ES11.5 473214.356 4.73214E+05
ES12.3 0.00069 ^^^6.900E-04
ES10.3 -0.5555 -5.555E-01
ES11.2 0.0 ^0.000E+00

See Also
Forms for data edit descriptors
General rules for numeric editing

EX Editing

The EX data edit descriptor transfers real values represented as hexadecimal-significand numbers. It takes
the following form:

EXw.d[Ee]

The w is the external field width, unless it is zero. d is the width of the fractional part of the number, unless it
is 0.

If w or d are zero, the processor picks the external field width or the width of the fractional part, respectively.
d cannot be zero if the radix of the internal value is not a power of two. The hexadecimal point appears after
the first hexadecimal digit and it represented by the decimal symbol.

The e, if present and non-zero, is the number of digits in the exponent. If Ee is not present, or e is zero, the
exponent contains the minimum number of digits needed to represent the exponent. e is ignored on input.

The specified I/O list item must be of type real, or it must be the real or imaginary part of a complex type.

Rules for Input Processing
The form and interpretation is the same as that for Fw.d editing.

Rules for Output Processing
The form of the external field for an internal value that is an IEEE infinity or NaN is the same as for Fw.d.
Otherwise, it takes the form:

Intel® Fortran Compiler Classic and Intel® Fortran Compiler Developer Guide and Reference 1

981

[+|-]0Xx0.x1x2…exp

where the plus or minus sign is optional, the period signifies the decimal signal, x0x1x2 are the most
significant hexadecimal digits after rounding if d is non-zero, and exp is the exponent.

For EXw.dEe with e greater than zero, the form is P[+|-]z1z2…ze. For EXw.d and EXw.dE0, the form of the
exponent is P[+|-]z1z2…zn where n is the minimum number of digits required to represent the exponent. The
exponent sign is always produced and is plus if the exponent is zero. The choice of the binary exponent is
processor dependent.

The following shows possible output using the EX edit descriptor if SS is in effect:

Format Value Output
EX10.2 42.5 0XA.A0P+2
EX0.0E1 6502.0 0XC.B3P+9
EX9.0E2 -0.0 -0X0.P+00

See Also
F Editing
General rules for numeric editing

G Editing

The G data edit descriptor for generalized editing can be used for input or output with any intrinsic type. It
takes the following forms:

Gw

Gw.d

Gw.dEe

where w is the total field width, d is the number of places after the decimal point, and e is the number of
digits in the exponent.

If w is 0, the field width is selected by the processor. If w is zero, you can only specify forms G0 or G0.d.

If w is non-zero, d must be specified.

If e is present and zero, the exponent part contains the minimal number of digits needed to represent the
exponent. For integer, character, and logical data types d and e are ignored.

When used to specify I/O for integer data, the Gw, Gw.d and Gw.dEe edit descriptors follow the rules for Iw
editing.

When used to specifiy I/O for logical data, the Gw.d and Gw.dEe edit descriptors with non-zero w follow the
rules for Lw editing. On output, if w is 0, the Gw and Gw.d edit descriptors follow the rules for L1 editing.

When used to specify I/O for character data, the Gw.d and Gw.d.Ee edit descriptors with non-zero w follow
the same rules as Aw editing. For output, when w is zero, the Gw and Gw.d edit descriptors follow the rules
for A editing when no w is specified.

Rules for Real Input Processing
On input, the G data edit descriptor transfers w characters from an external field and assigns their real value
to the corresponding I/O list item. The G descriptor interprets and assigns input data in the same way as the
F data edit descriptor. w cannot be zero on input. If e is present, it has no effect on input.

Rules for Real Output Processing
The form in which the value is written depends on the magnitude of the internal value being edited. N is the
magnitude of the internal value and r is the rounding mode value defined in the table below.

If 0 < N < 0.1 - r x 10-d-1 or N >= 10d - r, or N is identically 0, w is non-zero, and d is 0, Gw.d output editing
is the same as k PEw.d output editing and Gw.d Ee output editing is the same as k PEw.d Ee output editing,
where k is the scale factor. If 0.1 - r x 10-d-1 <= N < 10d - r or N is identically 0 and d is not zero, the scale
factor has no effect, and the value of N determines the editing as follows:

 1 Intel® Fortran Compiler Classic and Intel® Fortran Compiler Developer Guide and Reference

982

Effect of Data Magnitude on G Format Conversions

Data Magnitude Effective Conversion

N = 0 F(w - n).(d -1), n('b')

0.1 - r x 10-d-1 <= N < 1 - r x 10-d F(w - n).d, n('b')

1 - r x 10-d <= N < 10 - r x 10-d+1 F(w - n).(d -1), n('b')

10 - r x 10-d+1 <= N < 100 - r x 10-d+2 F(w - n).(d -2), n('b')

. .

. .

. .

10d-2 - r x 10-2 <= N < 10d-1 - r x 10-1 F(w - n).1, n('b')

10d-1 - r x 10-1 <= N < 10d - r (w - n).0, n('b')

The 'b' is a blank following the numeric data representation. For Gw.d, n('b') is 4 blanks. For Gw.dEe, n('b')
is e+2 blanks.

The r is defined for each I/O rounding mode as follows:

Rounding Mode r

COMPATIBLE 0.5

NEAREST 0.5 if the higher value is even

-0.5 if the lower value is even

UP 1

DOWN 0

ZERO 1 if the internal value is negative

0 if the internal value is positive

Note that the scale factor has no effect on output unless the magnitude of the datum to be edited is outside
the range that permits effective use of F editing.

If w is greater than zero, it should be greater than or equal to d+7 to allow for the following:

• A sign (optional if the value is positive and descriptor SP is not in effect)
• One digit to the left of the decimal point
• The decimal point
• The d digits to the right of the decimal point
• The 4-digit or e+2-digit exponent

If e is specified and positive, w should be greater than or equal to d + e + 5 if w is positive.

If an exponent exceeds its specified or implied width, or the number of characters produced exceeds the field
width, the entire field of width w is filled with asterisks. However, the field width is not filled with asterisks if
the field width is exceeded when optional characters are omitted.

For an internal value that is an IEEE infinity or an IEEE NaN, the form of the output field is the same as for
Fw.d.

Intel® Fortran Compiler Classic and Intel® Fortran Compiler Developer Guide and Reference 1

983

The following shows output using the G edit descriptor and compares it to output using equivalent F editing
(the symbol ^ represents a non-printing blank character):

 Value Format Output with G Format Output with F
 0.01234567 G13.6 ^0.123457E-01 F13.6 ^^^^^0.012346
 -0.12345678 G13.6 -0.123457^^^^ F13.6 ^^^^-0.123457
 1.23456789 G13.6 ^^1.23457^^^^ F13.6 ^^^^^1.234568
 12.34567890 G13.6 ^^12.3457^^^^ F13.6 ^^^^12.345679
 123.45678901 G13.6 ^^123.457^^^^ F13.6 ^^^123.456789
 -1234.56789012 G13.6 ^-1234.57^^^^ F13.6 ^-1234.567890
 12345.67890123 G13.6 ^^12345.7^^^^ F13.6 ^12345.678901
 123456.78901234 G13.6 ^^123457.^^^^ F13.6 123456.789012
 -1234567.89012345 G13.6 -0.123457E+07 F13.6 *************

If w is zero, the Gw and Gw.d edit descriptors follow the rules for the Gw.dEe edit descriptors on output, but
with leading and trailing blanks removed.

See Also
Forms for data edit descriptors
General rules for numeric editing
I data edit descriptor
L data edit descriptor
A data edit descriptor
Scale Factor Editing (P)

Complex Editing

A complex value is an ordered pair of real values. Complex editing is specified by a pair of real edit
descriptors, using any combination of the forms: Fw.d, Ew.d[Ee], Dw.d, ENw.d[Ee], ESw.d[Ee], or Gw.d[Ee].

Rules for Input Processing
On input, the two successive fields are read and assigned to the corresponding complex I/O list item as its
real and imaginary part, respectively.

The following shows input using complex editing:

Format Input Value
F8.5,F8.5 1234567812345.67 123.45678, 12345.67
E9.1,F9.3 734.432E8123456789 734.432E8, 123456.789

Rules for Output Processing
On output, the two parts of the complex value are transferred under the control of repeated or successive
real edit descriptors. The two parts are transferred consecutively without punctuation or blanks, unless
control or character string edit descriptors are specified between the pair of real edit descriptors.

The following shows output using complex editing (the symbol ^ represents a non-printing blank character):

Format Value Output
2F8.5 2.3547188, 3.456732 ^2.35472 ^3.45673
E9.2,'^,^',E5.3 47587.222, 56.123 ^0.48E+06^,^*****

See Also
Forms for data edit descriptors
General rules for numeric editing
General Rules for Complex Constants for details on complex constants

 1 Intel® Fortran Compiler Classic and Intel® Fortran Compiler Developer Guide and Reference

984

Logical Editing (L)

The L data edit descriptor transfers logical values. It takes the following form:

Lw

The specified I/O list item must be of type logical or integer.

The G edit descriptor can be used to edit logical data; it follows the same rules as Lw.

Rules for Input Processing
On input, the L data edit descriptor transfers w characters from an external field and assigns their logical
value to the corresponding I/O list item. The value assigned depends on the external field data, as follows:

• .TRUE. is assigned if the first non-blank character is .T, T, .t, or t. The logical constant .TRUE. is an
acceptable input form.

• .FALSE. is assigned if the first non-blank character is .F, F. .f, or f, or the entire field is filled with blanks.
The logical constant .FALSE. is an acceptable input form.

If another value appears in the external field, an error occurs.

Rules for Output Processing
On output, the L data edit descriptor transfers the following to an external field that is w characters long: w -
1 blanks, followed by a T or F (if the value is .TRUE. or .FALSE., respectively).

The following shows output using the L edit descriptor (the symbol ^ represents a non-printing blank
character):

Format Value Output
L5 .TRUE. ^^^^T
L1 .FALSE. F

See Also
Forms for data edit descriptors

Character Editing (A)

The A data edit descriptor transfers character or Hollerith values. It takes the following form:

A[w]

If the corresponding I/O list item is of type character, character data is transferred. If the list item is of any
other type, Hollerith data is transferred.

The G edit descriptor can be used to edit character data; it follows the same rules as Aw.

Rules for Input Processing
On input, the A data edit descriptor transfers w characters from an external field and assigns them to the
corresponding I/O list item.

The maximum number of characters that can be stored depends on the size of the I/O list item, as follows:

• For character data, the maximum size is the length of the corresponding I/O list item.
• For non-character data, the maximum size depends on the data type, as shown in the following table:

Size Limits for Non-Character Data Using A Editing

I/O List Element Maximum Number of Characters

BYTE 1

LOGICAL(1) or LOGICAL*1 1

Intel® Fortran Compiler Classic and Intel® Fortran Compiler Developer Guide and Reference 1

985

I/O List Element Maximum Number of Characters

LOGICAL(2) or LOGICAL*2 2

LOGICAL(4) or LOGICAL*4 4

LOGICAL(8) or LOGICAL*8 8

INTEGER(1) or INTEGER*1 1

INTEGER(2) or INTEGER*2 2

INTEGER(4) or INTEGER*4 4

INTEGER(8) or INTEGER*8 8

REAL(4) or REAL*4 4

DOUBLE PRECISION 8

REAL(8) or REAL*8 8

REAL(16) or REAL*16 16

COMPLEX(4) or COMPLEX*81 8

DOUBLE COMPLEX1 16

COMPLEX(8) or COMPLEX*161 16

COMPLEX(16) or COMPLEX*321 32

1 Complex values are treated as pairs of real numbers, so complex editing requires a pair of edit
descriptors. (See Complex Editing.)

If w is equal to or greater than the length (len) of the input item, the rightmost characters are assigned to
that item. The leftmost excess characters are ignored.

If w is less than len, or less than the number of characters that can be stored, w characters are assigned to
the list item, left-justified, and followed by trailing blanks.

The following shows input using the A edit descriptor (the symbol ^ represents a non-printing blank
character):

Format Input Value Data Type
A6 PAGE^# # CHARACTER(LEN=1)
A6 PAGE^# E^# CHARACTER(LEN=3)
A6 PAGE^# PAGE^# CHARACTER(LEN=6)
A6 PAGE^# PAGE^#^^ CHARACTER(LEN=8)
A6 PAGE^# # LOGICAL(1)
A6 PAGE^# ^# INTEGER(2)
A6 PAGE^# GE^# REAL(4)
A6 PAGE^# PAGE^#^^ REAL(8)

Rules for Output Processing
On output, the A data edit descriptor transfers the contents of the corresponding I/O list item to an external
field that is w characters long.

If w is greater than the size of the list item, the data is transferred to the output field, right-justified, with
leading blanks. If w is less than or equal to the size of the list item, the leftmost w characters are
transferred.

 1 Intel® Fortran Compiler Classic and Intel® Fortran Compiler Developer Guide and Reference

986

The following shows output using the A edit descriptor (the symbol ^ represents a non-printing blank
character):

Format Value Output
A5 OHMS ^OHMS
A5 VOLTS VOLTS
A5 AMPERES AMPER

See Also
Forms for data edit descriptors

Defined I/O Editing (DT)

The DT edit descriptor passes a character string and integer array to a defined I/O procedure. It takes the
following form:

DT [string] [(v-list)]

For more information on this edit descriptor, see DT Edit Descriptor in User-Defined I/O.

Default Widths for Data Edit Descriptors

If w (the field width) is omitted for the data edit descriptors, the system applies default values. For the real
data edit descriptors, the system also applies default values for d (the number of characters to the right of
the decimal point), and e (the number of characters in the exponent).

These defaults are based on the data type of the I/O list item, and are listed in the following table:

Default Widths for Data Edit Descriptors

Edit Descriptor Data Type of I/O List Item w

I, B, O, Z, G BYTE 7

INTEGER(1), LOGICAL(1) 7

INTEGER(2), LOGICAL(2) 7

INTEGER(4), LOGICAL(4) 12

INTEGER(8), LOGICAL(8) 23

O, Z REAL(4) 12

REAL(8) 23

REAL(16) 44

CHARACTER*len MAX(7, 3*len)

L, G LOGICAL(1), LOGICAL(2),
LOGICAL(4), LOGICAL(8)

2

F, E, ES, G, D REAL(4), COMPLEX(4) 15 d: 7 e: 2

REAL(8), COMPLEX(8) 25 d: 16 e: 2

REAL(16), COMPLEX(16) 42 d: 33 e: 3

EN REAL(4), COMPLEX(4) 15 d: 6 e: 2

REAL(8), COMPLEX(8) 25 d: 16 e: 2

REAL(16), COMPLEX(16) 42 d: 32 e: 3

A1, G LOGICAL(1) 1

Intel® Fortran Compiler Classic and Intel® Fortran Compiler Developer Guide and Reference 1

987

Edit Descriptor Data Type of I/O List Item w

LOGICAL(2), INTEGER(2) 2

LOGICAL(4), INTEGER(4) 4

LOGICAL(8), INTEGER(8) 8

REAL(4), COMPLEX(4) 4

REAL(8), COMPLEX(8) 8

REAL(16), COMPLEX(16) 16

CHARACTER*len len

1 The default is the actual length of the corresponding I/O list item.

Terminating Short Fields of Input Data

On input, an edit descriptor such as Fw.d specifies that w characters (the field width) are to be read from the
external field.

If the field contains fewer than w characters, the input statement will read characters from the next data field
in the record. You can prevent this by padding the short field with blanks or zeros, or by using commas to
separate the input data.

Padding Short Fields
You can use the OPEN statement specifier PAD='YES' to indicate blank padding for short fields of input data.
However, blanks can be interpreted as blanks or zeros, depending on which default behavior is in effect at
the time. Consider the following:

 READ (2, '(I5)') J
If 3 is input for J, the value of J will be 30000 or 3 depending on which default behavior is in effect
(BLANK='NULL' or BLANK='ZERO'). This can give unexpected results.

To ensure that the desired behavior is in effect, explicitly specify the BN or BZ edit descriptor. For example,
the following ensures that blanks are interpreted as blanks (and not as zeros):

 READ (2, '(BN, I5)') J

Using Commas to Separate Input Data
You can use a comma to terminate a short data field. The comma has no effect on the d part (the number of
characters to the right of the decimal point) of the specification.

The comma overrides the w specified for the I, B, O, Z, F, E, D, EN, ES, G, and L edit descriptors. For
example, suppose the following statements are executed:

 READ (5,100) I,J,A,B
 100 FORMAT (2I6,2F10.2)

Suppose a record containing the following values is read:

1, -2, 1.0, 35
The following assignments occur:

I = 1
J = -2
A = 1.0
B = 0.35

 1 Intel® Fortran Compiler Classic and Intel® Fortran Compiler Developer Guide and Reference

988

A comma can only terminate fields less than w characters long. If a comma follows a field of w or more
characters, the comma is considered part of the next field.

A null (zero-length) field is designated by two successive commas, or by a comma after a field of w
characters. Depending on the field descriptor specified, the resulting value assigned is 0, 0.0, 0.0D0, 0.0Q0,
or .FALSE..

See Also
General Rules for Numeric Editing

Control Edit Descriptors
A control edit descriptor either directly determines how text is displayed or affects the conversions performed
by subsequent data edit descriptors.

Forms for Control Edit Descriptors

A control edit descriptor takes one of the following forms:

c

cn

nc

c Is one of the following format codes: T, TL, TR, X, S, SP, SS, BN, BZ,
P, RU, RD, RZ, RN, RC, RP, DC, DP, :, /, \, $, and Q.

n Is a number of character positions. It must be a positive integer literal
constant or a variable format expression. No kind parameter can be
specified. It cannot be a named constant.

The range of n is 1 through 2147483647 (2**31-1) on Intel® 64
architecture; 1 through 32767 (2**15-1) on IA-32 architecture.
Actual useful ranges may be constrained by record sizes (RECL) and
the file system.

Description
In general, control edit descriptors are nonrepeatable. The only exception is the slash (/) edit descriptor,
which can be preceded by a repeat specification or a * indicating an unlimited repeat count.

The control edit descriptors have the following specific forms:

Positional: Tn, TLn, TRn, and nX

Sign: S, SP, and SS

Blank interpretation: BN and BZ

Rounding mode: RU, RD, RZ, RN, RC, and RP

Decimal mode: DC and DP

Scale factor: kP

Miscellaneous: :, /, \, $, and Q

The P edit descriptor is an exception to the general control edit descriptor syntax. It is preceded by a scale
factor, rather than a character position specifier.

Control edit descriptors can be grouped in parentheses and preceded by a group repeat specification.

Intel® Fortran Compiler Classic and Intel® Fortran Compiler Developer Guide and Reference 1

989

See Also
Group repeat specifications
Format Specifications

Positional Editing

The positional edit descriptors specify the position where the next character is transferred to or from a
record.

On output, these descriptors do not themselves cause characters to be transferred and do not affect the
length of the record. If characters are transferred to positions at or after the position specified by one of
these descriptors, positions skipped and not previously filled are filled with blanks. The result is as if the
entire record was initially filled with blanks.

The TR and X edit descriptors produce the same results.

See Also
Forms for Control Edit Descriptors

T Editing

The T edit descriptor specifies a character position in an I/O record. It takes the following form:

Tn

The n is a positive integer literal constant (with no kind parameter) indicating the character position of the
record, relative to the left tab limit.

On input, the T descriptor positions the external record at the character position specified by n. On output,
the T descriptor indicates that data transfer begins at the nth character position of the external record.

Examples
In the following examples, the symbol ^ represents a non-printing blank character.

Suppose a file has a record containing the value ABC^^^XYZ, and the following statements are executed:

 READ (11,10) VALUE1, VALUE2
 10 FORMAT (T7,A3,T1,A3)

The values read first are XYZ, then ABC.

Suppose the following statements are executed:

 PRINT 25
25 FORMAT (T51,'COLUMN 2',T21,'COLUMN 1')

The following line is printed at the positions indicated:

Position 20 Position 50
 | |
 COLUMN 1 COLUMN 2

Note that the first character of the record printed was reserved as a control character.

See Also
Printing of Formatted Records

TL Editing

The TL edit descriptor specifies a character position to the left of the current position in an I/O record. It
takes the following form:

TLn

The n is a positive integer literal constant (with no kind parameter) indicating the nth character position to
the left of the current character.

 1 Intel® Fortran Compiler Classic and Intel® Fortran Compiler Developer Guide and Reference

990

If n is greater than or equal to the current position, the next character accessed is the first character of the
record.

TR Editing

The TR edit descriptor specifies a character position to the right of the current position in an I/O record. It
takes the following form:

TRn

The n is a positive integer literal constant (with no kind parameter) indicating the nth character position to
the right of the current character.

X Editing

The X edit descriptor specifies a character position to the right of the current position in an I/O record. It
takes the following form:

nX

The n is a positive integer literal constant (with no kind parameter) indicating the nth character position to
the right of the current character.

On output, the X edit descriptor does not output any characters when it appears at the end of a format
specification; for example:

 WRITE (6,99) K
99 FORMAT ('^K=',I6,5X)

Note that the symbol ^ represents a non-printing blank character. This example writes a record of only 9
characters. To cause n trailing blanks to be output at the end of a record, specify a format of n('^').

Sign Editing

The SP, SS, and S edit descriptors control the output of the optional plus (+) sign within numeric output
fields. These descriptors have no effect during execution of input statements.

These specifiers correspond to the SIGN= specifier values PLUS, SUPPRESS, and PROCESSOR_DEFINED,
respectively.

Within a format specification, a sign editing descriptor affects all subsequent I, F, E, EN, ES, EX, D, and G
descriptors until another sign editing descriptor occurs.

Examples
Consider the following:

 INTEGER i
 REAL r

 ! The following statements write:
 ! 251 +251 251 +251 251
 i = 251
 WRITE (*, 100) i, i, i, i, i
 100 FORMAT (I5, SP, I5, SS, I5, SP, I5, S, I5)

 ! The following statements write:
 ! 0.673E+4 +.673E+40.673E+4 +.673E+40.673E+4
 r = 67.3E2
 WRITE (*, 200) r, r, r, r, r
 200 FORMAT (E8.3E1, 1X, SP, E8.3E1, SS, E8.3E1, 1X, SP, &
 & E8.3E1, S, E8.3E1)

Intel® Fortran Compiler Classic and Intel® Fortran Compiler Developer Guide and Reference 1

991

See Also
Forms for Control Edit Descriptors

SP Editing

The SP edit descriptor causes the processor to produce a plus sign in any subsequent position where it would
be otherwise optional. It takes the following form:

SP

SS Editing

The SS edit descriptor causes the processor to suppress a plus sign in any subsequent position where it
would be otherwise optional. It takes the following form:

SS

S Editing

The S edit descriptor restores the plus sign as optional for all subsequent positive numeric fields. It takes the
following form:

S

The S edit descriptor restores to the processor the discretion of producing plus characters on an optional
basis.

Blank Editing

The blank editing descriptors control the interpretation of embedded and trailing blanks within numeric input
fields. These descriptors have no effect during execution of output statements.

Within a format specification, a blank editing descriptor affects all subsequent I, B, O, Z, F, E, EN, ES, D, and
G descriptors until another blank editing descriptor occurs.

The blank editing descriptors override the effect of the BLANK specifier during execution of a particular input
data transfer statement. For more information, see the BLANK specifier in OPEN statements.

See Also
Forms for Control Edit Descriptors

BN Editing

The BN edit descriptor causes the processor to ignore all embedded and trailing blanks in numeric input
fields. It takes the following form:

BN

The input field is treated as if all blanks have been removed and the remainder of the field is right-justified.
An all-blank field is treated as zero.

Examples
If an input field formatted as a six-digit integer (I6) contains '2 3 4', it is interpreted as ' 234'.

Consider the following code:

 READ (*, 100) n
 100 FORMAT (BN, I6)

 1 Intel® Fortran Compiler Classic and Intel® Fortran Compiler Developer Guide and Reference

992

If you enter any one of the following three records and terminate by pressing Enter, the READ statement
interprets that record as the value 123:

 123
 123
 123 456

Because the repeatable edit descriptor associated with the I/O list item n is I6, only the first six characters of
each record are read (three blanks followed by 123 for the first record, and 123 followed by three blanks for
the last two records). Because blanks are ignored, all three records are interpreted as 123.

The following example shows the effect of BN editing with an input record that has fewer characters than the
number of characters specified by the edit descriptors and iolist. Suppose you enter 123 and press Enter in
response to the following READ statement:

 READ (*, '(I6)') n
The I/O system is looking for six characters to interpret as an integer number. You have entered only three,
so the first thing the I/O system does is to pad the record 123 on the right with three blanks. With BN editing
in effect, the nonblank characters (123) are right-aligned, so the record is equal to 123.

BZ Editing

The BZ edit descriptor causes the processor to interpret all embedded and trailing blanks in numeric input
fields as zeros. It takes the following form:

BZ

Examples
The input field ' 23 4 ' is interpreted as ' 23040'. If ' 23 4' is entered, the formatter adds one blank to pad the
input to the six-digit integer format (I6), but this extra space is ignored, and the input is interpreted as '
2304 '. The blanks following the E or D in real-number input are ignored, regardless of the form of blank
interpretation in effect.

Suppose you enter 123 and press Enter in response to the following READ statement:

 READ (*, '(I6)') n
The I/O system is looking for six characters to interpret as an integer number. You have entered only three,
so the first thing the I/O system does is to pad the record 123 on the right with three blanks. If BZ editing is
in effect, those three blanks are interpreted as zeros, and the record is equal to 123000.

Round Editing

The round editing descriptors temporarily change the I/O rounding mode for a connection.

These forms of rounding correspond to the ROUND= specifier values UP, DOWN, ZERO, NEAREST,
COMPATIBLE, and PROCESSOR DEFINED, respectively. Rounding conforms to the ISO/IEC 60559:2020
standard.

The I/O rounding mode affects the conversion of real and complex values in formatted I/O. It affects only D,
E, EN, ES, EX, F, and G editing.

Each descriptor continues to be in effect until a different round editing descriptor is encountered or until the
end of the current I/O statement.

See Also
Forms for Control Edit Descriptors

RU Editing

The RU edit descriptor causes rounding to the smallest value that is greater than or equal to the original
value. It takes the following form:

Intel® Fortran Compiler Classic and Intel® Fortran Compiler Developer Guide and Reference 1

993

RU

RD Editing

The RD edit descriptor causes rounding to the largest representable value that is less than or equal to the
original value. It takes the following form:

RD

RZ Editing

The RZ edit descriptor causes rounding to the value closest to the original value, but not greater in
magnitude. It takes the following form:

RZ

RN Editing

The RN edit descriptor selects NEAREST rounding as specified by the ISO/IEC 60559:2020 standard. It takes
the following form:

RN

RC Editing

The RC edit descriptor causes rounding to the closer of the two nearest representable values. If the value is
halfway between the two values, the one chosen is the one farther from zero. It takes the following form:

RC

RP Editing

The RP edit descriptor causes rounding to be determined by the default settings in the processor, which may
correspond to one of the other modes. It takes the following form:

RP

Decimal Editing

The decimal editing descriptors temporarily change the decimal edit mode for a connection.

These specifiers correspond to the DECIMAL= specifier values COMMA and POINT, respectively.

The decimal editing mode controls the representation of the decimal symbol during conversion of real and
complex values in formatted I/O. It affects only D, E, EN, ES, F, and G editing.

Each descriptor continues to be in effect until a different decimal editing descriptor is encountered or until the
end of the current I/O statement.

See Also
Forms for Control Edit Descriptors

DC Editing

The DC edit descriptor changes the decimal editing mode for a connection to a decimal comma. It takes the
following form:

DC

Note that during list-directed I/O, a semicolon is used as a value separator in place of a comma.

 1 Intel® Fortran Compiler Classic and Intel® Fortran Compiler Developer Guide and Reference

994

DP Editing

The DP edit descriptor causes rounding to be determined by the default settings in the processor, which may
correspond to one of the other modes. It takes the following form:

DP

Scale-Factor Editing (P)

The P edit descriptor specifies a scale factor, which moves the location of the decimal point in real values and
the two real parts of complex values. It takes the following form:

kP

The k is a signed (sign is optional if positive), integer literal constant specifying the number of positions, to
the left or right, that the decimal point is to move (the scale factor). The range of k is -128 to 127.

At the beginning of a formatted I/O statement, the value of the scale factor is zero. If a scale editing
descriptor is specified, the scale factor is set to the new value, which affects all subsequent real edit
descriptors until another scale editing descriptor occurs.

To reinstate a scale factor of zero, you must explicitly specify 0P.

Format reversion does not affect the scale factor. (For more information on format reversion, see Interaction
Between Format Specifications and I/O Lists.)

Rules for Input Processing
On input, a positive scale factor moves the decimal point to the left, and a negative scale factor moves the
decimal point to the right. (On output, the effect is the reverse.)

On input, when an input field using an F, E, D, EN, ES, EX, or G real edit descriptor contains an explicit
exponent, the scale factor has no effect. Otherwise, the internal value of the corresponding I/O list item is
equal to the external field data multiplied by 10-k. For example, a 2P scale factor multiplies an input value
by .01, moving the decimal point two places to the left. A -2P scale factor multiplies an input value by 100,
moving the decimal point two places to the right.

The scale factor applies to decimal numbers without an exponent. For hexadecimal-significand numbers, the
exponent is mandatory so the scale factor has no effect.

The following shows input using the P edit descriptor (the symbol ^ represents a non-printing blank
character):

Format Input Value
3PE10.5 ^^^37.614^ .037614
3PE10.5 ^^37.614E2 3761.4
-3PE10.5 ^^^^37.614 37614.0

The scale factor must precede the first real edit descriptor associated with it, but it need not immediately
precede the descriptor. For example, the following all have the same effect:

 (3P, I6, F6.3, E8.1)
 (I6, 3P, F6.3, E8.1)
 (I6, 3PF6.3, E8.1)

Note that if the scale factor immediately precedes the associated real edit descriptor, the comma separator is
optional.

Rules for Output Processing
On output, a positive scale factor moves the decimal point to the right, and a negative scale factor moves the
decimal point to the left. (On input, the effect is the reverse.)

On output, the effect of the scale factor depends on which kind of real editing is associated with it, as
follows:

Intel® Fortran Compiler Classic and Intel® Fortran Compiler Developer Guide and Reference 1

995

• For F editing, the external value equals the internal value of the I/O list item multiplied by 10k. This
changes the magnitude of the data.

• For E and D editing, the external decimal field of the I/O list item is multiplied by 10k, and k is subtracted
from the exponent. This changes the form of the data.

A positive scale factor decreases the exponent; a negative scale factor increases the exponent.

For a positive scale factor, k must be less than d + 2 or an output conversion error occurs.
• For G editing, the scale factor has no effect if the magnitude of the data to be output is within the

effective range of the descriptor (the G descriptor supplies its own scaling).

If the magnitude of the data field is outside G descriptor range, E editing is used, and the scale factor has
the same effect as E output editing.

• For EN, ES, and EX editing, the scale factor has no effect.

The following shows output using the P edit descriptor (the symbol ^ represents a non-printing blank
character):

Format Value Output
1PE12.3 -270.139 ^^-2.701E+02
1P,E12.2 -270.139 ^^^-2.70E+02
-1PE12.2 -270.139 ^^^-0.03E+04

Examples
The following shows a FORMAT statement containing a scale factor:

 DIMENSION A(6)
 DO 10 I=1,6
10 A(I) = 25.
 WRITE (6, 100) A
100 FORMAT(' ', F8.2, 2PF8.2, F8.2)

The preceding statements produce the following results:

 25.00 2500.00 2500.00
 2500.00 2500.00 2500.00

The following code uses scale-factor editing when reading:

 READ (*, 100) a, b, c, d
 100 FORMAT (F10.6, 1P, F10.6, F10.6, -2P, F10.6)

 WRITE (*, 200) a, b, c, d
 200 FORMAT (4F11.3)

If the following data is entered:

 12340000 12340000 12340000 12340000
 12.34 12.34 12.34 12.34
 12.34e0 12.34e0 12.34e0 12.34e0
 12.34e3 12.34e3 12.34e3 12.34e3

The program's output is:

 12.340 1.234 1.234 1234.000
 12.340 1.234 1.234 1234.000
 12.340 12.340 12.340 12.340
 12340.000 12340.000 12340.000 12340.000

 1 Intel® Fortran Compiler Classic and Intel® Fortran Compiler Developer Guide and Reference

996

The next code shows scale-factor editing when writing:

 a = 12.34

 WRITE (*, 100) a, a, a, a, a, a
 100 FORMAT (1X, F9.4, E11.4E2, 1P, F9.4, E11.4E2, &
 & -2P, F9.4, E11.4E2)

This program's output is:

 12.3400 0.1234E+02 123.4000 1.2340E+01 0.1234 0.0012E+04

See Also
Forms for Control Edit Descriptors

Slash Editing (/)

The slash edit descriptor terminates data transfer for the current record and starts data transfer for a new
record. It takes the following form:

[r]/

The r is a repeat specification. It must be a positive default integer literal constant; no kind parameter can be
specified.

The range of r is 1 through 2147483647 (2**31-1) on Intel® 64 architecture; 1 through 32767 (2**15-1) on
IA-32 architecture. If r is omitted, it is assumed to be 1.

Multiple slashes cause the system to skip input records or to output blank records, as follows:

• When n consecutive slashes appear between two edit descriptors, n - 1 records are skipped on input, or n
- 1 blank records are output. The first slash terminates the current record. The second slash terminates
the first skipped or blank record, and so on.

• When n consecutive slashes appear at the beginning or end of a format specification, n records are
skipped or n blank records are output, because the opening and closing parentheses of the format
specification are themselves a record initiator and terminator, respectively. For example, suppose the
following statements are specified:

 WRITE (6,99)
99 FORMAT ('1',T51,'HEADING LINE'//T51,'SUBHEADING LINE'//)

The following lines are written:

 Column 50, top of page | HEADING LINE
(blank line) SUBHEADING LINE
(blank line)
(blank line)

Note that the first character of the record printed was reserved as a control character (see Printing of
Formatted Records).

Examples
 ! The following statements write spreadsheet column and row labels:
 WRITE (*, 100)
 100 FORMAT (' A B C D E' &
 & /,' 1',/,' 2',/,' 3',/,' 4',/,' 5')

The above example generates the following output:

 A B C D E
 1
 2
 3
 4
 5

Intel® Fortran Compiler Classic and Intel® Fortran Compiler Developer Guide and Reference 1

997

See Also
Forms for Control Edit Descriptors

Colon Editing (:)

The colon edit descriptor terminates format control if there are no more items in the I/O list.

Examples
Suppose the following statements are specified:

 PRINT 1,3
 PRINT 2,13
1 FORMAT (' I=',I2,' J=',I2)
2 FORMAT (' K=',I2,:,' L=',I2)

The above code causes the following lines to be written (the symbol ^ represents a non-printing blank
character):

I=^3^J=
K=13

The following shows another example:

 ! The following example writes a= 3.20 b= .99
 REAL a, b, c, d
 DATA a /3.2/, b /.9871515/
 WRITE (*, 100) a, b
 100 FORMAT (' a=', F5.2, :, ' b=', F5.2, :, &
 & ' c=', F5.2, :, ' d=', F5.2)
 END

See Also
Forms for Control Edit Descriptors

Dollar-Sign ($) and Backslash (\) Editing

The dollar sign and backslash edit descriptors modify the output of carriage control specified by the first
character of the record. They only affect carriage control for formatted files, and have no effect on input.

If the first character of the record is a blank or a plus sign (+), the dollar sign and backslash descriptors
suppress carriage return (after printing the record).

For terminal device I/O, when this trailing carriage return is suppressed, a response follows output on the
same line. For example, suppose the following statements are specified:

 TYPE 100
100 FORMAT (' ENTER RADIUS VALUE ',$)
 ACCEPT 200, RADIUS
200 FORMAT (F6.2)

The following prompt is displayed:

 ENTER RADIUS VALUE
Any response (for example, "12.") is then displayed on the same line:

 ENTER RADIUS VALUE 12.
If the first character of the record is 0, 1, or ASCII NUL, the dollar sign and backslash descriptors have no
effect.

Consider the following:

 CHARACTER(20) MYNAME
 WRITE (*,9000)
9000 FORMAT ('Please type your name:',\)

 1 Intel® Fortran Compiler Classic and Intel® Fortran Compiler Developer Guide and Reference

998

 READ (*,9001) MYNAME
9001 FORMAT (A20)
 WRITE (*,9002) ' ',MYNAME
9002 FORMAT (1X,A20)

This example advances two lines, prompts for input, awaits input on the same line as the prompt, and prints
the input.

The following shows the same example using Fortran standard constructs:

 CHARACTER(20) MYNAME
 WRITE (*,9000, ADVANCE='NO')
9000 FORMAT ('Please type your name:')
 READ (*,9001) MYNAME
9001 FORMAT (A20)
 WRITE (*,9002) ' ',MYNAME
9002 FORMAT (1X,A20)

See Also
Forms for Control Edit Descriptors

Character Count Editing (Q)

The character count edit descriptor returns the remaining number of characters in the current input record.

The corresponding I/O list item must be of type integer or logical. For example, suppose the following
statements are specified:

 READ (4,1000) XRAY, KK, NCHRS, (ICHR(I), I=1,NCHRS)
1000 FORMAT (E15.7,I4,Q,(80A1))

Two fields are read into variables XRAY and KK. The number of characters remaining in the record is stored in
NCHRS, and exactly that many characters are read into the array ICHR. (This instruction can fail if the record
is longer than 80 characters.)

If you place the character count descriptor first in a format specification, you can determine the length of an
input record.

On output, the character count edit descriptor causes the corresponding I/O list item to be skipped.

Examples
Consider the following:

 CHARACTER ICHAR(80)
 READ (4, 1000) XRAY, K, NCHAR, (ICHAR(I), I= 1, NCHAR)
 1000 FORMAT (E15.7, I4, Q, 80A1)

The preceding input statement reads the variables XRAY and K. The number of characters remaining in the
record is NCHAR, specified by the Q edit descriptor. The array ICHAR is then filled by reading exactly the
number of characters left in the record. (Note that this instruction will fail if NCHAR is greater than 80, the
length of the array ICHAR.) By placing Q in the format specification, you can determine the actual length of
an input record.

Note that the length returned by Q is the number of characters left in the record, not the number of reals or
integers or other data types. The length returned by Q can be used immediately after it is read and can be
used later in the same format statement or in a variable format expression. (See Variable Format
Expressions.)

Assume the file Q.DAT contains:

1234.567Hello, Q Edit

Intel® Fortran Compiler Classic and Intel® Fortran Compiler Developer Guide and Reference 1

999

The following program reads in the number REAL1, determines the characters left in the record, and reads
those into STR:

 CHARACTER STR(80)
 INTEGER LENGTH
 REAL REAL1
 OPEN (UNIT = 10, FILE = 'Q.DAT')
 100 FORMAT (F8.3, Q, 80A1)
 READ (10, 100) REAL1, LENGTH, (STR(I), I=1, LENGTH)
 WRITE(*,'(F8.3,2X,I2,2X,<LENGTH>A1)') REAL1, LENGTH, (STR(I), &
 & I= 1, LENGTH)
 END

The output on the screen is:

1234.567 13 Hello, Q Edit
A READ statement that contains only a Q edit descriptor advances the file to the next record. For example,
consider that Q.DAT contains the following data:

abcdefg
abcd

Consider it is then READ with the following statements:

 OPEN (10, FILE = "Q.DAT")
 READ(10, 100) LENGTH
 100 FORMAT(Q)
 WRITE(*,'(I2)') LENGTH
 READ(10, 100) LENGTH
 WRITE(*,'(I2)') LENGTH
 END

The output to the screen would be:

7
4

See Also
Forms for Control Edit Descriptors

Character String Edit Descriptors
Character string edit descriptors control the output of character strings. The character string edit descriptors
are the character constant and H edit descriptor.

Although no string edit descriptor can be preceded by a repeat specification, a parenthesized group of string
edit descriptors can be preceded by a repeat specification or a * indicating an unlimited repeat count.

See Also
Nested and Group Repeat Specifications

Character Constant Editing

The character constant edit descriptor causes a character string to be output to an external record. It takes
one of the following forms:

'string'

"string"

The string is a character literal constant; no kind parameter can be specified. Its length is the number of
characters between the delimiters; two consecutive delimiters are counted as one character.

 1 Intel® Fortran Compiler Classic and Intel® Fortran Compiler Developer Guide and Reference

1000

To include an apostrophe in a character constant that is enclosed by apostrophes, place two consecutive
apostrophes ('') in the format specification; for example:

50 FORMAT ('TODAY''S^DATE^IS:^',I2,'/',I2,'/',I2)
Note that the symbol ^ represents a non-printing blank character.

Similarly, to include a quotation mark in a character constant that is enclosed by quotation marks, place two
consecutive quotation marks ("") in the format specification.

On input, the character constant edit descriptor transfers length of string characters to the edit descriptor.

Examples
Consider the following '(3I5)' format in the WRITE statement:

 WRITE (10, '(3I5)') I1, I2, I3
This is equivalent to:

 WRITE (10, 100) I1, I2, I3
 100 FORMAT(3I5)

The following shows another example:

 ! These WRITE statements both output ABC'DEF
 ! (The leading blank is a carriage-control character).
 WRITE (*, 970)
 970 FORMAT (' ABC''DEF')
 WRITE (*, '('' ABC''''DEF'')')
 ! The following WRITE also outputs ABC'DEF. No carriage-
 ! control character is necessary for list-directed I/O.
 WRITE (*,*) 'ABC''DEF'

Alternatively, if the delimiter is quotation marks, the apostrophe in the character constant ABC'DEF requires
no special treatment:

 WRITE (*,*) "ABC'DEF"

See Also
Character constants
Format Specifications

H Editing

The H edit descriptor transfers data between the external record and the H edit descriptor itself. The H edit
descriptor is a deleted feature in the Fortran Standard. Intel® Fortran fully supports features deleted in the
Fortran Standard.

An H edit descriptor has the form of a Hollerith constant, as follows:

nHstring

n Is an unsigned, positive default integer literal constant (with no kind
parameter) indicating the number of characters in string (including
blanks and tabs).

The range of n is 1 through 2147483647 (2**31-1) on Intel® 64
architecture; 1 through 32767 (2**15-1) on IA-32 architecture.
Actual useful ranges may be constrained by record sizes (RECL) and
the file system.

string Is a string of printable ASCII characters.

Intel® Fortran Compiler Classic and Intel® Fortran Compiler Developer Guide and Reference 1

1001

On input, the H edit descriptor transfers n characters from the external field to the edit descriptor. The first
character appears immediately after the letter H. Any characters in the edit descriptor before input are
replaced by the input characters. If the edit descriptor appears in a FORMAT statement, the replaced
characters are preserved for future uses of that FORMAT statement; otherwise, the replacement is discarded.

On output, the H edit descriptor causes n characters following the letter H to be output to an external record.

Examples
 ! These WRITE statements both print "Don't misspell 'Hollerith'"
 ! (The leading blanks are carriage-control characters).
 ! Hollerith formatting does not require you to embed additional
 ! single quotation marks as shown in the second example.
 !
 WRITE (*, 960)
 960 FORMAT (27H Don't misspell 'Hollerith')
 WRITE (*, 961)
 961 FORMAT (' Don''t misspell ''Hollerith''')

See Also
Deleted and Obsolescent Language Features
Format Specifications

Nested and Group Repeat Specifications
Format specifications can include nested format specifications enclosed in parentheses; for example:

15 FORMAT (E7.2,I8,I2,(A5,I6))
35 FORMAT (A6,(L8(3I2)),A)

A group repeat specification can precede a nested group of edit descriptors; it can be an unsigned integer
literal constant, a variable format expression, or * to indicate an unlimited repeat count. For example, the
following statements are equivalent, and the second statement shows a group repeat specification:

50 FORMAT (I8,I8,F8.3,E15.7,F8.3,E15.7,F8.3,E15.7,I5,I5)
50 FORMAT (2I8,3(F8.3,E15.7),2I5)

If a nested group does not show a repeat count, a default count of 1 is assumed.

Normally, the string edit descriptors and control edit descriptors cannot be repeated (except for slash), but
any of these descriptors can be enclosed in parentheses and preceded by a group repeat specification. For
example, the following statements are valid:

76 FORMAT ('MONTHLY',3('TOTAL'))
100 FORMAT (I8,4(T7),A4)

Each of the following can be used to read data at the end of an input record into N elements of array A:

 read (10,'(<N>F8.2)') A(1:N) ! Variable format expression
 read(10,'(*(F8.2))') A(1:N) ! Unlimited repeat count

See Also
String edit descriptors
Control edit descriptors
Forms for Data Edit Descriptors for details on repeat specifications for data edit descriptors
Interaction Between Format Specifications and I/O Lists for details on group repeat specifications
and format reversion

Variable Format Expressions
A variable format expression is a numeric expression enclosed in angle brackets (< >) that can be used in a
FORMAT statement or in a character format specification.

 1 Intel® Fortran Compiler Classic and Intel® Fortran Compiler Developer Guide and Reference

1002

The numeric expression can be any valid Fortran expression, including function calls and references to
dummy arguments.

If the expression is not of type integer, it is converted to integer type before being used.

If the value of a variable format expression does not obey the restrictions on magnitude applying to its use in
the format, an error occurs.

Variable format expressions cannot be used with the H edit descriptor, and they are not allowed in character
format specifications that are not character constant expressions.

Variable format expressions are evaluated each time they are encountered in the scan of the format. If the
value of the variable used in the expression changes during the execution of the I/O statement, the new
value is used the next time the format item containing the expression is processed.

Examples
Consider the following statement:

 FORMAT (I<J+1>)
When the format is scanned, the preceding statement performs an I (integer) data transfer with a field width
of J+1. The expression is reevaluated each time it is encountered in the normal format scan.

Consider the following statements:

 DIMENSION A(5)
 DATA A/1.,2.,3.,4.,5./

 DO 10 I=1,10
 WRITE (6,100) I
100 FORMAT (I<MAX(I,5)>)
10 CONTINUE

 DO 20 I=1,5
 WRITE (6,101) (A(I), J=1,I)
101 FORMAT (<I>F10.<I-1>)
20 CONTINUE
 END

On execution, these statements produce the following output:

 1
 2
 3
 4
 5
 6
 7
 8
 9
 10
 1.
 2.0 2.0
 3.00 3.00 3.00
 4.000 4.000 4.000 4.000
 5.0000 5.0000 5.0000 5.0000 5.0000

Intel® Fortran Compiler Classic and Intel® Fortran Compiler Developer Guide and Reference 1

1003

The following shows another example:

 WRITE(6,20) INT1
 20 FORMAT(I<MAX(20,5)>)

 WRITE(6,FMT=30) REAL2(10), REAL3
 30 FORMAT(<J+K>X, <2*M>F8.3)

The value of the expression is reevaluated each time an input/output item is processed during the execution
of the READ, WRITE, or PRINT statement. For example:

 INTEGER width, value
 width=2
 READ (*,10) width, value
 10 FORMAT(I1, I <width>)
 PRINT *, value
 END

When given input 3123, the program will print 123 and not 12.

See Also
Interaction Between Format Specifications and I/O Lists for details on the synchronization of I/O
lists with formats

Print Formatted Records
On output, if a file was opened with CARRIAGECONTROL='FORTRAN' in effect, the first character of a record
transmitted to a line printer or terminal is typically a character that is not printed, but used to control vertical
spacing.

Printing control characters are a deleted feature in the Fortran Standard. Intel® Fortran fully supports
features deleted in the Fortran Standard.

The following table lists the valid control characters for printing:

Control Characters for Printing

Character Meaning Effect

+ Overprinting Outputs the record (at the
current position in the current
line) and a carriage return.

- One line feed Outputs the record (at the
beginning of the following line)
and a carriage return.

0 Two line feeds Outputs the record (after
skipping a line) and a carriage
return.

1 Next page Outputs the record (at the
beginning of a new page) and a
carriage return.

$ Prompting Outputs the record (at the
beginning of the following line),
but no carriage return.

ASCII NUL1 Overprinting with no advance Outputs the record (at the
current position in the current
line), but no carriage return.

1 Specify as CHAR(0).

 1 Intel® Fortran Compiler Classic and Intel® Fortran Compiler Developer Guide and Reference

1004

Any other character is interpreted as a blank and is deleted from the print line. If you do not specify a control
character for printing, the first character of the record is not printed.

Interaction Between Format Specifications and I/O Lists
Format control begins with the execution of a formatted I/O statement. Each action of format control
depends on information provided jointly by the next item in the I/O list (if one exists) and the next edit
descriptor in the format specification.

Both the I/O list and the format specification are interpreted from left to right, unless repeat specifications or
implied-DO lists appear.

If an I/O list specifies at least one list item, at least one data edit descriptor (I, B, O, Z, F, E, EN, ES, EX, D,
G, L, or A) or the Q edit descriptor must appear in the format specification; otherwise, an error occurs.

Each data edit descriptor (or Q edit descriptor) corresponds to one item in the I/O list, except that an I/O list
item of type complex requires the interpretation of two F, E, EN, ES, EX, D, or G edit descriptors. No I/O list
item corresponds to a control edit descriptor (X, P, T, TL, TR, SP, SS, S, BN, BZ, $, or :), or a character string
edit descriptor (H and character constants). For character string edit descriptors, data transfer occurs directly
between the external record and the format specification.

When format control encounters a data edit descriptor in a format specification, it determines whether there
is a corresponding I/O list item specified. If there is such an item, it is transferred under control of the edit
descriptor, and then format control proceeds. If there is no corresponding I/O list item, format control
terminates.

If there are no other I/O list items to be processed, format control also terminates when the following
occurs:

• A colon edit descriptor is encountered.
• The end of the format specification is reached.

If additional I/O list items remain, part or all of the format specification is reused in format reversion.

In format reversion, the current record is terminated and a new one is initiated. Format control then reverts
to one of the following (in order) and continues from that point:

1. The group repeat specification whose opening parenthesis matches the next-to-last closing parenthesis
of the format specification

2. The initial opening parenthesis of the format specification

Format reversion has no effect on the scale factor (P), the sign control edit descriptors (S, SP, or SS), or the
blank interpretation edit descriptors (BN or BZ).

Examples
The data in file FOR002.DAT is to be processed 2 records at a time. Each record starts with a number to be
put into an element of a vector B, followed by 5 numbers to be put in a row in matrix A.

FOR002.DAT contains the following data:

001 0101 0102 0103 0104 0105
002 0201 0202 0203 0204 0205
003 0301 0302 0303 0304 0305
004 0401 0402 0403 0404 0405
005 0501 0502 0503 0504 0505
006 0601 0602 0603 0604 0605
007 0701 0702 0703 0704 0705
008 0801 0802 0803 0804 0805
009 0901 0902 0903 0904 0905
010 1001 1002 1003 1004 1005

Intel® Fortran Compiler Classic and Intel® Fortran Compiler Developer Guide and Reference 1

1005

The following example shows how several different format specifications interact with I/O lists to process
data in file FOR002.DAT:

 INTEGER I, J, A(2,5), B(2)
 OPEN (unit=2, access='sequential', file='FOR002.DAT')

 READ (2,100) (B(I), (A(I,J), J=1,5),I=1,2)

 100 FORMAT (2 (I3, X, 5(I4,X), /))

 WRITE (6,999) B, ((A(I,J),J=1,5),I=1,2)

 999 FORMAT (' B is ', 2(I3, X), '; A is', /
 1 (' ', 5 (I4, X)))

 READ (2,200) (B(I), (A(I,J), J=1,5),I=1,2)

 200 FORMAT (2 (I3, X, 5(I4,X), :/))
 WRITE (6,999) B, ((A(I,J),J=1,5),I=1,2)

 READ (2,300) (B(I), (A(I,J), J=1,5),I=1,2)

 300 FORMAT ((I3, X, 5(I4,X)))

 WRITE (6,999) B, ((A(I,J),J=1,5),I=1,2)

 READ (2,400) (B(I), (A(I,J), J=1,5),I=1,2)

 400 FORMAT (I3, X, 5(I4,X))

 WRITE (6,999) B, ((A(I,J),J=1,5),I=1,2)

 END

 This statement reads B(1); then A(1,1) through A(1,5); then B(2) and A(2,1) through A(2,5).

The first record read (starting with 001) starts the processing of the I/O list.

There are two records, each in the format I3, X, 5(I4, X). The slash (/) forces the reading of the second
record after A(1,5) is processed. It also forces the reading of the third record after A(2,5) is processed; no
data is taken from that record.

This statement produces the following output:

B is 1 2 ; A is 101 102 103 104 105 201 202 203 204 205

 This statement reads the record starting with 004. The slash (/) forces the reading of the next record after
A(1,5) is processed. The colon (:) stops the reading after A(2,5) is processed, but before the slash (/) forces
another read.

 This statement produces the following output:

B is 4 5 ; A is 401 402 403 404 405 501 502 503 504 505

 This statement reads the record starting with 006. After A(1,5) is processed, format reversion causes the
next record to be read and starts format processing at the left parenthesis before the I3.

 1 Intel® Fortran Compiler Classic and Intel® Fortran Compiler Developer Guide and Reference

1006

 This statement produces the following output:

B is 6 7 ; A is 601 602 603 604 605 701 702 703 704 705

 This statement reads the record starting with 008. After A(1,5) is processed, format reversion causes the
next record to be read and starts format processing at the left parenthesis before the I4.

 This statement produces the following output:

B is 8 90 ; A is 801 802 803 804 805 9010 9020 9030 9040 100
The record 009 0901 0902 0903 0904 0905 is processed with I4 as "009 " for B(2), which is 90. X skips the
next "0". Then "901 " is processed for A(2,1), which is 9010, "902 " for A(2,2), "903 " for A(2,3), and "904 "
for A(2,4). The repeat specification of 5 is now exhausted and the format ends. Format reversion causes
another record to be read and starts format processing at the left parenthesis before the I4, so "010 " is read
for A(2,5), which is 100.

See Also
Data edit descriptors
Control edit descriptors
Q edit descriptor
Character string edit descriptors
Scale Factor Editing (P)

File Operation I/O Statements
The following are file connection, inquiry, and positioning I/O statements:

• BACKSPACE

Positions a sequential file at the beginning of the preceding record, making it available for subsequent I/O
processing.

• CLOSE

Terminates the connection between a logical unit and a file or device.
• DELETE

Deletes a record from a relative file.
• ENDFILE

Writes an end-of-file record to a sequential file and positions the file after this record (the terminal point).
For direct access files, truncates the file after the current record.

• FLUSH

Causes data written to a file to become available to other processes or causes data written to a file
outside of Fortran to be accessible to a READ statement.

• INQUIRE

Requests information on the status of specified properties of a file or logical unit. For more information on
specifiers you can use in INQUIRE statements, see INQUIRE Statement Specifiers.

• OPEN

Connects a Fortran logical unit to a file or device; declares attributes for read and write operations. For
more information on specifiers you can use in OPEN statements, see OPEN Statement Specifiers.

• REWIND

Positions a sequential or direct access file at the beginning of the file (the initial point).
• WAIT

Performs a wait operation for a specified pending asynchronous data transfer operation.

The following table summarizes I/O statement specifiers:

Intel® Fortran Compiler Classic and Intel® Fortran Compiler Developer Guide and Reference 1

1007

I/O Specifiers

Specifier Values Description Used with:

ACCESS=access 'SEQUENTIAL', 'DIRECT',
'STREAM', or 'APPEND'

Specifies the method of
file access.

INQUIRE, OPEN

ACTION=permission 'READ', 'WRITE' or
'READWRITE' (default is
'READWRITE')

Specifies file I/O mode. INQUIRE, OPEN

ADVANCE=c-expr 'NO' or 'YES' (default is
'YES')

Specifies formatted
sequential data input as
advancing, or non-
advancing.

READ

ASSOCIATEVARIABLE=v
ar

Integer variable Specifies a variable to
be updated to reflect
the record number of
the next sequential
record in the file.

OPEN

ASYNCHRONOUS=async
h

'YES' or 'NO' (default is
'NO')

Specifies whether or not
the I/O is done
asynchronously

INQUIRE, OPEN

BINARY=bin 'NO' or 'YES' Returns whether file
format is binary.

INQUIRE

BLANK=blank_control 'NULL' or 'ZERO' (default
is 'NULL')

Specifies whether blanks
are ignored in numeric
fields or interpreted as
zeros.

INQUIRE, OPEN

BLOCKSIZE=blocksize Positive integer variable
or expression

Specifies or returns the
internal buffer size used
in I/O.

INQUIRE, OPEN

BUFFERCOUNT=bc Numeric expression Specifies the number of
buffers to be associated
with the unit for
multibuffered I/O.

OPEN

BUFFERED=bf 'YES' or 'NO' (default is
'NO')

Specifies runtime library
behavior following
WRITE operations.

INQUIRE, OPEN

CARRIAGECONTROL=
control

'FORTRAN', 'LIST', or
'NONE'

Specifies carriage
control processing.

INQUIRE, OPEN

CONVERT=form 'LITTLE_ENDIAN',
'BIG_ENDIAN', 'CRAY',
'FDX', 'FGX', 'IBM',
'VAXD', 'VAXG', or
'NATIVE' (default is
'NATIVE')

Specifies a numeric
format for unformatted
data.

INQUIRE, OPEN

DEFAULTFILE=var Character expression Specifies a default file
pathname string.

INQUIRE, OPEN

 1 Intel® Fortran Compiler Classic and Intel® Fortran Compiler Developer Guide and Reference

1008

I/O Specifiers

Specifier Values Description Used with:

DELIM=delimiter 'APOSTROPHE', 'QUOTE'
or 'NONE' (default is
'NONE')

Specifies the delimiting
character for list-
directed or namelist
data.

INQUIRE, OPEN

DIRECT=dir 'NO' or 'YES' Returns whether file is
connected for direct
access.

INQUIRE

DISPOSE=dis (or
DISP=dis)

'KEEP', 'SAVE', 'DELETE',
'PRINT', 'PRINT/
DELETE', 'SUBMIT', or
'SUBMIT/DELETE'
(default is 'DELETE' for
scratch files; 'KEEP' for
all other files)

Specifies the status of a
file after the unit is
closed.

OPEN, CLOSE

formatlist Character variable or
expression

Lists edit descriptors.
Used in FORMAT
statements and format
specifiers (the
FMT=formatspec option)
to describe the format
of data.

FORMAT, PRINT, READ,
WRITE

END=endlabel Integer between 1 and
99999

When an end of file is
encountered, transfers
control to the statement
whose label is specified.

READ

EOR=eorlabel Integer between 1 and
99999

When an end of record
is encountered,
transfers to the
statement whose label
is specified.

READ

ERR=errlabel Integer between 1 and
99999

Specifies the label of an
executable statement
where execution is
transferred after an I/O
error.

All except PRINT

EXIST=ex .TRUE. or .FALSE. Returns whether a file
exists and can be
opened.

INQUIRE

FILE=file(or
NAME=name)

Character variable or
expression. Length and
format of the name are
determined by the
operating system

Specifies the name of a
file

INQUIRE, OPEN

[FMT=]formatspec Character variable or
expression

Specifies an editlist to
use to format data.

PRINT, READ, WRITE

FORM=form 'FORMATTED',
'UNFORMATTED', or
'BINARY'

Specifies a file's format. INQUIRE, OPEN

Intel® Fortran Compiler Classic and Intel® Fortran Compiler Developer Guide and Reference 1

1009

I/O Specifiers

Specifier Values Description Used with:

FORMATTED=fmt 'NO' or 'YES' Returns whether a file is
connected for formatted
data transfer.

INQUIRE

IOFOCUS=iof .TRUE. or .FALSE.
(default is .TRUE. unless
unit '*' is specified)

Specifies whether a unit
is the active window in a
QuickWin application.

INQUIRE, OPEN

iolist List of variables of any
type, character
expression, or
NAMELIST

Specifies items to be
input or output.

PRINT, READ, WRITE

IOSTAT=iostat Integer variable Specifies a variable
whose value indicates
whether an I/O error
has occurred.

All except PRINT

MAXREC=var Numeric expression Specifies the maximum
number of records that
can be transferred to or
from a direct access file.

OPEN

MODE=permission 'READ', 'WRITE' or
'READWRITE' (default is
'READWRITE')

Same as ACTION. INQUIRE, OPEN

NAMED=var .TRUE. or .FALSE. Returns whether a file is
named.

INQUIRE

NEWUNIT=u-var Scalar integer variable Is assigned an unused
unit number that is
automatically chosen. It
is always a negative
integer.

OPEN

NEXTREC=nr Integer variable Returns where the next
record can be read or
written in a file.

INQUIRE

[NML=]nmlspec Namelist name Specifies a namelist
group to be input or
output.

PRINT, READ, WRITE

NUMBER=num Integer variable Returns the number of
the unit connected to a
file.

INQUIRE

OPENED=od .TRUE. or .FALSE. Returns whether a file is
connected.

INQUIRE

ORGANIZATION=org 'SEQUENTIAL' or
'RELATIVE' (default is
'SEQUENTIAL')

Specifies the internal
organization of a file.

INQUIRE, OPEN

PAD=pad_switch 'YES' or 'NO' (default is
'YES')

Specifies whether an
input record is padded
with blanks when the
input list or format

INQUIRE, OPEN

 1 Intel® Fortran Compiler Classic and Intel® Fortran Compiler Developer Guide and Reference

1010

I/O Specifiers

Specifier Values Description Used with:

requires more data than
the record holds, or
whether the input
record is required to
contain the data
indicated.

POS=pos Positive integer Specifies the file storage
unit position in a stream
file.

INQUIRE, READ, WRITE

POSITION=file_pos 'ASIS', 'REWIND' or
'APPEND' (default is
'ASIS')

Specifies position in a
file.

INQUIRE, OPEN

READ=rd 'NO' or 'YES' Returns whether a file
can be read.

INQUIRE

READONLY Specifies that only READ
statements can refer to
this connection.

OPEN

READWRITE=rdwr 'NO' or 'YES' Returns whether a file
can be both read and
written to.

INQUIRE

REC=rec Positive integer variable
or expression

Specifies the first (or
only) record of a file to
be read from, or written
to.

READ, WRITE

RECL=length(or
RECORDSIZE=length)

Positive integer variable
or expression

Specifies the record
length in direct access
files, or the maximum
record length in
sequential files.

INQUIRE, OPEN

RECORDTYPE=typ 'FIXED', 'VARIABLE',
'SEGMENTED',
'STREAM', 'STREAM_LF',
or 'STREAM_CR'

Specifies the type of
records in a file.

INQUIRE, OPEN

SEQUENTIAL=seq 'NO' or 'YES' Returns whether file is
connected for sequential
access.

INQUIRE

SHARE=share 'COMPAT', 'DENYNONE',
'DENYWR', 'DENYRD', or
'DENYRW' (default is
'DENYNONE')

Controls how other
processes can
simultaneously access a
file on networked
systems.

INQUIRE, OPEN

SHARED Specifies that a file is
connected for shared
access by more than
one program executing
simultaneously.

OPEN

Intel® Fortran Compiler Classic and Intel® Fortran Compiler Developer Guide and Reference 1

1011

I/O Specifiers

Specifier Values Description Used with:

SIZE=size Integer variable Returns the number of
characters read in a
nonadvancing READ
before an end-of-record
condition occurred.

READ

STATUS=status(or
TYPE=status)

'OLD', 'NEW',
'UNKNOWN' or
'SCRATCH' (default is
'UNKNOWN')

Specifies the status of a
file on opening and/or
closing.

CLOSE, OPEN

TITLE=name Character expression Specifies the name of a
child window in a
QuickWin application.

OPEN

UNFORMATTED=unf 'NO' or 'YES' Returns whether a file is
connected for
unformatted data
transfer.

INQUIRE

[UNIT=]unitspec Integer variable or
expression

Specifies the unit to
which a file is
connected.

All except PRINT

USEROPEN=fname Name of a user-written
function

Specifies an external
function that controls
the opening of a file.

OPEN

WRITE=rd 'NO' or 'YES' Returns whether a file
can be written to.

INQUIRE

See Also
Data transfer I/O statements
I/O Control List for details on control specifiers

INQUIRE Statement Specifiers
The INQUIRE statement returns information on the status of specified properties of a file or logical unit. For
more information, see INQUIRE.

The following sections describe the INQUIRE statement specifiers.

See Also
UNIT control specifier
ERR control specifier
ID control specifier
IOMSG control specifier
IOSTAT control specifier
RECL specifier in OPEN statements
FILE specifier in OPEN statements
DEFAULTFILE specifier in OPEN statements

INQUIRE: ACCESS Specifier

The ACCESS specifier asks how a file is connected. It takes the following form:

ACCESS = acc

 1 Intel® Fortran Compiler Classic and Intel® Fortran Compiler Developer Guide and Reference

1012

acc Is a scalar default character variable that is assigned one of the
following values:

'SEQUENTIAL' If the file is connected for
sequential access

'STREAM' If the file is connected for
stream access

'DIRECT' If the file is connected for direct
access

'UNDEFINED' If the file is not connected

INQUIRE: ACTION Specifier

The ACTION specifier asks which I/O operations are allowed for a file. It takes the following form:

ACTION = act

act Is a scalar default character variable that is assigned one of the
following values:

'READ' If the file is connected for input
only

'WRITE' If the file is connected for output
only

'READWRITE' If the file is connected for both
input and output

'UNDEFINED' If the file is not connected

INQUIRE: ASYNCHRONOUS Specifier

The ASYNCHRONOUS specifier asks whether asynchronous I/O is in effect. It takes the following form:

ASYNCHRONOUS = asyn

asyn Is a scalar default character variable that is assigned one of the
following values:

'NO' If the file or unit is connected
and asynchronous input/output
is not in effect.

'YES' If the file or unit is connected
and asynchronous input/output
is in effect.

'UNKNOWN' If the file or unit is not
connected.

INQUIRE: BINARY Specifier

The BINARY specifier asks whether a file is connected to a binary file. This specifier is only available for
Windows. It takes the following form:

BINARY = bin

Intel® Fortran Compiler Classic and Intel® Fortran Compiler Developer Guide and Reference 1

1013

bin Is a scalar default character variable that is assigned one of the
following values:

'YES' If the file is connected to a
binary file

'NO' If the file is connected to a
nonbinary file

'UNKNOWN' If the file is not connected

INQUIRE: BLANK Specifier

The BLANK specifier asks what type of blank control is in effect for a file. It takes the following form:

BLANK = blnk

blnk Is a scalar default character variable that is assigned one of the
following values:

'NULL' If null blank control is in effect
for the file

'ZERO' If zero blank control is in effect
for the file

'UNDEFINED' If the file is not connected, or it
is not connected for formatted
data transfer

INQUIRE: BLOCKSIZE Specifier

The BLOCKSIZE specifier asks about the physical I/O transfer size. It takes the following form:

BLOCKSIZE = bks

bks Is a scalar integer variable.

The bks is assigned the current size of the physical I/O transfer. If the
unit or file is not connected, the value assigned is zero.

INQUIRE: BUFFERED Specifier

The BUFFERED specifier asks whether runtime buffering is in effect. It takes the following form:

BUFFERED = bf

bf Is a scalar default character variable that is assigned one of the
following values:

'NO' If the file or unit is connected
and buffering is not in effect.

'YES' If the file or unit is connected
and buffering is in effect.

'UNKNOWN' If the file or unit is not
connected.

 1 Intel® Fortran Compiler Classic and Intel® Fortran Compiler Developer Guide and Reference

1014

INQUIRE: CARRIAGECONTROL Specifier

The CARRIAGECONTROL specifier asks what type of carriage control is in effect for a file. It takes the
following form:

CARRIAGECONTROL = cc

cc Is a scalar default character variable that is assigned one of the
following values:

'FORTRAN' If the file is connected with
Fortran carriage control in effect

'LIST' If the file is connected with
implied carriage control in effect

'NONE' If the file is connected with no
carriage control in effect

'UNKNOWN' If the file is not connected

INQUIRE: CONVERT Specifier

The CONVERT specifier asks what type of data conversion is in effect for a file. It takes the following form:

CONVERT = fm

fm Is a scalar default character variable that is assigned one of the
following values:

'LITTLE_ENDIAN' If the file is connected with little
endian integer and IEEE*
floating-point data conversion in
effect

'BIG_ENDIAN' If the file is connected with big
endian integer and IEEE
floating-point data conversion in
effect

'CRAY' If the file is connected with big
endian integer and CRAY*
floating-point data conversion in
effect

'FDX' If the file is connected with little
endian integer and VAX*
processor F_floating, D_floating,
and IEEE binary128 data
conversion in effect

'FGX' If the file is connected with little
endian integer and VAX
processor F_floating, G_floating,
and IEEE binary128 data
conversion in effect

'IBM' If the file is connected with big
endian integer and IBM* System
\370 floating-point data
conversion in effect

Intel® Fortran Compiler Classic and Intel® Fortran Compiler Developer Guide and Reference 1

1015

'VAXD' If the file is connected with little
endian integer and VAX
processor F_floating, D_floating,
and H_floating in effect

'VAXG' If the file is connected with little
endian integer and VAX
processor F_floating, G_floating,
and H_floating in effect

'NATIVE' If the file is connected with no
data conversion in effect

'UNKNOWN' If the file or unit is not
connected for unformatted data
transfer

INQUIRE: DECIMAL Specifier

The DECIMAL specifier asks which decimal editing mode is in effect for a file connection. It takes the
following form:

DECIMAL = dmode

dmode Is a scalar default character variable that is assigned one of the
following values:

'COMMA' If a decimal comma is used
during decimal editing mode.

'POINT' If a decimal point is used during
decimal editing mode.

'UNDEFINED' If there is no connection or if the
connection is not for formatted
I/O.

INQUIRE: DELIM Specifier

The DELIM specifier asks how character constants are delimited in list-directed and namelist output. It takes
the following form:

DELIM = del

del Is a scalar default character variable that is assigned one of the
following values:

'APOSTROPHE' If apostrophes are used to
delimit character constants in
list-directed and namelist output

'QUOTE' If quotation marks are used to
delimit character constants in
list-directed and namelist output

'NONE' If no delimiters are used

'UNDEFINED' If the file is not connected, or is
not connected for formatted
data transfer

 1 Intel® Fortran Compiler Classic and Intel® Fortran Compiler Developer Guide and Reference

1016

INQUIRE: DIRECT Specifier

The DIRECT specifier asks whether a file is connected for direct access. It takes the following form:

DIRECT = dir

dir Is a scalar default character variable that is assigned one of the
following values:

'YES' If the file is connected for direct
access

'NO' If the file is not connected for
direct access

'UNKNOWN' If the file is not connected

INQUIRE: ENCODING Specifier

The ENCODING specifier asks what type of encoding is in effect for a file. It takes the following form:

ENCODING = enc

enc Is a scalar default character expression that is assigned one of the
following values:

'UTF-8' If the file is connected with
UTF-8 encoding in effect.

'UNDEFINED' If the file is connected for
unformatted I/O.

'UNKNOWN' If the processor is unable to
determine the encoding form of
the file.

INQUIRE: EXIST Specifier

The EXIST specifier asks whether a file exists and can be opened. It takes the following form:

EXIST = ex

ex Is a scalar default logical variable that is assigned one of the following
values:

.TRUE. If the specified file exists and
can be opened, or if the
specified unit exists

.FALSE. If the specified file or unit does
not exist or if the file exists but
cannot be opened

The unit exists if it is a number in the range allowed by the processor.

INQUIRE: FORM Specifier

The FORM specifier asks whether a file is connected for formatted, unformatted, or binary (Windows) data
transfer. It takes the following form:

FORM = fm

Intel® Fortran Compiler Classic and Intel® Fortran Compiler Developer Guide and Reference 1

1017

fm Is a scalar default character variable that is assigned one of the
following values:

'FORMATTED' If the file is connected for
formatted data transfer

'UNFORMATTED' If the file is connected for
unformatted data transfer

'BINARY' If the file is connected for binary
data transfer

'UNDEFINED' If the file is not connected

INQUIRE: FORMATTED Specifier

The FORMATTED specifier asks whether a file is connected for formatted data transfer. It takes the following
form:

FORMATTED = fmt

fmt Is a scalar default character variable that is assigned one of the
following values:

'YES' If the file is connected for
formatted data transfer

'NO' If the file is not connected for
formatted data transfer

'UNKNOWN' If the processor cannot
determine whether the file is
connected for formatted data
transfer

INQUIRE: IOFOCUS Specifier

The IOFOCUS specifier asks if the indicated unit is the active window in a QuickWin application. This specifier
is only available for Windows. It takes the following form:

IOFOCUS = iof

iof Is a scalar default logical variable that is assigned one of the following
values:

.TRUE. If the specified unit is the active
window in a QuickWin
application

.FALSE. If the specified unit is not the
active window in a QuickWin
application

If unit '*' is specified, the default is .FALSE.; otherwise, the default is .TRUE..

A value of .TRUE. causes a call to FOCUSQQ immediately before any READ, WRITE, or PRINT statement to
that window.

If you use this specifier with a non-Windows application, an error occurs.

 1 Intel® Fortran Compiler Classic and Intel® Fortran Compiler Developer Guide and Reference

1018

INQUIRE: MODE Specifier

MODE is a nonstandard synonym for ACTION.

INQUIRE: NAME Specifier

The NAME specifier returns the name of a file. It takes the following form:

NAME = nme

nme Is a scalar default character variable that is assigned the name of the
file to which the unit is connected. If the file does not have a name,
nme is undefined.

The value assigned to nme is not necessarily the same as the value
given in the FILE specifier. However, the value that is assigned is
always valid for use with the FILE specifier in an OPEN statement,
unless the value has been truncated in a way that makes it
unacceptable. (Values are truncated if the declaration of nme is too
small to contain the entire value.)

NOTE
The FILE and NAME specifiers are synonyms when used with the OPEN statement, but not when used
with the INQUIRE statement.

See Also
The appropriate manual in your operating system documentation set for details on the maximum size of file
pathnames

INQUIRE: NAMED Specifier

The NAMED specifier asks whether a file is named. It takes the following form:

NAMED = nmd

nmd Is a scalar default logical variable that is assigned one of the following
values:

.TRUE. If the file has a name

.FALSE. If the file does not have a name

INQUIRE: NEXTREC Specifier

The NEXTREC specifier asks where the next record can be read or written in a file connected for direct
access. It takes the following form:

NEXTREC = nr

nr Is a scalar integer variable that is assigned a value as follows:

• If the file is connected for direct access and a record (r) was
previously read or written, the value assigned is r + 1.

• If no record has been read or written, the value assigned is 1.
• If there are pending asynchronous data transfer operations for the

specified file, the value assigned is computed as if all pending data
transfers have already completed.

• If the file is not connected for direct access, or if the file position
cannot be determined because of an error condition, the value
assigned is zero.

Intel® Fortran Compiler Classic and Intel® Fortran Compiler Developer Guide and Reference 1

1019

• If the file is connected for direct access and a REWIND has been
performed on the file, the value assigned is 1.

INQUIRE: NUMBER Specifier

The NUMBER specifier asks the number of the unit connected to a file. It takes the following form:

NUMBER = num

num Is a scalar integer variable.

The num is assigned the number of the unit currently connected to
the specified file. If there is no unit connected to the file, the value
assigned is -1.

INQUIRE: OPENED Specifier

The OPENED specifier asks whether a file is connected. It takes the following form:

OPENED = od

od Is a scalar default logical variable that is assigned one of the following
values:

.TRUE. If the specified file or unit is
connected

.FALSE. If the specified file or unit is not
connected

INQUIRE: ORGANIZATION Specifier

The ORGANIZATION specifier asks how the file is organized. It takes the following form:

ORGANIZATION = org

org Is a scalar default character variable that is assigned one of the
following values:

'SEQUENTIAL' If the file is a sequential file

'RELATIVE' If the file is a relative file

'UNKNOWN' If the processor cannot
determine the file's organization

INQUIRE: PAD Specifier

The PAD specifier asks whether blank padding was specified for the file. It takes the following form:

PAD = pd

pd Is a scalar default character variable that is assigned one of the
following values:

'NO' If the file or unit was connected
with PAD='NO'

 1 Intel® Fortran Compiler Classic and Intel® Fortran Compiler Developer Guide and Reference

1020

'YES' If the file or unit is not
connected, or it was connected
with PAD='YES'

INQUIRE: PENDING Specifier

The PENDING specifier asks whether previously pending asynchronous data transfers are complete. A data
transfer is previously pending if it is not complete at the beginning of execution of the INQUIRE statement. It
takes the following form:

PENDING = pnd

pnd Is a scalar default logical variable that is assigned the value .TRUE.
or .FALSE..

The value is assigned as follows:

• If an ID specifier appears in the INQUIRE statement, the following occurs:

• If the data transfer specified by ID is complete, then variable pnd is set to .FALSE. and INQUIRE
performs the WAIT operation for the specified data transfer.

• If the data transfer specified by ID is not complete, then variable pnd is set to .TRUE. and no WAIT
operation is performed. The previously pending data transfer remains pending after the execution of
the INQUIRE statement.

• If an ID specifier does not appear in the INQUIRE statement, the following occurs:

• If all previously pending data transfers for the specified unit are complete, then variable pnd is set
to .FALSE. and the INQUIRE statement performs WAIT operations for all previously pending data
transfers for the specified unit.

• If there are data transfers for the specified unit that are not complete, then variable pnd is set
to .TRUE. and no WAIT operations are performed. The previously pending data transfers remain
pending after the execution of the INQUIRE statement.

See Also
ID Specifier

Example in INQUIRE Statement

INQUIRE: POS Specifier

The POS specifier identifies the file position in file storage units in a stream file. It takes the following form:

POS = p

p Is a scalar integer variable that is assigned the number of the file
storage unit immediately following the current position of a file
connected for stream access (ACCESS='STREAM').

If the file is positioned at its terminal position, p is assigned a value one greater than the number of the
highest-numbered file storage unit in the file.

If the file is not connected for stream access or if the position of the file is indeterminate because of previous
error conditions, p is assigned the value one.

If there are pending asynchronous data operations for the specified file, the value assigned to the POS=
specifier is computed as if all pending data transfers have already completed.

INQUIRE: POSITION Specifier

The POSITION specifier asks the position of the file. It takes the following form:

POSITION = pos

Intel® Fortran Compiler Classic and Intel® Fortran Compiler Developer Guide and Reference 1

1021

pos Is a scalar default character variable that is assigned one of the
following values:

'REWIND' If the file is connected with its
position at its initial point

'APPEND' If the file is connected with its
position at its terminal point (or
before its end-of-file record, if
any)

'ASIS' If the file is connected without
changing its position

'UNDEFINED' If the file is not connected, or is
connected for direct access data
transfer and a REWIND
statement has not been
performed on the unit

INQUIRE: READ Specifier

The READ specifier asks whether a file can be read. It takes the following form:

READ = rd

rd Is a scalar default character variable that is assigned one of the
following values:

'YES' If the file can be read

'NO' If the file cannot be read

'UNKNOWN' If the processor cannot
determine whether the file can
be read

INQUIRE: READWRITE Specifier

The READWRITE specifier asks whether a file can be both read and written to. It takes the following form:

READWRITE = rdwr

rdwr Is a scalar default character variable that is assigned one of the
following values:

'YES' If the file can be both read and
written to

'NO' If the file cannot be both read
and written to

'UNKNOWN' If the processor cannot
determine whether the file can
be both read and written to

INQUIRE: RECL Specifier

The RECL specifier asks the maximum record length for a file. It takes the following form:

RECL = rcl

 1 Intel® Fortran Compiler Classic and Intel® Fortran Compiler Developer Guide and Reference

1022

rcl Is a scalar integer variable that is assigned a value as follows:

• If the file or unit is connected, the value assigned is the maximum
record length allowed.

• If the file does not exist, or it is not connected, the value assigned
is zero.

Fortran 2018 standardizes the value assigned to be -1 when the
file does not exist, or it is not connected. To get the Fortran 2018
behavior, specify compiler option assume -noold_inquire_recl.

• If the file is connected for stream access, the value is undefined.
Fortran 2018 standardizes this value to be -2. To get the Fortran
2018 behavior, specify compiler option
assume -noold_inquire_recl.

The assigned value is expressed in 4-byte units if the file is currently (or was previously) connected for
unformatted data transfer and the assume byterecl compiler option is not in effect; otherwise, the value is
expressed in bytes.

INQUIRE: RECORDTYPE Specifier

The RECORDTYPE specifier asks which type of records are in a file. It takes the following form:

RECORDTYPE = rtype

rtype Is a scalar default character variable that is assigned one of the
following values:

'FIXED' If the file is connected for fixed-
length records

'VARIABLE' If the file is connected for
variable-length records

'SEGMENTED' If the file is connected for
unformatted sequential data
transfer using segmented
records

'STREAM' If the file's records are not
terminated

'STREAM_CR' If the file's records are
terminated with a carriage
return

'STREAM_LF' If the file's records are
terminated with a line feed

'STREAM_CRLF' If the file's records are
terminated with a carriage
return/line feed pair

'UNKNOWN' If the file is not connected

INQUIRE: ROUND Specifier

The ROUND specifier asks which rounding mode is in effect for a file connection. It takes the following form:

ROUND = rmode

rmode Is a scalar default character expression that is assigned one of the
following values:

Intel® Fortran Compiler Classic and Intel® Fortran Compiler Developer Guide and Reference 1

1023

'UP' If the I/O rounding is set to the
smallest representable value
that is greater than or equal to
the original value.

'DOWN' If the I/O rounding is set to the
largest representable value that
is less than or equal to the
original value.

'ZERO' If the I/O rounding is set to the
value closest to the original
value, but no greater in
magnitude than the original
value.

'NEAREST' Conforms to the ISO/IEC
60559:2020 standard
specification for
roundTiesToEven.

'COMPATIBLE' If the I/O rounding is set to the
closer of the two nearest
representable values, or the
value farther from zero if
halfway between them.

'PROCESSOR_DEFINED' If the I/O rounding mode
behaves differently than the UP,
DOWN, ZERO, NEAREST, and
COMPATIBLE modes.

'UNDEFINED' If there is no connection or if the
connection is not for formatted
I/O.

The rounding modes conform to the corresponding rounding modes specified in the ISO/IEC 60559:2020
standard.

INQUIRE: SEQUENTIAL Specifier

The SEQUENTIAL specifier asks whether a file is connected for sequential access. It takes the following form:

SEQUENTIAL = seq

seq Is a scalar default character variable that is assigned one of the
following values:

'YES' If the file is connected for
sequential access

'NO' If the file is not connected for
sequential access

'UNKNOWN' If the processor cannot
determine whether the file is
connected for sequential access

INQUIRE: SHARE Specifier

The SHARE specifier asks the current share status of a file or unit. It takes the following form:

 1 Intel® Fortran Compiler Classic and Intel® Fortran Compiler Developer Guide and Reference

1024

SHARE = shr

shr Is a scalar default character variable.

On Windows* systems, this variable is assigned one of the following
values:

'DENYRW' If the file is connected for deny-
read/write mode

'DENYWR' If the file is connected for deny-
write mode

'DENYRD' If the file is connected for deny-
read mode

'DENYNONE' If the file is connected for deny-
none mode

'UNKNOWN' If the file or unit is not
connected

On Linux* systems, this variable is assigned one of the following
values:

'DENYRW' If the file is connected for
exclusive access

'DENYNONE' If the file is connected for
shared access

'NODENY' If the file is connected with
default locking

'UNKNOWN' If the file or unit is not
connected

INQUIRE: SIGN Specifier

The SIGN specifier asks what treatment for plus signs is in effect during a connection. It takes the following
form:

SIGN = sn

sn Is a scalar default character expression that is assigned one of the
following values:

'PLUS' If the file is connected with
addition of plus signs in effect.

'SUPPRESS' If the file is connected with
suppression of plus signs in
effect.

'PROCESSOR_DEFINED' If the file is connected with plus
signs added at the discretion of
the processor.

'UNDEFINED' If there is no connection, or if
the connection is not for
formatted input/output.

Intel® Fortran Compiler Classic and Intel® Fortran Compiler Developer Guide and Reference 1

1025

INQUIRE: SIZE Specifier

The SIZE specifier asks the size of a file in file storage units. It takes the following form:

SIZE = sz

sz Is a scalar integer variable.

The sz variable is assigned the size of the file in file storage units. If
the file size cannot be determined, the variable is assigned the value
-1.

For a file that is connected for stream access, the file size is the number of the highest-numbered file storage
unit in the file.

For a file that is connected for sequential or direct access, the file size may be different from the number of
storage units implied by the data in the records; the exact relationship is processor-dependent.

If there are pending asynchronous data transfer operations for the specified file, the value assigned to the
SIZE= specifier is computed as if the pending data transfers have already completed.

INQUIRE: UNFORMATTED Specifier

The UNFORMATTED specifier asks whether a file is connected for unformatted data transfer. It takes the
following form:

UNFORMATTED = unf

unf Is a scalar default character variable that is assigned one of the
following values:

'YES' If the file is connected for
unformatted data transfer

'NO' If the file is not connected for
unformatted data transfer

'UNKNOWN' If the processor cannot
determine whether the file is
connected for unformatted data
transfer

INQUIRE: WRITE Specifier

The WRITE specifier asks whether a file can be written to. It takes the following form:

WRITE = wr

wr Is a scalar default character variable that is assigned one of the
following values:

'YES' If the file can be written to

'NO' If the file cannot be written to

'UNKNOWN' If the processor cannot
determine whether the file can
be written to

OPEN Statement Specifiers
The OPEN statement connects an external file to a unit, creates a new file and connects it to a unit, creates a
preconnected file, or changes certain properties of a connection. For more information, see OPEN.

 1 Intel® Fortran Compiler Classic and Intel® Fortran Compiler Developer Guide and Reference

1026

The following table summarizes details about the OPEN statement specifiers and it contains links to their
descriptions:

OPEN Statement Specifiers and Values

Specifier Values Function Default

ACCESS 'DIRECT'

'SEQUENTIAL'

'STREAM'

'APPEND'

Access mode 'SEQUENTIAL'

ACTION (or MODE) 'READ'

'WRITE'

'READWRITE'

File access 'READWRITE'

ASSOCIATEVARIABLE A scalar integer variable Next direct access
record

No default

ASYNCHRONOUS 'YES'

'NO'

Asynchronous I/O 'NO'

BLANK 'NULL'

'ZERO'

Interpretation of blanks 'NULL'

BLOCKSIZE A scalar numeric
expression

Physical I/O transfer
size

131,072 bytes

BUFFERCOUNT A scalar numeric
expression

Number of I/O buffers One

BUFFERED 'YES'

'NO'

Buffering for WRITE
operations; buffering for
READ operations on
variable length,
unformatted, input
records

'NO'

Note: The default is also
'NO' when reading
variable length,
unformatted records
whose length exceeds
that of the block size
specified for the file.

CARRIAGECONTROL 'FORTRAN'

'LIST'

'NONE'

Print control Formatted: 'LIST'

Note: If you specify
compiler option vms,
and the unit is
connected to a terminal,
the default is
'FORTRAN'.

Unformatted: 'NONE'

CONVERT 'LITTLE_ENDIAN'

'BIG_ENDIAN'

'CRAY'

'FDX'

'FGX'

'IBM'

'VAXD'

Numeric format
specification

'NATIVE'

Intel® Fortran Compiler Classic and Intel® Fortran Compiler Developer Guide and Reference 1

1027

Specifier Values Function Default

'VAXG'

'NATIVE'

DECIMAL 'COMMA'

'POINT'

Decimal edit mode 'POINT'

DEFAULTFILE A scalar default
character expression

Default file pathname Current working
directory

DELIM 'APOSTROPHE'

'QUOTE'

'NONE'

Delimiter for character
constants

'NONE'

DISPOSE (or DISP) 'KEEP' or 'SAVE'

'DELETE'

'PRINT'

'PRINT/DELETE'

'SUBMIT'

'SUBMIT/DELETE'

File disposition at close 'KEEP'

ENCODING 'UTF-8'

'DEFAULT'

Encoding form for a file 'DEFAULT'

ERR A statement label Error transfer control No default

FILE (or NAME) A scalar default
character expression

File pathname (file
name)

fort.n, where n is the
unit number.

FORM 'FORMATTED'

'UNFORMATTED'

'BINARY'

Format type Depends on ACCESS
setting

IOFOCUS .TRUE.

.FALSE.

Active window in
QuickWin application

.TRUE.

Note: If unit '*' is
specified, the default
is .FALSE.; otherwise,
the default is .TRUE..

IOSTAT A scalar integer variable I/O status No default

MAXREC A scalar numeric
expression

Direct access record
limit

No limit

NEWUNIT A scalar integer variable Returns automatically
chosen, unused, unit
number

No default

NOSHARED No value File sharing disallowed Linux: SHARED

Windows: Not shared

ORGANIZATION 'SEQUENTIAL'

'RELATIVE'

File organization 'SEQUENTIAL'

PAD 'YES' Record padding 'YES'

 1 Intel® Fortran Compiler Classic and Intel® Fortran Compiler Developer Guide and Reference

1028

Specifier Values Function Default

'NO'

POSITION 'ASIS'

'REWIND'

'APPEND'

File positioning 'ASIS'

READONLY No value Write protection No default

RECL

(or RECORDSIZE)

A scalar numeric
expression

Record length Depends on
RECORDTYPE,ORGANIZ
ATION, and FORM
settings

Note: On Linux*
systems, the default
depends only on the
FORM setting.

RECORDTYPE 'FIXED'

'VARIABLE'

'SEGMENTED'

'STREAM'

'STREAM_CR'

'STREAM_LF'

Record type Depends on
ORGANIZATION,
CARRIAGECONTROL,
ACCESS, and FORM
settings

ROUND 'UP'

'DOWN'

'ZERO'

'NEAREST'

'COMPATIBLE'

'PROCESSOR_DEFINED'

Rounding mode 'PROCESSOR_DEFINED'
- this corresponds to
'NEAREST' as in the
ISO/IEC 60559:2020
standard specification
for roundTiesToEven

SHARE 'DENYRW'

'DENYWR'

'DENYRD'

'DENYNONE'

File locking 'DENYWR'

Note: The default differs
under certain conditions
(see SHARE Specifier).

Other notes:
• 'DENYWR': On Linux*

systems, the default
depends only on the
FORM setting.

• 'DENYRD': Applies to
Windows.

SHARED No value File sharing allowed Linux*: SHARED

Windows: Not shared

SIGN 'PLUS'

'SUPPRESS'

'PROCESSOR_DEFINED'

Plus sign mode 'PROCESSOR_DEFINED'

Intel® Fortran Compiler Classic and Intel® Fortran Compiler Developer Guide and Reference 1

1029

Specifier Values Function Default

STATUS (or TYPE) 'OLD'

'NEW'

'SCRATCH'

'REPLACE'

'UNKNOWN'

File status at open 'UNKNOWN'

Note: The default differs
under certain conditions
(see STATUS Specifier).

TITLE A scalar default
character expression

Title for child window in
a QuickWin application

No default

UNIT A scalar numeric
expression

Logical unit number No default; an io-unit
must be specified.

USEROPEN An external function User program option No default

See Also
INQUIRE Statement for details on using the INQUIRE statement to get file attributes of existing
files

OPEN: ACCESS Specifier

The ACCESS specifier indicates the access method for the connection of the file. It takes the following form:

ACCESS = acc

acc Is a scalar default character expression that evaluates to one of the
following values:

'DIRECT' Indicates direct access.

'SEQUENTIAL' Indicates sequential access.

'STREAM' Indicates stream access, where
the file storage units of the file
are accessible sequentially or by
position.

'APPEND' Indicates sequential access, but
the file is positioned at the end-
of-file record.

The default is 'SEQUENTIAL'.

There are limitations on record access by file organization and record type.

OPEN: ACTION Specifier

The ACTION specifier indicates the allowed I/O operations for the file connection. It takes the following form:

ACTION = act

act Is a scalar default character expression that evaluates to one of the
following values:

'READ' Indicates that only READ
statements can refer to this
connection.

 1 Intel® Fortran Compiler Classic and Intel® Fortran Compiler Developer Guide and Reference

1030

'WRITE' Indicates that only WRITE,
DELETE, and ENDFILE
statements can refer to this
connection.

'READWRITE' Indicates that READ, WRITE,
DELETE, and ENDFILE
statements can refer to this
connection.

The default is 'READWRITE'.

However, if compiler option fpscomp general is specified on the command line and action is omitted, the
system first attempts to open the file with 'READWRITE'. If this fails, the system tries to open the file again,
first using 'READ', then using 'WRITE'.

Note that in this case, omitting action is not the same as specifying ACTION='READWRITE'. If you specify
ACTION='READWRITE' and the file cannot be opened for both read and write access, the attempt to open the
file fails. You can use the INQUIRE statement to determine the actual access mode selected.

See Also
fpscomp compiler option

OPEN: ASSOCIATEVARIABLE Specifier

The ASSOCIATEVARIABLE specifier indicates a variable that is updated after each direct access I/O operation,
to reflect the record number of the next sequential record in the file. It takes the following form:

ASSOCIATEVARIABLE = asv

asv Is a scalar integer variable. It cannot be a dummy argument to the
routine in which the OPEN statement appears.

Direct access READs, direct access WRITEs, and the FIND, DELETE, and REWRITE statements can affect the
value of asv.

This specifier is valid only for direct access; it is ignored for other access modes.

OPEN: ASYNCHRONOUS Specifier

The ASYNCHRONOUS specifier indicates whether asynchronous I/O is allowed for a unit. It takes the
following form:

ASYNCHRONOUS = asyn

asyn Is a scalar expression of type default character that evaluates to one
of the following values:

'YES' Indicates that asynchronous I/O
is allowed for a unit.

'NO' Indicates that asynchronous I/O
is not allowed for a unit.

The default is 'NO'.

OPEN: BLANK Specifier

The BLANK specifier indicates how blanks are interpreted in a file. It takes the following form:

BLANK = blnk

Intel® Fortran Compiler Classic and Intel® Fortran Compiler Developer Guide and Reference 1

1031

blnk Is a scalar default character expression that evaluates to one of the
following values:

'NULL' Indicates all blanks are ignored,
except for an all-blank field
(which has a value of zero).

'ZERO' Indicates all blanks (other than
leading blanks) are treated as
zeros.

The default is 'NULL' (for explicitly OPENed files, preconnected files, and internal files). If you specify
compiler option f66 (or OPTIONS/NOF77), the default is 'ZERO'.

If the BN or BZ edit descriptors are specified for a formatted input statement, they supersede the default
interpretation of blanks.

This specifier is not allowed on unformatted input or output.

See Also
Blank Editing for details on the BN and BZ edit descriptors
f66

OPEN: BLOCKSIZE Specifier

The BLOCKSIZE specifier indicates the physical I/O transfer size in bytes for the file. It takes the following
form:

BLOCKSIZE = bks

bks Is a scalar numeric expression. If necessary, the value is converted to
integer data type before use.

If you specify a nonzero number for bks, it is rounded up to a multiple of 512 byte blocks. The maximum
valid value of BLOCKSIZE is 2147467264.

If you do not specify BLOCKSIZE or you specify zero for bks, the default value of 128 KB (131,072 bytes) is
assumed. However, if you compile with the assume buffered_stdout option, the default blocksize for
stdout is 8 KB.

The default BLOCKSIZE value can be changed by using the FORT_BLOCKSIZE environment variable or by
specifying the BLOCKSIZE parameter on the unit's OPEN. The BLOCKSIZE value can be changed for stdout
by re-opening the unit corresponding to stdout with an explicit BLOCKSIZE parameter; for example:

OPEN(6,ACCESS='SEQUENTIAL',FORM='FORMATTED',BUFFERED='YES',BLOCKSIZE=1048576

OPEN: BUFFERCOUNT Specifier

The BUFFERCOUNT specifier indicates the number of buffers to be associated with the unit for multibuffered
I/O. It takes the following form:

BUFFERCOUNT = bc

bc Is a scalar numeric expression in the range 1 through 127. If
necessary, the value is converted to integer data type before use.

The BLOCKSIZE specifier determines the size of each buffer. For example, if BUFFERCOUNT=3 and
BLOCKSIZE=2048, the total number of bytes allocated for buffers is 3*2048, or 6144 bytes.

If you do not specify BUFFERCOUNT or you specify zero for bc, the default is 1.

See Also
BLOCKSIZE specifier

 1 Intel® Fortran Compiler Classic and Intel® Fortran Compiler Developer Guide and Reference

1032

OPEN: BUFFERED Specifier

The BUFFERED specifier indicates runtime library behavior for READ and WRITE operations. Buffering of input
records only applies to variable length, unformatted records. This specifier takes the following form:

BUFFERED = bf

bf Is a scalar default character expression that evaluates to one of the
following values:

'NO' For WRITE operations: Requests
that the runtime library send
output data to the file system
after each operation.

For READ operations on variable
length, unformatted files:
Requests that the runtime
library transfer input data
directly from disk to user
variables for each operation.

'YES' Requests that the runtime
library accumulate data in its
internal buffer, possibly across
several READ or WRITE
operations, before the data is
transferred to, or from, the file
system.

Buffering may improve runtime
performance for output-
intensive applications.

The default is 'NO' for buffering output. The default is also 'NO' when reading variable length, unformatted
records whose length exceeds that of the block size specified for the file.

If BUFFERED='YES' is specified, the request may or may not be honored, depending on the device and other
file or connection characteristics.

For direct access, you should specify BUFFERED='YES', although using direct-access I/O to a network file
system may be much slower.

If both BLOCKSIZE and BUFFERCOUNT for OPEN have been specified with positive values, their product
determines the size in bytes of the buffer for that I/O unit. Otherwise, the default size of the internal buffer is
8 KB (8192 bytes).

NOTE
On Windows systems, the default size of the internal buffer is 1024 bytes if compiler option fpscomp
general is used.

The internal buffer will grow to hold the largest single record but will never shrink.

See Also
Rules for Unformatted Sequential READ Statements

OPEN: CARRIAGECONTROL Specifier

The CARRIAGECONTROL specifier indicates the type of carriage control used when a file is displayed at a
terminal. It takes the following form:

CARRIAGECONTROL = cc

Intel® Fortran Compiler Classic and Intel® Fortran Compiler Developer Guide and Reference 1

1033

cc Is a scalar default character expression that evaluates to one of the
following values:

'FORTRAN' Indicates normal Fortran
interpretation of the first
character.

'LIST' Indicates one line feed between
records.

'NONE' Indicates no carriage control
processing.

The default for binary (Windows) and unformatted files is 'NONE'. The default for formatted files is 'LIST'.
However, if you specify compiler option vms or fpscomp general, and the unit is connected to a terminal,
the default is 'FORTRAN'.

On output, if a file was opened with CARRIAGECONTROL='FORTRAN' in effect or the file was processed by
the fortpr format utility, the first character of a record transmitted to a line printer or terminal is typically a
character that is not printed, but is used to control vertical spacing.

See Also
Printing of Formatted Records for details on valid control characters for printing
vms compiler option
fpscomp compiler option

OPEN: CONVERT Specifier

The CONVERT specifier indicates a nonnative numeric format for unformatted data. It takes the following
form:

CONVERT = fm

fm Is a scalar default character expression that evaluates to one of the
following values:

'LITTLE_ENDIAN'1 Little endian integer data 2 and
IEEE* floating-point data. 3

'BIG_ENDIAN'1 Big endian integer data 2 and
IEEE floating-point data. 3

'CRAY' Big endian integer data 2 and
CRAY* floating-point data of size
REAL(8) or COMPLEX(8).

'FDX' Little endian integer data 2 and
VAX* processor floating-point
data of format F_floating for
REAL(4) or COMPLEX(4),
D_floating for size REAL(8) or
COMPLEX(8), and IEEE
binary128 for REAL(16) or
COMPLEX(16).

'FGX' Little endian integer data 2 and
VAX processor floating-point
data of format F_floating for
REAL(4) or COMPLEX(4),
G_floating for size REAL(8) or

 1 Intel® Fortran Compiler Classic and Intel® Fortran Compiler Developer Guide and Reference

1034

COMPLEX(8), and IEEE
binary128 for REAL(16) or
COMPLEX(16).

'IBM' Big endian integer data 2 and
IBM* System\370 floating-point
data of size REAL(4) or
COMPLEX(4) (IBM short 4), and
size REAL(8) or COMPLEX(8)
(IBM long 8).

'VAXD' Little endian integer data 2 and
VAX processor floating-point
data of format F_floating for size
REAL(4) or COMPLEX(4),
D_floating for size REAL(8) or
COMPLEX(8), and H_floating for
REAL(16) or COMPLEX(16).

'VAXG' Little endian integer data 2 and
VAX processor floating-point
data of format F_floating for size
REAL(4) or COMPLEX(4),
G_floating for size REAL(8) or
COMPLEX(8), and H_floating for
REAL(16) or COMPLEX(16).

'NATIVE' No data conversion. This is the
default.

1 INTEGER(1) data is the same for little endian and big endian.
2 Of the appropriate size: INTEGER(1), INTEGER(2), INTEGER(4), or
INTEGER(8)
3 Of the appropriate size and type: REAL(4), REAL(8), REAL(16),
COMPLEX(4), COMPLEX(8), or COMPLEX(16)

You can use CONVERT to specify multiple formats in a single program, usually one format for each specified
unit number.

When reading a nonnative format, the nonnative format on disk is converted to native format in memory. If a
converted nonnative value is outside the range of the native data type, a runtime message appears.

There are other ways to specify numeric format for unformatted files: you can specify an environment
variable, compiler option convert, or OPTIONS/CONVERT. The following shows the order of precedence:

Method Used Precedence

An environment variable Highest

OPEN (CONVERT=) .

OPTIONS/CONVERT .

The convert compiler option Lowest

Compiler option convert and OPTIONS/CONVERT affect all unit numbers used by the program, while
environment variables and OPEN (CONVERT=) affect specific unit numbers.

Intel® Fortran Compiler Classic and Intel® Fortran Compiler Developer Guide and Reference 1

1035

The following example shows how to code the OPEN statement to read unformatted CRAY* numeric data
from unit 15, which might be processed and possibly written in native little endian format to unit 20:

 OPEN (CONVERT='CRAY', FILE='graph3.dat', FORM='UNFORMATTED',
1 UNIT=15)
 ...
 OPEN (FILE='graph3_native.dat', FORM='UNFORMATTED', UNIT=20)

See Also
Data Types, Constants, and Variables for details on supported ranges for data types
convert compiler option

OPEN: DECIMAL Specifier

The DECIMAL specifier controls the representation of the decimal symbol for a connection. It takes the
following form:

DECIMAL = dmode

dmode Is a scalar default character expression that evaluates to one of the
following values:

'COMMA' Indicates that a decimal comma
should be used for decimal
editing mode.

'POINT' Indicates that a decimal point
should be used for decimal
editing mode.

The default decimal editing mode is 'POINT'.

You can only use this specifier for a formatted I/O connection.

When the mode is DECIMAL='POINT', the decimal point in a numeric input or output value is a period, values
are separated by commas in list-directed and NAMELIST I/O, and the separator between the real and
imaginary parts of a complex value is a comma.

When the mode is DECIMAL='COMMA', the decimal point in a numeric input or output value is a comma,
values are separated by semicolons in list-directed and NAMELIST I/O, and the separator between the real
and imaginary parts of a complex value is a semicolon.

The decimal editing mode can be temporarily changed within a READ or WRITE statement by the DECIMAL=
specifier or by the corresponding DC and DP edit descriptors.

This specifier is not allowed on unformatted input or output.

OPEN: DEFAULTFILE Specifier

The DEFAULTFILE specifier indicates a default file pathname string. It takes the following form:

DEFAULTFILE = def

def Is a character expression indicating a default file pathname string.

The default file pathname string is used primarily when accepting file
pathnames interactively. File pathnames known to a user program
normally appear in the FILE specifier.

DEFAULTFILE supplies a value to the Fortran I/O system that is prefixed to the name that appears in FILE.

If def does not end in a slash (/), a slash is added.

If DEFAULTFILE is omitted, the Fortran I/O system uses the current working directory.

 1 Intel® Fortran Compiler Classic and Intel® Fortran Compiler Developer Guide and Reference

1036

OPEN: DELIM Specifier

The DELIM specifier indicates what characters (if any) are used to delimit character constants in list-directed
and namelist output. It takes the following form:

DELIM = del

del Is a scalar default character expression that evaluates to one of the
following values:

'APOSTROPHE' Indicates apostrophes delimit
character constants. All internal
apostrophes are doubled.

'QUOTE' Indicates quotation marks
delimit character constants. All
internal quotation marks are
doubled.

'NONE' Indicates character constants
have no delimiters. No internal
apostrophes or quotation marks
are doubled.

The default is 'NONE'.

The DELIM specifier is only allowed for files connected for formatted data transfer; it is ignored during input.

This specifier is not allowed on unformatted input or output.

OPEN: DISPOSE Specifier

The DISPOSE (or DISP) specifier indicates the status of the file after the unit is closed. It takes one of the
following forms:

DISPOSE = dis

DISP = dis

dis Is a scalar default character expression that evaluates to one of the
following values:

'KEEP' or 'SAVE' Retains the file after the unit
closes.

'DELETE' Deletes the file after the unit
closes.

'PRINT' 1 Submits the file to the line
printer spooler and retains it.

'PRINT/DELETE' 1 Submits the file to the line
printer spooler and then deletes
it.

'SUBMIT' Forks a process to execute the
file.

'SUBMIT/DELETE' Forks a process to execute the
file, and then deletes the file
after the fork is completed.

1 Use only on sequential files.

The default is 'DELETE' for scratch files. For all other files, the default is 'KEEP'.

Intel® Fortran Compiler Classic and Intel® Fortran Compiler Developer Guide and Reference 1

1037

On Windows*, PRINT and the PRINT part of PRINT/DELETE do not use the system PRINT command. One of
the following occurs:

• If you set the environment variable FOR_DEFAULT_PRINT_DEVICE to a print device, the Fortran runtime
will copy the file to that device.

• Otherwise, the Fortran runtime will copy the file to a new file named "PRN-FILE". In this case, you will
need to do the actual printing

OPEN: ENCODING Specifier

The ENCODING specifier indicates the encoding form for a file. It takes the following form:

ENCODING = enc

enc Is a scalar default character expression that evaluates to one of the
following values:

'UTF-8' Indicates that the encoding form
of the file is UTF-8 (a unicode
file). All characters therein are
of ISO 10646 character type, as
specified by ISO/IEC
10646-1:2000.

This value must not be specified
if the processor does not
support the ISO 10646 character
type.

'DEFAULT' Indicates that the encoding form
of the file is determined by the
processor.

The default is 'DEFAULT'.

You can only use this specifier for a formatted I/O connection.

OPEN: FILE Specifier

The FILE specifier indicates the name of the file to be connected to the unit. It takes the following form:

FILE = name

name Is a character or numeric expression.

The name can be any pathname allowed by the operating system.

Any trailing blanks in the name are ignored.

If the following conditions occur:

• FILE is omitted
• The unit is not connected to a file
• STATUS='SCRATCH' is not specified
• The corresponding FORTn environment variable is not set for the unit number

then Intel® Fortran generates a file name in the form fort.n, where n is the logical unit number. On Windows
systems, if compiler option fpscomp general is specified, omitting FILE implies STATUS='SCRATCH'.

If the file name is stored in a numeric scalar or array, the name must consist of ASCII characters terminated
by an ASCII null character (zero byte). However, if it is stored in a character scalar or array, it must not
contain a zero byte.

On Windows systems, if the filename is 'USER' or 'CON', input and output are directed to the console. .

In a Windows* QuickWin application, you can specify FILE='USER' to open a child window. All subsequent I/O
statements directed to that unit appear in the child window.

 1 Intel® Fortran Compiler Classic and Intel® Fortran Compiler Developer Guide and Reference

1038

On Windows systems, the name can be blank (FILE=' ') if the compatibility compiler option fpscomp
filesfromcmd is specified. If the name is blank, the following occurs:

1. The program reads a filename from the list of arguments (if any) in the command line that started the
program. If the argument is a null or blank string (" "), you are prompted for the corresponding
filename. Each successive OPEN statement that specifies a blank name reads the next following
command-line argument.

2. If no command-line arguments are specified or there are no more arguments in the list, you are
prompted for additional filenames.

Assume the following command line started the program MYPROG (note that quotation marks (") are
used):

myprog first.fil " " third.txt

MYPROG contains four OPEN statements with blank filenames, in the following order:

 OPEN (2, FILE = ' ')
 OPEN (4, FILE = ' ')
 OPEN (5, FILE = ' ')
 OPEN (10, FILE = ' ')

Unit 2 is associated with the file FIRST.FIL. Because a blank argument was specified on the command
line for the second filename, the OPEN statement for unit 4 produces the following prompt:

 Filename missing or blank - Please enter name UNIT 4?
Unit 5 is associated with the file THIRD.TXT. Because no fourth file was specified on the command line,
the OPEN statement for unit 10 produces the following prompt:

 Filename missing or blank - Please enter name UNIT 10?

See Also
fpscomp compiler option

OPEN: FORM Specifier

The FORM specifier indicates whether the file is being connected for formatted, unformatted, or binary
(Windows) data transfer. It takes the following form:

FORM = fm

fm Is a scalar default character expression that evaluates to one of the
following values:

'FORMATTED' Indicates formatted data
transfer

'UNFORMATTED' Indicates unformatted data
transfer

'BINARY' Indicates binary data transfer

The default is 'FORMATTED' for sequential access files, and 'UNFORMATTED' for direct access files.

The data is stored and retrieved in a file according to the file's access (set by the ACCESS specifier) and the
form of the data the file contains.

A formatted file is a sequence of formatted records. Formatted records are a series of ASCII characters
terminated by an end-of-record mark (a carriage return and line feed sequence). The records in a formatted
direct-access file must all be the same length. The records in a formatted sequential file can have varying
lengths. All internal files must be formatted.

An unformatted file is a sequence of unformatted records. An unformatted record is a sequence of values.
Unformatted direct files contain only this data, and each record is padded to a fixed length with undefined
bytes. Unformatted sequential files contain the data plus information that indicates the boundaries of each
record.

Intel® Fortran Compiler Classic and Intel® Fortran Compiler Developer Guide and Reference 1

1039

Binary sequential files are sequences of bytes with no internal structure. There are no records. The file
contains only the information specified as I/O list items in WRITE statements referring to the file.

Binary direct files have very little structure. A record length is assigned by the RECL specifier in an OPEN
statement. This establishes record boundaries, which are used only for repositioning and padding before and
after read and write operations and during BACKSPACE operations. Record boundaries do not restrict the
number of bytes that can be transferred during a read or write operation. If an I/O operation attempts to
read or write more values than are contained in a record, the read or write operation is continued on the next
record.

Fortran standard stream access provides similar functionality to FORM='BINARY'. This is specified using
ACCESS='STREAM'.

See Also
Record Access

OPEN: IOFOCUS Specifier

The IOFOCUS specifier indicates whether a particular unit is the active window in a QuickWin application. This
specifier is only available for Windows. It takes the following form:

IOFOCUS = iof

iof Is a scalar default logical expression that evaluates to one of the
following values:

.TRUE. Indicates the QuickWin child
window is the active window

.FALSE. Indicates the QuickWin child
window is not the active window

If unit '*' is specified, the default is .FALSE.; otherwise, the default is .TRUE..

A value of .TRUE. causes a call to FOCUSQQ immediately before any READ, WRITE, or PRINT statement to
that window. OUTTEXT, OUTGTEXT, or any other graphics routine call does not cause the focus to shift.

OPEN: MAXREC Specifier

The MAXREC specifier indicates the maximum number of records that can be transferred from or to a direct
access file while the file is connected. It takes the following form:

MAXREC = mr

mr Is a scalar numeric expression. If necessary, the value is converted to
integer data type before use.

The default is an unlimited number of records.

OPEN: MODE Specifier

MODE is a nonstandard synonym for ACTION.

OPEN: NAME Specifier

NAME is a nonstandard synonym for FILE.

OPEN: NEWUNIT Specifier

The NEWUNIT specifier opens a file on an unused unit number that is automatically chosen. It also returns
the unit number that was chosen. It takes the following form:

NEWUNIT = u-var

 1 Intel® Fortran Compiler Classic and Intel® Fortran Compiler Developer Guide and Reference

1040

u-var Is a scalar integer variable that is assigned the automatically chosen
unit number. It is always a negative integer.

If the OPEN is successful, u-var can be used in subsequent I/O statements to access the connected file.

If an error occurs during execution of the OPEN statement containing the NEWUNIT= speciifier, the processor
does not change the value of the variable.

OPEN: NOSHARED Specifier

The NOSHARED specifier indicates that the file is connected for exclusive access by the program. It takes the
following form:

NOSHARED

OPEN: ORGANIZATION Specifier

The ORGANIZATION specifier indicates the internal organization of the file. It takes the following form:

ORGANIZATION = org

org Is a scalar default character expression that evaluates to one of the
following values

'SEQUENTIAL' Indicates a sequential file.

'RELATIVE' Indicates a relative file.

The default is 'SEQUENTIAL'.

OPEN: PAD Specifier

The PAD specifier indicates whether a formatted input record is padded with blanks when an input list and
format specification requires more data than the record contains.

The PAD specifier takes the following form:

PAD = pd

pd Is a scalar default character expression that evaluates to one of the
following values:

'YES' Indicates the record will be
padded with blanks when
necessary.

'NO' Indicates the record will not be
padded with blanks. The input
record must contain the data
required by the input list and
format specification.

The default is 'YES'.

This behavior is different from FORTRAN 77, which never pads short records with blanks and doesn't support
the PAD= qualifier. For example, consider the following:

 READ (5,'(I5)') J
If you enter 123 followed by a carriage return, FORTRAN 77 will issue the ENDRECDUR error message.

However, Intel® Fortran pads the 123 with 2 blanks unless you explicitly open the unit with PAD='NO'.

You can override blank padding by explicitly specifying the BN edit descriptor.

The PAD specifier is ignored during output.

Intel® Fortran Compiler Classic and Intel® Fortran Compiler Developer Guide and Reference 1

1041

This specifier is not allowed on unformatted input or output.

OPEN: POSITION Specifier

The POSITION specifier indicates the position of a file connected for sequential access. It takes the following
form:

POSITION = pos

pos Is a scalar default character expression that evaluates to one of the
following values:

'ASIS' Indicates the file position is
unchanged if the file exists and
is already connected. The
position is unspecified if the file
exists but is not connected.

'REWIND' Indicates the file is positioned at
its initial point.

'APPEND' Indicates the file is positioned at
its terminal point (or before its
end-of-file record, if any).

The default is 'ASIS'.

A new file (whether specified as new explicitly or by default) is always positioned at its initial point.

In addition to the POSITION specifier, you can use position statements. The BACKSPACE statement positions
a file back one record. The REWIND statement positions a file at its initial point. The ENDFILE statement
writes an end-of-file record at the current position and positions the file after it. Note that ENDFILE does not
go the end of an existing file, but creates an end-of-file where it is.

OPEN: READONLY Specifier

The READONLY specifier indicates only READ statements can refer to this connection. It takes the following
form:

READONLY

READONLY is similar to specifying ACTION='READ', but READONLY prevents deletion of the file if it is closed
with STATUS='DELETE' in effect.

The Fortran I/O system's default privileges for file access are READWRITE. If access is denied, the I/O
system automatically retries accessing the file for READ access.

However, if you use compiler option vms, the I/O system does not retry accessing for READ access. So,
runtime I/O errors can occur if the file protection does not permit WRITE access. To prevent such errors, if
you wish to read a file for which you do not have write access, specify READONLY.

OPEN: RECL Specifier

The RECL specifier indicates the length of each record in a file connected for direct access, or the maximum
length of a record in a file connected for sequential access.

The RECL specifier takes the following form:

RECL = rl

rl Is a positive numeric expression indicating the length of records in the
file. If necessary, the value is converted to integer data type before
use.

 1 Intel® Fortran Compiler Classic and Intel® Fortran Compiler Developer Guide and Reference

1042

If the file is connected for formatted data transfer, the value must be expressed in bytes (characters).
Otherwise, the value is expressed in 4-byte units (longwords). If the file is connected for unformatted data
transfer, the value can be expressed in bytes if compiler option assume byterecl is specified.

Except for segmented records, the rl is the length for record data only, it does not include space for control
information. If rl is too large, you can exhaust your program's virtual memory resources trying to create
room for the record.

The length specified is interpreted depending on the type of records in the connected file, as follows:

• For segmented records, RECL indicates the maximum length for any segment (including the four bytes of
control information).

• For fixed-length records, RECL indicates the size of each record; it must be specified. If the records are
unformatted, the size must be expressed as an even multiple of four.

You can use the RECL specifier in an INQUIRE statement to get the record length before opening the file.
• For variable-length records, RECL indicates the maximum length for any record.

If you read a fixed-length file with a record length different from the one used to create the file,
indeterminate results can occur.

The maximum length for rl depends on the record type and the setting of the CARRIAGECONTROL specifier,
as shown in the following table:

Maximum Record Lengths (RECL)

Record Type CARRIAGECONTROL Formatted (size in bytes)

Fixed-length 'NONE' Unlimited

Variable-length 'NONE' 2147483640 (2**31-8)

Segmented 'NONE' 32764 (2**15-4)

Stream 'NONE' 2147483647 (2**31-1)

Stream_CR 'LIST' 2147483647 (2**31-1)

'FORTRAN' 2147483646 (2**31-2)

Stream_LF 'LIST' 2147483647 (2**31-1) 1

'FORTRAN' 2147483646 (2**31-2)

1 Linux only

The default value depends on the setting of the RECORDTYPE specifier, as shown in the following table:

Default Record Lengths (RECL)

RECORDTYPE RECL value

'FIXED' None; value must be explicitly specified.

All other settings 132 bytes for formatted records; 510 longwords for
unformatted records.1

1To change the default record length values, you can use environment variable FORT_FMT_RECL or
FORT_UFMT_RECL.

For formatted records with other than RECORDTYPE='FIXED', the default RECL is 132.

There is a property of list-directed sequential WRITE statements called the right margin. If you do not
specify RECL as an OPEN statement specifier or in environmental variable FORT_FMT_RECL, the right margin
value defaults to 80. When RECL is specified, the right margin is set to the value of RECL. If the length of a
list-directed sequential WRITE exceeds the value of the right margin value, the remaining characters will
wrap to the next line. Therefore, writing 100 characters will produce two lines of output, and writing 180
characters will produce three lines of output. You can turn off the right margin using the wrap-margin
compiler option or the FORT_FMT_NO_WRAP_MARGIN environment variable.

Intel® Fortran Compiler Classic and Intel® Fortran Compiler Developer Guide and Reference 1

1043

See Also
assume:byterecl compiler option
vms compiler option
Record Transfer

OPEN: RECORDSIZE Specifier

RECORDSIZE is a nonstandard synonym for RECL.

OPEN: RECORDTYPE Specifier

The RECORDTYPE specifier indicates the type of records in a file. It takes the following form:

RECORDTYPE = typ

typ Is a scalar default character expression that evaluates to one of the
following values:

'FIXED' Indicates fixed-length records.

'VARIABLE' Indicates variable-length
records.

'SEGMENTED' Indicates segmented records.

'STREAM' Indicates stream-type variable
length data with no record
terminators.

'STREAM_LF' Indicates stream-type variable
length records, terminated with
a line feed.

'STREAM_CR' Indicates stream-type variable
length records, terminated with
a carriage return.

'STREAM_CRLF' Indicates stream-type variable
length records, terminated with
a carriage return/line feed pair.

When you open a file, default record types are as follows:

'FIXED' For relative files

'FIXED' For direct access sequential files

'STREAM_LF' For formatted sequential access files on Linux*
systems

'STREAM_CRLF' For formatted sequential access files on Windows
systems

'VARIABLE' For unformatted sequential access files

A segmented record is a logical record consisting of segments that are physical records. Since the length of a
segmented record can be greater than 65,535 bytes, only use segmented records for unformatted sequential
access to disk or raw magnetic tape files.

Files containing segmented records can be accessed only by unformatted sequential data transfer
statements.

If an output statement does not specify a full record for a file containing fixed-length records, the following
occurs:

 1 Intel® Fortran Compiler Classic and Intel® Fortran Compiler Developer Guide and Reference

1044

• In formatted files, the record is filled with blanks
• In unformatted files, the record is filled with zeros

OPEN: ROUND Specifier

The ROUND specifier indicates the I/O rounding mode for the duration of a connection. It takes the following
form:

ROUND = rmode

rmode Is a scalar default character expression that evaluates to one of the
following values:

'UP' The smallest representable value
that is greater than or equal to
the original value.

'DOWN' The largest representable value
that is less than or equal to the
original value.

'ZERO' The value closest to the original
value, but no greater in
magnitude than the original
value.

'NEAREST' Conforms to the ISO/IEC
60559:2020 standard
specification for
roundTiesToEven.

'COMPATIBLE' The closer of the two nearest
representable values. If the
value is halfway between the
two values, the one chosen is
the one farther from zero.

'PROCESSOR_DEFINED' The value is determined by the
default settings in the processor,
which may correspond to one of
the other modes.

The default I/O rounding mode is 'PROCESSOR_DEFINED'. This corresponds to 'NEAREST'.

The rounding modes conform to the corresponding rounding modes specified in the ISO/IEC 60559:2020
standard.

You can only use this specifier for a formatted I/O connection.

The rounding mode can be temporarily changed within a READ or WRITE statement by the corresponding RU,
RD, RZ, RN, RC, and RP edit descriptors.

This specifier is not allowed on unformatted input or output.

OPEN: SHARE Specifier

The SHARE specifier indicates whether file locking is implemented while the unit is open. It takes the
following form:

SHARE = shr

shr Is a scalar default character expression.

On Windows* systems, this expression evaluates to one of the
following values:

Intel® Fortran Compiler Classic and Intel® Fortran Compiler Developer Guide and Reference 1

1045

'DENYRW' Indicates deny-read/write mode.
No other process can open the
file.

'DENYWR' Indicates deny-write mode. No
process can open the file with
write access.

'DENYRD' Indicates deny-read mode. No
process can open the file with
read access.

'DENYNONE' Indicates deny-none mode. Any
process can open the file in any
mode.

On Linux* systems, this expression evaluates to one of the following
values:

'DENYRW' Indicates exclusive access for
cooperating processes.

'DENYNONE' Indicates shared access for
cooperating processes.

On Windows systems, the default is 'DENYWR'. However, if you specify compiler option fpscomp general or
the SHARED specifier, the default is 'DENYNONE'.

On Linux systems, no restrictions are applied to file opening if you do not use a locking mechanism.

'COMPAT' is accepted for compatibility with previous versions. It is equivalent to 'DENYNONE'.

Use the ACCESS specifier in an INQUIRE statement to determine the access permission for a file.

Be careful not to permit other users to perform operations that might cause problems. For example, if you
open a file intending only to read from it, and want no other user to write to it while you have it open, you
could open it with ACTION='READ' and SHARE='DENYRW'. Other users would not be able to open it with
ACTION='WRITE' and change the file.

Suppose you want several users to read a file, and you want to make sure no user updates the file while
anyone is reading it. First, determine what type of access to the file you want to allow the original user.
Because you want the initial user to read the file only, that user should open the file with ACTION='READ'.
Next, determine what type of access the initial user should allow other users; in this case, other users should
be able only to read the file. The first user should open the file with SHARE='DENYWR'. Other users can also
open the same file with ACTION='READ' and SHARE='DENYWR'.

See Also
fpscomp compiler option

OPEN: SHARED Specifier

The SHARED specifier indicates that the file is connected for shared access by more than one program
executing simultaneously. It takes the following form:

SHARED

On Linux* systems, shared access is the default for the Fortran I/O system. On Windows* systems, it is the
default if SHARED or compiler option fpscomp general is specified.

See Also
fpscomp compiler option

 1 Intel® Fortran Compiler Classic and Intel® Fortran Compiler Developer Guide and Reference

1046

OPEN: SIGN Specifier

The SIGN specifier controls the optional plus characters in formatted numeric output created during the
connection. It takes the following form:

SIGN = sn

sn Is a scalar default character expression that evaluates to one of the
following values:

'PLUS' Indicates that the processor
should produce a plus sign in
any subsequent position where
it would be otherwise optional.

This has the same effect as the
SP edit descriptor.

'SUPPRESS' Indicates that the processor
should suppress a plus sign in
any subsequent position where
it would be otherwise optional.

This has the same effect as the
SS edit descriptor.

'PROCESSOR_DEFINED' Indicates that the processor
determines whether a plus sign
is added in any subsequent
position where it would be
otherwise optional.

This has the same effect as the
S edit descriptor.

The default is 'PROCESSOR_DEFINED'.

The setting can be overwritten by a SIGN= specifier in a WRITE statement.

This specifier is not allowed on unformatted input or output.

OPEN: STATUS Specifier

The STATUS specifier indicates the status of a file when it is opened. It takes the following form:

STATUS = sta

sta Is a scalar default character expression that evaluates to one of the
following values:

'OLD' Indicates an existing file.

'NEW' Indicates a new file; if the file
already exists, an error occurs.
Once the file is created, its
status changes to 'OLD'.

'SCRATCH' Indicates a new file that is
unnamed (called a scratch file).
When the file is closed or the
program terminates, the scratch
file is deleted.

Intel® Fortran Compiler Classic and Intel® Fortran Compiler Developer Guide and Reference 1

1047

'REPLACE' Indicates the file replaces
another. If the file to be replaced
exists, it is deleted and a new
file is created with the same
name. If the file to be replaced
does not exist, a new file is
created and its status changes
to 'OLD'.

'UNKNOWN' Indicates the file may or may
not exist. If the file does not
exist, a new file is created and
its status changes to 'OLD'.

Scratch files go into a temporary directory and are visible while they are open. Scratch files are deleted when
the unit is closed or when the program terminates normally, whichever occurs first.

To specify the path for scratch files, you can use one of the following environment variables:

• On Windows*: FORT_TMPDIR, TMP, or TEMP, searched in that order
• On Linux*: FORT_TMPDIR or TMPDIR, searched in that order

If no environment variable is defined, the default is the current directory.

The default is 'UNKNOWN'. This is also the default if you implicitly open a file by using WRITE. However, if
you implicitly open a file using READ, the default is 'OLD'. If you specify compiler option f66 (or OPTIONS/
NOF77), the default is 'NEW'.

NOTE
The STATUS specifier can also appear in CLOSE statements to indicate the file's status after it is
closed. However, in CLOSE statements the STATUS values are the same as those listed for the
DISPOSE specifier.

See Also
f66 compiler option

OPEN: TITLE Specifier

The TITLE specifier indicates the name of a child window in a QuickWin application. This specifier is only
available for Windows. It takes the following form:

TITLE = name

name Is a character expression.

If TITLE is specified in a non-Quickwin application, a runtime error occurs.

OPEN: TYPE Specifier

TYPE is a nonstandard synonym for STATUS.

OPEN: USEROPEN Specifier

The USEROPEN specifier lets you pass control to a routine that directly opens a file. The file can use system
calls or library routines to establish a special context that changes the effect of subsequent Fortran I/O
statements.

The USEROPEN specifier takes the following form:

USEROPEN = function-name

 1 Intel® Fortran Compiler Classic and Intel® Fortran Compiler Developer Guide and Reference

1048

function-name Is the name of an external function. The external function can be
written in Fortran, C, or other languages.

The return value is the file descriptor. On Linux, the file descriptor is a
4-byte integer on both 32-bit and 64-bit systems. On Windows, the
file descriptor is a 4-byte integer on 32-bit systems and an 8-byte
integer on 64-bit systems.

If the function is written in Fortran, do not execute a Fortran OPEN statement to open the file named in
USEROPEN.

The Intel® Fortran Runtime Library (RTL) I/O support routines call the function named in USEROPEN in place
of the system calls normally used when the file is first opened for I/O.

On Windows* systems, the Fortran RTL normally calls CreateFile() to open a file. When USEROPEN is
specified, the called function opens the file (or pipe, etc.) by using CreateFile() and returns the handle of
the file (return value from CreateFile()) when it returns control to the calling Fortran program.

On Linux* systems, the Fortran RTL normally calls the open function to open a file. When USEROPEN is
specified, the called function opens the file by calling open and returns the file descriptor of the file when it
returns control to the calling Fortran program.

When opening the file, the called function usually specifies options different from those provided by a normal
Fortran OPEN statement.

NOTE
You may get unexpected results if you specify OPEN with a filename and a USEROPEN specifier that
opens a different filename, and then use a CLOSE statement with STATUS=DELETE (or
DISPOSE=DELETE). In this case, the runtime library assumes you want to delete the file named in the
OPEN statement, not the one you specified in the USEROPEN function.

For more information about how to use the USEROPEN specifier, see User-Supplied OPEN Procedures/
USEROPEN Specifier.

Compilation Control Lines and Statements
In addition to specifying options on the compiler command line, you can specify the following lines and
statements in a program unit to influence compilation:

• The INCLUDE Line

Incorporates external source code into programs.
• The OPTIONS Statement

Sets options usually specified in the compiler command line. OPTIONS statement settings override
command line options.

Directive Enhanced Compilation
Directive enhanced compilation is performed by using compiler directives. Compiler directives are special
commands that let you perform various tasks during compilation. They are similar to compiler options, but
can provide more control within your program.

Compiler directives are preceded by a special prefix that identifies them to the compiler.

Syntax Rules for Compiler Directives
The following syntax rules apply to all general and OpenMP* Fortran compiler directives. You must follow
these rules precisely to compile your program properly and obtain meaningful results.

A directive prefix (tag) takes one of the following forms:

Intel® Fortran Compiler Classic and Intel® Fortran Compiler Developer Guide and Reference 1

1049

General compiler directives: !DIR$

OpenMP Fortran compiler directives: !$OMP

Compiler directives that are
extension to OpenMP:

!$OMPX (free format), !$OMX (fixed format)

In fixed-format source, the following prefix forms can be used in place of !DIR$: cDIR$, cDEC$, or !MS$,
where c is one of the following: C (or c), !, or *.

In fixed-format source, the following prefix forms can be used in place of !$OMP: c$OMP, and in place of !
$OMX: c$OMX, where c is one of the following: C (or c), !, or *.

The following are source form rules for directive prefixes:

• In fixed and tab source forms, prefixes begin with !, C (or c), or *.

The prefix must appear in columns 1 through 5; column 6 must be a blank or a tab (except for prefix !MS
$). From column 7 on, blanks are insignificant, so the directive can be positioned anywhere on the line
after column 6.

• In free source form, prefixes begin with !.

The prefix can appear in any column, but it cannot be preceded by any nonblank, nontab characters on
the same line.

• In all source forms, directives spelled with two keywords can be separated by an optional space; for
example, "LOOP COUNT" and "LOOPCOUNT" are both valid spellings for the same directive. However,
when a directive name is preceded by the prefix "NO", this is not considered to be two keywords. For
example, "NO DECLARE" is not a valid spelling; the only valid spelling for this directive is "NODECLARE".

A fixed-format compiler directive ends in column 72 (or column 132, if compiler option extend-source is
specified). Free-format directives end in column 132.

General compiler directives and OpenMP Fortran directives can be continued in the same way as Fortran
statements can be continued:

• In fixed form, the first line of the directive {initial line} has the directive prefix is in columns 1 through 5
and has a blank, a tab, or a zero in column 6; each continued line of the directive has the directive prefix
in columns 1 through 5 and has a character other than a blank, a tab, or a zero in column 6.

• In free form, the initial line of the directive ends with an ampersand followed by an optional comment
beginning with an exclamation point. Each continued line of the directive has the directive prefix
optionally preceded by blanks or tabs, followed by an ampersand optionally preceded by blanks or tabs.

A comment beginning with an ! can follow a compiler directive on the same line.

Additional Fortran statements (or directives) cannot appear on the same line as the compiler directive.

Compiler directives cannot appear within a continued Fortran statement.

Blank common used in a compiler directive is specified by two slashes (/ /).

If the source line starts with a valid directive prefix but the directive is not recognized, the compiler displays
an informational message and ignores the line.

General Compiler Directives
Compiler directives are specially formatted comments in the source file which provide information to the
compiler. Some directives, such as line length or conditional compilation directives provide the compiler
information which is used in interpreting the source file.

Other directives, such as optimization directives provide hints or suggestions to the compiler, which, in some
cases, may be ignored or overridden by the compiler based on the heuristics of the optimizer and/or code
generator.

You do not need to specify a compiler option to enable general directives. If the directive is ignored by the
compiler, no diagnostic message is issued.

The following is an alphabetical list of general compiler directives:

 1 Intel® Fortran Compiler Classic and Intel® Fortran Compiler Developer Guide and Reference

1050

ALIAS Specifies an alternate external name to be used when referring to
external subprograms.

ASSUME Provides heuristic information to the compiler optimizer.

ASSUME_ALIGNED Specifies that an entity in memory is aligned.

ATTRIBUTES Specifies properties for data objects and procedures.

BLOCK_LOOP and
NOBLOCK_LOOP

Enables or disables loop blocking for the immediately following nested DO
loops.

DECLARE and NODECLARE Generates or disables warnings for variables that have been used but not
declared.

DEFINE and UNDEFINE Defines (or undefines) a symbolic variable whose existence (or value) can
be tested during conditional compilation.

DISTRIBUTE POINT Suggests a location at which a DO loop may be split.

FIXEDFORMLINESIZE Sets the line length for fixed-form source code.

FMA and NOFMA Enables (or disables) the compiler to allow generation of fused multiply-
add (FMA) instructions, also known as floating-point contractions.

FREEFORM and NOFREEFORM Specifies free-format or fixed-format source code.

IDENT Specifies an identifier for an object module.

IF and IF DEFINED Specifies a conditional compilation construct.

INLINE, FORCEINLINE,
NOINLINE

Tell the compiler to perform the specified inlining on routines within
statements or DO loops.

INTEGER Specifies the default integer kind.

IVDEP Assists the compiler's dependence analysis of iterative DO loops.

LOOP COUNT Specifies the typical trip count for a DO loop; this assists the optimizer.

MESSAGE Specifies a character string to be sent to the standard output device
during the first compiler pass.

NOFUSION Prevents a loop from fusing with adjacent loops.

OBJCOMMENT Specifies a library search path in an object file.

OPTIMIZE and NOOPTIMIZE Enables or disables optimizations for the program unit.

OPTIONS Affects data alignment and warnings about data alignment.

PACK Specifies the memory alignment of derived-type items.

PARALLEL and NOPARALLEL Facilitates or prevents auto-parallelization by assisting the compiler's
dependence analysis of the immediately following DO loop. This feature is
only available for ifort.

PREFETCH and NOPREFETCH Enables or disables hint to the compiler to prefetch data from memory.

PSECT Modifies certain characteristics of a common block.

REAL Specifies the default real kind.

SIMD Requires and controls SIMD vectorization of loops. This feature is only
available for ifort.

Intel® Fortran Compiler Classic and Intel® Fortran Compiler Developer Guide and Reference 1

1051

STRICT and NOSTRICT Disables or enables language features not found in the language standard
specified on the command line.

UNROLL and NOUNROLL Tells the compiler's optimizer how many times to unroll a DO loop or
disables the unrolling of a DO loop.

UNROLL_AND_JAM and
NOUNROLL_AND_JAM

Enables or disables loop unrolling and jamming.

VECTOR and NOVECTOR Overrides default heuristics for vectorization of DO loops.

Product and Performance Information

Performance varies by use, configuration and other factors. Learn more at www.Intel.com/
PerformanceIndex.

Notice revision #20201201

See Also
Syntax Rules for Compiler Directives

Rules for Placement of Directives

Directives can have different effects depending on placement:

• Some directives affect the next statement only.
• Some directives can appear only at the beginning of a scope and affect the rest of that scope.
• Some directives affect the statements starting at that point in the source and continue until changed by

another directive or until the end of the scope containing the directive.

The scope can be a contained procedure or a program unit. A program unit is a main program, an external
subroutine or function, a module, or a block data program unit. A directive does not affect modules invoked
with the USE statement in the program unit that contains it, but it does affect INCLUDE statements that
follow the directive.

Certain directives may appear before program units or between program units in a source file. These
directives affect only the next program unit that lexically follows the directive. The effect of the directive
ceases at the end of the affected program unit. For example:

!dir$ integer:2
program m
integer k
print *, kind(k), kind(42) ! this prints 2, 2 which means the directive took effect
call sub()
end

subroutine sub()
integer kk
print *, kind(kk), kind(-42) ! this prints 4, 4 because the INTEGER:2 directive has no effect
here
end

The following directives have this behavior:

• ALIAS
• ATTRIBUTES
• DECLARE and NODECLARE
• DEFINE and UNDEFINE
• FIXEDFORMLINESIZE
• FREEFORM and NOFREEFORM
• IDENT
• INTEGER
• OPTIMIZE and NOOPTIMIZE

 1 Intel® Fortran Compiler Classic and Intel® Fortran Compiler Developer Guide and Reference

1052

https://www.intel.com/PerformanceIndex
https://www.intel.com/PerformanceIndex

• PACK
• PREFETCH
• PSECT
• REAL
• STRICT and NOSTRICT

Other rules may apply to these directives. For more information, see the description of each directive.

Rules for General Directives that Affect DO Loops

This table lists the general directives that affect DO loops:

BLOCK_LOOP and
NOBLOCK_LOOP

PARALLEL and NOPARALLEL

CODE_ALIGN PREFETCH and NOPREFETCH

DISTRIBUTE POINT SIMD

FORCEINLINE UNROLL and NOUNROLL

INLINE and NOINLINE UNROLL_AND_JAM

IVDEP VECTOR and NOVECTOR

LOOP COUNT

NOFUSION

NOUNROLL_AND_JAM

The following rules apply to all of the general directives:

• The directive must precede the DO statement for each DO loop it affects. The DO statement can be any of
the following:

• A counted DO loop
• A DO WHILE loop
• A DO CONCURRENT loop

• No source code lines, other than the following, can be placed between the directive statement and the DO
statement:

• One of the other general directives that affect DO loops
• An OpenMP* Fortran PARALLEL DO directive
• Comment lines
• Blank lines

Other rules may apply to these directives. For more information, see the description of each directive.

See Also
Rules for Loop Directives that Affect Array Assignment Statements

Rules for Loop Directives that Affect Array Assignment Statements

When certain loop directives precede an array assignment statement, they affect the implicit loops that are
generated by the compiler.

The following loop directives can affect array assignment statements:

BLOCK_LOOP and
NOBLOCK_LOOP

NOVECTOR

CODE_ALIGN PARALLEL and NOPARALLEL

DISTRIBUTE POINT PREFETCH and NOPREFETCH

Intel® Fortran Compiler Classic and Intel® Fortran Compiler Developer Guide and Reference 1

1053

FORCEINLINE SIMD

INLINE and NOINLINE UNROLL and NOUNROLL

IVDEP UNROLL_AND_JAM

LOOP COUNT VECTOR

NOFUSION

NOUNROLL_AND_JAM

Usually only one of the general directives can precede the array assignment statement (one-dimensional-
array = expression) to affect it. The BLOCK_LOOP and NOBLOCK_LOOP directives may precede array
assignment statements with any rank variable on the left-hand-side of the assignment.

Other rules may apply to the general directives. For more information, see the description of each directive.

Examples
Consider the following:

 REAL A(10), B(10)
 ...
 !DIR$ IVDEP
 A = B + 3

This has the same effect as writing the following explicit loop:

 !DIR$ IVDEP
 DO I = 1, 10
 A (I) = B (I) + 3
 END DO

See Also
Rules for General Directives that Affect DO Loops

OpenMP* Fortran Compiler Directives
Intel® Fortran supports OpenMP* Fortran compiler directives that comply with OpenMP Fortran Application
Program Interface (API) specification 5.0, most of the OpenMP Version 5.1 and OpenMP Version 5.2
specifications, and some of the OpenMP 6.0 Version TR12 specification.

To use these directives, you must specify compiler option -qopenmp (Linux*) or /Qopenmp (Windows*).
Offloading directives are enabled with option -fopenmp-targets (Linux) or /Qopenmp-targets (Windows).

OpenMP directives are specially formatted Fortran comment lines embedded in the source file which provide
the compiler with hints and suggestions for parallelization, optimization, vectorization, and offloading code to
accelerator hardware. The compiler uses the information specified in the directives with compiler heuristic
algorithms to generate more efficient code. At times, these heuristics may choose to ignore or override the
information provided by a directive. If the directive is ignored by the compiler, no diagnostic message is
issued.

Options that use OpenMP are available for both Intel® microprocessors and non-Intel microprocessors, but
these options may perform additional optimizations on Intel® microprocessors than they perform on non-Intel
microprocessors. The list of major, user-visible OpenMP constructs and features that may perform differently
on Intel® microprocessors vs. non-Intel microprocessors includes: locks (internal and user visible), the
SINGLE construct, barriers (explicit and implicit), parallel loop scheduling, reductions, memory allocation,
thread affinity, and binding.

Unless denoted as a pure directive, OpenMP directives are not allowed in Fortran procedures declared to be
PURE.

The following is an alphabetical list of supported OpenMP Fortran directives:

 1 Intel® Fortran Compiler Classic and Intel® Fortran Compiler Developer Guide and Reference

1054

ALLOCATE Specifies memory allocators to use for object allocation and deallocation.
This feature is only available for ifx.

ALLOCATORS Specifies memory allocators to use for object allocation in Fortran
ALLOCATE statements and for their deallocation. This feature is only
available for ifx.

ASSUMES Provides hints to the optimizer about the current compilation unit and all
the code it can reach through procedure calls. It is a pure directive. This
feature is only available for ifx.

ATOMIC Specifies that a specific memory location is to be updated atomically.

BARRIER Synchronizes all the threads in a team.

CANCEL Requests cancellation of the innermost enclosing region of the type
specified, and causes the encountering implicit or explicit task to proceed
to the end of the canceled construct.

CANCELLATION POINT Defines a point at which implicit or explicit tasks check to see if
cancellation has been requested for the innermost enclosing region of the
type specified.

CRITICAL Restricts access for a block of code to only one thread at a time.

DECLARE MAPPER Declares a user-defined data mapper for derived types and local variables
that can subsequently be used in MAP clauses. It is a pure directive. This
feature is only available for ifx.

DECLARE REDUCTION Declares a user-defined reduction for one or more types. It is a pure
directive.

DECLARE SIMD Generates a SIMD procedure. It is a pure directive.

DECLARE TARGET Causes the creation of a device-specific version of a named routine that
can be called from a target region. It is a pure directive. This feature is
only available for ifx.

DECLARE VARIANT Identifies a variant of a base procedure and specifies the context in which
this variant is used. It is a pure directive. This feature is only available for
ifx.

DEPOBJ Initializes, updates, or uninitializes an OpenMP depend object. This
feature is only available for ifx.

DISPATCH Determines if a variant of a base procedure is to be called for a given
subroutine or function call. This feature is only available for ifx.

DISTRIBUTE Specifies that loop iterations will be executed by thread teams in the
context of their implicit tasks.

DISTRIBUTE PARALLEL DO Specifies a loop that can be executed in parallel by multiple threads that
are members of multiple teams.

DISTRIBUTE PARALLEL DO
SIMD

Specifies a loop that will be executed in parallel by multiple threads that
are members of multiple teams. It will be executed concurrently using
SIMD instructions.

DISTRIBUTE SIMD Specifies a loop that will be distributed across the primary threads of the
teams region. It will be executed concurrently using SIMD instructions.

DO Specifies that the iterations of the immediately following DO loop must be
executed in parallel.

Intel® Fortran Compiler Classic and Intel® Fortran Compiler Developer Guide and Reference 1

1055

DO SIMD Specifies a loop that can be executed concurrently using SIMD
instructions.

ERROR Causes the compiler or runtime system to process an error condition. It is
a pure directive if COMPILATION is specified for the AT clause, or the AT
clause does not appear. This feature is only available for ifx.

FLUSH Specifies synchronization points where the threads in a team must have a
consistent view of memory.

GROUPPRIVATE Specifies that a variable is replicated once per group of threads
participating in a parallel region. This feature is only available for ifx.

INTEROP Identifies a foreign runtime context and identifies runtime characteristics
of that context, enabling interoperability with it. This feature is only
available for ifx.

LOOP Specifies that the iterations of the associated loops can execute
concurrently. This feature is only available for ifx.

MASKED Specifies a block of code to be executed by a subset of threads of the
current team. This feature is only available for ifx.

MASKED TASKLOOP Provides an abbreviated way to specify a TASKLOOP construct inside a
MASKED construct. This feature is only available for ifx.

MASKED TASKLOOP SIMD Provides an abbreviated way to specify a TASKLOOP SIMD construct
inside a MASKED construct. This feature is only available for ifx.

MASTER construct Deprecated; see MASKED. Specifies a block of code to be executed by the
master thread of the team.

MASTER TASKLOOP Deprecated; provides an abbreviated way to specify a TASKLOOP
construct inside a MASTER construct. This feature is only available for ifx.

MASTER TASKLOOP SIMD Deprecated; provides an abbreviated way to specify a TASKLOOP SIMD
construct inside a MASTER construct. This feature is only available for ifx.

METADIRECTIVE Specifies variant OpenMP directives, one of which may conditionally
replace the metadirective based on the OpenMP context enclosing the
metadirective. This feature is only available for ifx.

NOTHING Provides documentary clarity in conditionally compiled code or conditional
OpenMP* code. It has no effect on the semantics or execution of the
program. It is a pure directive. This feature is only available for ifx.

ORDERED Specifies a block of code that the threads in a team must execute in the
natural order of the loop iterations.

PARALLEL Defines a parallel region.

PARALLEL DO Defines a parallel region that contains a single DO directive.

PARALLEL DO SIMD Specifies a loop that can be executed concurrently using SIMD
instructions. It provides a shortcut for specifying a PARALLEL construct
containing one SIMD loop construct and no other statement.

PARALLEL LOOP Specifies a shortcut for indicating that a loop or loop nest can execute
concurrently across multiple threads. This feature is only available for ifx.

PARALLEL MASKED Provides an abbreviated way to specify a MASKED construct inside a
PARALLEL construct. This feature is only available for ifx.

 1 Intel® Fortran Compiler Classic and Intel® Fortran Compiler Developer Guide and Reference

1056

PARALLEL MASKED TASKLOOP Provides an abbreviated way to specify a MASKED TASKLOOP construct
inside a PARALLEL construct. This feature is only available for ifx.

PARALLEL MASKED TASKLOOP
SIMD

Provides an abbreviated way to specify a MASKED TASKLOOP SIMD
construct inside a PARALLEL construct. This feature is only available for
ifx.

PARALLEL MASTER Deprecated; provides an abbreviated way to specify a MASTER construct
inside a PARALLEL construct. This feature is only available for ifx.

PARALLEL MASTER TASKLOOP Deprecated; provides an abbreviated way to specify a MASTER TASKLOOP
construct inside a PARALLEL construct. This feature is only available for
ifx.

PARALLEL MASTER TASKLOOP
SIMD

Deprecated; provides an abbreviated way to specify a MASTER TASKLOOP
SIMD construct inside a PARALLEL construct. This feature is only available
for ifx.

PARALLEL SECTIONS Defines a parallel region that contains a single SECTIONS directive.

PARALLEL WORKSHARE Defines a parallel region that contains a single WORKSHARE directive.

PREFETCH DATA Suggests to the compiler to preload data into cache. Preloading data in
cache minimizes the effects of memory latency. It is a pure directive. This
feature is only available for ifx.

REQUIRES Lists the features that an implementation must support so that the
program compiles and runs correctly. This feature is only available for ifx.

SCAN Specifies a scan computation that updates each list item in each iteration
of the loop the directive appears in.

SCOPE Specifies a block of code to be executed by all threads in a team. This
feature is only available for ifx.

SECTIONS Specifies that the enclosed SECTION directives define blocks of code to
be divided among threads in a team.

SIMD Requires and controls SIMD vectorization of loops. It is a pure directive.

SINGLE Specifies a block of code to be executed by only one thread in a team at a
time.

TARGET Creates a device data environment and executes the construct on the
same device. This feature is only available for ifx.

TARGET DATA Creates a device data environment for the extent of the region. This
feature is only available for ifx.

TARGET ENTER DATA Specifies that variables are mapped to a device data environment. This
feature is only available for ifx.

TARGET EXIT DATA Specifies that variables are unmapped from a device data environment.
This feature is only available for ifx.

TARGET PARALLEL Creates a device data environment in a parallel region and executes the
construct on that device.

TARGET PARALLEL DO Provides an abbreviated way to specify a TARGET directive containing a
PARALLEL DO directive and no other statements.

TARGET PARALLEL DO SIMD Specifies a TARGET construct that contains a PARALLEL DO SIMD
construct and no other statement.

Intel® Fortran Compiler Classic and Intel® Fortran Compiler Developer Guide and Reference 1

1057

TARGET PARALLEL LOOP Specifies a shortcut for specifying a parallel loop inside a TARGET
construct that contains no other statements than the parallel loop. This
feature is only available for ifx.

TARGET SIMD Specifies a TARGET construct that contains a SIMD construct and no other
statement.

TARGET TEAMS Creates a device data environment and executes the construct on the
same device. It also creates a league of thread teams with the primary
thread in each team executing the structured block.

TARGET TEAMS DISTRIBUTE Creates a device data environment and executes the construct on the
same device. It also specifies that loop iterations will be shared among
the primary threads of all thread teams in a league created by a TEAMS
construct.

TARGET TEAMS DISTRIBUTE
PARALLEL DO

Creates a device data environment and then executes the construct on
that device. It also specifies a loop that can be executed in parallel by
multiple threads that are members of multiple teams created by a TEAMS
construct.

TARGET TEAMS DISTRIBUTE
PARALLEL DO SIMD

Creates a device data environment and then executes the construct on
that device. It also specifies a loop that can be executed in parallel by
multiple threads that are members of multiple teams created by a TEAMS
construct. The loop will be distributed across the teams, which will be
executed concurrently using SIMD instructions.

TARGET TEAMS DISTRIBUTE
SIMD

Creates a device data environment and executes the construct on the
same device. It also specifies that loop iterations will be shared among
the master threads of all thread teams in a league created by a teams
construct. It will be executed concurrently using SIMD instructions.

TARGET TEAMS LOOP Specifies a shortcut for specifying a TEAMS LOOP construct inside a
TEAMS construct that contains no other statements. This feature is only
available for ifx.

TARGET UPDATE Makes the list items in the device data environment consistent with their
corresponding original list items. This feature is only available for ifx.

TASK Defines a task region.

TASKGROUP Specifies a wait for the completion of all child tasks of the current task
and all of their descendant tasks.

TASKLOOP Specifies that the iterations of one or more associated DO loops should be
executed in parallel using OpenMP* tasks. The iterations are distributed
across tasks that are created by the construct and scheduled to be
executed.

TASKLOOP SIMD Specifies a loop that can be executed concurrently using SIMD
instructions and that those iterations will also be executed in parallel
using OpenMP* tasks.

TASKWAIT Specifies a wait on the completion of child tasks generated since the
beginning of the current task.

TASKYIELD Specifies that the current task can be suspended at this point in favor of
execution of a different task.

TEAMS construct Creates a group of thread teams to be used in a parallel region. This
feature is only available for ifx.

 1 Intel® Fortran Compiler Classic and Intel® Fortran Compiler Developer Guide and Reference

1058

TEAMS DISTRIBUTE Creates a league of thread teams to execute a structured block in the
primary thread of each team. It also specifies that loop iterations will be
shared among the primary threads of all thread teams in a league created
by a TEAMS construct.

TEAMS DISTRIBUTE
PARALLEL DO

Creates a league of thread teams to execute a structured block in the
primary thread of each team. It also specifies a loop that can be executed
in parallel by multiple threads that are members of multiple teams.

TEAMS DISTRIBUTE
PARALLEL DO SIMD

Creates a league of thread teams to execute a structured block in the
primary thread of each team. It also specifies a loop that can be executed
in parallel by multiple threads that are members of multiple teams. The
loop will be distributed across the primary threads of the teams region,
which will be executed concurrently using SIMD instructions.

TEAMS DISTRIBUTE SIMD Creates a league of thread teams to execute the structured block in the
primary thread of each team. It also specifies a loop that will be
distributed across the primary threads of the teams region. The loop will
be executed concurrently using SIMD instructions.

TEAMS LOOP Specifies a shortcut for specifying a LOOP construct inside a TEAMS
construct. This feature is only available for ifx.

THREADPRIVATE Makes named common blocks private to each thread, but global within
the thread.

TILE Tiles (or blocks) one or more loops in a loop nest. It is a pure directive.
This feature is only available for ifx.

UNROLL Partially or fully unrolls a DO loop. It is a pure directive. This feature is
only available for ifx.

WORKSHARE Divides the work of executing a block of statements or constructs into
separate units.

The OpenMP Fortran directives can be grouped into categories. For more information about the categories for
these directives, see Categories for OpenMP* Fortran Directives.

Product and Performance Information

Performance varies by use, configuration and other factors. Learn more at www.Intel.com/
PerformanceIndex.

Notice revision #20201201

See Also
Syntax Rules for Compiler Directives
qopenmp, Qopenmp compiler option
fopenmp-targets, Qopenmp-targets compiler option
The OpenMP web site

Categories for OpenMP* Fortran Directives

OpenMP* Fortran directives can be categorized as shown in the following tables.

Parallelism OpenMP* Fortran Directive

Use this directive to form a team
of threads and execute those
threads in parallel.

PARALLEL

Use these directives for deferring execution.

Intel® Fortran Compiler Classic and Intel® Fortran Compiler Developer Guide and Reference 1

1059

https://www.intel.com/PerformanceIndex
https://www.intel.com/PerformanceIndex
https://www.openmp.org/

Tasking OpenMP* Fortran Directives

Use these directives for deferring
execution.

TASK

TASKLOOP

Worksharing OpenMP* Fortran Directives

Use these directives to share
work among a team of threads.

DO Directive

LOOP Directive (ifx)

SECTIONS

SCOPE (ifx)

SINGLE

WORKSHARE

Synchronization OpenMP* Fortran Directives

Use these directives to
synchronize between threads.

ATOMIC

BARRIER

CRITICAL Directive

FLUSH Directive

MASKED (ifx)

MASTER (deprecated, see MASKED)

ORDERED

TASKGROUP

TASKWAIT

TASKYIELD

Data Environment OpenMP* Fortran Directives

Use these directives to affect the
data environment.

DECLARE MAPPER (ifx)

DEPOBJ (ifx)

GROUPPRIVATE(ifx)

PREFETCH DATA language extension (ifx)

THREADPRIVATE

Offload Target Control OpenMP* Fortran Directives

Use these directives to control
execution on one or more offload
targets.

DECLARE TARGET (ifx)

DECLARE VARIANT (ifx)

DISPATCH (ifx)

DISTRIBUTE

INTEROP (ifx)

REQUIRES (ifx)

TARGET Directive (ifx)

TARGET DATA (ifx)

 1 Intel® Fortran Compiler Classic and Intel® Fortran Compiler Developer Guide and Reference

1060

Offload Target Control OpenMP* Fortran Directives

TARGET ENTER DATA (ifx)

TARGET EXIT DATA (ifx)

TARGET UPDATE (ifx)

TEAMS (ifx)

Vectorization OpenMP* Fortran Directives

Use these directives to control
execution on vector hardware.

DECLARE SIMD

SCAN

SIMD Directive (OpenMP*)

Loop Transformation OpenMP* Fortran Directives

Use these directives to transform
or restructure loops.

TILE (ifx)

UNROLL (ifx)

Cancellation OpenMP* Fortran Directives

Use these constructs to cancel an
innermost enclosing region or to
check if cancellation is in effect.

CANCEL

CANCELLATION POINT

Memory Space Allocation OpenMP* Fortran Directives

Use these declarative directives
to allocate memory space.

ALLOCATE (ifx)

ALLOCATORS (ifx)

User-Defined Reduction OpenMP* Fortran Directive

Use this directive to declare a
user-defined reduction operation.

DECLARE REDUCTION

Utility and Informational OpenMP* Fortran Directives

Use these directives to get utility
or informational data.

Utility directives: These directives
provide information that aids
code readability, and may
facilitate interactions with the
implementation. Utility directives
are informational unless an
action time (AT) clause in an
ERROR directive specifies
EXECUTION; this makes the
directive executable.

ASSUMES (ifx)

ERROR (ifx)

NOTHING (ifx)

Intel® Fortran Compiler Classic and Intel® Fortran Compiler Developer Guide and Reference 1

1061

Utility and Informational OpenMP* Fortran Directives

Informational directives: These
directives provide
implementation information
about properties of the code,
which may aid in optimization.

Metadirectives OpenMP* Fortran Directive

Use this directive to conditionally
select another directive.

METADIRECTIVE (ifx)

Combined and Composites OpenMP* Fortran Directives

Combined directives: These are
shortcuts for multiple directives
in sequence. This kind of
construct is a shortcut for
specifying one construct
immediately nested inside
another construct. A combined
construct is semantically identical
to that of explicitly specifying the
first construct containing one
instance of the second construct
and no other statements.

Composite construct: These
constructs are composed of two
constructs but they do not have
identical semantics to specifying
one of the constructs
immediately nested inside the
other. This kind of construct
either adds semantics not
included in the constructs from
which it is composed or the
nesting of the one construct
inside the other is not
conforming.

DISTRIBUTE PARALLEL DO1

DISTRIBUTE PARALLEL DO SIMD1

DISTRIBUTE SIMD1

DO SIMD1

MASKED TASKLOOP (ifx)

MASKED TASKLOOP SIMD (ifx)

MASTER TASKLOOP (ifx)

MASTER TASKLOOP SIMD (ifx)

PARALLEL DO

PARALLEL DO SIMD

PARALLEL LOOP (ifx)

PARALLEL MASKED (ifx)

PARALLEL MASKED TASKLOOP (ifx)

PARALLEL MASKED TASKLOOP SIMD (ifx)

PARALLEL MASTER (ifx)

PARALLEL MASTER TASKLOOP (ifx)

PARALLEL MASTER TASKLOOP SIMD (ifx)

PARALLEL SECTIONS

PARALLEL WORKSHARE

TARGET PARALLEL

TARGET PARALLEL DO

TARGET PARALLEL DO SIMD

TARGET PARALLEL LOOP (ifx)

TARGET SIMD

TARGET TEAMS

TARGET TEAMS DISTRIBUTE

TARGET TEAMS DISTRIBUTE PARALLEL DO

TARGET TEAMS DISTRIBUTE PARALLEL DO SIMD

TARGET TEAMS DISTRIBUTE SIMD

TARGET TEAMS LOOP (ifx)

 1 Intel® Fortran Compiler Classic and Intel® Fortran Compiler Developer Guide and Reference

1062

Combined and Composites OpenMP* Fortran Directives

TASKLOOP SIMD 1

TEAMS DISTRIBUTE

TEAMS DISTRIBUTE PARALLEL DO

TEAMS DISTRIBUTE PARALLEL DO SIMD

TEAMS DISTRIBUTE SIMD

TEAMS LOOP (ifx)

1 This is a composite construct.

Clauses Used in Multiple OpenMP* Fortran Directives

This topic summarizes clauses that are used in more than one OpenMP* Fortran directive.

Other clauses (or keywords) are available for some OpenMP* Fortran directives. For more information, see
each directive description.

Some of the OpenMP* Fortran directives have clauses (or options) you can specify to control the scope
attributes of variables for the duration of the directive.

Data Scope Attribute Clauses

Name Description

DEFAULT Lets you specify a scope for all variables in the
lexical extent of a parallel region.

FIRSTPRIVATE Provides a superset of the functionality provided by
the PRIVATE clause. It declares one or more
variables to be private to each thread in a team,
and initializes each of them with the value of the
corresponding original variable.

IN_REDUCTION Specifies that a task participates in a reduction.

LASTPRIVATE Provides a superset of the functionality provided by
the PRIVATE clause. It declares one or more
variables to be private to an implicit task, and
causes the corresponding original variable to be
updated after the end of the region.

LINEAR Specifies that all variables in a list are private to a
SIMD task and that they have a linear relationship
within the iteration space of a loop.

PRIVATE Declares one or more variables to be private to
each thread in a team.

SHARED Specifies variables that will be shared by all the
threads in a team.

The data copying clauses let you copy data values from private or threadprivate variables in one implicit task
or thread to the corresponding variables in other implicit tasks or threads in the team.

Intel® Fortran Compiler Classic and Intel® Fortran Compiler Developer Guide and Reference 1

1063

Data Copying Clauses

Name Description

COPYIN Specifies that the data in the primary thread of the
team is to be copied to the thread private copies of
the common block at the beginning of the parallel
region.

COPYPRIVATE Uses a private variable to broadcast a value, or a
pointer to a shared object, from one member of a
team to the other members. The COPYPRIVATE
clause can only appear in the END SINGLE
directive.

The data motion clause MAP is used in OpenMP* Fortran TARGET directives. This data motion clause does not
modify the values of any of the internal control variables (ICVs).

List items that appear in this data motion clause may have corresponding new list items created in the device
data environment that is associated with the construct. If a new list item is created, a new list item of the
same type, kind, and rank is allocated. The initial value of the new list item is undefined.

The original list items and new list items may share storage. This means that data races can occur. Data
races are caused by unintended sharing of data; for example, when WRITEs to either item by one task or
device are followed by a READ of the other item by another task or device without intervening
synchronization.

Data Allocation and Data Mapping Clauses

Name Description

ALLOCATE (ifx only) Specifies the memory allocator to be used for one
or more private variables or common blocks of a
construct. This feature is only available for ifx.

MAP Maps a variable from the data environment of the
current task to the data environment of the device
associated with the construct.

The following are other clauses that can be used in more than one OpenMP* Fortran directive.

Miscellaneous Clauses

Name Description

ALIGNED Specifies that all variables in a list are aligned.

COLLAPSE Specifies how many loops are associated with the
loop construct.

DEPEND Enforces additional constraints on the scheduling of
a task by enabling dependences between sibling
tasks in the task region.

DEVICE Specifies the target device for certain TARGET
directives.

DEVICE_TYPE (ifx only) Specifies whether a version of a procedure or a
copy of a data entity is to be available on a HOST
device, a non-HOST device, or both. This feature is
only available for ifx.

FINAL Specifies that the generated task will be a final
task.

 1 Intel® Fortran Compiler Classic and Intel® Fortran Compiler Developer Guide and Reference

1064

Name Description

HINT Specifies synchronization hints about a region to aid
optimization.

IF Specifies a conditional expression. If the expression
evaluates to .FALSE., the construct is not executed.

MERGEABLE Specifies that the implementation may generate a
merged task.

NOWAIT Specifies that threads may resume execution before
the execution of the region completes.

ORDER (ifx only) Indicates that the iterations of the loop may
execute in any order or simultaneously. For more
information, see DO Directive, DISTRIBUTE, LOOP,
and SIMD. This feature is only available for ifx.

PRIORITY Specifies that the generated tasks have the
indicated priority for execution.

REDUCTION Performs a reduction operation on the specified
variables.

SUBDEVICE (ifx only) Specifies which tiles or compute slices (c-slices) of
the offload device the offloaded code will run on.
This feature is only available for ifx.

THREAD_LIMIT (ifx only) Limits the number of threads that can participate in
a construct. This feature is only available for ifx.

UNTIED Specifies that the task is never tied to the thread
that started its execution.

Conditional Compilation Rules

The OpenMP* Fortran API lets you conditionally compile Intel® Fortran statements if you use the appropriate
directive prefix.

The prefix depends on which source form you are using, although !$ is valid in all forms.

The prefix must be followed by a valid Intel Fortran statement on the same line.

Free Source Form
The free source form conditional compilation prefix is !$. This prefix can appear in any column as long as it is
preceded only by white space. It must appear as a single word with no intervening white space. Free-form
source rules apply to the directive line.

Initial lines must have a space after the prefix. Continued lines must have an ampersand as the last nonblank
character on the line. Continuation lines can have an ampersand after the prefix with optional white space
before and after the ampersand.

Fixed Source Form
For fixed source form programs, the conditional compilation prefix is one of the following: !$, C$ (or c$), or
*$.

The prefix must start in column one and appear as a single string with no intervening white space. Fixed-
form source rules apply to the directive line.

Intel® Fortran Compiler Classic and Intel® Fortran Compiler Developer Guide and Reference 1

1065

After the prefix is replaced with two spaces, initial lines must have a space or zero in column six, and
continuation lines must have a character other than a space or zero in column six. For example, the following
forms for specifying conditional compilation are equivalent:

 c23456789
 !$ IAM = OMP_GET_THREAD_NUM() +
 !$ * INDEX
 #IFDEF _OPENMP
 IAM = OMP_GET_THREAD_NUM() +
 * INDEX
 #ENDIF

Rules for Nesting and Binding

This section describes the dynamic nesting and binding rules for OpenMP* Fortran API directives.

Binding Rules
The following rules apply to dynamic binding:

• The DO, SECTIONS, SINGLE, MASKED, MASTER, and BARRIER directives bind to the dynamically
enclosing PARALLEL directive, if one exists.

• The ORDERED directive binds to the dynamically enclosing DO directive.
• The ATOMIC directive enforces exclusive access with respect to ATOMIC directives in all threads, not just

the current team.
• The CRITICAL directive enforces exclusive access with respect to CRITICAL directives in all threads, not

just the current team.
• A directive can never bind to any directive outside the closest enclosing PARALLEL directive.

Nesting Rules
The following rules apply to dynamic nesting:

• A PARALLEL directive dynamically inside another PARALLEL directive logically establishes a new team,
which is composed of only the current thread unless nested parallelism is enabled.

• DO, SECTIONS, and SINGLE directives that bind to the same PARALLEL directive are not allowed to be
nested one inside the other.

• DO, SECTIONS, and SINGLE directives are not permitted in the dynamic extent of CRITICAL, MASKED,
and MASTER directives.

• BARRIER directives are not permitted in the dynamic extent of DO, SECTIONS, SINGLE, MASKED,
MASTER, and CRITICAL directives.

• MASKED and MASTER directives are not permitted in the dynamic extent of DO, SECTIONS, and SINGLE
directives.

• ORDERED sections are not allowed in the dynamic extent of CRITICAL sections.
• Any directive set that is legal when executed dynamically inside a PARALLEL region is also legal when

executed outside a parallel region. When executed dynamically outside a user-specified parallel region,
the directive is executed with respect to a team composed of only the primary thread.

Examples
The following example shows nested PARALLEL regions:

 !$OMP PARALLEL DEFAULT(SHARED)
 !$OMP DO
 DO I =1, N
 !$OMP PARALLEL SHARED(I,N)
 !$OMP DO
 DO J =1, N
 CALL WORK(I,J)
 END DO

 1 Intel® Fortran Compiler Classic and Intel® Fortran Compiler Developer Guide and Reference

1066

 !$OMP END PARALLEL
 END DO
 !$OMP END PARALLEL

Note that the inner and outer DO directives bind to different PARALLEL regions.

The following shows a variation of the preceding example:

 !$OMP PARALLEL DEFAULT(SHARED)
 !$OMP DO
 DO I =1, N
 CALL SOME_WORK(I,N)
 END DO
 !$OMP END PARALLEL
 ...
 SUBROUTINE SOME_WORK(I,N)
 !$OMP PARALLEL DEFAULT(SHARED)
 !$OMP DO
 DO J =1, N
 CALL WORK(I,J)
 END DO
 !$OMP END PARALLEL
 RETURN
 END

Equivalent Compiler Options
Some compiler directives and compiler options have the same effect, as shown in the table below. However,
compiler directives can be turned on and off throughout a program, while compiler options remain in effect
for the whole compilation unless overridden by a compiler directive.

The following table shows compiler directives and equivalent command-line compiler options:

Compiler Directive Equivalent Command-Line Compiler Option

DECLARE -warn declarations (Linux*)

/warn:declarations (Windows*)

NODECLARE -warn nodeclarations (Linux)

/warn:nodeclarations (Windows)

DEFINE name -Dname (Linux)

/Dname (Windows)

FIXEDFORMLINESIZE:length -extend-source [size] (Linux)

/extend-source[:size] (Windows)

FREEFORM -free or -nofixed (Linux)

/free or /nofixed (Windows)

NOFREEFORM -nofree or -fixed (Linux)

/nofree or /fixed (Windows)

INTEGER:size -integer_sizesize (Linux)

/integer_size:size (Windows)

OBJCOMMENT /libdir:user (Windows)

Intel® Fortran Compiler Classic and Intel® Fortran Compiler Developer Guide and Reference 1

1067

Compiler Directive Equivalent Command-Line Compiler Option

OPTIMIZE[: n] -On (Linux)

/On (Windows)

NOOPTIMIZE -O0 (Linux)

/Od (Windows)

PACK:alignment -align recnbytes (Linux)

/align:recnbytes (Windows)

REAL:size -real-sizesize (Linux)

/real-size:size (Windows)

STRICT -warn stderrors with -stand f18 (Linux)

/warn:stderrors with /stand:f18 (Windows)

NOSTRICT -warn nostderrors (Linux)

/warn:nostderrors (Windows)

Scope and Association
Program entities are identified by names, labels, input/output unit numbers, operator symbols, or
assignment symbols. For example, a variable, a derived type, or a subroutine is identified by its name.

Scope refers to the area in which a name is recognized. A scoping unit is the program or part of a program in
which a name is defined or known. It can be any of the following:

• An entire executable program
• A single scoping unit
• A single statement (or part of a statement)

The region of the program in which a name is known and accessible is referred to as the scope of that name.
These different scopes allow the same name to be used for different things in different regions of the
program.

Association is the language concept that allows different names to refer to the same entity in a particular
region of a program.

Scope
Program entities have the following kinds of scope (as shown in the table below):

• Global

Entities that are accessible throughout an executable program. The name of a global entity must be
unique. It cannot be used to identify any other global entity in the same executable program.

• Scoping unit (Local scope)

Entities that are declared within a scoping unit. These entities are local to that scoping unit. The names of
local entities are divided into classes (see the table below).

A scoping unit is one of the following:

• A derived-type definition
• A procedure interface body (excluding any derived-type definitions and interface bodies contained

within it)
• A program unit or subprogram (excluding any derived-type definitions, interface bodies, and

subprograms contained within it)

 1 Intel® Fortran Compiler Classic and Intel® Fortran Compiler Developer Guide and Reference

1068

A scoping unit that immediately surrounds another scoping unit is called the host scoping unit. Named
entities within the host scoping unit are accessible to the nested scoping unit by host association, unless
access is blocked by an IMPORT ONLY or IMPORT NONE statement. For information about host association,
see Use and Host Association.

Once an entity is declared in a scoping unit, its name can be used throughout that scoping unit. An entity
declared in another scoping unit is a different entity even if it has the same name and properties.

Within a scoping unit, a local entity name that is not generic or an OpenMP* reduction identifier must be
unique within its class. However, the name of a local entity in one class can be used to identify a local
entity of another class.

Within a scoping unit, a generic name can be the same as any one of the procedure names in the
interface block. A generic name can be the same as the name of a derived type.

An OpenMP* reduction identifier can be the same as any local entity name.

A component name has the same scope as the derived type of which it is a component. It can appear only
within a component designator of a structure of that type.

For information on interactions between local and global names, see the table below.
• Statement

Entities that are accessible only within a statement or part of a statement; such entities cannot be
referenced in subsequent statements.

The name of a statement entity can also be the name of a common block, or a local or construct variable
accessible in the same scoping unit or construct; in this case, the name is interpreted within the
statement as that of the statement entity.

• Construct

Construct entities are accessible during the execution of the construct in which they are declared. Entities
declared in the specification part of a BLOCK construct, associate names in ASSOCIATE, SELECT RANK,
and SELECT TYPE constructs, and index variables in FORALL statements or constructs, or DO
CONCURRENT constructs are construct entities. An index name of an inner FORALL statement or
construct, or of a DO CONCURRENT construct cannot be the same as that of an index variable of an outer
(containing) FORALL or DO CONCURRENT construct.

An associate name of a SELECT TYPE construct has a different scope for each block of the construct; the
declared type, dynamic type, type parameters, rank or bounds may differ from block to block. An
associate name for a SELECT RANK construct has a different scope for each block of the construct since
the rank of the associate name is different in each block. An associate name for an ASSOCIATE construct
has the scope of the ASSOCIATE construct.

Scope of Program Entities

Entity Scope

Program units Global

Common blocks1 Global

External procedures Global

Intrinsic procedures Global2

Module procedures Local Class I

Internal procedures Local Class I

Dummy procedures Local Class I

Statement functions Local Class I

Derived types Local or construct Class I

Components of derived types Local Class II

Intel® Fortran Compiler Classic and Intel® Fortran Compiler Developer Guide and Reference 1

1069

Entity Scope

Named constants Local or construct Class I

Named constructs Local or construct Class I

Namelist group names Local Class I

OpenMP* reduction identifier Local Class I

Generic identifiers Local or construct Class I

Argument keywords in
procedures

Local Class III

Variables Local or construct Class I

Variables that are dummy
arguments in statement functions

Statement

DO variables in an implied-DO
list3 of a DATA statement, or an
array constructor

Statement

DO index variables of a FORALL
statement or construct, or a DO
CONCURRENT construct

Construct

Associate names Construct

Intrinsic operators Global

Defined operators Local or construct

Statement labels Local

External I/O unit numbers Global

Intrinsic assignment Global4

Defined assignment Local or construct

1 Names of common blocks can also be used to identify local entities.
2 If an intrinsic procedure is not used in a scoping unit, its name can be used as a local entity within that
scoping unit. For example, if intrinsic function COS is not used in a program unit, COS can be used as a
local variable there.
3 The DO variable in an implied-DO list of an I/O list has local scope.
4 The scope of the assignment symbol (=) is global, but it can identify additional operations (see Defining
Generic Assignment).

Scoping units can contain other scoping units. For example, the following shows six scoping units:

 MODULE MOD_1 ! Scoping unit 1
 ... ! Scoping unit 1
 CONTAINS ! Scoping unit 1
 FUNCTION FIRST ! Scoping unit 2
 TYPE NAME ! Scoping unit 3
 ... ! Scoping unit 3
 END TYPE NAME ! Scoping unit 3
 ... ! Scoping unit 2
 CONTAINS ! Scoping unit 2
 SUBROUTINE SUB_B ! Scoping unit 4
 TYPE PROCESS ! Scoping unit 5

 1 Intel® Fortran Compiler Classic and Intel® Fortran Compiler Developer Guide and Reference

1070

 ... ! Scoping unit 5
 END TYPE PROCESS ! Scoping unit 5
 INTERFACE ! Scoping unit 5
 SUBROUTINE SUB_A ! Scoping unit 6
 ... ! Scoping unit 6
 BLOCK ! Scoping unit 7
 ... ! Scoping unit 7
 END BLOCK ! Scoping unit 7
 END SUBROUTINE SUB_A ! Scoping unit 6
 END INTERFACE ! Scoping unit 5
 END SUBROUTINE SUB_B ! Scoping unit 4
 END FUNCTION FIRST ! Scoping unit 2
 END MODULE ! Scoping unit 1

See Also
Derived data types
Defining Generic Names for Procedures
Intrinsic procedures
Program Units and Procedures
Use and host association
Construct association
BLOCK construct
Defining Generic Operators
Defining Generic Assignment
PRIVATE Attributes and Statements
PUBLIC Attributes and Statements
IMPORT statement

Unambiguous Generic Procedure References
When a generic procedure reference is made, a specific procedure is invoked. If the following rules are used,
the generic reference will be unambiguous:

• Two dummy arguments are said to be distinguishable if any of the following are true:

• One is a procedure and the other is a data object.
• One has the ALLOCATABLE attribute and the other has the POINTER attribute without INTENT (IN).
• They are both data objects or both known to be functions, and they have different type and kind

parameters, or different rank.
• One is a function with non-zero rank and the other is not known to be a function.

• Within a scoping unit, two procedures that have the same generic name must both be subroutines or both
be functions. One of the procedures must have a non-optional dummy argument that is one of the
following:

• Not present by position or argument keyword in the other argument list
• Is present, but is distinguishable from the dummy argument in the other argument list

• Within a scoping unit, two procedures that have the same generic operator must both have the same
number of arguments or both define assignment.

One of the procedures must have a dummy argument that corresponds, by position in the argument list,
to a dummy argument of the other procedure. The dummy arguments must be distinguishable from each
other in each argument list.

When an interface block extends an intrinsic procedure, operator, or assignment, the rules apply as if the
intrinsic consists of a collection of specific procedures, one for each allowed set of arguments.

When a generic procedure is accessed from a module, the rules apply to all the specific versions, even if
some of them are inaccessible by their specific names.

Intel® Fortran Compiler Classic and Intel® Fortran Compiler Developer Guide and Reference 1

1071

See Also
Defining Generic Names for Procedures for details on generic procedure names

Resolve Procedure References
The procedure name in a procedure reference is either established to be generic or specific, or is not
established. The rules for resolving a procedure reference differ depending on whether the procedure is
established and how it is established.

References to Generic Names

Within a scoping unit, a procedure name is established to be generic if any of the following is true:

• The scoping unit contains an interface block with that procedure name.
• The procedure name matches the name of a generic intrinsic procedure, and it is specified with the

INTRINSIC attribute in that scoping unit.
• The procedure name is established to be generic in a module, and the scoping unit contains a USE

statement making that procedure name accessible.
• The scoping unit contains no declarations for that procedure name, but the procedure name is established

to be generic in a host scoping unit.

To resolve a reference to a procedure name established to be generic, the following rules are used in the
order shown:

1. If an interface block with that procedure name appears in one of the following, the reference is to the
specific procedure providing that interface:

a. The scoping unit that contains the reference
b. A module made accessible by a USE statement in the scoping unit

The reference must be consistent with one of the specific interfaces of the interface block.
2. If the procedure name is specified with the INTRINSIC attribute in one of the following, the reference is

to that intrinsic procedure:

a. The same scoping unit
b. A module made accessible by a USE statement in the scoping unit

The reference must be consistent with the interface of that intrinsic procedure.
3. If the following is true, the reference is resolved by applying rules 1 and 2 to the host scoping unit:

a. The procedure name is established to be generic in the host scoping unit
b. There is agreement between the scoping unit and the host scoping unit as to whether the

procedure is a function or subroutine name.
4. If none of the preceding rules apply, the reference must be to the generic intrinsic procedure with that

name. The reference must be consistent with the interface of that intrinsic procedure.

Examples
The following example shows how a module can define three separate procedures and give them a generic
name DUP through an interface block. Although the main program calls all three by the generic name, there
is no ambiguity since the arguments are of different data types, and DUP is a function rather than a
subroutine. The module UN_MOD must give each procedure a different name.

 MODULE UN_MOD
 !

 CONTAINS
 subroutine dup1(x,y)
 real x,y
 print *, ' Real arguments', x, y
 end subroutine dup1

 subroutine dup2(m,n)
 integer m,n

 1 Intel® Fortran Compiler Classic and Intel® Fortran Compiler Developer Guide and Reference

1072

 print *, ' Integer arguments', m, n
 end subroutine dup2

 character function dup3 (z)
 character(len=2) z
 dup3 = 'String argument '// z
 end function dup3

 END MODULE

 program unclear
 !
 ! shows how to use generic procedure references

 USE UN_MOD
 INTERFACE DUP
 MODULE PROCEDURE dup1, dup2, dup3
 END INTERFACE

 real a,b
 integer c,d
 character (len=2) state

 a = 1.5
 b = 2.32
 c = 5
 d = 47
 state = 'WA'

 call dup(a,b)
 call dup(c,d)
 print *, dup(state) !actual output is 'S' only
 END

Note that the function DUP3 only prints one character, since module UN_MOD specifies no length parameter
for the function result.

If the dummy arguments x and y for DUP were declared as integers instead of reals, then any calls to DUP
would be ambiguous. If this is the case, a compile-time error results.

The subroutine definitions, DUP1, DUP2, and DUP3, must have different names. The generic name is
specified in the first line of the interface block, and in the example is DUP.

References to Specific Names

In a scoping unit, a procedure name is established to be specific if it is not established to be generic and any
of the following is true:

• The scoping unit contains an interface body with that procedure name.
• The scoping unit contains an internal procedure, module procedure, or statement function with that

procedure name.
• The procedure name is the same as the name of a generic intrinsic procedure, and it is specified with the

INTRINSIC attribute in that scoping unit.
• The procedure name is specified with the EXTERNAL attribute in that scoping unit.
• The procedure name is established to be specific in a module, and the scoping unit contains a USE

statement making that procedure name accessible.
• The scoping unit contains no declarations for that procedure name, but the procedure name is established

to be specific in a host scoping unit.

To resolve a reference to a procedure name established to be specific, the following rules are used in the
order shown:

Intel® Fortran Compiler Classic and Intel® Fortran Compiler Developer Guide and Reference 1

1073

1. If either of the following is true, the dummy argument is a dummy procedure and the reference is to
that dummy procedure:

a. The scoping unit is a subprogram, and it contains an interface body with that procedure name.
b. The procedure name has been declared EXTERNAL, and the procedure name is a dummy

argument of that subprogram.

The procedure invoked by the reference is the one supplied as the corresponding actual argument.
2. If the scoping unit contains an interface body or the procedure name has been declared EXTERNAL, and

Rule 1 does not apply, the reference is to an external procedure with that name.
3. If the scoping unit contains an internal procedure or statement function with that procedure name, the

reference is to that entity.
4. If the procedure name has been declared INTRINSIC in the scoping unit, the reference is to the intrinsic

procedure with that name.
5. If the scoping unit contains a USE statement that makes the name of a module procedure accessible,

the reference is to that procedure. Since the USE statement allows renaming, the name referenced may
differ from the name of the module procedure.)

6. If none of the preceding rules apply, the reference is resolved by applying these rules to the host
scoping unit.

References to Non-Established Names

In a scoping unit, a procedure name is not established if it is not determined to be generic or specific.

To resolve a reference to a procedure name that is not established, the following rules are used in the order
shown:

1. If both of the following are true, the dummy argument is a dummy procedure and the reference is to
that dummy procedure:

a. The scoping unit is a subprogram.
b. The procedure name is a dummy argument of that subprogram.

The procedure invoked by the reference is the one supplied as the corresponding actual argument.
2. If both of the following are true, the procedure is an intrinsic procedure and the reference is to that

intrinsic procedure:

a. The procedure name matches the name of an intrinsic procedure.
b. There is agreement between the intrinsic procedure definition and the reference of the name as a

function or subroutine.
3. If neither of the preceding rules apply, the reference is to an external procedure with that name.

See Also
Function references
USE statement
CALL Statement for details on subroutine references
Defining Generic Names for Procedures for details on generic procedure names

Association
Association allows different program units to access the same value through different names. Entities are
associated when each is associated with the same storage location.

This section discusses the forms of association.

Name Association

Name association allows an entity to be accessed from different scoping units by the same name or by
different names.

This section discusses the forms of name association.

To see an example of Name, Pointer, and Storage Association, see Storage Association.

 1 Intel® Fortran Compiler Classic and Intel® Fortran Compiler Developer Guide and Reference

1074

Argument Association

Arguments are the values passed to and from functions and subroutines through calling program argument
lists.

Execution of a procedure reference establishes argument association between an actual argument and its
corresponding dummy argument. The name of a dummy argument can be different from the name of its
associated actual argument (if any).

When the procedure completes execution, the argument association is terminated. A dummy argument of
that procedure can be associated with an entirely different actual argument in a subsequent invocation of the
procedure.

Association Between Actual Arguments and Dummy Data Objects
A scalar dummy argument of a non-elemental procedure can be associated only with a scalar actual
argument.

If the actual argument is scalar, the corresponding dummy argument must be scalar unless the actual
argument is one of the following:

• Of type default character
• Of type character with the C character kind
• An element or substring of an element of an array that is not an assumed-shape or pointer array

If the procedure is non-elemental and is referenced by a generic name or as a defined operator or defined
assignment, the ranks of the actual arguments and corresponding dummy arguments must agree.

If a scalar dummy argument is of type default character, the length of the dummy argument must be less
than or equal to the length of the actual argument. The dummy argument becomes associated with the
leftmost len characters of the actual argument. If an array dummy argument is of type default character and
is not assumed shape, it becomes associated with the leftmost characters of the actual argument element
sequence and it must not extend beyond the end of that sequence.

If a dummy argument is not allocatable and is not a pointer, it must be type compatible with the associated
actual argument. If a dummy argument is allocatable or a pointer, the associated actual argument must be
polymorphic only if the dummy argument is polymorphic, and the declared type of the actual argument must
be the same as the declared type of the dummy argument.

If the dummy argument is a pointer, the actual argument must be a pointer and the non-deferred type
parameters and ranks must agree. If a dummy argument is allocatable, the actual argument must be
allocatable and the non-deferred type parameters and ranks must agree. The actual argument can have an
allocation status of unallocated.

At the invocation of the procedure, the pointer association status of an actual argument associated with a
pointer dummy argument becomes undefined if the dummy argument has INTENT(OUT).

The dynamic type of a polymorphic, allocatable, or pointer dummy argument can change as a result of
execution of an allocate statement or pointer assignment in the subprogram. Because of this behavior, the
corresponding actual argument needs to be polymorphic and have a declared type that is the same as the
declared type of the dummy argument, or an extension of that type.

The values of assumed type parameters of a dummy argument are assumed from the corresponding type
parameters of the associated actual argument.

Except in references to intrinsic inquiry functions, if the dummy argument is not a pointer and the
corresponding actual argument is a pointer, the actual argument must be associated with a target and the
dummy argument becomes the argument associated with that target.

Except in references to intrinsic inquiry functions, if the dummy argument is not allocatable and the actual
argument is allocatable, the actual argument must be allocated.

Intel® Fortran Compiler Classic and Intel® Fortran Compiler Developer Guide and Reference 1

1075

If the dummy argument has the VALUE attribute, it becomes associated with a definable anonymous data
object whose initial value is that of the actual argument. Subsequent changes to the value or definition
status of the dummy argument do not affect the actual argument.

If the dummy argument does not have the TARGET or POINTER attribute, any pointers associated with the
actual argument do not become associated with the corresponding dummy argument on invocation of the
procedure.

If the dummy argument has the TARGET attribute, does not have the VALUE attribute, is either a scalar or an
assumed-shape array, and the corresponding actual argument has the TARGET attribute but is not an array
section with a vector subscript, then the following is true:

• Any pointers associated with the actual argument become associated with the corresponding dummy
argument on invocation of the procedure.

• When execution of the procedure completes, any pointers that do not become undefined and are
associated with the dummy argument remain associated with the actual argument.

Any pointers associated with the dummy argument become undefined when execution of the procedure
completes in these cases:

• If the dummy argument has the TARGET attribute and the corresponding actual argument does not have
the TARGET attribute or it is an array section with a vector subscript.

• If the dummy argument has the TARGET attribute and the VALUE attribute.

If a non-pointer dummy argument has INTENT (OUT) or INTENT (INOUT), the actual argument must be
definable. If a dummy argument has INTENT (OUT), the corresponding actual argument becomes undefined
at the time the association is established, except for components of an object of derived type for which
default initialization has been specified. If the dummy argument is not polymorphic and the type of the actual
argument is an extension of the type of the dummy argument, only the part of the actual argument that is of
the same type as the dummy argument becomes undefined.

Association Between Actual Arguments and Dummy Procedure Entities
If a dummy argument is a procedure pointer, the associated actual argument must be a procedure pointer, a
reference to a function that returns a procedure pointer, or a reference to the NULL intrinsic function.

If a dummy argument is a dummy procedure without the POINTER attribute, the associated actual argument
must be the specific name of an external, module, dummy, or intrinsic procedure, an associated procedure
pointer, or a reference to a function that returns an associated procedure pointer. If the specific name is also
a generic name, only the specific procedure is associated with the dummy argument.

For generic declarations, a dummy argument is type, kind, and rank compatible with another dummy
argument if following is true:

• The first is type compatible with the second.
• The kind type parameters of the first have the same values as the corresponding kind type parameters of

the second.
• Both have the same rank or either one is assumed-rank.

If an external procedure name or a dummy procedure name is used as an actual argument, its interface
must be explicit or it must be explicitly declared to have the EXTERNAL attribute.

If the interface of the dummy argument is explicit, the procedure characteristics must be the same for the
associated actual argument and the corresponding dummy argument, except that a pure actual argument
can be associated with a dummy argument that is not pure, and an elemental intrinsic actual procedure can
be associated with a dummy procedure that is prohibited from being elemental.

If the interface of the dummy argument is implicit and either the name of the dummy argument is explicitly
typed or it is referenced as a function, the dummy argument must not be referenced as a subroutine and the
actual argument must be a function, function procedure pointer, or dummy procedure.

 1 Intel® Fortran Compiler Classic and Intel® Fortran Compiler Developer Guide and Reference

1076

If the interface of the dummy argument is implicit and a reference to it appears as a subroutine reference,
the actual argument must be a subroutine, subroutine procedure pointer, or dummy procedure.

An assumed-rank dummy argument can correspond to an actual argument of any rank. If the actual
argument has rank zero (is a scalar), the dummy argument has rank zero; the shape is a zero-sized array
and the LBOUND and UBOUND intrinsic functions, with no DIM argument, return zero-sized arrays. If the
actual argument has rank greater than zero, the rank and extents of the dummy argument are assumed
from the actual argument, including the lack of a final extent in the case of an assumed-size array. If the
actual argument is an array and the dummy argument is allocatable or a pointer, the bounds of the dummy
argument are assumed from the actual argument.

An assumed-type dummy argument must not correspond to an actual argument that is of a derived type that
has type parameters, type-bound procedures, or final subroutines.

Association For C Interoperability
When a Fortran procedure that has an INTENT(OUT) allocatable dummy argument is invoked by a C function,
and the actual argument in the C function is the address of a C descriptor that describes an allocated
allocatable variable, the variable is deallocated upon entry to the Fortran procedure.

When a C function is invoked from a Fortran procedure by means of an interface with an INTENT(OUT)
allocatable dummy argument, and the actual argument in the reference to the C function is an allocated
allocatable variable, the variable is deallocated on invocation (before execution of the C function begins).

See Also
Argument Association in Procedures
Procedure Characteristics

Use and Host Association

Use association allows the entities in a module to be accessible to other scoping units. Host association
allows the entities in a host scoping unit to be accessible to an internal subprogram, a module subprogram,
or submodule program.

Use association and host association remain in effect throughout the execution of the executable program.

An interface body does not access named entities by host association, but it can access entities by use
association.

Example
The following example shows host and use association:

 MODULE SHARE_DATA
 REAL Y, Z
 END MODULE

 PROGRAM DEMO
 USE SHARE_DATA ! All entities in SHARE_DATA are available
 REAL B, Q ! through use association.
 ...
 CALL CONS (Y)
 CONTAINS
 SUBROUTINE CONS (Y) ! Y is a local entity (dummy argument).
 REAL C, Y
 ...
 Y = B + C + Q + Z ! B and Q are available through host association.
 ... ! C is a local entity, explicitly declared.
 END SUBROUTINE CONS ! is available through use association.
 END PROGRAM DEMO

Intel® Fortran Compiler Classic and Intel® Fortran Compiler Developer Guide and Reference 1

1077

See Also
Scope for details on entities with local scope

Use Association

Use association allows the entities in a module to be accessible to other scoping units. This association
remains in effect throughout the execution of the program. The mechanism for use association is the USE
statement. The USE statement provides access to all public entities in the module, unless ONLY is specified.
In this case, only the entities named in the ONLY list can be accessed.

If an entity that is accessed by use association has the same non-generic name as a host entity, the host
entity is inaccessible. A name that appears in the scoping unit as an external name in an EXTERNAL
statement is a global name, and any entity of the host that has this as its non-generic name is inaccessible.

For more information on rules that apply to use association, see the USE statement.

See Also
USE statement
Host Association
Scope for details on entities with local scope

Host Association

Host association allows the entities in a host scoping unit to be accessible to an internal subprogram, a
module subprogram, or submodule program. This association remains in effect throughout the execution of
the program.

The following also have access to entities from its host:

• A module procedure interface body
• A derived-type definition
• An interface body that is not a separate interface body has access to the named entities from its host that

are made accessible by IMPORT statements in the interface body.

The accessed entities are known by the same name and have the same attributes as in the host, except that
a local entity can have the ASYNCHRONOUS attribute even if the host entity does not, and a non-coarray
local entity can have the VOLATILE attribute even if the host entity does not. The accessed entities can be
named data objects, derived types, abstract interfaces, procedures, generic identifiers, and NAMELIST
groups.

Entities that are local to a procedure are not accessible to their hosts.

The following are considered local identifiers within a scoping unit so they are not accessible to their hosts:

• A function name in a statement function, an entity declaration in a type declaration statement, or the
name of an entity declared by an interface body, unless any of these are global identifiers.

• An object name in an entity declaration in a type declaration statement or a POINTER, SAVE,
ALLOCATABLE, or TARGET statement.

• A type name in a derived type statement.
• A procedure pointer that has the EXTERNAL attribute.
• The name of a variable that is wholly or partially initialized in a DATA statement.
• The name of an object that is wholly or partially initialized in an EQUIVALENCE statement.
• A NAMELIST group name in a NAMELIST statement.
• A generic name in a generic specification in an INTERFACE statement.
• The name of a named construct.
• The name of a dummy argument in a FUNCTION, SUBROUTINE, or ENTRY statement, or a statement

function.
• A named constant defined in a PARAMETER statement.
• An array name in a DIMENSION statement.
• A variable name in a common block object in a COMMON statement.
• A result name in a FUNCTION or ENTRY statement.
• An intrinsic procedure name in an INTRINSIC statement.

 1 Intel® Fortran Compiler Classic and Intel® Fortran Compiler Developer Guide and Reference

1078

A name that appears in an ASYNCHRONOUS or VOLATILE statement is not necessarily the name of a local
variable. In an internal or module procedure, if a variable that is accessible via host association is specified in
an ASYNCHRONOUS or VOLATILE statement, that host variable is given the ASYNCHRONOUS or VOLATILE
attribute in the local scope.

If an intrinsic procedure is accessed by means of host association, it must be established to be intrinsic in the
host scoping unit by one of the following methods:

• It must be explicitly given the INTRINSIC attribute.
• It must be invoked as an intrinsic procedure.
• It must be accessed from a module or from its host where it is established to be intrinsic.

If a procedure gains access to a pointer by host association, the association of the pointer with a target that
is current at the time the procedure is invoked remains current within the procedure. This pointer association
can be changed within the procedure. After execution of the procedure, the pointer association remains
current, unless the execution caused the target to become undefined. If this occurs, the host associated
pointer becomes undefined.

NOTE
Implicit declarations can cause problems for host association. It is recommended that you use
IMPLICIT NONE in both the host and the contained procedure, and that you explicitly declare all
entities.

When all entities are explicitly declared, local declarations override host declarations, and host
declarations that are not overridden are available in the contained procedure.

Examples
The following example shows how a host and an internal procedure can use host-associated entities:

 program INTERNAL
 ! shows use of internal subroutine and CONTAINS statement
 real a,b,c
 call find
 print *, c
 contains
 subroutine find
 read *, a,b
 c = sqrt(a**2 + b**2)
 end subroutine find
 end

In this case, the variables a, b, and c are available to the internal subroutine find through host association.
They do not have to be passed as arguments to the internal procedure. In fact, if they are, they become local
variables to the subroutine and hide the variables declared in the host program.

Conversely, the host program knows the value of c, when it returns from the internal subroutine that has
defined c.

See Also
Use Association
Scope for details on entities with local scope

Linkage Association

Linkage association occurs between the following:

• A module variable that has the BIND attribute and the C variable with which it interoperates
• A Fortran common block and the C variable with which it interoperates

This association remains in effect throughout the execution of the program.

Intel® Fortran Compiler Classic and Intel® Fortran Compiler Developer Guide and Reference 1

1079

See Also
USE statement
Host Association
Scope for details on entities with local scope

Construct Association

Construct association establishes an association between each selector and the corresponding associate
name of an ASSOCIATE, CHANGE TEAM, SELECT RANK, or SELECT TYPE construct.

If the selector is allocatable, it must be allocated. The associate name is associated with the data object and
does not have the ALLOCATABLE attribute.

If the selector has the POINTER attribute, it must be associated. The associate name is associated with the
target of the pointer and does not have the POINTER attribute; it has the TARGET attribute if the selector is a
variable that has the POINTER or TARGET attribute.

If the selector has the ASYNCHRONOUS or VOLATILE attribute, the entity associated with the corresponding
associate name also has that attribute. If the selector is polymorphic, the associated entity has the same
dynamic type and type parameters as the selector. If the selector has the OPTIONAL attribute, it must be
present. If the selector is contiguous, the associated entity is also contiguous.

If the selector is a variable other than an array section having a vector subscript, the association is with the
data object specified by the selector; otherwise, the association is with the value of the selector expression,
which is evaluated before the execution of the block.

Each associate name remains associated with the corresponding selector throughout the execution of the
executed block. Within the block, each selector is known by, and can be accessed by, the corresponding
associate name. When the construct is terminated, the association is terminated.

See Also
USE statement
Host Association
Scope for details on entities with local scope

Additional Attributes of Associate Names

In an ASSOCIATE, CHANGE TEAM, or SELECT TYPE construct, the rank of each entity identified by an
associate name has the same rank as its corresponding selector. The lower bound of each dimension is the
result of the intrinsic function LBOUND applied to the corresponding dimension of selector. The upper bound
of each dimension is one less than the sum of the lower bound and the extent.

Each entity identified by an associate name in an ASSOCIATE, SELECT RANK, or SELECT TYPE construct has
the same corank as the corresponding selector. The cobounds of each codimension of the entity are the same
as those of the selector. In a CHANGE TEAM construct, the entity identified by an associate name is a
coarray, with coshape and cobounds as specified in its codimension declaration.

The associated entity is a variable; it is not definable if the selector is not definable. An associate name or a
subobject of the associate name is not allowed in a variable definition context or a pointer association
context if the selector is not allowed in a variable definition context.

In a SELECT RANK construct, the selector has assumed rank, and assumed rank entities are not otherwise
definable. However, in the block following a RANK(*) statement the associate name is the name of a one
dimensional assumed-size array, and in the block following a RANK (scalar-int-const-expr), the variable has
the specified rank. In these cases, if the selector is otherwise definable ignoring that it is assumed rank, the
associated entity may be defined or undefined.

See Also
ASSOCIATE
CHANGE TEAM and END TEAM
SELECT RANK
SELECT TYPE

 1 Intel® Fortran Compiler Classic and Intel® Fortran Compiler Developer Guide and Reference

1080

Pointer Association

A pointer can be associated with a target. At different times during the execution of a program, a pointer can
be undefined, associated with different targets, or be disassociated. The initial association status of a pointer
is undefined. A pointer can become associated by the following:

• Pointer assignment (pointer => target)

The target must be associated, or specified with the TARGET attribute. If the target is allocatable, it must
be currently allocated.

• Allocation (successful execution of an ALLOCATE statement)

The ALLOCATE statement must reference the pointer.

A pointer becomes disassociated if any of the following occur:

• The pointer is nullified by a NULLIFY statement.
• The pointer is deallocated by a DEALLOCATE statement.
• The pointer is assigned a disassociated pointer or the NULL intrinsic function.
• The pointer is an ultimate component of an object of a type for which default initialization is specified for

the component and one of the following is true:

• A procedure is invoked with this object as an actual argument corresponding to a non-pointer, non-
allocatable, dummy argument with INTENT (OUT).

• A procedure is invoked with this object as an unsaved, non-pointer, non-allocatable local object that is
not accessed by use or host association.

• This object is allocated.

When a pointer is associated with a target, the definition status of the pointer is defined or undefined,
depending on the definition status of the target. A target is undefined in the following cases:

• If it was never allocated
• If it is not deallocated through the pointer
• If a RETURN or END statement causes it to become undefined

If a pointer is associated with a definable target, the definition status of the pointer can be defined or
undefined, according to the rules for a variable.

The association status of a pointer becomes undefined when a DO CONCURRENT construct is terminated and
the pointer's association status was changed in more than one iteration of the construct.

If the association status of a pointer is disassociated or undefined, the pointer must not be referenced or
deallocated.

Whatever its association status, a pointer can always be nullified, allocated, or associated with a target.
When a pointer is nullified, it is disassociated. When a pointer is allocated, it becomes associated, but is
undefined. When a pointer is associated with a target, its association and definition status are determined by
its target.

To see an example of Name, Pointer, and Storage Association, see Storage Association.

See Also
Pointer assignments
NULL intrinsic function
Dynamic Allocation for details on the ALLOCATE, DEALLOCATE, and NULLIFY statements

Storage Association

Storage association describes the relationships that exist among data objects. It is the association of two or
more data objects that occurs when two or more storage sequences share, or are aligned with, one or more
storage units. Storage sequences are used to describe relationships among variables, common blocks, and
result variables.

Intel® Fortran Compiler Classic and Intel® Fortran Compiler Developer Guide and Reference 1

1081

Example
The following shows an example of Name, Pointer, and Storage association:

! Scoping Unit 1: An external program unit

REAL A, B(4)
REAL, POINTER :: M(:)
REAL, TARGET :: N(12)
COMMON /COM/...
EQUIVALENCE (A, B(1)) ! Storage association between A and B(1)
M => N ! Pointer association
CALL P (actual-arg,...)
...

! Scoping Unit 2: An external procedure
SUBROUTINE P (dummy-arg,...) ! Name and storage association between
 ! these arguments and the calling
 ! routine's arguments in scoping unit 1
 COMMON /COM/... ! Storage association with common block COM
 ! in scoping unit 1

 REAL Y
 CALL Q (actual-arg,...)
 CONTAINS
 SUBROUTINE Q (dummy-arg,...) ! Name and storage association
between
 ! these arguments and the calling
 ! routine's arguments in host procedure
 ! P (subprogram Q has host association
 ! with procedure P)
 Y = 2.0*(Y-1.0) ! Name association with Y in host procedure P
 ...

Storage Units and Storage Sequence

A storage unit is a fixed unit of physical memory allocated to certain data. A storage sequence is a
sequence of storage units. The size of a storage sequence is the number of storage units in the storage
sequence. A storage unit can be numeric, character, or unspecified.

A non-pointer scalar of type default real, integer, or logical occupies one numeric storage unit. A non-pointer
scalar of type double precision real or default complex occupies two contiguous numeric storage units. In
Intel® Fortran, one numeric storage unit corresponds to 4 bytes of memory.

A non-pointer scalar of type default character with character length 1 occupies one character storage unit. A
non-pointer scalar of type default character with character length len occupies len contiguous character
storage units. In Intel® Fortran, one character storage unit corresponds to 1 byte of memory.

A non-pointer scalar of nondefault data type occupies a single unspecified storage unit. The number of bytes
corresponding to the unspecified storage unit differs depending on the data type.

The following table lists the storage requirements (in bytes) for the intrinsic data types:

Data Type Storage Requirements

Data Type Storage Requirements (in bytes)

BYTE 1

LOGICAL 2, 4, or 8 1

LOGICAL(1) 1

 1 Intel® Fortran Compiler Classic and Intel® Fortran Compiler Developer Guide and Reference

1082

Data Type Storage Requirements (in bytes)

LOGICAL(2) 2

LOGICAL(4) 4

LOGICAL(8) 8

INTEGER 2, 4, or 8 1

INTEGER(1) 1

INTEGER(2) 2

INTEGER(4) 4

INTEGER(8) 8

REAL 4, 8, or 162

REAL(4) 4

DOUBLE PRECISION 8

REAL(8) 8

REAL(16) 16

COMPLEX 8, 16, or 322

COMPLEX(4) 8

DOUBLE COMPLEX 16

COMPLEX(8) 16

COMPLEX(16) 32

CHARACTER 1

CHARACTER*len len 3

CHARACTER*(*) assumed-length 4

1 Depending on default integer, LOGICAL and INTEGER can have 2, 4, or 8 bytes. The default allocation is
four bytes.
2 Depending on default real, REAL can have 4, 8, or 16 bytes and COMPLEX can have 8, 16, or 32 bytes.
The default allocations are four bytes for REAL and eight bytes for COMPLEX.
3 The value of len is the number of characters specified. The largest valid value is 2**63-1 on Intel® 64
architecture; 2**31-1 on IA-32 architecture. Negative values are treated as zero.
4 The assumed-length format *(*) applies to dummy arguments, PARAMETER statements, or character
functions, and indicates that the length of the actual argument or function is used. (See Assumed-Length
Character Arguments.)

A non-pointer scalar of sequence derived type occupies a sequence of storage sequences corresponding to
the components of the structure, in the order they occur in the derived-type definition. Note that a sequence
derived type has a SEQUENCE statement.

A pointer occupies a single unspecified storage unit that is different from that of any non-pointer object and
is different for each combination of type, type parameters, and rank.

The definition status and value of a data object affects the definition status and value of any storage-
associated entity.

Intel® Fortran Compiler Classic and Intel® Fortran Compiler Developer Guide and Reference 1

1083

When two objects occupy the same storage sequence, they are totally storage-associated. When two objects
occupy parts of the same storage sequence, they are partially associated. An EQUIVALENCE statement, a
COMMON statement, or an ENTRY statement can cause total or partial storage association of storage
sequences.

See Also
Assumed-Length Character Arguments
COMMON
ENTRY
EQUIVALENCE

Array Association

A non-pointer array occupies a sequence of contiguous storage sequences, one for each array element, in
array element order.

Two or more arrays are associated when each one is associated with the same storage location. They are
partially associated when part of the storage associated with one array is the same as part or all of the
storage associated with another array.

If arrays with different data types are associated, or partially associated, with the same storage location, and
the value of one array is defined (for example, by assignment), the value of the other array becomes
undefined. This happens because an element of an array is considered defined only if the storage associated
with it contains data of the same type as the array name.

An array element, array section, or whole array is defined by a DATA statement before program execution.
Note that the array properties must be declared in a previous specification statement. During program
execution, array elements and sections are defined by an assignment or input statement, and entire arrays
are defined by input statements.

See Also
Arrays
DATA statement
Array Elements for details on array element order

Inheritance Association

Inheritance association occurs between components of a parent component and components inherited by
type extension into an extended type.

This association is not affected by the accessibility of the inherited components.

Example
The following example shows inheritance association:

TYPE POINT ! A base type
REAL :: X, Y
END TYPE POINT

TYPE, EXTENDS(POINT) :: COLOR_POINT ! An extension of TYPE(POINT)
 ! Components X and Y, and component name POINT,
 ! are inherited from the parent type POINT
INTEGER :: COLOR
END TYPE COLOR_POINT

See Also
Storage Association
Pointer Association

 1 Intel® Fortran Compiler Classic and Intel® Fortran Compiler Developer Guide and Reference

1084

Deleted and Obsolescent Language Features
Fortran 90 identified some FORTRAN 77 features to be obsolescent. Fortran 95 deleted some Fortran 90
features, and identified some Fortran 90 language features to be obsolescent.

Fortran 90 identified some FORTRAN 77 features to be obsolescent. Fortran 95 deleted some Fortran 90
obsolescent features, and identified some Fortran 90 language features to become obsolescent. Subsequent
standard revisions have continued to identify some features of previous standards as obsolescent and to
delete selected features that were previously deemed obsolescent.

Fortran 2008 has also identified some earlier standard language features to be obsolescent. Features
considered obsolescent may be removed from future revisions of the Fortran Standard.

Fortran 2018 identified the following language features as obsolescent: the COMMON and EQUIVALENCE
statement, the FORALL statement and construct, BLOCK DATA subprograms, labeled DO loops, and specific
names for intrinsic procedures. The arithmetic IF statement and the non-block form of DO constructs were
deleted in Fortran 2018.

Fortran 2023 does not identify any additional obsolescent or deleted features.

To have these features flagged, you can specify compiler option stand.

NOTE
Intel® Fortran fully supports features identified as deleted from or obsolescent in the Fortran Standard.

See Also
stand compiler option

Deleted Language Features in the Fortran Standard
Some language features, considered redundant in older versions of the Fortran Standard, are not included in
the current Fortran Standard. However, they are still fully supported by Intel® Fortran.

In the examples below, both forms are supported by Intel® Fortran, but the Fortran 2018 Standard only
supports the second form:

• ASSIGN and assigned GO TO statements

The ASSIGN statement, when assigning a label for use with the assigned GO TO statement, can be
replaced by assigning the integer value of the label to an integer variable; the assigned GO TO statement
can then be replaced by an IF statement that tests the integer variable for various values and then goes
to the label that represents that value. For example, replace:

ASSIGN 10 TO J
...
ASSIGN 20 TO J
...
GO TO J

with:

J = 10
...
J = 20
...
IF (J .EQ. 10) THEN
 GO TO 10
ELSE IF (J .EQ. 20) THEN
 GO TO 20
END IF

• Arithmetic IF statement

The arithmetic IF statement can be replace by an IF-THEN-ELSE construct or a CASE SELECT construct.

Intel® Fortran Compiler Classic and Intel® Fortran Compiler Developer Guide and Reference 1

1085

For example, replace:

IF (expr) 10, 20, 30
with:

IF (expr .LT. 0) THEN
 GO TO 10
ELSE IF (expr .EQ. 0) THEN
 GO TO 20
ELSE
 GO TO 30
ENDIF

• Assigned FORMAT specifier

The assigned FORMAT specifier sets an integer variable to the label of a FORMAT statement and then the
integer variable is used in an I/O statement instead of the FORMAT label. You can replace the integer
variable with a character variable whose value is the contents of the FORMAT statement, and then use the
character variable in the I/O statement as the format. For example, replace:

ASSIGN 1000 TO IFMT
...
WRITE (6, IFMT) X, Y
...
1000 FORMAT (2E10.2)

with:

CHARACTER(20) :: IFMT = "(2E10.2)"
...
WRITE (6, IFMT) X, Y

• The non-block form of a DO statement

The non-block form of a DO loop contains a statement label in the DO statement identifying the terminal
statement of the DO. The terminal statement may be an executable statement and may be shared with
another non-block DO statement. Use an END DO statement as the terminal statement for each DO loop.

You should not use statement labels on the terminating statement and in the DO statement, because
labeled DO loops are now obsolescent.

For example, replace the following:

 DO 10 I = 1, N
 DO 10 J = 1, M
10 A(I, J) = F_OF (I, J)

with this:

DO I = 1, N
 DO J = 1, M
 A(I, J) = F_OF (I, J)
 END DO
END DO

• Branching to an END IF statement from outside its IF block

The END IF statement can no longer be a target of a GO TO statement that is outside the IF block that
ends with that END IF statement. Use a CONTINUE statement after the END IF as the target of the GO TO
statement. For example, replace:

IF ...
 GO TO 100
ELSE IF ...
100 END IF

 1 Intel® Fortran Compiler Classic and Intel® Fortran Compiler Developer Guide and Reference

1086

with:

IF ...
 GO TO 100
ELSE IF ...
END IF
100 CONTINUE

• H edit descriptor

Replace the H edit descriptor of the form nHcharacters with "characters". Remember to double any quotes
or apostrophes in the string characters.

• PAUSE statement

The PAUSE statement displays a character string on the standard output device and then suspends
program execution until any character is typed on the standard input device. You can replace the PAUSE
statement with a WRITE statement followed by a READ statement. For example, replace:

PAUSE " don't forget to buy milk"
with:

WRITE (6, *) " don't forget to buy milk"
READ (5, *) ! no io-list is necessary, the input is ignored

• Real and double precision DO control variables and DO loop control expressions

REAL variables of any KIND can no longer be used as DO loop control variables and expressions. You can
replace such DO loops with the appropriate DO WHILE loop that explicitly initializes, increments, and tests
the REAL variable. For example, replace:

DO X = 0.1, 0.5, 0.01
 ...
END DO

with:

X = 0.1
DO WHILE (X .LE. 0.5)
 ...
 X = X + 0.01
END DO

• Vertical format control

Formatted output to certain printing output units used to result in the first character of each record being
interpreted as controlling vertical spacing on the unit. There is no standard way to detect whether output
to such a unit should result in such vertical format control and no way to specify that it should be applied.
The effect can be achieved by post-processing a formatted file after it is created to interpret the first
character as some form of control character. This is left to the user.

Intel Fortran flags these features if you specify compiler option stand.

See Also
Obsolescent Language Features in the Fortran Standard
stand compiler option

Obsolescent Language Features in the Fortran Standard
Some language features, considered redundant in older versions of the Fortran Standard, are identified as
obsolescent in the current Fortran Standard.

Intel® Fortran flags these features if you specify compiler option stand.

Other methods are suggested to achieve the functionality of the following obsolescent features:

• Alternate returns (labels in an argument list)

Intel® Fortran Compiler Classic and Intel® Fortran Compiler Developer Guide and Reference 1

1087

To replace this functionality, it is recommended that you use an integer variable to return a value to the
calling program, and let the calling program use a CASE construct to test the value and perform
operations.

• Assumed-length character functions

To replace this functionality, it is recommended that you use one of the following:

• An automatic character-length function, where the length of the function result is declared in a
specification expression

• A subroutine whose arguments correspond to the function result and the function arguments

Dummy arguments of a function can still have assumed character length; this feature is not obsolescent.
• BLOCK DATA subprograms

BLOCK DATA was used to initialize COMMON block variables. This can be achieved with initialization of
MODULE data when it is declared. MODULE data is the preferred method of sharing data between
compilation units, and for replacing COMMON blocks.

• CHARACTER*(*) form of CHARACTER declaration

To replace this functionality, it is recommended that you use the Fortran 90 forms of specifying a length
selector in CHARACTER declarations (see Declaration Statements for Character Types).

• COMMON blocks

To replace this functionality, it is recommended data specified in COMMON be declared in a MODULE which
can be made available through USE association where the data is needed.

• Computed GO TO statement

To replace this functionality, it is recommended that you use a CASE construct.
• DATA statements among executable statements

This functionality has been included since FORTRAN 66, but is considered to be a potential source of
errors.

• ENTRY statement

To replace this functionality, it is recommended that you use multiple module procedures that can access
shared data in the module.

• EQUIVALENCE

The use of storage association thru EQUIVALENCE statements is not recommended.
• Fixed source form

Newer methods of entering data have made this source form obsolescent and error-prone.

The recommended method for coding is to use free source form.
• FORALL statement and construct

These were added to the language with the expectation they would result in very efficient and possibly
parallel code. The complexity and many restrictions prevented compilers from taking advantage of them.

The DO CONCURRENT construct makes FORALL redundant. Data manipulations which can be done with
FORALL can be done more effectively with pointers using rank remapping. Both the FORALL statement
form and the construct became obsolescent in Fortran 2018.

• Labeled DO loops

To replace this functionality, it is recommended that you use an END DO statements to terminate loops,
and CYCLE statements to branch to the end of the loop to start the next iteration of the loop (or exit the
loop, if the last iteration of the loop takes the branch).

• Statement functions

To replace this functionality, it is recommended that you use an internal function.
• Specific names of intrinsic functions that also have generic names

To replace this functionality, it is recommended that you use the generic names.

Additional Language Features
To facilitate compatibility with older versions of Fortran, Intel® Fortran provides additional language features.
Some are discussed in this section.

 1 Intel® Fortran Compiler Classic and Intel® Fortran Compiler Developer Guide and Reference

1088

Others language features that facilitate compatibility with older versions of Fortran are the following:

• The DEFINE FILE statement
• The ENCODE and DECODE statements
• The FIND statement
• The INTERFACE TO statement
• The integer POINTER statement
• The VIRTUAL statement

These language features are particularly useful in porting older Fortran programs to Standard Fortran.
However, you should avoid using them in new programs on these systems, and in new programs for which
portability to other Standard Fortran implementations is important.

FORTRAN 66 Interpretation of the EXTERNAL Statement
If you specify compiler option f66, the EXTERNAL statement is interpreted in the way that was specified by
the FORTRAN 66 (FORTRAN IV) standard. This interpretation became incompatible with FORTRAN 77 and
later revisions of the Fortran standard.

The FORTRAN 66 interpretation of the EXTERNAL statement combines the functionalities of the INTRINSIC
statement and the EXTERNAL statement.

This lets you use subprograms as arguments to other subprograms. The subprograms to be used as
arguments can be either user-supplied procedures or Fortran intrinsic procedures.

The FORTRAN 66 EXTERNAL statement takes the following form:

EXTERNAL [*]v [, [*]v] ...

* Specifies that a user-supplied external procedure is to be used instead
of a Fortran intrinsic procedure having the same name. This modifier
is not standard FORTRAN 66, but was an extension in some FORTRAN
66 compilers, and provides the FORTRAN 77 meaning of EXTERNAL
where required.

v Is the name of a subprogram or the name of a dummy argument
associated with the name of a subprogram.

Description
The FORTRAN 66 EXTERNAL statement declares that each name in its list is an external procedure name.
Such a name can then be used as an actual argument to a subprogram, which then can use the
corresponding dummy argument in a function reference or CALL statement.

However, when used as an argument, a complete function reference represents a value, not a subprogram
name; for example, SQRT(B) in CALL SUBR(A, SQRT(B), C). Therefore, it does not need to be defined in an
EXTERNAL statement. Note that the incomplete reference SQRT would need to be defined in an EXTERNAL
statement.

Examples
The following example, when compiled with compiler option f66, shows the FORTRAN 66 EXTERNAL
statement:

Main Program Subprograms
EXTERNAL SIN, COS, *TAN, SINDEG SUBROUTINE TRIG(X,F,Y)
 . Y = F(X)
 . RETURN
 . END
CALL TRIG(ANGLE, SIN, SINE)
 .
 . FUNCTION TAN(X)
 . TAN = SIN(X)/COS(X)
CALL TRIG(ANGLE, COS, COSINE) RETURN

Intel® Fortran Compiler Classic and Intel® Fortran Compiler Developer Guide and Reference 1

1089

 . END
 .
 .
CALL TRIG(ANGLE, TAN, TANGNT) FUNCTION SINDEG(X)/
 . SINDEG = SIN(X*3.1459/180)
 . RETURN
 . END
CALL TRIG(ANGLED, SINDEG, SINE)

The CALL statements pass the name of a function to the subroutine TRIG. The function reference F(X)
subsequently invokes the function in the second statement of TRIG. Depending on which CALL statement
invoked TRIG, the second statement is equivalent to one of the following:

Y = SIN(X)
Y = COS(X)
Y = TAN(X)
Y = SINDEG(X)

The functions SIN and COS are examples of trigonometric functions supplied in the Fortran intrinsic
procedure library. The function TAN is also supplied in the library, but the asterisk (*) in the EXTERNAL
statement specifies that the user-supplied function be used, instead of the intrinsic function. The function
SINDEG is also a user-supplied function. Because no library function has the same name, no asterisk is
required.

See Also
f66 compiler option

Alternative Syntax for the PARAMETER Statement
The PARAMETER statement discussed here is similar to the one discussed in PARAMETER; they both assign a
name to a constant. However, this PARAMETER statement differs from the other one in the following ways:

• Its list is not bounded with parentheses.
• The form of the constant, rather than implicit or explicit typing of the name, determines the data type of

the variable.

This PARAMETER statement takes the following form:

PARAMETER c = expr [, c = expr] ...

c Is the name of the constant.

expr Is a constant expression. It can be of any data type.

Description
Each name c becomes a constant and is defined as the value of expression expr. Once a name is defined as a
constant, it can appear in any position in which a constant is allowed. The effect is the same as if the
constant were written there instead of the name.

The name of a constant cannot appear as part of another constant, except as the real or imaginary part of a
complex constant. For example:

 PARAMETER I=3
 PARAMETER M=I.25 ! Not allowed
 PARAMETER N=(1.703, I) ! Allowed

The name used in the PARAMETER statement identifies only the name's corresponding constant in that
program unit. Such a name can be defined only once in PARAMETER statements within the same program
unit.

 1 Intel® Fortran Compiler Classic and Intel® Fortran Compiler Developer Guide and Reference

1090

The name of a constant assumes the data type of its corresponding constant expression. The data type of a
parameter constant cannot be specified in a type declaration statement. Nor does the initial letter of the
constant's name implicitly affect its data type.

Examples
The following are valid examples of this form of the PARAMETER statement:

 PARAMETER PI=3.1415927, DPI=3.141592653589793238D0
 PARAMETER PIOV2=PI/2, DPIOV2=DPI/2
 PARAMETER FLAG=.TRUE., LONGNAME='A STRING OF 25 CHARACTERS'

See Also
PARAMETER for details on compile-time constant expressions

Alternative Syntax for Binary, Octal, and Hexadecimal Constants
In Intel® Fortran, you can use an alternative syntax for binary, octal, and hexadecimal constants. The
following table shows the alternative syntax and equivalents:

Constant Alternative Syntax Equivalent

Binary '0..1'B B'0..1'

Octal '0..7'O O'0..7'

Hexadecimal '0..F'X

X'0..F'

Z'0..F'

You can use a quotation mark (") in place of an apostrophe in all the above syntax forms.

For information on the # syntax for integers not in base 10, see Integer Constants.

See Also
Binary constants
Octal constants
Hexadecimal constants

Alternative Syntax for a Record Specifier
In Intel® Fortran, you can specify the following form for a record specifier in an I/O control list:

'r

r Is a numeric expression with a value that represents the position of
the record to be accessed using direct access I/O.

The value must be greater than or equal to 1, and less than or equal to the maximum number of records
allowed in the file. If necessary, a record number is converted to integer data type before being used.

If this nonkeyword form is used in an I/O control list, it must immediately follow the nonkeyword form of the
io-unit specifier.

Alternative Syntax for the DELETE Statement
In Intel® Fortran, you can specify the following form of the DELETE statement when deleting records from a
relative file:

DELETE (io-unit 'r [, ERR=label] [, IOSTAT=i-var])

io-unit Is the number of the logical unit containing the record to be deleted.

Intel® Fortran Compiler Classic and Intel® Fortran Compiler Developer Guide and Reference 1

1091

r Is the positional number of the record to be deleted.

label Is the label of an executable statement that receives control if an
error condition occurs.

i-var Is a scalar integer variable that is defined as a positive integer if an
error occurs and zero if no error occurs.

This form deletes the direct access record specified by r.

See Also
DELETE statement

Alternative Form for Namelist External Records
In Intel® Fortran, you can use the following form for an external record:

$group-nameobject = value [object = value] ...$[END]

group-name Is the name of the group containing the objects to be given values.
The name must have been previously defined in a NAMELIST
statement in the scoping unit.

object Is the name (or subobject designator) of an entity defined in the
NAMELIST declaration of the group name. The object name must not
contain embedded blanks, but it can be preceded or followed by
blanks.

value Is a null value, a constant (or list of constants), a repetition of
constants in the form r*c, or a repetition of null values in the form r*.

If more than one object=value or more than one value is specified, they must be separated by value
separators.

A value separator is any number of blanks, or a comma or slash, preceded or followed by any number of
blanks.

See Also
NAMELIST statement
Rules for Namelist Sequential READ Statements for details on namelist input
Rules for Namelist Sequential WRITE Statements for details on namelist output

Record Structures
The record structure was defined in earlier versions of Intel® Fortran as a language extension. It is still
supported, although its functionality has been replaced by Standard Fortran derived data types.

Record structures in existing code can be easily converted to Standard Fortran derived type structures for
portability, but can also be left in their old form. In most cases, an Intel Fortran record and a Standard
Fortran derived type can be used interchangeably.

Intel Fortran record structures are similar to Standard Fortran derived types.

A record structure is an aggregate entity containing one or more elements. (Record elements are also called
fields or components.) You can use records when you need to declare and operate on multi-field data
structures in your programs.

Creating a record is a two-step process:

1. You must define the form of the record with a multistatement structure declaration.
2. You must use a RECORD statement to declare the record as an entity with a name. (More than one

RECORD statement can refer to a given structure.)

 1 Intel® Fortran Compiler Classic and Intel® Fortran Compiler Developer Guide and Reference

1092

Examples
Intel Fortran record structures, using only intrinsic types, easily convert to Standard Fortran derived types.
The conversion can be as simple as replacing the keyword STRUCTURE with TYPE and removing slash (/)
marks. The following shows an example conversion:

Record Structure Standard Fortran Derived-Type

STRUCTURE /employee_name/
 CHARACTER*25 last_name
 CHARACTER*15 first_name
END STRUCTURE
STRUCTURE /employee_addr/
 CHARACTER*20 street_name
 INTEGER(2) street_number
 INTEGER(2) apt_number
 CHARACTER*20 city
 CHARACTER*2 state
 INTEGER(4) zip
END STRUCTURE

TYPE employee_name
 CHARACTER*25 last_name
 CHARACTER*15 first_name
END TYPE
TYPE employee_addr
 CHARACTER*20 street_name
 INTEGER(2) street_number
 INTEGER(2) apt_number
 CHARACTER*20 city
 CHARACTER*2 state
 INTEGER(4) zip
END TYPE

The record structures can be used as subordinate record variables within another record, such as the
employee_data record. The equivalent Standard Fortran derived type would use the derived-type objects as
components in a similar manner, as shown below:

Record Structure Standard Fortran Derived-Type

STRUCTURE /employee_data/
 RECORD /employee_name/ name
 RECORD /employee_addr/ addr
 INTEGER(4) telephone
 INTEGER(2) date_of_birth
 INTEGER(2) date_of_hire
 INTEGER(2) social_security(3)
 LOGICAL(2) married
 INTEGER(2) dependents
END STRUCTURE

TYPE employee_data
 TYPE (employee_name) name
 TYPE (employee_addr) addr
 INTEGER(4) telephone
 INTEGER(2) date_of_birth
 INTEGER(2) date_of_hire
 INTEGER(2) social_security(3)
 LOGICAL(2) married
 INTEGER(2) dependents
END TYPE

See Also
RECORD Statement

Structure Declarations

A structure declaration defines the field names, types of data within fields, and order and alignment of fields
within a record. Fields and structures can be initialized, but records cannot be initialized. For more
information, see STRUCTURE.

See Also
Union Declarations

Type Declarations within Record Structures

The syntax of a type declaration within a record structure is identical to that of a normal Fortran type
statement.

The following rules and behavior apply to type declarations in record structures:

Intel® Fortran Compiler Classic and Intel® Fortran Compiler Developer Guide and Reference 1

1093

• %FILL can be specified in place of a field name to leave space in a record for purposes such as alignment.
This creates an unnamed field.

%FILL can have an array specification; for example:

 INTEGER %FILL (2,2)
Unnamed fields cannot be initialized. For example, the following statement is invalid and generates an
error message:

 INTEGER %FILL /1980/
• Initial values can be supplied in field declaration statements. Unnamed fields cannot be initialized; they

are always undefined.
• Field names must always be given explicit data types. The IMPLICIT statement does not affect field

declarations.
• Any required array dimensions must be specified in the field declaration statements. DIMENSION

statements cannot be used to define field names.
• Adjustable or assumed sized arrays and assumed-length CHARACTER declarations are not allowed in field

declarations.

Substructure Declarations

A field within a structure can itself be a structured item composed of other fields, other structures, or both.
You can declare a substructure in two ways:

• By nesting structure declarations within other structure or union declarations (with the limitation that you
cannot refer to a structure inside itself at any level of nesting).

One or more field names must be defined in the STRUCTURE statement for the substructure, because all
fields in a structure must be named. In this case, the substructure is being used as a field within a
structure or union.

Field names within the same declaration nesting level must be unique, but an inner structure declaration
can include field names used in an outer structure declaration without conflict.

• By using a RECORD statement that specifies another previously defined record structure, thereby
including it in the structure being declared.

See the example in STRUCTURE for a sample structure declaration containing both a nested structure
declaration (TIME) and an included structure (DATE).

References to Record Fields

References to record fields must correspond to the kind of field being referenced. Aggregate field references
refer to composite structures (and substructures). Scalar field references refer to singular data items, such
as variables.

An operation on a record can involve one or more fields.

Record field references take one of the following forms:

Aggregate Field Reference:
record-name [.aggregate-field-name] ...

Scalar Field Reference:
record-name [.aggregate-field-name]scalar-field-name

record-name Is the name used in a RECORD statement to identify a record.

aggregate-field-name Is the name of a field that is a substructure (a record or a nested
structure declaration) within the record structure identified by the
record name.

 1 Intel® Fortran Compiler Classic and Intel® Fortran Compiler Developer Guide and Reference

1094

scalar-field-name Is the name of a data item (having a data type) defined within a
structure declaration.

Description
Records and record fields cannot be used in DATA statements, but individual fields can be initialized in the
STRUCTURE definition.

An automatic array cannot be a record field.

A scalar field reference consists of the name of a record (as specified in a RECORD statement) and zero or
more levels of aggregate field names followed by the name of a scalar field. A scalar field reference refers to
a single data item (having a data type) and can be treated like a normal reference to a Fortran variable or
array element.

You can use scalar field references in statement functions and in executable statements. However, they
cannot be used in COMMON, SAVE, NAMELIST, or EQUIVALENCE statements, or as the control variable in an
indexed DO-loop.

Type conversion rules for scalar field references are the same as those for variables and array elements.

An aggregate field reference consists of the name of a record (as specified in a RECORD statement) and zero
or more levels of aggregate field names.

You can only assign an aggregate field to another aggregate field (record = record) if the records have the
same structure. Intel® Fortran supports no other operations (such as arithmetic or comparison) on aggregate
fields.

Intel Fortran requires qualification on all levels. While some languages allow omission of aggregate field
names when there is no ambiguity as to which field is intended, Intel Fortran requires all aggregate field
names to be included in references.

You can use aggregate field references in unformatted I/O statements; one I/O record is written no matter
how many aggregate and array name references appear in the I/O list. You cannot use aggregate field
references in formatted, namelist, and list-directed I/O statements.

You can use aggregate field references as actual arguments and record dummy arguments. The declaration
of the dummy record in the subprogram must match the form of the aggregate field reference passed by the
calling program unit; each structure must have the same number and types of fields in the same order. The
order of map fields within a union declaration is irrelevant.

Records are passed by reference. Aggregate field references are treated like normal variables. You can use
adjustable arrays in RECORD statements that are used as dummy arguments.

Examples
The following examples show record and field references. Consider the following structure declarations:

Structure DATE:

 STRUCTURE /DATE/
 INTEGER*1 DAY, MONTH
 INTEGER*2 YEAR
 STRUCTURE

Structure APPOINTMENT:

 STRUCTURE /APPOINTMENT/
 RECORD /DATE/ APP_DATE
 STRUCTURE /TIME/ APP_TIME(2)
 INTEGER*1 HOUR, MINUTE
 END STRUCTURE

Intel® Fortran Compiler Classic and Intel® Fortran Compiler Developer Guide and Reference 1

1095

 CHARACTER*20 APP_MEMO(4)
 LOGICAL*1 APP_FLAG
 END STRUCTURE

The following RECORD statement creates a variable named NEXT_APP and a 10-element array named
APP_LIST. Both the variable and each element of the array take the form of the structure APPOINTMENT.

 RECORD /APPOINTMENT/ NEXT_APP,APP_LIST(10)
Each of the following examples of record and field references are derived from the previous structure
declarations and RECORD statement:

Aggregate Field References
• The record NEXT_APP:

 NEXT_APP
• The field APP_DATE, a 4-byte array field in the record array APP_LIST(3):

 APP_LIST(3).APP_DATE

Scalar Field References
• The field APP_FLAG, a LOGICAL field of the record NEXT_APP:

 NEXT_APP.APP_FLAG
• The first character of APP_MEMO(1), a CHARACTER*20 field of the record NEXT_APP:

 NEXT_APP.APP_MEMO(1)(1:1)

NOTE
Because periods are used in record references to separate fields, you should avoid using relational
operators (.EQ., .XOR.), logical constants (.TRUE., .FALSE.), and logical expressions
(.AND., .NOT., .OR.) as field names in structure declarations. Dots can also be used instead of % to
separate fields of a derived type.

Consider the following example:

module mod
 type T1_t
 integer :: i
 end type T1_t
 type T2_t
 type (T1_t) :: eq
 integer :: i
 end type T2_t

 interface operator (.eq.)
 module procedure eq_func
 end interface operator (.eq.)
contains
 function eq_func(t2, i) result (rslt)
 type(T2_t), intent (in) :: t2
 integer, intent (in) :: i
 rslt = t2%eq%i + i
 end function eq_func
end module mod

use mod
type(T2_t) :: t2

 1 Intel® Fortran Compiler Classic and Intel® Fortran Compiler Developer Guide and Reference

1096

integer :: i
 t2%eq%i = 0
 t2%i = -10
 i = -10
 print *, t2.eq.i, (t2).eq.i
end

In this case, the reference "t2.eq.i" prints 0. The reference "(t2).eq.i" will invoke eq_func and will print -10.

See Also
RECORD statement

STRUCTURE
 for details on structure declarations

UNION
 for details on UNION and MAP statements

Aggregate Assignment

For aggregate assignment statements, the variable and expression must have the same structure as the
aggregate they reference.

The aggregate assignment statement assigns the value of each field of the aggregate on the right of an equal
sign to the corresponding field of the aggregate on the left. Both aggregates must be declared with the same
structure.

Examples
The following example shows valid aggregate assignments:

 STRUCTURE /DATE/
 INTEGER*1 DAY, MONTH
 INTEGER*2 YEAR
 END STRUCTURE

 RECORD /DATE/ TODAY, THIS_WEEK(7)
 STRUCTURE /APPOINTMENT/
 ...
 RECORD /DATE/ APP_DATE
 END STRUCTURE

 RECORD /APPOINTMENT/ MEETING

 DO I = 1,7
 CALL GET_DATE (TODAY)
 THIS_WEEK(I) = TODAY
 THIS_WEEK(I).DAY = TODAY.DAY + 1
 END DO
 MEETING.APP_DATE = TODAY

Additional Character Sets
This topic contains information about the additional character sets you can use in your Fortran programs.

See Also
Character Sets for details on the Standard Fortran character set

Intel® Fortran Compiler Classic and Intel® Fortran Compiler Developer Guide and Reference 1

1097

Character and Key Code Charts for Windows*
This section contains charts for character and key codes that are available for Windows.

ASCII Character Codes for Windows*

The ASCII character code charts contain the decimal and hexadecimal values of the extended ASCII
(American Standards Committee for Information Interchange) character set. The extended character set
includes the ASCII character set and 128 other characters for graphics and line drawing, often called the
"IBM* character set".

ASCII Character Codes Chart 1 (Windows)

 1 Intel® Fortran Compiler Classic and Intel® Fortran Compiler Developer Guide and Reference

1098

ASCII Character Codes Chart 2: IBM* Character Set (Windows)

ANSI Character Codes for Windows*

The ANSI character code chart lists the extended character set of most of the programs used by Windows
operating systems. The codes of the ANSI (American National Standards Institute) character set from 32
through 126 are displayable characters from the ASCII character set. The ANSI characters displayed as solid
blocks are undefined characters and may appear differently on output devices.

Intel® Fortran Compiler Classic and Intel® Fortran Compiler Developer Guide and Reference 1

1099

ANSI Character Codes Chart (Windows)

Key Codes for Windows*

Some keys, such as function keys, cursor keys, and ALT+KEY combinations, have no ASCII code. When a key
is pressed, a microprocessor within the keyboard generates an "extended scan code" of two bytes.

The first (low-order) byte contains the ASCII code, if any. The second (high-order) byte has the scan code--a
unique code generated by the keyboard when a key is either pressed or released. Because the extended scan
code is more extensive than the standard ASCII code, programs can use it to identify keys which do not have
an ASCII code.

 1 Intel® Fortran Compiler Classic and Intel® Fortran Compiler Developer Guide and Reference

1100

Key Codes Chart 1 (Windows)

Intel® Fortran Compiler Classic and Intel® Fortran Compiler Developer Guide and Reference 1

1101

Key Codes Chart 2 (Windows)

ASCII Character Set for Linux*
This topic describes the ASCII character set that is available on Linux* operating systems.

The ASCII character set contains characters with decimal values 0 through 127. The first half of each of the
numbered columns identifies the character as you would enter it on a terminal or as you would see it on a
printer. Except for SP and HT, the characters with names are nonprintable. In the figure, the characters with
names are defined as follows:

NUL Null DC1 Device Control 1 (XON)

SOH Start of Heading DC2 Device Control 2

 1 Intel® Fortran Compiler Classic and Intel® Fortran Compiler Developer Guide and Reference

1102

STX Start of Text DC3 Device Control 1 (XOFF)

ETX End of Text DC4 Device Control 4

EOT End of Transmission NAK Negative Acknowledge

ENQ Enquiry SYN Synchronous Idle

ACK Acknowledge ETB End of Transmission
Block

BEL Bell CAN Cancel

BS Backspace EM End of Medium

HT Horizontal Tab SUB Substitute

LF Line Feed ESC Escape

VT Vertical Tab FS File Separator

FF Form Feed GS Group Separator

CR Carriage Return RS Record Separator

SO Shift Out US Unit Separator

SI Shift In SP Space

DLE Data Link Escape DEL Delete

The remaining half of each column identifies the character by the binary value of the byte; the value is stated
in three radixes—octal, decimal, and hexadecimal. For example, the uppercase letter A has, under ASCII
conventions, a storage value of hexadecimal 41 (a bit configuration of 01000001), equivalent to 101 in octal
notation and 65 in decimal notation.

The following is the ASCII Character Set for Linux.

Intel® Fortran Compiler Classic and Intel® Fortran Compiler Developer Guide and Reference 1

1103

Data Representation Models
Several of the numeric intrinsic functions are defined by a model set for integers (for each intrinsic kind
used) and reals (for each real kind used). The bit functions are defined by a model set for bits (binary digits).

The following intrinsic functions provide information on the data representation models:

 1 Intel® Fortran Compiler Classic and Intel® Fortran Compiler Developer Guide and Reference

1104

Intrinsic function Model Value returned

BIT_SIZE Bit The number of bits (s) in the bit
model

DIGITS Integer or Real The number of significant digits
in the model for the argument

EPSILON Real The number that is almost
negligible when compared to one

EXPONENT Real The value of the exponent part of
a real argument

FRACTION Real The fractional part of a real
argument

HUGE Integer or Real The largest number in the model
for the argument

MAXEXPONENT Real The maximum exponent in the
model for the argument

MINEXPONENT Real The minimum exponent in the
model for the argument

NEAREST Real The nearest different machine-
representable number in a given
direction

PRECISION Real The decimal precision (real or
complex) of the argument

RADIX Integer or Real The base of the model for the
argument

RANGE Integer or Real The decimal exponent range of
the model for the argument

RRSPACING Real The reciprocal of the relative
spacing near the argument

SCALE Real The value of the exponent part
(of the model for the argument)
changed by a specified value

SET_EXPONENT Real The value of the exponent part
(of the model for the argument)
set to a specified value

SPACING Real The value of the absolute spacing
of model numbers near the
argument

TINY Real The smallest positive number in
the model for the argument

For more information on the range of values for each data type (and kind), see Data and I/O in the Compiler
Reference.

Model for Integer Data
In general, the model set for integers is defined as follows:

Intel® Fortran Compiler Classic and Intel® Fortran Compiler Developer Guide and Reference 1

1105

The following values apply to this model set:

• i is the integer value.
• s is the sign (either +1 or -1).
• q is the number of digits (a positive integer).
• r is the radix (an integer greater than 1).
• wk is a nonnegative number less than r.

The model for INTEGER(4) follows:

The following example shows the general integer model for i = -20 using a base (r) of 2:

Model for Real Data
The model set for reals, in general, is defined as one of the following:

The following values apply to this model set:

• x is the real value.
• s is the sign (either +1 or -1).
• b is the base (real radix; an integer greater than 1; b = 2 in Intel® Fortran).
• p is the number of mantissa digits (an integer greater than 1). The number of digits differs depending on

the real format, as follows:

REAL(4) IEEE binary32 24

REAL(8) IEEE binary64 53

REAL(16) IEEE binary128 113
• e is an integer in the range emin to emax inclusive. This range differs depending on the real format, as

follows:

emin emax

REAL(4) IEEE binary32 -125 128

REAL(8) IEEE binary64 -1021 1024

REAL(16) IEEE binary128 -16381 16384
• fk is a nonnegative number less than b (f1 is also nonzero).

For x = 0, its exponent e and digits fk are defined to be zero.

 1 Intel® Fortran Compiler Classic and Intel® Fortran Compiler Developer Guide and Reference

1106

The model set for single-precision real (REAL(4)) is defined as one of the following:

The following example shows the general real model for x = 20.0 using a base (b) of 2:

Model for Bit Data
The model set for bits (binary digits) interprets a binary digit w located at position k of a nonnegative integer
scalar object based on a model nonnegative integer defined by the following:

The following values apply to this model set:

• j is the integer value.
• s is the number of bits (the length of a sequence of bits).
• wk is a bit value of 0 or 1. This defines a sequence of bits ws-1...w0, with ws-1 the leftmost bit and w0 the

rightmost bit. The positions of bits in the sequence are numbered from right to left, with the position of
the rightmost bit being zero.

The interpretation of a negative integer as a sequence of bits is processor dependent.

The inquiry function BIT_SIZE provides the value of the parameter s of the model.

The following example shows the bit model for j = 1001 (integer 9) using a bit number (s) of 4:

See Also
BIT_SIZE

Bit Sequence Comparisons

When bit sequences of unequal length are compared, the shorter sequence is padded with zero bits on the
left, so that it is the same length as the longer sequence.

Bit sequences are compared from left to right, one bit at a time, until unequal bits are found, or until all bits
have been compared and found to be equal.

Intel® Fortran Compiler Classic and Intel® Fortran Compiler Developer Guide and Reference 1

1107

If unequal bits are found, the sequence with zero in the unequal position is considered to be less than the
sequence with one in the unequal position. Otherwise the sequences are considered to be equal.

Library Modules and Runtime Library Routines
Intel® Fortran provides a library of modules that contain routines you can use in your programs:

Module Name Description

IFAUTO Interfaces to Automation library routines

IFCOM Interfaces to COM library routines

IFCOMMONALLOC Interface to a user-defined routine to dynamically allocate
commons

IFCORE Interfaces to miscellaneous runtime library routines

IFESTABLISH Interface to a routine to handle Runtime Library (RTL) errors

IFLOGM Interfaces to routines from the dialog library

IFMT Defines derived types for Thread/Process/Synchronization
Windows APIs

IFNLS Interfaces to National Language Support routines

IFPORT Interfaces to portability routines

IFPOSIX Interfaces to Posix-compliant routines

IFQWIN Interfaces to QuickWin and Graphics library routines

IFWINTY Defines Fortran parameter constants and derived data types for
use with Windows APIs

KERNEL32 Interfaces to the Windows APIs provided by kernel32.dll

NOTE
The same routine name may appear in different modules. These routines may have different
semantics, so be careful you are using the module that contains the routine that will produce the
results you want.

Runtime Library Routines
Intel® Fortran provides library modules containing the following routines. Note that the links in this list go to
the relevant language summary table:

• Routines that help you write programs for graphics, QuickWin, and other applications (in modules
IFQWIN, IFLOGM, and IFCORE):

• QuickWin routines for Windows
• Graphics routines for Windows
• Dialog routines for Windows
• Miscellaneous runtime routines

• Routines systems that help you write programs using Component Object Model (COM) and Automation
servers (in modules IFCOM and IFAUTO):

• COM routines for Windows
• AUTO routines for Windows

• Portability routines that help you port your programs to or from other systems, or help you perform basic
I/O to serial ports on Windows* systems (in module IFPORT).

 1 Intel® Fortran Compiler Classic and Intel® Fortran Compiler Developer Guide and Reference

1108

• National Language Support routines that help you write foreign language programs for international
markets (in module IFNLS). These routines are only available on Windows* systems.

• POSIX routines that help you write Fortran programs that comply with the POSIX* Standard (in module
IFPOSIX).

• ESTABLISHQQ lets you specify a routine to handle Runtime Library (RTL) errors (in module IFESTABLISH).
• FOR_SET_FTN_ALLOC lets you specify a user-defined routine to dynamically allocate commons. The caller

of FOR_SET_FTN_ALLOC must include module IFCOMMONALLOC.

When you include the statement USE module-name in your program, these library routines are automatically
linked to your program if called.

You can restrict what is accessed from a USE module by adding ONLY clauses to the USE statement.

NOTE
The same routine name may appear in different modules. These routines may have different
semantics, so be careful you are using the module that contains the routine that will produce the
results you want.

See Also
USE

NLS and MCBS Routines on Windows

The NLS and MCBS routines are only available on Windows* systems. These library routines for handling
extended and multibyte character sets are divided into three categories:

• Locale Setting and Inquiry routines to set locales (local code sets) and inquire about their current settings

At program startup, the current language and country setting is retrieved from the operating system. The
user can change this setting through the Control Panel Regional Settings icon. The current codepage is
also retrieved from the system.

There is a system default console codepage and a system default Windows codepage. Console programs
retrieve the system console codepage, while Windows programs (including QuickWin applications) retrieve
the system Windows codepage.

The NLS Library provides routines to determine the current locale (local code set), to return parameters of
the current locale, to provide a list of all the system supported locales, and to set the locale to another
language, country and/or codepage. Note that the locales and codepages set with these routines affect
only the program or console that calls the routine. They do not change the system defaults or affect other
programs or consoles.

• NLS Formatting routines to format dates, currency, and numbers

You can set time, date, currency and number formats from the Control Panel, by clicking on the Regional
Settings icon. The NLS Library also provides formatting routines for the current locale. These routines
return strings in the current codepage, set by default at program start or by NLSSetLocale.

All the formatting routines return the number of bytes in the formatted string (not the number of
characters, which can vary if multibyte characters are included). If the output string is longer than the
formatted string, the output string is blank padded. If the output string is shorter than the formatted
string, an error occurs, NLS$ErrorInsufficientBuffer is returned, and nothing is written to the output
string.

• Multibyte Character Set (MBCS) routines for using multi-byte characters

Examples of multibyte character sets are Japanese, Korean, and Chinese.

• The MBCS inquiry routines provide information on the maximum length of multibyte characters, the
length, number and position of multibyte characters in strings, and whether a multibyte character is a
leading or trailing byte. The NLS library provides a parameter, MBLenMax, defined in the NLS module
to be the longest length (in bytes) of any character, in any codepage. This parameter can be useful in
comparisons and tests. To determine the maximum character length of the current codepage, use the
MBCurMax function.

Intel® Fortran Compiler Classic and Intel® Fortran Compiler Developer Guide and Reference 1

1109

• There are four MBCS conversion routines. Two convert Japan Industry Standard (JIS) characters to
Microsoft Kanji characters or vice versa. Two convert between a codepage multibyte character string
and a Unicode string.

• There are several MBCS Fortran equivalent routines. They are the exact equivalents of Fortran intrinsic
routines except that the MBCS equivalents allow character strings to contain multibyte characters.

Examples
The following example uses Locale Setting and Inquiry routines:

 USE IFNLS
 INTEGER(4) strlen, status
 CHARACTER(40) str
 strlen = NLSGetLocaleInfo(NLS$LI_SDAYNAME1, str)
 print *, str ! prints Monday
 strlen = NLSGetLocaleInfo(NLS$LI_SDAYNAME2, str)
 print *, str ! prints Tuesday
 strlen = NLSGetLocaleInfo(NLS$LI_SDAYNAME3, str)
 print *, str ! prints Wednesday
! Change locale to Spanish, Mexico
 status = NLSSetLocale("Spanish", "Mexico")
 strlen = NLSGetLocaleInfo(NLS$LI_SDAYNAME1, str)
 print *, str ! prints lunes
 strlen = NLSGetLocaleInfo(NLS$LI_SDAYNAME2, str)
 print *, str ! prints martes
 strlen = NLSGetLocaleInfo(NLS$LI_SDAYNAME3, str)
 print *, str ! prints miércoles
 END

The following example uses NLS Formatting routines:

USE IFNLS
INTEGER(4) strlen, status
CHARACTER(40) str
strlen = NLSFormatTime(str)
print *, str ! prints 11:42:24 AM
strlen = NLSFormatDate(str, flags= NLS$LongDate)
print *, str ! prints Friday, July 14, 2000
status = NLSSetLocale ("Spanish", "Mexico")
strlen = NLSFormatTime(str)
print *, str ! prints 11:42:24
print *, str ! prints viernes 14 de julio de 2000

The following example uses Multibyte Character Set (MBCS) inquiry routines:

 USE IFNLS
 CHARACTER(4) str
 INTEGER status
 status = NLSSetLocale ("Japan")
 str = " ·, " ¿"
 PRINT '(1X,''String by char = '',\)'
 DO i = 1, len(str)
 PRINT '(A2,\)',str(i:i)
 END DO
 PRINT '(/,1X,''MBLead = '',\)'
 DO i = 1, len(str)
 PRINT '(L2,\)',mblead(str(i:i))
 END DO

 1 Intel® Fortran Compiler Classic and Intel® Fortran Compiler Developer Guide and Reference

1110

 PRINT '(/,1X,''String as whole = '',A,\)',str
 PRINT '(/,1X,''MBStrLead = '',\)'
 DO i = 1, len(str)
 PRINT '(L1,\)',MBStrLead(str,i)
 END DO
 END

This code produces the following output for str = · , " ¿

The following example uses Multibyte Character Set (MBCS) Fortran equivalent routines:

 USE IFNLS
 INTEGER(4) i, len(7), infotype(7)
 CHARACTER(10) str(7)
 LOGICAL(4) log4
 data infotype / NLS$LI_SDAYNAME1, NLS$LI_SDAYNAME2, &
 & NLS$LI_SDAYNAME3, NLS$LI_SDAYNAME4, &
 & NLS$LI_SDAYNAME5, NLS$LI_SDAYNAME6, &
 & NLS$LI_SDAYNAME7 /
 WRITE(*,*) 'NLSGetLocaleInfo'
 WRITE(*,*) '----------------'
 WRITE(*,*) ' '
 WRITE(*,*) 'Getting the names of the days of the week...'
 DO i = 1, 7
 len(i) = NLSGetLocaleInfo(infotype(i), str(i))
 WRITE(*, 11) 'len/str/hex = ', len(i), str(i), str(i)
 END DO
 11 FORMAT (1X, A, I2, 2X, A10, 2X, '[', Z20, ']')
 WRITE(*,*) ' '
 WRITE(*,*) 'Lexically comparing the names of the days...'
 DO i = 1, 6
 log4 = MBLGE(str(i), str(i+1), NLS$IgnoreCase)
 WRITE(*, 12) 'Is day ', i, ' GT day ', i+1, '? Answer = ', log4
 END DO
 12 FORMAT (1X, A, I1, A, I1, A, L1)
 WRITE(*,*) ' '
 WRITE(*,*) 'Done.'
 END

This code produces the following output when the locale is Japan:

Intel® Fortran Compiler Classic and Intel® Fortran Compiler Developer Guide and Reference 1

1111

See Also
National Language Support Library Routines
Standard Fortran Routines That Handle MBCS Characters
USE

Standard Fortran Routines that Handle MBCS Characters on Windows

This section describes Fortran routines that work as usual even if MBCS characters are included in strings.

Because a space can never be a lead or tail byte, many routines that deal with spaces work as expected on
strings containing MBCS characters. Such functions include:

• ADJUSTL (string)
• ADJUSTR (string)
• TRIM (string)

Some routines work with the computer collating sequence to return a character in a certain position in the
sequence or the position in the sequence of a certain character. These functions are not dependent on a
particular collating sequence. (You should note, however, that elsewhere in this manual the ASCII collating
sequence is mentioned in reference to these functions.) Such functions use position and c values between 0
and 255 (inclusive) and include:

• ACHAR (position)
• CHAR (position[,kind])
• IACHAR (c)
• ICHAR (c)

 1 Intel® Fortran Compiler Classic and Intel® Fortran Compiler Developer Guide and Reference

1112

Because Fortran uses character lengths instead of NULLs to indicate the length of a string, some functions
work solely from the length of the string, and not with the contents of the string. This function works as
usual on strings containing MBCS characters, and include:

REPEAT (string, ncopies)

Portability Routines

This section summarizes portability routines.

Information Retrieval Routines
Information retrieval routines return information about system commands, command-line arguments,
environment variables, and process or user information.

Group, user, and process ID are INTEGER(4) variables. Login name and host name are character variables.
The functions GETGID and GETUID are provided for portability, but always return 1.

Process Control Routines
Process control routines control the operation of a process or subprocess. You can wait for a subprocess to
complete with either SLEEP or ALARM, monitor its progress and send signals via KILL, and stop its execution
with ABORT.

In spite of its name, KILL does not necessarily stop execution of a program. Rather, the routine signaled
could include a handler routine that examines the signal and takes appropriate action depending on the code
passed.

Note that when you use SYSTEM, commands are run in a separate shell. Defaults set with the SYSTEM
function, such as current working directory or environment variables, do not affect the environment the
calling program runs in.

The portability library does not include the FORK routine. On Linux* systems, FORK creates a duplicate
image of the parent process. Child and parent processes each have their own copies of resources, and
become independent from one another.

On Windows* systems, you can create a child process (called a thread), but both parent and child processes
share the same address space and share system resources. If you need to create another process, use the
CreateProcessWindows API routine.

Numeric Values and Conversion Routines
Numeric values and conversion routines are available for calculating Bessel functions, data type conversion,
and generating random numbers. Some of these functions have equivalents in Standard Fortran, in which
case the standard Fortran routines should be used.

Data object conversion can be accomplished by using the INT intrinsic function instead of LONG or SHORT.
The intrinsic subroutines RANDOM_INIT, RANDOM_NUMBER, and RANDOM_SEED perform the same functions
as some random number functions that are shown in table Numeric Values and Conversion, which appears in
Portability Library Routines.

Other bit manipulation functions such as AND, XOR, OR, LSHIFT, and RSHIFT are intrinsic functions. You do
not need the IFPORT module to access them. Standard Fortran includes many bit operation routines, which
are listed in the Bit Operation and Representation Routines table.

Input and Output Routines
The portability library contains routines that change file properties, read and write characters and buffers,
and change the offset position in a file. These input and output routines can be used with standard Fortran
input or output statements such as READ or WRITE on the same files, provided that you take into account
the following:

Intel® Fortran Compiler Classic and Intel® Fortran Compiler Developer Guide and Reference 1

1113

• When used with direct files, after an FSEEK, GETC, or PUTC operation, the record number is the number
of the next whole record. Any subsequent normal Fortran I/O to that unit occurs at the next whole record.
For example, if you seek to absolute location 1 of a file whose record length is 10, the NEXTREC returned
by an INQUIRE would be 2. If you seek to absolute location 10, NEXTREC would still return 2.

• On units with CARRIAGECONTROL='FORTRAN' (the default), PUTC and FPUTC characters are treated as
carriage control characters if they appear in column 1.

• On sequentially formatted units, the C string "\n"c, which represents the carriage return/line feed escape
sequence, is written as CHAR(13) (carriage return) and CHAR(10) (line feed), instead of just line feed, or
CHAR(10). On input, the sequence 13 followed by 10 is returned as just 10. (The length of character
string "\n"c is 1 character, whose ASCII value, indicated by ICHAR('\n'c), is 10.)

• Reading and writing is in a raw form for direct files. Separators between records can be read and
overwritten. Therefore, be careful if you continue using the file as a direct file.

I/O errors arising from the use of these routines result in an Intel® Fortran runtime error.

Some portability file I/O routines have equivalents in Standard Fortran. For example, you could use the
ACCESS function to check a file specified by name for accessibility according to mode. It tests a file for read,
write, or execute permission, as well as checking to see if the file exists. It works on the file attributes as
they exist on disk, not as a program's OPEN statement specifies them.

Instead of ACCESS, you can use the INQUIRE statement with the ACTION specifier to check for similar
information. (The ACCESS function always returns 0 for read permission on FAT files, meaning that all files
have read permission.)

Date and Time Routines
Various date and time routines are available to determine system time, or convert it to local time, Greenwich
Mean Time, arrays of date and time elements, or an ASCII character string.

DATE and TIME are available as either a function or subroutine. Because of the name duplication, if your
programs do not include the USE IFPORT statement, each separately compiled program unit can use only one
of these versions. For example, if a program calls the subroutine TIME once, it cannot also use TIME as a
function.

Standard Fortran includes date and time intrinsic subroutines. For more information, see DATE_AND_TIME.

Error Handling Routines
Error handling routines detect and report errors.

IERRNO error codes are analogous to errno on Linux* systems. The IFPORT module provides parameter
definitions for many of UNIX's errno names, found typically in errno.h on UNIX systems.

IERRNO is updated only when an error occurs. For example, if a call to the GETC function results in an error,
but two subsequent calls to PUTC succeed, a call to IERRNO returns the error for the GETC call. Examine
IERRNO immediately after returning from one of the portability library routines. Other Standard Fortran
routines might also change the value to an undefined value.

If your application uses multithreading, remember that IERRNO is set on a per-thread basis.

System, Drive, or Directory Control and Inquiry Routines
You can retrieve information about devices, directories, and files with the functions listed below. File names
can be long file names or UNC file names. A forward slash in a path name is treated as a backslash. All path
names can contain drive specifications.

Standard Fortran provides the INQUIRE statement, which returns detailed file information either by file name
or unit number. Use INQUIRE as an equivalent to FSTAT, LSTAT, or STAT. LSTAT and STAT return the same
information; STAT is the preferred function.

 1 Intel® Fortran Compiler Classic and Intel® Fortran Compiler Developer Guide and Reference

1114

Serial Port Routines on Windows
The serial port I/O (SPORT_xxx) routines help you perform basic input and output to serial ports.

Additional Routines
You can also use portability routines for program call and control, keyboards and speakers, file management,
arrays, floating-point inquiry and control, IEEE* functionality, and other miscellaneous uses.

NOTE
On Windows* systems, all portability routines that take path names also accept long file names or
UNC (Universal Naming Convention) file names. A forward slash in a path name is treated as a
backslash. All path names can contain drive specifications as well as MBCS (multiple-byte character
set) characters.

See Also
Portability Routines
Overview of Serial Port I/O Routines

Serial Port I/O Routines on Windows

The serial port I/O (SPORT_xxx) routines help you perform basic input and output to serial ports. These
routines are available only on Windows* systems.

The programming model is much the same as a normal file except the user does a connect
(SPORT_CONNECT, SPORT_CONNECT_EX) and release (SPORT_RELEASE) to the port instead of an open and
close of a file.

Two types of read and write operations (as determined in a mode on the connect call) are provided:

• Read and write arbitrary data from/to the port using SPORT_READ_DATA and SPORT_WRITE_DATA.
• Read and writes line-terminated data using SPORT_READ_LINE and SPORT_WRITE_LINE.

Once any I/O operation has been requested on the port, an additional thread is started that keeps a read
outstanding on the port so that data will not be missed.

The SPORT_SET_STATE, SPORT_SET_STATE_EX, and SPORT_SET_TIMEOUTS routines allow you to set basic
port parameters such as baud rate, stop bits, timeouts, and so on. Additionally, you can call
SPORT_GET_HANDLE to return the Windows* handle to the port so that you can call Windows*
Communication Functions to implement additional needs.

Call the Serial Port I/O Routines
The SPORT_xxx routines are functions that return an error status:

• An error status of 0 (zero) indicates success
• Other values are Windows* error values that indicate an error

As described in the calling syntax, these routines require the following USE statement:

USE IFPORT
The USE IFPORT statement includes the routine definitions in the compilation. You may also need to add a
USE IFWINTY statement to your program because some Windows* constants may be required that are
typically defined in the IFWINTY module.

Many arguments are optional. If a constant is used where an argument is both input and output, a probe for
writeability is done before the output. Thus, in many cases, a constant may be used without creating a
temporary variable. It should be noted, however, that doing so may not be compatible with all Fortran
implementations.

Intel® Fortran Compiler Classic and Intel® Fortran Compiler Developer Guide and Reference 1

1115

Runtime Behavior of the Serial Port I/O Routines
To help ensure that data overruns do not occur, the SPORT_xxx runtime support creates a separate thread
that maintains an outstanding read to the connected port. This thread is started when any read or write
operation is performed to the port using the affiliated read/write routine. As such, port parameters must not
be changed after you have started reading or writing to the port. Instead, you should set up the port
parameters after connecting to the port and then leave them unchanged until after the port has been
released.

If the parameters of the port must be changed more dynamically, use the SPORT_CANCEL_IO routine to
ensure that no I/O is in progress. Additionally, that call will kill the helper thread so that it will automatically
pick up the new, correct, parameters when it restarts during the next I/O operation.

Serial Port Usage
Depending upon the application, serial port programming can be very simple or very complex . The
SPORT_xxx routines are intended to provide a level of support that will help the user implement simple
applications as well as providing a foundation that can be used for more complex applications. Users needing
to implement full serial port protocols (such as a PPP/SLIP implementation or some other complex protocol)
should use the Windows* Communication Functions directly to achieve the detailed level of control needed in
those cases. Simple tasks, such as communicating with a terminal or some other data collection device are
well suited for implementations using the SPORT_xxx routines.

You should first familiarize yourself with the hardware connection to the serial device. Typical connections
used today involve either a 9 pin/wire connector or a 25 pin/wire connector. Many cables do not implement
all 9 or 25 connections in order to save on costs. For certain applications these subset cables may work just
fine but others may require the full 9 or 25 connections. All cables will implement the Receive/SendData
signals as well as the SignalGround. Without these signals, there can be no data transfer. There are two
other categories of important signals:

• Signals used for flow control

Flow control signals tell the device/computer on the other end of the cable that data may be sent or that
they should wait. Typically, the RequestToSend/ClearToSend signals are used for this purpose. Other
signals such as DataSetReady or DataTerminalReady may also be used. Make sure that the cable used
implements all the signals required by your hardware/software solution. Special characters (normally as
XON/XOFF) may also be used to control the flow of data instead of or in addition to the hardware signals.
Check your specific application to see what cabling is needed.

• Signals that indicate status or state of a modem or phone connection.

These signals may not be required if the connection between the computer and the device is direct and
not through a modem. This signals typically convey information such as the state of the carrier
(CarrierDetect) or if the phone line is ringing (Ring). Again, make sure the cable used implements all the
signals required for your application.

After the correct physical connection has been set up the programmer must become familiar with the data
protocol used to communicate with the remote device/system.

Many simple devices terminate parcels of data with a "record terminator" (often a carriage return or line feed
character). Other devices may simply send data in fixed length packets or packets containing some sort of
count information. The two types of I/O routines provided by the SPORT_xxx support (line oriented using
SPORT_READ_LINE and SPORT_WRITE_LINE or transfer raw data using SPORT_READ_DATA and
SPORT_WRITE_DATA) can handle these two types of data transfer. The programmer must become familiar
with the particular application to determine which type of I/O is more appropriate to use.

The SPORT_xxx routines call Windows* routines. For example, the SPORT_SET_STATE routine calls the
routine SetCommState, which uses the DCB Communications Structure.

See Also
Portability Routines for a list of the SPORT routines

 1 Intel® Fortran Compiler Classic and Intel® Fortran Compiler Developer Guide and Reference

1116

Summary of Language Extensions
This appendix summarizes the Intel® Fortran language extensions to the ANSI/ISO Fortran 2003 Standard.

Most extensions are available on all supported operating systems. However, some extensions are limited to
one or more platforms. If an extension is limited, it is labeled.

Language Extensions: Source Forms
The following are extensions to the methods and rules for source forms:

• Tab-formatting as a method to code lines
• The letter D as a debugging statement indicator in column 1 of fixed or tab source form
• An optional statement field width of 132 columns for fixed or tab source form
• An optional sequence number field for fixed source form
• Up to 511 continuation lines in a source program

Language Extensions: Names
As an extension, the dollar sign ($) is a valid character in names, and can be the first character.

Language Extensions: Character Sets
The following are extensions to the standard character set:

• The Tab (<Tab>) character (see Character Sets)
• ASCII Character Code Chart 2 -- IBM* Character Set
• ANSI Character Code Chart
• Key Code Charts

Language Extensions: Intrinsic Data Types
The following are data-type extensions:

BYTE INTEGER*1 REAL*16

DOUBLE COMPLEX INTEGER*2 COMPLEX*8

LOGICAL*1 INTEGER*4 COMPLEX*16

LOGICAL*2 INTEGER*8 COMPLEX*32

LOGICAL*4 REAL*4

LOGICAL*8 REAL*8

See Also
Intrinsic Data Types

Language Extensions: Constants
Hollerith constants are allowed as an extension.

C Strings are allowed as extensions in character constants.

Language Extensions: Expressions and Assignment
When operands of different intrinsic data types are combined in expressions, conversions are performed as
necessary (see Data Type of Numeric Expressions).

Intel® Fortran Compiler Classic and Intel® Fortran Compiler Developer Guide and Reference 1

1117

Binary, octal, hexadecimal, and Hollerith constants can appear wherever numeric constants are allowed.

The following are extensions allowed in logical expressions:

• .XOR. as a synonym for .NEQV.
• Integers as valid logical items
• Logical operators applied to integers bit-by-bit

Language Extensions: Specification Statements
The following specification attributes and statements are extensions:

• AUTOMATIC attribute and statement
• STATIC attribute and statement

Language Extensions: Execution Control
The following control statements are extensions:

• ASSIGN
• Assigned GO TO
• IF - Arithmetic
• Non-block form of a DO statement
• PAUSE

These are older Fortran features that have been deleted from the Fortran Standard. Intel® Fortran fully
supports these features.

Language Extensions: Compilation Control Lines and Statements
The following line option and statement are extensions that can influence compilation:

• [/[NO]LIST], which can be specified in an INCLUDE line
• The OPTIONS statement

Language Extensions: Built-In Functions
The following built-in functions are extensions:

• %VAL, %REF, and %LOC, which facilitate references to non-Fortran procedures
• %FILL, which can be used in record structure type definitions

Language Extensions: I/O Statements
The following I/O statements are extensions:

• The ACCEPT statement
• The REWRITE statement
• The TYPE statement, which is a synonym for the PRINT statement

Language Extensions: I/O Formatting
The following are extensions allowed in I/O Formatting:

• The Q edit descriptor
• The dollar sign ($) edit descriptor and carriage-control character
• The backslash (\) edit descriptor
• The ASCII NUL carriage-control character
• Variable format expressions
• The H edit descriptor

This is an older Fortran feature that has been deleted in Fortran 95. Intel® Fortran fully supports this
feature.

 1 Intel® Fortran Compiler Classic and Intel® Fortran Compiler Developer Guide and Reference

1118

Language Extensions: File Operation Statements
The following statement specifiers and statements are extensions:

• CLOSE statement specifiers:

• STATUS values: 'SAVE' (as a synonym for 'KEEP'), 'PRINT', 'PRINT/DELETE', 'SUBMIT', 'SUBMIT/
DELETE'

• DISPOSE (or DISP)
• DELETE statement
• INQUIRE statement specifiers:

• BINARY (Windows)
• BLOCKSIZE
• BUFFERED
• CARRIAGECONTROL
• CONVERT
• DEFAULTFILE
• FORM values: 'UNKNOWN', 'BINARY' (Windows)
• IOFOCUS (Windows)
• MODE as a synonym for ACTION
• ORGANIZATION
• RECORDTYPE
• SHARE (Windows)

See also INQUIRE Statement.
• OPEN statement specifiers:

• ACCESS values: 'APPEND'
• ASSOCIATEVARIABLE
• BLOCKSIZE
• BUFFERCOUNT
• BUFFERED
• CARRIAGECONTROL
• CONVERT
• DEFAULTFILE
• DISPOSE (or DISP)
• FORM value: 'BINARY' (Windows)
• IOFOCUS (Windows)
• MAXREC
• MODE as a synonym for ACTION
• NAME as a synonym for FILE
• NOSHARED
• ORGANIZATION
• READONLY
• RECORDSIZE as a synonym for RECL
• RECORDTYPE
• SHARE (Windows)
• SHARED
• TITLE (Windows)
• TYPE as a synonym for STATUS
• USEROPEN

See also OPEN Statement.

Language Extensions: Compiler Directives
The following General Directives are extensions:

• ALIAS
• ASSUME
• ASSUME_ALIGNED

Intel® Fortran Compiler Classic and Intel® Fortran Compiler Developer Guide and Reference 1

1119

• ATTRIBUTES
• BLOCK_LOOP and NOBLOCK_LOOP
• DECLARE and NODECLARE
• DEFINE and UNDEFINE
• DISTRIBUTE POINT
• FIXEDFORMLINESIZE
• FMA and NOFMA
• FORCEINLINE
• FREEFORM and NOFREEFORM
• IDENT
• IF and IF DEFINED
• INLINE and NOINLINE
• INTEGER
• IVDEP
• LOOP COUNT
• MESSAGE
• NOFUSION
• OBJCOMMENT
• OPTIMIZE and NOOPTIMIZE
• OPTIONS
• PACK
• PARALLEL and NOPARALLEL (loop)
• PREFETCH and NOPREFETCH
• PSECT
• REAL
• SIMD
• STRICT and NOSTRICT
• UNROLL and NOUNROLL
• UNROLL_AND_JAM and NOUNROLL_AND_JAM
• VECTOR and NOVECTOR

Language Extensions: Intrinsic Procedures
The following intrinsic procedures are extensions available on all platforms:

A to D

AIMIN0 BJTEST CQEXP DCOTAN

AJMAX0 BKTEST CQLOG DCOTAND

AJMIN0 BMOD CQSIN DERF

AKMAX0 BMVBITS CQSQRT DERFC

AKMIN0 BNOT CQTAN DFLOAT

AND BSHFT CTAN DFLOTI

ASINH BSHFTC DACOSD DFLOTJ

BABS BSIGN DACOSH DFLOTK

BADDRESS CACHESIZE DASIND DIMAG

BBCLR CDABS DASINH DNUM

BBITS CDCOS DATAN2D DREAL

BBSET CDEXP DATAND DSHIFTL

AIMAX0 CDLOG DATAN DSHIFTR

 1 Intel® Fortran Compiler Classic and Intel® Fortran Compiler Developer Guide and Reference

1120

BBTEST CDSIN COTAN DSIND

BDIM CDSQRT DATE DTAND

BIAND CDTAN DBLEQ

BIEOR COTAND DCMPLX

BIOR CQABS DCONJG

BITEST CQCOS DCOSD

E to I

EOF HMOD IIDNNT IMVBITS

ERRSNS HMVBITS IIEOR ININT

EXIT HNOT IIFIX INOT

FLOATI HSHFT IINT INT1

FLOATJ HSHFTC IIOR INT2

FLOATK HSIGN IIQINT INT4

FP_CLASS HTEST IIQNNT INT8

FREE IADDR IISHFT INT_PTR_KIND

GETARG IARG IISHFTC INUM

HABS IARGC IISIGN IQINT

HBCLR IBCHNG IIXOR IQNINT

HBITS IDATE IJINT ISHA

HBSET IIABS ILEN ISHC

HDIM IIAND IMAG ISHL

HFIX IIBCLR IMAX0 ISNAN

HIAND IIBITS IMAX1 IXOR

HIEOR IIBSET IMIN0 IZEXT

HIOR IIDIM IMIN1

HIXOR IIDINT IMOD

J to P

JFIX JISIGN KIBSET KMOD

JIABS JIXOR KIDIM KMVBITS

JIAND JMAX0 KIDINT KNINT

JIBCLR JMAX1 KIDNNT KNOT

JIBITS JMIN0 KIEOR KNUM

JIBSET JMIN1 KIFIX KZEXT

JIDIM JMOD KINT LOC

Intel® Fortran Compiler Classic and Intel® Fortran Compiler Developer Guide and Reference 1

1121

JIDINT JMVBITS KIOR LSHIFT

JIDNNT JNINT KIQINT LSHFT

JIEOR JNOT KIQNNT MALLOC

JIFIX JNUM KISHFT MCLOCK

JINT JZEXT KISHFTC MM_PREFETCH

JIOR KDIM KISIGN NARGS

JIQINT KIABS KMAX0 NUMARG

JIQNNT KIAND KMAX1 OR

JISHFT KIBCLR KMIN0

JISHFTC KIBITS KMIN1

Q to Z

QABS QCOSH QNINT SNGLQ

QACOS QCOTAN QNUM TIME

QACOSD QCOTAND QREAL TRAILZ

QACOSH QDIM QSIGN XOR

QARCOS QERF QSIN ZABS

QASIN QERFC QSIND ZCOS

QASIND QEXP QSINH ZEXP

QASINH QEXT QSQRT ZEXT

QATAN QEXTD QTAN ZLOG

QATAN2 QFLOAT QTAND ZSIN

QATAN2D QIMAG QTANH ZSQRT

QATAND QINT RAN ZTAN

QATANH QLOG RANF

QCMPLX QLOG10 RANDU

QCONJG QMAX1 RNUM

QCOS QMIN1 RSHIFT

QCOSD QMOD SIZEOF

Language Extensions: Additional Language Features
The following are language extensions that facilitate compatibility with other versions of Fortran:

• DEFINE FILE statement
• ENCODE and DECODE statements
• FIND statement
• The INTERFACE TO statement
• FORTRAN 66 Interpretation of the EXTERNAL statement
• An alternative syntax for the PARAMETER statement

 1 Intel® Fortran Compiler Classic and Intel® Fortran Compiler Developer Guide and Reference

1122

• VIRTUAL statement
• AND, OR, XOR, IMAG, LSHIFT, RSHIFT intrinsics (see the A to Z Reference)
• An alternative syntax for octal and hexadecimal constants
• An alternative syntax for an I/O record specifier
• An alternate syntax for the DELETE statement
• An alternative form for namelist external records
• The integer POINTER statement
• Record structures

Language Extensions: Runtime Library Routines
The following runtime library routines are available as extensions:

• Runtime Library Routines
• OpenMP* Runtime Library Routines for Fortran

A to Z Reference
This section contains the following:

• Language Summary Tables

This section organizes the Fortran functions, subroutines, and statements by the operations they perform,
and shows short descriptions of each routine. You can use the tables to locate a particular routine for a
particular task.

• The descriptions of all Fortran statements, intrinsics, directives, and module library routines, which are
listed in alphabetical order.

Certain routine groups, such as POSIX* routines and NLS routines, are in separate sections.

NOTE
In the description of routines, pointers and handles are INTEGER(4) on IA-32 architecture and
INTEGER(8) on Intel® 64 architecture.

ifx does not generate code to run on IA-32 architecture.

The Fortran compiler understands statements and intrinsic functions in your program without any additional
information, such as that provided in modules.

However, modules must be included in programs that contain the following routines. Note that the links in
this list go to the relevant language summary table:

• Quickwin routines and graphics routines

These routines require a USE IFQWIN statement to include the library and graphics modules.
• Portability routines

It is recommended that you specify USE IFPORT when accessing routines in the portability library.
• Serial port I/O routines

These routines require a USE IFPORT statement to access the portability library.
• NLS routines

These routines require a USE IFNLS statement to access the NLS library.
• POSIX* routines

These routines require a USE IFPOSIX statement to access the POSIX library.
• Dialog routines

These routines require a USE IFLOGM statement to access the dialog library.
• Component Object Module (COM) routines

These routines require a USE IFCOM statement to access the COM library.
• Automation server routines

Intel® Fortran Compiler Classic and Intel® Fortran Compiler Developer Guide and Reference 1

1123

These routines require a USE IFAUTO statement to access the AUTO library.
• Miscellaneous Runtime Routines

Most of these routines require a USE IFCORE statement to obtain the proper interfaces.

When a USE module is required for a routine, it will be specified in the individual procedure description.

In addition to the appropriate USE statement, for some routines you must specify the types of libraries to be
used when linking.

Language Summary Tables
This section contains tables that summarize language features such as statements, directives, and routines.

Statements for Program Unit Calls and Definitions

The following table lists statements used for program unit definition and procedure call and return.

Name Description

BLOCK DATA Identifies a block-data subprogram.

CALL Executes a subroutine.

COMMON Delineates variables shared between program units.

CONTAINS Identifies the start of module procedures within a
host module, contained procedures within a
procedure, or bound procedures within a type.

ENTRY Specifies a secondary entry point to a subroutine or
external function.

EXTERNAL Declares a name to be that of a user-defined
subroutine or function, making it passable as an
argument.

FUNCTION Identifies a program unit as a function.

GENERIC Specifies a generic identifier for one or more
specific procedures or type bound procedures.

IMPORT Makes entities from the host scoping unit accessible
or inaccessible.

INCLUDE Inserts the contents of a specified file into the
source file. It is not considered a Fortran
statement; it is referred to as an include line.

INTERFACE Specifies an explicit interface for external functions
and subroutines.

INTRINSIC Declares a predefined function.

MODULE Identifies a module program unit.

PROCEDURE Declares procedure pointers, dummy procedures,
external procedures, and type-bound procedures.

PROGRAM Identifies a program unit as a main program.

RETURN Returns control to the program unit that called a
subroutine or function.

SUBROUTINE Identifies a program unit as a subroutine.

 1 Intel® Fortran Compiler Classic and Intel® Fortran Compiler Developer Guide and Reference

1124

Name Description

USE Gives a program unit access to a module.

Statements Affecting Variables

The following table lists statements that are used to declare variables of intrinsic and derived types, to
declare new types, and that can affect the value of variables. Statements that declare variables can specify
attributes of the variables. Attributes are listed in the table following this one.

Name Description

ASSOCIATE1 Associates a name (alias) with a data designator or
expression that can be used to identify that
designator or expression in a block of code.

BYTE Specifies variables as the BYTE data type; BYTE is
equivalent to INTEGER(1).

CHARACTER Specifies variables as the CHARACTER data type.

COMMON Defines one or more contiguous areas, or blocks, of
physical storage (called common blocks) that can
be accessed by any of the scoping units in an
executable program.

COMPLEX Specifies variables as the COMPLEX data type.

DATA Assigns initial values to variables.

DOUBLE COMPLEX Specifies variables as the DOUBLE COMPLEX data
type, equivalent to COMPLEX(8).

DOUBLE PRECISION Specifies variables as the DOUBLE-PRECISION real
data type, equivalent to REAL(8).

ENUM Begins the definition of an interoperable
enumeration and may give the type a name.

ENUMERATOR Associates integer values with named constant
enumerators.

EQUIVALENCE Specifies that two or more variables or arrays share
the same memory location.

FINAL Indicates a derived type is finalizable and specifies
what its final subroutines are.

IMPLICIT Specifies the default types for variables and
functions.

IMPLICIT NONE Disables implicit typing in the scope, or requires all
external procedures to have explicit interfaces if
invoked from the scope.

INTEGER Specifies variables as the INTEGER data type.

LOGICAL Specifies variables as the LOGICAL data type.

MAP Within a UNION statement, delimits a group of
variable type declarations that are to be ordered
contiguously within memory.

Intel® Fortran Compiler Classic and Intel® Fortran Compiler Developer Guide and Reference 1

1125

Name Description

NAMELIST Declares a group name for a set of variables to be
read or written in a single statement.

NULLIFY1 Disassociates a variable with the POINTER attribute
(sets it to NULL).

REAL Specifies variables as the REAL data type.

RECORD Declares one or more variables of a user-defined
structure type.

SEQUENCE Prevents the compiler from optimizing the storage
order of components in a derived type.

STRUCTURE Defines a new variable type, composed of a
collection of other variable types.

TYPE Defines a new variable type, composed of a
collection of other variable types.

UNION Within a structure, causes two or more maps to
occupy the same memory locations.

1 This is an executable statement.

The following table lists statements that give attributes to variables. Attributes also can be given to variables
in their type declaration statement.

Name Description

ALLOCATABLE Indicates an entity can be dynamically allocated
and deallocated.

ASYNCHRONOUS Indicates a variable may be used in asynchronous
input or output, or asynchronous communication.

AUTOMATIC Declares a variable on the stack, rather than at a
static memory location.

BIND Indicates a variable or common block can
interoperate with a C variable whose name has
external linkage.

CODIMENSION Specifies that an entity is a coarray and indicates its
corank and cobounds, if any.

CONTIGUOUS Indicates an array object is contiguous.

DIMENSION Specifies that an entity is an array and indicates its
rank and bounds.

EXTERNAL Indicates an entity is an external procedure, a
dummy procedure, a procedure pointer, or a block
data subprogram.

INTENT Indicates how a dummy argument is to be used: as
an input argument (IN), an output argument
(OUT), or as both input and output (INOUT).

INTRINSIC Indicates an entity is an intrinsic procedure.

 1 Intel® Fortran Compiler Classic and Intel® Fortran Compiler Developer Guide and Reference

1126

Name Description

OPTIONAL Indicates a dummy argument need not be
associated with an actual argument in a procedure
invocation.

PARAMETER Equates a constant expression with a name.

POINTER Indicates an entity can be associated with different
data objects or procedures during the execution of
a program. A pointer is either a data pointer or a
procedure pointer, but not both.

PRIVATE Limits the accessibility of a module entity by a
particular name, or that of a component of a
derived type declared in a module.

PROTECTED Specifies limitations on the use of module entities.

PUBLIC Makes a module entity accessible by USE
association, or it makes a component of a derived
type declared in a module accessible when the
derived type is USE associated.

SAVE Causes variables to retain their values between
invocations of the procedure in which they are
defined.

STATIC Declares a variable is in a static memory location,
rather than on the stack.

TARGET Indicates a data object may become associated
with a data pointer.

VALUE Indicates a dummy argument is passed by value
rather than by reference.

VOLATILE Specifies that the value of an object is totally
unpredictable based on information available to the
current program unit.

Statements and Intrinsic Functions for Input and Output

The following table lists statements and intrinsic functions used for input and output.

Name Procedure Type Description

ACCEPT Statement Similar to a formatted, sequential
READ statement.

BACKSPACE Statement Positions a file to the beginning of
the previous record.

CLOSE Statement Disconnects the specified unit.

DELETE Statement Deletes a record from a relative
file.

ENDFILE Statement Writes an end-of-file record or
truncates a file.

Intel® Fortran Compiler Classic and Intel® Fortran Compiler Developer Guide and Reference 1

1127

Name Procedure Type Description

FLUSH Statement Causes data written to a file to
become available to other
processes or causes data written
to a file outside of Fortran to be
accessible to a READ statement.

FORMAT Statement Associates a statement label with
a sequence of format edit
descriptors. The statement label
is used in other input and output
statements as the format
specifier.

INQUIRE Statement Returns the properties of a file or
unit.

IS_IOSTAT_END Intrinsic function Tests IOSTAT value for end of file.

IS_IOSTAT_EOR Intrinsic function Tests IOSTAT value for end of
record.

OPEN Statement Associates a unit number with an
external device or file.

PRINT(or TYPE) Statement Displays data on the screen.

READ Statement Transfers data from a file to the
items in an I/O list.

REWIND Statement Repositions a file to its first
record.

REWRITE Statement Rewrites the current record.

WRITE Statement Transfers data from the items in
an I/O list to a file.

Compiler Directives

The following tables list available compiler directives.

Each OpenMP* Fortran directive name is preceded by the prefix !$OMP in free format source; in fixed format
source the prefix is c$OMP, where c is one of the following: !, C (or c), or *; for example, !$OMP ATOMIC.

Directives that are extensions to OpenMP are preceded by the prefix !$OMPX in free format source; in fixed
format source the prefix is c$OMP, where c is one of the following: !, C (or c), or *.

Compiler directives are specially formatted comments in the source file that provide information to the
compiler. Some directives, such as line length or conditional compilation directives, provide the compiler
information that is used in interpreting the source file. Other directives, such as optimization directives,
provide hints or suggestions to the compiler, which, in some cases, may be ignored or overridden by the
compiler, based on the heuristics of the optimizer and/or code generator. If the directive is ignored by the
compiler, no diagnostic message is issued.

You do not need to specify a compiler option to enable general directives.

Some directives may perform differently on Intel® microprocessors than on non-Intel microprocessors.

 1 Intel® Fortran Compiler Classic and Intel® Fortran Compiler Developer Guide and Reference

1128

General Directives

Name Description

ALIAS Specifies an alternate external name to be used
when referring to an external subprogram.

ASSUME Provides heuristic information to the compiler
optimizer.

ASSUME_ALIGNED Specifies that an entity in memory is aligned.

ATTRIBUTES Applies attributes to variables and procedures.

BLOCK_LOOP Enables loop blocking for the immediately following
nested DO loops.

DECLARE Generates warning messages for undeclared
variables.

DEFINE Creates a variable whose existence can be tested
during conditional compilation.

DISTRIBUTE POINT Suggests a location at which a DO loop may be
split.

ELSE Marks the beginning of an alternative conditional-
compilation block to an IF directive construct.

ELSEIF Marks the beginning of an alternative conditional-
compilation block to an IF directive construct.

ENDIF Marks the end of a conditional-compilation block.

FIXEDFORMLINESIZE Sets fixed-form line length. This directive has no
effect on freeform code.

FMA Tells the compiler to allow generation of fused
multiply-add (FMA) instructions, also known as
floating-point contractions.

FORCEINLINE Specifies that a routine should be inlined whenever
the compiler can do so.

FREEFORM Uses freeform format for source code.

IDENT Specifies an identifier for an object module.

IF Marks the beginning of a conditional-compilation
block.

IF DEFINED Marks the beginning of a conditional-compilation
block.

INLINE Specifies that the routines can be inlined.

INTEGER Selects default integer size.

IVDEP Assists the compiler's dependence analysis of
iterative DO loops.

Intel® Fortran Compiler Classic and Intel® Fortran Compiler Developer Guide and Reference 1

1129

Name Description

LOOP COUNT Specifies the typical trip loop count for a DO loop;
which assists the optimizer.

MESSAGE Sends a character string to the standard output
device.

NOBLOCK_LOOP Disables loop blocking for the immediately following
nested DO loops.

NODECLARE (Default) Turns off warning messages for
undeclared variables.

NOFMA Disables the generation of FMA instructions.

NOFREEFORM (Default) Uses standard FORTRAN 77 code
formatting column rules.

NOFUSION Prevents a loop from fusing with adjacent loops.

NOINLINE Specifies that a routine should not be inlined.

NOPARALLEL Disables auto-parallelization for an immediately
following DO loop. This feature is only available for
ifort.

NOOPTIMIZE Disables optimizations for the program unit.

NOPREFETCH Disables a data prefetch from memory.

NOSTRICT (Default) Disables a previous STRICT directive.

NOUNROLL Disables the unrolling of a DO loop.

NOUNROLL_AND_JAM Disables loop unrolling and jamming.

NOVECTOR Disables vectorization of a DO loop.

OBJCOMMENT Specifies a library search path in an object file.

OPTIMIZE Enables optimizations for the program unit.

OPTIONS Controls whether fields in records and data items in
common blocks are naturally aligned or packed on
arbitrary byte boundaries.

PACK Specifies the memory alignment of derived-type
items.

PARALLEL Helps auto-parallelization by assisting the
compiler's dependence analysis of an immediately
following DO loop. This feature is only available for
ifort.

PREFETCH Hints to the compiler to prefetch data from
memory.

PSECT Modifies certain characteristics of a common block.

REAL Selects default real size.

 1 Intel® Fortran Compiler Classic and Intel® Fortran Compiler Developer Guide and Reference

1130

Name Description

SIMD Requires and controls SIMD vectorization of loops.
This feature is only available for ifort.

STRICT Disables Intel® Fortran features not in the language
standard specified on the command line.

UNDEFINE Removes a symbolic variable name created with the
DEFINE directive.

UNROLL Tells the compiler's optimizer how many times to
unroll a DO loop.

UNROLL_AND_JAM Enables loop unrolling and jamming.

VECTOR Overrides default heuristics for vectorization of DO
loops.

OpenMP* Fortran Directives
OpenMP* directives are specially formatted Fortran comment lines embedded in the source file that provide
the compiler with hints and suggestions for parallelization, optimization, vectorization, and offloading code to
accelerator hardware.

The compiler uses the information specified in the directives with compiler heuristic algorithms to generate
more efficient code. At times, these heuristics may choose to ignore or override the information provided by
a directive. If the directive is ignored by the compiler, no diagnostic message is issued.

To use the following directives, you must specify compiler option [q or Q]openmp. For more information,
refer to the option description in the Compiler Options reference.

Name Description

ALLOCATE Specifies memory allocators to use for object
allocation and deallocation. This feature is only
available for ifx.

ALLOCATORS Specifies memory allocators to be used to allocate
variables in the associated Fortran ALLOCATE
statement and to use in their deallocation. This
feature is only available for ifx.

ASSUMES Provides hints to the optimizer about the current
compilation unit and all the code it can reach
through procedure calls. This feature is only
available for ifx.

ATOMIC Specifies that a specific memory location is to be
updated atomically.

BARRIER Synchronizes all the threads in a team.

CANCEL Requests cancellation of the innermost enclosing
region of the type specified, and causes the
encountering implicit or explicit task to proceed to
the end of the canceled construct.

Intel® Fortran Compiler Classic and Intel® Fortran Compiler Developer Guide and Reference 1

1131

Name Description

CANCELLATION POINT Defines a point at which implicit or explicit tasks
check to see if cancellation has been requested for
the innermost enclosing region of the type
specified.

CRITICAL Restricts access for a block of code to only one
thread at a time.

DECLARE MAPPER Declares a user defined data mapper for derived
types and local variables that can subsequently be
used in MAP clauses. This feature is only available
for ifx.

DECLARE REDUCTION Declares a user defined reduction for one or more
types.

DECLARE SIMD Generates a SIMD procedure.

DECLARE TARGET Specifies that named variables, common blocks,
functions, and subroutines are mapped to a device.
This feature is only available for ifx.

DECLARE VARIANT Identifies a variant of a base procedure and
specifies the context in which this variant is used.
This feature is only available for ifx.

DEPOBJ Initializes, updates, or uninitializes an OpenMP
depend object. This feature is only available for ifx.

DISPATCH Determines if a variant of a procedure is called for a
given function or subroutine call. This feature is
only available for ifx.

DISTRIBUTE Specifies that loop iterations will be executed by
thread teams in the context of their implicit tasks.

DISTRIBUTE PARALLEL DO Specifies a loop that can be executed in parallel by
multiple threads that are members of multiple
teams.

DISTRIBUTE PARALLEL DO SIMD Specifies a loop that will be executed in parallel by
multiple threads that are members of multiple
teams. It will be executed concurrently using SIMD
instructions.

DISTRIBUTE SIMD Specifies a loop that will be distributed across the
primary threads of the teams region. It will be
executed concurrently using SIMD instructions.

DO Specifies that the iterations of the immediately
following DO loop must be executed in parallel.

DO SIMD Specifies a loop that can be executed concurrently
using SIMD instructions.

 1 Intel® Fortran Compiler Classic and Intel® Fortran Compiler Developer Guide and Reference

1132

Name Description

ERROR Causes the compiler or runtime system to process
an error condition. This feature is only available for
ifx.

FLUSH Specifies synchronization points where the
implementation must have a consistent view of
memory.

GROUPPRIVATE Specifies that a variable is replicated once per
group of threads participating in a parallel region.
This feature is only available for ifx.

INTEROP Identifies a foreign runtime context and identifies
runtime characteristics of that context, enabling
interoperability with it. This feature is only available
for ifx.

LOOP Specifies that all iterations of the associated DO
loop(s) can execute in any order or concurrently.
This feature is only available for ifx.

MASKED Specifies a block of code to be executed by a subset
of threads of the current team. This feature is only
available for ifx.

MASKED TASKLOOP Provides an abbreviated way to specify a TASKLOOP
construct inside a MASKED construct. This feature
is only available for ifx.

MASKED TASKLOOP SIMD Provides an abbreviated way to specify a TASKLOOP
SIMD construct inside a MASKED construct. This
feature is only available for ifx.

MASTER (Deprecated, see MASKED) Specifies a block of
code to be executed by the master thread of the
team.

MASTER TASKLOOP Deprecated; provides an abbreviated way to specify
a TASKLOOP construct inside a MASTER construct.
This feature is only available for ifx.

MASTER TASKLOOP SIMD Deprecated; provides an abbreviated way to specify
a TASKLOOP SIMD construct inside a MASTER
construct. This feature is only available for ifx.

METADIRECTIVE Specifies variant OpenMP directives, one of which
may conditionally replace the metadirective based
on the OpenMP context enclosing the metadirective.
This feature is only available for ifx.

NOTHING Provides documentary clarity in conditionally
compiled code or conditional OpenMP* code. It has
no effect on the semantics or execution of the
program. This feature is only available for ifx.

Intel® Fortran Compiler Classic and Intel® Fortran Compiler Developer Guide and Reference 1

1133

Name Description

ORDERED Specifies a block of code to be executed
sequentially.

PARALLEL Defines a parallel region.

PARALLEL DO Defines a parallel region that contains a single DO
directive.

PARALLEL DO SIMD Specifies a loop that can be executed concurrently
using SIMD instructions. It provides a shortcut for
specifying a PARALLEL construct containing one
SIMD loop construct and no other statement.

PARALLEL LOOP Provides an abbreviated way to specify a PARALLEL
region containing a single LOOP construct and no
other statements. This feature is only available for
ifx.

PARALLEL MASKED Provides an abbreviated way to specify a MASKED
construct inside a PARALLEL construct, with no
other statements inside the PARALLEL construct.
This feature is only available for ifx.

PARALLEL MASKED TASKLOOP Provides an abbreviated way to specify a MASKED
TASKLOOP construct inside a PARALLEL construct,
with no other statements inside the PARALLEL
construct. This feature is only available for ifx.

PARALLEL MASKED TASKLOOP SIMD Provides an abbreviated way to specify a MASKED
TASKLOOP SIMD construct inside a PARALLEL
construct, with no other statements inside the
PARALLEL construct. This feature is only available
for ifx.

PARALLEL MASTER Deprecated; provides an abbreviated way to specify
a MASTER construct inside a PARALLEL construct,
with no other statements inside the PARALLEL
construct. This feature is only available for ifx.

PARALLEL MASTER TASKLOOP Deprecated; provides an abbreviated way to specify
a MASTER TASKLOOP construct inside a PARALLEL
construct, with no other statements inside the
PARALLEL construct. This feature is only available
for ifx.

PARALLEL MASTER TASKLOOP SIMD Deprecated; provides an abbreviated way to specify
a MASTER TASKLOOP SIMD construct inside a
PARALLEL construct, with no other statements
inside the PARALLEL construct. This feature is only
available for ifx.

PARALLEL SECTIONS Defines a parallel region that contains SECTIONS
directives.

PARALLEL WORKSHARE Defines a parallel region that contains a single
WORKSHARE directive.

 1 Intel® Fortran Compiler Classic and Intel® Fortran Compiler Developer Guide and Reference

1134

Name Description

PREFETCH DATA Suggests to the compiler to preload data into
cache. Preloading data in cache minimizes the
effects of memory latency. This feature is only
available for ifx.

REQUIRES Lists the features that an implementation must
support so that the program compiles and runs
correctly. This feature is only available for ifx.

SCAN Specifies a scan computation that updates each list
item in each iteration of the loop.

SCOPE Specifies a block of code to be executed by all
threads of a team. This feature is only available for
ifx.

SECTION Appears within a SECTIONS construct to indicate a
block (section) of code. This directive is optional for
the first block of code within the SECTIONS
construct.

SECTIONS Specifies a block of code to be divided among
threads in a team (a worksharing area).

SIMD Requires and controls SIMD vectorization of loops.

SINGLE Specifies a block of code to be executed by only
one thread in a team.

TARGET Creates a device data environment and executes
the construct on the same device. This feature is
only available for ifx.

TARGET DATA Creates a device data environment for the extent of
the region. This feature is only available for ifx.

TARGET ENTER DATA Specifies that variables are mapped to a device
data environment. This feature is only available for
ifx.

TARGET EXIT DATA Specifies that variables are unmapped from a
device data environment. This feature is only
available for ifx.

TARGET PARALLEL Creates a device data environment in a parallel
region and executes the construct on that device.

TARGET PARALLEL DO Provides an abbreviated way to specify a TARGET
directive containing a PARALLEL DO directive and
no other statements.

TARGET PARALLEL DO SIMD Specifies a TARGET construct that contains a
PARALLEL DO SIMD construct and no other
statement.

Intel® Fortran Compiler Classic and Intel® Fortran Compiler Developer Guide and Reference 1

1135

Name Description

TARGET PARALLEL LOOP Provides an abbreviated way to specify a TARGET
region containing a single PARALLEL LOOP construct
and no other statements. This feature is only
available for ifx.

TARGET SIMD Specifies a TARGET construct that contains a SIMD
construct and no other statement.

TARGET TEAMS Creates a device data environment and executes
the construct on the same device. It also creates a
league of thread teams with the primary thread in
each team executing the structured block.

TARGET TEAMS DISTRIBUTE Creates a device data environment and executes
the construct on the same device. It also specifies
that loop iterations will be shared among the
primary threads of all thread teams in a league
created by a TEAMS construct.

TARGET TEAMS DISTRIBUTE PARALLEL DO Creates a device data environment and then
executes the construct on that device. It also
specifies a loop that can be executed in parallel by
multiple threads that are members of multiple
teams created by a TEAMS construct.

TARGET TEAMS DISTRIBUTE PARALLEL DO SIMD Creates a device data environment and then
executes the construct on that device. It also
specifies a loop that can be executed in parallel by
multiple threads that are members of multiple
teams created by a TEAMS construct. The loop will
be distributed across the teams, which will be
executed concurrently using SIMD instructions.

TARGET TEAMS DISTRIBUTE SIMD Creates a device data environment and executes
the construct on the same device. It also specifies
that loop iterations will be shared among the
primary threads of all thread teams in a league
created by a teams construct. It will be executed
concurrently using SIMD instructions.

TARGET TEAMS LOOP Provides an abbreviated way to specify a TARGET
region containing a single TEAMS LOOP construct
and no other statements. This feature is only
available for ifx.

TARGET UPDATE Makes the list items in the device data environment
consistent with their corresponding original list
items. This feature is only available for ifx.

TASK Defines a task region.

TASKGROUP Specifies a wait for the completion of all child tasks
of the current task and all of their descendant
tasks.

 1 Intel® Fortran Compiler Classic and Intel® Fortran Compiler Developer Guide and Reference

1136

Name Description

TASKLOOP Specifies that the iterations of one or more
associated DO loops should be executed in parallel
using OpenMP* tasks. The iterations are distributed
across tasks that are created by the construct and
scheduled to be executed.

TASKLOOP SIMD Specifies a loop that can be executed concurrently
using SIMD instructions and that those iterations
will also be executed in parallel using OpenMP*
tasks.

TASKWAIT Specifies a wait on the completion of child tasks
generated since the beginning of the current task.

TASKYIELD Specifies that the current task can be suspended in
favor of execution of a different task.

TEAMS Creates a league of thread teams inside a target
region to execute a structured block in the primary
thread of each team. This feature is only available
for ifx.

TEAMS DISTRIBUTE Creates a league of thread teams to execute a
structured block in the primary thread of each
team. It also specifies that loop iterations will be
shared among the primary threads of all thread
teams in a league created by a TEAMS construct.

TEAMS DISTRIBUTE PARALLEL DO Creates a league of thread teams to execute a
structured block in the primary thread of each
team. It also specifies a loop that can be executed
in parallel by multiple threads that are members of
multiple teams.

TEAMS DISTRIBUTE PARALLEL DO SIMD Creates a league of thread teams to execute a
structured block in the primary thread of each
team. It also specifies a loop that can be executed
in parallel by multiple threads that are members of
multiple teams. The loop will be distributed across
the primary threads of the teams region, which will
be executed concurrently using SIMD instructions.

TEAMS DISTRIBUTE SIMD Creates a league of thread teams to execute the
structured block in the primary thread of each
team. It also specifies a loop that will be distributed
across the primary threads of the teams region.
The loop will be executed concurrently using SIMD
instructions.

TEAMS LOOP Provides an abbreviated way to specify a TEAMS
region containing a single LOOP construct and no
other statements. This feature is only available for
ifx.

Intel® Fortran Compiler Classic and Intel® Fortran Compiler Developer Guide and Reference 1

1137

Name Description

THREADPRIVATE Makes named common blocks private to a thread
but global within the thread.

TILE Tiles (or blocks) one or more loops in a loop nest.
This feature is only available for ifx.

UNROLL Partially or fully unrolls a DO loop. This feature is
only available for ifx.

WORKSHARE Divides the work of executing a block of statements
or constructs into separate units.

Product and Performance Information

Performance varies by use, configuration and other factors. Learn more at www.Intel.com/
PerformanceIndex.

Notice revision #20201201

See Also
qopenmp, Qopenmp compiler option

Program Control Statements

The following table lists statements that affect program control.

Unless identified as an image control statement, the statement affects execution on a single image. With the
exception of STOP, ERROR STOP, and END PROGRAM, image control statements are used with coarrays; they
involve synchronization of images and they divide the program into segments.

Name Description

ALLOCATE1 Allocates a coarray.

BLOCK2 Identifies a block of code. It can contain
declarations of entities that are local to the block.

CALL Transfers control to a subroutine.

CALL MOVE_ALLOC1 Relocates a coarray in memory.

CASE Within a SELECT CASE construct, marks a block of
statements that are executed if an associated value
matches the SELECT CASE expression.

CASE DEFAULT or CLASS DEFAULT Identifies the block of statements to be executed in
a SELECT CASE construct if the value of the
expression does not match any of the CASE
selectors, or in a SELECT TYPE construct if the
dynamic type of the selector does not match the
type of any of the TYPE IS or CLASS IS statements.

CHANGE TEAM3 Causes images of the current team to begin
execution on sibling (sub) teams as specified by a
team variable created by a FORM_TEAM statement
previous executed by the team encountering the
CHANGE_TEAM statement.

 1 Intel® Fortran Compiler Classic and Intel® Fortran Compiler Developer Guide and Reference

1138

https://www.intel.com/PerformanceIndex
https://www.intel.com/PerformanceIndex

Name Description

CLASS IS Within a SELECT TYPE construct, marks a block of
statements that are executed if the type or dynamic
type of an expression matches the type of the
CLASS IS expression.

CONTINUE Often used as the target of GOTO or as the terminal
statement in a DO loop; performs no operation.

CRITICAL3 Begins a critical construct. Only one image can
execute the block of statements in the construct at
a time.

CYCLE Advances control to the end statement of a DO
loop; the intervening loop statements are not
executed.

DEALLOCATE1 Deallocates a coarray.

DO Marks the beginning of a loop construct.
Statements through and including the ending
statement may be executed repeatedly.

DO CONCURRENT Marks the beginning of a DO CONCURRENT
construct. The order of executions of iterations of a
DO CONCURRENT construct are indeterminate.

DO WHILE Evaluates statements in the DO WHILE loop,
through and including the ending statement, until a
logical condition becomes .FALSE..

ELSE Marks an optional branch in an IF construct.

ELSE IF Marks an optional branch in an IF construct.

ELSEWHERE Marks an optional branch in a WHERE construct.

END [PROGRAM]3 Marks the end the main program. When executed,
it initiates normal termination for the image that
executes it.

END [FUNCTION] | [MODULE] | [SUBROUTINE]4 Marks the end of a program unit.

END BLOCK4 Terminates a block construct.

END CRITICAL3 Terminates a critical construct.

END DO Marks the end of a series of statements in a DO,
DO CONCURRENT, or DO WHILE construct.

END FORALL Marks the end of a series of statements following a
block FORALL statement.

END IF Marks the end of a series of statements following a
block IF statement.

END SELECT Marks the end of a SELECT CASE, SELECT RANK, or
SELECT TYPE statement.

END TEAM3 Changes the current team to the parent team of the
team of images that executes the END TEAM
statement.

Intel® Fortran Compiler Classic and Intel® Fortran Compiler Developer Guide and Reference 1

1139

Name Description

END WHERE Marks the end of a series of statements following a
block WHERE statement.

ERROR STOP Initiates error termination for all images.

EVENT POST3 Increments the count of an event variable by one.

EVENT WAIT3 Tells the image executing this statement to wait
until an event has been posted and to decrement
the count of the event variable.

EXIT Terminates execution of a DO loop or other
construct. Execution continues with the first
statement that follows the construct.

FAIL_IMAGE Causes the image that executes it to execute no
more statements and stop participating in program
execution.

FORALL Indicates a loop construct where the output from
one iteration cannot change the input to another.

FORM TEAM3 Creates one or more subteams of the images in the
current team and assigns a value describing the
teams to a variable of type TEAM_TYPE, which is
defined in the intrinsic module ISO_FORTRAN_ENV.

GOTO Transfers control to a specified part of the program.

IF Controls conditional execution of other statements.

LOCK3 Acquires a LOCK_TYPE variable, preventing other
images from acquiring it until it has been unlocked
by the image that locked it.

PAUSE Suspends program execution and, optionally,
executes operating-system commands.

RANK Within a SELECT RANK construct, marks a block of
statements that are executed if the rank of an
assumed rank array matches the RANK selector.

RANK DEFAULT Identifies the block of statements to be executed in
a SELECT RANK construct if the rank of the array
does not match any of the RANK selectors.

RETURN4 Returns control to the program unit that called a
subroutine or function.

SELECT CASE Transfers program control to a block of statements,
determined by the value of an expression.

SELECT RANK Transfers the program to a block of statements,
determined by the rank of an assumed rank array.

SELECT TYPE Transfers the program to a block of statements,
determined by the dynamic type of an expression.

STOP Initiates normal termination for the image that
executes the statement.

SYNC ALL3 Synchronizes all of the images of the current team.

 1 Intel® Fortran Compiler Classic and Intel® Fortran Compiler Developer Guide and Reference

1140

Name Description

SYNC IMAGES3 Synchronizes an image with all of the specified
images in the image set.

SYNC MEMORY3 Ends a segment and begins another; the two
segments may be ordered in a user defined manner
with respects to segments on other images.

SYNC TEAM3 Synchronizes all images on a specified team.

TYPE IS Within a SELECT TYPE construct, marks a block of
statements that are executed if the type or dynamic
type of an expression matches the type of the TYPE
IS expression.

UNLOCK3 Unlocks a variable of type LOCK_TYPE.

WHERE Controls conditional execution of array assignments
and elemental function calls.

1 This is an image control statement only if it involves a coarray; otherwise, it's not a program control
statement.
2 This is an image control statement only if the block declares a non-allocatable, non-SAVEd coarray.
3 This is an image control statement
4 This is an image control statement only if it involves implicit deallocation of a coarray.

Inquiry Intrinsic Functions

The following table lists inquiry intrinsic functions. Unless noted, inquiry intrinsic functions can be used in
specification expressions.

Name Description

ALLOCATED Determines whether an allocatable variable is
allocated.

ASSOCIATED Determines if a pointer is associated or if two
pointers are associated with the same target.

BIT_SIZE Returns the number of bits in an integer type.

CACHESIZE Returns the size of a level of the memory cache.

COSHAPE Returns the sizes of codimensions of a coarray.

COMMAND_ARGUMENT_COUNT1 Returns the number of command-line arguments.

DIGITS Returns number of significant digits for data of the
same type as the argument.

EOF Determines whether a file is at or beyond the end-
of-file record.

EPSILON Returns the smallest positive number that when
added to one produces a number greater than one
for data of the same type as the argument.

EXTENDS_TYPE_OF Determines if a derived type extends another
derived type.

Intel® Fortran Compiler Classic and Intel® Fortran Compiler Developer Guide and Reference 1

1141

Name Description

GET_TEAM1 Returns a variable of type TEAM_TYPE that
describes a team of images that for the team
inquired about. TEAM_TYPE is defined in the
intrinsic module ISO_FORTRAN_ENV.

HUGE Returns the largest number that can be represented
by numbers of the type of the argument.

IARGC Returns the index of the last command-line
argument.

INT_PTR_KIND Returns the INTEGER KIND that will hold an
address.

IS_CONTIGUOUS Returns whether an array is contiguous.

KIND Returns the value of the kind parameter of the
argument.

LBOUND Returns the lower bounds for all dimensions of an
array, or the lower bound for a specified dimension.

LCOBOUND Returns the lower cobounds for all codimensions of
a coarray, or the lower cobound for a specified
codimension.

LEN Returns the length of a character expression.

LOC1 Returns the address of the argument.

MAXEXPONENT Returns the largest positive decimal exponent for
data of the same type as the argument.

MINEXPONENT Returns the largest negative decimal exponent for
data of the same type as the argument.

NARGS Returns the total number of command-line
arguments, including the command.

NEW_LINE Returns a newline character.

PRECISION Returns the number of significant digits for data of
the same type as the argument.

PRESENT Determines whether an optional argument is
present.

RADIX Returns the base for data of the same type as the
argument.

RANGE Returns the decimal exponent range for data of the
same type as the argument.

RANK Returns the rank of a data object.

SAME_TYPE_AS Determines if two polymorphic objects have the
same dynamic type.

SELECTED_INT_KIND Returns the value of the kind parameter of integers
in range r.

 1 Intel® Fortran Compiler Classic and Intel® Fortran Compiler Developer Guide and Reference

1142

Name Description

SELECTED_REAL_KIND Returns the value of the kind parameter of reals
with (optional) first argument digits and (optional)
second argument exponent range. At least one
optional argument is required.

SHAPE Returns the shape of an array or scalar argument.

SIZE Returns the size of an array or the size of one
extent of the array.

SIZEOF Returns the number of bytes of storage used by the
argument.

STORAGE_SIZE Returns the number of bits occupied by an object.

TINY Returns the smallest positive number that can be
represented by numbers of type the argument.

UBOUND Returns the upper bounds for all dimensions of an
array, or the upper bound for a specified dimension.

UCOBOUND Returns the upper cobounds for all codimensions of
a coarray, or the upper cobound for a specified
codimension.

1 This function cannot be used in a specification expression because it is not a Fortran standard inquiry
function.

Random Number Intrinsic Procedures

The following table lists random number intrinsic procedures.

Name Procedure Type Description

RAN Intrinsic function Returns the next number from a
sequence of pseudorandom
numbers of uniform distribution
over the range 0 to 1.

RANF Intrinsic function Generates a random number
between 0.0 and RAND_MAX.

RANDOM_INIT Intrinsic subroutine Initailizes the pseudorandom
number generator used by
RANDOM_NUMBER.

RANDOM_NUMBER Intrinsic subroutine Returns a pseudorandom real
value greater than or equal to
zero and less than one.

RANDOM_SEED Intrinsic subroutine Changes the starting point of
RANDOM_NUMBER; takes one or
no arguments.

RANDU Intrinsic subroutine Computes a pseudorandom
number as a single-precision
value.

The portability routines RANF, RANDOM, and SEED also supply this functionality.

Intel® Fortran Compiler Classic and Intel® Fortran Compiler Developer Guide and Reference 1

1143

Atomic Intrinsic Subroutines

The following table lists atomic intrinsic subroutines.

Atomic Operation

Name Procedure Type Description

ATOMIC_ADD Intrinsic Subroutine Performs atomic
addition.

ATOMIC_AND Intrinsic Subroutine Performs atomic bitwise
AND.

ATOMIC_CAS Intrinsic Subroutine Performs atomic
compare and swap.

ATOMIC_DEFINE Intrinsic Subroutine Performs atomically
defines a variable.

ATOMIC_FETCH_ADD Intrinsic Subroutine Performs atomic fetch
and add.

ATOMIC_FETCH_AND Intrinsic Subroutine Performs atomic fetch
and bitwise AND.

ATOMIC_FETCH_OR Intrinsic Subroutine Performs atomic fetch
and bitwise OR.

ATOMIC_FETCH_XOR Intrinsic Subroutine Performs atomic fetch
and bitwise exclusive
OR.

ATOMIC_OR Intrinsic Subroutine Performs atomic bitwise
OR.

ATOMIC_REF Intrinsic Subroutine Performs atomically
references a variable.

ATOMIC_XOR Intrinsic Subroutine Performs atomic bitwise
exclusive OR.

Collective Intrinsic Subroutines

The following table lists collective intrinsic subroutines.

Collective Operation

Name Procedure Type Description

CO_BROADCAST Intrinsic Subroutine Broadcasts a value to
other images.

CO_MAX Intrinsic Subroutine Finds maximum value
across images.

CO_MIN Intrinsic Subroutine Finds minimum value
across images.

CO_REDUCE Intrinsic Subroutine Performs user-defined
reduction across images.

CO_SUM Intrinsic Subroutine Performs sum reduction
across images.

 1 Intel® Fortran Compiler Classic and Intel® Fortran Compiler Developer Guide and Reference

1144

Date and Time Intrinsic Subroutines

The following table lists date and time intrinsic subroutines.

Name Procedure Type Description

CPU_TIME Intrinsic subroutine Returns the processor time in
seconds.

DATE Intrinsic subroutine Returns the ASCII representation
of the current date (in dd-mmm-
yy form).

DATE_AND_TIME Intrinsic subroutine Returns the date and time. This is
the preferred procedure for date
and time.

IDATE Intrinsic subroutine Returns three integer values
representing the current month,
day, and year.

SYSTEM_CLOCK Intrinsic subroutine Returns data from the system
clock.

TIME Intrinsic subroutine Returns the ASCII representation
of the current time (in hh:mm:ss
form).

The portability routines GETDAT, GETTIM, SETDAT, and SETTIM also supply this functionality.

Keyboard and Speaker Library Routines

The following table lists keyboard and speaker library routines.

Name Routine Type Description

GETCHARQQ Runtime Function Returns the next keyboard
keystroke.

BEEPQQ Portability subroutine Sounds the speaker for a
specified duration in milliseconds
at a specified frequency in Hertz.

GETSTRQQ Runtime function Reads a character string from the
keyboard using buffered input.

PEEKCHARQQ Runtime function Checks the buffer to see if a
keystroke is waiting.

Statements and Intrinsic Procedures for Memory Allocation and Deallocation

The following table lists statements and intrinsic procedures that are used for memory allocation and
deallocation.

Name Procedure Type Description

ALLOCATE Statement Dynamically establishes
allocatable array dimensions.

ALLOCATED Intrinsic Function Determines whether an
allocatable array is allocated.

Intel® Fortran Compiler Classic and Intel® Fortran Compiler Developer Guide and Reference 1

1145

Name Procedure Type Description

DEALLOCATE Statement Frees the storage space
previously reserved in an
ALLOCATE statement.

FREE Intrinsic Subroutine Frees the memory block specified
by the integer pointer argument.

MALLOC Intrinsic Function Allocates a memory block of size
bytes and returns an integer
pointer to the block.

MOVE_ALLOC Intrinsic Subroutine Moves an allocation from one
allocatable object to another.

Intrinsic Functions for Arrays and Coarrays

The following table lists intrinsic functions for arrays.

Name Description

ALL Determines whether all array values meet the
conditions in a mask along a (optional) dimension.

ANY Determines whether any array values meet the
conditions in a mask along a (optional) dimension.

COUNT Counts the number of array elements that meet the
conditions in a mask along a (optional) dimension.

CSHIFT Performs a circular shift along a (optional)
dimension.

DOT_PRODUCT Performs dot-product multiplication on vectors
(one-dimensional arrays).

EOSHIFT Shifts elements off one end of array along a
(optional) dimension and copies (optional)
boundary values in other end.

IALL Reduces an array by the IAND function.

IANY Reduces an array by the IOR function.

IPARITY Reduces an array by the IEOR function.

LBOUND Returns lower dimensional bounds of an array along
a (optional) dimension.

MATMUL Performs matrix multiplication on matrices (two-
dimensional arrays).

MAXLOC Returns the location of the maximum value in an
array meeting conditions in a (optional) mask along
a (optional) dimension.

MAXVAL Returns the maximum value in an array along a
(optional) dimension that meets conditions in a
(optional) mask.

MERGE Merges two arrays according to conditions in a
mask.

 1 Intel® Fortran Compiler Classic and Intel® Fortran Compiler Developer Guide and Reference

1146

Name Description

MINLOC Returns the location of the minimum value in an
array meeting conditions in a (optional) mask along
a (optional) dimension.

MINVAL Returns the minimum value in an array along a
(optional) dimension that meets conditions in a
(optional) mask.

NORM2 Returns the L 2 norm of an array.

PACK Packs an array into a vector (one-dimensional
array) of a (optional) size using a mask.

PRODUCT Returns product of elements of an array along a
(optional) dimension that meet conditions in a
(optional) mask.

RANK Returns the rank of a data object.

REDUCE Performs user-specified array reduction.

RESHAPE Reshapes an array with (optional) subscript order,
padded with (optional) array elements.

SHAPE Returns the shape of an array.

SIZE Returns the extent of an array along a (optional)
dimension.

SPREAD Replicates an array by adding a dimension.

SUM Sums array elements along a (optional) dimension
that meet conditions of an (optional) mask.

TRANSPOSE Transposes a two-dimensional array.

UBOUND Returns upper dimensional bounds of an array
along a (optional) dimension.

UNPACK Unpacks a vector (one-dimensional array) into an
array under a mask padding with values from a
field.

The following table lists intrinsic functions for coarrays.

Name Description

COSHAPE Returns the sizes of codimensions of a coarray.

EVENT_QUERY Returns the event count.

FAILED_IMAGES Returns the indices of images that are no longer
responding.

IMAGE_INDEX Returns the image index corresponding to an
element of a coarray with a given set of
cosubscripts.

IMAGE_STATUS Returns the execution status of an image.

LCOBOUND Returns the lower cobounds of a coarray.

NUM_IMAGES Returns the number of images.

Intel® Fortran Compiler Classic and Intel® Fortran Compiler Developer Guide and Reference 1

1147

Name Description

STOPPED_IMAGES Returns the indices images that have initiated
termination.

TEAM_NUMBER Returns the team number of its argument.

THIS_IMAGE Returns the index of the invoking image, or the
cosubscripts for this image.

UCOBOUND Returns the upper cobounds of a coarray.

Intrinsic Functions for Numeric and Type Conversion

The following table lists intrinsic functions for numeric and type conversion.

Name Description

ABS Returns the absolute value of the argument.

AIMAG Returns imaginary part of complex number z.

AINT Truncates the argument to a whole number of a
specified (optional) kind.

AMAX0 Returns largest value among integer arguments as
real.

AMIN0 Returns smallest value among integer arguments as
real.

ANINT Rounds to the nearest whole number of a specified
(optional) kind.

CEILING Returns smallest integer greater than the
argument.

CMPLX Converts the first argument and (optional) second
argument to complex of a (optional) kind.

CONJG Returns the conjugate of a complex number.

DBLE Converts the argument to double precision type.

DCMPLX Converts the argument to double complex type.

DFLOAT Converts an integer to double precision type.

DIM Returns the first argument minus the second
argument if positive; else 0.

DPROD Returns double-precision product of two single
precision arguments.

FLOAT Converts the argument to REAL(4).

FLOOR Returns the greatest integer less than or equal to
the argument.

IFIX Converts a single-precision real argument to an
integer argument by truncating.

IMAG Same as AIMAG.

 1 Intel® Fortran Compiler Classic and Intel® Fortran Compiler Developer Guide and Reference

1148

Name Description

INT Converts a value to integer type.

LOGICAL Converts between logical arguments of (optional)
kind.

MAX Returns largest value among arguments.

MAX1 Returns largest value among real arguments as
integer.

MIN Returns smallest value among arguments.

MIN1 Returns smallest value among real arguments as
integer

MOD Returns the remainder of the first argument divided
by the second argument.

MODULO Returns the first argument modulo the second
argument.

NINT Returns the nearest integer to the argument.

NULL Returns a disassociated pointer or an unallocated
allocatable entity.

OUT_OF_RANGE Indicates if a value can safely be converted to a
specified type.

REAL Converts a value to real type.

SIGN Returns absolute value of the first argument times
the sign of the second argument.

SNGL Converts a double-precision argument to single-
precision real type.

TRANSFER Transforms first argument into type of second
argument with (optional) size if an array.

ZEXT Extends the argument with zeros.

Trigonometric, Exponential, Root, and Logarithmic Intrinsic Procedures

The following table lists intrinsic procedures for trigonometric, exponential, root, and logarithmic operations.

NOTE
Many routines in the LIBM library (Math Library) are more highly optimized for Intel® microprocessors
than for non-Intel microprocessors.

Name Description

ACOS Returns the arccosine of the argument, expressed
in radians between 0 and pi.

ACOSD Returns the arccosine of the argument, expressed
in degrees between 0 and 180.

ALOG Returns natural log of the argument.

Intel® Fortran Compiler Classic and Intel® Fortran Compiler Developer Guide and Reference 1

1149

Name Description

ALOG10 Returns common log (base 10) of the argument.

ASIN Returns the arcsine of the argument, expressed in
radians between ±pi/2.

ASIND Returns the arcsine of the argument, expressed in
degrees between ±90°.

ATAN Returns the arctangent of the argument, expressed
in radians between ±pi/2.

ATAND Returns the arctangent of the argument, expressed
in degrees.

ATAN2 Returns the arctangent of the first argument
divided by the second argument, expressed in
radians between ±pi.

ATAN2D Returns the arctangent of the first argument
divided by the second argument, expressed in
degrees between ±180°.

CCOS Returns complex cosine of the argument.

CDCOS Returns the double-precision complex cosine of the
argument.

CDEXP Returns double-precision complex exponential value
of the argument.

CDLOG Returns the double-precision complex natural log of
the argument.

CDSIN Returns the double-precision complex sine of the
argument.

CDSQRT Returns the double-precision complex square root
of the argument.

CEXP Returns the complex exponential value of the
argument.

CLOG Returns the complex natural log of the argument.

COS Returns the cosine of the argument, which is in
radians.

COSD Returns the cosine of the argument, which is in
degrees.

COSH Returns the hyperbolic cosine of the argument.

COTAN Returns the cotangent of the argument, which is in
radians.

COTAND Returns the cotangent of the argument, which is in
degrees.

CSIN Returns the complex sine of the argument.

CSQRT Returns the complex square root of the argument.

 1 Intel® Fortran Compiler Classic and Intel® Fortran Compiler Developer Guide and Reference

1150

Name Description

DACOS Returns the double-precision arccosine of the
argument radians between 0 and pi.

DACOSD Returns the arccosine of the argument in degrees
between 0 and 180.

DASIN Returns the double-precision arcsine of the
argument in radians between ±pi/2.

DASIND Returns the double-precision arcsine of the
argument degrees between ±90°.

DATAN Returns the double-precision arctangent of the
argument radians between ±pi/2.

DATAND Returns the double-precision arctangent of the
argument degrees between ±90°.

DATAN2 Returns the double-precision arctangent of the first
argument divided by the second argument,
expressed in radians between ±pi.

DATAN2D Returns the double-precision arctangent of the first
argument divided by the second argument,
expressed in degrees between ±180°.

DCOS Returns the double-precision cosine of the
argument, which is in radians.

DCOSD Returns the double-precision cosine of the
argument, which is in degrees.

DCOSH Returns the double-precision hyperbolic cosine of
the argument.

DCOTAN Returns the double-precision cotangent of the
argument.

DEXP Returns the double-precision exponential value of
the argument.

DLOG Returns the double-precision natural log of the
argument.

DLOG10 Returns the double-precision common log (base 10)
of the argument.

DSIN Returns the double-precision sin of the argument,
whch is in radians.

DSIND Returns the double-precision sin of the argument,
which is in degrees.

DSINH Returns the double-precision hyperbolic sine of the
argument.

DSQRT Returns the double-precision square root of the
argument.

DTAN Returns the double-precision tangent of the
argument, which is in radians.

Intel® Fortran Compiler Classic and Intel® Fortran Compiler Developer Guide and Reference 1

1151

Name Description

DTAND Returns the double-precision tangent of the
argument, which is in degrees.

DTANH Returns the double-precision hyperbolic tangent of
the argument.

EXP Returns the exponential value of the argument.

EXP10 Returns the base 10 exponential value of the
argument.

LOG Returns the natural log of the argument.

LOG10 Returns the common log (base 10) of the
argument.

SIN Returns the sine of the argument, which is in
radians.

SIND Returns the sine of the argument, which is in
degrees.

SINH Returns the hyperbolic sine of the argument.

SQRT Returns the square root of the argument.

TAN Returns the tangent of the argument, which is in
radians.

TAND Returns the tangent of the argument, which is in
degrees.

TANH Returns the hyperbolic tangent of the argument.

Intrinsic Functions for Floating-Point Inquiry and Control

The following table lists intrinsic functions for floating-point inquiry and control.

Certain functions (EXPONENT, FRACTION, NEAREST, RRSPACING, SCALE, SET_EXPONENT, and SPACING)
return values related to components of the model set of real numbers. For a description of this model, see
the Model for Real Data.

Name Description

DIGITS Returns number of significant digits for data of the
same type as the argument.

EPSILON Returns the smallest positive number that when
added to one produces a number greater than one
for data of the same type as the argument.

EXPONENT Returns the exponent part of the representation of
x.

FRACTION Returns the fractional part of the representation of
the argument.

HUGE Returns largest number that can be represented by
data of type the argument.

MAXEXPONENT Returns the largest positive decimal exponent for
data of the same type as the argument.

 1 Intel® Fortran Compiler Classic and Intel® Fortran Compiler Developer Guide and Reference

1152

Name Description

MINEXPONENT Returns the largest negative decimal exponent for
data of the same type as the argument.

NEAREST Returns the nearest different machine
representable number to the first argument in the
direction of the sign of the second argument.

PRECISION Returns the number of significant digits for data of
the same type as the argument.

RADIX Returns the base for data of the same type as the
argument.

RANGE Returns the decimal exponent range for data of the
same type as the argument.

RRSPACING Returns the reciprocal of the relative spacing of
numbers near the argument.

SCALE Multiplies the first argument by 2 raised to the
power of the second argument.

SET_EXPONENT Returns a number whose fractional part is the first
argument and whose exponential part is the second
argument.

SPACING Returns the absolute spacing of numbers near the
argument.

TINY Returns smallest positive number that can be
represented by data of type of the argument.

The portability routines GETCONTROLFPQQ, GETSTATUSFPQQ, LCWRQQ, SCWRQQ, SETCONTROLFPQQ, and
SSWRQQ also supply this functionality.

Character Intrinsic Functions

The following table lists character intrinsic functions.

Name Description

ACHAR Returns character in a specified position in the
ASCII character set.

ADJUSTL Adjusts left, removing leading blanks and inserting
trailing blanks.

ADJUSTR Adjusts right, removing trailing blanks and inserting
leading blanks.

CHAR Returns character in a specified position in the
processor's character set of (optional) kind.

IACHAR Returns the position of the argument in the ASCII
character set.

ICHAR Returns the position of the argument in the
processor's character set.

INDEX Returns the starting position of a substring in a
string, leftmost or (optional) rightmost occurance.

Intel® Fortran Compiler Classic and Intel® Fortran Compiler Developer Guide and Reference 1

1153

Name Description

LEN Returns the size of the argument.

LEN_TRIM Returns the number of characters in the argument,
not counting trailing blanks.

LGE Tests whether the the first argument is greater than
or equal to the second argument, based on the
ASCII collating sequence.

LGT Tests whether the first argument is greater than the
second argument, based on the ASCII collating
sequence.

LLE Tests whether the first argument is less than or
equal to the second argument, based on the ASCII
collating sequence.

LLT Tests whether the first argument is less than the
second argument, based on the ASCII collating
sequence.

REPEAT Concatenates multiple copies of a string.

SCAN Scans a string for any characters in a set and
returns leftmost or (optional) rightmost position
where a match is found.

TRIM Removes trailing blanks from a string.

VERIFY Returns the position of the leftmost or (optional)
rightmost character in the argument string not in a
set, or zero if all characters in the set are present.

Intrinsic Procedures for Bit Operation and Representation

The following tables list intrinsic procedures for bit operation and representation.

Bit Operation

Name Procedure Type Description

BIT_SIZE Intrinsic Function Returns the number of
bits in integers of the
type the argument.

BTEST Intrinsic Function Tests a bit in a position
of the argument; true if
bit is 1.

IAND Intrinsic Function Performs a logical AND.

IBCHNG Intrinsic Function Reverses value of bit in
a position of the
argument.

IBCLR Intrinsic Function Clears the bit in a
position of the argument
to zero.

 1 Intel® Fortran Compiler Classic and Intel® Fortran Compiler Developer Guide and Reference

1154

Name Procedure Type Description

IBITS Intrinsic Function Extracts a sequence of
bits of length from the
argument starting in a
position.

IBSET Intrinsic Function Sets the bit in a position
of the argument to one.

IEOR Intrinsic Function Performs an exclusive
OR.

IOR Intrinsic Function Performs an inclusive
OR.

ISHA Intrinsic Function Shifts the argument
arithmetically left or
right by shift bits; left if
shift positive, right if
shift negative. Zeros
shifted in from the right,
ones shifted in from the
left.

ISHC Intrinsic Function Performs a circular shift
of the argument left or
right by shift bits; left if
shift positive, right if
shift negative. No bits
lost.

ISHFT Intrinsic Function Shifts the argument
logically left or right by
shift bits; left if shift
positive, right if shift
negative. Zeros shifted
in from opposite end.

ISHFTC Intrinsic Function Performs a circular shift
of the rightmost bits of
(optional) size by shift
bits. No bits lost.

ISHL Intrinsic Function Shifts the argument
logically left or right by
shift bits. Zeros shifted
in from opposite end.

MVBITS Intrinsic Subroutine Copies a sequence of
bits from one integer to
another.

NOT Intrinsic Function Performs a logical
complement.

Bit Representation

Name Procedure Type Description

LEADZ Intrinsic Function Returns leading zero bits
in an integer.

Intel® Fortran Compiler Classic and Intel® Fortran Compiler Developer Guide and Reference 1

1155

Name Procedure Type Description

POPCNT Intrinsic Function Returns number of 1 bits
in an integer.

POPPAR Intrinsic Function Returns the parity of an
integer.

TRAILZ Intrinsic Function Returns trailing zero bits
in an integer.

QuickWin Library Routines Summary

The following table lists Quickwin library routines.

Programs that use these routines must access the appropriate library with USE IFQWIN. These routines are
restricted to Windows* systems.

Name Routine Type Description

ABOUTBOXQQ Function Adds an About Box with
customized text.

APPENDMENUQQ Function Appends a menu item.

CLICKMENUQQ Function Sends menu click messages to
the application window.

DELETEMENUQQ Function Deletes a menu item.

FOCUSQQ Function Makes a child window active, and
gives focus to the child window.

GETACTIVEQQ Function Gets the unit number of the
active child window.

GETEXITQQ Function Gets the setting for a QuickWin
application's exit behavior.

GETHWNDQQ Function Gets the true windows handle
from window with the specified
unit number.

GETWINDOWCONFIG Function Returns the current window's
properties.

GETWSIZEQQ Function Gets the size of the child or
frame window.

GETUNITQQ Function Gets the unit number
corresponding to the specified
windows handle. Inverse of
GETHWNDQQ.

INCHARQQ Function Reads a keyboard input and
return its ASCII value.

INITIALSETTINGS Function Controls initial menu settings and
initial frame window settings.

INQFOCUSQQ Function Determines which window is
active and has the focus.

INSERTMENUQQ Function Inserts a menu item.

 1 Intel® Fortran Compiler Classic and Intel® Fortran Compiler Developer Guide and Reference

1156

Name Routine Type Description

INTEGERTORGB Subroutine Converts a true color value into
its red, green and blue
components.

MESSAGEBOXQQ Function Displays a message box.

MODIFYMENUFLAGSQQ Function Modifies a menu item state.

MODIFYMENUROUTINEQQ Function Modifies a menu item's callback
routine.

MODIFYMENUSTRINGQQ Function Changes a menu item's text
string.

PASSDIRKEYSQQ Function Determines the behavior of
direction and page keys.

REGISTERMOUSEEVENT Function Registers the application-defined
routines to be called on mouse
events.

RGBTOINTEGER Function Converts a trio of red, green and
blue values to a true color value
for use with RGB functions and
subroutines.

SETACTIVEQQ Function Makes the specified window the
current active window without
giving it the focus.

SETEXITQQ Function Sets a QuickWin application's exit
behavior.

SETMESSAGEQQ Subroutine Changes any QuickWin message,
including status bar messages,
state messages and dialog box
messages.

SETMOUSECURSOR Function Sets the mouse cursor for the
window in focus.

SETWINDOWCONFIG Function Configures the current window's
properties.

SETWINDOWMENUQQ Function Sets the Window menu to which
current child window names will
be appended.

SETWSIZEQQ Function Sets the size of the child or frame
window.

UNREGISTERMOUSEEVENT Function Removes the callback routine
registered by
REGISTERMOUSEEVENT.

WAITONMOUSEEVENT Function Blocks return until a mouse event
occurs.

Graphics Library Routines Summary

The following table lists library routines for graphics.

Intel® Fortran Compiler Classic and Intel® Fortran Compiler Developer Guide and Reference 1

1157

Programs that use these routines must access the appropriate library with USE IFQWIN. These routines are
restricted to Windows* systems.

Name Routine Type Description

ARC, ARC_W Functions Draws an arc.

CLEARSCREEN Subroutine Clears the screen, viewport, or
text window.

DISPLAYCURSOR Function Turns the cursor off and on.

ELLIPSE, ELLIPSE_W Functions Draws an ellipse or circle.

FLOODFILL, FLOODFILL_W Functions Fills an enclosed area of the
screen with the current color
index, using the current fill mask.

FLOODFILLRGB,
FLOODFILLRGB_W

Functions Fills an enclosed area of the
screen with the current RGB
color, using the current fill mask.

GETARCINFO Function Determines the end points of the
most recently drawn arc or pie.

GETBKCOLOR Function Returns the current background
color index.

GETBKCOLORRGB Function Returns the current background
RGB color.

GETCOLOR Function Returns the current color index.

GETCOLORRGB Function Returns the current RGB color.

GETCURRENTPOSITION,
GETCURRENTPOSITION_W

Subroutines Returns the coordinates of the
current graphics-output position.

GETFILLMASK Subroutine Returns the current fill mask.

GETFONTINFO Function Returns the current font
characteristics.

GETGTEXTEXTENT Function Determines the width of the
specified text in the current font.

GETGTEXTROTATION Function Get the current text rotation
angle.

GETIMAGE, GETIMAGE_W Subroutines Stores a screen image in
memory.

GETLINESTYLE Function Returns the current line style.

GETLINEWIDTHQQ Function Returns the current line width or
the line width set by the last call
to SETLINEWIDTHQQ.

GETPHYSCOORD Subroutine Converts viewport coordinates to
physical coordinates.

GETPIXEL, GETPIXEL_W Functions Returns a pixel's color index.

GETPIXELRGB, GETPIXELRGB_W Functions Returns a pixel's RGB color.

 1 Intel® Fortran Compiler Classic and Intel® Fortran Compiler Developer Guide and Reference

1158

Name Routine Type Description

GETPIXELS Function Returns the color indices of
multiple pixels.

GETPIXELSRGB Function Returns the RGB colors of
multiple pixels.

GETTEXTCOLOR Function Returns the current text color
index.

GETTEXTCOLORRGB Function Returns the current text RGB
color.

GETTEXTPOSITION Subroutine Returns the current text-output
position.

GETTEXTWINDOW Subroutine Returns the boundaries of the
current text window.

GETVIEWCOORD,
GETVIEWCOORD_W

Subroutines Converts physical or window
coordinates to viewport
coordinates.

GETWINDOWCOORD Subroutine Converts viewport coordinates to
window coordinates.

GETWRITEMODE Function Returns the logical write mode for
lines.

GRSTATUS Function Returns the status (success or
failure) of the most recently
called graphics routine.

IMAGESIZE, IMAGESIZE_W Functions Returns image size in bytes.

INITIALIZEFONTS Function Initializes the font library.

LINETO, LINETO_W Functions Draws a line from the current
position to a specified point.

LINETOAR Function Draws a line between points in
one array and corresponding
points in another array.

LINETOAREX Function Similar to LINETOAR, but also
lets you specify color and line
style.

LOADIMAGE, LOADIMAGE_W Functions Reads a Windows bitmap file
(.BMP) and displays it at the
specified location.

MOVETO, MOVETO_W Subroutines Moves the current position to the
specified point.

OUTGTEXT Subroutine Sends text in the current font to
the screen at the current
position.

OUTTEXT Subroutine Sends text to the screen at the
current position.

PIE, PIE_W Functions Draws a pie slice.

Intel® Fortran Compiler Classic and Intel® Fortran Compiler Developer Guide and Reference 1

1159

Name Routine Type Description

POLYBEZIER, POLYBEZIER_W Functions Draws one or more Bezier curves.

POLYBEZIERTO,
POLYBEZIERTO_W

Functions Draws one or more Bezier curves.

POLYGON, POLYGON_W Functions Draws a polygon.

POLYLINEQQ Function Draws a line between successive
points in an array.

PUTIMAGE, PUTIMAGE_W Subroutines Retrieves an image from memory
and displays it.

RECTANGLE, RECTANGLE_W Functions Draws a rectangle.

REMAPALLPALETTERGB Function Remaps a set of RGB color values
to indices recognized by the
current video configuration.

REMAPPALETTERGB Function Remaps a single RGB color value
to a color index.

SAVEIMAGE, SAVEIMAGE_W Functions Captures a screen image and
saves it as a Windows bitmap file.

SCROLLTEXTWINDOW Subroutine Scrolls the contents of a text
window.

SETBKCOLOR Function Sets the current background
color.

SETBKCOLORRGB Function Sets the current background
color to a direct color value
rather than an index to a defined
palette.

SETCLIPRGN Subroutine Limits graphics output to a part
of the screen.

SETCOLOR Function Sets the current color to a new
color index.

SETCOLORRGB Function Sets the current color to a direct
color value rather than an index
to a defined palette.

SETFILLMASK Subroutine Changes the current fill mask to a
new pattern.

SETFONT Function Finds a single font matching the
specified characteristics and
assigns it to OUTGTEXT.

SETGTEXTROTATION Subroutine Sets the direction in which text is
written to the specified angle.

SETLINESTYLE Subroutine Changes the current line style.

SETLINEWIDTHQQ Subroutine Sets the width of a solid line
drawn using any of the supported
graphics functions.

 1 Intel® Fortran Compiler Classic and Intel® Fortran Compiler Developer Guide and Reference

1160

Name Routine Type Description

SETPIXEL, SETPIXEL_W Functions Sets color of a pixel at a specified
location.

SETPIXELRGB, SETPIXELRGB_W Functions Sets RGB color of a pixel at a
specified location.

SETPIXELS Subroutine Sets the color indices of multiple
pixels.

SETPIXELSRGB Subroutine Sets the RGB color of multiple
pixels.

SETTEXTCOLOR Function Sets the current text color to a
new color index.

SETTEXTCOLORRGB Function Sets the current text color to a
direct color value rather than an
index to a defined palette.

SETTEXTCURSOR Function Sets the height and width of the
text cursor for the window in
focus.

SETTEXTPOSITION Subroutine Changes the current text
position.

SETTEXTWINDOW Subroutine Sets the current text display
window.

SETVIEWORG Subroutine Positions the viewport coordinate
origin.

SETVIEWPORT Subroutine Defines the size and screen
position of the viewport.

SETWINDOW Function Defines the window coordinate
system.

SETWRITEMODE Function Changes the current logical write
mode for lines.

WRAPON Function Turns line wrapping on or off.

Portability Library Routines

The following tables list library routines for portability.

If you have programs that use these routines, it is recommended that they access the portability library with
USE IFPORT.

Some routines in this library can be called with different sets of arguments, and some can be used as a
function or a subroutine. In these cases, the arguments and calling mechanism determine the meaning of the
routine. The IFPORT module contains generic interface blocks that give procedure definitions for these
routines.

Fortran contains intrinsic procedures for many of the portability functions. The portability routines are
extensions to the Fortran 2018 standard. For portability and performance, you should write code using
Fortran standard intrinsic procedures whenever possible.

Intel® Fortran Compiler Classic and Intel® Fortran Compiler Developer Guide and Reference 1

1161

Information Retrieval

Name Procedure Type Description

FOR_IFCORE_VERSION Function Returns the version of the Fortran
runtime library (ifcore).

FOR_IFPORT_VERSION Function Returns the version of the Fortran
portability library (ifport).

FSTAT Function Returns information about a
logical file unit.

GETCWD Function Returns the pathname of the
current working directory.

GETENV Subroutine Searches the environment for a
given string and returns its value
if found.

GETGID Function Returns the group ID of the user.

GETLOG Subroutine Returns the user's login name.

GETPID Function Returns the process ID of the
process.

GETUID Function Returns the user ID of the user of
the process.

HOSTNAM1 Function Returns the name of the user's
host.

ISATTY Function Checks whether a logical unit
number is a terminal.

LSTAT Function Returns information about a
named file. STAT is the preferred
form of this function.

RENAME Function Renames a file.

STAT Function Returns information about a
named file.

UNLINK Function Deletes the file given by path.

Process Control

Name Procedure Type Description

ABORT Subroutine Stops execution of the current
process, clears I/O buffers, and
writes a string to external unit 0.

ALARM Function Executes an external subroutine
after waiting a specified number
of seconds.

KILL Function Sends a signal code to the
process given by ID.

SIGNAL Function Changes the action for signal.

SLEEP Subroutine Suspends program execution for
a specified number of seconds.

 1 Intel® Fortran Compiler Classic and Intel® Fortran Compiler Developer Guide and Reference

1162

Name Procedure Type Description

SYSTEM Function Executes a command in a
separate shell.

Numeric Values and Conversion

Name Procedure Type Description

BESJ0, BESJ1,BESJN,
BESY0,BESY1, BESYN

Functions Return single-precision values of
Bessel functions of the first and
second kind of orders 1, 2, and n,
respectively.

BIC, BIS Subroutines Perform bit level clear, set, and
test for integers.

BIT Function Performs bit level clear, set, and
test for integers.

CDFLOAT Function Converts a COMPLEX(4)
argument to DOUBLE PRECISION
type.

COMPLINT, COMPLREAL,
COMPLLOG

Functions Return a BIT-WISE complement
or logical .NOT. of the argument.

CSMG Function Performs an effective BIT-WISE
store under mask.

DBESJ0, DBESJ1,DBESJN,
DBESY0,DBESY1, DBESYN

Functions Return double-precision values of
Bessel functions of the first and
second kind of orders 1, 2, and n,
respectively.

DFLOATI, DFLOATJ, DFLOATK Functions Convert an integer to double-
precision real type.

DRAND, DRANDM Functions Return random numbers between
0.0 and 1.0.

DRANSET Subroutine Sets the seed for the random
number generator.

IDFLOAT Function Converts an INTEGER(4)
argument to double-precision real
type.

IFLOATI, IFLOATJ Functions Convert an integer to single-
precision real type.

INMAX Function Returns the maximum positive
value for an integer.

INTC Function Converts an INTEGER(4)
argument to INTEGER(2) type.

IRAND, IRANDM Functions Return a positive integer in the
range 0 through 2**31-1 or
2**15-1 if called without an
argument.

IRANGET Subroutine Returns the current seed.

Intel® Fortran Compiler Classic and Intel® Fortran Compiler Developer Guide and Reference 1

1163

Name Procedure Type Description

IRANSET Subroutine Sets the seed for the random
number generator.

JABS Function Computes an absolute value.

LONG Function Converts an INTEGER(2)
argument to INTEGER(4) type.

QRANSET Subroutine Sets the seed for a sequence of
pseudo-random numbers.

RAND, RANDOM2 Functions Return random values in the
range 0 through 1.0.

RANF Function Generates a random number
between 0.0 and RAND_MAX.

RANGET Subroutine Returns the current seed.

RANSET Subroutine Sets the seed for the random
number generator.

SEED Subroutine Changes the starting point of
RANDOM.

SHORT Function Converts an INTEGER(4)
argument to INTEGER(2) type.

SRAND Subroutine Seeds the random number
generator used with IRAND and
RAND.

Input and Output

Name Procedure Type Description

ACCESS Function Checks a file for accessibility
according to mode.

CHMOD Function Changes file attributes.

FGETC Function Reads a character from an
external unit.

FLUSH Function Flushes the buffer for an external
unit to its associated file.

FPUTC Function Writes a character to an external
unit.

FSEEK Subroutine Repositions a file on an external
unit.

FTELL, FTELLI8 Function Return the offset, in bytes, from
the beginning of the file.

GETC Function Reads a character from unit 5.

GETPOS, GETPOSI8 Functions Return the offset, in bytes, from
the beginning of the file.

PUTC Function Writes a character to unit 6.

 1 Intel® Fortran Compiler Classic and Intel® Fortran Compiler Developer Guide and Reference

1164

Date and Time

Name Procedure Type Description

CLOCK Function Returns current time in
HH:MM:SS format using a 24-
hour clock.

CLOCKX Subroutine Returns the processor clock to
the nearest microsecond.

CTIME Function Converts system time to a 24-
character ASCII string.

DATE3 Subroutine or Function Returns the current system date.

DATE4 Subroutine Returns the current system date.

DCLOCK Function Returns the elapsed time in
seconds since the start of the
current process.

DTIME Function Returns CPU time since later of
(1) start of program, or (2) most
recent call to DTIME.

ETIME Function Returns elapsed CPU time since
the start of program execution.

FDATE Subroutine or Function Returns the current date and
time as an ASCII string.

GETDAT Subroutine Returns the date.

GETTIM Subroutine Returns the time.

GMTIME Subroutine Returns Greenwich Mean Time as
a 9-element integer array.

IDATE3 Subroutine Returns the date either as one 3-
element array or three scalar
parameters (month, day, year).

IDATE4 Subroutine Returns the date either as one 3-
element array or three scalar
parameters (month, day, year).

ITIME Subroutine Returns current time as a 3-
element array (hour, minute,
second).

JDATE3 Function Returns current date as an 8-
character string with the Julian
date.

JDATE4 Function Returns current date as a 10-
character string with the Julian
date.

LTIME Subroutine Returns local time as a 9-element
integer array.

RTC Function Returns number of seconds since
00:00:00 GMT, Jan 1, 1970.

Intel® Fortran Compiler Classic and Intel® Fortran Compiler Developer Guide and Reference 1

1165

Name Procedure Type Description

SECNDS Function Returns number of seconds since
midnight, less the value of its
argument.

SETDAT Function Sets the date.

SETTIM Function Sets the time.

TIME Subroutine or Function As a subroutine, returns time
formatted as HH:MM:SS; as a
function, returns time in seconds
since 00:00:00 GMT, Jan 1, 1970.

TIMEF Function Returns the number of seconds
since the first time this function
was called (or zero).

Error Handling

Name Procedure Type Description

GETLASTERROR Function Returns the last error set.

GETLASTERRORQQ Function Returns the last error set by a
runtime function or subroutine.

IERRNO Function Returns the last code error.

SETERRORMODEQQ Subroutine Sets the mode for handling
critical errors.

Program Control

Name Procedure Type Description

RAISEQQ Function Sends an interrupt to the
executing program, simulating an
interrupt from the operating
system.

RUNQQ Function Calls another program and waits
for it to execute.

SIGNALQQ Function Controls signal handling.

SLEEPQQ Subroutine Delays execution of the program
for the specified time.

System, Drive, and Directory

Name Procedure Type Description

CHDIR Function Changes the current working
directory.

CHANGEDIRQQ Function Makes the specified directory the
current (default) directory.

CHANGEDRIVEQQ Function Makes the specified drive the
current drive.

DELDIRQQ Function Deletes a specified directory.

 1 Intel® Fortran Compiler Classic and Intel® Fortran Compiler Developer Guide and Reference

1166

Name Procedure Type Description

GETDRIVEDIRQQ Function Returns the current drive and
directory path.

GETDRIVESIZEQQ Function Gets the size of the specified
drive.

GETDRIVESQQ Function Reports the drives available to
the system.

GETENVQQ Function Gets a value from the current
environment.

MAKEDIRQQ Function Makes a directory with the
specified directory name.

SETENVQQ Function Adds a new environment
variable, or sets the value of an
existing one.

SYSTEMQQ Function Executes a command by passing
a command string to the
operating system's command
interpretor.

Speaker

Name Procedure Type Description

BEEPQQ Subroutine Sounds the speaker for a
specified duration in milliseconds
at a specified frequency in Hertz.

File Management

Name Procedure Type Description

DELFILESQQ Function Deletes the specified files in a
specified directory.

FINDFILEQQ Function Searches for a file in the
directories specified in the PATH
environment variable.

FULLPATHQQ Function Returns the full path for a
specified file or directory.

GETFILEINFOQQ Function Returns information about files
with names that match a request
string.

PACKTIMEQQ Subroutine Packs time values for use by
SETFILETIMEQQ.

RENAMEFILEQQ Function Renames a file.

SETFILEACCESSQQ Function Sets file-access mode for the
specified file.

SETFILETIMEQQ Function Sets modification time for a given
file.

SPLITPATHQQ Function Breaks a full path into four
components.

Intel® Fortran Compiler Classic and Intel® Fortran Compiler Developer Guide and Reference 1

1167

Name Procedure Type Description

UNPACKTIMEQQ Subroutine Unpacks a file's packed time and
date value into its component
parts.

Arrays

Name Procedure Type Description

BSEARCHQQ Function Performs a binary search for a
specified element on a sorted
one-dimensional array of non-
structure data types (derived
types are not allowed).

SORTQQ Subroutine Sorts a one-dimensional array of
non-structure data types (derived
types are not allowed).

Floating-Point Inquiry and Control

Name Procedure Type Description

CLEARSTATUSFPQQ Subroutine Clears the exception flags in the
floating-point processor status
word.

GETCONTROLFPQQ Subroutine Returns the value of the floating-
point processor control word.

GETSTATUSFPQQ Subroutine Returns the value of the floating-
point processor status word.

LCWRQQ Subroutine Same as SETCONTROLFPQQ.

SCWRQQ Subroutine Same as GETCONTROLFPQQ.

SETCONTROLFPQQ Subroutine Sets the value of the floating-
point processor control word.

SSWRQQ Subroutine Same as GETSTATUSFPQQ.

IEEE Functionality

Name Procedure Type Description

IEEE_FLAGS Function Sets, gets, or clears IEEE flags.

IEEE_HANDLER Function Establishes a handler for IEEE
exceptions.

Serial Port I/O4

Name Procedure Type Description

SPORT_CANCEL_IO Function Cancels any I/O in progress to
the specified port.

SPORT_CONNECT Function Establishes the connection to a
serial port and defines certain
usage parameters.

 1 Intel® Fortran Compiler Classic and Intel® Fortran Compiler Developer Guide and Reference

1168

Name Procedure Type Description

SPORT_CONNECT_EX Function Establishes the connection to a
serial port, defines certain usage
parameters, and defines the size
of the internal buffer for data
reception.

SPORT_GET_HANDLE Function Returns the Windows* handle
associated with the
communications port.

SPORT_GET_STATE Function Returns the baud rate, parity,
data bits, and stop bit settings of
the communications port.

SPORT_GET_STATE_EX Function Returns the baud rate, parity,
data bits setting, stop bits, and
other settings of the
communications port.

SPORT_GET_TIMEOUTS Function Returns the user selectable
timeouts for the serial port.

SPORT_PEEK_DATA Function Returns information about the
availability of input data.

SPORT_PEEK_LINE Function Returns information about the
availability of input records.

SPORT_PURGE Function Executes a purge function on the
specified port.

SPORT_READ_DATA Function Reads available data from the
port specified.

SPORT_READ_LINE Function Reads a record from the port
specified.

SPORT_RELEASE Function Releases a serial port that has
previously been connected.

SPORT_SET_STATE Function Sets the baud rate, parity, data
bits and stop bit settings of the
communications port.

SPORT_SET_STATE_EX Function Sets the baud rate, parity, data
bits setting, stop bits, and other
settings of the communications
port.

SPORT_SET_TIMEOUTS Function Sets the user selectable timeouts
for the serial port.

SPORT_SHOW_STATE Function Displays the state of a port.

SPORT_SPECIAL_FUNC Function Executes a communications
function on a specified port.

SPORT_WRITE_DATA Function Outputs data to a specified port.

SPORT_WRITE_LINE Function Outputs data to a specified port
and follows it with a record
terminator.

Intel® Fortran Compiler Classic and Intel® Fortran Compiler Developer Guide and Reference 1

1169

Miscellaneous

Name Procedure Type Description

LNBLNK Function Returns the index of the last non-
blank character in a string.

QSORT Subroutine Returns a sorted version of a
one-dimensional array of a
specified number of elements of a
named size.

RINDEX Function Returns the index of the last
occurrence of a substring in a
string.

SCANENV Subroutine Scans the environment for the
value of an environment variable.

TTYNAM Subroutine Checks whether a logical unit is a
terminal.

1 This routine can also be specified as HOSTNM.
2 There is also a RANDOM subroutine in the portability library.
3 The two-digit year return value of DATE, IDATE, and JDATE may cause problems with the year 2000. Use
the intrinsic subroutine DATE_AND_TIME instead.
4 Windows

National Language Support Library Routines Summary

The following table lists library routines for National Language Support (NLS).

Programs that use these routines must access the NLS library with USE IFNLS. These routines are restricted
to Windows* systems.

Routine names are shown in mixed case to make the names easier to understand. When writing your
applications, you can use any case.

Name Routine Type Description

MBCharLen Function Returns the length of the first
multibyte character in a string.

MBConvertMBToUnicode Function Converts a character string from
a multibyte codepage to a
Unicode string.

MBConvertUnicodeToMB Function Converts a Unicode string to a
multibyte character string of the
current codepage.

MBCurMax Function Returns the longest possible
mutlibyte character for the
current codepage.

MBINCHARQQ Function Same as INCHARQQ, but can
read a single multibyte character
at once.

MBINDEX Function Same as INDEX, except that
multibyte characters can be
included in its arguments.

 1 Intel® Fortran Compiler Classic and Intel® Fortran Compiler Developer Guide and Reference

1170

Name Routine Type Description

MBJISToJMS Function Converts a Japan Industry
Standard (JIS) character to a
Kanji (Shift JIS or JMS) character.

MBJMSToJIS Function Converts a Kanji (Shift JIS or
JMS) character to a Japan
Industry Standard (JIS)
character.

MBLead Function Determines whether a given
character is the first byte of a
multibyte character.

MBLen Function Returns the number of multibyte
characters in a string, including
trailing spaces.

MBLen_Trim Function Returns the number of multibyte
characters in a string, not
including trailing spaces.

MBLGE, MBLGT, MBLLE,
MBLLT,MBLEQ, MBLNE

Function Same as LGE, LGT, LLE, and LLT,
and the logical operators .EQ.
and .NE., except that multibyte
characters can be included in
their arguments.

MBNext Function Returns the string position of the
first byte of the multibyte
character immediately after the
given string position.

MBPrev Function Returns the string position of the
first byte of the multibyte
character immediately before the
given string position.

MBSCAN Function Same as SCAN, except that
multibyte characters can be
included. in its arguments

MBStrLead Function Performs a context sensitive test
to determine whether a given
byte in a character string is a
lead byte.

MBVERIFY Function Same as VERIFY, except that
multibyte characters can be
included in its arguments.

NLSEnumCodepages Function Returns an array of valid
codepages for the current
console.

NLSEnumLocales Function Returns an array of locales
(langauge/country combinations)
installed on the system.

Intel® Fortran Compiler Classic and Intel® Fortran Compiler Developer Guide and Reference 1

1171

Name Routine Type Description

NLSFormatCurrency Function Formats a currency number
according to conventions of the
current locale (language/
country).

NLSFormatDate Function Formats a date according to
conventions of the current locale
(language/country).

NLSFormatNumber Function Formats a number according to
conventions of the current locale
(language/country).

NLSFormatTime Function Formats a time according to
conventions of the current locale
(language/country).

NLSGetEnvironmentCodepage Function Returns the current codepage for
the system Window or console.

NLSGetLocale Subroutine Returns the current language,
country, and/or codepage.

NLSGetLocaleInfo Function Returns information about the
current locale.

NLSSetEnvironmentCodepage Function Sets the codepage for the
console.

NLSSetLocale Function Sets the current language,
country, and codepage.

POSIX* Library Procedures Summary

The following table lists library procedures for POSIX*.

Programs that use POSIX procedures must access the appropriate libraries with USE IFPOSIX. The IPX nnnn
routines are functions; the PXF nnnn routines are subroutines, except for the routines named PXFIS nnnn
and PXFWIF nnnn.

Name Description

IPXFARGC Returns the index of the last command-line
argument.

IPXFCONST Returns the value associated with a constant
defined in the C POSIX standard.

IPXFLENTRIM Returns the index of the last non-blank character in
an input string.

IPXFWEXITSTATUS1 Returns the exit code of a child process.

IPXFWSTOPSIG1 Returns the number of the signal that caused a
child process to stop.

IPXFWTERMSIG1 Returns the number of the signal that caused a
child process to terminate.

PXF(type)GET Gets the value stored in a component (or field) of a
structure.

 1 Intel® Fortran Compiler Classic and Intel® Fortran Compiler Developer Guide and Reference

1172

Name Description

PXF(type)SET Sets the value of a component (or field) of a
structure.

PXFA(type)GET Gets the array values stored in a component (or
field) of a structure.

PXFA(type)SET Sets the value of an array component (or field) of a
structure.

PXFACCESS Determines the accessibility of a file.

PXFALARM Schedules an alarm.

PXFCALLSUBHANDLE Calls the associated subroutine.

PXFCFGETISPEED1 Returns the input baud rate from a termios
structure.

PXFCFGETOSPEED1 Returns the output baud rate from a termios
structure.

PXFCFSETISPEED1 Sets the input baud rate in a termios structure.

PXFCFSETOSPEED1 Sets the output baud rate in a termios structure.

PXFCHDIR Changes the current working directory.

PXFCHMOD Changes the ownership mode of the file.

PXFCHOWN1 Changes the owner and group of a file.

PXFCLEARENV Clears the process environment.

PXFCLOSE Closes the file associated with the descriptor.

PXFCLOSEDIR Closes the directory stream.

PXFCNTL1 Manipulates an open file descriptor.

PXFCONST Returns the value associated with a constant.

PXFCREAT Creates a new file or rewrites an existing file.

PXFCTERMID1 Generates a terminal pathname.

PXFDUP, PXFDUP2 Duplicates an existing file descriptor.

PXFE(type)GET Gets the value stored in an array element
component (or field) of a structure.

PXFE(type)SET Sets the value of an array element component (or
field) of a structure.

PXFEXECV, PXFEXECVE, PXFEXECVP Executes a new process by passing command-line
arguments.

PXFEXIT, PXFFASTEXIT Exits from a process.

PXFFDOPEN Opens an external unit.

PXFFFLUSH Flushes a file directly to disk.

PXFFGETC Reads a character from a file.

Intel® Fortran Compiler Classic and Intel® Fortran Compiler Developer Guide and Reference 1

1173

Name Description

PXFFILENO Returns the file descriptor associated with a
specified unit.

PXFFORK1 Creates a child process that differs from the parent
process only in its PID.

PXFFPATHCONF Gets the value for a configuration option of an
opened file.

PXFFPUTC Writes a character to a file.

PXFFSEEK Modifies a file position.

PXFFSTAT Gets a file's status information.

PXFFTELL Returns the relative position in bytes from the
beginning of the file.

PXFGETARG Gets the specified command-line argument.

PXFGETC Reads a character from standard input unit 5.

PXFGETCWD Returns the path of the current working directory.

PXFGETEGID1 Gets the effective group ID of the current process.

PXFGETENV Gets the setting of an environment variable.

PXFGETEUID1 Gets the effective user ID of the current process.

PXFGETGID1 Gets the real group ID of the current process.

PXFGETGRGID1 Gets group information for the specified GID.

PXFGETGRNAM1 Gets group information for the named group.

PXFGETGROUPS1 Gets supplementary group IDs.

PXFGETLOGIN Gets the name of the user.

PXFGETPGRP1 Gets the process group ID of the calling process.

PXFGETPID Gets the process ID of the calling process.

PXFGETPPID Gets the process ID of the parent of the calling
process.

PXFGETPWNAM1 Gets password information for a specified name.

PXFGETPWUID1 Gets password information for a specified UID.

PXFGETSUBHANDLE Returns a subroutine handle for a subroutine.

PXFGETUID1 Gets the real user ID of the current process.

PXFISATTY1 Tests whether a file descriptor is connected to a
terminal.

PXFISBLK Tests for a block special file.

PXFISCHR Tests for a character file.

PXFISCONST Tests whether a string is a valid constant name.

PXFISDIR Tests whether a file is a directory.

 1 Intel® Fortran Compiler Classic and Intel® Fortran Compiler Developer Guide and Reference

1174

Name Description

PXFISFIFO Tests whether a file is a special FIFO file.

PXFISREG Tests whether a file is a regular file.

PXFKILL Sends a signal to a specified process.

PXFLINK1 Creates a link to a file or directory.

PXFLOCALTIME Converts a given elapsed time in seconds to local
time.

PXFLSEEK Positions a file a specified distance in bytes.

PXFMKDIR Creates a new directory.

PXFMKFIFO1 Creates a new FIFO.

PXFOPEN Opens or creates a file.

PXFOPENDIR Opens a directory and associates a stream with it.

PXFPATHCONF Gets the value for a configuration option of an
opened file.

PXFPAUSE Suspends process execution.

PXFPIPE1 Creates a communications pipe between two
processes.

PXFPOSIXIO1 Sets the current value of the POSIX I/O flag.

PXFPUTC Outputs a character to logical unit 6 (stdout).

PXFREAD Reads from a file.

PXFREADDIR Reads the current directory entry.

PXFRENAME Changes the name of a file.

PXFREWINDDIR Resets the position of the stream to the beginning
of the directory.

PXFRMDIR Removes a directory.

PXFSETENV Adds a new environment variable or sets the value
of an environment variable.

PXFSETGID1 Sets the effective group ID of the current process.

PXFSETPGID1 Sets the process group ID.

PXFSETSID1 Creates a session and sets the process group ID.

PXFSETUID1 Sets the effective user ID of the current process.

PXFSIGACTION1 Changes the action associated with a specific
signal.

PXFSIGADDSET1 Adds a signal to a signal set.

PXFSIGDELSET1 Deletes a signal from a signal set.

PXFSIGEMPTYSET1 Empties a signal set.

PXFSIGFILLSET1 Fills a signal set.

Intel® Fortran Compiler Classic and Intel® Fortran Compiler Developer Guide and Reference 1

1175

Name Description

PXFSIGISMEMBER Tests whether a signal is a member of a signal set.

PXFSIGPENDING1 Examines pending signals.

PXFSIGPROCMASK1 Changes the list of currently blocked signals.

PXFSIGSUSPEND1 Suspends the process until a signal is received.

PXFSLEEP Forces the process to sleep.

PXFSTAT Gets a file's status information.

PXFSTRUCTCOPY Copies the contents of one structure to another.

PXFSTRUCTCREATE Creates an instance of the specified structure.

PXFSTRUCTFREE Deletes the instance of a structure.

PXFSYSCONF Gets values for system limits or options.

PXFTCDRAIN1 Waits until all output written has been transmitted.

PXFTCFLOW1 Suspends the transmission or reception of data.

PXFTCFLUSH1 Discards terminal input data, output data, or both.

PXFTCGETATTR1 Reads current terminal settings.

PXFTCGETPGRP1 Gets the foreground process group ID associated
with the terminal.

PXFTCSENDBREAK1 Sends a break to the terminal.

PXFTCSETATTR1 Writes new terminal settings.

PXFTCSETPGRP1 Sets the foreground process group associated with
the terminal.

PXFTIME Gets the system time.

PXFTIMES Gets process times.

PXFTTYNAM1 Gets the terminal pathname.

PXFUCOMPARE Compares two unsigned integers.

PXFUMASK Sets a new file creation mask and gets the previous
one.

PXFUNAME Gets the operation system name.

PXFUNLINK Removes a directory entry.

PXFUTIME Sets file access and modification times.

PXFWAIT1 Waits for a child process.

PXFWAITPID1 Waits for a specific PID.

PXFWIFEXITED1 Determines if a child process has exited.

PXFWIFSIGNALED1 Determines if a child process has exited because of
a signal.

PXFWIFSTOPPED1 Determines if a child process has stopped.

 1 Intel® Fortran Compiler Classic and Intel® Fortran Compiler Developer Guide and Reference

1176

Name Description

PXFWRITE Writes to a file.

1 This routine is only available for Linux.

Dialog Library Routines Summary

The following table lists routines from the dialog library.

Programs that use these routines must access the Dialog library with USE IFLOGM. These routines are
restricted to Windows* systems.

Name Routine Type Description

DLGEXIT Subroutine Closes an open dialog.

DLGFLUSH Subroutine Updates the display of a dialog
box.

DLGGET Function Retrieves values of dialog control
variables.

DLGGETCHAR Function Retrieves values of dialog control
variables of type Character.

DLGGETINT Function Retrieves values of dialog control
variables of type Integer.

DLGGETLOG Function Retrieves values of dialog control
variables of type Logical.

DLGINIT Function Initializes a dialog.

DLGINITWITHRESOURCEHANDLE Function Initializes a dialog.

DLGISDLGMESSAGE Function Determines whether a message is
intended for a modeless dialog
box and, if it is, processes it.

DLGISDLGMESSAGEWITHDLG Function Determines whether a message is
intended for a specific modeless
dialog box and, if it is, processes
it.

DLGMODAL Function Displays a dialog and processes
dialog selections from user.

DLGMODALWITHPARENT Function Displays a dialog in a specific
parent window and processes
dialog selections from user.

DLGMODELESS Function Displays a modeless dialog box.

DLGSENDCTRLMESSAGE Function Sends a message to a dialog box
control.

DLGSET Function Assigns values to dialog control
variables.

DLGSETCHAR Function Assigns values to dialog control
variables of type Character.

Intel® Fortran Compiler Classic and Intel® Fortran Compiler Developer Guide and Reference 1

1177

Name Routine Type Description

DLGSETCTRLEVENTHANDLER Function Assigns your own event handlers
to ActiveX controls in a dialog
box.

DLGSETINT Function Assigns values to dialog control
variables of type Integer.

DLGSETLOG Function Assigns values to dialog control
variables of type Logical.

DLGSETRETURN Subroutine Sets the return value for
DLGMODAL.

DLGSETSUB Function Assigns procedures (callback
routines) to dialog controls.

DLGSETTITLE Subroutine Sets the title of a dialog box.

DLGUNINIT Subroutine Deallocates memory occupied by
an initialized dialog.

See Also
Create Fortran Applications that Use Windows Features

COM and Automation Library Routines

The COM and Automation routines are restricted to Windows* systems.

The following tables list COM and Automation libary routines.

Programs that use COM routines must access the appropriate libraries with USE IFCOM. Programs that use
automation routines must access the appropriate libraries with USE IFAUTO. Some procedures also require
the USE IFWINTY module.

Routine names are shown in mixed case to make the names easier to understand. When writing your
applications, you can use any case.

Component Object Model (COM) Procedures (USE IFCOM)

Name Routine Type Description

COMAddObjectReference Function Adds a reference to an object's
interface.

COMCLSIDFromProgID1 Subroutine Passes a programmatic identifier
and returns the corresponding
class identifier.

COMCLSIDFromString1 Subroutine Passes a class identifier string
and returns the corresponding
class identifier.

COMCreateObject1 Subroutine A generic routine that executes
either COMCreateObjectByProgID
or COMCreateObjectByGUID.

COMCreateObjectByGUID1 Subroutine Passes a class identifier, creates
an instance of an object, and
returns a pointer to the object's
interface.

 1 Intel® Fortran Compiler Classic and Intel® Fortran Compiler Developer Guide and Reference

1178

Name Routine Type Description

COMCreateObjectByProgID Subroutine Passes a programmatic identifier,
creates an instance of an object,
and returns a pointer to the
object's IDispatch interface.

COMGetActiveObjectByGUID1 Subroutine Passes a class identifier and
returns a pointer to the interface
of a currently active object.

COMGetActiveObjectByProgID Subroutine Passes a programmatic identifier
and returns a pointer to the
IDispatch interface of a currently
active object.

COMGetFileObject Subroutine Passes a file name and returns a
pointer to the IDispatch interface
of an Automation object that can
manipulate the file.

COMInitialize Subroutine Initializes the COM library.

COMIsEqualGUID1 Function Determines whether two GUIDs
are the same.

COMQueryInterface1 Subroutine Passes an interface identifier and
returns a pointer to an object's
interface.

COMReleaseObject Function Indicates that the program is
done with a reference to an
object's interface.

COMStringFromGUID1 Subroutine Passes a GUID and returns a
string of printable characters.

COMUninitialize Subroutine Uninitializes the COM library.

Automation Server Procedures (USE IFAUTO)

Name Routine Type Description

AUTOAddArg1 Subroutine Passes an argument name and
value and adds the argument to
the argument list data structure.

AUTOAllocateInvokeArgs Function Allocates an argument list data
structure that holds the
arguments to be passed to
AUTOInvoke.

AUTODeallocateInvokeArgs Subroutine Deallocates an argument list data
structure.

AUTOGetExceptInfo Subroutine Retrieves the exception
information when a method has
returned an exception status.

AUTOGetProperty1 Function Passes the name or identifier of
the property and gets the value
of the Automation object's
property.

Intel® Fortran Compiler Classic and Intel® Fortran Compiler Developer Guide and Reference 1

1179

Name Routine Type Description

AUTOGetPropertyByID Function Passes the member ID of the
property and gets the value of
the Automation object's property
into the argument list's first
argument.

AUTOGetPropertyInvokeArgs Function Passes an argument list data
structure and gets the value of
the Automation object's property
specified in the argument list's
first argument.

AUTOInvoke Function Passes the name or identifier of
an object's method and an
argument list data structure and
invokes the method with the
passed arguments.

AUTOSetProperty1 Function Passes the name or identifier of
the property and a value, and
sets the value of the Automation
object's property.

AUTOSetPropertyByID Function Passes the member ID of the
property and sets the value of
the Automation object's property,
using the argument list's first
argument.

AUTOSetPropertyInvokeArgs Function Passes an argument list data
structure and sets the value of
the Automation object's property
specified in the argument list's
first argument.

1These routines also require USE IFWINTY.

Miscellaneous Runtime Library Routines

The following table lists miscellaneous runtime library routines.

Programs that use most of these routines should contain a USE IFCORE statement to obtain the proper
interfaces to these routines.

Name Procedure Type Description

COMMITQQ Function Forces the operating system to
execute any pending write
operations for a file.

FOR_DESCRIPTOR_ASSIGN1 Subroutine Creates an array descriptor in
memory.

FOR_GET_FPE Function Returns the current settings of
floating-point exception flags.

FOR_LFENCE Subroutine Inserts a memory load fence
instruction that ensures
completion of preceding load
instructions.

 1 Intel® Fortran Compiler Classic and Intel® Fortran Compiler Developer Guide and Reference

1180

Name Procedure Type Description

FOR_MFENCE Subroutine Inserts a memory access fence
instruction that ensures
completion of preceding memory
access instructions.

for_rtl_finish_2 Function Cleans up the Fortran runtime
environment.

for_rtl_init_2 Function Initializes the Fortran runtime
environment.

FOR_SET_FPE Function Sets the floating-point exception
flags.

FOR_SET_FTN_ALLOC Function Tells the Fortran Runtime Library
(RTL) to use a user-defined
routine to dynamically allocate
commons.

FOR_SET_REENTRANCY Function Controls the type of reentrancy
protection that the Fortran
Runtime Library (RTL) exhibits.

FOR_SFENCE Subroutine Inserts a memory store fence
instruction that ensures
completion of preceding store
instructions.

GERROR Subroutine Returns a message for the last
error detected by a Fortran
runtime routine.

GETCHARQQ Function Returns the next keystroke.

GETEXCEPTIONPTRSQQ1 Function Returns a pointer to C runtime
exception information pointers
appropriate for use in signal
handlers established with
SIGNALQQ or direct calls to the C
rtl signal() routine.

GETSTRQQ Function Reads a character string from the
keyboard using buffered input.

PEEKCHARQQ Function Checks the buffer to see if a
keystroke is waiting.

PERROR Subroutine Sends a message to the standard
error stream, preceded by a
specified string, for the last
detected error.

TRACEBACKQQ Subroutine Provides traceback information.

1 Windows
2 You do not need a USE IFCORE statement for this routine.

A to B
This section describes language features that start with A or B.

Intel® Fortran Compiler Classic and Intel® Fortran Compiler Developer Guide and Reference 1

1181

A to B
ABORT
Portability Subroutine: Flushes and closes I/O
buffers, and terminates program execution.

Module

USE IFPORT

Syntax
CALL ABORT[string]

string (Input; optional) Character*(*). Allows you to specify an abort
message at program termination. When ABORT is called, "abort:" is
written to external unit 0, followed by string. If omitted, the default
message written to external unit 0 is "abort: Fortran Abort Called."

This subroutine causes the program to terminate and an exit code value of 134 is returned to the program
that launched it.

Example

USE IFPORT
!The following prints "abort: Fortran Abort Called"
CALL ABORT
!The following prints "abort: Out of here!"
Call ABORT ("Out of here!")

See Also
EXIT
STOP

ABS
Elemental Intrinsic Function (Generic): Computes
an absolute value.

Syntax
result=ABS(a)

a (Input) Must be of type integer, real, or complex.

Results

The result has the same type and kind type parameter as a except if a is complex value, the result type is
real. If a is an integer or real value, the value of the result is | a |; if a is a complex value (X, Y), the result is
the real value SQRT (X**2 + Y**2).

Specific Name Argument Type Result Type

BABS INTEGER(1) INTEGER(1)

IIABS1 INTEGER(2) INTEGER(2)

IABS 2 INTEGER(4) INTEGER(4)

KIABS INTEGER(8) INTEGER(8)

ABS REAL(4) REAL(4)

 1 Intel® Fortran Compiler Classic and Intel® Fortran Compiler Developer Guide and Reference

1182

Specific Name Argument Type Result Type

DABS REAL(8) REAL(8)

QABS REAL(16) REAL(16)

CABS 3 COMPLEX(4) REAL(4)

CDABS4 COMPLEX(8) REAL(8)

CQABS COMPLEX(16) REAL(16)

1Or HABS.
2Or JIABS. For compatibility with older versions of Fortran, IABS can also be specified as a generic
function, which allows integer arguments of any kind and produces a result of type default INTEGER.
3The setting of compiler options specifying real size can affect CABS, making CABS generic, which allows a
complex argument of any kind to produce a result of default REAL.
4This function can also be specified as ZABS.

Example

ABS (-7.4) has the value 7.4.

ABS ((6.0, 8.0)) has the value 10.0.

The following ABS.F90 program calculates two square roots, retaining the sign:

 REAL mag(2), sgn(2), result(2)
 WRITE (*, '(A)') ' Enter two signed magnitudes: '
 READ (*, *) mag
 sgn = SIGN((/1.0, 1.0/), mag) ! transfer the signs to 1.0s
 result = SQRT (ABS (mag))
! Restore the sign by multiplying by -1 or +1:
 result = result * sgn
 WRITE (*, *) result
 END

ABSTRACT INTERFACE
Statement: Defines an abstract interface.

Syntax
ABSTRACT INTERFACE
 [interface-body]...
END INTERFACE

interface-body Is one or more function or subroutine subprograms or a procedure
pointer.

The interface body must not contain a statement function or a DATA,
ENTRY, or FORMAT statement; an entry name can be used as a
procedure name.

The subprogram can contain a USE statement to import entities and
types defined in a module.

The subprogram can contain in IMPORT statement to make entities
from the interfaces host scoping unit accessible to the interface body.

Intel® Fortran Compiler Classic and Intel® Fortran Compiler Developer Guide and Reference 1

1183

Executable code and specification statements that are not used to
specify characteristics of the subprogram or its dummy arguments in
an interface body are ignored.

Description

An abstract interface block defines an interface whose name can be used in a PROCEDURE declaration
statement to declare subprograms with identical arguments and characteristics or to define interfaces of type
bound procedures.

An abstract interface block cannot contain a PROCEDURE statement or a MODULE PROCEDURE statement.

Interface blocks can appear in the specification part of the program unit that invokes the external or dummy
procedure.

An interface block must not appear in a block data program unit.

An interface block comprises its own scoping unit, and does not inherit anything from its host through host
association unless an IMPORT statement appears in the interface block .

The function or subroutine named in the interface-body cannot have the same name as a keyword that
specifies an intrinsic type.

To make an interface block available to multiple program units (through a USE statement), place the
interface block in a module.

Example

Previously, within an interface block, you needed to individually declare subroutines and functions that had
the same argument keywords and characteristics. For example:

INTERFACE
SUBROUTINE SUB_ONE (X)
 REAL, INTENT(IN) :: X
END SUBROUTINE SUB_ONE
SUBROUTINE SUB_TWO (X)
 REAL, INTENT(IN) :: X
END SUBROUTINE SUB_TWO
...
END INTERFACE

Now you can use an abstract interface to specify a subprogram name for these identical arguments and
characteristics. For example:

ABSTRACT INTERFACE
SUBROUTINE MY_INTERFACE (X)
 REAL, INTENT(IN) :: X
END SUBROUTINE MY_INTERFACE
END INTERFACE

You can then use the subprogram in the abstract interface as a template in a PROCEDURE statement to
declare procedures. For example:

PROCEDURE (MY_INTERFACE) :: SUB_ONE, SUB_TWO, ...
See Also
INTERFACE
PROCEDURE
FUNCTION
SUBROUTINE
Procedure Interfaces
Use and Host Association

 1 Intel® Fortran Compiler Classic and Intel® Fortran Compiler Developer Guide and Reference

1184

ACCEPT
Statement: Transfers input data.

Syntax
Formatted:

ACCEPT form[,io-list]
Formatted - List-Directed:

ACCEPT *[,io-list]
Formatted - Namelist:

ACCEPT nml

form Is the nonkeyword form of a format specifier (no FMT=).

io-list Is an I/O list.

* Is the format specifier indicating list-directed formatting.

nml Is the nonkeyword form of a namelist specifier (no NML=) indicating
namelist formatting.

The ACCEPT statement is the same as a formatted, sequential READ statement, except that an ACCEPT
statement must never be connected to user-specified I/O units. You can override this restriction by using
environment variable FOR_ACCEPT.

Example

In the following example, character data is read from the implicit unit and binary values are assigned to each
of the five elements of array CHARAR:

 CHARACTER*10 CHARAR(5)
 ACCEPT 200, CHARAR
200 FORMAT (5A10)

ACCESS Function
Portability Function: Determines if a file exists and
how it can be accessed.

Module

USE IFPORT

Syntax
result = ACCESS(name,mode)

name (Input) Character*(*). Name of the file whose accessibility is to be
determined.

mode (Input) Character*(*). Modes of accessibility to check for. Must be a
character string of length one or greater containing only the
characters "r", "w", "x", or "" (a blank). These characters are
interpreted as follows.

Character Meaning

r Tests for read permission

w Tests for write permission

Intel® Fortran Compiler Classic and Intel® Fortran Compiler Developer Guide and Reference 1

1185

Character Meaning

x Tests for execute permission. On
Windows* systems, the
extension of name must
be .COM, .EXE, .BAT, .CMD, .PL,
.KSH, or .CSH.

(blank) Tests for existence

The characters within mode can appear in any order or combination.
For example, wrx and r are legal forms of mode and represent the
same set of inquiries.

Results

The value of the result is INTEGER(4). It is zero if all inquiries specified by mode are true. If either argument
is invalid, or if the file cannot be accessed in all of the modes specified, one of the following error codes is
returned:

• EACCES: Access denied; the file's permission setting does not allow the specified access
• EINVAL: The mode argument is invalid
• ENOENT: File or path not found

For a list of error codes, see IERRNO.

The name argument can contain either forward or backward slashes for path separators.

On Windows* systems, all files are readable. A test for read permission always returns 0.

Example

use ifport
! checks for read and write permission on the file "DATAFILE.TXT"
J = ACCESS ("DATAFILE.TXT", "rw")
PRINT *, J
! checks whether "DATAFILE.TXT" is executable. It is not, since
! it does not end in .COM, .EXE, .BAT, or .CMD
J = ACCESS ("DATAFILE.TXT","x")
PRINT *, J

See Also
INQUIRE
GETFILEINFOQQ

ACHAR
Elemental Intrinsic Function (Generic): Returns
the character in a specified position of the ASCII
character set, even if the processor's default character
set is different. It is the inverse of the IACHAR
function. In Intel® Fortran, ACHAR is equivalent to the
CHAR function.

Syntax
result = ACHAR (i [, kind])

i (Input) Is of type integer.

kind (Input; optional) Must be a scalar integer constant expression.

 1 Intel® Fortran Compiler Classic and Intel® Fortran Compiler Developer Guide and Reference

1186

Results

The result type is character with length 1. If kind is present, the kind parameter of the result is that
specified by kind; otherwise, the kind parameter of the result is that of default character. If the processor
cannot represent the result value in the kind of the result, the result is undefined.

If i has a value within the range 0 to 127, the result is the character in position i of the ASCII character set;
otherwise, it is processor defined. ACHAR (IACHAR(C)) has the value C for any character C capable of
representation in the default character set. For a complete list of ASCII character codes, see Character and
Key Code Charts.

Example

ACHAR (71) has the value 'G'.

ACHAR (63) has the value '?'.

See Also
CHAR
IACHAR
ICHAR

ACOS
Elemental Intrinsic Function (Generic): Produces
the arccosine of x in radians.

Syntax
result = ACOS (x)

x (Input) Must be of type real, where | x | must be less than or equal to
1, or of type complex.

Results

The result type and kind are the same as x and is expressed in radians.

If the result is real, the value is expressed in radians and lies in the range 0 <= ACOS(X) <= pi.

If the result is complex, the real part is expressed in radians and lies in the range 0 <= REAL(ACOS (x)) <=
pi.

Specific Name Argument Type Result Type

ACOS 1 REAL(4) REAL(4)

DACOS 1 REAL(8) REAL(8)

QACOS 2 REAL(16) REAL(16)

1The setting of compiler options specifying real size can affect ACOS and DACOS.
2Or QARCOS.

Example

ACOS (0.68032123) has the value .8225955.

Intel® Fortran Compiler Classic and Intel® Fortran Compiler Developer Guide and Reference 1

1187

ACOSD
Elemental Intrinsic Function (Generic): Produces
the arccosine of x in degrees.

Syntax
result = ACOSD (x)

x (Input) Must be of type real. The | x | must be less than or equal to 1.

Results

The result type and kind are the same as x and are expressed in degrees. The value lies in the range −90 to
90 degrees.

Specific Name Argument Type Result Type

ACOSD 1 REAL(4) REAL(4)

DACOSD 1 REAL(8) REAL(8)

QACOSD REAL(16) REAL(16)

1The setting of compiler options specifying real size can affect ACOSD and DACOSD.

Example

ACOSD (0.886579) has the value 27.55354.

ACOSH
Elemental Intrinsic Function (Generic): Produces
the hyperbolic arccosine of x.

Syntax
result = ACOSH (x)

x (Input) Must be of type real, where x must be greater than or equal to
1, or of type complex.

Results

The result type and kind are the same as x.

If the result is complex, the real part is non-negative, and the imaginary part is expressed in radians and lies
in the range -pi <= AIMAG (ACOSH (x)) <= pi.

Specific Name Argument Type Result Type

ACOSH 1 REAL(4) REAL(4)

DACOSH 1 REAL(8) REAL(8)

QACOSH REAL(16) REAL(16)

1The setting of compiler options specifying real size can affect ACOSH and DACOSH.

Example

ACOSH (1.0) has the value 0.0.

ACOSH (180.0) has the value 5.8861.

 1 Intel® Fortran Compiler Classic and Intel® Fortran Compiler Developer Guide and Reference

1188

ADJUSTL
Elemental Intrinsic Function (Generic): Adjusts a
character string to the left, removing leading blanks
and inserting trailing blanks.

Syntax
result = ADJUSTL (string)

string (Input) Must be of type character.

Results

The result type is character with the same length and kind parameter as string. The value of the result is the
same as string, except that any leading blanks have been removed and inserted as trailing blanks.

Example

 CHARACTER(16) STRING
 STRING= ADJUSTL(' Fortran 90 ') ! returns 'Fortran 90 '

 ADJUSTL (' SUMMERTIME') ! has the value 'SUMMERTIME '

See Also
ADJUSTR

ADJUSTR
Elemental Intrinsic Function (Generic): Adjusts a
character string to the right, removing trailing blanks
and inserting leading blanks.

Syntax
result = ADJUSTR (string)

string (Input) Must be of type character.

Results

The result type is character with the same length and kind parameter as string.

The value of the result is the same as string, except that any trailing blanks have been removed and inserted
as leading blanks.

Example

 CHARACTER(16) STRING
 STRING= ADJUSTR(' Fortran 90 ') ! returns ' Fortran 90'

 ADJUSTR ('SUMMERTIME ') ! has the value ' SUMMERTIME'

See Also
ADJUSTL

AIMAG
Elemental Intrinsic Function (Generic): Returns
the imaginary part of a complex number. This function
can also be specified as IMAG.

Intel® Fortran Compiler Classic and Intel® Fortran Compiler Developer Guide and Reference 1

1189

Syntax
result = AIMAG (z)

z (Input) Must be of type complex.

Results

The result type is real with the same kind parameter as z. If z has the value (x, y), the result has the value y.

Specific Name Argument Type Result Type

AIMAG 1 COMPLEX(4) REAL(4)

DIMAG COMPLEX(8) REAL(8)

QIMAG COMPLEX(16) REAL(16)

1The setting of compiler options specifying real size can affect AIMAG.

To return the real part of complex numbers, use REAL.

Example

AIMAG ((4.0, 5.0)) has the value 5.0.

If C is complex, C%IM is the same as AIMAG (C).

The program AIMAG.F90 applies the quadratic formula to a polynomial and allows for complex results:

REAL a, b, c
COMPLEX ans1, ans2, d
WRITE (*, 100)
100 FORMAT (' Enter A, b, and c of the ', &
 'polynomial ax**2 + bx + c: '\)
READ (*, *) a, b, c
d = CSQRT (CMPLX (b**2 - 4.0*a*c)) ! d is either:
 ! 0.0 + i root, or
 ! root + i 0.0
ans1 = (-b + d) / (2.0 * a)
ans2 = (-b + d) / (2.0 * a)
WRITE (*, 200)
200 FORMAT (/ ' The roots are:' /)
WRITE (*, 300) REAL(ans1), AIMAG(ans1), &
 REAL(ans2), AIMAG(ans2)
300 FORMAT (' X = ', F10.5, ' + i', F10.5)
END

See Also
CONJG
DBLE

AINT
Elemental Intrinsic Function (Generic): Truncates
a value to a whole number.

Syntax
result = AINT (a [,kind])

a (Input) Must be of type real.

 1 Intel® Fortran Compiler Classic and Intel® Fortran Compiler Developer Guide and Reference

1190

kind (Input; optional) Must be a scalar integer constant expression.

Results

The result type is real. If kind is present, the kind parameter of the result is that specified by kind;
otherwise, the kind parameter is that of a.

The result is defined as the largest integer whose magnitude does not exceed the magnitude of a and whose
sign is the same as that of a. If | a | is less than 1, AINT(a) has the value zero.

Specific Name Argument Type Result Type

AINT 1 REAL(4) REAL(4)

DINT 1 REAL(8) REAL(8)

QINT REAL(16) REAL(16)

1The setting of compiler options specifying real size can affect AINT and DINT.

To round rather than truncate, use ANINT.

Example

AINT (3.678) has the value 3.0.

AINT (-1.375) has the value -1.0.

REAL r1, r2
REAL(8) r3(2)
r1 = AINT(2.6) ! returns the value 2.0
r2 = AINT(-2.6) ! returns the value -2.0
r3 = AINT((/1.3, 1.9/), KIND = 8) ! returns the values
 ! (1.0D0, 1.0D0)

See Also
ANINT

ALARM
Portability Function: Causes a subroutine to begin
execution after a specified amount of time has
elapsed.

Module

USE IFPORT

Syntax
result = ALARM (time,proc)

time (Input) Integer. Specifies the time delay, in seconds, between the call
to ALARM and the time when proc is to begin execution. If time is 0,
the alarm is turned off and no routine is called.

proc (Input) Name of the procedure to call. The procedure takes no
arguments and must be declared EXTERNAL.

Intel® Fortran Compiler Classic and Intel® Fortran Compiler Developer Guide and Reference 1

1191

Results

The return value is INTEGER(4). It is zero if no alarm is pending. If an alarm is pending (has already been
set by a previous call to ALARM), it returns the number of seconds remaining until the previously set alarm is
to go off, rounded up to the nearest second.

After ALARM is called and the timer starts, the calling program continues for time seconds. The calling
program then suspends and calls proc, which runs in another thread. When proc finishes, the alarm thread
terminates, the original thread resumes, and the calling program resets the alarm. Once the alarm goes off,
it is disabled until set again.

If proc performs I/O or otherwise uses the Fortran library, you need to compile it with one of the multithread
libraries.

The thread that proc runs in has a higher priority than any other thread in the process. All other threads are
essentially suspended until proc terminates, or is blocked on some other event, such as I/O.

No alarms can occur after the main process ends. If the main program finishes or any thread executes an
EXIT call, than any pending alarm is deactivated before it has a chance to run.

Example

USE IFPORT
INTEGER(4) numsec, istat
EXTERNAL subprog
numsec = 4
write *, "subprog will begin in ", numsec, " seconds"
ISTAT = ALARM (numsec, subprog)

See Also
RUNQQ

ALIAS Directive
General Compiler Directive: Declares alternate
external names for external subprograms.

Syntax
!DIR$ ALIAS internal-name,external-name

internal-name The name of the entity as used in the current program unit. It can be
a procedure name, a COMMON block name, a module variable that is
initialized, or a PARAMETER in a module. It may not be the name of an
internal procedure.

external-name A name or a character constant, delimited by apostrophes or
quotation marks.

If a name is specified, the name (in uppercase) is used as the external name for the specified internal-name.
If a character constant is specified, it is used as is; the string is not changed to uppercase, nor are blanks
removed.

The ALIAS directive affects only the external name used for references to the specified internal-name.

Names that are not acceptable to the linker will cause link-time errors.

See Also
ATTRIBUTES ALIAS
ATTRIBUTES DECORATE
ATTRIBUTES DEFAULT
General Compiler Directives

 1 Intel® Fortran Compiler Classic and Intel® Fortran Compiler Developer Guide and Reference

1192

Syntax Rules for Compiler Directives

ALIGNED Clause
Parallel Directive Clause: Specifies that all variables
in a list are aligned.

Syntax

ALIGNED (list [:n])

list Is the name of one or more variables. Each name must be separated
by a comma. Any variable that appears in list cannot appear in more
than one ALIGNED clause.

n Must be a constant positive integer expression; it indicates the
number of bytes for the alignment. If n is not specified, the compiler
uses the default alignment specified for SIMD instructions on the
target platform.

The ALIGNED clause declares that the location of each list item is aligned to the number of bytes expressed
in the optional alignment parameter n of the ALIGNED clause. If a list item has the ALLOCATABLE attribute,
its allocation status must be allocated. If it has the POINTER attribute, its association status must be
associated. If the type of a list item is type(C_PTR) or a Cray pointer, the item must be defined.

NOTE
Be careful when using the ALIGNED clause. Instructing the compiler to implement all array references
with aligned data movement instructions will cause a runtime exception if some of the access patterns
are actually unaligned.

ALL
Transformational Intrinsic Function (Generic):
Determines if all values are true in an entire array or
in a specified dimension of an array.

Syntax
result = ALL (mask)
result = ALL (mask, dim)

mask (Input) Must be a logical array.

dim (Input) Must be a scalar integer with a value in the range 1 to n,
where n is the rank of mask.

Results

The result is an array or a scalar of type logical.

The result is a scalar if dim is not specified or mask has rank one. A scalar result is true only if all elements
of mask are true, or mask has size zero. The result has the value false if any element of mask is false.

An array result has the same type and kind parameters as mask, and a rank that is one less than mask. Its
shape is (d1, d2, ..., ddim-1, ddim+1, ..., dn), where (d1, d2,..., dn) is the shape of mask.

Each element in an array result is true only if all elements in the one dimensional array defined by mask(s1,
s2, ..., sdim-1, :, sdim+1, ..., sn) are true.

Intel® Fortran Compiler Classic and Intel® Fortran Compiler Developer Guide and Reference 1

1193

Example

 LOGICAL mask(2, 3), AR1(3), AR2(2)
 mask = RESHAPE((/.TRUE., .TRUE., .FALSE., .TRUE., .FALSE., &
 .FALSE./),(/2,3/))
! mask is true false false
! true true false
 AR1 = ALL(mask,DIM = 1) ! evaluates the elements column by
 ! column yielding [true false false]
 AR2 = ALL(mask,DIM = 2) ! evaluates the elements row by row
 ! yielding [false false].

ALL ((/.TRUE., .FALSE., .TRUE./)) has the value false because some elements of MASK are not true.

ALL ((/.TRUE., .TRUE., .TRUE./)) has the value true because all elements of MASK are true.

A is the array

 [1 5 7]
 [3 6 8]

and B is the array

 [0 5 7]
 [2 6 9].

ALL (A .EQ. B, DIM=1) tests to see if all elements in each column of A are equal to the elements in the
corresponding column of B. The result has the value (false, true, false) because only the second column has
elements that are all equal.

ALL (A .EQ. B, DIM=2) tests to see if all elements in each row of A are equal to the elements in the
corresponding row of B. The result has the value (false, false) because each row has some elements that are
not equal.

See Also
ANY
COUNT

ALLOCATABLE
Statement and Attribute: Specifies that an object is
allocatable. The shape of an allocatable array is
determined when an ALLOCATE statement is
executed, dynamically allocating space for the array. A
character object may have a deferred length that is
determined when the object is allocated with an
ALLOCATE statement. A allocatable scalar object of
any type may be allocated with an ALLOCATE
statement.

Syntax
The ALLOCATABLE attribute can be specified in a type declaration statement or an ALLOCATABLE statement,
and takes one of the following forms:
Type Declaration Statement:

type, [att-ls,] ALLOCATABLE [, att-ls] :: a[(d-spec)] [[coarray-spec]][, a[(d-spec)]
[[coarray-spec]]...
Statement:

ALLOCATABLE [::] a[(d-spec)] [[coarray-spec]][, a[(d-spec)] [[coarray-spec]]...

 1 Intel® Fortran Compiler Classic and Intel® Fortran Compiler Developer Guide and Reference

1194

type Is a data type specifier.

att-ls Is an optional list of attribute specifiers.

a Is the name of the allocatable object.

d-spec Is a deferred-shape specification (: [, :] ...), where each colon
represents a dimension of the array or a deferred-coshape
specification.

coarray-spec Is a deferred-coshape specification. The left bracket and right bracket
are required.

Description

A character object declaration uses LEN=: to indicate it is deferred length.

If the array is given the DIMENSION attribute elsewhere in the program, it must be declared as a deferred-
shape array.

When the allocatable object is no longer needed, it can be deallocated by execution of a DEALLOCATE
statement.

An allocatable object cannot be specified in a COMMON, EQUIVALENCE, DATA, or NAMELIST statement.

Allocatable objects are not saved by default. If you want to retain the values of an allocatable object across
procedure calls, you must specify the SAVE attribute for the object.

Example

! Method for declaring and allocating objects.

INTEGER, ALLOCATABLE :: matrix(:,:) ! deferred shape
REAL, ALLOCATABLE :: vector(:)
CHARACTER, ALLOCATABLE :: c1 ! char scalar, len=1
INTEGER, ALLOCATABLE :: k ! numeric scalar
CHARACTER(LEN=:), ALLOCATABLE :: c2, c3(:) ! deferred length, shape

ALLOCATE(matrix(3,5),vector(-2:N+2)) ! specifies shapes
ALLOCATE(c1) ! specifies scalar, len=1
ALLOCATE(k) ! specifies scalar
ALLOCATE(character(len=5) :: c2) ! specifies scalar, len=5
ALLOCATE(character(len=3) :: c3(2:4)) ! specifies length, shape

The following example shows a type declaration statement specifying the ALLOCATABLE attribute:

REAL, ALLOCATABLE :: Z(:, :, :)
The following is an example of the ALLOCATABLE statement:

REAL A, B(:)
ALLOCATABLE :: A(:,:), B

See Also
Type Declarations

Compatible attributes
ALLOCATE
DEALLOCATE
Arrays
Allocation of Allocatable Arrays

Intel® Fortran Compiler Classic and Intel® Fortran Compiler Developer Guide and Reference 1

1195

SAVE

ALLOCATE Clause
Parallel Directive Clause: Specifies the memory
allocator to be used for one or more private variables
or common blocks of a construct. This feature is only
available for ifx.

Syntax

ALLOCATE ([allocator :] list)
-or-

ALLOCATE (allocator-modifier [, allocator-modifier] : list)

allocator Is an integer expression with a kind type of
omp_allocator_handle_kind.

list Is a comma-separated list of variables or named common blocks that
have been specified in a data sharing clause on the same directive
that makes the variable or common block private for the construct. A
common block name must be enclosed in slashes (/ /). A list item
cannot be repeated in the list.

allocate-modifier Is one of the following:

• ALLOCATOR (allocator)

allocator is an integer expression with a kind type of
omp_allocator_handle_kind.

At most one ALLOCATOR allocate-modifier is permitted in the
ALLOCATE clause.

• ALIGN (alignment)

alignment is a positive integer scalar expression with a value that
is a positive power of two.

Each list item is allocated with a byte alignment of at least the
maximum of the following:

1.The required alignment specified by Fortran
2.The alignment trait of the specified allocator
3.The alignment value specified by the ALIGN allocate-modifier

If alignment is not specified, each list item is allocated with a byte
alignment of at least the maximum of the following:

1.The required alignment specified by Fortran
2.The alignment trait of the specified allocator

At most one ALIGN allocate-modifier is permitted in the ALLOCATE
clause.

If allocator is not specified, the list items in the clause will be allocated using the allocator specified by the
def-allocator-var internal control variable (ICV).

Each list item must appear in a data sharing clause that creates a private copy of the list item in the directive
containing the ALLOCATE clause. The storage for the private copies of an object specified in the list are
allocated using the specified memory allocator.

 1 Intel® Fortran Compiler Classic and Intel® Fortran Compiler Developer Guide and Reference

1196

An ALLOCATE clause in a TARGET directive or a directive within a TARGET region must specify an allocator
expression unless a REQUIRES directive with the DYNAMIC_ALLOCATORS clause appears in the same
compilation unit.

The result of allocating private variables with a memory allocator whose access trait is set to THREAD by a
TASK, TASKLOOP, or TARGET directive is undefined.

See Also
ALLOCATE Directive
OpenMP* Memory Spaces and Allocators

ALLOCATE Directive
OpenMP* Fortran Compiler Directive: Specifies
memory allocators to use for object allocation and
deallocation. This feature is only available for ifx.

Syntax

!$OMP ALLOCATE (list) [clause [[,] clause]...]
-or-

!$OMP ALLOCATE [(list)] [clause [[,] clause]...]
[!$OMP ALLOCATE (list) [clause [[,] clause]...]
[...]]
ALLOCATE statement

list Is a comma separated list of variables or named common blocks. A
common block name must be enclosed in slashes (/ /).

clause Is one of the following:

• ALIGN (alignment)

alignment is a positive integer scalar expression with a value that
is a positive power of two.

Each list item is allocated with a byte alignment of at least the
maximum of the following:

1.The required alignment specified by Fortran
2.The alignment trait of the specified allocator
3.The alignment value specified by the ALIGN clause

If the ALIGN clause is not specified, each list item is allocated with
a byte alignment of at least the maximum of the following:

1.The required alignment specified by Fortran
2.The alignment trait of the specified allocator

At most one ALIGN clause is permitted in the ALLOCATE directive.
• ALLOCATOR (allocator)

allocator is an integer expression with a kind type of
omp_allocator_handle_kind.

If the ALLOCATOR clause is not specified, the list items in that
directive will be allocated using the allocator specified by the def-
allocator-var internal control variable (ICV).

Intel® Fortran Compiler Classic and Intel® Fortran Compiler Developer Guide and Reference 1

1197

At most one ALLOCATOR clause is permitted in the ALLOCATE
directive.

The first form of the directive is not associated with an ALLOCATE statement. It is a declarative directive and
must appear in the specification part where the list items are declared, and after all declarations of the list
items. The storage for each list item will be allocated by the specified memory allocator and deallocated by
the same memory allocator when the list item goes out of scope.

The list items in a declarative ALLOCATE directive must not have the POINTER or ALLOCATABLE attribute. If a
list item has the SAVE attribute (implicitly or explicitly), is a common block name, or is declared in the scope
of a module or submodule, then the specified allocator must be one of the pre-defined memory allocators.
The list items in a declarative ALLOCATE directive cannot be an array element, a structure component, or a
variable in a common block. The declaration of all list items must be in the same scope as the declarative
ALLOCATE directive and must precede the ALLOCATE directive.

A list item can appear once in a declarative ALLOCATE directive and it can appear in only one declarative
ALLOCATE directive.

The second form of the ALLOCATE directive is associated with an ALLOCATE statement and can appear in the
executable statement part of a subprogram after the first executable statement or OpenMP* construct. This
form of the directive has been deprecated in OpenMP 5.2 and replaced by the ALLOCATORS construct. It
associates an allocator with each allocate item in the associated ALLOCATE statement. The following are
other rules for this form:

• If an ALLOCATE directive with no list items appears, all the allocate list objects in the ALLOCATE
statement that are not listed in an ALLOCATE directive associated with the same ALLOCATE statement,
are allocated by the allocator specified in the ALLOCATE directive with no list items specified.

• Multiple ALLOCATE directives with list items can be specified for an ALLOCATE statement.
• An allocate object in an ALLOCATE statement associated with an ALLOCATE directive can be associated

with only one allocator, either explicitly (as a list item) or implicitly (if no list appears in an ALLOCATE
directive) for that ALLOCATE statement.

A list item can not appear in more than one ALLOCATE directive associated with a given ALLOCATE
statement, or appear more than once in the same directive. Each list item must have the ALLOCATABLE or
POINTER attribute; therefore, it cannot be a common block name enclosed in slashes. A list item can be a
POINTER or ALLOCATABLE component of a derived type. A list item cannot be an associate name.

If an object appears as a list item of an ALLOCATE directive, it must also appear in the allocation list of the
associated ALLOCATE statement. When an object is deallocated, it is deallocated using the same allocator
used to allocate it. If an object is deallocated and reallocated during intrinsic assignment, the same allocator
is used for the deallocation and reallocation; otherwise, the allocator specified for a list item is used to
allocate the list item only in the ALLOCATE statement associated with the ALLOCATE directive.

If an allocate object in an ALLOCATE statement associated with an OpenMP ALLOCATE directive does not
appear as a list item in the directive, the allocate object is ALLOCATED as if it appeared in a Fortran
ALLOCATE statement that was not associated with an OpenMP ALLOCATE directive.

If multiple ALLOCATE directives are associated with an ALLOCATE statement, only one ALLOCATE directive
can appear with no list items.

An ALLOCATOR must be specified in ALLOCATE directives that appear in a TARGET region, unless a
REQUIRES directive with the DYNAMIC_ALLOCATORS clause is specified in the same compilation unit.

When a list item goes out of scope, if it has not been deallocated, it is automatically deallocated with the
same allocator that allocated it.

See Also
ALLOCATE Clause
ALLOCATORS directive
REQUIRES directive

 1 Intel® Fortran Compiler Classic and Intel® Fortran Compiler Developer Guide and Reference

1198

OpenMP* Memory Spaces and Allocators

ALLOCATE Statement
Statement: Dynamically creates storage for
allocatable variables and pointer targets.

Syntax
ALLOCATE ([type::] object[(s-spec[, s-spec]...)] [, object[(s-spec[, s-spec]...)]]...
[[coarray-spec]]...[, alloc-opt[, alloc-opt]...])

type Is a data type specifier. If specified, the kind type parameters of each
object must be the same as the corresponding type parameter values,
and each object must be type compatible with the specified type. The
type must not have an ultimate subcomponent that is a coarray.

You cannot specify type if you specify SOURCE= or MOLD=.

A type parameter value in type can be an asterisk if and only if each
object is a dummy argument for which the corresponding type
parameter is assumed.

object Is the object to be allocated. It is a variable name or structure
component, and must be a pointer or an allocatable object. The object
can be of type character with zero length. The object cannot be
coindexed.

If any object has a deferred type parameter, is unlimited polymorphic,
or is of ABSTRACT type, either type or source-expr must appear.

If the object is a coarray and type is specified, type cannot be C_PTR,
C_FUNPTR, or TEAM_TYPE.

If the object is a coarray and SOURCE= is specified, the declared type
of source-expr cannot be C_PTR, C_FUNPTR, or TEAM_TYPE.

If object is an array, s-spec must appear and the number of s-specs
must equal the rank of object, or source-expr must appear and have
the same rank as object and the shape of object is that of source-
expr.

If both s-spec and SOURCE=source-expr appear, source-expr must be
scalar.

If object is scalar, no s-spec should appear.

If SOURCE=source-expr appears, object is initialized with the value of
source-expr.

s-spec Is an array shape specification in the form [lower-bound:]upper-
bound. Each bound must be a scalar integer expression. The number
of shape specifications must be the same as the rank of the object.

You can specify an s-spec list for each array object in an ALLOCATE
statement.

coarray-spec Is a coarray shape specification in the form:

[[lower-bound:] upper-bound,] ... [lower-bound:] *

The brackets around coarray-spec are required.

Intel® Fortran Compiler Classic and Intel® Fortran Compiler Developer Guide and Reference 1

1199

A coarray shape specification can only appear if the object is a
coarray. The number of coarray specifications must be one less than
the corank of the coarray object.

alloc-opt Can be any of the following keywords:

STAT=stat-var (Output) The stat-var is a scalar integer
variable in which the status of the allocation
is stored.

If no STAT= stat-var is specified and an error
condition occurs, the program initiates error
termination.

ERRMSG=err-var (Output) The err-var is a scalar default
character variable in which an error condition
is stored if such a condition occurs.

SOURCE=source-expr
MOLD=source-expr

(Input) The source-expr is an expression
that is scalar or has the same rank as object.

If MOLD= or SOURCE= is specified, type
cannot be specified and each object must
have the same rank as source-expr unless
source-expr is scalar.

Only one of MOLD= or SOURCE= can appear
in the same ALLOCATE statement.

If MOLD= appears and source-expr is a
variable, its value does not have to be
defined.

If source-expr appears and its declared type
is C_PTR or C_FUNPTR, object cannot be a
coarray.

If object is a coarray:

• The declared type of source-expr cannot
be EVENT_TYPE, LOCK_TYPE, or
TEAM_TYPE or have a subcomponent of
these types.

• source-expr must not have a dynamic
type of C_PTR, C_FUNPTR, EVENT_TYPE,
or LOCK_TYPE, or have a subcomponent
whose dynamic type is EVENT_TYPE or
LOCK_TYPE.

You can specify STAT=, ERRMSG=, and one of MOLD= or SOURCE= in the same ALLOCATE statement. The
keywords can appear in any order.

Description

The storage space allocated is uninitialized unless SOURCE= is specified or the type of the object is default
initialized.

 1 Intel® Fortran Compiler Classic and Intel® Fortran Compiler Developer Guide and Reference

1200

A bound in s-spec must not be an expression containing an array inquiry function whose argument is any
allocatable object in the same ALLOCATE statement; for example, in this code, the last line is not permitted:

INTEGER ERR
INTEGER, ALLOCATABLE :: A(:), B(:)
...
ALLOCATE(A(10:25), B(SIZE(A)), STAT=ERR) ! A is invalid as an argument to function SIZE

If a STAT=stat-var, ERRMSG=err-var, or source-expr is specified, it must not be allocated in the ALLOCATE
statement in which it appears; nor can it depend on the value, bounds, length type parameters, allocation
status, or association status of any object in the same ALLOCATE statement.

If the allocation is successful, the STAT=stat-var becomes defined with the value zero, and the definition
status of the ERRMSG=err-var remains unchanged. If the allocation is not successful, an error condition
occurs, and the STAT=stat-var is set to a positive integer value (representing the runtime error); the
ERRMSG=err-var contains a descriptive message about the error condition.

If the allocation is successful and source-expr is specified, the dynamic type and value of the allocated object
becomes that of the source expression. If the value of a non-deferred length type parameter of object is
different from the value of the corresponding type parameter of source-expr, an error condition occurs.

When an ALLOCATE statement is executed for an object that is a coarray, there is an implicit synchronization
of all images. On each image, execution of the segment following the statement is delayed until all other
images have executed the same statement the same number of times.

If an ALLOCATE or DEALLOCATE statement with a coarray allocatable object is executed when one or more
images of the current team has initiated normal termination, the STAT=stat-var becomes defined with the
processor-dependent positive integer value of the constant STAT_STOPPED_IMAGE from the intrinsic module
ISO_FORTRAN_ENV. Otherwise, if an allocatable object is a coarray and one or more images of the current
team has failed, the STAT=stat-var becomes defined with the processor-dependent positive integer value of
the constant STAT_FAILED_IMAGE from the intrinsic module ISO_FORTRAN_ENV.

If any other error condition occurs during execution of the ALLOCATE or DEALLOCATE statement, the
STAT=stat-var becomes defined with a processor-dependent positive integer value different from
STAT_STOPPED_IMAGE or STAT_FAILED_IMAGE.

If an ALLOCATE or DEALLOCATE statement with a coarray allocatable object is executed when one or more
images of the current team has failed, each allocatable object is successfully allocated or deallocated on the
active images of the current team. If any other error occurs, the allocation status of each allocatable object is
processor dependent:

• Successfully allocated allocatable objects have the allocation status of allocated, or associated if the
allocate object is has the POINTER attribute.

• Successfully deallocated allocatable objects have the allocation status of deallocated, or disassociated if
the allocatable object has the POINTER attribute.

• An allocatable object that was not successfully allocated or deallocated has its previous allocation status,
or its previous association status if it has the POINTER attribute.

To release the storage for an object, use DEALLOCATE.

To determine whether an allocatable object is currently allocated, use the ALLOCATED intrinsic function.

To determine whether a pointer is currently associated with a target, use the ASSOCIATED intrinsic function.

Example

The following example shows a method for creating and allocating deferred shape arrays:

 INTEGER,ALLOCATABLE::matrix(:,:)
 REAL, ALLOCATABLE:: vector(:)

Intel® Fortran Compiler Classic and Intel® Fortran Compiler Developer Guide and Reference 1

1201

 . . .
 ALLOCATE (matrix(3,5),vector(-2:N+2))
 . . .

The following example allocates the scalar objects s and t to be 15 by 25 matrices with the value of r:

 INTEGER J, N, ALLOC_ERR
 REAL, ALLOCATABLE :: A(:), B(:,:)
 ...
 ALLOCATE(A(0:80), B(-3:J+1, N), STAT = ALLOC_ERR)

The following example allocates s and t to be 15 by 25 arrays with the values of r:

REAL(KIND=8) :: r(15, 25)
REAL(KIND=8), ALLOCATABLE :: s(:,:), t(:,:)
...
ALLOCATE(s,SOURCE=r)
ALLOCATE(t,SOURCE=r)

See Also
ALLOCATABLE
ALLOCATED
DEALLOCATE
ASSOCIATED
POINTER
Dynamic Allocation
Pointer Assignments
ISO_FORTRAN_ENV Module

ALLOCATORS
OpenMP* Fortran Compiler Directive: Specifies
memory allocators to be used to allocate variables in
the associated Fortran ALLOCATE statement and to
use in their deallocation. This feature is only available
for ifx.

Syntax

!$OMP ALLOCATORS [clause[[,] clause]...]
 ALLOCATE statement
[!$OMP END ALLOCATORS]

clause Is ALLOCATE.

An allocate object in the ALLOCATE statement cannot appear as a list item in more than one ALLOCATE
clause in an ALLOCATORS directive. Each list item in the ALLOCATE clauses must have the ALLOCATABLE or
POINTER attribute; therefore, it cannot be a common block name enclosed in slashes. Derived type
components that have the ALLOCATABLE or POINTER attribute can appear as list items. List items cannot be
associate names.

The ALLOCATORS construct associates an allocator with an allocate object in the associated ALLOCATE
statement that is used for both allocation and deallocation of the object.

If an object appears as a list item of an ALLOCATE clause in an ALLOCATORS directive, it must also appear in
the allocation list of the associated ALLOCATE statement. When an object is deallocated, it is deallocated
using the same allocator used to allocate it. If an object is deallocated and reallocated during intrinsic

 1 Intel® Fortran Compiler Classic and Intel® Fortran Compiler Developer Guide and Reference

1202

assignment, the same allocator is used for the deallocation and reallocation. Otherwise, the allocator
specified for a list item is used to allocate the list item only in the ALLOCATE statement associated with the
ALLOCATE directive, and to deallocate it, either explicitly or implicitly, when it goes out of scope.

If an allocate object in an ALLOCATE statement associated with an OpenMP ALLOCATE directive does not
appear as a list item in the directive, the allocate object is ALLOCATED as if it appeared in a Fortran
ALLOCATE statement that was not associated with an OpenMP ALLOCATE directive.

The functionality of the ALLOCATORS construct is also provided by the ALLOCATE directive form that is
associated with a Fortran ALLOCATE statement; this is described in the ALLOCATE directive description as the
second form of the ALLOCATE directive. If multiple allocators are to be used for an ALLOCATE statement,
each allocator requires its own ALLOCATE directive. This form of the ALLOCATE directive has been deprecated
and replaced by the ALLOCATORS construct.

See Also
ALLOCATE Clause
ALLOCATE directive
OpenMP* Memory Spaces and Allocators

ALLOCATED
Inquiry Intrinsic Function (Generic): Indicates
whether an allocatable array or allocatable scalar is
currently allocated.

Syntax
result = ALLOCATED ([ARRAY=]array)
result = ALLOCATED ([SCALAR=]scalar)

array (Input) Must be an allocatable array.

scalar (Input) Must be an allocatable scalar.

Results

The result is a scalar of type default logical.

The result has the value true if argument array or scalar is currently allocated; it has the value false if the
argument is not currently allocated.

NOTE
When the argument keyword ARRAY is used, array must be an allocatable array. When the
argument keyword SCALAR is used, scalar must be an allocatable scalar.

Example

 REAL, ALLOCATABLE :: A(:)
 ...
 IF (.NOT. ALLOCATED(A)) ALLOCATE (A (5))

Consider the following:

 REAL, ALLOCATABLE, DIMENSION (:,:,:) :: E
 PRINT *, ALLOCATED (E) ! Returns the value false
 ALLOCATE (E (12, 15, 20))
 PRINT *, ALLOCATED (E) ! Returns the value true

Intel® Fortran Compiler Classic and Intel® Fortran Compiler Developer Guide and Reference 1

1203

See Also
ALLOCATABLE
ALLOCATE
DEALLOCATE
Arrays
Dynamic Allocation

ANINT
Elemental Intrinsic Function (Generic): Calculates
the nearest whole number.

Syntax
result = ANINT (a[,kind])

a (Input) Must be of type real.

kind (Input; optional) Must be a scalar integer constant expression.

Results

The result type is real. If kind is present, the kind parameter is that specified by kind; otherwise, the kind
parameter is that of a. If a is greater than zero, ANINT (a) has the value AINT (a + 0.5); if a is less than or
equal to zero, ANINT (a) has the value AINT (a - 0.5).

Specific Name Argument Type Result Type

ANINT 1 REAL(4) REAL(4)

DNINT 1 REAL(8) REAL(8)

QNINT REAL(16) REAL(16)

1The setting of compiler options specifying real size can affect ANINT and DNINT.

To truncate rather than round, use AINT.

Example

ANINT (3.456) has the value 3.0.

ANINT (-2.798) has the value -3.0.

Consider the following:

 REAL r1, r2
 r1 = ANINT(2.6) ! returns the value 3.0
 r2 = ANINT(-2.6) ! returns the value -3.0

! Calculates and adds tax to a purchase amount.
 REAL amount, taxrate, tax, total
 taxrate = 0.081
 amount = 12.99
 tax = ANINT (amount * taxrate * 100.0) / 100.0
 total = amount + tax
 WRITE (*, 100) amount, tax, total
 100 FORMAT (1X, 'AMOUNT', F7.2 /
 + 1X, 'TAX ', F7.2 /
 + 1X, 'TOTAL ', F7.2)
 END

 1 Intel® Fortran Compiler Classic and Intel® Fortran Compiler Developer Guide and Reference

1204

See Also
NINT

ANY
Transformational Intrinsic Function (Generic):
Determines if any value is true in an entire array or in
a specified dimension of an array.

Syntax
result = ANY (mask)
result = ANY (mask, dim)

mask (Input) Must be a logical array.

dim (Input) Must be a scalar integer expression with a value in the range 1
to n, where n is the rank of mask.

Results

The result is an array or a scalar of type logical.

The result is a scalar if dim is not specified or mask has rank one. A scalar result is true if any elements of
mask are true. The result has the value false if no element of mask is true, or mask has size zero.

An array result has the same type and kind parameters as mask, and a rank that is one less than mask. Its
shape is (d1, d2, ..., ddim-1, ddim+1, ..., dn), where (d1, d2, ..., dn) is the shape of mask.

Each element in an array result is true if any elements in the one dimensional array defined by mask(s1,
s2, ..., sdim-1, :, sdim+1, ..., sn) are true.

Example

 LOGICAL mask(2, 3), AR1(3), AR2(2)
 logical, parameter :: T = .true.
 logical, parameter :: F = .false.
 DATA mask /T, T, F, T, F, F/
! mask is true false false
! true true false
 AR1 = ANY(mask,DIM = 1) ! evaluates the elements column by
 ! column yielding [true true false]
 AR2 = ANY(mask,DIM = 2) ! evaluates the elements row by row
 ! yielding [true true]

ANY ((/.FALSE., .FALSE., .TRUE./)) has the value true because one element is true.

A is the array

 [1 5 7]
 [3 6 8]

and B is the array

 [0 5 7]
 [2 6 9].

ANY (A .EQ. B, DIM=1) tests to see if any elements in each column of A are equal to the elements in the
corresponding column of B. The result has the value (false, true, true) because the second and third columns
have at least one element that is equal.

Intel® Fortran Compiler Classic and Intel® Fortran Compiler Developer Guide and Reference 1

1205

ANY (A .EQ. B, DIM=2) tests to see if any elements in each row of A are equal to the elements in the
corresponding row of B. The result has the value (true, true) because each row has at least one element that
is equal.

See Also
ALL
COUNT

ASIN
Elemental Intrinsic Function (Generic): Produces
the arcsine of an argument in radians.

Syntax
result = ASIN (x)

x (Input) Must be of type real, where | x | must be less than or equal to
1, or of type complex.

Results

The result type and kind are the same as x.

If the result is real, it is expressed in radians and lies in the range - pi/2 <= ASIN (x) <= pi/2.

If the result is complex, the real part is expressed in radians and lies in the range pi/2 <= REAL (ASIN (x))
<= pi/2.

Specific Name Argument Type Result Type

ASIN REAL(4) REAL(4)

DASIN REAL(8) REAL(8)

QASIN REAL(16) REAL(16)

Example

ASIN (0.79345021) has the value 0.9164571.

ASIND
Elemental Intrinsic Function (Generic): Produces
the arcsine of x in degrees.

Syntax
result = ASIND (x)

x (Input) Must be of type real. The | x | must be less than or equal to 1.

Results

The result type and kind are the same as x and are expressed in degrees. The value lies in the range −90 to
90 degrees.

Specific Name Argument Type Result Type

ASIND REAL(4) REAL(4)

DASIND REAL(8) REAL(8)

 1 Intel® Fortran Compiler Classic and Intel® Fortran Compiler Developer Guide and Reference

1206

Specific Name Argument Type Result Type

QASIND REAL(16) REAL(16)

Example

ASIND (0.2467590) has the value 14.28581.

ASINH
Elemental Intrinsic Function (Generic): Produces
the hyperbolic arcsine of x.

Syntax
result = ASINH (x)

x (Input) Must be of type real or complex.

Results

The result type and kind are the same as x.

If the result is complex, the imaginary part is expressed in radians and lies in the range - pi/ 2 <= AIMAG
(ASINH (x)) <= pi / 2.

Specific Name Argument Type Result Type

ASINH REAL(4) REAL(4)

DASINH REAL(8) REAL(8)

QASINH REAL(16) REAL(16)

Example

ASINH (1.0) has the value -0.88137.

ASINH (180.0) has the value 5.88611.

ASSIGN - Label Assignment
Statement: Assigns a statement label value to an
integer variable. This feature has been deleted in the
Fortran Standard. Intel® Fortran fully supports
features deleted in the Fortran Standard.

Syntax
ASSIGN label TO var

label Is the label of a branch target or FORMAT statement in the same
scoping unit as the ASSIGN statement.

var Is a scalar integer variable.

When an ASSIGN statement is executed, the statement label is assigned to the integer variable. The variable
is then undefined as an integer variable and can only be used as a label (unless it is later redefined with an
integer value).

The ASSIGN statement must be executed before the statements in which the assigned variable is used.

Intel® Fortran Compiler Classic and Intel® Fortran Compiler Developer Guide and Reference 1

1207

Indirect branching through integer variables makes program flow difficult to read, especially if the integer
variable is also used in arithmetic operations. Using these statements permits inconsistent usage of the
integer variable, and can be an obscure source of error. The ASSIGN statement was used to simulate internal
procedures, which now can be coded directly.

Example

The value of a label is not the same as its number; instead, the label is identified by a number assigned by
the compiler. In the following example, 400 is the label number (not the value) of IVBL:

 ASSIGN 400 TO IVBL
Variables used in ASSIGN statements are not defined as integers. If you want to use a variable defined by an
ASSIGN statement in an arithmetic expression, you must first define the variable by a computational
assignment statement or by a READ statement, as in the following example:

 IVBL = 400
The following example shows ASSIGN statements:

 INTEGER ERROR
 ...
 ASSIGN 10 TO NSTART
 ASSIGN 99999 TO KSTOP
 ASSIGN 250 TO ERROR

Note that NSTART and KSTOP are integer variables implicitly, but ERROR must be previously declared as an
integer variable.

The following statement associates the variable NUMBER with the statement label 100:

 ASSIGN 100 TO NUMBER
If an arithmetic operation is subsequently performed on variable NUMBER (such as follows), the runtime
behavior is unpredictable:

 NUMBER = NUMBER + 1
To return NUMBER to the status of an integer variable, you can use the following statement:

 NUMBER = 10
This statement dissociates NUMBER from statement 100 and assigns it an integer value of 10. Once NUMBER
is returned to its integer variable status, it can no longer be used in an assigned GO TO statement.

See Also
Assignment: intrinsic
Obsolescent Language Features in the Fortran Standard

Assignment(=) - Defined Assignment
Statement: An interface block that defines generic
assignment. The only procedures allowed in the
interface block are subroutines that can be referenced
as defined assignments.

Syntax
The initial line for such an interface block takes the following form:

INTERFACE ASSIGNMENT (=)

Description

The subroutines within the interface block must have two nonoptional arguments, the first with intent OUT or
INOUT, and the second with intent IN and/or attribute VALUE.

 1 Intel® Fortran Compiler Classic and Intel® Fortran Compiler Developer Guide and Reference

1208

A defined assignment is treated as a reference to a subroutine. The left side of the assignment corresponds
to the first dummy argument of the subroutine; the right side of the assignment, enclosed in parentheses,
corresponds to the second argument. A defined assignment procedure with an ALLOCATABLE or POINTER
dummy argument cannot be directly invoked through defined assignment; the right-hand side of the
assignment operator becomes an expression, and an expression cannot have the ALLOCATABLE, POINTER, or
TARGET attribute.

The ASSIGNMENT keyword extends or redefines an assignment operation if both sides of the equal sign are
of the same derived type.

Defined elemental assignment is indicated by specifying ELEMENTAL in the SUBROUTINE statement.

Any procedure reference involving generic assignment must be resolvable to one specific procedure; it must
be unambiguous. For more information, see Unambiguous Generic Procedure References.

Example

The following is an example of a procedure interface block defining assignment:

INTERFACE ASSIGNMENT (=)
 SUBROUTINE BIT_TO_NUMERIC (NUM, BIT)
 INTEGER, INTENT(OUT) :: NUM
 LOGICAL, INTENT(IN) :: BIT(:)
 END SUBROUTINE BIT_TO_NUMERIC
 SUBROUTINE CHAR_TO_STRING (STR, CHAR)
 USE STRING_MODULE ! Contains definition of type STRING
 TYPE(STRING), INTENT(OUT) :: STR ! A variable-length string
 CHARACTER(*), INTENT(IN) :: CHAR
 END SUBROUTINE CHAR_TO_STRING
END INTERFACE

The following example shows two equivalent ways to reference subroutine BIT_TO_NUMERIC:

 CALL BIT_TO_NUMERIC(X, (NUM(I:J)))
 X = NUM(I:J)

The following example shows two equivalent ways to reference subroutine CHAR_TO_STRING:

 CALL CHAR_TO_STRING(CH, '432C')
 CH = '432C'

The following is an example of a declaration and reference to a defined assignment:

!Converting circle data to interval data.
module mod1
TYPE CIRCLE
 REAL radius, center_point(2)
END TYPE CIRCLE
TYPE INTERVAL
 REAL lower_bound, upper_bound
END TYPE INTERVAL
CONTAINS
 SUBROUTINE circle_to_interval(I,C)
 type (interval),INTENT(OUT)::I
 type (circle),INTENT(IN)::C
!Project circle center onto the x=-axis
!Note: the length of the interval is the diameter of the circle
 I%lower_bound = C%center_point(1) - C%radius
 I%upper_bound = C%center_point(1) + C%radius
 END SUBROUTINE circle_to_interval

Intel® Fortran Compiler Classic and Intel® Fortran Compiler Developer Guide and Reference 1

1209

end module mod1

PROGRAM assign
use mod1
TYPE(CIRCLE) circle1
TYPE(INTERVAL) interval1
INTERFACE ASSIGNMENT(=)
 module procedure circle_to_interval
END INTERFACE
!Begin executable part of program
 circle1%radius = 2.5
 circle1%center_point = (/3.0,5.0/)
 interval1 = circle1
. . .
END PROGRAM

See Also
INTERFACE
Assignment Statements

Assignment - Intrinsic Computational
Statement: Assigns a value to a nonpointer variable.
In the case of pointers, intrinsic assignment is used to
assign a value to the target associated with the
pointer variable. The value assigned to the variable
(or target) is determined by evaluation of the
expression to the right of the equal sign.

Syntax
variable=expression

variable Is the name of a scalar or array of intrinsic or derived type (with no
defined assignment). The array cannot be an assumed-size array, and
neither the scalar nor the array can be declared with the PARAMETER
or INTENT(IN) attribute.

expression Is of intrinsic type or the same derived type as variable. Its shape
must conform with variable. If necessary, it is converted to the
same type and kind as variable.

Description

Before a value is assigned to the variable, the expression part of the assignment statement and any
expressions within the variable are evaluated. No definition of expressions in the variable can affect or be
affected by the evaluation of the expression part of the assignment statement.

NOTE
When the runtime system assigns a value to a scalar integer or character variable and the
variable is shorter than the value being assigned, the assigned value may be truncated and
significant bits (or characters) lost. This truncation can occur without warning, and can
cause the runtime system to pass incorrect information back to the program.

If the variable is a pointer, it must be associated with a definable target. The shape of the target and
expression must conform and their type and kind parameters must match.

 1 Intel® Fortran Compiler Classic and Intel® Fortran Compiler Developer Guide and Reference

1210

If the !DIR$ NOSTRICT compiler directive (the default) is in effect, then you can assign a character
expression to a noncharacter variable, and a noncharacter variable or array element (but not an expression)
to a character variable.

Example

 REAL a, b, c
 LOGICAL abigger
 CHARACTER(16) assertion
 c = .01
 a = SQRT (c)
 b = c**2
 assertion = 'a > b'
 abigger = (a .GT. b)
 WRITE (*, 100) a, b
100 FORMAT (' a =', F7.4, ' b =', F7.4)
 IF (abigger) THEN
 WRITE (*, *) assertion, ' is true.'
 ELSE
 WRITE (*, *) assertion, ' is false.'
 END IF
 END
! The program above has the following output:
! a = .1000 b = .0001 a > b is true.
! The following code shows legal and illegal
! assignment statements:
!
 INTEGER i, j
 REAL rone(4), rtwo(4), x, y
 COMPLEX z
 CHARACTER name6(6), name8(8)
 i = 4
 x = 2.0
 z = (3.0, 4.0)
 rone(1) = 4.0
 rone(2) = 3.0
 rone(3) = 2.0
 rone(4) = 1.0
 name8 = 'Hello,'

! The following assignment statements are legal:
 i = rone(2); j = rone(i); j = x
 y = x; y = z; y = rone(3); rtwo = rone; rtwo = 4.7
 name6 = name8

! The following assignment statements are illegal:
 name6 = x + 1.0; int = name8//'test'; y = rone
 END

See Also
Assignment: defined
NOSTRICT directive

Intel® Fortran Compiler Classic and Intel® Fortran Compiler Developer Guide and Reference 1

1211

ASSOCIATE
Statement: Marks the beginning of an ASSOCIATE
construct. The ASSOCIATE construct creates a
temporary association between a named entity and a
variable or the value of an expression. The association
lasts for the duration of the block.

Syntax
[name:] ASSOCIATE (assoc-entity[, assoc-entity]...)
 block
END ASSOCIATE [name]

name (Optional) Is the name of the ASSOCIATE construct.

assoc-entity Is associate-name => selector

associate-name Is an identifier that becomes associated with the
selector. It becomes the associating entity. The
identifier name must be unique within the
construct.

selector Is an expression or variable. It becomes the
associated entity.

block Is a sequence of zero or more statements or constructs.

Description

If a construct name is specified at the beginning of an ASSOCIATE statement, the same name must appear in
the corresponding END ASSOCIATE statement. The same construct name must not be used for different
named constructs in the same scoping unit. If no name is specified at the beginning of an ASSOCIATE
statement, you cannot specify one following the END ASSOCIATE statement.

During execution of the block within the construct, each associate-name identifies an entity, which is
associated with the corresponding selector. The associating entity assumes the declared type and type
parameters of the selector.

You can only branch to an END ASSOCIATE statement from within its ASSOCIATE construct.

This construct is useful when you want to simplify multiple accesses to a variable that has a lengthy
description; for example, if the variable contains multiple subscripts and component names.

Example

The following shows an expression as a selector:

ASSOCIATE (O => (A-F)**2 + (B+G)**2)
 PRINT *, SQRT (O)
END ASSOCIATE

The following shows association with an array section:

ASSOCIATE (ARRAY => AB % D (I, :) % X)
 ARRAY (3) = ARRAY (1) + ARRAY (2)
END ASSOCIATE

Without the ASSOCIATE construct, this is what you would need to write:

AB % D (I, 3) % X = AB % D (I, 1) % X + AB % D (I, 2) % X

 1 Intel® Fortran Compiler Classic and Intel® Fortran Compiler Developer Guide and Reference

1212

See Also
Construct Association
Additional Attributes Of Associate Names

ASSOCIATED
Inquiry Intrinsic Function (Generic): Returns the
association status of its pointer argument or indicates
whether the pointer is associated with the target.

Syntax
result = ASSOCIATED (pointer [, target])

pointer (Input) Must be a pointer. It can be of any data type. The pointer
association status must be defined.

target (Input; optional) Must be a pointer or target. If it is a pointer, the
pointer association status must be defined.

Results

The result is a scalar of type default logical. The setting of compiler options specifying integer size can affect
this function.

If only pointer appears, the result is true if it is currently associated with a target; otherwise, the result is
false.

If target also appears and is a target, the result is true if pointer is currently associated with target;
otherwise, the result is false.

If target is a pointer, the result is true if both pointer and target are currently associated with the same
target; otherwise, the result is false. (If either pointer or target is disassociated, the result is false.)

Example

REAL C (:), D(:), E(5)
POINTER C, D
TARGET E
LOGICAL STATUS
C => E ! pointer assignment
D => E ! pointer assignment
STATUS = ASSOCIATED(C) ! returns TRUE; C is associated
STATUS = ASSOCIATED(C, E) ! returns TRUE; C is associated with E
STATUS = ASSOCIATED (C, D) ! returns TRUE; C and D are associated
 ! with the same target

Consider the following:

 REAL, TARGET, DIMENSION (0:50) :: TAR
 REAL, POINTER, DIMENSION (:) :: PTR
 PTR => TAR
 PRINT *, ASSOCIATED (PTR, TAR) ! Returns the value true

The subscript range for PTR is 0:50. Consider the following pointer assignment statements:

 (1) PTR => TAR (:)
 (2) PTR => TAR (0:50)
 (3) PTR => TAR (0:49)

For statements 1 and 2, ASSOCIATED (PTR, TAR) is true because TAR has not changed (the subscript range
for PTR in both cases is 1:51, following the rules for deferred-shape arrays). For statement 3, ASSOCIATED
(PTR, TAR) is false because the upper bound of TAR has changed.

Intel® Fortran Compiler Classic and Intel® Fortran Compiler Developer Guide and Reference 1

1213

Consider the following:

 REAL, POINTER, DIMENSION (:) :: PTR2, PTR3
 ALLOCATE (PTR2 (0:15))
 PTR3 => PTR2
 PRINT *, ASSOCIATED (PTR2, PTR3) ! Returns the value true
 ...
 NULLIFY (PTR2)
 NULLIFY (PTR3)
 PRINT *, ASSOCIATED (PTR2, PTR3) ! Returns the value false

See Also
ALLOCATED
POINTER
TARGET
Pointer Assignments

ASSUME
General Compiler Directive: Provides heuristic
information to the compiler optimizer.

Syntax
!DIR$ ASSUME (scalar-logical-expression)

scalar-logical-expression Is any expression that evaluates to .TRUE. or .FALSE. at runtime.

At compile time, the scalar-logical-expression is always presumed to be true and may be used by the
optimizer to generate better code.

At runtime, the ASSUME directive is evaluated at the point where it is located in the source.

If the check assume option is specified and scalar-logical-expression does not evaluate to .TRUE. at
runtime, an error message is displayed and execution is aborted. If the check assume option is not specified
and scalar-logical-expression does not evaluate to .TRUE. at runtime, program behavior is undefined.

Example

In the example below, the compiler is told that A is aligned on a 32-byte boundary using the
ASSUME_ALIGNED directive. The ASSUME directive says that the length of the first dimension of A is a
multiple of 8. Therefore the optimizer knows that A(I,J+1) and A(I,J-1) are 0 mod 64 bytes away from A(I,J)
and are therefore also aligned on 32-byte boundaries. This information helps the optimizer in generating
efficiently vectorized code for these loops.

SUBROUTINE F (A, NX,NY,I1,I2,J1,J2)
REAL (8) :: A (NX,NY)
!DIR$ ASSUME_ALIGNED A:32
!DIR$ ASSUME (MOD(NX,8) .EQ. 0)
! ensure that the first array access in the loop is aligned
!DIR$ ASSUME (MOD(I1,8) .EQ. 1)
DO J=J1,J2
 DO I=I1,I2
 A(I,J) = A(I,J) + A(I,J+1) + A(I,J-1)
 ENDDO
ENDDO
END SUBROUTINE F

See Also
General Compiler Directives

 1 Intel® Fortran Compiler Classic and Intel® Fortran Compiler Developer Guide and Reference

1214

Syntax Rules for Compiler Directives
ASSUME_ALIGNED directive
check compiler option (setting assume)

ASSUME_ALIGNED
General Compiler Directive: Specifies that an entity
in memory is aligned.

Syntax
!DIR$ ASSUME_ALIGNED address1:n1 [, address2:n2]...

address An array variable. It can be of any data type, kind, or rank > 0. It can
be an array component of a variable of derived type or a record field
reference, host or use associated, or have the ALLOCATABLE or
POINTER attribute.

It cannot be any of the following:

• An entity in COMMON (or an entity EQUIVALENCEd to something in
COMMON)

• A component of a variable of derived type or a record field
reference

• An entity accessed by use or host association

If it is a module variable, that address is silently ignored.

n A positive integer constant expression. Its value must be a power of 2
between 1 and 256, that is, 1, 2, 4, 8, 16, 32, 64, 128, 256. It
specifies the memory alignment in bytes of address.

The ASSUME_ALIGNED directive must appear after the specification statements section or inside the
executable statements section.

If you specify more than one address:n item, they must be separated by a comma.

If address is a Cray POINTER or it has the POINTER attribute, it is the POINTER and not the pointee or the
TARGET that is assumed aligned.

If the check assume option is specified and address is not aligned on an n-byte boundary at runtime, an
error message is displayed and execution is aborted.

For more information, see the example in the description of the ASSUME directive.

Example

The following example shows the correct placement and usage of the ASSUME_ALIGNED directive:

SUBROUTINE F(A, N)
 TYPE NODE
 REAL(KIND=8), POINTER :: A(:,:)
 END TYPE NODE

 TYPE(NODE), POINTER :: NODES

 ALLOCATE(NODES)
 ALLOCATE(NODES%A(1000,1000))

!DIR$ ASSUME_ALIGNED NODES%A(1,1) : 16
 DO I=1,N
 NODES%A(1,I) = NODES%A(1,I)+1

Intel® Fortran Compiler Classic and Intel® Fortran Compiler Developer Guide and Reference 1

1215

 ENDDO
…
END

It is illegal to place ASSUME_ALIGNED inside a type definition; for example:

TYPE S
!DIR$ ASSUME_ALIGNED T : 16 ! this is an error
 REAL(8), ALLOCATABLE :: T(:)
END TYPE S

See Also
General Compiler Directives

Syntax Rules for Compiler Directives
ATTRIBUTES ALIGN
ASSUME directive
check compiler option

ASSUMES Directive for OpenMP
OpenMP* Fortran Compiler Directive: Provides
hints to the optimizer about the current compilation
unit and all the code it can reach through procedure
calls. This feature is only available for ifx.

Syntax

!$OMP ASSUMES clause[[[,] clause]...]

clause Is an ASSUMPTION clause.

The ASSUMES directive is an informational directive that provides optimization hints to the compiler. The
scope of the directive is the code executed in the current compilation unit, and all code that can be reached
from the current compilation unit through procedure calls. It is a pure directive, so it can appear in a Fortran
PURE procedure.

The ASSUMES directive must appear in the specification part of a module or subprogram, following all
IMPLICIT, IMPORT, or USE statements.

See Also
OpenMP Fortran Compiler Directives
Syntax Rules for Compiler Directives
ASSUMPTION clause directive

ASSUMPTION Clause
Parallel Directive Clause: Specifies information
about the expected properties of a program that can
be used by the compiler for optimization. This feature
is only available for ifx.

Syntax

assumption-clause

assumption-clause Is one of the following:

 1 Intel® Fortran Compiler Classic and Intel® Fortran Compiler Developer Guide and Reference

1216

ABSENT (directive-name
[[, directive-name]...])

Tells the compiler that directive-name does
not match any construct encountered in the
scope of the directive containing this clause.

CONTAINS (directive-
name [[, directive-
name]...])

Hints to the compiler that directive-name is
assumed to match at least one construct
within the scope of the directive containing
this clause.

HOLDS (scalar-logical-
expression)

Tells the compiler that the scalar-logical-
expression evaluates to .TRUE. in the scope
of the directive containing this clause.

The scalar-logical-expression is not
evaluated by the clause and has no
observable effect by appearing in the clause.

NO_OPENMP Tells the compiler that there is no OpenMP*
code to be executed in the scope of the
directive containing this clause.

NO_OPENMP_ROUTINES Tells the compiler that no OpenMP runtime
routines are called from within the scope of
the directive containing this clause.

NO_PARALLELISM Tells the compiler the following:

• There will not be any OpenMP implicit or
explicit tasks generated by execution of
the code in the scope of the directive
containing this clause.

• No SIMD constructs are executed in the
scope of the directive containing this
clause.

The NO_OPENMP, NO_OPENMP_ROUTINES, and NO_PARALLELISM
clauses can appear at most once in a directive.

directive-name Is an OpenMP executable directive name that is not an END directive-
name directive. It cannot be a declarative, loop transformation,
informational, or a non-executable utility directive.

A directive-name listed in an assumption-clause can appear at most
once in the directive. You cannot specify a combined or composite
directive name.

Description

If the assumptions specified by any of the assumption-clauses are incorrect, the program behavior is
unspecified.

A construct matches directive-name if it has the same name as directive-name, or if it is a combined
construct with a constituent construct that has a name that matches directive-name.

See Also
ASSUMES Directive

Intel® Fortran Compiler Classic and Intel® Fortran Compiler Developer Guide and Reference 1

1217

ASYNCHRONOUS
Statement and Attribute: Specifies that a variable
can be used for asynchronous input and output.

Syntax
The ASYNCHRONOUS attribute can be specified in a type declaration statement or an ASYNCHRONOUS
statement, and takes one of the following forms:

Type Declaration Statement:

type, [att-ls,] ASYNCHRONOUS [, att-ls] :: var [, var] ...
Statement:

ASYNCHRONOUS [::] var [, var] ...

type Is a data type specifier.

att-ls Is an optional list of attribute specifiers.

var Is the name of a variable.

Description

Asynchronous I/O, or non-blocking I/O, allows a program to continue processing data while the I/O operation
is performed in the background.

A variable can have the ASYNCHRONOUS attribute in a particular scoping unit without necessarily having it in
other scoping units. If an object has the ASYNCHRONOUS attribute, then all of its subobjects also have the
ASYNCHRONOUS attribute.

The ASYNCHRONOUS attribute can also be implied by use of a variable in an asynchronous READ or WRITE
statement.

You can specify variables that are used for asynchronous communication, such as with Message Passing
Interface Standard (MPI). Asynchronous communication has the following restrictions:

• For input, a pending communication affector must not be referenced, become defined, become undefined,
become associated with a dummy argument that has the VALUE attribute, or have its pointer association
status changed.

• For output, a pending communication affector must not be redefined, become undefined, or have its
pointer association status changed.

Examples

The following example shows how the ASYNCHRONOUS attribute can be applied in an OPEN and READ
statement.

program test
integer, asynchronous, dimension(100) :: array
open (unit=1,file='asynch.dat',asynchronous='YES',&
 form='unformatted')
write (1) (i,i=1,100)
rewind (1)
read (1,asynchronous='YES') array
wait(1)
write (*,*) array(1:10)
end

See Also
Type Declarations
Compatible attributes

 1 Intel® Fortran Compiler Classic and Intel® Fortran Compiler Developer Guide and Reference

1218

ATAN
Elemental Intrinsic Function (Generic): Produces
the arctangent of an argument in radians.

Syntax
result = ATAN (x)
result = ATAN (y,x)

y (Input) Must be of type real.

x (Input) If y appears, x must be of type real with the same kind type
parameter as y.

If y has the value zero, x must not have the value zero.

If y does not appear, x must be of type real or complex.

Results

The result type and kind are the same as x.

If y appears, the result is the same as the result of ATAN2 (y, x).

If y does not appear, the real part of the result is expressed in radians and lies in the range -pi/2 <= ATAN
(x) <= pi/2.

Specific Name Argument Type Result Type

ATAN REAL(4) REAL(4)

DATAN REAL(8) REAL(8)

QATAN REAL(16) REAL(16)

Example

ATAN (1.5874993) has the value 1.008666.

ATAN (2.679676, 1.0) has the value 1.213623.

ATAN2
Elemental Intrinsic Function (Generic): Produces
an arctangent (inverse tangent) in radians. The result
is the principal value of the argument of the nonzero
complex number (x, y).

Syntax
result = ATAN2 (y,x)

y (Input) Must be of type real.

x (Input) Must have the same type and kind parameters as y. If y has
the value zero, x cannot have the value zero.

Results

The result type and kind are the same as x and are expressed in radians. The value lies in the range -pi <=
ATAN2 (y, x) <= pi.

If x is not zero, the result is approximately equal to the value of arctan (y/ x).

Intel® Fortran Compiler Classic and Intel® Fortran Compiler Developer Guide and Reference 1

1219

If y > zero, the result is positive.

If y < zero, the result is negative.

If y is zero and x > zero, the result is y (so for x>0, ATAN2 ((+0.0), x) is +0.0 and ATAN2 ((-0.0), x) is
-0.0).

If y is a positive real zero and x < zero, the result is pi.

If y is a negative real zero and x < zero, the result is -pi.

If x is a positive real zero, the result is pi/2.

If y is a negative real zero, the result is -pi/2.

Specific Name Argument Type Result Type

ATAN2 REAL(4) REAL(4)

DATAN2 REAL(8) REAL(8)

QATAN2 REAL(16) REAL(16)

Example

ATAN2 (2.679676, 1.0) has the value 1.213623.

If Y is an array that has the value

 [1 1]
 [-1 -1]

and X is an array that has the value

 [-1 1]
 [-1 1],

then ATAN2 (Y, X) is

ATAN2D
Elemental Intrinsic Function (Generic): Produces
an arctangent in degrees. The result is the principal
value of the argument of the nonzero complex number
(x, y).

Syntax
result = ATAN2D (y,x)

y (Input) Must be of type real.

x (Input) Must have the same type and kind parameters as y. If y has
the value zero, x cannot have the value zero.

Results

The result type and kind are the same as x and are expressed in degrees. The value lies in the range -180
degrees to 180 degrees. If x zero, the result is approximately equal to the value of arctan (y/ x).

 1 Intel® Fortran Compiler Classic and Intel® Fortran Compiler Developer Guide and Reference

1220

If y > zero, the result is positive.

If y < zero, the result is negative.

If y = zero, the result is zero (if x > zero) or 180 degrees (if x < zero).

If x = zero, the absolute value of the result is 90 degrees.

Specific Name Argument Type Result Type

ATAN2D REAL(4) REAL(4)

DATAN2D REAL(8) REAL(8)

QATAN2D REAL(16) REAL(16)

Example

ATAN2D (2.679676, 1.0) has the value 69.53546.

ATAND
Elemental Intrinsic Function (Generic): Produces
the arctangent of x in degrees.

Syntax
It can take one of the following forms:

result = ATAND (x)
-or-
result = ATAND (y, x)

y (Input; optional) If specified, it must be of type real and have the
same KIND parameter as x.

x (Input) Must be of type real. If y appears and has the value 0.0, x
must not have the value 0.0.

Results

If y appears, the result is the same as the result of ATAN2D (y, x). Otherwise, the result type and kind are
the same as x and are expressed in degrees between ±90°.

There are no specific names for the two argument form of this function.

Specific Name Argument Type Result Type

ATAND (x) REAL(4) REAL(4)

DATAND (x) REAL(8) REAL(8)

QATAND (x) REAL(16) REAL(16)

Example

ATAND (0.0874679) has the value 4.998819.

ATANH
Elemental Intrinsic Function (Generic): Produces
the hyperbolic arctangent of x.

Intel® Fortran Compiler Classic and Intel® Fortran Compiler Developer Guide and Reference 1

1221

Syntax
result = ATANH (x)

x (Input) Must be of type real, where | x | is less than or equal to 1, or
of type complex.

Results

The result type and kind are the same as x.

If the result is real, it lies in the range -1.0 < ATANH (x) < 1.0.

If the result is complex, the imaginary part is expressed in radians and lies in the range –pi/2 <= AIMAG
(ATANH (x)) <= pi/2.

Specific Name Argument Type Result Type

ATANH REAL(4) REAL(4)

DATANH REAL(8) REAL(8)

QATANH REAL(16) REAL(16)

Example

ATANH (-0.77) has the value -1.02033.

ATANH (0.5) has the value 0.549306.

ATOMIC
OpenMP* Fortran Compiler Directive: Ensures that
a specific memory location is updated atomically. This
prevents the possibility of multiple threads
simultaneously reading and writing the specific
memory location.

Syntax

!$OMP ATOMIC [clause[[[,] clause]...]]
 block
[!$OMP END ATOMIC]

clause (Optional) Is one of the following:

• An atomic-clause, which is one of the following:

• READ
• UPDATE
• WRITE

For details on the effects of these clauses, see the table in the
Description section.

• A memory-order-clause, which is one of the following:

• ACQ_REL

Specifies both an ACQUIRE and a RELEASE flush.
• ACQUIRE

 1 Intel® Fortran Compiler Classic and Intel® Fortran Compiler Developer Guide and Reference

1222

Forces consistency between views of memory of two
synchronizing threads by discarding any value of a shared
variable in its temporary view, which the thread has not written
since last performing a RELEASE flush.

It also will reload any value of a shared variable propagated by
a RELEASE flush that synchronizes with it.

• RELAXED

Permits a thread's local or temporary view of memory, which
may be held in registers, cache, or other local memory, to be
temporarily inconsistent with the memory, which may have
been updated by another thread.

Note that a strong flush operation forces consistency between
memory and a threads temporary view and memory, and it
restricts reordering of memory operations that may otherwise
be performed. RELAXED memory ordering has no implicit
flushes.

• RELEASE

Forces consistency between views of memory of two
synchronizing threads by guaranteeing that any prior READ or
WRITE of a shared variable will appear complete before any
READ or WRITE of the same shared variable that follows an
ACQUIRE flush that is synchronized with a RELEASE flush.

The RELEASE flush propagates the values of all shared variables
in its temporary view of memory prior to the thread performing
a subsequent atomic operation that establishes a
synchronization.

• SEQ_CST

Specifies that the construct is a sequentially consistent atomic
construct. Unlike non-sequentially consistent atomic constructs,
sequentially consistent atomic constructs preserve the
interleaving (sequentially consistent) behavior of correct, data-
race-free programs.

However, sequentially consistent atomic constructs are not
designed to replace the FLUSH directive as a mechanism to
enforce ordering for non-sequentially consistent atomic
constructs. Attempts to do so require extreme caution.

For example, a sequentially consistent ATOMIC WRITE construct
may appear to be reordered with a subsequent non-sequentially
consistent ATOMIC WRITE construct because such reordering
would not be observable by a correct program if the second
WRITE was outside an ATOMIC construct.

If a memory-order-clause is present, or implicitly provided by a
REQUIRES directive, it specifies the effective memory ordering;
otherwise, the effective memory ordering is RELAXED.

• Or one of the following:

• CAPTURE

Intel® Fortran Compiler Classic and Intel® Fortran Compiler Developer Guide and Reference 1

1223

Causes an atomic update to x to occur using the specified
operator or intrinsic. The original or final value of the location x
is captured and written to the storage location v.

Only the READ and WRITE of the location specified by x are
performed mutually atomically. The evaluation of expr or expr-
list and the write to v need not be atomic with respect to the
READ and WRITE of x.

• COMPARE

Specifies that the atomic update is a conditional atomic update.
If the equality operator is used, the operation is an atomic
compare and swap.

The values of x and e are compared and if equal, the value of d
is written to x. The original or final value of x is written to v,
which may be the same as e.

Only the READ and WRITE of x is performed atomically; neither
the comparison nor the writes to v need be atomic with respect
to the READ or WRITE of x.

• HINT (hint-expression)
• FAIL (SEQ_CAT | ACQUIRE |RELAXED)

Specifies that its parameter overrides the effective memory
ordering used when the comparison for a conditional update
fails.

• WEAK

Indicates that the comparison performed by an atomic compare
and swap may falsely fail, evaluating to not equal even when
the values are equal.

block Is one of the following:

• statement
• or if CAPTURE is also specified, it can be the following:

• statement
• capture-statement

The order is not important. capture-statement can appear before
statement.

statement Is one of the following:

• capture-statement - if atomic-clause is READ, or atomic-clause is
UPDATE with CAPTURE also specified

• compare-statement - if the COMPARE clause is present
• update-statement - if atomic-clause is UPDATE
• write-statement - if atomic-clause is WRITE, or atomic-clause is

UPDATE with CAPTURE also specified

capture-statement Is an expression in the form v = x.

compare-statement Is as follows:

 if (x == e) then
 x = d
 end

 1 Intel® Fortran Compiler Classic and Intel® Fortran Compiler Developer Guide and Reference

1224

or:

 if (x == e) x = d
or if CAPTURE also appears and block contains no capture-statement it
can also be the following:

 if (x == e) then
 x = d
 else
 v = x
 end if

update-statement Is an expression with one of the following forms:

 x = x operator expr
 x = expr operator x
 x = intrinsic (x, expr-list)
 x = intrinsic (expr-list, x)

The following rules apply:

• Operators in expr must have precedence equal to or greater than
the precedence of operator, and cannot be defined operators.

• xoperatorexpr must be mathematically equivalent to xoperator
(expr). This requirement is satisfied if the operators in expr have
precedence greater than operator, or by using parentheses around
expr or subexpressions of expr.

• exproperatorx must be mathematically equivalent to (expr)
operatorx. This requirement is satisfied if the operators in expr
have precedence equal to or greater than operator, or by using
parentheses around expr or subexpressions of expr.

• All assignments must be intrinsic assignments.

write-statement Is an expression in the form x = expr.

d, e, x, v Are scalar variables of intrinsic type. During execution of an atomic
region, all references to storage location x must specify the same
storage location.

v must not access the same storage location as x.

expr, expr-list expr is a scalar expression. expr-list is a comma-separated list of
expressions. They must not access the same storage location as x or
v.

If intrinsic is IAND, IOR, or IEOR, then expr-list can contain only one
expression.

operator Is one of the following intrinsic operators: +, *,
-, /, ,AND., ,OR., .EQV., or .NEQV..

intrinsic Is one of the following intrinsic procedures: MAX, MIN, IAND, IOR, or
IEOR.

If x is of size 8, 16, 32, or 64 bits and x is aligned to a multiple of its size, the binding thread set is all
threads on the device. Otherwise, the binding thread set is all threads in the contention group. Atomic
regions enforce exclusive access with respect to other atomic regions that access the same storage location x
among all the threads in the binding thread set without regard to the teams to which the threads belong.

If !$OMP ATOMIC is specified with no atomic-clause, it is the same as specifying !$OMP ATOMIC UPDATE.

Intel® Fortran Compiler Classic and Intel® Fortran Compiler Developer Guide and Reference 1

1225

If !$OMP ATOMIC CAPTURE is specified, you must include an !$OMP END ATOMIC directive following the
block. Otherwise, the !$OMP END ATOMIC directive is optional.

Note that the following restriction applies to the ATOMIC directive:

• All atomic accesses to the storage locations designated by x throughout the program must have the same
type and type parameters.

The following table describes what happens when you specify one of the values in the atomic-clause in an
ATOMIC construct.

Clause Result

READ Causes an atomic read of the location designated
by x regardless of the native machine word size.

UPDATE Causes an atomic update of the location designated
by x using the designated operator or intrinsic. The
following rules also apply:

• The evaluation of expr or expr-list need not be
atomic with respect to the READ or WRITE of the
location designated by x.

• No task scheduling points are allowed between
the READ and the WRITE of the location
designated by x.

WRITE Causes an atomic write of the location designated
by x regardless of the native machine word size.

If all of the following conditions are true, the strong flush on entry to the atomic operation is also a RELEASE
flush:

• The atomic-clause is WRITE or UPDATE.
• The atomic operation is not a conditional update for which the comparison fails.
• The effective memory ordering is RELEASE, ACQ_REL, or SEQ_CST.

If both of the following conditions are true, the strong flush on exit from the atomic operation is also an
ACQUIRE flush:

• The atomic-clause is READ or UPDATE.
• The effective memory ordering is ACQUIRE, ACQ_REL, or SEQ_CST.

Therefore, as the above shows, the effective memory ordering is not RELAXED. RELEASE and ACQUIRE
flushes can be implied and permit synchronization between threads without an explicit FLUSH directive.

Any combination of two or more of these atomic constructs enforces mutually exclusive access to the
locations designated by x.

A race condition exists when two unsynchronized threads access the same shared variable with at least one
thread modifying the variable; this can cause unpredictable results. To avoid race conditions, all accesses of
the locations designated by x that could potentially occur in parallel must be protected with an ATOMIC
construct.

Atomic regions do not guarantee exclusive access with respect to any accesses outside of atomic regions to
the same storage location x even if those accesses occur during a CRITICAL or ORDERED region, while an
OpenMP* lock is owned by the executing task, or during the execution of a REDUCTION clause.

However, other OpenMP* synchronization can ensure the desired exclusive access. For example, a BARRIER
directive following a series of atomic updates to x guarantees that subsequent accesses do not form a race
condition with the atomic accesses.

 1 Intel® Fortran Compiler Classic and Intel® Fortran Compiler Developer Guide and Reference

1226

Example

The following example shows a way to avoid race conditions by using ATOMIC to protect all simultaneous
updates of the location by multiple threads.

Since the ATOMIC directive below applies only to the statement immediately following it, elements of Y are
not updated atomically.

 REAL FUNCTION FOO1(I)
 INTEGER I
 FOO1 = 1.0 * I
 RETURN
 END FUNCTION FOO1

 REAL FUNCTION FOO2(I)
 INTEGER I
 FOO2 = 2.0 * I
 RETURN
 END FUNCTION FOO2

 SUBROUTINE SUB(X, Y, INDEX, N)
 REAL X(*), Y(*)
 INTEGER INDEX(*), N
 INTEGER I
!$OMP PARALLEL DO SHARED(X, Y, INDEX, N)
 DO I=1,N
!$OMP ATOMIC UPDATE
 X(INDEX(I)) = X(INDEX(I)) + FOO1(I)
 Y(I) = Y(I) + FOO2(I)
 ENDDO
 END SUBROUTINE SUB

 PROGRAM ATOMIC_DEMO
 REAL X(1000), Y(10000)
 INTEGER INDEX(10000)
 INTEGER I
 DO I=1,10000
 INDEX(I) = MOD(I, 1000) + 1
 Y(I) = 0.0
 ENDDO
 DO I = 1,1000
 X(I) = 0.0
 ENDDO
 CALL SUB(X, Y, INDEX, 10000)
 END PROGRAM ATOMIC_DEMO

The following non-conforming example demonstrates the restriction on the ATOMIC construct:

 SUBROUTINE ATOMIC_INCORRECT()
 INTEGER:: I
 REAL:: R
 EQUIVALENCE(I,R)
!$OMP PARALLEL
!$OMP ATOMIC UPDATE
 I = I + 1
!$OMP ATOMIC UPDATE
 R = R + 1.0
! The above is incorrect because I and R reference the same location

Intel® Fortran Compiler Classic and Intel® Fortran Compiler Developer Guide and Reference 1

1227

! but have different types
!$OMP END PARALLEL
 END SUBROUTINE ATOMIC_INCORRECT

See Also
OpenMP Fortran Compiler Directives
Syntax Rules for Compiler Directives
CRITICAL construct
ORDERED construct
BARRIER directive
FLUSH directive
REDUCTION Clause
Parallel Processing Model for information about Binding Sets

ATOMIC_ADD
Atomic Intrinsic Subroutine (Generic): Performs
atomic addition.

Syntax
CALL ATOMIC_ADD (atom, value [, stat])

atom (Input; output) Must be a scalar coarray or coindexed object and of
type integer with kind ATOMIC_INT_KIND. It becomes defined with
the value of atom + value if no error occurs. Otherwise, it becomes
undefined.

ATOMIC_INT_KIND is a named constant in the intrinsic module
ISO_FORTRAN_ENV.

value (Input) Must be a scalar integer. The value of value and value + atom
must be representable as integers with kind ATOMIC_INT_KIND.

stat (Output; optional) Must be a non-coindexed integer scalar with a
decimal exponent range of at least four (KIND=2 or greater). The
value assigned to stat is specified in Overview of Atomic Subroutines.
If stat is not present and an error condition occurs, error termination
is initiated.

Example

Consider the following:

CALL ATOMIC_ADD (N[12], 7)
If N on image 12 is 4 when this operation is initiated, the value of N on image 12 is defined with the value 11
when the operation is complete and no error occurs during the subroutine reference.

See Also
Overview of Atomic Subroutines
ISO_FORTRAN_ENV Module

ATOMIC_AND
Atomic Intrinsic Subroutine (Generic): Performs
atomic bitwise AND.

 1 Intel® Fortran Compiler Classic and Intel® Fortran Compiler Developer Guide and Reference

1228

Syntax
CALL ATOMIC_AND (atom, value [, stat])

atom (Input; output) Must be a scalar coarray or coindexed object and of
type integer with kind ATOMIC_INT_KIND. It becomes defined with
the value of iand (atom, int (value, ATOMIC_INT_KIND)) if no error
occurs. Otherwise, it becomes undefined.

ATOMIC_INT_KIND is a named constant in the intrinsic module
ISO_FORTRAN_ENV.

value (Input) Must be a scalar integer. The value of value must be
representable as an integer with kind ATOMIC_INT_KIND.

stat (Output; optional) Must be a non-coindexed integer scalar with a
decimal exponent range of at least four (KIND=2 or greater). The
value assigned to stat is specified in Overview of Atomic Subroutines.
If stat is not present and an error condition occurs, error termination
is initiated.

Example

Consider the following:

CALL ATOMIC_AND (N[4], 22)
If the value of N on image 4 is 29 when this operation is initiated, the value of N on image 4 is 20 when the
operation is complete and no error condition occurs during the subroutine reference.

See Also
Overview of Atomic Subroutines
ISO_FORTRAN_ENV Module

ATOMIC_CAS
Atomic Intrinsic Subroutine (Generic): Performs
atomic compare and swap.

Syntax
CALL ATOMIC_CAS (atom, old, compare, new [, stat])

atom (Input; output) Must be a scalar coarray or coindexed object and of
type integer with kind ATOMIC_INT_KIND or type logical with kind
ATOMIC_LOGICAL_KIND. atom becomes undefined if an error occurs.
Otherwise, if atom is of type integer and equal to compare, or of type
logical and equivalent to compare, it becomes defined with the value
new. If atom is of type logical and has been assigned a value other
than .true. or .false., the result is undefined.

ATOMIC_INT_KIND and ATOMIC_LOGICAL_KIND are named constants
in the intrinsic module ISO_FORTRAN_ENV.

old (Output) Must be a scalar of the same type as atom. It becomes
undefined if an error occurs. Otherwise, it becomes defined with the
value atom has at the beginning of the atomic operation.

compare (Input) Must be scalar and the same type and kind as atom.

new (Input) Must be scalar and the same type and kind as atom.

Intel® Fortran Compiler Classic and Intel® Fortran Compiler Developer Guide and Reference 1

1229

stat (Output; optional) Must be a non-coindexed integer scalar with a
decimal exponent range of at least four (KIND=2 or greater). The
value assigned to stat is specified in Overview of Atomic Subroutines.
If stat is not present and an error condition occurs, error termination
is initiated.

Example

Consider the following:

CALL ATOMIC_CAS (N[4], I, 8, 10)
If the value of N on image 4 is 8 when the atomic operation is initiated, N on image 4 is defined with the
value 10, and I is defined with the value 8 when the operation is complete and no error occurs during the
subroutine reference. If the value N on image 4 is 13 when the atomic operation is initiated, the value of N is
unchanged, and the value of I is 13 when the operation completes and no error condition occurs during the
procedure reference.

See Also
Overview of Atomic Subroutines
ISO_FORTRAN_ENV Module

ATOMIC_DEFINE
Atomic Intrinsic Subroutine (Generic): Defines a
variable atomically.

Syntax
CALL ATOMIC_DEFINE (atom, value [, stat])

atom (Output) Must be a scalar coarray or coindexed object and of type
integer with kind ATOMIC_INT_KIND or of type logical with kind
ATOMIC_LOGICAL_KIND. If its kind is the same as that of value or its
type is logical, it becomes defined with the value of value. Otherwise,
it becomes defined with the value of INT (VALUE, ATOMIC_INT_KIND).

ATOMIC_INT_KIND and ATOMIC_LOGICAL_KIND are named constants
in the intrinsic module ISO_FORTRAN_ENV.

value (Input) Must be a scalar and of the same type as atom.

stat (Output; optional) Must be a non-coindexed integer scalar with a
decimal exponent range of at least four (KIND=2 or greater). The
value assigned to stat is specified in Overview of Atomic Subroutines.
If stat is not present and an error condition occurs, error termination
is initiated.

Example

Consider the following:

CALL ATOMIC_DEFINE (N[9], 7)
This causes N on image 9 to become defined with the value 7.

See Also
Overview of Atomic Subroutines
ISO_FORTRAN_ENV Module

 1 Intel® Fortran Compiler Classic and Intel® Fortran Compiler Developer Guide and Reference

1230

ATOMIC_FETCH_ADD
Atomic Intrinsic Subroutine (Generic): Performs
atomic fetch and addition.

Syntax
CALL ATOMIC_FETCH_ADD (atom, value, old [, stat])

atom (Input; output) Must be a scalar coarray or coindexed object and of
type integer with kind ATOMIC_INT_KIND. It becomes defined with
the value of atom + value if no error occurs. Otherwise, it becomes
undefined.

ATOMIC_INT_KIND is a named constant in the intrinsic module
ISO_FORTRAN_ENV.

value (Input) Must be a scalar integer. The value of value and value + atom
must be representable as integers with kind ATOMIC_INT_KIND.

old (Output) Must be a scalar of the same type as atom. It becomes
undefined if an error occurs. Otherwise, it becomes defined with the
value atom has at the beginning of the atomic operation.

stat (Output; optional) Must be a non-coindexed integer scalar with a
decimal exponent range of at least four (KIND=2 or greater). The
value assigned to stat is specified in Overview of Atomic Subroutines.
If stat is not present and an error condition occurs, error termination
is initiated.

Example

Consider the following:

CALL ATOMIC_FETCH_ADD (N[4], 8, M)
If the value of N on image 4 was 7 when the atomic operation is initiated, N on image 4 is defined with the
value 15, and M becomes is defined with the value 7 when the operation completes and no error occurs
during the subroutine reference.

See Also
Overview of Atomic Subroutines
ISO_FORTRAN_ENV Module

ATOMIC_FETCH_AND
Atomic Intrinsic Subroutine (Generic): Performs
atomic fetch and bitwise AND.

Syntax
CALL ATOMIC_FETCH_AND (atom, value, old [, stat])

atom (Input; output) Must be a scalar coarray or coindexed object and of
type integer with kind ATOMIC_INT_KIND. It becomes defined with
the value of iand (atom, int (value, ATOMIC_INT_KIND)) if no error
occurs. Otherwise, it becomes undefined.

ATOMIC_INT_KIND is a named constant in the intrinsic module
ISO_FORTRAN_ENV.

Intel® Fortran Compiler Classic and Intel® Fortran Compiler Developer Guide and Reference 1

1231

value (Input) Must be a scalar integer. The value of value must be
representable as an integer with kind ATOMIC_INT_KIND.

old (Output) Must be a scalar of the same type as atom. It becomes
undefined if an error occurs. Otherwise, it becomes defined with the
value atom has at the beginning of the atomic operation.

stat (Output; optional) Must be a non-coindexed integer scalar with a
decimal exponent range of at least four (KIND=2 or greater). The
value assigned to stat is specified in Overview of Atomic Subroutines.
If stat is not present and an error condition occurs, error termination
is initiated.

Example

Consider the following:

CALL ATOMIC_FETCH_AND (N[4], 29, M)
If the value of N on image 4 was 23 when the atomic operation is initiated, N on image 4 is defined with the
value 21, and M is defined with the value 23 when the operation completes and no error occurs during the
subroutine reference.

See Also
Overview of Atomic Subroutines
ISO_FORTRAN_ENV Module

ATOMIC_FETCH_OR
Atomic Intrinsic Subroutine (Generic): Performs
atomic fetch and bitwise OR.

Syntax
CALL ATOMIC_FETCH_OR (atom, value, old [, stat])

atom (Input; output) Must be a scalar coarray or coindexed object and of
type integer with kind ATOMIC_INT_KIND. It becomes defined with
the value of ior (atom, int (value, ATOMIC_INT_KIND)) if no error
occurs. Otherwise, it becomes undefined.

ATOMIC_INT_KIND is a named constant in the intrinsic module
ISO_FORTRAN_ENV.

value (Input) Must be a scalar integer. The value of value must be
representable as an integer with kind ATOMIC_INT_KIND.

old (Output) Must be a scalar of the same type as atom. It becomes
undefined if an error occurs. Otherwise, it becomes defined with the
value atom has at the beginning of the atomic operation.

stat (Output; optional) Must be a non-coindexed integer scalar with a
decimal exponent range of at least four (KIND=2 or greater). The
value assigned to stat is specified in Overview of Atomic Subroutines.
If stat is not present and an error condition occurs, error termination
is initiated.

 1 Intel® Fortran Compiler Classic and Intel® Fortran Compiler Developer Guide and Reference

1232

Example

Consider the following:

ATOMIC_FETCH_OR (N[4], 9, M)
If the value of N on image 4 is 4 when the atomic operation is initiated, N on image 4 is defined with the
value 13, and M is defined with the value 4 when the operation completes and no error occurs during the
subroutine reference.

See Also
Overview of Atomic Subroutines
ISO_FORTRAN_ENV Module

ATOMIC_FETCH_XOR
Atomic Intrinsic Subroutine (Generic): Performs
atomic fetch and bitwise exclusive OR.

Syntax
CALL ATOMIC_FETCH_XOR (atom, value, old [, stat])

atom (Input; output) Must be a scalar coarray or coindexed object and of
type integer with kind ATOMIC_INT_KIND. It becomes defined with
the value of ieor (atom, int (value, ATOMIC_INT_KIND)) if no error
occurs. Otherwise, it becomes undefined.

ATOMIC_INT_KIND is a named constant in the intrinsic module
ISO_FORTRAN_ENV.

value (Input) Must be a scalar integer. The value of value must be
representable as an integer with kind ATOMIC_INT_KIND.

old (Output) Must be a scalar of the same type as atom. It becomes
undefined if an error occurs. Otherwise, it becomes defined with the
value atom has at the beginning of the atomic operation.

stat (Output; optional) Must be a non-coindexed integer scalar with a
decimal exponent range of at least four (KIND=2 or greater). The
value assigned to stat is specified in Overview of Atomic Subroutines.
If stat is not present and an error condition occurs, error termination
is initiated.

Example

Consider the following:

CALL ATOMIC_FETCH_XOR (N[4], 9, M)
If the value of N on image 4 was 10 when the atomic operation is initiated, N on image 4 is defined with the
value 3, and M is defined with the value 10 when the operation completes and no error occurs during the
subroutine reference.

See Also
Overview of Atomic Subroutines
ISO_FORTRAN_ENV Module

Intel® Fortran Compiler Classic and Intel® Fortran Compiler Developer Guide and Reference 1

1233

ATOMIC_OR
Atomic Intrinsic Subroutine (Generic): Performs
atomic bitwise OR.

Syntax
CALL ATOMIC_OR (atom, value [, stat])

atom (Input; output) Must be a scalar coarray or coindexed object and of
type integer with kind ATOMIC_INT_KIND. It becomes defined with
the value of ior (atom, int (value, ATOMIC_INT_KIND)) if no error
occurs. Otherwise, it becomes undefined.

ATOMIC_INT_KIND is a named constant in the intrinsic module
ISO_FORTRAN_ENV.

value (Input) Must be a scalar integer. The value of value must be
representable as an integer with kind ATOMIC_INT_KIND.

stat (Output; optional) Must be a non-coindexed integer scalar with a
decimal exponent range of at least four (KIND=2 or greater). The
value assigned to stat is specified in Overview of Atomic Subroutines.
If stat is not present and an error condition occurs, error termination
is initiated.

Example

Consider the following:

CALL ATOMIC_OR (N[4], 10)
If the value of N on image 4 is 9 when the atomic operation is initiated, the value of N on image 4 is 11 when
the operation completes and no error condition occurs during the subroutine reference.

See Also
Overview of Atomic Subroutines
ISO_FORTRAN_ENV Module

ATOMIC_REF
Atomic Intrinsic Subroutine (Generic): Lets you
reference a variable atomically.

Syntax
CALL ATOMIC_REF (value, atom [, stat])

value (Output) Must be a scalar and of the same type as atom. If its kind is
the same as that of atom or its type is logical, it becomes defined with
the value of atom. Otherwise, it is defined with the value of
INT(ATOM, KIND (VALUE)).

atom (Input) Must be a scalar coarray or coindexed object and of type
integer with kind ATOMIC_INT_KIND or of type logical with kind
ATOMIC_LOGICAL_KIND.

ATOMIC_INT_KIND and ATOMIC_LOGICAL_KIND are named constants
in the intrinsic module ISO_FORTRAN_ENV.

 1 Intel® Fortran Compiler Classic and Intel® Fortran Compiler Developer Guide and Reference

1234

stat (Output; optional) Must be a non-coindexed integer scalar with a
decimal exponent range of at least four (KIND=2 or greater). The
value assigned to stat is specified in Overview of Atomic Subroutines.
If stat is not present and an error condition occurs, error termination
is initiated.

Example

Consider the following:

CALL ATOMIC_REF (SOL, I [9])
This causes SOL to become defined with the value of I on image 9.

See Also
Overview of Atomic Subroutines
ISO_FORTRAN_ENV Module

ATOMIC_XOR
Atomic Intrinsic Subroutine (Generic): Performs
atomic bitwise exclusive OR.

Syntax
CALL ATOMIC_XOR (atom, value [, stat])

atom (Input; output) Must be a scalar coarray or coindexed object and of
type integer with kind ATOMIC_INT_KIND. It becomes defined with
the value of ieor (atom, int (value, ATOMIC_INT_KIND)) if no error
occurs. Otherwise, it becomes undefined.

ATOMIC_INT_KIND is a named constant in the intrinsic module
ISO_FORTRAN_ENV.

value (Input) Must be a scalar integer. The value of value must be
representable as an integer with kind ATOMIC_INT_KIND.

stat (Output; optional) Must be a non-coindexed integer scalar with a
decimal exponent range of at least four (KIND=2 or greater). The
value assigned to stat is specified in Overview of Atomic Subroutines.
If stat is not present and an error condition occurs, error termination
is initiated.

Example

Consider the following:

CALL ATOMIC_XOR (N[4], 10)
If the value of N on image 4 is 14 when the atomic operation is initiated, the value on N on image 4 is the
value 4 when the operation is complete and no error condition occurred during the subroutine reference.

See Also
Overview of Atomic Subroutines
ISO_FORTRAN_ENV Module

ATTRIBUTES
General Compiler Directive: Declares properties for
specified variables.

Intel® Fortran Compiler Classic and Intel® Fortran Compiler Developer Guide and Reference 1

1235

Syntax
!DIR$ ATTRIBUTES att[,att]...:: object[,object]...

att Is one of the following options (or properties):

ALIAS DLLEXPORT OPTIMIZATION_PAR
AMETER

ALIGN DLLIMPORT REFERENCE

ALLOCATABLE EXTERN STDCALL

ALLOW_NULL FORCEINLINE VALUE

C IGNORE_LOC VARYING

CODE_ALIGN INLINE VECTOR

CONCURRENCY_SAF
E

MIXED_STR_LEN_AR
G

CVF NO_ARG_CHECK

DECORATE NOCLONE

DEFAULT NOINLINE

object Is the name of a data object or procedure.

The following table shows which ATTRIBUTES options can be used with various objects:

Option Variable and Array
Declarations

Common Block Names
1

Subprogram
Specification and
EXTERNAL
Statements

ALIAS No Yes Yes

ALIGN Yes No No

ALLOCATABLE Yes2 No No

ALLOW_NULL Yes No No

C No Yes Yes

CODE_ALIGN No No Yes5, 6

CONCURRENCY_SAFE No No Yes

CVF No Yes Yes

DECORATE No No Yes

DEFAULT No Yes Yes

DLLEXPORT Yes3 Yes Yes

DLLIMPORT Yes Yes Yes

EXTERN Yes No No

 1 Intel® Fortran Compiler Classic and Intel® Fortran Compiler Developer Guide and Reference

1236

Option Variable and Array
Declarations

Common Block Names
1

Subprogram
Specification and
EXTERNAL
Statements

FASTMEM Yes No No

FORCEINLINE No No Yes

IGNORE_LOC Yes4 No No

INLINE No No Yes

MIXED_STR_LEN_ARG No No Yes

NO_ARG_CHECK Yes No Yes5

NOCLONE No No Yes

NOINLINE No No Yes

OPTIMIZATION_PARAME
TER

No No Yes5, 6

REFERENCE Yes No Yes

STDCALL No Yes Yes

VALUE Yes No No

VARYING No No Yes

VECTOR No No Yes5

1A common block name is specified as [/]common-block-name[/]
2This option can only be applied to arrays.
3Module-level variables and arrays only.
4This option can only be applied to INTERFACE blocks.
5This option cannot be applied to EXTERNAL statements.
6This option can be applied to named main programs.

These options can be used in function and subroutine definitions, in type declarations, and with the
INTERFACE and ENTRY statements.

Options applied to entities available through use or host association are in effect during the association. For
example, consider the following:

MODULE MOD1
 INTERFACE
 SUBROUTINE NEW_SUB
 !DIR$ ATTRIBUTES C, ALIAS:'othername' :: NEW_SUB
 END SUBROUTINE
 END INTERFACE
 CONTAINS
 SUBROUTINE SUB2
 CALL NEW_SUB
 END SUBROUTINE
END MODULE

Intel® Fortran Compiler Classic and Intel® Fortran Compiler Developer Guide and Reference 1

1237

In this case, the call to NEW_SUB within SUB2 uses the C and ALIAS options specified in the interface block.

Options C, STDCALL, REFERENCE, VALUE, and VARYING affect the calling conventions of routines:

• You can specify C, STDCALL, REFERENCE, and VARYING for an entire routine.
• You can specify VALUE and REFERENCE for individual arguments.

Examples

INTERFACE
 SUBROUTINE For_Sub (I)
 !DIR$ ATTRIBUTES C, ALIAS:'_For_Sub' :: For_Sub
 INTEGER I
 END SUBROUTINE For_Sub
END INTERFACE

You can assign more than one option to multiple variables with the same compiler directive. All assigned
options apply to all specified variables. For example:

 !DIR$ ATTRIBUTES REFERENCE, VARYING, C :: A, B, C
In this case, the variables A, B, and C are assigned the REFERENCE, VARYING, and C options. The only
restriction on the number of options and variables is that the entire compiler directive must fit on one line.

The identifier of the variable or procedure that is assigned one or more options must be a simple name. It
cannot include initialization or array dimensions. For example, the following is not allowed:

 !DIR$ ATTRIBUTES C :: A(10) ! This is illegal.
The following shows another example:

SUBROUTINE ARRAYTEST(arr)
!DIR$ ATTRIBUTES DLLEXPORT :: ARRAYTEST
 REAL(4) arr(3, 7)
 INTEGER i, j
 DO i = 1, 3
 DO j = 1, 7
 arr (i, j) = 11.0 * i + j
 END DO
 END DO
END SUBROUTINE

See Also
General Compiler Directives
Syntax Rules for Compiler Directives
Programming with Mixed Languages

ATTRIBUTES ALIAS
The ATTRIBUTES directive option ALIAS specifies an
alternate external name to be used when referring to
external subprograms.

Syntax
!DIR$ ATTRIBUTES ALIAS: external-name:: subprogram

external-name Is a character constant delimited by apostrophes or quotation marks.
The character constant is used as is; the string is not changed to
uppercase, nor are blanks removed.

subprogram Is an external subprogram.

 1 Intel® Fortran Compiler Classic and Intel® Fortran Compiler Developer Guide and Reference

1238

The ALIAS option overrides the C (and STDCALL) option. If both C and ALIAS are specified for a subprogram,
the subprogram is given the C calling convention, but not the C naming convention. It instead receives the
name given for ALIAS, with no modifications.

ALIAS cannot be used with internal procedures, and it cannot be applied to dummy arguments.

The following example gives the subroutine happy the name "_OtherName@4" outside this scoping unit:

INTERFACE
 SUBROUTINE happy(i)
 !DIR$ ATTRIBUTES STDCALL, DECORATE, ALIAS:'OtherName' :: happy
 INTEGER i
 END SUBROUTINE
END INTERFACE

!DIR$ ATTRIBUTES ALIAS has the same effect as the !DIR$ ALIAS directive.

See Also
ATTRIBUTES
Syntax Rules for Compiler Directives
ATTRIBUTES DECORATE

ATTRIBUTES ALIGN
The ATTRIBUTES directive option ALIGN specifies the
byte alignment for variables and for allocatable or
pointer components of derived types.

Syntax
!DIR$ ATTRIBUTES ALIGN: n:: object

n Is the number of bytes for the minimum alignment boundary.

For allocatable objects, the boundary value must be a power of 2,
such as 1, 2, 4, 8, 16, 32, 64, 128, and so on. n must have a value
between 1 and 2097152 == 2**21 == 2MB on Linux* systems, and
between 1 and 8192 == 2**13 == 8KB on Windows* systems.

For non-allocatable objects, the boundary value must be a power of
2 between 1 and 64 on Windows systems, between 1 and 65536 ==
2**16 == 64KB on Linux systems.

object Is the variable or the allocatable or pointer component of a derived
type to be aligned.

Objects that can be aligned by this directive include static local variables, automatic variables, module
variables, dynamically allocated arrays, allocatable array components of derived types, and the start of
common blocks. This directive cannot be used to align variables within common blocks

If you specify directive !DIR$ ATTRIBUTES ALIGN on an object with the ALLOCATABLE or POINTER attribute,
an ALLOCATE statement will attempt to use that alignment when the memory is allocated.

For allocatable or pointer components of derived types, the directive must appear within the derived-type
TYPE…END TYPE block.

If the TYPE is an extended type, the directive cannot reference a component in the parent type.

Intel® Fortran Compiler Classic and Intel® Fortran Compiler Developer Guide and Reference 1

1239

Example

Consider the following:

TYPE EXAMPLE
!DIR$ ATTRIBUTES ALIGN : 64 :: R_alloc
REAL, ALLOCATABLE :: R_alloc (:)
REAL :: R_scalar
INTEGER :: I_nonalloc(25)
END TYPE EXAMPLE

TYPE (EXAMPLE) :: MyVar

ALLOCATE (MyVar%R_alloc(1000)) ! Memory is allocated aligned at a 64-byte boundary
Note that it is valid to give the ALIGN:64 attribute to component R_alloc, but not to component R_scalar or
to component I_nonalloc.

The following example shows that the name of a common block may optionally be enclosed in slashes:

!DIR$ ATTRIBUTES ALIGN: n :: /common_name/

See Also
ATTRIBUTES
ASSUME_ALIGNED directive
align compiler option (see setting arraynbyte)
Syntax Rules for Compiler Directives

ATTRIBUTES ALLOCATABLE
The ATTRIBUTES directive option ALLOCATABLE is
provided for compatibility with older programs. It lets
you delay allocation of storage for a particular
declared entity until some point at runtime when you
explicitly call a routine that dynamically allocates
storage for the entity. Dummy arguments that have
the ALLOCATABLE attribute should not also have the
VALUE attribute.

Syntax
!DIR$ ATTRIBUTES ALLOCATABLE :: entity

entity Is the name of the entity that should have allocation delayed.

The recommended method for dynamically allocating storage is to use the ALLOCATABLE statement or
attribute.

See Also
ATTRIBUTES
Syntax Rules for Compiler Directives

ATTRIBUTES ALLOW_NULL
The ATTRIBUTES directive option ALLOW_NULL
enables a corresponding dummy argument to pass a
NULL pointer (defined by a zero or the NULL intrinsic)
by value for the argument.

Syntax
!DIR$ ATTRIBUTES ALLOW_NULL :: arg

 1 Intel® Fortran Compiler Classic and Intel® Fortran Compiler Developer Guide and Reference

1240

arg Is the name of the argument.

ALLOW_NULL is only valid if ATTRIBUTES REFERENCE is also specified; otherwise, it has no effect.

See Also
ATTRIBUTES
Syntax Rules for Compiler Directives

ATTRIBUTES C and STDCALL
The ATTRIBUTES directive options C and STDCALL
specify procedure calling, naming, and argument
passing conventions.

Syntax
!DIR$ ATTRIBUTES C :: object[, object] ...
!DIR$ ATTRIBUTES STDCALL :: object[, object] ...

object Is the name of a data object or procedure.

On Windows* systems on IA-32 architecture, C and STDCALL have slightly different meanings; on all other
platforms, STDCALL is treated as C.

When applied to a subprogram, these options define the subprogram as having a specific set of calling
conventions. The effects depend on whether or not the subprogram is interoperable (has the BIND attribute).

For interoperable subprograms with the BIND attribute, ATTRIBUTES STDCALL has the following effects for
subprograms in applications targeting Windows systems on IA-32 architecture:

• The STDCALL calling convention is used where the called subprogram cleans up the stack at exit.
• The external name has @n appended, where n is the number of bytes of arguments pushed on the stack.

No other effects of ATTRIBUTES STDCALL are applied for interoperable subprograms. If pass-by-value is
desired for a dummy argument to an interoperable subprogram, the Fortran standard VALUE attribute should
be specified for that argument.

For platforms other than Windows systems on IA-32 architecture, ATTRIBUTES STDCALL has no effect on
interoperable subprograms. You should not specify ATTRIBUTES C for interoperable subprograms.

The following table and subsequent text summarizes the differences between the calling conventions for
subprograms that are not interoperable:

Convention C 1 STDCALL 1 Default 2

Arguments passed by
value

Yes Yes No

Case of external
subprogram names

Linux: Lowercase

Windows: Lowercase

Linux: Lowercase

Windows: Lowercase

Linux: Lowercase

Windows: Uppercase

Linux only:

Trailing underscore
added

No No Yes3

Windows only:

Leading underscore
added

Yes Yes Yes4

Intel® Fortran Compiler Classic and Intel® Fortran Compiler Developer Guide and Reference 1

1241

Convention C 1 STDCALL 1 Default 2

Number of argument
bytes added to name

No Yes No

Caller stack cleanup Yes No Yes

Variable number of
arguments

Yes No Yes

1STDCALL is treated as C on Linux*, and on Windows* on Intel® 64 architecture.
2The Intel® Fortran calling convention
3On Linux, if there are one or more underscores in the external name, two trailing underscores are added;
if there are no underscores, one is added.
4IA-32 architecture only

If C or STDCALL is specified for a subprogram, arguments (except for arrays and characters) are passed by
value. Subprograms using standard Fortran conventions pass arguments by reference.

On IA-32 architecture, an underscore (_) is placed at the beginning of the external name of a subprogram.
If STDCALL is specified, an at sign (@) followed by the number of argument bytes being passed is placed at
the end of the name. For example, a subprogram named SUB1 that has three INTEGER(4) arguments and is
defined with STDCALL is assigned the external name _sub1@12.

Character arguments are passed as follows:

• By default, hidden lengths are put at the end of the argument list.

On Windows* systems using IA-32 architecture, you can get Compaq* Visual Fortran default behavior by
specifying compiler option iface.

• If C or STDCALL (only) is specified:

On all systems, the first character of the string is passed (and padded with zeros out to INTEGER(4)
length).

• If C or STDCALL is specified, and REFERENCE is specified for the argument:

On all systems, the string is passed with no length.
• If C or STDCALL is specified, and REFERENCE is specified for the routine (but REFERENCE is not specified

for the argument, if any):

On all systems, the string is passed with the length.

See Also
ATTRIBUTES
REFERENCE
BIND
Syntax Rules for Compiler Directives
iface compiler option
Compiler Reference section: Mixed Language Programming

ATTRIBUTES CODE_ALIGN
The ATTRIBUTES directive option CODE_ALIGN
specifies the byte alignment for a procedure.

Syntax
!DIR$ ATTRIBUTES CODE_ALIGN: n:: procedure-name

 1 Intel® Fortran Compiler Classic and Intel® Fortran Compiler Developer Guide and Reference

1242

n Is the number of bytes for the minimum alignment boundary. It must
be a power of 2 between 1 and 4096, such as 1, 2, 4, 8, 16, 32, 64,
128, and so on.

If you specify 1 for n, no alignment is performed. If you do not specify
n, the default alignment is 16 bytes.

procedure-name Is the name of a procedure.

This directive can be affected by compiler option -falign-loops (Linux*) or /Qalign-loops (Windows*),
the CODE_ALIGN directive, and the CODE_ALIGN attribute.

If code is compiled with the -falign-loops=m (Linux) or /Qalign-loops:m (Windows) option and a
procedure has the CODE_ALIGN:k attribute, the procedure is aligned on a MAX (m, k) byte boundary. If a
procedure has the CODE_ALIGN:k attribute and a CODE_ALIGN:n directive precedes a loop, then both the
procedure and the loop are aligned on a MAX (k, n) byte boundary.

Example

Consider the following code fragment in file test_align.f90:

FUNCTION F ()
!DIR$ ATTRIBUTES CODE_ALIGN:32 :: F
…
!DIR$ CODE_ALIGN:16
DO J = 1, N
…
END DO
…
END FUNCTION F

Compiling test_align.f90 with option -falign-loops=64 (Linux) or /Qalign-loops:64 (Windows)
aligns the function F and the DO J loop on 64-byte boundaries.

See Also
ATTRIBUTES
CODE_ALIGN directive
falign-loops, Qalign-loops compiler option
Syntax Rules for Compiler Directives

ATTRIBUTES CONCURRENCY_SAFE
The ATTRIBUTES directive option
CONCURRENCY_SAFE specifies that there are no
unacceptable side effects and no illegal (or improperly
synchronized) memory access interferences among
multiple invocations of a routine or between an
invocation of the specified routine and other
statements in the program if they were executed
concurrently.

Syntax
!DIR$ ATTRIBUTES CONCURRENCY_SAFE [: clause] :: routine-name-list

clause Is one of the following:

• profitable
• cost (int-cycle-count)

Intel® Fortran Compiler Classic and Intel® Fortran Compiler Developer Guide and Reference 1

1243

int-cycle-count Is an integer scalar constant expression.

routine-name-list Is a comma-separated list of function and subroutine names.

When a CONCURRENCY_SAFE routine is called from parallelized code, you can ignore assumed cross-block or
cross-iteration dependencies and side effects of calling the specified routine from parallelized code.

The profitable clause indicates that the loops or blocks that contain calls to the routine can be safely
executed in parallel if the loop or blocks are legal to be parallelized; that is, if it is profitable to parallelize
them.

The cost clause indicates the execution cycles of the routine where the compiler can perform parallelization
profitability analysis while compiling its enclosing loops or blocks.

The attribute can appear in the declaration of the routine; for example:

function f(x)
!DIR$ attributes concurrency_safe :: f

The attribute can also appear in the code of the caller; for example:

main m
integer f
external f
!dir$ attributes concurrency_safe :: f ! or it could be in an interface block describing f
...
Print *, f(x)

NOTE
For every routine named in routine-name-list, you should ensure that any possible side effects are
acceptable or expected, and the memory access interferences are properly synchronized.

See Also
ATTRIBUTES
Syntax Rules for Compiler Directives

ATTRIBUTES CVF
The ATTRIBUTES direction option CVF tells the
compiler to use calling conventions compatible with
Compaq Visual Fortran* and Microsoft Fortran
PowerStation.

Syntax
!DIR$ ATTRIBUTES CVF :: object[, object] ...

object Is the name of a data object or procedure.

The conventions that are used are as follows:

• The calling mechanism: STDCALL on Windows* systems using IA-32 architecture
• The argument passing mechanism: by reference
• Character-length argument passing: following the argument address
• The external name case: uppercase
• The name decoration: Underscore prefix on IA-32 architecture, no prefix on Intel® 64 architecture. On

Windows* systems using IA-32 architecture, @n suffix where n is the number of bytes to be removed
from the stack on exit from the procedure. No suffix on other systems.

 1 Intel® Fortran Compiler Classic and Intel® Fortran Compiler Developer Guide and Reference

1244

See Also
ATTRIBUTES

Syntax Rules for Compiler Directives

ATTRIBUTES DECORATE
The ATTRIBUTES directive option DECORATE specifies
that the external name used in !DIR$ ALIAS or !DIR$
ATTRIBUTES ALIAS should have the prefix and postfix
decorations performed on it that are associated with
the platform and calling mechanism that is in effect.

Syntax
!DIR$ ATTRIBUTES DECORATE :: exname

exname Is an external name. It may not be the name of an internal procedure.

The case of the ALIAS external name is not modified.

If ALIAS is not specified, this option has no effect.

These are the same decorations performed on the procedure name when ALIAS is not specified, except that,
on Linux* systems, DECORATE does not add a trailing underscore signifying a Fortran procedure.

See Also
ATTRIBUTES
Syntax Rules for Compiler Directives
ATTRIBUTES ALIAS
The summary of prefix and postfix decorations in the description of the ATTRIBUTES options C and
STDCALL

ATTRIBUTES DEFAULT
The ATTRIBUTES directive option DEFAULT overrides
certain compiler options that can affect external
routine and COMMON block declarations.

Syntax
c!DIR$ ATTRIBUTES DEFAULT :: entity

entity Is an external procedure, a COMMON block, a module variable that is
initialized, or a PARAMETER in a module.

It specifies that the compiler should ignore compiler options that change the default conventions for external
symbol naming and argument passing for routines and COMMON blocks (such as names, assume underscore,
assume 2underscores on Linux systems, and iface on Windows* systems).

This option can be combined with other ATTRIBUTES options, such as STDCALL, C, REFERENCE, ALIAS, etc.
to specify properties different from the compiler defaults.

This option is useful when declaring INTERFACE blocks for external routines, since it prevents compiler
options from changing calling or naming conventions.

See Also
ATTRIBUTES
Syntax Rules for Compiler Directives
iface compiler option
names compiler option

Intel® Fortran Compiler Classic and Intel® Fortran Compiler Developer Guide and Reference 1

1245

assume compiler option

ATTRIBUTES DLLEXPORT and DLLIMPORT
The ATTRIBUTES directive options DLLEXPORT and
DLLIMPORT define a dynamic-link library's interface
for processes that use them. The options can be
assigned to module variables, COMMON blocks, and
procedures. These directive options are available on
Windows* systems.

Syntax
!DIR$ ATTRIBUTES DLLEXPORT :: object[, object] ...
!DIR$ ATTRIBUTES DLLIMPORT :: object[, object] ...

object Is the name of a module variable, COMMON block, or procedure. The
name of a COMMON block must be enclosed in slashes.

DLLEXPORT and DLLIMPORT define the interface for the following dynamic-link libraries:

• DLL on Windows*

DLLEXPORT specifies that procedures or data are being exported to other applications or dynamic libraries.
This causes the compiler to produce efficient code; for example, eliminating the need on Windows systems
for a module definition (.def) file to export symbols.

DLLEXPORT should be specified in the routine to which it applies. If the routine's implementation is in a
submodule, specify DLLEXPORT in the parent module's INTERFACE block for the routine. If MODULE
PROCEDURE is used in the submodule, the DLLEXPORT attribute will be inherited; otherwise you must also
specify DLLEXPORT in the submodule routine.

Symbols defined in a DLL are imported by programs that use them. On Windows*, the program must link
with the DLL import library (.lib).

The DLLIMPORT option is used inside the program unit that imports the symbol. DLLIMPORT is specified in a
declaration, not a definition, since you cannot define a symbol you are importing.

See Also
ATTRIBUTES
Syntax Rules for Compiler Directives

ATTRIBUTES EXTERN
The ATTRIBUTES directive option EXTERN specifies
that a variable is allocated in another source file.
EXTERN can be used in global variable declarations,
but it must not be applied to dummy arguments.

Syntax
!DIR$ ATTRIBUTES EXTERN :: var

var Is the variable to be allocated.

This option must be used when accessing variables declared in other languages.

See Also
ATTRIBUTES
Syntax Rules for Compiler Directives

 1 Intel® Fortran Compiler Classic and Intel® Fortran Compiler Developer Guide and Reference

1246

ATTRIBUTES INLINE, NOINLINE, and FORCEINLINE
The ATTRIBUTES directive options INLINE, NOINLINE,
and FORCEINLINE can be used to control inlining
decisions made by the compiler. You should place the
directive option in the procedure whose inlining you
want to influence.

Syntax
The INLINE option specifies that a function or subroutine can be inlined. The inlining can be ignored by the
compiler if inline heuristics determine it may have a negative impact on performance or will cause too much
of an increase in code size.

!DIR$ ATTRIBUTES INLINE :: procedure

procedure Is the function or subroutine that can be inlined.

The NOINLINE option disables inlining of a function.

!DIR$ ATTRIBUTES NOINLINE :: procedure

procedure Is the function or subroutine that must not be inlined.

The FORCEINLINE option specifies that a function or subroutine must be inlined unless it will cause errors.

!DIR$ ATTRIBUTES FORCEINLINE :: procedure

procedure Is the function or subroutine that must be inlined.

See Also
ATTRIBUTES
Syntax Rules for Compiler Directives

ATTRIBUTES IGNORE_LOC
The ATTRIBUTES directive option IGNORE_LOC
enables %LOC to be stripped from an argument.

Syntax
!DIR$ ATTRIBUTES IGNORE_LOC :: arg

arg Is the name of an argument.

IGNORE_LOC is only valid if ATTRIBUTES REFERENCE is also specified; otherwise, it has no effect.

See Also
ATTRIBUTES
Syntax Rules for Compiler Directives

ATTRIBUTES MIXED_STR_LEN_ARG and NOMIXED_STR_LEN_ARG
These ATTRIBUTES directive options specify where
hidden lengths for character arguments and character-
valued functions should be placed.
MIXED_STR_LEN_ARG specifies that hidden lengths
for character arguments and character-valued
functions should be placed immediately following the
argument address in the argument list.
NOMIXED_STR_LEN_ARG specifies that these hidden
lengths should be placed in sequential order at the
end of the argument list.

Intel® Fortran Compiler Classic and Intel® Fortran Compiler Developer Guide and Reference 1

1247

Syntax
!DIR$ ATTRIBUTES MIXED_STR_LEN_ARG :: procs
!DIR$ ATTRIBUTES NOMIXED_STR_LEN_ARG :: procs

procs Is a list of procedures to be given the specified attribute.

The default is NOMIXED_STR_LEN_ARG. However, If you specify compiler option /iface:CVF
or /iface:mixed_str_len_arg (Windows*), or compiler option -mixed-str-len-arg (Linux*), the default
is MIXED_STR_LEN_ARG.

See Also
ATTRIBUTES directive
Syntax Rules for Compiler Directives
iface compiler option

ATTRIBUTES NO_ARG_CHECK
The ATTRIBUTES directive option NO_ARG_CHECK
specifies that type and shape matching rules related
to explicit interfaces are to be ignored. This permits
the construction of an INTERFACE block for an
external procedure or a module procedure that
accepts an argument of any type or shape; for
example, a memory copying routine.

Syntax
!DIR$ ATTRIBUTES NO_ARG_CHECK :: object

object Is the name of an argument or procedure.

NO_ARG_CHECK can appear only in an INTERFACE block for a non-generic procedure or in a module
procedure. It can be applied to an individual dummy argument name or to the routine name, in which case
the option is applied to all dummy arguments in that interface.

NO_ARG_CHECK cannot be used for procedures with the PURE or ELEMENTAL prefix.

See Also
ATTRIBUTES
Syntax Rules for Compiler Directives

ATTRIBUTES NOCLONE
The ATTRIBUTES directive option NOCLONE can be
used to prevent a procedure from being considered for
cloning, which is a mechanism performed by
interprocedural constant propagation that produces
specialized copies of the procedure.

Syntax
!DIR$ ATTRIBUTES NOCLONE :: procedure

procedure Is a function or subroutine that can be inlined.

Note that if you specify ATTRIBUTES NOINLINE, it does not prevent this cloning.

See Also
ATTRIBUTES
Syntax Rules for Compiler Directives

 1 Intel® Fortran Compiler Classic and Intel® Fortran Compiler Developer Guide and Reference

1248

ATTRIBUTES INLINE

ATTRIBUTES OPTIMIZATION_PARAMETER
The ATTRIBUTES directive option
OPTIMIZATION_PARAMETER passes certain
information about a procedure or main program to the
optimizer.

Syntax

!DIR$ ATTRIBUTES OPTIMIZATION_PARAMETER: string::{ procedure-name | named-main-program}

string Is a character constant that is passed to the optimizer. The constant
must be delimited by apostrophes or quotation marks, and it may
have one of the following values:

• TARGET_ARCH= cpu

Tells the compiler to generate code specialized for a particular
processor. For the list of cpus you can specify, see option [Q]x.

• G2S = {ON | OFF}

Disables or enables the use of gather/scatter instructions in the
specified program unit.

ON tells the optimizer to disable the generation of gather/scatter
and to transform gather/scatter into unit-strided loads/stores plus
a set of shuffles wherever possible.

OFF tells the optimizer to enable the generation of gather/scatter
instructions and not to transform gather/scatter into unit-strided
loads/stores.

• INLINE_MAX_PER_ROUTINE= n

Specifies the maximum number of times the inliner may inline into
the procedure. The n is one of the following:

• A non-negative scalar integer constant (>=0) that specifies the
maximum number of times the the inliner may inline into the
procedure. If you specify zero, no inlining is done into the
routine.

• The keyword UNLIMITED, which means that there is no limit to
the number of times the inliner may inline into the procedure.

For more information, see option [Q]inline-max-per-routine.
• INLINE_MAX_TOTAL_SIZE= n

Specifies how much larger a routine can normally grow when inline
expansion is performed. The n is one of the following:

• A non-negative scalar integer constant (>=0) that specifies the
permitted increase in the routine's size when inline expansion is
performed. If you specify zero, no inlining is done into the
routine.

• The keyword UNLIMITED, which means that there is no limit to
the size a routine may grow when inline expansion is
performed.

For more information, see option [Q]inline-max-total-size.

procedure-name Is the name of a procedure.

Intel® Fortran Compiler Classic and Intel® Fortran Compiler Developer Guide and Reference 1

1249

named-main-program Is the name of a main program

Description

The characters in string can appear in any combination of uppercase and lowercase. The following rules also
apply to string:

• If string does not contain an equal sign (=), then the entire value of string is converted to lowercase
before being passed to the optimizer.

• If string contains an equal sign, then all characters to the left of the equal sign are converted to lowercase
before all of string is passed to the optimizer.

Characters to the right of the equal sign are not converted to lowercase since their value may be case
sensitive to the optimizer, for example "target_arch=AVX".

You can specify multiple ATTRIBUTES OPTIMIZATION_PARAMETER directives for one procedure or one main
program.

For the named procedure or main program, the values specified for ATTRIBUTES OPTIMIZATION_PARAMETER
override any settings specified for the following compiler options:

• [Q]x, -m, and /arch
• [Q]inline-max-per-routine
• [Q]inline-max-total-size

Example

Consider the two attributes optimization_parameter directives in the following code:

function f (x)
!dir$ attributes optimization_parameter: "inline_max_per_routine=10" :: f
!dir$ attributes optimization_parameter: "inline_max_total_size=2000" :: f
real :: f, x
…

The two directives have the same effect as if the function F had been complied with
"/Qinline-max-per-routine:10 /Qinline-max-total-size:2000" on Windows* or with
"-inline-max-per-routine=10 -inline-max-total-size=2000" on Linux*, that is, inlining will not
increase the size of F by more than 2000 and the inliner will not inline routines into F more than 10 times.

See Also
ATTRIBUTES
Syntax Rules for Compiler Directives
x, Qx compiler option
inline-max-per-routine, Qinline-max-per-routine compiler option
inline-max-total-size, Qinline-max-total-size compiler option

ATTRIBUTES REFERENCE and VALUE
The ATTRIBUTES directive options REFERENCE and
VALUE specify how a dummy argument is to be
passed.

Syntax
!DIR$ ATTRIBUTES REFERENCE :: arg
!DIR$ ATTRIBUTES VALUE :: arg

arg Is the name of a dummy argument.

 1 Intel® Fortran Compiler Classic and Intel® Fortran Compiler Developer Guide and Reference

1250

REFERENCE specifies a dummy argument's memory location is to be passed instead of the argument's value.
VALUE should not be specified for a dummy argument that is ALLOCATABLE.

VALUE specifies a dummy argument's value is to be passed instead of the argument's memory location.

When VALUE is specified for a dummy argument, the actual argument passed to it can be of a different type.
If necessary, type conversion is performed before the subprogram is called.

When a complex (KIND=4 or KIND=8) argument is passed by value, two floating-point arguments (one
containing the real part, the other containing the imaginary part) are passed by immediate value.

Character values, substrings, assumed-size arrays, and adjustable arrays cannot be passed by value.

If REFERENCE (only) is specified for a character argument, the string is passed with no length.

If REFERENCE is specified for a character argument, and C (or STDCALL) has been specified for the routine,
the string is passed with no length. This is true even if REFERENCE is also specified for the routine.

If REFERENCE and C (or STDCALL) are specified for a routine, but REFERENCE has not been specified for the
argument, the string is passed with the length.

VALUE is the default if the C or STDCALL option is specified in the subprogram definition.

In the following example integer x is passed by value:

 SUBROUTINE Subr (x)
 INTEGER x
!DIR$ ATTRIBUTES VALUE :: x

See Also
C and STDCALL
ATTRIBUTES
Syntax Rules for Compiler Directives
Mixed Language Programming: Adjusting Calling Conventions in Mixed-Language Programming Overview

ATTRIBUTES VARYING
The ATTRIBUTES directive option VARYING allows a
Fortran routine to call a C/C++ routine with a variable
number of arguments.

Syntax
!DIR$ ATTRIBUTES VARYING :: var[, var] ...

var Is a variable representing a C/C++ routine that takes a variable
number of arguments.

This attribute can be used in an interface block to create an explicit interface for a C/C++ routine or it can be
used on a variable declared EXTERN that represents a C/C++ routine. When the routine is called from the
Fortran code, a variable number of arguments can be specified.

This attribute cannot be used with a Fortran routine declaration.

If ATTRIBUTES VARYING is specified, the C calling convention must also be used, either implicitly or explicitly.

All actual arguments in the routine call are passed to the called routine, regardless of the number of dummy
arguments specified in the interface. If the called routine tries to access a dummy argument that has no
matching actual argument, it causes a user error and the program may fail unpredictably.

See Also
ATTRIBUTES
Syntax Rules for Compiler Directives

Intel® Fortran Compiler Classic and Intel® Fortran Compiler Developer Guide and Reference 1

1251

ATTRIBUTES VECTOR
The ATTRIBUTES directive option VECTOR tells the
compiler to vectorize the specified function or
subroutine.

Syntax
!DIR$ ATTRIBUTES [att,] VECTOR [:clause] [, att]... :: routine-name
!DIR$ ATTRIBUTES [att,] VECTOR :(clause [, clause]...) [, att] :: routine-name

att Is an ATTRIBUTES directive option. For a list of possible directive
options, see the description of argument att in ATTRIBUTES.

clause Is one or more of the following optional clauses:

• LINEAR (var1:step1 [, var2:step2]...)

var Is a scalar variable that is a dummy
argument in the specified routine.

step Is a compile-time positive, integer constant
expression.

Tells the compiler that for each consecutive invocation of the
routine in a serial execution, the value of var1 is incremented by
step1, var2 is incremented by step2, and so on.

If more than one step is specified for a particular var, a compile-
time error occurs.

Multiple LINEAR clauses are merged as a union.
• [NO]MASK

Determines whether the compiler generates a masked vector
version of the routine.

• PROCESSOR (cpuid)
• UNIFORM (arg [, arg]…)

arg Is a scalar variable that is a dummy
argument in the specified routine.

Tells the compiler that the values of the specified arguments can be
broadcasted to all iterations as a performance optimization.

Multiple UNIFORM clauses are merged as a union.
• VECTORLENGTH (n[, n]…)

n Is a vector length (VL). It must be an
integer, scalar constant expression that is a
power of 2; the value must be 2, 4, 8, 16,
32, or 64. If you specify more than one n,
the compiler will choose the VL from the
values specified.

Tells the compiler that each routine invocation at the call site
should execute the computation equivalent to n times the scalar
function execution.

 1 Intel® Fortran Compiler Classic and Intel® Fortran Compiler Developer Guide and Reference

1252

The VECTORLENGTH and VECTORLENGTHFOR clauses are mutually
exclusive. You cannot use the VECTORLENGTH clause with the
VECTORLENGTHFOR clause, and vice versa.

Multiple VECTORLENGTH clauses cause a syntax error.
• VECTORLENGTHFOR (data-type)

data-type Is one of the following intrinsic data types:

Data Type Fortran Intrinsic
Type

INTEGER Default INTEGER

INTEGER(1) INTEGER
(KIND=1)

INTEGER(2) INTEGER
(KIND=2)

INTEGER(4) INTEGER
(KIND=4)

INTEGER(8) INTEGER
(KIND=8)

REAL Default REAL

REAL(4) REAL (KIND=4)

REAL(8) REAL (KIND=8)

COMPLEX Default COMPLEX

COMPLEX(4) COMPLEX
(KIND=4)

COMPLEX(8) COMPLEX
(KIND=8)

Causes each iteration in the vector loop to execute the computation
equivalent to n iterations of scalar loop execution where n is
computed from size_of_vector_register/
sizeof(data_type).

For example, VECTORLENGTHFOR (REAL (KIND=4)) results in n=4
for SSE2 to SSE4.2 targets (packed float operations available on
128-bit XMM registers) and n=8 for AVX target (packed float
operations available on 256-bit YMM registers).
VECTORLENGTHFOR(INTEGER (KIND=4)) results in n=4 for SSE2
to AVX targets.

The VECTORLENGTHFOR and VECTORLENGTH clauses are mutually
exclusive. You cannot use the VECTORLENGTHFOR clause with the
VECTORLENGTH clause, and vice versa.

Multiple VECTORLENGTHFOR clauses cause a syntax error.

Intel® Fortran Compiler Classic and Intel® Fortran Compiler Developer Guide and Reference 1

1253

Without explicit VECTORLENGTH and VECTORLENGTHFOR clauses,
the compiler will choose a VECTORLENGTH using its own cost
model. Misclassification of variables into PRIVATE, FIRSTPRIVATE,
LASTPRIVATE, LINEAR, and REDUCTION, or the lack of appropriate
classification of variables, may lead to unintended consequences
such as runtime failures and/or incorrect results.

routine-name Is the name of a routine (a function or subroutine). It must be the
enclosing routine or the routine immediately following the directive.

If you specify more than one clause, they must be separated by commas and enclosed in parentheses.

When you specify the ATTRIBUTES VECTOR directive, the compiler provides data parallel semantics by
combining with the vectorized operations or loops at the call site. When multiple instances of the vector
declaration are invoked in a parallel context, the execution order among them is not sequenced. If you
specify one or more clauses, they affect the data parallel semantics provided by the compiler.

If you specify the ATTRIBUTES VECTOR directive with no VECTORLENGTH clause, a default VECTORLENGTH is
computed based on efficiency heuristics of the vectorizer and the following:

• The return type of the function, if the function has a return type.
• The data type of the first non-scalar argument (that is, the first argument that is specified in the scalar

clause), if any.
• Default integer type, if neither of the above is supplied.

If you do not explicitly specify a VECTORLENGTH clause, the compiler will choose a VECTORLENGTH using its
own cost model.

If you specify the ATTRIBUTES VECTOR directive with no clause, the compiler will generate vector code based
on compiler efficiency heuristics and whatever processor compiler options are specified.

The VECTOR attribute implies the C attribute, so that when you specify the VECTOR attribute on a routine,
the C attribute is automatically also set on the same routine. This changes how the routine name is
decorated and how arguments are passed.

NOTE
You should ensure that any possible side effects for the specified routine-name are acceptable or
expected, and the memory access interferences are properly synchronized.

The Fortran Standard keyword ELEMENTAL specifies that a procedure written with scalar arguments can be
extended to conforming array arguments by processing the array elements one at a time in any order. The
ATTRIBUTES VECTOR directive tells the optimizer to produce versions of the procedure routine-name that
execute with contiguous slices of the array arguments as defined by the VECTORLENGTH clause in an
"elemental" fashion. routine-name does not need to be defined as ELEMENTAL to be given the VECTOR
attribute.

The VECTOR attribute causes the compiler to generate a short vector form of the procedure, which can
perform the procedure's operation on multiple elements of its array arguments in a single invocation. The
short vector version may be able to perform multiple operations as fast as the regular implementation
performs a single operation by using the vector instruction set in the CPU.

In addition, when invoked from an OMP construct, the compiler may assign different copies of the elemental
procedures to different threads, executing them concurrently. The end result is that your data parallel
operation executes on the CPU using both the parallelism available in the multiple cores and the parallelism
available in the vector instruction set. If the short vector procedure is called inside a parallel loop or an auto-
parallelized loop that is vectorized, you can achieve both vector-level and thread-level parallelism.

 1 Intel® Fortran Compiler Classic and Intel® Fortran Compiler Developer Guide and Reference

1254

The INTENT(OUT) or INTENT(INOUT) attribute is not allowed for arguments of a procedure with the VECTOR
attribute since the VECTOR attribute forces the procedure to receive its arguments by value.

The Intel C/C++ compiler built in function __intel_simd_lane() may be helpful in removing certain
performance penalties caused by non-unit stride vector access. Consider the following:

interface
! returns a number between 0 and vectorlength – 1 that reflects the current "lane id" within the
SIMD vector
! __intel_simd_lane() will return zero if the loop is not vectorized
 function for_simd_lane () bind (C, name = "__intel_simd_lane")
 integer (kind=4) :: for_simd_lane
 !DEC$ attributes known_intrinsic, default :: for_simd_lane
 end function for_simd_lane
end interface

For more details, see the Intel C++ documentation.

Product and Performance Information

Performance varies by use, configuration and other factors. Learn more at www.Intel.com/
PerformanceIndex.

Notice revision #20201201

Example

The ATTRIBUTES VECTOR directive must be accessible in the caller, either via an INTERFACE block or by USE
association.

The following shows an example of an external function with an INTERFACE block:

!... function definition

 function f(x)
 !dir$ attributes vector :: f
 real :: f, x
...
 ! attribute vector explicit in calling procedure using an INTERFACE

interface
 function f(x)
 !dir$ attributes vector :: f
 real :: f, x
 end
end interface
...
do i=1,n
 z(i) = f(x(i))
end do

The ATTRIBUTES VECTOR directive can be brought into the caller by USE association if the vector function is
a module procedure; for example:

! attribute vector in definition of module procedure

module use_vect

contains

Intel® Fortran Compiler Classic and Intel® Fortran Compiler Developer Guide and Reference 1

1255

https://www.intel.com/PerformanceIndex
https://www.intel.com/PerformanceIndex

 function f(x)
 !dir$ attributes vector :: f
 real :: f, x
...
 end function
end module use_vect

! USE and call of f(x) from another procedure with a module USE statement

 USE use_vect ! brings in ATTRIBUTE VECTOR for f(x)
...

! now simply call f(x)

do i=1,n
 z(i) = f(x(i))
end do

You can specify more than one SCALAR or LINEAR clause in an ATTRIBUTES VECTOR directive. For example,
all of the following are valid:

!DIR$ ATTRIBUTES VECTOR:PROCESSOR(atom) :: f
!DIR$ ATTRIBUTES VECTOR:(SCALAR(a), SCALAR(b)) :: f
!DIR$ ATTRIBUTES VECTOR:(LINEAR(x:1), LINEAR(y:1)) :: f

The three directives above are equivalent to specifying a single, continued, directive in fixed-form source, as
follows:

!DIR$ ATTRIBUTES VECTOR:(PROCESSOR(atom),
!DIR$& SCALAR(a, b),
!DIR$& LINEAR(x:1, y:1)) :: f

See Also
ATTRIBUTES
Syntax Rules for Compiler Directives

AUTOMATIC
Statement and Attribute: Controls the storage
allocation of variables in subprograms (as does
STATIC). Variables declared as AUTOMATIC and
allocated in memory reside in the stack storage area,
rather than at a static memory location.

Syntax
The AUTOMATIC attribute can be specified in a type declaration statement or an AUTOMATIC statement, and
takes one of the following forms:

Type Declaration Statement:

type, [att-ls,] AUTOMATIC [, att-ls] :: v[, v] ...
Statement:

AUTOMATIC [::] v[, v] ...

type Is a data type specifier.

att-ls Is an optional list of attribute specifiers.

 1 Intel® Fortran Compiler Classic and Intel® Fortran Compiler Developer Guide and Reference

1256

v Is the name of a variable or an array specification. It can be of any
type.

AUTOMATIC declarations only affect how data is allocated in storage.

If you want to retain definitions of variables upon reentry to subprograms, you must use the SAVE attribute.

Automatic variables can reduce memory use because only the variables currently being used are allocated to
memory.

Automatic variables allow possible recursion. With recursion, a subprogram can call itself (directly or
indirectly), and resulting values are available upon a subsequent call or return to the subprogram. For
recursion to occur, RECURSIVE must be specified in one of the following ways:

• As a keyword in a FUNCTION or SUBROUTINE statement
• As a compiler option
• As an option in an OPTIONS statement

By default, the compiler allocates local scalar variables on the stack. Other non-allocatable variables of non-
recursive subprograms are allocated in static storage by default. This default can be changed through
compiler options. Appropriate use of the SAVE attribute may be required if your program assumes that local
variables retain their definition across subprogram calls.

To change the default for variables, specify them as AUTOMATIC or specify RECURSIVE (in one of the ways
mentioned above).

To override any compiler option that may affect variables, explicitly specify the variables as AUTOMATIC.

NOTE
Variables that are data-initialized, and variables in COMMON and SAVE statements are always static.
This is regardless of whether a compiler option specifies recursion.

A variable cannot be specified as AUTOMATIC more than once in the same scoping unit.

If the variable is a pointer, AUTOMATIC applies only to the pointer itself, not to any associated target.

Some variables cannot be specified as AUTOMATIC. The following table shows these restrictions:

Variable AUTOMATIC

Dummy argument No

Automatic object No

Common block item No

Use-associated item No

Function result No

Component of a derived type No

If a variable is in a module's outer scope, it cannot be specified as AUTOMATIC.

Use the heap-arrays compiler option to avoid stack overflows at runtime by placing large automatic arrays
in the heap instead of on the stack.

Example

The following example shows a type declaration statement specifying the AUTOMATIC attribute:

REAL, AUTOMATIC :: A, B, C

Intel® Fortran Compiler Classic and Intel® Fortran Compiler Developer Guide and Reference 1

1257

The following example uses an AUTOMATIC statement:

...
CONTAINS
 INTEGER FUNCTION REDO_FUNC
 INTEGER I, J(10), K
 REAL C, D, E(30)
 AUTOMATIC I, J, K(20)
 STATIC C, D, E
 ...
 END FUNCTION
...
C In this example, all variables within the program unit
C are saved, except for "var1" and "var3". These are
C explicitly declared in an AUTOMATIC statement, and thus have
C memory locations on the stack:
 SUBROUTINE DoIt (arg1, arg2)
 INTEGER(4) arg1, arg2
 INTEGER(4) var1, var2, var3, var4
 SAVE
 AUTOMATIC var1, var3
C var2 and var4 are saved

See Also
heap-arrays compiler option
recursive compiler option
STATIC
SAVE
Type Declarations

Compatible attributes
RECURSIVE
OPTIONS
POINTER
Modules and Module Procedures

BACKSPACE
Statement: Positions a sequential file at the
beginning of the preceding record, making it available
for subsequent I/O processing. It takes one of the
following forms:

Syntax
BACKSPACE ([UNIT=]io-unit[, ERR=label] [, IOMSG=msg-var] [, IOSTAT=i-var])
BACKSPACE io-unit

io-unit (Input) Is an external unit specifier.

label Is the label of the branch target statement that receives control if an
error occurs.

msg-var (Output) Is a scalar default character variable that is assigned an
explanatory message if an I/O error occurs.

 1 Intel® Fortran Compiler Classic and Intel® Fortran Compiler Developer Guide and Reference

1258

i-var (Output) Is a scalar integer variable that is defined as a positive
integer if an error occurs and zero if no error occurs.

Description

The I/O unit number must specify an open file on disk or magnetic tape.

Backspacing from the current record n is performed by rewinding to the start of the file and then performing
n - 1 successive READs to reach the previous record.

A BACKSPACE statement must not be specified for a file that is open for direct or append access, because n
is not available to the Fortran I/O system.

BACKSPACE cannot be used to skip over records that have been written using list-directed or namelist
formatting.

If a file is already positioned at the beginning of a file, a BACKSPACE statement has no effect.

If the file is positioned between the last record and the end-of-file record, BACKSPACE positions the file at
the start of the last record.

Example

 BACKSPACE 5
 BACKSPACE (5)
 BACKSPACE lunit
 BACKSPACE (UNIT = lunit, ERR = 30, IOSTAT = ios)

The following statement repositions the file connected to I/O unit 4 back to the preceding record:

 BACKSPACE 4
Consider the following statement:

 BACKSPACE (UNIT=9, IOSTAT=IOS, ERR=10)
This statement positions the file connected to unit 9 back to the preceding record. If an error occurs, control
is transferred to the statement labeled 10, and a positive integer is stored in variable IOS.

See Also
REWIND
ENDFILE
Data Transfer I/O Statements
Branch Specifiers

BADDRESS
Inquiry Intrinsic Function (Generic): Returns the
address of an argument. This function cannot be
passed as an actual argument. This function can also
be specified as IADDR.

Syntax
result = BADDRESS (x)

x Is a variable, an array or record field reference, a procedure, or a
constant; it can be of any data type. It must not be the name of a
statement function. If it is a pointer, it must be defined and associated
with a target.

Intel® Fortran Compiler Classic and Intel® Fortran Compiler Developer Guide and Reference 1

1259

Results

The result type is INTEGER(4) on IA-32 architecture; INTEGER(8) on Intel® 64 architecture. The value of the
result represents the address of the data object or, in the case of pointers, the address of its associated
target. If the argument is not valid, the result is undefined.

Example

PROGRAM batest
 INTEGER X(5), I
 DO I=1, 5
 PRINT *, BADDRESS(X(I))
 END DO
END

BARRIER
OpenMP* Fortran Compiler Directive:
Synchronizes all the threads in a team. It causes each
thread to wait until all of the other threads in the
team have reached the barrier.

Syntax
!$OMP BARRIER
The binding thread set for a BARRIER construct is the current team. A barrier region binds to the innermost
enclosing parallel region.

Each barrier region must be encountered by all threads in a team or by none at all, unless cancellation has
been requested for the innermost enclosing parallel region.

The barrier region must also be encountered in the same order by all threads in a team.

Example

INTEGER K
K = 17

!$OMP PARALLEL SHARED (K) NUM_THREADS (2)
IF (OMP_GET_THREAD_NUM() == 0) THEN
 X = 5
ELSE
 ! The following read access of K creates a race condition
 PRINT *,"1: THREAD# ", OMP_GET_THREAD_NUM (), "K = ", K
ENDIF

! This barrier contains implicit flushes on all threads, as well as a thread
! synchronization: this guarantees that the value 5 will be printed by
! both PRINT 2 and PRINT 3 below.

!$OMP BARRIER

IF (OMP_GET_THREAD_NUM() == 0) THEN
 PRINT *,"2: THREAD# ", OMP_GET_THREAD_NUM (), "K = ", K
ELSE
 PRINT *,"3: THREAD# ", OMP_GET_THREAD_NUM (), "K = ", K
ENDIF
!$OMP END PARALLEL

 1 Intel® Fortran Compiler Classic and Intel® Fortran Compiler Developer Guide and Reference

1260

See Also
OpenMP Fortran Compiler Directives
Syntax Rules for Compiler Directives
Nesting and Binding Rules
Parallel Processing Model for information about Binding Sets

BEEPQQ
Portability Subroutine: Sounds the speaker at the
specified frequency for the specified duration in
milliseconds.

Module

USE IFPORT

Syntax
CALL BEEPQQ (frequency,duration)

frequency (Input) INTEGER(4). Frequency of the tone in Hz.

duration (Input) INTEGER(4). Length of the beep in milliseconds.

BEEPQQ does not return until the sound terminates.

Example

 USE IFPORT
 INTEGER(4) frequency, duration
 frequency = 4000
 duration = 1000
 CALL BEEPQQ(frequency, duration)

See Also
SLEEPQQ

BESJ0, BESJ1, BESJN, BESY0, BESY1, BESYN
Portability Functions: Compute the single-precision
values of Bessel functions of the first and second
kinds.

Module

USE IFPORT

Syntax
result = BESJ0 (value)
result = BESJ1 (value)
result = BESJN (n, value)
result = BESY0 (posvalue)
result = BESY1 (posvalue)
result = BESYN (n, value)

value (Input) REAL(4). Independent variable for a Bessel function.

Intel® Fortran Compiler Classic and Intel® Fortran Compiler Developer Guide and Reference 1

1261

n (Input) INTEGER(4). Specifies the order of the selected Bessel
function computation.

posvalue (Input) REAL(4). Independent variable for a Bessel function. Must be
greater than or equal to zero.

Results

BESJ0, BESJ1, and BESJN return Bessel functions of the first kind, orders 0, 1, and n, respectively, with the
independent variable posvalue.

BESY0, BESY1, and BESYN return Bessel functions of the second kind, orders 0, 1, and n, respectively, with
the independent variable posvalue.

Negative arguments cause BESY0, BESY1, and BESYN to return QNAN.

Bessel functions are explained more fully in most mathematics reference books, such as the Handbook of
Mathematical Functions (Abramowitz and Stegun. Washington: U.S. Government Printing Office, 1964).
These functions are commonly used in the mathematics of electromagnetic wave theory.

See the descriptions of the BESSEL_* functions, if you need to use quad-precision (REAL(16)).

See Also
DBESJ0, DBESJ1, DBESJN

BESSEL_J0
Elemental Intrinsic Function (Generic): Computes
a Bessel function of the first kind, order 0.

Syntax
result = BESSEL_J0 (x)

x (Input) Must be of type real.

Results

The result type and kind are the same as x.

The result has a value equal to a processor-dependent approximation to the Bessel function of the first kind
and order zero of x.

Example

BESSEL_J0 (1.0) has the approximate value 0.765.

BESSEL_J1
Elemental Intrinsic Function (Generic): Computes
a Bessel function of the first kind, order 1.

Syntax
result = BESSEL_J1 (x)

x (Input) Must be of type real.

Results

The result type and kind are the same as x.

The result has a value equal to a processor-dependent approximation to the Bessel function of the first kind
and order 1 of x.

 1 Intel® Fortran Compiler Classic and Intel® Fortran Compiler Developer Guide and Reference

1262

Example

BESSEL_J1 (1.0) has the approximate value 0.440.

BESSEL_JN
Elemental and Transformational Intrinsic
Functions (Generic): Compute Bessel functions of
the first kind.

Syntax
Elemental function: result = BESSEL_JN (n, x)
Transformational function: result = BESSEL_JN (n1, n2, x)

n, n1, n2 (Input) Must be of type integer and nonnegative.

x (Input) Must be of type real.

Results

The result type and kind are the same as x.

The result of BESSEL_JN (n, x) is scalar. The result value of BESSEL_JN (n , x) is a processor-dependent
approximation to the Bessel function of the first kind and order n of x.

The result of BESSEL_JN (n1, n2, x) is a rank-one array with extent MAX (n2 - n1 + 1, 0). Element i of the
result value of BESSEL_JN (n1, n2, x) is a processor-dependent approximation to the Bessel function of the
first kind and order n1 + i - 1 of x.

Example

BESSEL_JN (2, 1.0) has the approximate value 0.115.

Consider the following program Bessel.90:

 real :: z (6) = [0:5]/5. ! 0.0 through 1.0 by 0.2
 print *, z
 print *, bessel_jn (2, 1.0) ! scalar argument, answer about 0.115
 print *, bessel_jn (1, z) ! elemental
 print *, bessel_jn (1, 4, 1.0) ! orders 1 thru 4 on a scalar
 end

Compile bessel.f90 and execute the result:

> ifx Bessel.f90 -o Bessel
> bessel

The above commands produce the following result:

 0.0000000E+00 0.2000000 0.4000000 0.6000000 0.8000000 1.000000
 0.1149035
 0.0000000E+00 9.9500835E-02 0.1960266 0.2867010 0.3688421 0.4400506
 0.4400506 0.1149035 1.9563355E-02 2.4766389E-03

BESSEL_Y0
Elemental Intrinsic Function (Generic): Computes
a Bessel function of the second kind, order 0.

Syntax
result = BESSEL_Y0 (x)

Intel® Fortran Compiler Classic and Intel® Fortran Compiler Developer Guide and Reference 1

1263

x (Input) Must be of type real with a value greater than zero.

Results

The result type and kind are the same as x.

The result has a value equal to a processor-dependent approximation to the Bessel function of the second
kind and order zero of x.

Example

BESSEL_Y0 (1.0) has the approximate value 0.088.

BESSEL_Y1
Elemental Intrinsic Function (Generic): Computes
a Bessel function of the second kind, order 1.

Syntax
result = BESSEL_Y1 (x)

x (Input) Must be of type real with a value greater than zero.

Results

The result type and kind are the same as x.

The result has a value equal to a processor-dependent approximation to the Bessel function of the second
kind and order 1 of x.

Example

BESSEL_Y1 (1.0) has the approximate value -0.781.

BESSEL_YN
Elemental and Transformational Intrinsic
Functions (Generic): Compute Bessel functions of
the second kind.

Syntax
Elemental function: result = BESSEL_YN (n, x)
Transformational function: result = BESSEL_YN (n1, n2, x)

n, n1, n2 (Input) Must be of type integer and nonnegative.

x (Input) Must be of type real with a value greater than zero.

Results

The result type and kind are the same as x.

The result of BESSEL_YN (n, x) is scalar. The result value of BESSEL_YN (n , x) is a processor-dependent
approximation to the Bessel function of the second kind and order n of x.

The result of BESSEL_YN (n1, n2, x) is a rank-one array with extent MAX (n2 - n1 + 1, 0). Element i of the
result value of BESSEL_YN (n1, n2, x) is a processor-dependent approximation to the Bessel function of the
second kind and order n1 + i - 1 of x.

Example

BESSEL_YN (2, 1.0) has the approximate value -1.651.

 1 Intel® Fortran Compiler Classic and Intel® Fortran Compiler Developer Guide and Reference

1264

BGE
Elemental Intrinsic Function (Generic): Performs
a bitwise greater than or equal to on its arguments.

Syntax
result = BGE (i,j)

i (Input) Must be of type integer or a binary, octal, or hexadecimal
literal constant.

j (Input) Must be of type integer or a binary, octal, or hexadecimal
literal constant.

If the kinds of i and j do not match, the value with the smaller kind is extended with zeros on the left and
the larger kind is used for the operation and the result.

Results

The result is true if the sequence of bits represented by i is greater than or equal to the sequence of bits
represented by j, according to the method of bit sequence comparison in Bit Sequence Comparisons;
otherwise, the result is false.

The interpretation of a binary, octal, or hexadecimal literal constant as a sequence of bits is described in
Binary, Octal, Hexadecimal, and Hollerith Constants.

The model for the interpretation of an integer value as a sequence of bits is shown in Model for Bit Data.

Example

If BIT_SIZE (J) has the value 8, BGE (Z'FF', J) has the value true for any value of J. BGE (0, -1) has the
value false.

See Also
BIT_SIZE

BGT
Elemental Intrinsic Function (Generic): Performs
a bitwise greater than on its arguments.

Syntax
result = BGT (i,j)

i (Input) Must be of type integer or a binary, octal, or hexadecimal
literal constant.

j (Input) Must be of type integer or a binary, octal, or hexadecimal
literal constant.

If the kinds of i and j do not match, the value with the smaller kind is extended with zeros on the left and
the larger kind is used for the operation and the result.

Results

The result is true if the sequence of bits represented by i is greater than the sequence of bits represented by
j, according to the method of bit sequence comparison in Bit Sequence Comparisons; otherwise, the result is
false.

The interpretation of a binary, octal, or hexadecimal literal constant as a sequence of bits is described in
Binary, Octal, Hexadecimal, and Hollerith Constants.

Intel® Fortran Compiler Classic and Intel® Fortran Compiler Developer Guide and Reference 1

1265

The model for the interpretation of an integer value as a sequence of bits is shown in Model for Bit Data.

Example

BGT (Z'FF', Z'FC') has the value true. BGT (0, -2) has the value false.

BIC, BIS
Portability Subroutines: Perform a bit-level set and
clear for integers.

Module

USE IFPORT

Syntax
CALL BIC (bitnum, target)
CALL BIS (bitnum, target)

bitnum (Input) INTEGER(4). Bit number to set. Must be in the range 0 (least
significant bit) to 31 (most significant bit) if target is INTEGER(4). If
target is INTEGER(8), bitnum must be in range 0 to 63.

target (Input) INTEGER(4) or INTEGER(8). Variable whose bit is to be set.

BIC sets bit bitnum of target to 0; BIS sets bit bitnum to 1.

Example

Consider the following:

USE IFPORT
 integer(4) bitnum, target_i4
 integer(8) target_i8
 target_i4 = Z'AAAA'
 bitnum = 1
 call BIC(bitnum, target_i4)
 target_i8 = Z'FFFFFFFF00000000'
 bitnum = 40
 call BIC(bitnum, target_i8)
 bitnum = 0
 call BIS(bitnum, target_i4)
 bitnum = 1
 call BIS(bitnum, target_i8)
 print '(" integer*4 result ",Z)', target_i4
 print '(" integer*8 result ",Z)', target_i8
 end

See Also
BIT

BIND
Statement and Attribute: Specifies that an object is
interoperable with C and has external linkage.

Syntax
The BIND attribute can be specified in a type declaration statement or a BIND statement, and takes one of
the following forms:

 1 Intel® Fortran Compiler Classic and Intel® Fortran Compiler Developer Guide and Reference

1266

Type Declaration Statement:

type, [att-ls,] BIND (C [, NAME=ext-name]) [, att-ls] :: object
Statement:

BIND (C [, NAME=ext-name]) [::] object

type Is a data type specifier.

att-ls Is an optional list of attribute specifiers.

ext-name Is a character scalar constant expression that can be used to construct
the external name.

object Is the name of a variable or common block. It can also be the name of
an internal procedure if NAME= is not specified.

Description

If a common block is specified in a BIND statement, it must be specified with the same binding label in each
scoping unit in which it is declared.

For variables and common blocks, BIND also implies the SAVE attribute, which may be explicitly confirmed
with SAVE.

A variable given the BIND attribute (or declared in a BIND statement) must appear in the specification part
of a module. You cannot specify BIND for a subroutine local variable or a variable in a main program.

The BIND attribute is similar to directive !DIR$ ATTRIBUTES C as follows:

• The compiler applies the same naming rules, that is, names are lowercase (unless NAME= specifies
otherwise).

• The compiler applies the appropriate platform decoration, such as a leading underscore.

However, procedure argument passing differs. When BIND is specified, procedure arguments are passed by
reference unless the VALUE attribute is also specified. A dummy argument of a procedure with the BIND
attribute cannot be given both the VALUE and the OPTIONAL attributes.

The BIND attribute can optionally be used in a PROCEDURE, SUBROUTINE, or FUNCTION declaration. It must
be used in an ENUM declaration.

Example

The following example shows the BIND attribute used in a type declaration statement, a statement, and a
SUBROUTINE statement.

INTEGER, BIND(C) :: SOMEVAR

BIND(C,NAME='SharedCommon') :: /SHAREDCOMMON/

! you need empty parens after the subroutine name if BIND is present
SUBROUTINE FOOBAR() BIND(C, NAME='FooBar')
...
END SUBROUTINE

See Also
Modules and Module Procedures

Type Declarations

Compatible attributes

Intel® Fortran Compiler Classic and Intel® Fortran Compiler Developer Guide and Reference 1

1267

Pointer Assignments

FUNCTION

SUBROUTINE

PROCEDURE

Enumerations and Enumerators (ENUM)

BIND(C)
 in mixed language programming

BIT
Portability Function: Performs a bit-level test for
integers.

Module

USE IFPORT

Syntax
result = BIT (bitnum, source)

bitnum (Input) INTEGER(4). Bit number to test. Must be in the range 0 (least
significant bit) to 31 (most significant bit).

source (Input) INTEGER(4) or INTEGER(8). Variable being tested.

Results

The result type is logical. It is .TRUE. if bit bitnum of source is 1; otherwise, .FALSE..

See Also
BIC, BIS

BIT_SIZE
Inquiry Intrinsic Function (Generic): Returns the
number of bits in an integer type.

Syntax
result = BIT_SIZE (i)

i (Input) Must be of type integer or of type logical (which is treated as
an integer).

Results

The result is a scalar integer with the same kind parameter as i. The result value is the number of bits (s)
defined by the bit model for integers with the kind parameter of the argument. For information on the bit
model, see Model for Bit Data.

Example

BIT_SIZE (1_2) has the value 16 because the KIND=2 integer type contains 16 bits.

See Also
BTEST

 1 Intel® Fortran Compiler Classic and Intel® Fortran Compiler Developer Guide and Reference

1268

IBCLR
IBITS
IBSET

BLE
Elemental Intrinsic Function (Generic): Performs
a bitwise less than or equal to on its arguments.

Syntax
result = BLE (i,j)

i (Input) Must be of type integer or a binary, octal, or hexadecimal
literal constant.

j (Input) Must be of type integer or a binary, octal, or hexadecimal
literal constant.

If the kinds of i and j do not match, the value with the smaller kind is extended with zeros on the left and
the larger kind is used for the operation and the result.

Results

The result is true if the sequence of bits represented by i is less than or equal to the sequence of bits
represented by j, according to the method of bit sequence comparison in Bit Sequence Comparisons;
otherwise, the result is false.

The interpretation of a binary, octal, or hexadecimal literal constant as a sequence of bits is described in
Binary, Octal, Hexadecimal, and Hollerith Constants.

The model for the interpretation of an integer value as a sequence of bits is shown in Model for Bit Data.

Example

BLE (0, J) has the value true for any value of J. BLE (-2, 0) has the value false.

BLOCK
Statement: Marks the beginning of a BLOCK
construct. The BLOCK construct executes a block of
statements or constructs that can contain
declarations.

Syntax
[name:] BLOCK
 [specification-part]
 block
END BLOCK [name]

name (Optional) Is the name of the BLOCK construct.

specification-part (Optional) Is one or more specification statements, except for the
following:

• COMMON
• FUNCTION (outside of an INTERFACE block)
• EQUIVALENCE
• IMPLICIT

Intel® Fortran Compiler Classic and Intel® Fortran Compiler Developer Guide and Reference 1

1269

• INTENT (or its equivalent attribute)
• MODULE
• NAMELIST
• OPTIONAL (or its equivalent attribute)
• SUBROUTINE (outside of an INTERFACE block)
• VALUE (or its equivalent attribute)
• Statement functions

block Is a sequence of zero or more statements or constructs, except for the
following:

• CONTAINS (outside of a TYPE definition)
• ENTRY
• Statement functions

Description

A BLOCK construct is itself a scoping unit. Entities declared in a BLOCK construct are local to the BLOCK
construct and are accessible only in that construct and in any contained constructs. A local entity in a block
construct hides any entity with the same name in its host scope. No transfer of control into a block from
outside the block is allowed, except for the return from a procedure call. Transfers within a block or out of
the block are allowed.

If a construct name is specified at the beginning of a BLOCK statement, the same name must appear in the
corresponding END BLOCK statement. The same construct name must not be used for different named
constructs in the same scoping unit. If no name is specified at the beginning of a BLOCK statement, you
cannot specify one following the END BLOCK statement.

You can only branch to an END BLOCK statement from within its BLOCK construct.

The SAVE attribute specifies that a local variable of a BLOCK construct retains its association status,
allocation status, definition status, and value after termination of the construct unless it is a pointer and its
target becomes undefined. If the BLOCK construct contains a SAVE statement, the SAVE statement cannot
specify the name of a common block. A SAVE statement outside a BLOCK construct does not affect variables
local to the BLOCK construct, because a SAVE statement affects variables in its scoping unit which excludes
nested scoping units in it.

The statements specified within the specification-part are evaluated in a processor-dependent order, followed
by execution of block. When execution exits block, all non-SAVEd automatic and allocatable local variables
are deallocated.

Example

The following shows a BLOCK construct:

block
 integer :: i
 real :: a(n)
 do i = 1,n
 a(i) = i
 end do
 …
end block

When control exits the bottom of the BLOCK, local variables i and a revert to their meaning outside the
block.

 1 Intel® Fortran Compiler Classic and Intel® Fortran Compiler Developer Guide and Reference

1270

The following example shows two nested BLOCK constructs where the inner BLOCK construct has the
construct name INNER and the outer one does not have a name:

 BLOCK
 ...
 INNER: BLOCK
 ...
 END BLOCK INNER
 ...
 END BLOCK

In the following example, the appearance and the reference of the FORMAT statement are legal:

 PROGRAM MAIN
 WRITE(6, FMT=10)
 ...
 BLOCK
 10 FORMAT("Hello")
 END BLOCK
 ...
 END

Implicit typing is not affected by BLOCK constructs. In the following example, even if NSQP only appears in
the two BLOCK constructs, the scope of NSQP is the whole subroutine S:

 SUBROUTINE S(N)
 ...
 IF (N>0) THEN
 BLOCK
 NSQP = CEILING(SQRT(DBLE(N)))
 END BLOCK
 END IF
 ...
 IF (N>0) THEN
 BLOCK
 PRINT *,NSQP
 END BLOCK
 END IF
 END SUBROUTINE S

BLOCK DATA
Statement: Identifies a block-data program unit,
which provides initial values for variables in named
common blocks. BLOCK DATA is an obsolescent
language feature in Standard Fortran.

Syntax
BLOCK DATA [name]
 [specification-part]
END [BLOCK DATA [name]]

name Is the name of the block data program unit.

specification-part Is one or more of the following statements:

COMMON INTRINSIC STATIC

DATA PARAMETER TARGET

Intel® Fortran Compiler Classic and Intel® Fortran Compiler Developer Guide and Reference 1

1271

Derived-type
definition

POINTER Type declaration 2

DIMENSION RECORD1 USE 3

EQUIVALENCE Record structure
declaration1

IMPLICIT SAVE

1 For more information, see RECORD statement and record structure
declarations.
2 Can only contain attributes: DIMENSION, INTRINSIC, PARAMETER,
POINTER, SAVE, STATIC, or TARGET.
3 Allows access to only named constants.

Description

A block data program unit need not be named, but there can only be one unnamed block data program unit
in an executable program.

If a name follows the END statement, it must be the same as the name specified in the BLOCK DATA
statement.

An interface block must not appear in a block data program unit and a block data program unit must not
contain any executable statements.

If a DATA statement initializes any variable in a named common block, the block data program unit must
have a complete set of specification statements establishing the common block. However, all of the variables
in the block do not have to be initialized.

A block data program unit can establish and define initial values for more than one common block, but a
given common block can appear in only one block data program unit in an executable program.

The name of a block data program unit can appear in the EXTERNAL statement of a different program unit to
force a search of object libraries for the block data program unit at link time.

Example

The following shows a block data program unit:

BLOCK DATA BLKDAT
 INTEGER S,X
 LOGICAL T,W
 DOUBLE PRECISION U
 DIMENSION R(3)
 COMMON /AREA1/R,S,U,T /AREA2/W,X,Y
 DATA R/1.0,2*2.0/, T/.FALSE./, U/0.214537D-7/, W/.TRUE./, Y/3.5/
END

The following shows another example:

C Main Program
 CHARACTER(LEN=10) family
 INTEGER a, b, c, d, e
 REAL X(10), Y(4)
 COMMON/Lakes/a,b,c,d,e,family/Blk2/x,y
 ...
C The following block-data subprogram initializes
C the named common block /Lakes/:

 1 Intel® Fortran Compiler Classic and Intel® Fortran Compiler Developer Guide and Reference

1272

C
 BLOCK DATA InitLakes
 COMMON /Lakes/ erie, huron, michigan, ontario,
 + superior, fname
 DATA erie, huron, michigan, ontario, superior /1, 2, 3, 4, 5/
 CHARACTER(LEN=10) fname/'GreatLakes'/
 INTEGER erie, huron, michigan, ontario, superior
 END

See Also
COMMON
DATA
EXTERNAL
Program Units and Procedures
Obsolescent Language Features in the Fortran Standard

BLOCK_LOOP and NOBLOCK_LOOP
General Compiler Directives: Enables or disables
loop blocking for the immediately following nested DO
loops. BLOCK_LOOP enables loop blocking for the
nested loops. NOBLOCK_LOOP disables loop blocking
for the nested loops.

Syntax

!DIR$ BLOCK_LOOP [clause[[,] clause]...]
!DIR$ NOBLOCK_LOOP

clause Is one or more of the following:

• FACTOR(expr)

expr Is a positive scalar constant integer
expression representing the blocking factor
for the specified loops.

This clause is optional. If the FACTOR clause is not present, the
blocking factor will be determined based on processor type and
memory access patterns and will be applied to the specified levels
in the nested loop following the directive.

At most only one FACTOR clause can appear in a BLOCK_LOOP
directive.

• LEVEL(level [, level]...])

level Is specified in the form:

const1 or const1:const2

where const1 is a positive integer constant
m <= 8 representing the loop at level m,
where the immediate following loop is level
1.

Intel® Fortran Compiler Classic and Intel® Fortran Compiler Developer Guide and Reference 1

1273

The const2 is a positive integer constant n
<= 8 representing the loop at level n,
where n > m: const1:const2 represents
the nested loops from level const1 through
const2.

This clause is optional. If the LEVEL clause is not present, the
specified blocking factor is applied to all levels of the immediately
following nested loops.

At most only one LEVEL clause can appear in a BLOCK_LOOP
directive.

The clauses can be specified in any order. If you do not specify any
clause, the compiler chooses the best blocking factor to apply to all
levels of the immediately following nested loop.

The BLOCK_LOOP directive lets you exert greater control over optimizations on a specific DO loop inside a
nested DO loop.

Using a technique called loop blocking, the BLOCK_LOOP directive separates large iteration counted DO loops
into smaller iteration groups. Execution of these smaller groups can increase the efficiency of cache space
use and augment performance.

If there is no LEVEL and FACTOR clause, the blocking factor will be determined based on the processor's type
and memory access patterns and it will apply to all the levels in the nested loops following this directive.

You can use the NOBLOCK_LOOP directive to tune the performance by disabling loop blocking for nested
loops.

NOTE
The loop-carried dependence is ignored during the processing of BLOCK_LOOP directives.

Example

!dir$ block_loop factor(256) level(1) ! applies blocking factor 256 to
!dir$ block_loop factor(512) level(2) ! the top level loop in the following
 ! nested loop and blocking factor 512 to
 ! the 2nd level {1st nested} loop

!dir$ block_loop factor(256) level(2)
!dir$ block_loop factor(512) level(1) ! levels can be specified in any order

!dir$ block_loop factor(256) level(1:2) ! adjacent loops can be specified as a range

!dir$ block_loop factor (256) ! the blocking factor applies to all levels of loop nest

!dir$ block_loop ! the blocking factor will be determined based on
 ! processor type and memory access patterns and will
 ! be applied to all the levels in the nested loop
 ! following the directive

!dir$ noblock_loop ! None of the levels in the nested loop following this
 ! directive will have a blocking factor applied

 1 Intel® Fortran Compiler Classic and Intel® Fortran Compiler Developer Guide and Reference

1274

Consider the following:

!dir$ block_loop factor(256) level(1:2)
do j = 1,n
 f = 0
 do i =1,n
 f = f + a (i) * b (i)
 enddo
 c(j) = c(j) + f
enddo

The above code produces the following result after loop blocking:

do jj=1,n/256+1
 do ii = 1,n/256+1
 do j = (jj-1)*256+1, min(jj*256, n)
 f = 0
 do i = (ii-1)*256+1, min(ii*256,n)
 f = f + a(i) * b(i)
 enddo
 c(j) = c(j) + f
 enddo
 enddo
enddo

See Also
General Compiler Directives
Syntax Rules for Compiler Directives
Rules for General Directives that Affect DO Loops
Rules for Loop Directives that Affect Array Assignment Statements
Nested DO Constructs

BLT
Elemental Intrinsic Function (Generic): Performs
a bitwise less than on its arguments.

Syntax
result = BLT (i,j)

i (Input) Must be of type integer or a binary, octal, or hexadecimal
literal constant.

j (Input) Must be of type integer or a binary, octal, or hexadecimal
literal constant.

If the kinds of i and j do not match, the value with the smaller kind is extended with zeros on the left and
the larger kind is used for the operation and the result.

Results

The result is true if the sequence of bits represented by i is less than the sequence of bits represented by j,
according to the method of bit sequence comparison in Bit Sequence Comparisons; otherwise, the result is
false.

The interpretation of a binary, octal, or hexadecimal literal constant as a sequence of bits is described in
Binary, Octal, Hexadecimal, and Hollerith Constants.

The model for the interpretation of an integer value as a sequence of bits is shown in Model for Bit Data.

Intel® Fortran Compiler Classic and Intel® Fortran Compiler Developer Guide and Reference 1

1275

Example

BLT (0, 2) has the value true. BLT (Z'FF', Z'FC') has the value false.

BSEARCHQQ
Portability Function: Performs a binary search of a
sorted one-dimensional array for a specified element.
The array elements cannot be derived types or
structures.

Module

USE IFPORT

Syntax
result = BSEARCHQQ (adrkey,adrarray,length,size)

adrkey (Input) INTEGER(4) on IA-32 architecture; INTEGER(8) on Intel® 64
architecture. Address of the variable containing the element to be
found (returned by LOC).

adrarray (Input) INTEGER(4) on IA-32 architecture; INTEGER(8) on Intel® 64
architecture. Address of the array (returned by LOC).

length (Input) INTEGER(4) on IA-32 architecture; INTEGER(8) on Intel® 64
architecture. Number of elements in the array.

size (Input) INTEGER(4). Positive constant less than 32,767 that specifies
the kind of array to be sorted. The following constants, defined in
IFPORT.F90, specify type and kind for numeric arrays:

Constant Type of array

SRT$INTEGER1 INTEGER(1)

SRT$INTEGER2 INTEGER(2) or equivalent

SRT$INTEGER4 INTEGER(4) or equivalent

SRT$INTEGER8 INTEGER(8) or equivalent

SRT$REAL4 REAL(4) or equivalent

SRT$REAL8 REAL(8) or equivalent

SRT$REAL16 REAL(16) or equivalent

If the value provided in size is not a symbolic constant and is less than 32,767, the array is assumed to be a
character array with size characters per element.

Results

The result type is INTEGER(4). It is an array index of the matched entry, or 0 if the entry is not found.

The array must be sorted in ascending order before being searched.

 1 Intel® Fortran Compiler Classic and Intel® Fortran Compiler Developer Guide and Reference

1276

Caution
The location of the array and the element to be found must both be passed by address using
the LOC function. This defeats Fortran type checking, so you must make certain that the
length and size arguments are correct, and that size is the same for the element to be found
and the array searched.

If you pass invalid arguments, BSEARCHQQ attempts to search random parts of memory. If the
memory it attempts to search is not allocated to the current process, the program is halted, and you
receive a General Protection Violation message.

Example

The following example shows a way to use BSEARCHQQ:

USE IFPORT
INTEGER(4) array(10)
INTEGER(4) result, target
INTEGER(8) length
length = SIZE(array)
do i = 1,length
array(i) = i
end do
target = 8
write(*,100)length,array,target
100 Format("Array length :: ",i8,/,"Array Elements :: ",10i5,/,"Target number :: ",i5)
result = BSEARCHQQ(LOC(target),LOC(array),length,SRT$INTEGER4)
write(*,101) result
101 Format("Location :: ",i4)
End

See Also
SORTQQ
LOC

BTEST
Elemental Intrinsic Function (Generic): Tests a bit
of an integer argument.

Syntax
result = BTEST (i,pos)

i (Input) Must be of type integer or of type logical (which is treated as
an integer).

pos (Input) Must be of type integer. It must not be negative and it must
be less than BIT_SIZE(i).

The rightmost (least significant) bit of i is in position 0.

Results

The result type is default logical.

The result is true if bit pos of i has the value 1. The result is false if pos has the value zero. For more
information, see Bit Functions.

For information on the model for the interpretation of an integer value as a sequence of bits, see Model for
Bit Data.

Intel® Fortran Compiler Classic and Intel® Fortran Compiler Developer Guide and Reference 1

1277

The setting of compiler options specifying integer size can affect this function.

Specific Name Argument Type Result Type

BBTEST INTEGER(1) LOGICAL(1)

BITEST1 INTEGER(2) LOGICAL(2)

BTEST 2 INTEGER(4) LOGICAL(4)

BKTEST INTEGER(8) LOGICAL(8)

1Or HTEST
2Or BJTEST

Example

BTEST (9, 3) has the value true.

If A has the value

 [1 2]
 [3 4],

the value of BTEST (A, 2) is

 [false false]
 [false true]

and the value of BTEST (2, A) is

 [true false]
 [false false].

The following shows more examples:

Function reference Value of i Result

BTEST (i,2) 00011100 01111000 .FALSE.

BTEST (i,3) 00011100 01111000 .TRUE.

The following shows another example:

INTEGER(1) i(2)
LOGICAL result(2)
i(1) = 2#10101010
i(2) = 2#01010101
result = BTEST(i, (/3,2/)) ! returns (.TRUE.,.TRUE.)
write(*,*) result

See Also
IBCLR
IBSET
IBCHNG
IOR
IEOR
IAND

 1 Intel® Fortran Compiler Classic and Intel® Fortran Compiler Developer Guide and Reference

1278

BYTE
Statement: Specifies the BYTE data type, which is
equivalent to INTEGER(1).

Example

BYTE count, matrix(4, 4) / 4*1, 4*2, 4*4, 4*8 /
BYTE num / 10 /

See Also
INTEGER
Integer Data Types

C to D
This section describes language features that start with C or D.

C to D
C_ASSOCIATED
Intrinsic Module Inquiry function (Generic):
Indicates the association status of one argument, or
whether two arguments are associated with the same
entity.

Module

USE, INTRINSIC :: ISO_C_BINDING

Syntax

result = C_ASSOCIATED(c_ptr_1[, c_ptr_2])

c_ptr_1 (Input) Is a scalar of derived type C_PTR or C_FUNPTR.

c_ptr_2 (Optional; input) Is a scalar of the same type as c_ptr_1.

Results

The result is a scalar of type default logical. The result value is one of the following:

• If only c_ptr_1 is specified, the result is false if c_ptr_1 is a C null pointer; otherwise, the result is true.
• If c_ptr_2 is specified, the result is false if c_ptr_1 is a C null pointer. The result is true if c_ptr_1 is equal

to c_ptr_2; otherwise, the result is false.

See Also
Intrinsic Modules

ISO_C_BINDING Module

C_F_POINTER
Intrinsic Module Subroutine: Associates a data
pointer with the target of a C pointer and specifies its
shape.

Module

USE, INTRINSIC :: ISO_C_BINDING

Intel® Fortran Compiler Classic and Intel® Fortran Compiler Developer Guide and Reference 1

1279

Syntax

CALL C_F_POINTER(cptr, fptr [, shape, lower])

cptr (Input) Is a scalar of derived type C_PTR. Its value is the C address of
an interoperable data entity, or the result of a reference to function
C_LOC with a noninteroperable argument. If the value of cptr is the C
address of a Fortran variable, it must have the TARGET attribute.

fptr (Output) Is a data pointer. If it is an array, shape must be specified.

shape (Optional, input) Must be of type integer and rank one. Its size equals
the rank of fptr.

lower (Optional, input) Must be of type integer and rank one. Its size equals
the rank of fptr. It can only appear if shape also appears.

If the value of cptr is the C address of an interoperable data entity, fptr must be a data pointer with type and
type parameters interoperable with the type of the entity. In this case, fptr becomes pointer-associated with
the target of cptr.

If fptr is an array, it has the shape specified by shape. If lower is present, the lower bounds of fptr are
specified by lower; otherwise, each lower bound is 1.

If the value of cptr is the result of a reference to C_LOC with a noninteroperable argument x, the following
rules apply:

• C_LOC argument x (or its target) must not have been deallocated or have become undefined due to the
execution of a RETURN or END statement since the reference to C_LOC.

• fptr is a scalar pointer with the same type and type parameters as x. fptr becomes pointer-associated with
x, or it becomes pointer-associated with its target if x is a pointer.

Since the resulting data pointer fptr could point to a target that was not allocated with an ALLOCATE
statement, fptr cannot be freed with a DEALLOCATE statement.

See Also
Intrinsic Modules

ISO_C_BINDING Module

C_LOC

C_F_PROCPOINTER
Intrinsic Module Subroutine: Associates a Fortran
procedure pointer with the target of a C function
pointer.

Module

USE, INTRINSIC :: ISO_C_BINDING

Syntax

CALL C_F_PROCPOINTER(cptr, fptr)

cptr (Input) Is a scalar of derived type C_FUNPTR. Its value is the C
address of a procedure.

 1 Intel® Fortran Compiler Classic and Intel® Fortran Compiler Developer Guide and Reference

1280

fptr (Output) Is a Fortran procedure pointer. It becomes pointer-associated
with the target of cptr.

Examples

Example 1

The following Fortran subroutine can be called from a C program that passes a pointer to a C function to be
called:

SUBROUTINE CallIt (cp) BIND(C)
USE, INTRINSIC :: ISO_C_BINDING
TYPE(C_FUNPTR), INTENT(IN) :: cp
ABSTRACT INTERFACE
 SUBROUTINE Add_Int (i) BIND(C)
 IMPORT
 INTEGER(C_INT), INTENT(INOUT) :: i
 END SUBROUTINE Add_Int
END INTERFACE
PROCEDURE(Add_Int), POINTER :: fp
INTEGER(C_INT) :: j

CALL C_F_PROCPOINTER (cp, fp)
j = 1
CALL fp(j)
...

Example 2

In the following C code, a function pointer to the C function foo is passed to the Fortran subroutine bar. bar
converts the function pointer to a procedure pointer, and calls foo through the converted procedure pointer.

main.c:
#include <stdio.h>

extern void bar_ (void (**) (int*));
extern void foo (int *a){
 printf (" The value is %d\n", *a)
}

int main () {
 void (*fun_b)(int*) = NULL;
 int *i;
 int j = 10;

 fun_b = foo;
 i = &j;
 printf ("Test in C\n");
 fun_b (i);
 printf ("Test in Fortran\n");
 bar_ (&fun_b);
}

bar.f90
SUBROUTINE bar (c_fptr)
 USE ISO_C_BINDING
 TYPE(c_funptr) :: c_fptr
 PROCEDURE(),POINTER :: proc_ptr
 INTEGER(c_int) :: i = 20

Intel® Fortran Compiler Classic and Intel® Fortran Compiler Developer Guide and Reference 1

1281

 CALL c_f_procpointer (c_fptr, proc_ptr)
 CALL proc_ptr (i)

END SUBROUTINE bar
When these two files are compiled, linked, and executed, the output is:

Test in C
 The value is 10
Test in Fortran
 The value is 20

See Also
Intrinsic Modules

ISO_C_BINDING Module

Procedure Pointers

PROCEDURE

C_F_STRPOINTER
Intrinsic Module Subroutine (Generic): Associates
a Fortran character data pointer with a C string.

Module

USE, INTRINSIC :: ISO_C_BINDING

Syntax

CALL C_F_STRPOINTER(cstrarray, fstrptr [, nchars])
-or-

CALL C_F_STRPOINTER(cstrptr, fstrptr [, nchars])

cstrarray (Input) Is a scalar rank 1 character array of type C_CHAR, with a
length type parameter of one. The actual argument must have the
TARGET attribute and be simply contiguous; it must be of derived type
C_PTR.

cstrptr (Input) Is a scalar with type C_PTR.

It has the value of the C address of a contiguous array STRING
containing nchars characters. It must not have a value that is the C
address of a Fortran variable that does not have the TARGET attribute.

fstrptr (Output) Is a deferred-length character pointer whose kind type is
C_CHAR.

If cstrarray appears, fstrptr becomes pointer-associated with the
leftmost characters of the actual argument. If cstrptr appears, fstrptr
becomes pointer-associated with the leftmost characters, in array
element order, of STRING.

The length type parameter of fstrptr becomes the largest value for
which no C null characters appear in the sequence, and is less than or
equal to nchars if it is present; otherwise, it is the size of cstrarray.

 1 Intel® Fortran Compiler Classic and Intel® Fortran Compiler Developer Guide and Reference

1282

nchars (Optional, input) Must be of type integer with a nonnegative value. It
must be present if cstrarray is assumed-size, or if cstrptr appears.

If cstrarray appears, nchars must not have a value greater than the
size of cstrarray.

Examples

The following procedure prints the value of up to the first 2048 characters of the PATH environment variable
returned by calling the C library function getenv:

 SUBROUTINE print_path () BIND (C)
 USE ISO_C_BINDING
 TYPE (C_PTR) :: getenv_res
 CHARACTER(LEN=:,KIND=C_CHAR),POINTER :: path
 INTERFACE
 FUNCTION getenv (env_var) BIND (C)
 IMPORT C_PTR, C_CHAR
 TYPE (C_PTR) :: getenv
 CHARACTER(KIND=C_CHAR),INTENT(IN) :: env_var (*)
 END FUNCITON
 END INTERFACE
 getenv_res = getenv ("PATH"//C_NULL_CHAR)
 IF (.NOT. C_ASSOCIATED (getenv_res)) THEN
 PRINT *, "PATH not set"
 ELSE
 CALL C_F_STRPOINTER (getenv_res, path, 2048)
 PRINT *, TRIM (path)
 END IF
 END SUBROUTINE print_path

The following procedure writes a C string to a Fortran internal file. The string can be of any length. The
nchars argument in the call to C_F_POINTER limits the length of f_char_ptr to no more than n_chars
characters, which is the maximum length of the internal file:

 SUBROUTINE write_string (c_string, i_file) BIND (C)
 USE ISO_C_BINDING
 CHARACTER(LEN=:),INTENT(OUT) :: i_file
 CHARACTER(LEN=:,KIND=C_CHAR),TARGET,INTENT(IN) :: c_string
 CHARACTER(LEN=:,KIND=C_CHAR),POINTER :: f_char_ptr
 INTEGER :: n_chars
 n_chars = LEN(i_file)
 CALL C_F_STRPOINTER (c_string, f_char_ptr, n_chars)
 PRINT i_file, f_char_ptr
 END SUBROUTINE write_string

See Also
Intrinsic Modules

ISO_C_BINDING Module

C_FUNLOC
Intrinsic Module Inquiry function (Generic):
Returns the C address of a function pointer.

Module

USE, INTRINSIC :: ISO_C_BINDING

Intel® Fortran Compiler Classic and Intel® Fortran Compiler Developer Guide and Reference 1

1283

Syntax

result = C_FUNLOC(x)

x (Input) Is a procedure or a Fortran pointer of type INTEGER
associated with a procedure. If x is a procedure pointer, it must be
associated. x cannot be a coindexed object. If C_FUNLOC is called
from a PURE procedure, x must be PURE.

Results

The result is a scalar of derived type C_FUNPTR. The result value represents the C address of the argument.

See Also
Intrinsic Modules

ISO_C_BINDING Module

C_LOC
Intrinsic Module Inquiry function (Generic):
Returns the C address of an argument.

Module

USE, INTRINSIC :: ISO_C_BINDING

Syntax

result = C_LOC(x)

x (Input) Is a non-coindexed variable that has the TARGET attribute. It
must have interoperable type and type parameters, and it must be a
non-polymorphic variable with no length type parameters, or an
assumed-type variable.

If it is an array, it must be contiguous with non-zero size. It cannot be
a zero-length string. If it is a pointer, it must be associated. If it has
the ALLOCATABLE attribute, it must be allocated.

Results

The result is a scalar of derived type C_PTR. The result value represents the C address of the argument.

The result is a value that can be used as an actual CPTR argument in a call to procedure C_F_POINTER where
fptr has attributes that allow the pointer assignment fptr=>x. Such a call to C_F_POINTER has the effect of
the pointer assignment fptr=>x.

If x is a scalar, the result is determined as if C_PTR were a derived type containing a scalar pointer
component PX of the type and type parameters of x and the pointer assignment CPTR%PX=>x were
executed.

If x is an array, the result is determined as if C_PTR were a derived type containing a scalar pointer
component PX of the type and type parameters of x and the pointer assignment CPTR%PX to the first
element of x were executed.

See Also
Intrinsic Modules

ISO_C_BINDING Module

 1 Intel® Fortran Compiler Classic and Intel® Fortran Compiler Developer Guide and Reference

1284

C_F_POINTER

C_SIZEOF
Intrinsic Module Inquiry function (Generic):
Returns the number of bytes of storage used by the
argument. It cannot be passed as an actual argument.

Module

USE, INTRINSIC :: ISO_C_BINDING

Syntax

result = C_SIZEOF(x)

x (Input) Is an interoperable data entity of any type and any rank. It
must not be an assumed-size array or an assumed-rank array
associated with an assumed-size array.

Results

The result is a scalar of type INTEGER(4) on IA-32 architecture; INTEGER(8) on Intel® 64 architecture. If x is
scalar, the result value is the size of x in bytes. If x is an array, the result value is the size of a single element
of x multiplied by the number of elements in x.

Example

Consider the following:

INTEGER(4) :: S
INTEGER(4) :: T(3)
C_SIZEOF(S) ! has the value 4
C_SIZEOF(T) ! has the value 12

See Also
Intrinsic Modules

ISO_C_BINDING Module

SIZEOF

CACHESIZE
Inquiry Intrinsic Function (Generic): Returns the
size of a level of the memory cache.

Syntax
result = CACHESIZE (n)

n (Input) Must be scalar and of type integer.

Results

The result type and kind are the same as n. The result value is the number of kilobytes in the level n
memory cache.

n = 1 specifies the first level cache; n = 2 specifies the second level cache; etc. If cache level n does not
exist, the result value is 0.

Intel® Fortran Compiler Classic and Intel® Fortran Compiler Developer Guide and Reference 1

1285

Example

CACHESIZE(1) returns 16 for a processor with a 16KB first level memory cache.

CALL
Statement: Transfers control to a subroutine
subprogram.

Syntax
CALL sub[([a-arg[,a-arg]...])]

sub Is the name of the subroutine subprogram or other external
procedure, or a dummy argument associated with a subroutine
subprogram or other external procedure.

a-arg Is an actual argument optionally preceded by [keyword=], where
keyword is the name of a dummy argument in the explicit interface for
the subroutine. The keyword is assigned a value when the procedure
is invoked.

Each actual argument must be a variable, an expression, the name of
a procedure, a procedure pointer, or an alternate return specifier. (It
must not be the name of an internal procedure, statement function, or
the generic name of a procedure.)

An alternate return specifier is an asterisk (*), or ampersand (&)
followed by the label of an executable branch target statement in the
same scoping unit as the CALL statement. (An alternate return is an
obsolescent feature in Standard Fortran.)

Description

When the CALL statement is executed, any expressions in the actual argument list are evaluated, then
control is passed to the first executable statement or construct in the subroutine. When the subroutine
finishes executing, control returns to the next executable statement following the CALL statement, or to a
statement identified by an alternate return label (if any).

If an argument list appears, each actual argument is associated with the corresponding dummy argument by
its position in the argument list or by the name of its keyword. The arguments must agree in type and kind
parameters.

If positional arguments and argument keywords are specified, the argument keywords must appear last in
the actual argument list.

If a dummy argument is optional, the actual argument can be omitted.

An actual argument associated with a dummy procedure or a procedure pointer dummy argument must be
the specific name of a procedure, an associated procedure pointer, or it must be another dummy procedure.
Certain specific intrinsic function names must not be used as actual arguments (see table Specific Functions
Not Allowed as Actual Arguments in Intrinsic Procedures). Specific names for intrinsic procedures are an
obsolescent feature in the Fortran standard.

The procedure invoked by the CALL statement must be a subroutine subprogram and not a function. Calling a
function as if it was a subroutine can cause unpredictable results.

 1 Intel® Fortran Compiler Classic and Intel® Fortran Compiler Developer Guide and Reference

1286

Example

The following example shows valid CALL statements:

CALL CURVE(BASE,3.14159+X,Y,LIMIT,R(LT+2))
CALL PNTOUT(A,N,'ABCD')
CALL EXIT
CALL MULT(A,B,*10,*20,C) ! The asterisks and ampersands denote
CALL SUBA(X,&30,&50,Y) ! alternate returns

The following example shows a subroutine with argument keywords:

PROGRAM KEYWORD_EXAMPLE
 INTERFACE
 SUBROUTINE TEST_C(I, L, J, KYWD2, D, F, KYWD1)
 INTEGER I, L(20), J, KYWD1
 REAL, OPTIONAL :: D, F
 COMPLEX KYWD2
 ...
 END SUBROUTINE TEST_C
 END INTERFACE
 INTEGER I, J, K
 INTEGER L(20)
 COMPLEX Z1
 CALL TEST_C(I, L, J, KYWD1 = K, KYWD2 = Z1)
 ...

The first three actual arguments are associated with their corresponding dummy arguments by position. The
argument keywords are associated by keyword name, so they can appear in any order.

Note that the interface to subroutine TEST has two optional arguments that have been omitted in the CALL
statement.

The following shows another example of a subroutine call with argument keywords:

CALL TEST(X, Y, N, EQUALITIES = Q, XSTART = X0)
The first three arguments are associated by position.

The following shows another example:

!Variations on a subroutine call
 REAL S,T,X
 INTRINSIC NINT
 S=1.5
 T=2.5
 X=14.7
 !This calls SUB1 using keywords. NINT is an intrinsic function.
 CALL SUB1(B=X,C=S*T,FUNC=NINT,A=4.0)
!Here is the same call using an implicit reference
 CALL SUB1(4.0,X,S*T,NINT)
 CONTAINS
 SUBROUTINE sub1(a,b,c,func)
 INTEGER func
 REAL a,b,c
 PRINT *, a,b,c, func(b)
 END SUBROUTINE
 END

See Also
SUBROUTINE
CONTAINS

Intel® Fortran Compiler Classic and Intel® Fortran Compiler Developer Guide and Reference 1

1287

RECURSIVE and NONRECURSIVE
USE
Program Units and Procedures

CANCEL
OpenMP* Fortran Compiler Directive: Requests
cancellation of the innermost enclosing region of the
construct specified, and causes the encountering
implicit or explicit task to proceed to the end of the
canceled construct.

Syntax

!$OMP CANCEL construct-clause [[,] if-clause]

construct-clause Is one of the following:

• DO
• PARALLEL
• SECTIONS
• TASKGROUP

if-clause (Optional) IF (scalar-logical-expression)

The binding thread set of a CANCEL construct is the current team. The cancel region binds to the innermost
enclosing construct of the type corresponding to the construct-clause specified in the directive specifying the
innermost DO, PARALLEL, SECTIONS, or TASKGROUP construct.

This is a stand-alone directive, so there are some restrictions on its placement within a program:

• It can only be placed at a point where a Fortran executable statement is allowed.
• It cannot be used as the action statement in an IF statement, or as the executable statement following a

label, if the label is referenced in the program.

If construct-clause is TASKGROUP, the CANCEL construct must be closely nested inside a TASK construct.
Otherwise, the CANCEL construct must be closely nested inside an OpenMP construct that matches the type
specified in construct-clause.

The CANCEL construct requests cancellation of the innermost enclosing region of the type specified. The
request is checked at a cancellation point. When a cancellation is observed, execution jumps to the end of
the canceled region.

Cancellation points are implied at certain locations, as follows:

• Implicit barriers
• BARRIER regions
• CANCEL regions
• CANCELLATION POINT regions

When cancellation of tasks occurs with a CANCEL TASKGROUP construct, the encountering task jumps to the
end of its task region and is considered complete. Any task that belongs to the innermost enclosing
taskgroup and has already begun execution, must run to completion or run until a cancellation point is
reached. Any task that belongs to the innermost enclosing taskgroup and has not begun execution may be
discarded and considered completed.

When cancellation occurs for a PARALLEL region, each thread of the binding thread set resumes execution at
the end of the canceled region and any tasks that have been created by a TASK construct and their
descendants are canceled according to the above taskgroup cancellation semantics.

When cancellation occurs for a DO or SECTIONS region, each thread of the binding thread set resumes
execution at the end of the canceled region but no task cancellation occurs.

 1 Intel® Fortran Compiler Classic and Intel® Fortran Compiler Developer Guide and Reference

1288

A DO construct that is being canceled must not have a NOWAIT or an ORDERED clause. A SECTIONS
construct that is being canceled must not have a NOWAIT clause.

The behavior for concurrent cancellation of a region and a region nested within it is unspecified.

NOTE
You must release locks and similar data structures that can cause a deadlock when a CANCEL
construct is encountered; blocked threads cannot be canceled.

If the canceled construct contains a REDUCTION or LASTPRIVATE clause, the final value of the REDUCTION or
LASTPRIVATE variable is undefined.

All private objects or subobjects with the ALLOCATABLE attribute that are allocated inside the canceled
construct are deallocated.

See Also
OpenMP Fortran Compiler Directives
Syntax Rules for Compiler Directives
CANCELLATION POINT
Parallel Processing Model for information about Binding Sets

CANCELLATION POINT
OpenMP* Fortran Compiler Directive: Defines a
point at which implicit or explicit tasks check to see if
cancellation has been requested for the innermost
enclosing region of the type specified. This construct
does not implement a synchronization between
threads or tasks.

Syntax

!$OMP CANCELLATION POINT construct-clause

construct-clause Is one of the following:

• DO
• PARALLEL
• SECTIONS
• TASKGROUP

This is a stand-alone directive, so there are some restrictions on its placement within a program:

• It can only be placed at a point where a Fortran executable statement is allowed.
• It cannot be used as the action statement in an IF statement, or as the executable statement following a

label, if the label is referenced in the program.

A CANCELLATION POINT region binds to the current task region.

If construct-clause is TASKGROUP, the CANCELLATION POINT construct must be closely nested inside a TASK
construct. Otherwise, the CANCELLATION POINT construct must be closely nested inside an OpenMP
construct that matches the type specified by the construct-clause.

When an implicit or explicit task reaches a user-defined cancellation point, the task immediately checks for
cancellation of the region specified in the clause and performs cancellation of this region if cancellation is
observed. If the clause specified is TASKGROUP then the current task region is canceled.

An OpenMP program with orphaned CANCELLATION POINT constructs is non-conforming.

See Also
OpenMP Fortran Compiler Directives

Intel® Fortran Compiler Classic and Intel® Fortran Compiler Developer Guide and Reference 1

1289

Syntax Rules for Compiler Directives
CANCEL

CASE
Statement: Marks the beginning of a CASE construct.
A CASE construct conditionally executes one block of
constructs or statements depending on the value of a
scalar expression in a SELECT CASE statement.

Syntax
[name:] SELECT CASE (expr)
[CASE (case-value [, case-value] ...) [name]
 block]...
[CASE DEFAULT [name]
 block]
END SELECT [name]

name Is the name of the CASE construct.

expr Is a scalar expression of type integer, logical, or character (enclosed in
parentheses). Evaluation of this expression results in a value called
the case index.

case-value Is one or more scalar integer, logical, or character initialization
expressions enclosed in parentheses. Each case-value must be of the
same type and kind parameter as expr. If the type is character, case-
value and expr can be of different lengths, but their kind parameter
must be the same.

Integer and character expressions can be expressed as a range of
case values, taking one of the following forms:

 low:high
 low:
 :high

Case values must not overlap.

block Is a sequence of zero or more statements or constructs.

Description

If a construct name is specified in a SELECT CASE statement, the same name must appear in the
corresponding END SELECT statement. The same construct name can optionally appear in any CASE
statement in the construct. The same construct name must not be used for different named constructs in the
same scoping unit.

The case expression (expr) is evaluated first. The resulting case index is compared to the case values to find
a matching value (there can only be one). When a match occurs, the block following the matching case value
is executed and the construct terminates.

The following rules determine whether a match occurs:

• When the case value is a single value (no colon appears), a match occurs as follows:

 1 Intel® Fortran Compiler Classic and Intel® Fortran Compiler Developer Guide and Reference

1290

Data Type A Match Occurs If:

Logical case-index .EQV. case-value

Integer or Character case-index = = case-value

• When the case value is a range of values (a colon appears), a match depends on the range specified, as
follows:

Range A Match Occurs If:

low : case-index >= low

: high case-index <= high

low : high low <= case-index <= high

The following are all valid case values:

CASE (1, 4, 7, 11:14, 22) ! Individual values as specified:
 ! 1, 4, 7, 11, 12, 13, 14, 22
CASE (:-1) ! All values less than zero
CASE (0) ! Only zero
CASE (1:) ! All values above zero

If no match occurs but a CASE DEFAULT statement is present, the block following that statement is executed
and the construct terminates.

If no match occurs and no CASE DEFAULT statement is present, no block is executed, the construct
terminates, and control passes to the next executable statement or construct following the END SELECT
statement.

Intel® Fortran Compiler Classic and Intel® Fortran Compiler Developer Guide and Reference 1

1291

The following figure shows the flow of control in a CASE construct:

Flow of Control in CASE Constructs

 1 Intel® Fortran Compiler Classic and Intel® Fortran Compiler Developer Guide and Reference

1292

You cannot use branching statements to transfer control to a CASE statement. However, branching to a
SELECT CASE statement is allowed. Branching to the END SELECT statement is allowed only from within the
CASE construct.

Example

The following are examples of CASE constructs:

INTEGER FUNCTION STATUS_CODE (I)
 INTEGER I
 CHECK_STATUS: SELECT CASE (I)
 CASE (:-1)
 STATUS_CODE = -1
 CASE (0)
 STATUS_CODE = 0
 CASE (1:)
 STATUS_CODE = 1
 END SELECT CHECK_STATUS
END FUNCTION STATUS_CODE

SELECT CASE (J)
CASE (1, 3:7, 9) ! Values: 1, 3, 4, 5, 6, 7, 9
 CALL SUB_A
CASE DEFAULT
 CALL SUB_B
END SELECT

The following three examples are equivalent:

1. SELECT CASE (ITEST .EQ. 1)
 CASE (.TRUE.)
 CALL SUB1 ()
 CASE (.FALSE.)
 CALL SUB2 ()
 END SELECT

2. SELECT CASE (ITEST)
 CASE DEFAULT
 CALL SUB2 ()
 CASE (1)
 CALL SUB1 ()
 END SELECT

3. IF (ITEST .EQ. 1) THEN
 CALL SUB1 ()
 ELSE
 CALL SUB2 ()
 END IF

The following shows another example:

CHARACTER*1 cmdchar
GET_ANSWER: SELECT CASE (cmdchar)
CASE ('0')
 WRITE (*, *) "Must retrieve one to nine files"
CASE ('1':'9')
 CALL RetrieveNumFiles (cmdchar)
CASE ('A', 'a')
 CALL AddEntry
CASE ('D', 'd')
 CALL DeleteEntry

Intel® Fortran Compiler Classic and Intel® Fortran Compiler Developer Guide and Reference 1

1293

CASE ('H', 'h')
 CALL Help
CASE DEFAULT
 WRITE (*, *) "Command not recognized; please use H for help"
END SELECT GET_ANSWER

See Also
Execution Control

CDFLOAT
Portability Function: Converts a COMPLEX(4)
argument to double-precision real type.

Module

USE IFPORT

Syntax
result = CDFLOAT (input)

input (Input) COMPLEX(4). The value to be converted.

Results

The result type is REAL(8).

CEILING
Elemental Intrinsic Function (Generic): Returns
the smallest integer greater than or equal to its
argument.

Syntax
result = CEILING (a[,kind])

a (Input) Must be of type real.

kind (Input; optional) Must be a scalar integer constant expression.

Results

The result type is integer. If kind is present, the kind parameter of the result is that specified by kind;
otherwise, the kind parameter of the result is that of default integer. If the processor cannot represent the
result value in the kind of the result, the result is undefined.

The value of the result is equal to the smallest integer greater than or equal to a.

The setting of compiler options specifying integer size can affect this function.

Example

CEILING (4.8) has the value 5.

CEILING (-2.55) has the value -2.0.

The following shows another example:

INTEGER I, IARRAY(2)
I = CEILING(8.01) ! returns 9
I = CEILING(-8.01) ! returns -8
IARRAY = CEILING((/8.01,-5.6/)) ! returns (9, -5)

 1 Intel® Fortran Compiler Classic and Intel® Fortran Compiler Developer Guide and Reference

1294

See Also
FLOOR

CFI_address
C function prototype: Returns the C address of an
object described by a C descriptor.

Syntax

void *CFI_address (const CFI_cdesc_t *dv,
 const CFI_index_t subscripts[]);

Formal Parameters:

dv The address of a C descriptor describing the object. The object must
not be an unallocated allocatable variable or a pointer that is not
associated.

subscripts A null pointer or the address of an array of type CFI_index_t. If the
object is an array, subscripts must be the address of an array of type
CFI_index_t with at least n elements, where n is the rank of the
object. The value of subscripts [i] must be within the bounds of
dimension i specified by the dim member of the C descriptor.

Result Value

If the object is an array of rank n, the result is the C address of the element of the object that the first n
elements of the subscripts argument would specify if used as subscripts. If the object is scalar, the result is
its C address.

Example

If dv is the address of a C descriptor for the Fortran array A declared as follows:

REAL(C_FLOAT) :: A(100, 100)
then the following code calculates the C address of A(5, 10):

CFI_index_t subscripts[2];
float *address;
subscripts[0] = 4;
subscripts[1] = 9;
address = (float *) CFI_address(dv, subscripts);

See Also
C Structures Typedefs and Macros for interoperability
Interoperating with arguments using C descriptors

CFI_allocate
C function prototype: Allocates memory for an
object described by a C descriptor.

Syntax

int CFI_allocate (CFI_cdesc_t *dv,
 const CFI_index_t lower_bounds[]),
 const CFI_index_t upper_bounds[],
 size_t elem_len);

Intel® Fortran Compiler Classic and Intel® Fortran Compiler Developer Guide and Reference 1

1295

Formal Parameters:

dv The address of a C descriptor specifying the rank and type of the
object. The base_addr member of the C descriptor is a null pointer. If
the type is not a character type, the elem_len member must specify
the element length. The attribute member must have a value of
CFI_attribute_allocatable or CFI_attribute_pointer.

lower_bounds The address of an array with at least dv->rank elements. The first dv-
>rank elements of lower_bounds provide the lower Fortran bounds for
each corresponding dimension of the object.

upper_bounds The address of an array with at least dv->rank elements. The first dv-
>rank elements of upper_bounds provide the upper Fortran bounds
for each corresponding dimension of the object.

elem_len If the type specified in the C descriptor type is a Fortran character
type, the value of elem_len is the storage size in bytes of an element
of the object; otherwise, elem_len is ignored.

Description

Successful execution of CFI_allocate allocates memory for the object described by the C descriptor with the
address dv using the same mechanism as the Fortran ALLOCATE statement, and assigns the address of that
memory to dv->base_addr.

The first dv->rank elements of the lower_bounds and upper_bounds arguments provide the lower and upper
Fortran bounds, respectively, for each corresponding dimension of the object. The supplied lower and upper
bounds override any current dimension information in the C descriptor. If the rank is zero, the lower_bounds
and upper_bounds arguments are ignored.

If the type specified in the C descriptor is a character type, the supplied element length overrides the current
element-length information in the descriptor.

If an error is detected, the C descriptor is not modified.

Result Value

The result is an error indicator.

Example

If dv is the address of a C descriptor for the Fortran array A declared as follows:

REAL, ALLOCATABLE :: A(:, :)
and the array is not allocated, the following code allocates it to be of shape [100, 500]:

CFI_index_t lower[2], upper[2];
int ind;
lower[0] = 1; lower[1] = 1;
upper[0] = 100; upper[1] = 500;
ind = CFI_allocate(dv, lower, upper, 0);

See Also
ALLOCATE
C Structures Typedefs and Macros for interoperability
Interoperating with arguments using C descriptors

 1 Intel® Fortran Compiler Classic and Intel® Fortran Compiler Developer Guide and Reference

1296

CFI_deallocate
C function prototype: Deallocates memory for an
object described by a C descriptor.

Syntax

int CFI_deallocate (CFI_cdesc_t *dv);
Formal Parameters:

dv The address of a C descriptor describing the object. It must have been
allocated using the same mechanism as the Fortran ALLOCATE
statement. If the object is a pointer, it must be associated with a
target satisfying the conditions for successful deallocation by the
Fortran DEALLOCATE statement.

Description

Successful execution of CFI_deallocate deallocates memory for the object using the same mechanism as the
Fortran DEALLOCATE statement, and the base_addr member of the C descriptor becomes a null pointer.

If an error is detected, the C descriptor is not modified.

Result Value

The result is an error indicator.

Example

If dv is the address of a C descriptor for the Fortran array A declared as follows:

REAL, ALLOCATABLE :: A(:, :)
and the array is allocated, the following code deallocates it:

int ind;
ind = CFI_deallocate(dv);

See Also
ALLOCATE
DEALLOCATE
C Structures Typedefs and Macros for interoperability
Interoperating with arguments using C descriptors

CFI_establish
C function prototype: Establishes a C descriptor.

Syntax

int CFI_establish(CFI_cdesc_t *dv, void *base_addr,
 CFI_attribute_t attribute,
 CFI_type_t type, size_t elem_len,
 CFI_rank_t rank,
 const CFI_index_t extents[]);

Formal Parameters:

dv The address of a data object large enough to hold a C descriptor of
the rank specified by rank. It must not have the same value as either
a C formal parameter that corresponds to a Fortran actual argument

Intel® Fortran Compiler Classic and Intel® Fortran Compiler Developer Guide and Reference 1

1297

or a C actual argument that corresponds to a Fortran dummy
argument. It must not be the address of a C descriptor that describes
an allocated allocatable object.

base_addr A null pointer or the base address of the object to be described. If it is
not a null pointer, it must be the address of a contiguous storage
sequence that is appropriately aligned for an object of the type
specified by type.

attribute One of the attribute codes in Table "Macros for attribute codes" in C
Typedefs and Macros for interoperability. If it is
CFI_attribute_allocatable, base_addr must be a null pointer.

type One of the type codes in Table "Macros for type codes" in C Typedefs
and Macros for interoperability.

elem_len If the type is CFI_type_struct, CFI_type_other, or a Fortran
character type code, elem_len must be greater than zero and equal to
the storage size in bytes of an element of the object. Otherwise, type
is ignored.

rank A value in the range 0 ≤ rank ≤ CFI_MAX_RANK. It specifies the rank
of the object.

extents This is ignored if rank is equal to zero or if base_addr is a null pointer.
Otherwise, it must be the address of an array with rank elements; the
value of each element must be nonnegative, and extents[i] specifies
the extent of dimension i of the object.

Description

Successful execution of CFI_establish updates the object with the address dv to be an established C
descriptor for a nonallocatable nonpointer data object of known shape, an unallocated allocatable object, or a
data pointer.

If base_addr is not a null pointer, it is the address for a nonallocatable entity that is a scalar or a contiguous
array. If the attribute argument has the value CFI_attribute_pointer, the lower bounds of the object
described by dv are set to zero. If base_addr is a null pointer, the established C descriptor is for an
unallocated allocatable, a disassociated pointer, or is a C descriptor that has the attribute
CFI_attribute_other but does not describe a data object. If base_addr is the C address of a Fortran data
object, the type and elem_len arguments must be consistent with the type and type parameters of the
Fortran data object.

The remaining properties of the object are given by the other arguments.

CFI_establish is used to initialize a C descriptor declared in C with CFI_CDESC_T before passing it to any
other functions as an actual argument, in order to set the rank, attribute, type and element length.

A C descriptor with attribute CFI_attribute_other and a base_addr that is a null pointer can be used as
the argument result in calls to CFI_section or CFI_select_part, which will produce a C descriptor for a
nonallocatable nonpointer data object.

If an error is detected, the object with the address dv is not modified.

Result Value

The result is an error indicator.

 1 Intel® Fortran Compiler Classic and Intel® Fortran Compiler Developer Guide and Reference

1298

Example

The following code fragment establishes a C descriptor for an unallocated rank-one allocatable array that can
be passed to Fortran for allocation there:

CFI_rank_t rank;
CFI_CDESC_T(1) field;
int ind;
rank = 1;
ind = CFI_establish((CFI_cdesc_t *)&field, NULL,
CFI_attribute_allocatable,
CFI_type_double, 0, rank, NULL);

If the following Fortran type definition is specified:

TYPE, BIND(C) :: T
REAL(C_DOUBLE) :: X
COMPLEX(C_DOUBLE_COMPLEX) :: Y
END TYPE

and a Fortran subprogram that has an assumed-shape dummy argument of type T, the following code
fragment creates a descriptor a_fortran for an array of size 100 that can be used as the actual argument in
an invocation of the subprogram from C:

typedef struct {double x; double _Complex y;} t;
t a_c[100];
CFI_CDESC_T(1) a_fortran;
int ind;
CFI_index_t extent[1];

extent[0] = 100;
ind = CFI_establish((CFI_cdesc_t *)&a_fortran, a_c,
CFI_attribute_other,
CFI_type_struct, sizeof(t), 1, extent);

See Also
C Structures Typedefs and Macros for interoperability
Interoperating with arguments using C descriptors

CFI_is_contiguous
C function prototype: Tests contiguity of an array.

Syntax

int CFI_is_contiguous(const CFI_cdesc_t *dv);
Formal Parameters:

dv The address of a C descriptor describing an array. The base_addr
member of the C descriptor must not be a null pointer.

Result Value

The value of the result is 1 if the array described by dv is contiguous; otherwise, 0.

Since assumed-size and allocatable arrays are always contiguous, the result of CFI_is_contiguous on a C
descriptor for such an array is 1.

Intel® Fortran Compiler Classic and Intel® Fortran Compiler Developer Guide and Reference 1

1299

See Also
C Structures Typedefs and Macros for interoperability
Interoperating with arguments using C descriptors

CFI_section
C function prototype: Updates a C descriptor for an
array section for which each element is an element of
a given array.

Syntax

int CFI_section(CFI_cdesc_t *result, const CFI_cdesc_t *source,
 const CFI_index_t lower_bounds[],
 const CFI_index_t upper_bounds[],
 const CFI_index_t strides[]);

Formal Parameters:

result The address of a C descriptor with rank equal to the rank of source
minus the number of zero strides. The attribute member must have
the value CFI_attribute_other or CFI_attribute_pointer. If the
value of result is the same as either a C formal parameter that
corresponds to a Fortran actual argument or a C actual argument that
corresponds to a Fortran dummy argument, the attribute member
must have the value CFI_attribute_pointer.

Successful execution of CFI_section updates the base_addr and dim
members of the C descriptor with the address result to describe the
array section determined by source, lower_bounds, upper_bounds,
and strides, as follows:

• The array section is equivalent to the Fortran array section
SOURCE(sectsub1, sectsub2, ... sectsubn), where SOURCE is the
array described by source, n is the rank of that array, and sectsubi
is the subscript loweri if stridesi is zero, and the section subscript
loweri : upperi : stridei otherwise.

• The value of loweri is the lower bound of dimension i of SOURCE if
lower_bounds is a null pointer and lower_bounds[i] otherwise.

• The value of upperi is the upper bound of dimension i of SOURCE if
upper_bounds is a null pointer and upper_bounds[i] otherwise.

• The value of stridei is 1 if strides is a null pointer and strides[i]
otherwise. If stridei has the value zero, loweri must have the same
value as upperi.

source The address of a C descriptor that describes a nonallocatable
nonpointer array, an allocated allocatable array, or an associated array
pointer. The elem_len and type members of source must have the
same values as the corresponding members of result.

lower_bounds A null pointer or the address of an array with at least source->rank
elements. If it is not a null pointer, and stridei is zero or (upperi
−lower_bounds[i] + stridei)/stridei > 0, the value of lower_bounds[i]
must be within the bounds of dimension i of SOURCE.

upper_bounds A null pointer or the address of an array with at least source->rank
elements. If source describes an assumed-size array, upper_bounds
must not be a null pointer. If it is not a null pointer and stridei is zero

 1 Intel® Fortran Compiler Classic and Intel® Fortran Compiler Developer Guide and Reference

1300

or (upper_bounds[i] − loweri + stridei)/stridei > 0, the value of
upper_bounds[i] must be within the bounds of dimension i of
SOURCE.

strides A null pointer or the address of an array with at least source->rank
elements.

If an error is detected, the C descriptor with the address result is not modified.

Result Value

The result is an error indicator.

Example

If source is already the address of a C descriptor for the rank-one Fortran array A, the lower bounds of A are
equal to 1, and the lower bounds in the C descriptor are equal to 0, the following code fragment establishes a
new C descriptor section and updates it to describe the array section A(3::5):

CFI_index_t lower[1], strides[1];
CFI_CDESC_T(1) section;
int ind;
lower[0] = 2;
strides[0] = 5;
ind = CFI_establish((CFI_cdesc_t *)§ion, NULL,
CFI_attribute_other,
CFI_type_float, 0, 1, NULL);
ind = CFI_section((CFI_cdesc_t *)§ion, source,
lower, NULL, strides);

If source is already the address of a C descriptor for a rank-two Fortran assumed-shape array A with lower
bounds equal to 1, the following code fragment establishes a C descriptor and updates it to describe the
rank-one array section A(:, 42):

CFI_index_t lower[2], upper[2], strides[2];
CFI_CDESC_T(1) section;
int ind;
lower[0] = source->dim[0].lower_bound;
upper[0] = source->dim[0].lower_bound + source->dim[0].extent - 1;
strides[0] = 1;
lower[1] = upper[1] = source->dim[1].lower_bound + 41;
strides[1] = 0;
ind = CFI_establish((CFI_cdesc_t *)§ion, NULL,
CFI_attribute_other,
CFI_type_float, 0, 1, NULL);
ind = CFI_section((CFI_cdesc_t *)§ion, source,
lower, upper, strides);

See Also
C Structures Typedefs and Macros for interoperability
Interoperating with arguments using C descriptors

CFI_select_part
C function prototype: Updates a C descriptor for an
array section for which each element is a part of the
corresponding element of an array.

Intel® Fortran Compiler Classic and Intel® Fortran Compiler Developer Guide and Reference 1

1301

Syntax

int CFI_select_part(CFI_cdesc_t *result, const CFI_cdesc_t *source,
 size_t displacement, size_t elem_len);

Formal Parameters:

result The address of a C descriptor; result->rank must have the same value
as source->rank and result->attribute must have the value
CFI_attribute_other or CFI_attribute_pointer. If the address
specified by result is the value of a C formal parameter that
corresponds to a Fortran actual argument or of a C actual argument
that corresponds to a Fortran dummy argument, result->attribute
must have the value CFI_attribute_pointer. The value of result-
>type specifies the type of the array section.

source The address of a C descriptor for a nonallocatable nonpointer array, an
allocated allocatable array, or an associated array pointer.

displacement A value 0 ≤ displacement ≤ source->elem_len − 1, and the sum of
the displacement and the size in bytes of an element of the array
section must be less than or equal to source->elem_len. The address
displacement bytes greater than the value of source->base_addr is
the base of the array section and must be appropriately aligned for an
object of the type of the array section.

elem_len A value equal to the storage size in bytes of an element of the array
section if result->type specifies a Fortran character type; otherwise,
elem_len is ignored.

Description

Successful execution of CFI_select_part updates the base_addr, dim, and elem_len members of the C
descriptor with the address result for an array section for which each element is a part of the corresponding
element of the array described by the C descriptor with the address source. The part must be a component of
a structure, a substring, or the real or imaginary part of a complex value.

If an error is detected, the C descriptor with the address result is not modified.

Result Value

The result is an error indicator.

Example

If source is already the address of a C descriptor for the Fortran array A declared as follows:

TYPE, BIND(C) :: T
REAL(C_DOUBLE) :: X
COMPLEX(C_DOUBLE_COMPLEX) :: Y
END TYPE
TYPE(T) A(100)

then the following code fragment establishes a C descriptor for the array A%Y:

typedef struct {
double x; double _Complex y;
} t;
CFI_CDESC_T(1) component;
CFI_cdesc_t * comp_cdesc = (CFI_cdesc_t *)&component;

 1 Intel® Fortran Compiler Classic and Intel® Fortran Compiler Developer Guide and Reference

1302

CFI_index_t extent[] = { 100 };
(void)CFI_establish(comp_cdesc, NULL, CFI_attribute_other,
 CFI_type_double_Complex,
 sizeof(double _Complex), 1, extent);
(void)CFI_select_part(comp_cdesc, source, offsetof(t,y), 0);

See Also
C Structures Typedefs and Macros for interoperability
Interoperating with arguments using C descriptors

CFI_setpointer
C function prototype: Updates a C descriptor for a
Fortran pointer to be associated with the whole of a
given object or to be disassociated.

Syntax

int CFI_setpointer(CFI_cdesc_t *result, CFI_cdesc_t *source,
 const CFI_index_t lower_bounds[]);

Formal Parameters:

result The address of a C descriptor for a Fortran pointer. It is updated using
information from the source and lower_bounds arguments.

source A null pointer or the address of a C descriptor for a nonallocatable
nonpointer data object, an allocated allocatable object, or a data
pointer object. If source is not a null pointer, the corresponding values
of the elem_len, rank, and type members must be the same in the
C descriptors with the addresses source and result.

lower_bounds If source is not a null pointer and source->rank is nonzero,
lower_bounds must be a null pointer or the address of an array with at
least source->rank elements.

Description

Successful execution of CFI_setpointer updates the base_addr and dim members of the C descriptor with
the address result as follows:

• If source is a null pointer or the address of a C descriptor for a disassociated pointer, the updated C
descriptor describes a disassociated pointer.

• Otherwise, the C descriptor with the address result becomes a C descriptor for the object described by the
C descriptor with the address source, except that if source->rank is nonzero and lower_bounds is not a
null pointer, the lower bounds are replaced by the values of the first source->rank elements of the
lower_bounds array.

Result Value

The result is an error indicator.

Intel® Fortran Compiler Classic and Intel® Fortran Compiler Developer Guide and Reference 1

1303

Example

If ptr is already the address of a C descriptor for an array pointer of rank 1, the following code updates it to
be a C descriptor for a pointer to the same array with lower bound 0:

CFI_index_t lower_bounds[1];
int ind;
lower_bounds[0] = 0;
ind = CFI_setpointer(ptr, ptr, lower_bounds);

See Also
C Structures Typedefs and Macros for interoperability
Interoperating with arguments using C descriptors

CHANGEDIRQQ
Portability Function: Makes the specified directory
the current, default directory.

Module

USE IFPORT

Syntax
result = CHANGEDIRQQ (dir)

dir (Input) Character*(*). Directory to be made the current directory.

Results

The result type is LOGICAL(4). It is .TRUE. if successful; otherwise, .FALSE..

If you do not specify a drive in the dir string, the named directory on the current drive becomes the current
directory. If you specify a drive in dir, the named directory on the specified drive becomes the current
directory.

Example

 USE IFPORT
 LOGICAL(4) status
 status = CHANGEDIRQQ('d:\fps90\bin'))
! We are now CCed to 'd:\fps90\bin'
 status = CHANGEDIRQQ('bessel')
! We are now CCed to 'd:\fps90\bin\bessel'

See Also
GETDRIVEDIRQQ
MAKEDIRQQ
DELDIRQQ
CHANGEDRIVEQQ

CHANGEDRIVEQQ
Portability Function: Makes the specified drive the
current, default drive.

Module

USE IFPORT

 1 Intel® Fortran Compiler Classic and Intel® Fortran Compiler Developer Guide and Reference

1304

Syntax
result = CHANGEDRIVEQQ (drive)

drive (Input) Character*(*). String beginning with the drive letter.

Results

The result type is LOGICAL(4). On Windows* systems, the result is .TRUE. if successful; otherwise, .FALSE.
On Linux* systems, the result is always .FALSE..

Because drives are identified by a single alphabetic character, CHANGEDRIVEQQ examines only the first
character of drive. The drive letter can be uppercase or lowercase.

CHANGEDRIVEQQ changes only the current drive. The current directory on the specified drive becomes the
new current directory. If no current directory has been established on that drive, the root directory of the
specified drive becomes the new current directory.

Example

 USE IFPORT
 LOGICAL(4) status
 status = CHANGEDRIVEQQ('d')

See Also
GETDRIVESQQ
GETDRIVESIZEQQ
GETDRIVEDIRQQ
CHANGEDIRQQ

CHANGE TEAM and END TEAM
Statement: Changes the current team of each image
that executes the statement.

Syntax

The CHANGE TEAM construct takes the following form:

[name:] CHANGE TEAM (team-variable [, coarray-association-list][, sync-stat-list])
 block
END TEAM [([sync-stat-list])] [name]

name (Optional) Is the name of the CHANGE TEAM construct.

team-variable Is a scalar variable of type TEAM_TYPE defined in the intrinsic module
ISO_FORTRAN_ENV.

coarray-association (Optional) Is codimension-decl => selector

codimension-decl Is coarray-name [coarray-spec]

selector Is a named coarray.

sync-stat (Optional) Is STAT= stat-var or ERRMSG = err-var

stat-var Is a scalar integer variable in which the status of the FORM TEAM
operation is stored.

err-var Is a scalar default character variable in which explanatory text is
stored if an error occurs.

Intel® Fortran Compiler Classic and Intel® Fortran Compiler Developer Guide and Reference 1

1305

block Is a sequence of zero or more statements or constructs.

The sync-stat-list items can appear in any order, but each sync-stat specifier may appear at most once. A
selector may appear only once in selector-list. stat-var and err-var cannot be coindexed variables. team-
variable must have been previously defined by the execution of a FORM TEAM statement.

Description

A CHANGE TEAM statement begins the CHANGE TEAM construct. The current team of each image that
executes a CHANGE team statement becomes the team specified by the team variable. This remains the
current team of the image until another CHANGE TEAM construct is executed by the image, or until the
corresponding END TEAM statement is executed. The current team of each image executing an END TEAM
statement becomes the team that was current prior to execution of the corresponding CHANGE TEAM
statement.

Branching into or out of a CHANGE TEAM construct is not permitted. A branch to an END TEAM statement is
permitted only from within the corresponding CHANGE TEAM construct. An EXIT statement in a CHANGE
TEAM construct is effectively the same as a branch to the END TEAM statement of the construct. Within a
CHANGE TEAM construct, a CYCLE or EXIT statement is not allowed if it belongs to an outer construct. A
RETURN statement may not appear in a CHANGE TEAM construct.

If a construct name appears on the CHANGE TEAM statement of the construct, the same name must also
appear on the END TEAM construct. If a construct name appears on an END TEAM statement, the same
construct name must appear on the corresponding CHANGE TEAM statement. The construct name must not
be the same as any other construct name in the scoping unit.

The purpose of the coarray-association is to redefine the codimensions of a coarray during execution of the
CHANGE TEAM construct. The associating entity is a coarray with the corank and cobounds specified in the
codimension-decl. This means the coshape and cobounds of an associating entity can be different from that
of the selector. When the CHANGE TEAM statement is executed, the selectors must all be established
coarrays.

The coarray name in a coarray-association must not be the same as the name as the name of another
coarray or of a selector in the CHANGE TEAM statement. The coarray names specified in the codimension-
decl are associate names associated with their corresponding selectors. The type and type parameters of the
associating entity is that of its selector. The associating entity is polymorphic if the selector is polymorphic, in
which case the associating entity assumes the dynamic type and type parameters of the selector.

On each active image that executes the CHANGE TEAM statement, the team variables must have been
defined by corresponding execution of the same FORM TEAM statement. The current team executing prior to
the CHANGE TEAM statement must be the same team that executed the FORM TEAM statement that defined
the team variables. On each image, the team variable specified in the CHANGE TEAM statement cannot
become undefined or redefined during execution of the construct.

An allocatable coarray that has an allocation status of allocated when the CHANGE TEAM construct is entered
cannot be deallocated during execution of the construct. Allocatable coarrays that are allocated during the
CHANGE TEAM construct and remain allocated at the end of the construct are deallocated upon exit from the
construct. This is true even if the allocatable coarray has the SAVE attribute.

Each image executing the CHANGE TEAM statement is implicitly synchronized with all the other active images
that will be on the same team after execution of the CHANGE TEAM construct. Execution of the statements
forming the block of the CHANGE TEAM construct are delayed until all images on the new team have entered
the construct. The construct completes execution when the END TEAM statement is executed. The images of
the team executing the construct are implicitly synchronized when the END TEAM statement is executed.

If STAT= is specified in a CHANGE TEAM or END TEAM statement, stat-var becomes defined with the value 0
if no error condition occurs. If the team executing the statement contains a stopped image, stat-var becomes
defined with the value STAT_STOPPED_IMAGE from the intrinsic module ISO_FORTRAN_ENV. If the team
contains a failed image and no other error condition occurs, stat-var becomes defined with the value

 1 Intel® Fortran Compiler Classic and Intel® Fortran Compiler Developer Guide and Reference

1306

STAT_FAILED_IMAGE defined in the module ISO_FORTRAN_ENV. Otherwise, stat-var becomes defined with a
positive integer value other than STAT_FAILED_IMAGE or STAT_STOPPED_IMAGE. If STAT= is not specified,
and the team contains a stopped or failed image, or if any other error occurs, error termination is initiated.

If ERRMSG= is specified in a CHANGE TEAM or an END TEAM statement and an error condition occurs, err-
var becomes defined with a character string containing an informative message about the error. The string is
truncated or padded according to the rules of intrinsic assignment. If no error occurs, err-var is unchanged.

Examples

Example 1:

 USE ISO_FORTRAN_ENV
 TYPE (TEAM_TYPE) :: odd_even
 FORM TEAM (2-MOD(THIS_IMAGE(), 2), odd_even)
 CHANGE TEAM (odd_even)
 ! Segment 1
 . . .
 END TEAM
 ! Segment 2
 . . .
 END PROGRAM

If a team with 8 images executes the above code, two teams are formed. Team number 1 contains the odd
numbered images [1, 3, 5, 7] of the parent team with new image indices [1, 2, 3, 4], and team number 2
contains the even numbered images [2, 4, 6, 8] of the parent team with new image indices [1, 2, 3, 4].

Segment 1 can be executed by team number 1 once images 1, 3, 5, and 7 of the initial team have arrived at
the CHANGE TEAM construct. Team number 1 can execute segment 2 once the same images have executed
the END TEAM statement. Similarly, segment 1 can be executed by team 2 only after image 2, 4, 6, and 8
have all arrived at the CHANGE TEAM statement, and they can execute segment 2 after they have all reached
the END TEAM statement.

Example 2:

 USE ISO_FORTRAN_ENV
 INTEGER, PARAMETER :: n = 4
 TYPE (TEAM_TYPE) :: column
 REAL,CODIMENSION[n, *]:: co_array
 INTEGER,DIMENSION(2) :: my_cosubscripts
 my_cosubscripts (:) = THIS_IMAGE(co_array)
 FORM TEAM (my_cosubscripts(2), column, NEW_INDEX = my_cosubscripts(1))
 CHANGE TEAM (column, ca[*] => co_array)
 ….
 END TEAM

If there are 16 images on the initial team, the scalar coarray co_array will be distributed across a 4 x 4 grid
of processors. Execution of the FORM TEAM statement divides the initial team into four teams of four images.
Each team contains the images of one column of the grid of processors. The team number of each team is
the column number in the processor grid, and the image indices on each new team are the row indices of the
processor grid. Inside the CHANGE TEAM construct, the image pattern is a 1 x 4 pattern.

On team 1, ca[1] is co_array[1, 1], ca[2] is co_array[2,1], …, and ca[4] is coarray[4, 1]. On team 2, ca[1] is
co_array[1, 2], ca[2] is co_array [2,2], …, and ca[4] is co_array[2, 4]. On team 3, ca[1] is co_array[1, 3],
ca[2] is co_array[2 ,3], …, and ca[4] is co_array[4, 3]. And on team 4, ca[1] is co_array[1, 4], ca[2] is
co_array[2, 4], …, and ca[4] is co_array[4, 4].

co_array's cosubscripts:

1,1 1,2 1,3 1,4

2,1 2,2 2,3 2,4

Intel® Fortran Compiler Classic and Intel® Fortran Compiler Developer Guide and Reference 1

1307

3,1 3,2 3,3 3,4

4,1 4,2 4,3 4,4

ca’s cosubscripts on each team:

Team
Number

1 2 3 4

1,1 1,2 1,3 1,4

2,1 2,2 2,3 2,4

3,1 3,2 3,3 3,4

4,1 4,2 4,3 4,4

Example 3:

 USE ISO_FORTRAN_ENV
 TYPE (TEAM_TYPE) :: one_or_two
 IF (THIS_IMAGE() .LE. NUM_IMAGES() / 2) THEN
 new_team = 1
 ELSE
 new_team = 2
 END IF
 FORM TEAM (new_team, one_or_two)
 SYNC ALL
 CHANGE TEAM (one_or_two)
 ! Segment 1
 . . .
 END TEAM
 SYNC ALL
 ! Segment 2
 . . .
 END PROGRAM

In the above case, the FORM TEAM statement creates two teams, team 1 and team 2. The SYNC ALL
statement before the CHANGE TEAM statement prevents either team from entering the CHANGE TEAM
construct until all images of the other team are ready to enter it also. Similarly, the SYNC ALL after the END
TEAM statement prevents either team from executing segment 2 until all images of the other team have
exited the CHANGE TEAM construct.

Example 4:

This example divides a 4x4 grid of images into 4 2x2 grids of images. The image indices of the 4x4 grid are:

1 5 9 13

2 6 10 14

3 7 11 15

4 8 12 16

The 2x2 grids are laid out and identified symbolically and with team numbers as:

top_lef
t (1,1)

top_rig
ht (1,2)

bot_lef
t (2,1)

bot_rig
ht (2,2)

The image numbers on each of the teams in the 2x2 grids become:

1 3 1 3

2 4 2 4

1 3 1 3

 1 Intel® Fortran Compiler Classic and Intel® Fortran Compiler Developer Guide and Reference

1308

2 4 2 4

 PROGRAM MAIN
 USE ISO_FORTRAN_ENV
 INTEGER,PARAMETER :: top_left = 11, bot_left = 21, top_right = 12, bot_right = 22
 INTEGER,DIMENSION(16) :: quads = [top_left, top_left, bot_left, bot_left, &
 top_left, top_left, bot_left, bot_left, &
 top_right, top_right, bot_right, bot_right, &
 top_right, top_right, bot_right, bot_right]
 INTEGER,DIMENSION(16) :: images = [1, 2, 1, 2, 3, 4, 3, 4, 1, 2, 1, 2, 3, 4, 3, 4]
 TYPE (TEAM_TYPE) :: quadrants, original_team
 REAL :: co_array1[4,*], co_array2 [4, *]
 INTEGER :: me

 original_team = GET_TEAM(INITIAL_TEAM) ! Create variable describing initial team
 me = THIS_IMAGE()
 FORM TEAM (quads(me), quadrants, NEW_INDEX=images(me))
 CHANGE TEAM (quadrants, ca[2, *] => co_array1)
 x = ca[3, TEAM_NUMBER=top_right]
 . . .
 END TEAM
 . . .
 END PROGRAM

Here the CHANGE TEAM statement remaps the coarray co_array1 to 2x2 grids within each team accessed by
the associate name ca. The assignment statement in the CHANGE TEAM construct assigns the value of ca[3]
on team number 21 to x on all images of the initial team, assuming all four subteams execute the CHANGE
TEAM construct. ca[3, TEAM_NUMBER=top_left] is co_array[1, 4] of the initial team located on image 13 of
the initial team.

See Also
Image Control Statements
Coarrays
Using Coarrays
Construct Association
FORM TEAM

CHAR
Elemental Intrinsic Function (Generic): Returns
the character in the specified position of the
processor's character set. It is the inverse of the
function ICHAR.

Syntax
result = CHAR (i[,kind])

i (Input) Must be of type integer with a value in the range 0 to n - 1,
where n is the number of characters in the processor's character set.

kind (Input; optional) Must be a scalar integer constant expression.

Results

The result is of type character with length 1. If kind is present, the kind parameter of the result is that
specified by kind; otherwise, the kind parameter of the result is that of default character. If the processor
cannot represent the result value in the kind of the result, the result is undefined.

Intel® Fortran Compiler Classic and Intel® Fortran Compiler Developer Guide and Reference 1

1309

The result is the character in position i of the processor's character set. ICHAR(CHAR (i, kind(c))) has the
value I for 0 to n - 1 and CHAR(ICHAR(c), kind(c)) has the value c for any character c capable of
representation in the processor.

Specific Name Argument Type Result Type

INTEGER(1) CHARACTER

INTEGER(2) CHARACTER

CHAR 1 INTEGER(4) CHARACTER

INTEGER(8) CHARACTER

1This specific function cannot be passed as an actual argument.

Example

CHAR (76) has the value 'L'.

CHAR (94) has the value '^'.

See Also
ACHAR
IACHAR
ICHAR
Character and Key Code Charts

CHARACTER
Statement: Specifies the CHARACTER data type.

Syntax
CHARACTER ([LEN=]len [, [KIND=]n])
CHARACTER (KIND=n [, [LEN=]len])
CHARACTER* len

n Is kind 1.

len Is a string length (not a kind). For more information, see Declaration
Statements for Character Types.

If no kind type parameter is specified, the kind of the constant is
default character.

Example

C
C Length of wt and vs is 10, city is 80, and ch is 1
C
 CHARACTER wt*10, city*80, ch
 CHARACTER (LEN = 10), PRIVATE :: vs
 CHARACTER*(*) arg !declares a dummy argument
C name and plume are ten-element character arrays
C of length 20
 CHARACTER name(10)*20
 CHARACTER(len=20), dimension(10):: plume
C
C Length of susan, emily, and naomi are 2, karen is 12,

 1 Intel® Fortran Compiler Classic and Intel® Fortran Compiler Developer Guide and Reference

1310

C olivia is a 79-member array of length 2
C
 CHARACTER(2) susan, emily, karen*12, naomi, olivia(79)

See Also
Character Data Type
Character Constants
Character Substrings
C Strings
Declaration Statements for Character Types

CHDIR
Portability Function: Changes the default directory.

Module

USE IFPORT

Syntax
result = CHDIR(dir_name)

dir_name (Input) Character*(*). Name of a directory to become the default
directory.

Results

The result type is INTEGER(4). It returns zero if the directory was changed successfully; otherwise, an error
code. Possible error codes are:

• ENOENT: The named directory does not exist.
• ENOTDIR: The dir_name parameter is not a directory.

Example

 use ifport
 integer(4) istatus, enoent, enotdir
 character(255) newdir
 character(300) prompt, errmsg

 prompt = 'Please enter directory name: '
10 write(*,*) TRIM(prompt)
 read *, newdir
 ISTATUS = CHDIR(newdir)
 select case (istatus)
 case (2) ! ENOENT
 errmsg = 'The directory '//TRIM(newdir)//' does not exist'
 case (20) ! ENOTDIR
 errmsg = TRIM(newdir)//' is not a directory'
 case (0) ! NO error
 goto 40
 case default
 write (errmsg,*) 'Error with code ', istatus
 end select

 write(*,*) TRIM(errmsg)
 goto 10

Intel® Fortran Compiler Classic and Intel® Fortran Compiler Developer Guide and Reference 1

1311

40 write(*,*) 'Default directory successfully changed.'
end

See Also
CHANGEDIRQQ

CHMOD
Portability Function: Changes the access mode of a
file.

Module

USE IFPORT

Syntax
result = CHMOD (name,mode)

name (Input) Character*(*). Name of the file whose access mode is to be
changed. Must have a single path.

mode (Input) Character*(*). File permission: either Read, Write, or Execute.
The mode parameter can be either symbolic or absolute. An absolute
mode is specified with an octal number, consisting of any combination
of the following permission bits ORed together:

Permission bit Description Action

4000 Set user ID on
execution

Windows: Ignored;
never true

Linux: Settable

2000 Set group ID on
execution

Windows: Ignored;
never true

Linux: Settable

1000 Sticky bit Windows: Ignored;
never true

Linux: Settable

0400 Read by owner Windows: Ignored;
always true

Linux: Settable

0200 Write by owner Settable

0100 Execute by owner Windows: Ignored;
based on file name
extension

Linux: Settable

0040, 0020, 0010 Read, Write, Execute
by group

Windows: Ignored;
assumes owner
permissions

 1 Intel® Fortran Compiler Classic and Intel® Fortran Compiler Developer Guide and Reference

1312

Permission bit Description Action

Linux: Settable

0004, 0002, 0001 Read, Write, Execute
by others

Windows: Ignored;
assumes owner
permissions

Linux: Settable

The following regular expression represents a symbolic mode:

[ugoa]*[+-=] [rwxXst]*
On Windows* systems, "[ugoa]*" is ignored. On Linux* systems, a combination of the letters "ugoa" control
which users' access to the file will be changed:

u The user who owns the file

g Other users in the group that owns the file

o Other users not in the group that owns the file

a All users

"[+ - =]" indicates the operation to carry out:

+ Add the permission

- Remove the permission

= Absolutely set the permission

"[rwxXst]*" indicates the permission to add, subtract, or set. On Windows systems, only "w" is significant
and affects write permission; all other letters are ignored. On Linux systems, all letters are significant.

Results

The result type is INTEGER(4). It is zero if the mode was changed successfully; otherwise, an error code.
Possible error codes are:

• ENOENT: The specified file was not found.
• EINVAL: The mode argument is invalid.
• EPERM: Permission denied; the file's mode cannot be changed.

Example

USE IFPORT
integer(4) I,Istatus
I = ACCESS ("DATAFILE.TXT", "w")
if (i) then
 ISTATUS = CHMOD ("datafile.txt", "[+w]")
end if
I = ACCESS ("DATAFILE.TXT","w")
print *, i

See Also
SETFILEACCESSQQ

Intel® Fortran Compiler Classic and Intel® Fortran Compiler Developer Guide and Reference 1

1313

CLASS
Statement: Declares a polymorphic object. It takes
one of the following forms:

Syntax
CLASS (name) att-list :: v-list
CLASS (*) att-list :: v-list

name Is the name of the extensible derived data type.

att-list Is one or more attribute specifiers. These are the same attribute
specifiers allowed for a derived-type TYPE statement.

v-list Is the name of one or more data objects or functions. The name can
optionally be followed by any of the following:

• An array specification, if the object is an array.

In a function declaration, an array must be a deferred-shape array
if it has the POINTER attribute; otherwise, it must be an explicit-
shape array.

• A character length, if the object is of type character.
• A coarray specification, if the object is a coarray.
• A constant expression preceded by an = or, for pointer objects, =>

NULL().

Description

A polymorphic object can have differing types during program execution.

The type of the object at a particular point during execution of a program is its dynamic type.

The declared type of a data entity is the type that it is declared to have, either explicitly or implicitly.

If CLASS (*) is specified, it denotes an unlimited polymorphic object. An unlimited polymorphic entity is not
declared to have a type. It is not considered to have the same declared type as any other entity, including
another unlimited polymorphic entity.

An entity declared with the CLASS keyword must be a dummy argument or have the ALLOCATABLE or
POINTER attribute.

A polymorphic entity that is not an unlimited polymorphic entity is type compatible with entities of the same
declared type or any of its extensions. Even though an unlimited polymorphic entity is not considered to have
a declared type, it is type compatible with all entities. An entity is said to be type compatible with a type if it
is type compatible with entities of that type.

A polymorphic allocatable object can be allocated to be of any type with which it is type compatible.

During program execution, a polymorphic pointer or dummy argument can be associated with objects with
which it is type compatible.

See Also
Type declarations
TYPE Statement (Derived Types)

CLEARSTATUSFPQQ
Portability Subroutine: Clears the exception flags in
the floating-point processor status word.

Module

USE IFPORT

 1 Intel® Fortran Compiler Classic and Intel® Fortran Compiler Developer Guide and Reference

1314

Syntax
CALL CLEARSTATUSFPQQ()

Description

The floating-point status word indicates which floating-point exception conditions have occurred. Intel®
Fortran initially clears (sets to 0) all floating-point status flags, but as exceptions occur, the status flags
accumulate until the program clears the flags again. CLEARSTATUSFPQQ will clear the flags.

CLEARSTATUSFPQQ is appropriate for use in applications that poll the floating-point status register as the
method for detecting a floating-point exception has occurred.

For a full description of the floating-point status word, exceptions, and error handling, see Floating-Point
Operations: Floating-Point Environment.

Example

! Program to demonstrate CLEARSTATUSFPQQ.
! This program uses polling to detect that a
! floating-point exception has occurred.
! So, build this console application with the default
! floating-point exception behavior, fpe3.
! You need to specify compiler option /debug or /Od (Windows)
! or -O0 (Linux) to get the correct results.
!
! PROGRAM CLEARFP

 USE IFPORT

 REAL*4 A,B,C
 INTEGER*2 STS

 A = 2.0E0
 B = 0.0E0

! Poll and display initial floating point status
 CALL GETSTATUSFPQQ(STS)
 WRITE(*,'(1X,A,Z4.4)') 'Initial fp status = ',STS

! Cause a divide-by-zero exception
! Poll and display the new floating-point status
 C = A/B
 CALL GETSTATUSFPQQ(STS)
 WRITE(*,'(1X,A,Z4.4)') 'After div-by-zero fp status = ',STS

! If a divide by zero error occurred, clear the floating-point
! status register so future exceptions can be detected.
 IF ((STS .AND. FPSW$ZERODIVIDE) > 0) THEN
 CALL CLEARSTATUSFPQQ()
 CALL GETSTATUSFPQQ(STS)
 WRITE(*,'(1X,A,Z4.4)') 'After CLEARSTATUSFPQQ fp status = ',STS
 ENDIF

 END
This program is available in the online samples.

See Also
GETSTATUSFPQQ

Intel® Fortran Compiler Classic and Intel® Fortran Compiler Developer Guide and Reference 1

1315

SETCONTROLFPQQ
GETCONTROLFPQQ
SIGNALQQ

CLOCK
Portability Function: Converts a system time into an
8-character ASCII string.

Module

USE IFPORT

Syntax
result = CLOCK()

Results

The result type is character with a length of 8. The result is the current time in the form hh:mm:ss, using a
24-hour clock.

Example

USE IFPORT
character(8) whatimeisit
whatimeisit = CLOCK ()
print *, 'The current time is ',whatimeisit

See Also
DATE_AND_TIME

CLOCKX
Portability Subroutine: Returns the processor clock
in units of microseconds.

Module

USE IFPORT

Syntax
CALL CLOCKX (clock)

clock (Input) REAL(8). The current time.

On Windows systems, this subroutine has millisecond precision, and the last three digits of the returned
value are not significant.

CLOSE
Statement: Disconnects a file from a unit.

Syntax
CLOSE ([UNIT=] io-unit[, {STATUS | DISPOSE | DISP} = p] [, ERR= label] [, IOMSG=msg-var]
[, IOSTAT=i-var])

io-unit (Input) an external unit specifier.

p (Input) a scalar default character expression indicating the status of
the file after it is closed. It has one of the following values:

 1 Intel® Fortran Compiler Classic and Intel® Fortran Compiler Developer Guide and Reference

1316

• 'KEEP' or 'SAVE' - Retains the file after the unit closes.
• 'DELETE' - Deletes the file after the unit closes (unless

OPEN(READONLY) is in effect).
• 'PRINT' - Submits the file to the line print spooler, then retains it

(sequential files only).
• 'PRINT/DELETE' - Submits the file to the line print spooler, then

deletes it (sequential files only).
• 'SUBMIT' - Forks a process to execute the file.
• 'SUBMIT/DELETE' - Forks a process to execute the file, then deletes

the file after the fork is completed.

The default is 'DELETE' for user windows in Windows* QuickWin
applications and for scratch files. For all other files, the default is
'KEEP'.

Scratch files are temporary and are always deleted upon normal
program termination; specifying STATUS='KEEP' for scratch files
causes a runtime error.

For user windows in Windows* QuickWin applications, STATUS='KEEP'
causes the child window to remain on the screen even after the unit
closes. The default status is 'DELETE', which removes the child window
from the screen.

label Is the label of the branch target statement that receives control if an
error occurs.

msg-var (Output) Is a scalar default character variable that is assigned an
explanatory message if an I/O error occurs.

i-var (Output) Is a scalar integer variable that is defined as a positive
integer if an error occurs and zero if no error occurs.

Description

The CLOSE statement specifiers can appear in any order. An I/O unit must be specified, but the UNIT=
keyword is optional if the unit specifier is the first item in the I/O control list.

The status specified in the CLOSE statement supersedes the status specified in the OPEN statement, except
that a file opened as a scratch file cannot be saved, printed, or submitted, and a file opened for read-only
access cannot be deleted.

If a CLOSE statement is specified for a unit that is not open, it has no effect.

You do not need to explicitly close open files. Normal program termination closes each file according to its
default status. The CLOSE statement does not have to appear in the same program unit that opened the file.

Closing unit 0 automatically reconnects unit 0 to the keyboard and screen. Closing units 5 and 6
automatically reconnects those units to the keyboard or screen, respectively. Closing the asterisk (*) unit
causes a compile-time error. In Windows QuickWin applications, use CLOSE with unit 0, 5, or 6 to close the
default window. If all of these units have been detached from the console (through an explicit OPEN), you
must close one of these units beforehand to reestablish its connection with the console. You can then close
the reconnect unit to close the default window.

If a parameter of the CLOSE statement is an expression that calls a function, that function must not cause an
I/O operation or the EOF intrinsic function to be executed, because the results are unpredictable.

Intel® Fortran Compiler Classic and Intel® Fortran Compiler Developer Guide and Reference 1

1317

NOTE
You may get unexpected results if you specify OPEN with a filename and a USEROPEN
specifier that opens a different filename, and then use a CLOSE statement with
STATUS=DELETE (or DISPOSE=DELETE). In this case, the runtime library assumes you want
to delete the file named in the OPEN statement, not the one you specified in the USEROPEN
function. For more information about how to use the USEROPEN specifier, see User-Supplied
OPEN Procedures: USEROPEN Specifier.

Example

! Close and discard file:
 CLOSE (7, STATUS = 'DELETE')

Consider the following statement:

 CLOSE (UNIT=J, STATUS='DELETE', ERR=99)
This statement closes the file connected to unit J and deletes it. If an error occurs, control is transferred to
the statement labeled 99.

See Also
Data Transfer I/O Statements
Branch Specifiers

CMPLX
Elemental Intrinsic Function (Specific): Converts
the argument to complex type. This function cannot
be passed as an actual argument.

Syntax
This intrinsic function can take one of the following forms:

result = CMPLX (x [,kind])

x (Input) Must be of type complex.

kind (Input; optional) Must be a scalar integer constant expression.

or

result = CMPLX (x [,y ,kind])

x (Input) Must be of type integer, real, or a binary, octal, or hexadecimal
literal constant.

y (Input; optional) Must be of type integer, real, or a binary, octal, or
hexadecimal literal constant.

kind (Input; optional) Must be a scalar integer constant expression.

Results

The result type is complex. If kind is present, the kind parameter is that specified by kind; otherwise, the
kind parameter is that of default real type.

If x is type complex, y must not be specified, and the result value is CMPLX (REAL (x), AIMAG (x)), with
default kind if kind is not present, otherwise with the kind type as specified by kind.

If x is present and not of complex type, and y is not present, x is converted into the real part of the result
value and zero is assigned to the imaginary part.

 1 Intel® Fortran Compiler Classic and Intel® Fortran Compiler Developer Guide and Reference

1318

If x and y are present, the complex value is produced by converting the x into the real part of the value, and
converting the y into the imaginary part.

CMPLX (x, y, kind) has the complex value whose real part is REAL (x, kind) and whose imaginary part is
REAL (y, kind).

The setting of compiler options specifying real size can affect this function.

If the argument is a binary, octal, or hexadecimal literal constant, the result is affected by the
assume old-boz option. The default option setting, noold-boz, treats the argument as a bit string that
represents a value of the data type of the intrinsic, that is, the bits are not converted. If setting old-boz is
specified, the argument is treated as a signed integer and the bits are converted.

NOTE
The result values of CMPLX are defined by references to the intrinsic function REAL with the
same arguments. Therefore, the padding and truncation of binary, octal, and hexadecimal
literal constant arguments to CMPLX is the same as for the intrinsic function REAL.

Example

CMPLX (-3) has the value (-3.0, 0.0).

CMPLX (4.1, 2.3) has the value (4.1, 2.3).

The following shows another example:

COMPLEX z1, z2
COMPLEX(8) z3
z1 = CMPLX(3) ! returns the value 3.0 + i 0.0
z2 = CMPLX(3,4) ! returns the value 3.0 + i 4.0
z3 = CMPLX(3,4,8) ! returns a COMPLEX(8) value 3.0D0 + i 4.0D0

See Also
Binary, Octal, Hexadecimal, and Hollerith Constants
Model for Bit Data
DCMPLX
FLOAT
INT
IFIX
REAL
SNGL

CO_BROADCAST
Collective Intrinsic Subroutine (Generic):
Broadcasts a value to other images.

Syntax
CALL CO_BROADCAST (a, source_image [, stat, errmsg])

a (Input; output) Must have the same shape, dynamic type, and type
parameter values in corresponding references across all participating
images. It cannot be a coindexed object. If an error occurs, it
becomes undefined. Otherwise, a becomes defined as if by intrinsic
assignment with the value a on image source_image on all images of
the current team.

Intel® Fortran Compiler Classic and Intel® Fortran Compiler Developer Guide and Reference 1

1319

source_image (Input) Must be a scalar integer. The value of source_image must the
value of an image index of an image on the current team. Its value
must be the same in corresponding references on all images
participating in the collective operation.

stat (Output; optional) Must be a non-coindexed integer scalar with a
decimal exponent range of at least four (KIND=2 or greater). The
value assigned to stat is specified in Overview of Collective
Subroutines. If stat is not present and an error condition occurs, error
termination is initiated.

errmsg (Input; output; optional) Must be a non-coindexed default character
scalar variable. The semantics of errmsg is described in Overview of
Collective Subroutines.

Example

Consider the following:

CALL CO_BROADCAST (R, 5)
If R is a four-element array defined with the value [10, 20, 30, 40] on image 5 when the subroutine is
referenced, R becomes defined with the value [10, 20, 30, 40] on all images of the current team if no error
condition occurs during the subroutine reference.

See Also
Overview of Collective Subroutines

CO_MAX
Collective Intrinsic Subroutine (Generic):
Calculates the maximum value across images.

Syntax
CALL CO_MAX (a [, result_image, stat, errmsg])

a (Input; output) Must be of type real, integer, or charater, and have the
same shape, type, and type parameter values in corresponding
references across all images of the current team. It cannot be a
coindexed object. If it is scalar, the computed value is the maximum
value of a in all corresponding references. If it is an array, each
element of the computed value is equal to the maximum value of the
corresponding element of a in all corresponding references.

If no error occurs, the computed value is assigned to a on all images
of the current team if result_image is not present, or on the executing
image if the executing image is the image identified by result_image.
Otherwise, a becomes undefined.

result_image (Input; optional) Must be a scalar integer. If present, it must be
present with the same value in all corresponding references and be a
valid image index in the current team. If result_image is not present,
it cannot be present in any corresponding reference.

 1 Intel® Fortran Compiler Classic and Intel® Fortran Compiler Developer Guide and Reference

1320

stat (Output; optional) Must be a non-coindexed integer scalar with a
decimal exponent range of at least four (KIND=2 or greater). The
value assigned to stat is specified in Overview of Collective
Subroutines. If stat is not present and an error condition occurs, error
termination is initiated.

errmsg (Input; output; optional) Must be a non-coindexed default character
scalar variable. The semantics of errmsg is described in Overview of
Collective Subroutines.

Example

Consider the following:

CALL CO_MAX (Z)
If there are two images and Z is a four-element array defined with the value [5, 10, 20, 15] on image one
and [10, 15, 20, 5] on image two when the subroutine is referenced, Z becomes defined with the value [10,
15, 20, 15] on both images if no error occurs during the subroutine reference, and CALL CO_MAX (Z, 2)
causes Z on image to become defined with the values [10, 15, 20, 15] on image 2; Z on image 1 becomes
undefined.

See Also
Overview of Collective Subroutines

CO_MIN
Collective Intrinsic Subroutine (Generic):
Calculates the minimum value across images.

Syntax
CALL CO_MIN (a [, result_image, stat, errmsg])

a (Input; output) Must be of type real, integer, or charater, and have the
same shape, type, and type parameter values in corresponding
references across all images of the current team. It cannot be a
coindexed object. If it is scalar, the computed value is the minimum
value of a in all corresponding references. If it is an array, each
element of the computed value is equal to the maximum value of the
corresponding element of a in all corresponding references.

If no error occurs, the computed value is assigned to a on all images
of the current team if result_image is not present, or on the executing
image if the executing image is the image identified by result_image.
Otherwise, a becomes undefined.

result_image (Input; optional) Must be a scalar integer. If present, it must be
present with the same value in all corresponding references and be a
valid image index in the current team. If result_image is not present,
it cannot be present in any corresponding reference.

stat (Output; optional) Must be a non-coindexed integer scalar with a
decimal exponent range of at least four (KIND=2 or greater). The
value assigned to stat is specified in Overview of Collective
Subroutines. If stat is not present and an error condition occurs, error
termination is initiated.

Intel® Fortran Compiler Classic and Intel® Fortran Compiler Developer Guide and Reference 1

1321

errmsg (Input; output; optional) Must be a non-coindexed default character
scalar variable. The semantics of errmsg is described in Overview of
Collective Subroutines.

Example

Consider the following:

CALL CO_MIN (Z)
If there are two images, and Z is a four-element array defined with the value [5, 10, 20, 15] on image one
and [10, 15, 20, 5] on image two when the subroutine is referenced, Z becomes defined with the value [5,
10, 20, 5] on both images if no error occurs during the subroutine reference, and CALL CO_MIN (Z, 1)
causes Z on image 1 to become defined with the value [5, 10, 20 5]; Z on image 2 becomes undefined.

See Also
Overview of Collective Subroutines

CO_REDUCE
Collective Intrinsic Subroutine (Generic):
Performs generalized reduction across images.

Syntax
CALL CO_REDUCE (a, operation [, result_image, stat, errmsg])

a (Input; output) Must be non-polymorphic, non-coindexed, with the
same shape, type and type parameters in corresponding references. It
may not be a coindexed object.

If a is scalar, the computed value is the result of the reduction of
applying operation to the values of a in all corresponding references.
If a is an array, each element of the computed value is equal to the
result of the reduction of the reduction operation of applying operation
to corresponding elements of a in all corresponding references.

If no error occurs, the computed value is assigned to a on all images
of the current team if result_image is not present, or on the executing
image if the executing image is the image identified by result_image.
Otherwise, a becomes undefined.

operation Is a pure function with exactly two arguments whose result and each
argument are a scalar, nonallocatable, nonpointer, nonpolymorphic
data object with the same type and kind type parameters as a.
Neither argument can be optional.

If one argument has the attribute TARGET, VOLATILE, or
ASYNCHRONOUS, the other argument must have that attribute.
operation must implement a mathematical associative operation and
be the same in each corresponding reference. If operation is not
commutative, the computed value may depend on the order of
evaluation.

The computed value of a reduction operation over a set of values is
the result of an iterative process. Each iteration evaluates operation
(x, y) for x and y in that set, the removal of x and y from that set, and
the addition of the result of operation (x, y) to that set. The process
ends when the set has a single value, which is the computed value.

 1 Intel® Fortran Compiler Classic and Intel® Fortran Compiler Developer Guide and Reference

1322

result_image (Input; optional) Must be a scalar integer. If present, it must be
present with the same value in all corresponding references and be a
valid image index in the current team. If result_image is not present,
it cannot be present in any corresponding reference.

stat (Output; optional) Must be a non-coindexed integer scalar with a
decimal exponent range of at least four (KIND=2 or greater). The
value assigned to stat is specified in Overview of Collective
Subroutines. If stat is not present and an error condition occurs, error
termination is initiated.

errmsg (Input; output; optional) Must be a non-coindexed default character
scalar variable. The semantics of errmsg is described in Overview of
Collective Subroutines.

Example

The following subroutine demonstrates how CO_REDUCE can be used to create a collective version of the
intrinsic function ANY.

SUBROUTINE CO_ANY (Z)
 LOGICAL,INTENT(INOUT) :: Z (4)
 CALL CO_REDUCE (Z, COMBINER)
 CONTAINS
 PURE FUNCTION COMBINER (OPND1, OPND2)RESULT = LOGICAL_SUM
 LOGICAL :: LOGICAL_SUM
 LOGICAL,INTENT(IN) :: OPND1, OPND2
 LOGICAL_SUM = OPND1 .OR. OPND2
 END FUNCTION COMBINER
END SUBROUTINE CO_ANY

If the number of images is two, and Z is a four-element logical array with the value [.T., .T., .F., .F.] on image
one and [.T., .F., .T., .F.] on image two, CALL CO_REDUCE (Z, COMBINER) causes the value of array Z to
become defined with the value of [.T., .T., .T., .F.] on both images if no error occurs during the reference.

See Also
Overview of Collective Subroutines

CO_SUM
Collective Intrinsic Subroutine (Generic):
Performs a sum reduction across images.

Syntax
CALL CO_SUM (a [, result_image, stat, errmsg])

a (Input; output) Must be of type real, integer, or complex, and have
the same shape, type, and type parameter values in corresponding
references. It may not be a coindexed object. If it is scalar, the
computed value is the sum of the values of a in all corresponding
references. If it as an array, each element of the computed value is
equal to the sum of the values of the corresponding element of a in all
corresponding references.

If no error occurs, the computed value is assigned to a on all images
of the current team if result_image is not present, or on the executing
image if the executing image is the image identified by result_image.
Otherwise, a becomes undefined.

Intel® Fortran Compiler Classic and Intel® Fortran Compiler Developer Guide and Reference 1

1323

result_image (Input; optional) Must be a scalar integer. If present, it must be
present with the same value in all corresponding references and be a
valid image index in the current team. If result_image is not present,
it may not be present in any corresponding reference.

stat (Output; optional) Must be a non-coindexed integer scalar with a
decimal exponent range of at least four (KIND=2 or greater). The
value assigned to stat is specified in Overview of Collective
Subroutines. If stat is not present and an error condition occurs, error
termination is initiated.

errmsg (Input; output; optional) Must be a non-coindexed default character
scalar variable. The semantics of errmsg is described in Overview of
Collective Subroutines.

Example

Consider the following:

CALL CO_SUM (Z, 2)
If the number of images is two and if Z is a four-element array defined with the value [5, 10, 20, 15] on
image one and [10, 15, 20, 5] on image two when the procedure is referenced, Z becomes defined with the
value [15, 25, 40, 20] on image two and undefined on image one if no error occurs during the subroutine
reference, and CALL CO_SUM (Z) causes Z on both images to become defined with the value [15, 25, 40,
20].

See Also
Overview of Collective Subroutines

CODE_ALIGN
General Compiler Directive: Specifies the byte
alignment for a loop.

Syntax
!DIR$ CODE_ALIGN [:n]

n (Optional) A positive integer constant expression indicating the
number of bytes for the minimum alignment boundary. Its value must
be a power of 2 between 1 and 4096, such as 1, 2, 4, 8, 16, 32, 64,
128, and so on.

If you specify 1 for n, no alignment is performed. If you do not specify
n, the default alignment is 16 bytes.

This directive must precede the loop or block of code to be aligned.

If code is compiled with the -falign-loops=m (Linux*) or /Qalign-loops:m (Windows*) option and a
“CODE_ALIGN:n” directive precedes a loop, the loop is aligned on a MAX (m, n) byte boundary.

If a procedure has the “CODE_ALIGN:k” attribute and a “CODE_ALIGN:n” directive precedes a loop, then
both the procedure and the loop are aligned on a MAX (k, n) byte boundary.

 1 Intel® Fortran Compiler Classic and Intel® Fortran Compiler Developer Guide and Reference

1324

Example

Consider the following code fragment in file test_code_align.f90:

!DIR$ CODE_ALIGN
DO J = 1, N
…
END DO

Compiling test_code_align.f90 aligns the code that begins the DO J loop on a (default) 16-byte boundary.
If you do not specify the CODE_ALIGN directive, the alignment of the loop is implementation-dependent and
may change from compilation to compilation.

See Also
General Compiler Directives
Syntax Rules for Compiler Directives
falign-loops, Qalign-loops compiler option
ATTRIBUTES CODE_ALIGN directive

CODIMENSION
Statement and Attribute: Specifies that an entity is
a coarray, and specifies its corank and cobounds, if
any.

Syntax
The CODIMENSION attribute can be specified in a type declaration statement or a CODIMENSION statement,
and takes one of the following forms:
Type Declaration Statement:

type, [att-ls,] CODIMENSION [coarray-spec] :: var-list [(array-spec)]...
type, [att-ls,] var-list [(array-spec)] [coarray-spec]...
Statement:

CODIMENSION [::] var-list [coarray-spec]...

type Is a data type specifier.

att-ls Is an optional list of attribute specifiers.

coarray-spec Is an allocatable (deferred-coshape) coarray or an explicit-coshape
coarray.

var-list Is a list of variable names, separated by commas.

Description

In Intel® Fortran, the sum of the rank and corank of an entity must not exceed 31. The Fortran 2018
Standard allows a combined rank of up to 15.

A coarray must be a component or a variable that is not a function result.

A coarray must not be of type C_PTR or C_FUNPTR from the intrinsic module ISO_C_BINDING or of type
TEAM_TYPE from the intrinsic module ISO_FORTRAN_ENV.

An entity whose type has a coarray ultimate component must be a nonpointer nonallocatable scalar, must not
be a coarray, and must not be a function result.

A coarray or an object with a coarray ultimate component must be an associate name, a dummy argument,
or have the ALLOCATABLE or SAVE attribute.

A coarray must not be a dummy argument of a procedure that has a BIND attribute.

Intel® Fortran Compiler Classic and Intel® Fortran Compiler Developer Guide and Reference 1

1325

A coarray can be a derived type with pointer or allocatable components. The target of such a pointer
component is always on the same image as the pointer.

Examples

Explicit-shape coarrays that are not dummy arguments must have the SAVE attribute. Because of this,
automatic coarrays are not allowed. For example, coarray TASK in the following code is not valid:

SUBROUTINE SUBA(I,C,D)
INTEGER :: I
REAL :: C(I)[*], D(I)
REAL :: TASK(I)[*] ! Not permitted

The following lines show valid examples of CODIMENSION attribute specifications:

REAL, CODIMENSION[3,*] :: B(:) ! Assumed-shape coarray
REAL R(50,50)[0:5,*] ! Explicit-shape coarray
REAL, CODIMENSION[*] :: A ! Scalar coarray
REAL, CODIMENSION[:],ALLOCATABLE :: C(:,:) ! Allocatable coarray

COLLAPSE Clause
Parallel Directive Clause: Specifies how many loops
are associated with a loop construct.

Syntax

COLLAPSE (n)

n Must be a constant positive scalar integer expression.

If n is greater than one, the iterations of all associated loops are
collapsed into one larger iteration, which is then divided according to
the SCHEDULE clause. The sequential execution of the iterations in all
associated loops determines the order of the iterations in the
collapsed iteration. The associated loops must be perfectly nested,
that is, there must be no intervening code or any OpenMP* directive
between any two loops.

The iteration count for each associated loop is computed before entry
to the outermost loop. If execution of any associated loop changes
any of the values used to compute any of the iteration counts, then
the behavior is unspecified. The integer kind used to compute the
iteration count for the collapsed loop is implementation defined.

If COLLAPSE is not specified, the only loop that is associated with the loop construct is the one that
immediately follows the construct.

At most one COLLAPSE clause can appear in a directive that allows the clause.

See Nested DO Constructs for restrictions on perfectly nested loops using COLLAPSE.

If more than one loop is associated with a TASKLOOP construct, then the iterations of all associated loops are
collapsed into one larger iteration space that is then divided according to the specifications in the GRAINSIZE
and NUM_TASKS clauses. The sequential execution of the iterations in all associated loops determines the
order of the iterations in the collapsed iteration space.

COMMAND_ARGUMENT_COUNT
Inquiry Intrinsic Function (Generic): Returns the
number of command arguments.

 1 Intel® Fortran Compiler Classic and Intel® Fortran Compiler Developer Guide and Reference

1326

Syntax
result = COMMAND_ARGUMENT_COUNT ()

Results

The result is a scalar of type default integer. The result value is equal to the number of command arguments
available. If there are no command arguments available, the result is 0. The command name does not count
as one of the command arguments.

Example

Consider the following:

 program echo_command_line
 integer i, cnt, len, status
 character c*30, b*100

 call get_command (b, len, status)
 if (status .ne. 0) then
 write (*,*) 'get_command failed with status = ', status
 stop
 end if
 write (*,*) 'command line = ', b (1:len)

 call get_command_argument (0, c, len, status)
 if (status .ne. 0) then
 write (*,*) 'Getting command name failed with status = ', status
 stop
 end if
 write (*,*) 'command name = ', c (1:len)

 cnt = command_argument_count ()
 write (*,*) 'number of command arguments = ', cnt

 do i = 1, cnt
 call get_command_argument (i, c, len, status)
 if (status .ne. 0) then
 write (*,*) 'get_command_argument failed: status = ', status, ' arg = ', i
 stop
 end if
 write (*,*) 'command arg ', i, ' = ', c (1:len)
 end do

 write (*,*) 'command line processed'
 end

If the above program is invoked with the command line " echo_command_line.exe −o 42 −a hello b",
the following is displayed:

 command line = echo_command_line.exe −o 42 −a hello b
 command name = echo_command_line.exe
 number of command arguments = 5
 command arg 1 = -o
 command arg 2= 42
 command arg 3 = -a
 command arg 4 = hello
 command arg 5 = b
 command line processed

Intel® Fortran Compiler Classic and Intel® Fortran Compiler Developer Guide and Reference 1

1327

See Also
GETARG
NARGS
IARGC
GET_COMMAND
GET_COMMAND_ARGUMENT

COMMITQQ
Runtime Function: Forces the operating system to
execute any pending write operations for the file
associated with a specified unit to the file's physical
device.

Module

USE IFCORE

Syntax
result = COMMITQQ (unit)

unit (Input) INTEGER(4). A Fortran logical unit attached to a file to be
flushed from cache memory to a physical device.

Results

The result type is LOGICAL(4). If an open unit number is supplied, .TRUE. is returned and uncommitted
records (if any) are written. If an unopened unit number is supplied, .FALSE. is returned.

Data written to files on physical devices is often initally written into operating-system buffers and then
written to the device when the operating system is ready. Data in the buffer is automatically flushed to disk
when the file is closed. However, if the program or the computer crashes before the data is transferred from
buffers, the data can be lost. COMMITQQ tells the operating system to write any cached data intended for a
file on a physical device to that device immediately. This is called flushing the file.

COMMITQQ is most useful when you want to be certain that no loss of data occurs at a critical point in your
program; for example, after a long calculation has concluded and you have written the results to a file, or
after the user has entered a group of data items, or if you are on a network with more than one program
sharing the same file. Flushing a file to disk provides the benefits of closing and reopening the file without
the delay.

Example

USE IFCORE
INTEGER unit / 10 /
INTEGER len
CHARACTER(80) stuff
OPEN(unit, FILE='COMMITQQ.TST', ACCESS='Sequential')
DO WHILE (.TRUE.)
 WRITE (*, '(A, \)') 'Enter some data (Hit RETURN to &
 exit): '
 len = GETSTRQQ (stuff)
 IF (len .EQ. 0) EXIT
 WRITE (unit, *) stuff
 IF (.NOT. COMMITQQ(unit)) WRITE (*,*) 'Failed'
END DO
CLOSE (unit)
END

 1 Intel® Fortran Compiler Classic and Intel® Fortran Compiler Developer Guide and Reference

1328

See Also
PRINT
WRITE

COMMON
Statement: Defines one or more contiguous areas, or
blocks, of physical storage (called common blocks)
that can be accessed by any of the scoping units in an
executable program. COMMON statements also define
the order in which variables and arrays are stored in
each common block, which can prevent misaligned
data items. COMMON is an obsolescent language
feature in Standard Fortran.

Syntax
COMMON [/[cname]/] var-list[[,] /[cname]/ var-list]...

cname (Optional) Is the name of the common block. The name can be
omitted for blank common (//).

var-list Is a list of variable names, separated by commas.

The variable must not be a dummy argument, allocatable array,
automatic object, function, function result, a variable with the BIND
attribute,or entry to a procedure. It must not have the PARAMETER
attribute. If an object of derived type is specified, it must be a
sequence type or a type with the BIND attribute.

Description

Common blocks can be named or unnamed (a blank common).

A common block is a global entity, and must not have the same name as any other global entity in the
program, such as a subroutine or function.

Any common block name (or blank common) can appear more than once in one or more COMMON
statements in a program unit. The list following each successive appearance of the same common block
name is treated as a continuation of the list for the block associated with that name. Consider the following
COMMON statements:

 COMMON /glenn/ lovell, armstrong, aldrin
 COMMON / / shepard, grissom, carpenter
 COMMON /glenn/ borman, anders
 COMMON /young/ mcdivitt, white, conrad
 COMMON schirra, cooper

They are equivalent to these COMMON statements:

 COMMON /glenn/ lovell, armstrong, aldrin, borman, anders
 COMMON shepard, grissom, carpenter, schirra, cooper
 COMMON /young/ mcdivitt, white, conrad

A variable can appear in only one common block within a scoping unit.

A common block object must not be one of the following:

• A dummy argument
• A result variable
• An allocatable variable
• A derived-type object with an ultimate component that is allocatable
• A procedure pointer

Intel® Fortran Compiler Classic and Intel® Fortran Compiler Developer Guide and Reference 1

1329

• An automatic object
• A variable with the BIND attribute
• An unlimited polymorphic pointer
• A coarray

If an array is specified, it can be followed by an explicit-shape array specification, each bound of which must
be a constant specification expression. Such an array must not have the POINTER attribute.

A pointer can only be associated with pointers of the same type and kind parameters, and rank.

An object with the TARGET attribute can only be associated with another object with the TARGET attribute
and the same type and kind parameters.

A nonpointer can only be associated with another nonpointer, but association depends on their types, as
follows:

Type of Variable Type of Associated Variable

Intrinsic numeric 1or numeric sequence 2 Can be of any of these types

Default character or character sequence 2 Can be of either of these types

Any other intrinsic type Must have the same type and kind parameters

Any other sequence type Must have the same type

1Default integer, default real, double precision real, default complex, double complex, or default logical.
2If an object of numeric sequence or character sequence type appears in a common block, it is as if the
individual components were enumerated directly in the common list.

So, variables can be associated if they are of different numeric type. For example, the following is valid:

 INTEGER A(20)
 REAL Y(20)
 COMMON /QUANTA/ A, Y

When common blocks from different program units have the same name, they share the same storage area
when the units are combined into an executable program.

Entities are assigned storage in common blocks on a one-for-one basis. So, the data type of entities assigned
by a COMMON statement in one program unit should agree with the data type of entities placed in a common
block by another program unit. For example:

Program Unit A Program Unit B

COMMON CENTS INTEGER(2) MONEY

. . . COMMON MONEY

. . .

When these program units are combined into an executable program, incorrect results can occur if the 2-byte
integer variable MONEY is made to correspond to the lower-addressed two bytes of the real variable CENTS.

Named common blocks must be declared to have the same size in each program unit. Blank common can
have different lengths in different program units.

 1 Intel® Fortran Compiler Classic and Intel® Fortran Compiler Developer Guide and Reference

1330

NOTE
If a common block is initialized by a DATA statement, the module containing the initialization
must declare the common block to be its maximum defined length.

This limitation does not apply if you compile all source modules together.

Example

PROGRAM MyProg
COMMON i, j, x, k(10)
COMMON /mycom/ a(3)
...
END
SUBROUTINE MySub
COMMON pe, mn, z, idum(10)
COMMON /mycom/ a(3)
...
END

In the following example, the COMMON statement in the main program puts HEAT and X in blank common,
and KILO and Q in a named common block, BLK1:

Main Program Subprogram

COMMON HEAT,X /BLK1/KILO,Q SUBROUTINE FIGURE

. . . COMMON /BLK1/LIMA,R / /ALFA,BET

. . .

CALL FIGURE

. . . RETURN

END

The COMMON statement in the subroutine makes ALFA and BET share the same storage location as HEAT and
X in blank common. It makes LIMA and R share the same storage location as KILO and Q in BLK1.

The following example shows how a COMMON statement can be used to declare arrays:

 COMMON / MIXED / SPOTTED(100), STRIPED(50,50)
The following example shows a valid association between subroutines in different program units. The object
lists agree in number, type, and kind of data objects:

 SUBROUTINE unit1
 REAL(8) x(5)
 INTEGER J
 CHARACTER str*12
 TYPE(member) club(50)
 COMMON / blocka / x, j, str, club
 ...
 SUBROUTINE unit2
 REAL(8) z(5)
 INTEGER m
 CHARACTER chr*12

Intel® Fortran Compiler Classic and Intel® Fortran Compiler Developer Guide and Reference 1

1331

 TYPE(member) myclub(50)
 COMMON / blocka / z, m, chr, myclub
 ...

See also the example for BLOCK DATA.

See Also
BLOCK DATA
DATA
MODULE
EQUIVALENCE
Specification expressions
Storage association
Interaction between COMMON and EQUIVALENCE Statements
Obsolescent Language Features in the Fortran Standard

COMPILER_OPTIONS
Module Intrinsic Inquiry Function: Returns a
string containing the compiler options that were used
for compilation.

Module

USE ISO_FORTRAN_ENV

Syntax

result = COMPILER_OPTIONS()

Results

The result is a scalar of type default character of processor-defined length.

The return value is a list of the compiler options that were used for compilation.

Example

Consider the following file named t.f90:

use ISO_FORTRAN_ENV
character (len = :), allocatable :: res
res = compiler_options ()
print *, "len of res is: ", len (res)
print "('<<', A, '>>')", res
deallocate (res)
end

The following is the output:

Linux

Lin$ ifx -o t.out -warn alignments -check bounds t.f90
Lin$ t.out
 len of res is: 40
<<-o t.out -warn alignments -check bounds >>

Windows

Win>ifx /o t.out /warn:alignments /check:bounds t.f90
Intel(R) Fortran Compiler for applications running on Intel(R) 64, Version 2024.1.0 Build
20240103

 1 Intel® Fortran Compiler Classic and Intel® Fortran Compiler Developer Guide and Reference

1332

Copyright (C) 1985-2023 Intel Corporation. All rights reserved.

Microsoft (R) Incremental Linker Version 14.38.33130.0
Copyright (C) Microsoft Corporation. All rights reserved.

-out:t.out
-subsystem:console
t.obj

Win>t.out
 len of res is: 40
<</o:t.out /warn:alignments /check:bounds >>

See Also
COMPILER_VERSION
ISO_FORTRAN_ENV Module

COMPILER_VERSION
Module Intrinsic Inquiry Function: Returns a
string containing the name and version number of the
compiler used for compilation.

Module

USE ISO_FORTRAN_ENV

Syntax

result = COMPILER_VERSION()

Results

The result is a scalar of type default character of processor-defined length.

The return value contains the name and version number of the compiler used for compilation.

Example

Consider the following file named t.f90:

use ISO_FORTRAN_ENV

character (len = :), allocatable :: res

res = compiler_version ()
print *, "len of res is: ", len (res)
print "('<<', A, '>>')", res

deallocate (res)
end

The following is the output:

Linux

Lin$ ifx -o t.out -warn alignments -check bounds t.f90
Lin$ t.out
 len of res is: 98
<<Intel(R) Fortran Compiler for applications running on Intel(R) 64, Version 2024.1.0 Build
20240125>>

Intel® Fortran Compiler Classic and Intel® Fortran Compiler Developer Guide and Reference 1

1333

Windows

Win>ifx /o t.out /warn:alignments /check:bounds t.f90
Intel(R) Fortran Compiler for applications running on Intel(R) 64, Version 2024.1.0 Build
20240103
Copyright (C) 1985-2023 Intel Corporation. All rights reserved.

Microsoft (R) Incremental Linker Version 14.38.33130.0
Copyright (C) Microsoft Corporation. All rights reserved.

-out:t.out
-subsystem:console
t.obj

Win>t.out
 len of res is: 98
<<Intel(R) Fortran Compiler for applications running on Intel(R) 64, Version 2024.1.0 Build
20240103>>

See Also
COMPILER_OPTIONS
ISO_FORTRAN_ENV Module

COMPLEX Statement
Statement: Specifies the COMPLEX data type.

Syntax
COMPLEX
COMPLEX([KIND=] n)
COMPLEX*s
DOUBLE COMPLEX

n Is kind 4, 8, or 16.

s Is 8, 16, or 32. COMPLEX(4) is specified as COMPLEX*8; COMPLEX(8)
is specified as COMPLEX*16; COMPLEX(16) is specified as
COMPLEX*32.

If a kind parameter is specified, the complex constant has the kind specified. If no kind parameter is
specified, the kind of both parts is default real, and the constant is of type default complex.

DOUBLE COMPLEX is COMPLEX(8). No kind parameter is permitted for data declared with type DOUBLE
COMPLEX.

Example

COMPLEX ch
COMPLEX (KIND=4),PRIVATE :: zz, yy !equivalent to COMPLEX*8 zz, yy
COMPLEX(8) ax, by !equivalent to COMPLEX*16 ax, by
COMPLEX (kind(4)) y(10)
complex (kind=8) x, z(10)

See Also
DOUBLE COMPLEX
Complex Data Type
COMPLEX(4) Constants
COMPLEX(8) or DOUBLE COMPLEX Constants

 1 Intel® Fortran Compiler Classic and Intel® Fortran Compiler Developer Guide and Reference

1334

Data Types, Constants, and Variables

COMPLINT, COMPLREAL, COMPLLOG
Portability Functions: Return a BIT-WISE
complement or logical .NOT. of the argument.

Module

USE IFPORT

Syntax
result = COMPLINT (intval)
result = COMPREAL (realval)
result = COMPLLOG (logval)

intval (Input) INTEGER(4).

realval (Input) REAL(4).

logval (Input) LOGICAL(4).

Results

The result is INTEGER(4) for COMPLINT, REAL(4) for COMPLREAL and LOGICAL(4) for COMPLLOG with a
value that is the bitwise complement of the argument.

CONJG
Elemental Intrinsic Function (Generic): Calculates
the conjugate of a complex number.

Syntax
result = CONJG (z)

z (Input) Must be of type complex.

Results

The result type and kind are the same as z. If z has the value (x, y), the result has the value (x, -y).

Specific Name Argument Type Result Type

CONJG COMPLEX(4) COMPLEX(4)

DCONJG COMPLEX(8) COMPLEX(8)

QCONJG COMPLEX(16) COMPLEX(16)

Example

CONJG ((2.0, 3.0)) has the value (2.0, -3.0).

CONJG ((1.0, -4.2)) has the value (1.0, 4.2).

The following shows another example:

COMPLEX z1
COMPLEX(8) z2
z1 = CONJG((3.0, 5.6)) ! returns (3.0, -5.6)
z2 = DCONJG((3.0D0, 5.6D0)) ! returns (3.0D0, -5.6D0)

Intel® Fortran Compiler Classic and Intel® Fortran Compiler Developer Guide and Reference 1

1335

See Also
AIMAG

CONTAINS
Statement: Separates the body of a main program,
module, submodule, or external subprogram from any
internal or module procedures it may contain, or it
introduces the type-bound procedure part of a
derived-type definition. It is not executable.

Syntax
CONTAINS
Any number of internal procedures can follow a CONTAINS statement, but a CONTAINS statement cannot
appear in the internal procedures themselves.

An empty CONTAINS section is allowed.

Example

PROGRAM OUTER
 REAL, DIMENSION(10) :: A
 . . .
 CALL INNER (A)
CONTAINS
 SUBROUTINE INNER (B)
 REAL, DIMENSION(10) :: B
 . . .
 END SUBROUTINE INNER
END PROGRAM OUTER

See Also
Internal Procedures
Modules and Module Procedures
Main Program

CONTIGUOUS
Statement and Attribute: Specifies that the target
of a pointer or an assumed-sized array is contiguous.

Syntax
The CONTIGUOUS attribute can be specified in a type declaration statement or an CONTIGUOUS statement,
and takes one of the following forms:
Type Declaration Statement:

type, [att-ls,] CONTIGUOUS [, att-ls] :: object [, object] ...
Statement:

CONTIGUOUS [::] object [, object] ...

type Is a data type specifier.

att-ls Is an optional list of attribute specifiers.

object Is an assumed-shape array or an array pointer.

 1 Intel® Fortran Compiler Classic and Intel® Fortran Compiler Developer Guide and Reference

1336

Description

This attribute explicitly indicates that an assumed-shape array is contiguous or that a pointer will only be
associated with a contiguous object.

An entity can be contiguous even if CONTIGUOUS is not specified. An object is contiguous if it is one of the
following:

• An object with the CONTIGUOUS attribute
• A nonpointer whole array that is not assumed-shape
• An assumed-shape array that is argument associated with an array that is contiguous
• An array allocated by an ALLOCATE statement
• An pointer associated with a contiguous target
• A nonzero-sized array section in which the following is true:

• Its base object is contiguous.
• It does not have a vector subscript.
• The elements of the section, in array element order, are a subset of the base object elements that are

consecutive in array element order.
• If the array is of type character and a substring-range appears, the substring-range specifies all of the

characters of the parent-string.
• Only its final reference to a structure component, if any, has nonzero rank
• It is not the real or imaginary part of an array of type complex.

An object is not contiguous if it is an array subobject, and all of the following are true:

• The object has two or more elements.
• The elements of the object in array element order are not consecutive in the elements of the base object.
• The object is not of type character with length zero.
• The object is not of a derived type that has no ultimate components other than zero-sized arrays and

characters with length zero.

The CONTIGUOUS attribute can make it easier to enable optimizations that rely on the memory layout of an
object occupying a contiguous block of memory.

An array variable is considered to be simply contiguous if and only if it is a simply contiguous array
designator, or a reference to a function that returns a pointer that has the CONTIGUOUS attribute. An array
designator is simply contiguous if and only if it is one of the following:

• An object name that has the CONTIGUOUS attribute
• An object that is not assumed-rank, assumed shape, or a pointer
• A component of a derived type whose final part-name is an array, and is either not a pointer, or it has the

CONTIGUOUS attribute
• An array section that complies with these rules:

• It does not have a substring range
• It is not a complex-part designator
• Its final part-ref has a nonzero rank
• Its rightmost part-name has the CONTIGUOUS attribute or is neither assumed-shape or a pointer
• It does not have a section-subscript list, or if it does, it has a section-subscript list that specifies a

simply contiguous section

A section-subscript list specifies a simply contiguous array section if and only if it does not have a vector
subscript and the following is true:

• All but the last subscript-triplets are a colon (the last can also be a colon)
• The last subscript-triplet does not specify a stride
• No subscript triplet is preceded by a section-subscript that is simply a subscript

Intel® Fortran Compiler Classic and Intel® Fortran Compiler Developer Guide and Reference 1

1337

Examples

The following examples show valid CONTIGUOUS statements:

REAL, CONTIGUOUS, DIMENSION(:,:) :: A
REAL, POINTER, CONTIGUOUS :: MY_POINTER(:)

See Also
Type Declarations
Compatible attributes

CONTINUE
Statement: Primarily used to terminate a labeled DO
construct when the construct would otherwise end
improperly with either a GO TO, arithmetic IF, or other
prohibited control statement.

Syntax
CONTINUE
The statement by itself does nothing and has no effect on program results or execution sequence.

Example

The following example shows a CONTINUE statement:

 DO 150 I = 1,40
40 Y = Y + 1
 Z = COS(Y)
 PRINT *, Z
 IF (Y .LT. 30) GO TO 150
 GO TO 40
150 CONTINUE

The following shows another example:

 DIMENSION narray(10)
 DO 100 n = 1, 10
 narray(n) = 120
100 CONTINUE

See Also
END DO
DO
Execution Control

COPYIN Clause
Parallel Directive Clause: Specifies that the data in
the primary thread of the team is to be copied to the
thread private copies of the common block at the
beginning of the parallel region.

Syntax

COPYIN (list)

 1 Intel® Fortran Compiler Classic and Intel® Fortran Compiler Developer Guide and Reference

1338

list Is the name of one or more variables or common blocks that are
accessible to the scoping unit. Subobjects cannot be specified. Each
name must be separated by a comma, and a named common block
must appear between slashes (/ /).

The COPYIN clause applies only to common blocks declared as THREADPRIVATE.

You do not need to specify the whole THREADPRIVATE common block, you can specify named variables
within the common block.

COPYPRIVATE Clause
Parallel Directive Clause: Uses a private variable to
broadcast a value, or a pointer to a shared object,
from one member of a team to the other members.
The COPYPRIVATE clause can only appear in the END
SINGLE directive.

Syntax

COPYPRIVATE (list)

list Is the name of one or more variables or common blocks that are
accessible to the scoping unit. Subobjects cannot be specified. Each
name must be separated by a comma, and a named common block
must appear between slashes (/ /).

Variables in the list must not appear in a PRIVATE or FIRSTPRIVATE clause for the SINGLE directive
construct. A dummy argument that is a pointer with the INTENT (IN) attribute must not appear in a
COPYPRIVATE clause.

If the directive is encountered in the dynamic extent of a parallel region, variables in the list must be private
in the enclosing context.

If a common block is specified, it must be declared as THREADPRIVATE; the effect is the same as if the
variable names in its common block object list were specified.

The effect of the COPYPRIVATE clause on the variables in its list occurs after the execution of the code
enclosed within the SINGLE construct, and before any threads in the team have left the barrier at the end of
the construct.

NOTE
This construct is not supported within a TARGET or a DECLARE TARGET region if the target hardware is
spir64.

COS
Elemental Intrinsic Function (Generic): Produces
the cosine of an argument in radians.

Syntax
result = COS (x)

x (Input) Must be of type real or complex. It must be in radians and is
treated as modulo 2*pi.

Results

The result type and kind are the same as x.

Intel® Fortran Compiler Classic and Intel® Fortran Compiler Developer Guide and Reference 1

1339

If x is of type real, the result is a value in radians.

If x is of type complex, the real part of the result is a value in radians.

Specific Name Argument Type Result Type

COS REAL(4) REAL(4)

DCOS REAL(8) REAL(8)

QCOS REAL(16) REAL(16)

CCOS 1 COMPLEX(4) COMPLEX(4)

CDCOS 2 COMPLEX(8) COMPLEX(8)

CQCOS COMPLEX(16) COMPLEX(16)

1The setting of compiler options specifying real size can affect CCOS.
2This function can also be specified as ZCOS.

Example

COS (2.0) has the value -0.4161468.

COS (0.567745) has the value 0.8431157.

COSD
Elemental Intrinsic Function (Generic): Produces
the cosine of x in degrees.

Syntax
result = COSD (x)

x (Input) Must be of type real. It must be in degrees and is treated as
modulo 360.

Results

The result type and kind are the same as x.

Specific Name Argument Type Result Type

COSD REAL(4) REAL(4)

DCOSD REAL(8) REAL(8)

QCOSD REAL(16) REAL(16)

Example

COSD (2.0) has the value 0.9993908.

COSD (30.4) has the value 0.8625137.

COSH
Elemental Intrinsic Function (Generic): Produces
a hyperbolic cosine.

 1 Intel® Fortran Compiler Classic and Intel® Fortran Compiler Developer Guide and Reference

1340

Syntax
result = COSH (x)

x (Input) Must be of type real or complex.

Results

The result type and kind are the same as x.

If x is of type complex, the imaginary part of the result is in radians.

Specific Name Argument Type Result Type

COSH REAL(4) REAL(4)

DCOSH REAL(8) REAL(8)

QCOSH REAL(16) REAL(16)

Example

COSH (2.0) has the value 3.762196.

COSH (0.65893) has the value 1.225064.

COSHAPE
Inquiry Intrinsic Function (Generic): Returns the
sizes of codimensions of a coarray.

Syntax

result = COSHAPE (coarray [, kind])

coarray (Input) Is a coarray. It may be of any data type. It must not be an
unallocated allocatable coarray.

kind (Input; optional) Must be a scalar integer constant expression.

Results

The result is an integer array of rank one whose size is equal to the corank of coarray. If kind is present, the
kind parameter of the result is that specified by kind; otherwise, the kind parameter of the result is that of
default integer.

The result has a value whose ith element is equal to the size of the ith codimension of coarray as provided by
UCOBOUND(coarray, i) − LCOBOUND(coarray, i) + 1.

The setting of compiler options specifying integer size can affect this function.

Example

Consider the following coarray declaration:

REAL :: X (10, 20) [10, -1:8, 0:*]
It NUM_IMAGES() is 200, it has these properties:

• RANK (X) == 2
• corank of X == 3
• SHAPE (X) == [10,20]
• COSHAPE (X) == [10,10,2]
• LCOBOUND (X) == [1, -1, 0]

Intel® Fortran Compiler Classic and Intel® Fortran Compiler Developer Guide and Reference 1

1341

• UCOBOUND (X) == [10, 8, 1]

See Also
Coarrays
Using Coarrays
CODIMENSION
LCOBOUND
UCOBOUND

COTAN
Elemental Intrinsic Function (Generic): Produces
the cotangent of x in radians.

Syntax
result = COTAN (x)

x (Input) Must be of type real; it cannot be zero. It must be in radians
and is treated as modulo 2*pi.

Results

The result type and kind are the same as x.

Specific Name Argument Type Result Type

COTAN REAL(4) REAL(4)

DCOTAN REAL(8) REAL(8)

QCOTAN REAL(16) REAL(16)

Example

COTAN (2.0) has the value -4.576575E-01.

COTAN (0.6) has the value 1.461696.

COTAND
Elemental Intrinsic Function (Generic): Produces
the cotangent of x in degrees.

Syntax
result = COTAND (x)

x (Input) Must be of type real. It must be in degrees and is treated as
modulo 360.

Results

The result type and kind are the same as x.

Specific Name Argument Type Result Type

COTAND REAL(4) REAL(4)

DCOTAND REAL(8) REAL(8)

 1 Intel® Fortran Compiler Classic and Intel® Fortran Compiler Developer Guide and Reference

1342

Specific Name Argument Type Result Type

QCOTAND REAL(16) REAL(16)

Example

COTAND (2.0) has the value 0.2863625E+02.

COTAND (0.6) has the value 0.9548947E+02.

COUNT
Transformational Intrinsic Function (Generic):
Counts the number of true elements in an entire array
or in a specified dimension of an array.

Syntax
result = COUNT (mask[,dim][, kind])

mask (Input) Must be a logical array.

dim (Input; optional) Must be a scalar integer expression with a value in
the range 1 to n, where n is the rank of mask.

kind (Input; optional) Must be a scalar integer constant expression.

Results

The result is an array or a scalar of type integer. If kind is present, the kind parameter of the result is that
specified by kind; otherwise, the kind parameter of the result is that of default integer. If the processor
cannot represent the result value in the kind of the result, the result is undefined.

The result is a scalar if dim is omitted or mask has rank one. A scalar result has a value equal to the number
of true elements of mask. If mask has size zero, the result is zero.

An array result has a rank that is one less than mask, and shape (d1, d2, ..., ddim-1, ddim+1, ..., dn), where
(d1, d2,..., dn) is the shape of mask.

Each element in an array result equals the number of elements that are true in the one dimensional array
defined by mask(s1, s2, ..., sdim-1, :, sdim+1, ..., sn).

Example

COUNT ((/.TRUE., .FALSE., .TRUE./)) has the value 2 because two elements are true.

COUNT ((/.TRUE., .TRUE., .TRUE./)) has the value 3 because three elements are true.

A is the array

 [1 5 7]
 [3 6 8]

and B is the array

 [0 5 7]
 [2 6 9].

COUNT (A .NE. B, DIM=1) tests to see how many elements in each column of A are not equal to the
elements in the corresponding column of B. The result has the value (2, 0, 1) because:

• The first column of A and B have 2 elements that are not equal.
• The second column of A and B have 0 elements that are not equal.
• The third column of A and B have 1 element that is not equal.

Intel® Fortran Compiler Classic and Intel® Fortran Compiler Developer Guide and Reference 1

1343

COUNT (A .NE. B, DIM=2) tests to see how many elements in each row of A are not equal to the elements in
the corresponding row of B. The result has the value (1, 2) because:

• The first row of A and B have 1 element that is not equal.
• The second row of A and B have 2 elements that are not equal.

The following shows another example:

LOGICAL mask (2, 3)
INTEGER AR1(3), AR2(2), I
mask = RESHAPE((/.TRUE., .TRUE., .FALSE., .TRUE., &
 .FALSE., .FALSE./),(/2,3/))
!
! mask is the array true false false
! true true false
AR1 = COUNT(mask,DIM=1) ! counts true elements by
 ! column yielding [2 1 0]
AR2 = COUNT(mask,DIM=2) ! counts true elements by row
 ! yielding [1 2]
I = COUNT(mask) ! returns 3

See Also
ALL
ANY

CPU_TIME
Intrinsic Subroutine (Generic): Returns a
processor-dependent approximation of the processor
time in seconds. Intrinsic subroutines cannot be
passed as actual arguments.

Syntax
CALL CPU_TIME (time)

time (Output) Must be scalar and of type real.

The time returned is summed over all active threads. The result is the sum (in units of seconds) of the
current process's user time and the user and system time of all its child processes, if any.

If a meaningful time cannot be returned, a processor-dependent negative value is returned.

NOTE
If you want to estimate performance or scaling of multithreaded applications, you should use intrinsic
subroutine SYSTEM_CLOCK or portability function DCLOCK. Both of these routines return the elapsed
time from a single clock.

Example

Consider the following:

 REAL time_begin, time_end
 ...
 CALL CPU_TIME (time_begin)
 !
 ! task to be timed
 !
 CALL CPU_TIME (time_end)
 WRITE (*,*) 'Time of operation was ', time_end - time_begin, ' seconds'

 1 Intel® Fortran Compiler Classic and Intel® Fortran Compiler Developer Guide and Reference

1344

See Also
DCLOCK

SYSTEM_CLOCK

CRITICAL Directive
OpenMP* Fortran Compiler Directive: Restricts
access to a block of code to only one thread at a time.

Syntax

!$OMP CRITICAL [(name) [[,] clause]]
 loosely-structured-block
!$OMP END CRITICAL [(name)]
-or-

!$OMP CRITICAL [(name) [[,] clause]]
 strictly-structured-block
[!$OMP END CRITICAL [(name)]]

name Is the name of the critical section.

clause Is HINT (hint-expression).

loosely-structured-block Is a structured block (section) of statements or constructs. You cannot
branch into or out of the block.

strictly-structured-block Is a Fortran BLOCK construct. You cannot branch into or out of the
BLOCK construct.

The binding thread set for a CRITICAL construct is all threads in the contention group. Region execution is
restricted to a single thread at a time among all threads in the contention group, without regard to the teams
to which the threads belong.

A thread waits at the beginning of a critical section until no other thread in the team is executing a critical
section having the same name. All unnamed CRITICAL directives map to the same name.

A name is optional if HINT does not appear, or if HINT appears with a hint value of OMP_SYNC_HINT_NONE.
If a name is specified in the CRITICAL directive, the same name must appear in the corresponding END
CRITICAL directive. If no name appears in the CRITICAL directive, no name can appear in the corresponding
END CRITICAL directive. The hint-expression of each CRITICAL construct with the same name specified must
evaluate to the same HINT value.

Critical section names are global entities of the program. If the name specified conflicts with any other entity,
the behavior of the program is undefined.

Example

The following example shows a queuing model in which a task is dequeued and worked on. To guard against
multiple threads dequeuing the same task, the dequeuing operation is placed in a critical section.

Because there are two independent queues in this example, each queue is protected by CRITICAL directives
having different names, XAXIS and YAXIS, respectively:

 !$OMP PARALLEL DEFAULT(PRIVATE) SHARED(X,Y)
 !$OMP CRITICAL(XAXIS)
 CALL DEQUEUE(IX_NEXT, X)

Intel® Fortran Compiler Classic and Intel® Fortran Compiler Developer Guide and Reference 1

1345

 !$OMP END CRITICAL(XAXIS)
 CALL WORK(IX_NEXT, X)
 !$OMP CRITICAL(YAXIS)
 CALL DEQUEUE(IY_NEXT,Y)
 !$OMP END CRITICAL(YAXIS)
 CALL WORK(IY_NEXT, Y)
 !$OMP END PARALLEL

See Also
OpenMP Fortran Compiler Directives
Syntax Rules for Compiler Directives
Parallel Processing Model for information about Binding Sets

CRITICAL Statement
Statement: Marks the beginning of a CRITICAL
construct. A CRITICAL construct limits execution of a
block to one image at a time.

Syntax
[name:] CRITICAL [([STAT=stat-var] [, ERRMSG=err-var])]
 block
END CRITICAL [name]

name (Optional) Is the name of the CRITICAL construct.

stat-var Is a scalar integer variable with an exponent range of at least 4
(KIND=2 or greater).

err-var Is a scalar default character variable.

block Is a sequence of zero or more statements or constructs.

Description

If a construct name is specified in a CRITICAL statement, the same name must appear in the corresponding
END CRITICAL statement. If no name is specified at the beginning of a CRITICAL statement, you cannot
specify one following the END CRITICAL statement. The same construct name must not be used for different
named constructs in the same scoping unit.

The block of a CRITICAL construct must not contain a RETURN statement or an image control statement.

A branch within a CRITICAL construct must not have a branch target that is outside the construct. A branch
to the END CRITICAL statement is permitted from within the construct.

STAT= and ERRMSG= specifiers can appear in any order. Each may appear at most once.

Execution of the CRITICAL construct is completed when execution of its block is completed. A procedure that
is invoked, directly or indirectly, from a CRITICAL construct must not execute an image control statement.

If no error condition occurs during the execution of the construct, stat-var becomes defined with the value
zero. If the image that previously entered the construct failed while executing the construct, stat-var
becomes defined with the value STAT_FAILED_IMAGE defined in the intrinsic module ISO_FORTRAN_ENV. If
any other error occurs and STAT= is specified, stat-var becomes defined with a positive integer value other
than that of STAT_FAILED_IMAGE. Otherwise, if an error occurs, error termination is initiated.

If ERRMSG= is specified and an error condition occurs during execution of the construct, err-var becomes
defined with a descriptive message describing the nature of the error.

 1 Intel® Fortran Compiler Classic and Intel® Fortran Compiler Developer Guide and Reference

1346

The processor ensures that once an image has commenced executing block, no other image can start
executing block until this image has completed executing block. The image must not execute an image
control statement during the execution of block. The sequence of executed statements is therefore a
segment. If image S is the next to execute the construct after image N, the segment on image N precedes
the segment on image S.

If more than one image executes the block of a CRITICAL construct, its execution by one image always
precedes or succeeds its execution by another image. Normally no other statement ordering is needed.

Example

Consider the following example:

CONA: CRITICAL
 MY_COUNTER[1] = MY_COUNTER[1] + 1
END CRITICAL CONA

The definition of MY_COUNTER [1] by a particular image will always precede the reference to the same
variable by the next image to execute the block.

The following example shows a way to share a large number of tasks among images:

INTEGER :: NUMBER_TASKS[*], TASK
IF (THIS_IMAGE() == 1) READ(*,*) NUMBER_TASKS
SYNC ALL
DO
 CRITICAL
 TASK = NUMBER_TASKS[1]
 NUMBER_TASKS[1] = TASK - 1
 END CRITICAL
IF (TASK > 0) THEN
ELSE
 EXIT
END IF
END DO
SYNC ALL

See Also
Image Control Statements
Coarrays
Using Coarrays
ISO_FORTRAN_ENV Module

CSHIFT
Transformational Intrinsic Function (Generic):
Performs a circular shift on a rank-one array, or
performs circular shifts on all the complete rank-one
sections (vectors) along a given dimension of an array
of rank two or greater.

Syntax
Elements shifted off one end are inserted at the other end. Different sections can be shifted by different
amounts and in different directions.

result = CSHIFT (array,shift [,dim])

array (Input) Array whose elements are to be shifted. It can be of any data
type.

Intel® Fortran Compiler Classic and Intel® Fortran Compiler Developer Guide and Reference 1

1347

shift (Input) The number of positions shifted. Must be a scalar integer or an
array with a rank that is one less than array, and shape (d1, d2, ...,
ddim-1, ddim+1, ..., dn), where (d1, d2, ..., dn) is the shape of array.

dim (Input; optional) Optional dimension along which to perform the shift.
Must be a scalar integer with a value in the range 1 to n, where n is
the rank of array. If dim is omitted, it is assumed to be 1.

Results

The result is an array with the same type and kind parameters, and shape as array.

If array has rank one, element i of the result is array(1 + MODULO (i + shift- 1, SIZE (array))). (The same
shift is applied to each element.)

If array has rank greater than one, each section (s1,s2, ..., sdim-1, :, sdim+1, ..., sn) of the result is shifted as
follows:

• By the value of shift, if shift is scalar
• According to the corresponding value in shift(s1, s2,..., sdim-1, sdim+1,..., sn), if shift is an array

The value of shift determines the amount and direction of the circular shift. A positive shift value causes a
shift to the left (in rows) or up (in columns). A negative shift value causes a shift to the right (in rows) or
down (in columns). A zero shift value causes no shift.

Example

V is the array (1, 2, 3, 4, 5, 6).

CSHIFT (V, SHIFT=2) shifts the elements in V circularly to the left by 2 positions, producing the value (3, 4,
5, 6, 1, 2). 1 and 2 are shifted off the beginning and inserted at the end.

CSHIFT (V, SHIFT= -2) shifts the elements in V circularly to the right by 2 positions, producing the value (5,
6, 1, 2, 3, 4). 5 and 6 are shifted off the end and inserted at the beginning.

M is the array

 [1 2 3]
 [4 5 6]
 [7 8 9].

CSHIFT (M, SHIFT = 1, DIM = 2) produces the result

 [2 3 1]
 [5 6 4]
 [8 9 7].

Each element in rows 1, 2, and 3 is shifted to the left by 1 position. The elements shifted off the beginning
are inserted at the end.

CSHIFT (M, SHIFT = -1, DIM = 1) produces the result

 [7 8 9]
 [1 2 3]
 [4 5 6].

Each element in columns 1, 2, and 3 is shifted down by 1 position. The elements shifted off the end are
inserted at the beginning.

CSHIFT (M, SHIFT = (/1, -1, 0/), DIM = 2) produces the result

 [2 3 1]
 [6 4 5]
 [7 8 9].

 1 Intel® Fortran Compiler Classic and Intel® Fortran Compiler Developer Guide and Reference

1348

Each element in row 1 is shifted to the left by 1 position; each element in row 2 is shifted to the right by 1
position; no element in row 3 is shifted at all.

The following shows another example:

INTEGER array (3, 3), AR1(3, 3), AR2 (3, 3)
DATA array /1, 4, 7, 2, 5, 8, 3, 6, 9/
!
! array is 1 2 3
! 4 5 6
! 7 8 9
!AR1 = CSHIFT(array, 1, DIM = 1) ! shifts all columns
 ! by 1 yielding
 ! 4 5 6
 ! 7 8 9
 ! 1 2 3
 !
AR2=CSHIFT(array,shift=(/-1, 1, 0/),DIM=2) ! shifts
 ! each row separately
 ! by the amount in
 ! shift yielding
 ! 3 1 2
 ! 5 6 4
 ! 7 8 9

See Also
EOSHIFT
ISHFT
ISHFTC

CSMG
Portability Function: Performs an effective BIT-
WISE store under mask.

Module

USE IFPORT

Syntax
result = CSMG (x,y,z)

x, y, z (Input) INTEGER(4).

Results

The result type is INTEGER(4). The result is equal to the following expression:

 (x & z) | (y & ~z)
where "&" is a bitwise AND operation, | - bitwise OR, ~ - bitwise NOT.

The function returns the value based on the following rule: when a bit in z is 1, the output bit is taken from
x. When a bit in z is zero, the corresponding output bit is taken from y.

CTIME
Portability Function: Converts a system time into a
24-character ASCII string.

Intel® Fortran Compiler Classic and Intel® Fortran Compiler Developer Guide and Reference 1

1349

Module

USE IFPORT

Syntax
result = CTIME (stime)

stime (Input) INTEGER(4). An elapsed time in seconds since 00:00:00
Greenwich mean time, January 1, 1970.

Results

The result is a value in the form Mon Jan 31 04:37:23 1994. Hours are expressed using a 24-hour clock.

The value of stime can be determined by calling the TIME function. CTIME(TIME()) returns the current time
and date.

Example

USE IFPORT
character (24) systime
systime = CTIME (TIME())
print *, 'Current date and time is ',systime

See Also
DATE_AND_TIME

CYCLE
Statement: Interrupts the current execution cycle of
the innermost (or named) DO construct.

Syntax
CYCLE [name]

name (Optional) Is the name of the DO construct.

Description

When a CYCLE statement is executed, the following occurs:

1. The current execution cycle of the named (or innermost) DO construct is terminated.

If a DO construct name is specified, the CYCLE statement must be within the range of that construct.
2. The iteration count (if any) is decremented by 1.
3. The DO variable (if any) is incremented by the value of the increment parameter (if any).
4. A new iteration cycle of the DO construct begins.

Any executable statements following the CYCLE statement (including a labeled terminal statement) are not
executed.

A CYCLE statement can be labeled, but it cannot be used to terminate a DO construct.

Execution of a CYCLE statement that belongs to a DO CONCURRENT construct completes execution of that
iteration of the construct.

 1 Intel® Fortran Compiler Classic and Intel® Fortran Compiler Developer Guide and Reference

1350

Example

The following example shows a CYCLE statement:

DO I =1, 10
 A(I) = C + D(I)
 IF (D(I) < 0) CYCLE ! If true, the next statement is omitted
 A(I) = 0 ! from the loop and the loop is tested again.
END DO

The following shows another example:

 sample_loop: do i = 1, 5
 print *,i
 if(i .gt. 3) cycle sample_loop
 print *,i
 end do sample_loop
 print *,'done!'
!output:
! 1
! 1
! 2
! 2
! 3
! 3
! 4
! 5
! done!

See Also
DO
DO WHILE
Execution Control

DATA
Statement: Assigns initial values to variables before
program execution.

Syntax
DATA var-list /clist/ [[,] var-list /clist/]...
-or-

DATA (var = const (, var = const)...)

var Is a variable or implied-DO list, separated by commas. var cannot be
a coarray, a dummy argument, accessed by use or host association, a
function name, a function result name, an automatic variable, or an
allocatable variable.

Subscript expressions, section expressions, and substring expressions
must be constant expressions.

An implied-DO list in a DATA statement takes the following form:

(do-list, [integer-type-spec ::] do-var= expr1, expr2[, expr3])

Intel® Fortran Compiler Classic and Intel® Fortran Compiler Developer Guide and Reference 1

1351

do-list Is a list of one or more array elements, substrings, scalar structure
components, or implied-DO lists, separated by commas. Any array
elements or scalar structure components must not have a constant
parent.

integer-type-spec Is INTEGER [kind-selector].

kind-selector Is ([KIND=] n).

n Is a constant expression whose value is 1, 2, 4, or 8.

do-var Is the name of a scalar integer variable (the implied-DO variable). It
cannot be a coarray.

expr Implied-DO limits must be scalar constant expressions. They may
contain implied-DO variables from outer nested implied-DO lists. For
more details, see Iteration Loop Control.

var-list Is a list of vars separated by commas.

const Is a scalar constant expression (or name of a constant), constant
structure constructor, or, for pointer objects, NULL (). If the constant
is a binary, octal, or hexadecimal literal, the corresponding var must
be of type INTEGER. In the second form of a DATA statement (DATA
(var = const (, var = const) …)), const can also be an array
constructor.

A constant can be specified in the form r*constant, where r is a repeat
specification. r is a nonnegative scalar integer constant (with no kind
parameter). If r is a named constant, it must have been declared
previously in the scoping unit or made accessible through use or host
association. If r is omitted, it is assumed to be 1.

clist Is a list of consts separated by commas.

Description

A variable can be initialized only once in an executable program. A variable that appears in a DATA statement
and is typed implicitly can appear in a subsequent type declaration which may change the implicit typing.

The number of constants in c-list must equal the number of variables in var-list. The constants are assigned
to the variables in the order in which they appear (from left to right).

The following objects cannot be initialized in a DATA statement:

• A dummy argument
• A function
• A function result
• An automatic object
• An allocatable array
• A variable that is accessible by use or host association
• A variable in a named common block (unless the DATA statement is in a block data program unit)
• A variable in blank common

Except for variables in named COMMON blocks, a named variable has the SAVE attribute if any part of it is
initialized in a DATA statement. You can confirm this property by specifying the variable in a SAVE statement
or a type declaration statement containing the SAVE attribute.

 1 Intel® Fortran Compiler Classic and Intel® Fortran Compiler Developer Guide and Reference

1352

When an unsubscripted array name appears in a DATA statement, values are assigned to every element of
that array in the order of subscript progression. If the associated constant list does not contain enough
values to fill the array, a warning is issued and the remaining array elements become undefined.

Array element values can be initialized in three ways: by name, by element, or by an implied-DO list
(interpreted in the same way as a DO construct).

The following conversion rules and restrictions apply to variable and constant list items:

• If the constant and the variable are both of numeric type, the following conversion occurs:

• The constant value is converted to the data type of the variable being initialized, if necessary.
• When a binary, octal, or hexadecimal constant is assigned to a variable or array element, the number

of digits that can be assigned depends on the data type of the data item. If the constant contains
fewer digits than the capacity of the variable or array element, the constant is extended on the left
with zeros. If the constant contains more digits than can be stored, the constant is truncated on the
left. An error results if any nonzero digits are truncated.

• If the constant and the variable are both of character type, the following conversion occurs:

• If the length of the constant is less than the length of the variable, the rightmost character positions of
the variable are initialized with blank characters.

• If the length of the constant is greater than the length of the variable, the character constant is
truncated on the right.

• If the constant is of numeric type and the variable is of character type, the following restrictions apply:

• The character variable must have a length of one character.
• The constant must be an integer, binary, octal, or hexadecimal constant, and must have a value in the

range 0 through 255.

When the constant and variable conform to these restrictions, the variable is initialized with the character
that has the ASCII code specified by the constant. (This lets you initialize a character object to any 8-bit
ASCII code.)

• If the constant is a Hollerith or character constant, and the variable is a numeric variable or numeric array
element, the number of characters that can be assigned depends on the data type of the data item.

If the Hollerith or character constant contains fewer characters than the capacity of the variable or array
element, the constant is extended on the right with blank characters. If the constant contains more
characters than can be stored, the constant is truncated on the right.

Example

The following example shows the four ways that DATA statements can initialize array element values:

 DIMENSION A(10,10), B(4)
 DATA A/100*1.0/ ! initialization by name
 DATA A(1,1), A(10,1), A(3,3) /2*2.5, 2.0/ ! initialization by element
 DATA ((A(I,J), I=1,5,2), J=1,5) /15*1.0/ ! initialization by implied-DO list
 DATA ((B(i), I = 1, 4) = [11.0, 12.0, 13.0, 14.0])

The following example shows DATA statements containing structure components:

 TYPE EMPLOYEE
 INTEGER ID
 CHARACTER(LEN=40) NAME
 END TYPE EMPLOYEE
 TYPE(EMPLOYEE) MAN_NAME, CON_NAME
 DATA MAN_NAME / EMPLOYEE(417, 'Henry Adams') /
 DATA CON_NAME%ID, CON_NAME%NAME /891, "David James"/

Intel® Fortran Compiler Classic and Intel® Fortran Compiler Developer Guide and Reference 1

1353

In the following example, the first DATA statement assigns zero to all 10 elements of array A, and four
asterisks followed by two blanks to the character variable STARS:

 INTEGER A(10), B(10)
 CHARACTER BELL, TAB, LF, FF, STARS*6
 DATA A,STARS /10*0,'****'/
 DATA BELL,TAB,LF,FF /7,9,10,12/
 DATA (B(I), I=1,10,2) /5*1/

In this case, the second DATA statement assigns ASCII control character codes to the character variables
BELL, TAB, LF, and FF. The last DATA statement uses an implied-DO list to assign the value 1 to the odd-
numbered elements in the array B.

The following shows another example:

 INTEGER n, order, alpha, list(100)
 REAL coef(4), eps(2),
 pi(5), x(5,5)
 CHARACTER*12 help
 COMPLEX*8 cstuff
 DATA n /0/, order /3/
 DATA alpha /'A'/
 DATA coef /1.0, 2*3.0, 1.0/, eps(1) /.00001/
 DATA cstuff /(-1.0, -1.0)/
! The following example initializes diagonal and below in
! a 5x5 matrix:
 DATA ((x(j,i), i=1,j), j=1,5) / 15*1.0 /
 DATA pi / 5*3.14159 /
 DATA list / 100*0 /
 DATA help(1:4), help(5:8), help(9:12) /3*'HELP'/

Consider the following:

 CHARACTER (LEN = 10) NAME
 INTEGER, DIMENSION (0:9) :: MILES
 REAL, DIMENSION (100, 100) :: SKEW
 TYPE (MEMBER) MYNAME, YOURS
 DATA NAME / 'JOHN DOE' /, miles / 10*0 /
 DATA ((SKEW (k, j), j = 1, k), k = 1, 100) / 5050*0.0 /
 DATA ((SKEW (k, j), j = k + 1, 100), k = 1, 99) / 4950*1.0 /
 DATA MYNAME / MEMBER (21, 'JOHN SMITH') /
 DATA YOURS % age, YOURS % name / 35, 'FRED BROWN' /

In this example, the character variable NAME is initialized with the value JOHN DOE with two trailing blanks
to fill out the declared length of the variable. The ten elements of MILES are initialized to zero. The two-
dimensional array SKEW is initialized so that its lower triangle is zero and its upper triangle is one. The
structures MYNAME and YOURS are declared using the derived type MEMBER. The derived-type variable
MYNAME is initialized by a structure constructor. The derived-type variable YOURS is initialized by supplying a
separate value for each component.

The first DATA statement in the previous example could also be written as:

 DATA name / 'JOHN DOE' /
 DATA miles / 10*0 /

A pointer can be initialized as disassociated by using a DATA statement. For example:

 INTEGER, POINTER :: P
 DATA P/NULL()/
 END

 1 Intel® Fortran Compiler Classic and Intel® Fortran Compiler Developer Guide and Reference

1354

The implied-DO limits can be any constant expressions in a DATA statement. For example:

 DATA (A(I),I=LBOUND(A),UBOUND(A)) /10*4.0/

See Also
CHARACTER
INTEGER
REAL
COMPLEX
COMMON
Data Types, Constants, and Variables
I/O Lists
Derived Data Types
Allocating Common Blocks

DATE Intrinsic Procedure
Intrinsic Subroutine (Generic): Returns the current
date as set within the system. DATE can be used as
an intrinsic subroutine or as a portability routine. It is
an intrinsic procedure unless you specify USE IFPORT.
Intrinsic subroutines cannot be passed as actual
arguments.

Syntax
CALL DATE (buf)

buf (Output) Is a variable, array, or array element of any data type, or a
character substring. It must contain at least nine bytes of storage.

The date is returned as a 9-byte ASCII character string taking the form dd-mmm-yy, where:

dd is the 2-digit date

mmm is the 3-letter month

yy is the last two digits of the year

If buf is of numeric type and smaller than 9 bytes, data corruption can occur.

If buf is of character type, its associated length is passed to the subroutine. If buf is smaller than 9 bytes,
the subroutine truncates the date to fit in the specified length. If an array of type character is passed, the
subroutine stores the date in the first array element, using the element length, not the length of the entire
array.

Caution
The two-digit year return value may cause problems with the year 2000. Use DATE_AND_TIME
instead.

Example

CHARACTER*1 DAY(9)
…
CALL DATE (DAY)

The length of the first array element in CHARACTER array DAY is passed to the DATE subroutine. The
subroutine then truncates the date to fit into the 1-character element, producing an incorrect result.

Intel® Fortran Compiler Classic and Intel® Fortran Compiler Developer Guide and Reference 1

1355

See Also
DATE_AND_TIME

DATE portability routine

DATE Portability Routine
Portability Function or Subroutine: Returns the
current system date. DATE can be used as a
portability routine or as an intrinsic procedure. It is an
intrinsic procedure unless you specify USE IFPORT.

Module

USE IFPORT

Syntax
Function Syntax:

result = DATE()
Subroutine Syntax:

CALL DATE (dstring)

dstring (Output) CHARACTER. Is a variable or array containing at least nine
bytes of storage.

DATE in its function form returns a CHARACTER string of length 8 in the form mm/dd/yy, where mm, dd, and
yy are two-digit representations of the month, day, and year, respectively.

DATE in its subroutine form returns dstring in the form dd-mmm-yy, where dd is a two-digit representation
of the current day of the month, mmm is a three-character abbreviation for the current month (for example,
Jan) and yy are the last two digits of the current year.

Caution
The two-digit year return value may cause problems with the year 2000. Use DATE_AND_TIME
instead.

Example

USE IFPORT
!If today's date is March 02, 2000, the following
!code prints "02-Mar-00"
CHARACTER(9) TODAY
CALL DATE(TODAY)
PRINT *, TODAY
!The next line prints "03/02/00"
PRINT *, DATE()

See Also
DATE_AND_TIME

DATE intrinsic procedure

 1 Intel® Fortran Compiler Classic and Intel® Fortran Compiler Developer Guide and Reference

1356

DATE4
Portability Subroutine: Returns the current system
date.

Module

USE IFPORT

Syntax
CALL DATE4 (datestr)

datestr (Output) CHARACTER. Is a variable or array containing at least eleven
bytes of storage.

This subroutine returns datestr in the form dd-mmm-yyyy, where dd is a two-digit representation of the
current day of the month, mmm is a three-character abbreviation for the current month (for example, Jan)
and yyyy are the four digits of the current year.

DATE_AND_TIME
Intrinsic Subroutine (Generic): Returns character
and binary data on the real-time clock and date.
Intrinsic subroutines cannot be passed as actual
arguments.

Syntax
CALL DATE_AND_TIME ([date,time,zone,values])

date (Output; optional) Must be scalar and of type default character; its
length must be at least 8 to contain the complete value. Its leftmost 8
characters are set to a value of the form CCYYMMDD, where:

CC Is the century

YY Is the year within the century

MM Is the month within the year

DD Is the day within the month

time (Output; optional) Must be scalar and of type default character; its
length must be at least 10 to contain the complete value. Its leftmost
10 characters are set to a value of the form hhmmss.sss, where:

hh Is the hour of the day

mm Is the minutes of the hour

ss.sss Is the seconds and milliseconds
of the minute

zone (Output; optional) Must be scalar and of type default character; its
length must be at least 5 to contain the complete value. Its leftmost 5
characters are set to a value of the form +hhmm or -hhmm, where hh
and mm are the time difference with respect to Coordinated Universal
Time (UTC) in hours and parts of an hour expressed in minutes,
respectively.

Intel® Fortran Compiler Classic and Intel® Fortran Compiler Developer Guide and Reference 1

1357

UTC is also known as Greenwich Mean Time.

values (Output; optional) Must be of type integer. One-dimensional array with
size of at least 8. The values returned in values are as follows:

values(1) Is the 4-digit year

values(2) Is the month of the year

values(3) Is the day of the month

values(4) Is the time difference with
respect to Coordinated Universal
Time (UTC) in minutes

values(5) Is the hour of the day (range 0
to 23) - local time

values(6) Is the minutes of the hour
(range 0 to 59) - local time

values(7) Is the seconds of the minute
(range 0 to 59) - local time

values(8) Is the milliseconds of the second
(range 0 to 999) - local time

Example

Consider the following example executed on 2000 March 28 at 11:04:14.5:

 INTEGER DATE_TIME (8)
 CHARACTER (LEN = 12) REAL_CLOCK (3)
 CALL DATE_AND_TIME (REAL_CLOCK (1), REAL_CLOCK (2), &
 REAL_CLOCK (3), DATE_TIME)

This assigns the value "20000328" to REAL_CLOCK (1), the value "110414.500" to REAL_CLOCK (2), and the
value "-0500" to REAL_CLOCK (3). The following values are assigned to DATE_TIME: 2000, 3, 28, -300, 11,
4, 14, and 500.

The following shows another example:

CHARACTER(10) t
CHARACTER(5) z
CALL DATE_AND_TIME(TIME = t, ZONE = z)

See Also
GETDAT

GETTIM

IDATE intrinsic procedure

FDATE

TIME intrinsic procedure

ITIME

 1 Intel® Fortran Compiler Classic and Intel® Fortran Compiler Developer Guide and Reference

1358

RTC

CLOCK

DBESJ0, DBESJ1, DBESJN, DBESY0, DBESY1, DBESYN
Portability Functions: Compute the double-precision
values of Bessel functions of the first and second
kinds.

Module

USE IFPORT

Syntax
result = DBESJ0 (value)
result = DBESJ1 (value)
result = DBESJN (n, value)
result = DBESY0 (posvalue)
result = DBESY1 (posvalue)
result = DBESYN (n, posvalue)

value (Input) REAL(8). Independent variable for a Bessel function.

n (Input) INTEGER(4). Specifies the order of the selected Bessel
function computation.

posvalue (Input) REAL(8). Independent variable for a Bessel function. Must be
greater than or equal to zero.

Results

DBESJ0, DBESJ1, and DBESJN return Bessel functions of the first kind, orders 0, 1, and n, respectively, with
the independent variable value.

DBESY0, DBESY1, and DBESYN return Bessel functions of the second kind, orders 0, 1, and n, respectively,
with the independent variable posvalue.

Negative arguments cause DBESY0, DBESY1, and DBESYN to return a huge negative value.

Bessel functions are explained more fully in most mathematics reference books, such as the Handbook of
Mathematical Functions(Abramowitz and Stegun. Washington: U.S. Government Printing Office, 1964). These
functions are commonly used in the mathematics of electromagnetic wave theory.

See the descriptions of the BESSEL_* functions, if you need to use quad-precision (REAL(16)).

Example

 USE IFPORT
 real(8) besnum, besout
10 read *, besnum
 besout = dbesj0(besnum)
 print *, 'result is ',besout
 goto 10
 end

See Also
BESJ0, BESJ1, BESJN, BESY0, BESY1, BESYN

Intel® Fortran Compiler Classic and Intel® Fortran Compiler Developer Guide and Reference 1

1359

DBLE
Elemental Intrinsic Function (Generic): Converts
a number to double-precision real type.

Syntax
result = DBLE (a)

a (Input) Must be of type integer, real, or complex, or a binary, octal, or
hexadecimal literal constant.

Results

The result type is double precision real (by default, REAL(8) or REAL*8). Functions that cause conversion of
one data type to another type have the same effect as the implied conversion in assignment statements.

If a is of type double precision, the result is the value of the a with no conversion (DBLE(a) = a).

If a is of type integer or real, the result has as much precision of the significant part of a as a double
precision value can contain.

If a is of type complex, the result has as much precision of the significant part of the real part of a as a
double precision value can contain.

Specific Name 1 Argument Type Result Type

INTEGER(1) REAL(8)

INTEGER(2) REAL(8)

INTEGER(4) REAL(8)

INTEGER(8) REAL(8)

DBLE2 REAL(4) REAL(8)

REAL(8) REAL(8)

DBLEQ REAL(16) REAL(8)

COMPLEX(4) REAL(8)

COMPLEX(8) REAL(8)

COMPLEX(16) REAL(8)

1These specific functions cannot be passed as actual arguments.
2 The setting of compiler options specifying double size can affect DBLE.

If the argument is a binary, octal, or hexadecimal literal constant, the result is affected by the
assume old-boz option. The default option setting, noold-boz, treats the argument as a bit string that
represents a value of the data type of the intrinsic, that is, the bits are not converted. If setting old-boz is
specified, the argument is treated as a signed integer and the bits are converted.

NOTE
The result values of DBLE are defined by references to the intrinsic function REAL with the
same arguments. Therefore, the padding and truncation of binary, octal, and hexadecimal
literal constant arguments to DBLE is the same as for the intrinsic function REAL.

 1 Intel® Fortran Compiler Classic and Intel® Fortran Compiler Developer Guide and Reference

1360

Example

DBLE (4) has the value 4.0.

DBLE ((3.4, 2.0)) has the value 3.4.

See Also
Binary, Octal, Hexadecimal, and Hollerith Constants
Model for Bit Data
FLOAT
SNGL
REAL
CMPLX

DCLOCK
Portability Function: Returns the elapsed time in
seconds since the start of the current process.

Module

USE IFPORT

Syntax
result = DCLOCK()

Results

The result type is REAL(8). This routine provides accurate timing to the nearest millisecond (Windows*) or to
the nearest microsecond (Linux*), taking into account the frequency of the processor where the current
process is running.

Note that the first call to DCLOCK performs calibration.

Example

USE IFPORT
DOUBLE PRECISION START_TIME, STOP_TIME
START_TIME = DCLOCK()
CALL FOO()
STOP_TIME = DCLOCK()
PRINT *, 'foo took:', STOP_TIME - START_TIME, 'seconds.'

See Also
DATE_AND_TIME
CPU_TIME

DCMPLX
Elemental Intrinsic Function (Specific): Converts
the argument to double complex type. This function
cannot be passed as an actual argument.

Syntax
result = DCMPLX (x[,y])

x (Input) Must be of type integer, real, or complex.

Intel® Fortran Compiler Classic and Intel® Fortran Compiler Developer Guide and Reference 1

1361

y (Input; optional) Must be of type integer or real. It must not be
present if x is of type complex.

Results

The result type is double complex (COMPLEX(8) or COMPLEX*16).

If only one noncomplex argument appears, it is converted into the real part of the result value and zero is
assigned to the imaginary part. If y is not specified and x is complex, the result value is CMPLX(REAL(x),
AIMAG(x)).

If two noncomplex arguments appear, the complex value is produced by converting the first argument into
the real part of the value, and converting the second argument into the imaginary part.

DCMPLX(x, y) has the complex value whose real part is REAL(x, KIND=8) and whose imaginary part is
REAL(y, KIND=8).

Example

DCMPLX (-3) has the value (-3.0, 0.0).

DCMPLX (4.1, 2.3) has the value (4.1, 2.3).

See Also
CMPLX
FLOAT
INT
IFIX
REAL
SNGL

DEALLOCATE
Statement: Frees the storage allocated for allocatable
variables and nonprocedure pointer targets (and
causes the pointers to become disassociated).

Syntax
DEALLOCATE (object[,object]...[, dealloc-opt])

object Is a structure component or the name of a variable, and must be a
pointer or allocatable variable.

dealloc-opt (Output) Is one of the following:

STAT=stat-var stat-var is a scalar integer variable in
which the status of the deallocation is
stored.

ERRMSG=err-var err-var is a scalar default character value
in which an error condition is stored if such a
condition occurs.

Description

If a STAT= variable or ERRMSG= variable is specified, it must not be deallocated in the DEALLOCATE
statement in which it appears. If the deallocation is successful, the STAT= variable is set to zero and the
ERRMSG= variable is unchanged. If the deallocation is not successful, an error condition occurs, the STAT=

 1 Intel® Fortran Compiler Classic and Intel® Fortran Compiler Developer Guide and Reference

1362

variable is set to a positive integer value (representing the runtime error), and the ERRMSG= variable is
defined with a descriptive message about the error condition. If no STAT= variable is specified and an error
condition occurs, error termination is initiated.

If an ALLOCATE or DEALLOCATE statement with a coarray allocatable object is executed when one or more
images has initiated termination of execution, the STAT= variable becomes defined with the processor-
dependent positive integer value of the constant STAT_STOPPED_IMAGE from the intrinsic module
ISO_FORTRAN_ENV. Otherwise, if an allocatable object is a coarray and one or more images of the current
team has failed, the STAT= variable becomes defined with the processor-dependent positive integer value of
the constant STAT_FAILED_IMAGE from the intrinsic module ISO_FORTRAN_ENV.

If any other error condition occurs during execution of the ALLOCATE or DEALLOCATE statement, the STAT=
variable becomes defined with a processor-dependent positive integer value different from
STAT_STOPPED_IMAGE or STAT_FAILED_IMAGE.

If an ALLOCATE or DEALLOCATE statement with a coarray allocatable object is executed when one or more
images of the current team has failed, each allocatable object is successfully allocated or deallocated on the
active images of the current team. If any other error occurs, the allocation status of each allocatable object is
processor dependent:

• Successfully allocated allocatable objects have the allocation status of allocated, or associated if the
allocate object is has the POINTER attribute.

• Successfully deallocated allocatable objects have the allocation status of deallocated, or disassociated if
the allocatable object has the POINTER attribute.

• An allocatable object that was not successfully allocated or deallocated has its previous allocation status,
or its previous association status if it has the POINTER attribute.

It is recommended that all explicitly allocated storage be explicitly deallocated when it is no longer needed.

To disassociate a pointer that was not associated with the ALLOCATE statement, use the NULLIFY statement.

For a list of runtime errors, see Error Handling.

Example

The following example shows deallocation of an allocatable array:

INTEGER ALLOC_ERR
REAL, ALLOCATABLE :: A(:), B(:,:)
...
ALLOCATE (A(10), B(-2:8,1:5))
...
DEALLOCATE(A, B, STAT = ALLOC_ERR)

The following shows another example:

INTEGER, ALLOCATABLE :: dataset(:,:,:)
INTEGER reactor, level, points, error
DATA reactor, level, points / 10, 50, 10 /
ALLOCATE (dataset(1:reactor,1:level,1:points), STAT = error)
DEALLOCATE (dataset, STAT = error)

See Also
ALLOCATE
NULLIFY
Arrays
Dynamic Allocation
ISO_FORTRAN_ENV Module

Intel® Fortran Compiler Classic and Intel® Fortran Compiler Developer Guide and Reference 1

1363

DECLARE and NODECLARE
General Compiler Directives: DECLARE generates
warnings for variables that have been used but have
not been declared (like the IMPLICIT NONE
statement). NODECLARE (the default) disables these
warnings.

Syntax
!DIR$ DECLARE
!DIR$ NODECLARE
The DECLARE directive is primarily a debugging tool that locates variables that have not been properly
initialized, or that have been defined but never used.

See Also
IMPLICIT
General Compiler Directives
Syntax Rules for Compiler Directives
Equivalent Compiler Options

DECLARE MAPPER
OpenMP* Fortran Compiler Directive: Declares a
user-defined mapper for a specified type. It also lets
you optionally declare a map-identifier that can be
used in a MAP clause in other directives or in a
motion-clause of a TARGET UPDATE directive. This
feature is only available for ifx.

Syntax

!$OMP DECLARE MAPPER ([mapper-identifier:] type::var) [clause [[,] clause]...]

mapper-identifier Is a Fortran identifier, or the literal string DEFAULT. If no mapper-
identifier is specified, it is as if DEFAULT was specified.

A DECLARE MAPPER directive specifying a mapper-identifier for a
given type is not permitted in a scope where another DECLARE
MAPPER directive specifying the same mapper-identifier for the same
type is accessible.

type Is an accessible type name within the scope where the directive
appears. It cannot be an intrinsic or an abstract type.

type cannot be directly or indirectly mapped as part of the mapper
through another type, except through the appearance of var as a list
item in a MAP clause.

If type identifies a derived type, it can be any accessible derived type
name. In the Description below, DT refers to a derived type identifier.

var Is a Fortran identifier. It can be used in all MAP clauses of the
DECLARE MAPPER directive. No subobject of var is default mapped; all
parts of var must be explicitly mapped.

var, or at least one element or component of var, must appear in a
MAP clause.

clause Is MAP ([[map-type-modifier[,]] map-type :] list).

 1 Intel® Fortran Compiler Classic and Intel® Fortran Compiler Developer Guide and Reference

1364

map-type-modifier is ALWAYS, CLOSE, OR PRESENT.

map-type is ALLOC, TO, FROM or TOFROM.

Each map-type can appear only once in a MAP clause. If map-type is
not specified, it is as if TOFROM appeared as the map-type.

list items are limited to references of var, or other objects that are
accessible in the scope or are previously declared in the scope where
the DECLARE MAPPER directive appears. A list item can be an array
section.

The DECLARE MAPPER directive is a declarative directive that appears in the specification part of a program.
It is a pure directive, so it can appear in a Fortran PURE procedure. type and mapper-identifier, if present,
uniquely identify the mapper.

If a DECLARE MAPPER directive is not specified for a type DT, a predefined mapper exists for type DT as if the
type DT had appeared in the directive as follows:

!$OMP DECLARE MAPPER (DT :: var) MAP (TOFROM: var)
A DECLARE MAPPER directive that uses the mapper-identifier DEFAULT for any type DT overrides this
predefined mapper for the type DT, and the user-declared mapper becomes the default mapper for all
variables of type DT.

If a MAP clause in another directive maps a list item of a type specified in an accessible DECLARE MAPPER
directive, or if a motion clause of a TARGET UPDATE invokes a user-defined mapper and updates a list item of
type specified by that mapper, the effect is as if the MAP or motion clause is replaced by a set of MAP or
motion clauses derived from the MAP clauses specified on the DECLARE MAPPER directive.

A derived type list-item can have more than one map type: one from DECLARE MAPPER, and one from a MAP
clause in a TARGET construct.

The following table shows the final map type a mapper applies for a MAP clause that maps a list item of the
given type:

• The rows are the map-type specified by the mapper.
• The columns are the specified map-type of the MAP clause invoking the mapper.
• The parenthesized values in the table represent the final map type for a TARGET EXIT DATA construct that

invokes a mapper.

In this case, if the mapper specifies map-type ALLOC or TO, and the TARGET EXIT DATA MAP clause that
invokes the mapper has map-type FROM, the resulting map-type is RELEASE.

Map result type of map type combinations

ALLOC TO FROM TOFROM RELEASE DELETE

ALLOC ALLOC ALLOC ALLOC
(RELEASE)

ALLOC RELEASE DELETE

TO ALLOC TO ALLOC
(RELEASE)

TO RELEASE DELETE

FROM ALLOC ALLOC FROM FROM RELEASE DELETE

TOFROM ALLOC TO FROM TOFROM RELEASE DELETE

If a set of DECLARE MAPPER directives result in a cyclic definition of mappers, it causes unspecified behavior.

Intel® Fortran Compiler Classic and Intel® Fortran Compiler Developer Guide and Reference 1

1365

Example

The following example contains a DECLARE MAPPER directive that maps derived types of type my_type. The
variable var has the type my_type and is used in the MAP clause to reference the derived type and its
components.

The MAP clause in the DECLARE MAPPER directive specifies that all components of my_type are mapped, as
well as the dynamic storage in the array section var%values(1:NUM_ELEMENTS). No map-type is specified,
so the map type TOFROM is assumed.

Variables used in TARGET regions that are of type my_type will be implicitly mapped as prescribed in the
DECLARE MAPPER directive’s MAP clause.

 program main
 integer,parameter :: nvals = 250
 type my_type
 integer :: num_vals
 integer, allocatable :: values(:)
 end type
 type (my_type) :: t
 !$omp declare mapper (my_type :: var) map (var, var%values (1:var%num_vals))

 t%num_vals = nvals
 allocate (t%values(t%num_vals))
 !$omp target
 call initial_vals (t)
 !$omp end target
 ...
 contains
 subroutine initial_vals (v)
 type (my_type) :: v
 v%values = 0
 end subroutine initial_vals
 end program

The following example maps the type my_type as seen in the previous example.

Type my_type is nested within another derived type, my_type2. my_type2 is mapped by a second DECLARE
MAPPER directive.

The array component unmapped is not mapped and is available on the host only. The component temp is
allocated on the target and used as temporary storage on the target device. The component arr is mapped
with the default map type TOFROM. The two mappers are combined when mapping variables of type
my_type2.

The second DECLARE MAPPER directive uses a mapper-identifier, and maps the variable x and the array y as
well as the type my_type2.

program main
 integer,parameter :: nvals = 250
 type my_type
 integer :: num_vals
 integer, allocatable :: values(:)
 end type
 !$omp declare mapper (my_type :: var) map (var, var%values (1:var%num_vals))

 type my_type2
 type (my_type) :: my_type_var
 type (my_type) :: temp
 real,dimension(nvals) :: unmapped

 1 Intel® Fortran Compiler Classic and Intel® Fortran Compiler Developer Guide and Reference

1366

 real,dimension(nvals) :: arr
 end type
 type (my_type2) :: t
 real :: x, y(num_vals)
 !$omp declare mapper (my_mapper : my_type2 :: v) map (v%arr, x, y(:)) &
 !$omp& map (alloc : v%temp)

 !$omp target map (mapper(my_mapper), tofrom : t)
 call calculate(t, x, y)
 !$omp end target
 ...
 end program

See Also
OpenMP Fortran Compiler Directives
Syntax Rules for Compiler Directives
TARGET UPDATE

DECLARE REDUCTION
OpenMP* Fortran Compiler Directive: Declares
user-defined reductions which are identified by a
reduction-identifier that can be used in a reduction
clause of other directives.

Syntax

!$OMP DECLARE REDUCTION (reduction-identifier : type-list : combiner) [initializer-
clause]

reduction-identifier Is a Fortran identifier, or a defined or extended operator.

type-list Is a comma-separated list of one or more type identifiers. These may
be intrinsic types or accessible derived types. You cannot specify
polymorphic and parameterized derived types, and coarrays.

type-list cannot contain a type which has previously been specified in
a DECLARE REDUCTION directive with the same reduction-identifier if
the reduction-identifier/type pair is accessible by use or host
association.

If more than one type is specified, it is as if there is a separate
DECLARE REDUCTION directive for each type.

combiner Is an assignment statement, or a subroutine name followed by an
argument list. It indicates how partial results are combined into a
single value.

There are two special identifiers that are allowed in the combiner:

• omp_out
This identifier refers to the storage that holds the resulting
combined value following execution of the combiner.

• omp_in
The above identifiers refer to variables that are the type of the
reduction variables specified in type-list for the reduction-identifier.
They denote values to be combined by executing the combiner.

Intel® Fortran Compiler Classic and Intel® Fortran Compiler Developer Guide and Reference 1

1367

No other identifiers are permitted in the combiner. Any number of
literal or named constants can appear in the combiner.

If combiner is a subroutine name followed by an argument list, it is
evaluated by calling the subroutine with the specified argument list. If
combiner is an assignment statement, combiner is evaluated by
executing the assignment statement.

The number of times the combiner is executed, and the order of these
executions, is unspecified.

initializer-clause Is initializer (initializer-expression).

At most one initializer-clause can be specified.

Only the identifiers omp_priv and omp_orig are allowed in the
initializer-clause. omp_orig refers to the storage of the original
reduction variable that appears in the list in the REDUCTION clause
that specifies reduction-identifier. If omp_orig is modified in the
initializer-clause, the behavior is unspecified.

No other identifiers are allowed in initializer-clause. Any number of
literal or named constants are permitted.

initializer-expression Is one of the following identifiers:

• omp_priv = expression

This identifier refers to the storage to be initialized.
• subroutine-name (argument-list)

If initializer-expression is a subroutine name and an argument list, the
initializer is evaluated by executing a call to the subroutine with
the specified argument list. If initializer is an assignment
statement, it is evaluated by executing the assignment.

If initializer-expression is a subroutine name and an argument list,
one of the arguments must be omp_priv, and it must be associated
with an INTENT(OUT) dummy argument of the subroutine.

The number of times initializer-expression is evaluated and the order
of the evaluations is unspecified.

The DECLARE REDUCTION directive is a specification directive. It can appear in a specification part of a
subroutine, function, main program, module, or block construct. It is a pure directive, so it can appear in a
Fortran PURE procedure.

User-defined (custom) reductions can be defined using the DECLARE REDUCTION directive. The reduction is
identified by the reduction-identifier and the associated type from type-list. The reduction-identifier can be
used in a REDUCTION clause in another OpenMP* directive anywhere it is accessible by use or host
association.

A DECLARE REDUCTION directive cannot redefine a predefined reduction-identifier (see the table of implicitly
defined reduction identifiers in the REDUCTION clause section).

If a type in type-list has deferred or assumed-length type parameters, the reduction-identifier can be used in
a REDUCTION clause with a variable of the same type and kind type parameter as type, regardless of the
length parameter with which the variable is declared. The length parameter of a character type must be a
constant, colon, or asterisk. An accessible reduction-identifier defined with a deferred or assumed-length
character type cannot appear in another DECLARE REDUCTION directive with a type-list item of type
character with the same kind type parameter.

 1 Intel® Fortran Compiler Classic and Intel® Fortran Compiler Developer Guide and Reference

1368

The accessibility of a reduction-identifier is determined by the same rules as for other Fortran entities; it can
be declared PUBLIC or PRIVATE, be made accessible or blocked by a USE or IMPORT statement, and it can be
renamed. If the reduction-identifier is the same as a generic name that is also the name of a derived type,
the accessibility of the reduction-identifier is the same as that of the generic name.

If a subroutine or function used in initializer-expression or combiner is not an intrinsic procedure, it must
have an accessible interface. Defined operators and defined assignments used in initializer or combiner
must have accessible interfaces. All subroutines, functions, defined operators and defined assignments used
in initializer or combiner must have accessible interfaces in the subprogram in which the corresponding
REDUCTION clause appears. Procedures referenced in combiner and initializer cannot be alternate return
subprograms.

The initial value of a user-defined reduction is not known before it is specified. The initializer-clause can be
used to specify an initial value for the reduction variable. The initializer-clause will be executed to establish
initial values for the private copies of reduction list items indicated in a REDUCTION clause that specifies the
reduction-identifier.

If initializer is not specified, private reduction variables are initialized as follows:

• If the reduction variable is type COMPLEX, REAL, or INTEGER, the default initializer is the value zero.
• If the reduction variable specified in list of the REDUCTION clause is LOGICAL, the default initializer is the

value .FALSE..
• If the reduction variable is of a default initialized derived type, the default initializer value is used.
• Otherwise, the initial value is unspecified.

If initializer is used in a target region, then a DECLARE TARGET construct (Linux* only) must be
specified for any procedures that are executed during the execution of combiner or initializer.

If the execution of combiner or initializer results in the execution of an OpenMP* construct or an
OpenMP* API call, the behavior is undefined. If the variable omp_orig is defined during execution of
initializer, the behavior is unspecified.

Example

Consider that a DECLARE REDUCTION directive is used to declare a sum reduction for an integer component
of a type my_type that is identified by the reduction-identifier '+'. It is then used in a REDUCTION clause of a
parallel region to produce the sum of the thread numbers (numbered 1 thru 4) of the region:

module types
 type my_type
 integer :: component
 end type
 interface operator(+)
 module procedure :: my_add
 end interface
!$omp declare reduction (+ : my_type : omp_out = omp_out + omp_in) initializer (omp_priv =
my_type (0))

 contains
 function my_add (a1, a2)
 type(my_type),intent(in) :: a1, a2
 type(my_type) :: my_add
 my_add%component = a1%component + a2%component
 return
 end function my_add
end module types

program main
 use types
 use omp_lib

Intel® Fortran Compiler Classic and Intel® Fortran Compiler Developer Guide and Reference 1

1369

 type(my_type) :: my_var

! Initialize the reduction variable before entering the OpenMP region
 my_var%component = 0

!$omp parallel reduction (+ : my_var) num_threads(4)
 my_var%component = omp_get_thread_num() + 1
!$omp end parallel

 print *, "sum of thread numbers is ", my_var%component
end program

The output of the program follows:

sum of thread numbers is 10

See Also
OpenMP Fortran Compiler Directives
Syntax Rules for Compiler Directives
DECLARE TARGET
REDUCTION clause

DECLARE SIMD
OpenMP* Fortran Compiler Directive: Creates a
version of a function that can process multiple
arguments using Single Instruction Multiple Data
(SIMD) instructions from a single invocation from a
SIMD loop.

Syntax

!$OMP DECLARE SIMD(routine-name) [clause[[,] clause]...]

routine-name Is the name of a routine (a function or subroutine). It cannot be a
generic name; it must be a specific name. It also cannot be a
procedure pointer or an entry name.

clause Is an optional vectorization clause. It can be one or more of the
following:

• ALIGNED (list [:n])
• INBRANCH | NOTINBRANCH

The INBRANCH clause specifies that the routine must always be
called from inside a conditional statement of a SIMD loop.

The NOTINBRANCH clause specifies that the routine must never be
called from inside a conditional statement of a SIMD loop.

If neither clause is specified, then the routine may or may not be
called from inside a conditional statement of a SIMD loop.

You can only specify INBRANCH or NOTINBRANCH; you cannot
specify both.

• LINEAR (linear-list [: linear-modifier [, linear-modifier]])
• PROCESSOR (cpuid) (an Intel® language extension)
• SIMDLEN(n)

 1 Intel® Fortran Compiler Classic and Intel® Fortran Compiler Developer Guide and Reference

1370

Specifies the number of concurrent arguments (n) for the SIMD
version of routine-name. The n must be a constant positive integer
expression.

If SIMDLEN is not specified, the number of concurrent arguments
for the routine-name is implementation defined.

Only one SIMDLEN clause can appear in a DECLARE SIMD directive.
• UNIFORM(list)

Tells the compiler that the values of the specified arguments have
an invariant value for all concurrent invocations of the routine in
the execution of a single SIMD loop.

The list is one or more scalar variables that are dummy arguments
in the specified routine.

Multiple UNIFORM clauses are merged as a union.

The DECLARE SIMD construct enables the creation of SIMD versions of the specified subroutine or function.
You can use multiple DECLARE SIMD constructs in a single procedure to produce more than one SIMD
version of a procedure. These versions can be used to process multiple arguments from a single invocation
from a SIMD loop concurrently.

DECLARE SIMD is a pure directive, so it can appear in a Fortran PURE procedure.

When routine-name is executed, it cannot have any side-effects that would change its execution for
concurrent iterations of a SIMD chunk. When the routine is called from a SIMD loop, it cannot cause the
execution of any OpenMP* Fortran construct.

If a DECLARE SIMD directive is specified for a routine name with explicit interface and for the definition of
the routine, they must match. Otherwise, the result is unspecified.

You cannot use procedure pointers to access routines created by the DECLARE SIMD directive.

You can only specify a particular variable in at most one instance of a UNIFORM or LINEAR clause.

See Also
OpenMP Fortran Compiler Directives
Syntax Rules for Compiler Directives

DECLARE TARGET
OpenMP* Fortran Compiler Directive: Specifies
that named variables, common blocks, functions, and
subroutines are mapped to a device. This feature is
only available for ifx.

Syntax

!$OMP DECLARE TARGET [(extended-list)]
-or-

!$OMP DECLARE TARGET [clause[[,]clause]...]

extended-list Is a list of one or more variables or array sections that are neither
coindexed nor substrings, a common block name enclosed in slashes,
or a procedure name. If you specify more than one extended-list item,
they must be separated by commas. A common block name must
appear between slashes (/ /); you cannot specify a blank common
block.

Intel® Fortran Compiler Classic and Intel® Fortran Compiler Developer Guide and Reference 1

1371

The specified extended-list items can be used inside a target region
that executes on the device.

Any list items that have appeared in a GROUPPRIVATE directive are
treated as if they appear in an implicit LOCAL clause in the DECLARE
TARGET directive; other list items with the SAVE attribute are treated
as if they appear in an implicit ENTER clause on the DECLARE TARGET
directive.

If the extended-list item is a procedure name, it must not be a generic
name or entry name. A device-specific version of the routine is
created that can be called from a target region.

If the extended-list item is a variable:

• It is mapped to a corresponding variable in the device data
environment. If the variable is initialized, the corresponding
variable in the device data environment is initialized with the same
value.

• It can only appear in the scope in which it is declared.
• It must be declared in the Fortran scope of a module, or it must

have the SAVE attribute (explicitly or implicitly).

You cannot specify the following variables in the DECLARE TARGET
directive:

• A THREADPRIVATE variable
• A variable that is part of another variable (for example, an element

in an array or a field of a structure)
• A variable that is an element of a common block
• A variable that appears in an EQUIVALENCE statement

If the extended-list item is a common block:

• It must be declared to be a common block in the same scoping unit
in which the DECLARE TARGET directive appears.

• If the DECLARE TARGET directive specifying the common block
name appears in one program unit, a DECLARE TARGET directive
must also appear in every other program unit that contains a
COMMON statement specifying the same common block name. The
directive must appear after the last relevant COMMON statement in
the program unit.

clause Is one of the following:

• DEVICE_TYPE (device)
• ENTER (extended-list)

ENTER replaces TO, which has been deprecated.

extended-list is a comma-separated collection of one or more list
items or procedures.

If a list item is a procedure, then a device-specific version of the
procedure is created that can be called from a target region.

If a list item is a variable then the original variable is mapped to a
corresponding variable in the device data environment as if it had
appeared in a MAP clause with the map-type TO on the implicit
TARGET DATA construct for each device.

 1 Intel® Fortran Compiler Classic and Intel® Fortran Compiler Developer Guide and Reference

1372

The list item is never removed from those device data
environments.

• INDIRECT [(invoked-by-ptr-ref)]

invoked-by-ptr-ref is a constant scalar logical expression evaluated
at compile time.

If it evaluates to .TRUE., or if it is omitted, procedures specified in
an ENTER clause can be called by an indirect device invocation. If it
evaluates to .FALSE., procedures specified in an ENTER clause
cannot be called by an indirect device invocation. See the Glossary,
section I, for the definition of indirect device invocation.

If the INDIRECT clause does not appear in the directive,
procedures specified in an ENTER clause cannot be called by an
indirect device invocation.

• LINK (list)

Maps the list items for specific device executions, supporting
functions called in a TARGET region that refer to the list items. list
items are mapped as if they had appeared in a MAP clause with a
map-type of TOFROM.

The list is a comma-separated list of one or more non-coindexed
variables, arrays, array sections, named constants, associate
names, or common block names enclosed in slashes (//).

A LINK list item cannot be a variable for which NOHOST has been
specified.

• LOCAL (variable-list)

Specifies that references to list items are references to device local
copies of the list items stored in memory local to the device. The
variable-list items can be variables or array sections.

• TO (extended-list) - deprecated (see ENTER clause above)

The extended-list is a comma-separated collection of one or more
list items or procedures.

If a list item is a procedure, then a device-specific version of the
procedure is created that can be called from a target region.

If a list item is a variable then the original variable is mapped to a
corresponding variable in the device data environment as if it had
appeared in a MAP clause with the map-type TO on the implicit
TARGET DATA construct for each device.

The list item is never removed from those device data
environments.

If you specify list, this directive can only appear in a specification part of a subroutine, function, program, or
module. It is a pure directive, so it can appear in a Fortran PURE procedure.

If you do not specify list, the directive must appear in the specification part of the enclosing subroutine,
function, or interface block.

If no clause and no extended-list appear, the behavior is as if an implicit ENTER clause appears with one list
item that is the name of the enclosing subroutine or function.

If extended-list appears, no clauses can appear in the directive. If a clause appears, the directive must
contain at least one ENTER, LINK, LOCAL, or TO clause. An object that has been declared in a
GROUPPRIVATE directive cannot be a list item in a ENTER or LINK clause.

Intel® Fortran Compiler Classic and Intel® Fortran Compiler Developer Guide and Reference 1

1373

The DEVICE_TYPE clause indicates if versions of the procedure should be compiled for the host, device, or
both. Specifying HOST results in only a host version being compiled, specifying NOHOST compiles a version
for only the device, and specifying ANY indicates a version for both host and device should be compiled.

If no DEVICE_TYPE clause is present, it is as if DEVICE_TYPE (ANY) appears. Internal procedures contained
in a procedure that has a DEVICE_TYPE clause in a DECLARE TARGET directive cannot contain DECLARE
TARGET directives themselves; the enclosing DEVICE_TYPE clause implicitly applies to the internal
procedures.

At most one DEVICE_TYPE clause can appear. If an INDIRECT clause appears and invoked-by-ptr-ref
evaluates to .TRUE., DEVICE_TYPE must be ANY.

If a DECLARE TARGET directive is specified in an interface block for a procedure, it must match a DECLARE
TARGET directive in the definition of the procedure, including the DEVICE_TYPE clause if it appears.

If a procedure is declared in a procedure declaration statement, any DECLARE TARGET directive containing
the procedure name must appear in the same specification part.

A DECLARE TARGET directive with no clauses, or one that has a DEVICE_TYPE clause must appear in the
specification part of a subroutine or function subprogram, or in an interface body.

A list item cannot appear as both an extended-list item in an ENTER clause in one DECLARE TARGET
directive, and as a list item in a LINK clause in another DECLARE TARGET directive. An extended-list item in
an ENTER clause must not have an initializer that references a list item in a LINK clause on a DECLARE
TARGET directive.

The following additional rules apply to variables and common blocks:

• The DECLARE TARGET directive must appear in the declaration section of a scoping unit in which the
common block or variable is declared.

• If a variable or common block is declared with the BIND attribute, the corresponding C entities must also
be specified in a DECLARE TARGET directive in the C program.

Variables with static storage and procedures used in an OMP TARGET region are implicitly treated as OMP
DECLARE TARGET:

MODULE VARS
 INTEGER X
END MODULE

REAL FUNCTION FOO()
END FUNCTION

!$OMP TARGET
 X = FOO() ! X and FOO are implicitly DECLARE TARGET
!$OMP END TARGET

See Also
OpenMP Fortran Compiler Directives
Syntax Rules for Compiler Directives

DECLARE VARIANT
OpenMP* Fortran Compiler Directive: Identifies a
variant of a base procedure and specifies the context
in which this variant is used. This feature is only
available for ifx.

Syntax

!$OMP DECLARE VARIANT ([base-proc-name:]variant-proc-name) clause[[[,] clause]...]

 1 Intel® Fortran Compiler Classic and Intel® Fortran Compiler Developer Guide and Reference

1374

base-proc-name Is the name of a base procedure. It is the name that appears in a
procedure reference and is replaced by the variant name if the
procedure reference appears in the OpenMP* context specified by the
MATCH clause. base-proc-name must have an accessible explicit
interface.

variant-proc-name Is the name of the variant procedure that is to be called instead of the
base procedure if the base procedure is called from an OpenMP*
context that matches the context specified by the MATCH clause.

clause Is one or more of the following:

• ADJUST_ARGS (adjust-op : argument-list)

Causes the adjust-op operation to be performed to each argument
specified in argument-list before calling the variant procedure.

adjust-op is either need_device_ptr or nothing.

If need_device_ptr is specified, it causes the listed arguments to
be converted to corresponding device pointers of the default
device. An argument in the argument-list following
need_device_ptr must be of type C_PTR.

If nothing is specified, the arguments listed are passed without
modification.

Multiple ADJUST_ARG clauses can appear for a DECLARE VARIANT
directive.

• APPEND_ARGS (append-op [[, append-op] …]

Causes additional arguments to be passed to the call at the end of
the argument list of the base procedure.

append-op is:

INTEROP (modifier-list)

where modifier-list is a valid modifier-list accepted in an INIT
clause of the INTEROP directive.

Only one APPEND_ARGS clause can appear in a DECLARE VARIANT
directive.

• MATCH (context-selector-specification-list)

Specifies OpenMP* context selectors that determine if a variant
function is to be used as a base function replacement in the
specified context. Any variable referenced in an expression of a
context selector must be accessible at the call site to the base
function.

An APPEND_ARGS clause or ADJUST_ARGS clause is not permitted
unless a MATCH clause also appears that specifies CONSTRUCT=
{DISPATCH} as a selector.

The DECLARE VARIANT directive is a declarative directive and must appear in the specification part of a
subroutine or function, or in an interface in an interface block. It is a pure directive, so it can appear in a
Fortran PURE procedure. It identifies the name of a variant procedure that is to be called instead of the base
procedure when the call appears in a context that matches the context-selector-specification in the MATCH
clause.

Intel® Fortran Compiler Classic and Intel® Fortran Compiler Developer Guide and Reference 1

1375

If base-proc-name is not specified, the name of the procedure containing the directive is the base-proc-
name. base-proc-name must not be a dummy procedure name, a statement function name, a generic name,
a procedure pointer, or an alternate entry name.

If a DECLARE VARIANT directive appears in an interface body for a procedure, it must match a DECLARE
VARIANT directive in the definition of that procedure. If a DECLARE VARIANT directive appears for a
procedure with an explicit interface, and the definition of that procedure also contains a DECLARE VARIANT
directive for that procedure, the two directives must match.

Multiple DECLARE VARIANT directives can associate different variant-proc-names with the same base-proc-
name. If more than one DECLARE VARIANT associates the same variant-proc-name with the same base-
proc-name, then the context-selector-specification must be the same for all such directives.

A variant procedure must have the same interface characteristics as the base procedure.

When the ADJUST_ARGS clause is specified, an argument with the is-device-ptr property in its
interoperability requirement set will be passed as is. Otherwise, the argument will be converted in the same
way that a USE_DEVICE_PTR clause on a TARGET DATA construct converts a pointer list item into a device
pointer.

When the APPEND_ARGS clause appears, the following occurs:

• For each modifier specified, an additional argument of type omp_interop_kind from the interoperability
requirement set of the encountering task is added to the end of the argument list of the base procedure.

The ordering of the appended arguments is the same as the order of the modifiers that are specified in
modifier-list in parentheses following the INTEROP keyword in the APPEND_ARGS clause.

• Each argument is constructed as if an INTEROP construct specifying an INIT clause with the corresponding
modifier was present.

• If the interoperability requirement set contains properties that could be used as INTEROP construct
clauses, it is as if the INTEROP construct also contained those clauses, and the properties will be removed
from the interoperability requirement set.

• Each appended argument is destroyed after the selected variant completes executions as if the INTEROP
construct contained a DESTROY clause.

If the variant is invoked by a DISPATCH construct that contains an INTEROP clause with n variables specified,
the first n modifiers specified in the APPEND_ARGS clause are ignored and replaced by the n variables
specified in the INTEROP clause of the DISPATCH directive. The order of these n variables appearing in the
argument list is the same order that they are specified in the INTEROP clause of the DISPATCH directive.

If there are m modifiers specified in the APPEND_ARG clause, and m > n, an argument for each of the
remaining m - n modifiers in the APPEND_ARGS clause is constructed and appended to the end of the
argument list in the same order in which they appear in the APPEND_ARGS clause.

Calling a procedure variant directly by variant-proc-name within an OpenMP* context that is different than
the context specified in the MATCH clause is non-conforming.

Example

The DECLARE VARIANT directive in the module procedure vecadd_base identifies the procedure
vecadd_gpu_offload as a variant that is to replace references to vecadd_base when called from a
DISPATCH construct and a GEN device is available for offloading. Notice that vecadd_base does not have
any dummy arguments, while vecadd_gpu_offload has a single C_PTR dummy argument.

MODULE vecadd
 INTEGER,PARAMETER :: n = 1024
CONTAINS
 FUNCTION vecadd_gpu_offload (ptr) RESULT (res)
 USE,INTRINSIC :: ISO_C_BINDING, ONLY : c_ptr
 !$DEC ATTRIBUTES NOINLINE :: vecadd_gpu_offload
 TYPE (c_ptr) :: ptr

 1 Intel® Fortran Compiler Classic and Intel® Fortran Compiler Developer Guide and Reference

1376

 REAL :: res
 REAL,DIMENSION(n) :: a, b
 INTEGER :: k

!$omp TARGET PARALLEL DO REDUCTION (+: res) MAP(TO: a, b)
 DO k= 0, n - 1
 a(k) = k
 b(k) = k + 1
 res = a(k) + b(k)
 END DO
!$omp END TARGET PARALLEL DO
 PRINT *, "GPU version of vecadd called"
 END FUNCTION vecadd_gpu_offload

 FUNCTION vecadd_base ()RESULT (res)
 !$DEC ATTRIBUTES NOINLINE :: vecadd_base
 !$OMP DECLARE VARIANT (vecadd_gpu_offload) &
 !$OMP& ,MATCH (DEVICE = {ARCH (gen)}))
 REAL :: res
 REAL,DIMENSION(n) :: a, b
 INTEGER :: k

!$omp PARALLEL DO REDUCTION (+: res)
 DO k = 1, n
 a(k) = k
 b(k) = k + 1
 res = a(k) + b(k)
 END DO
!$omp END PARALLEL DO
 PRINT *, "CPU version of vecadd called"
 END FUNCTION vecadd_base
END MODULE vecadd

PROGRAM main
 USE vecadd
 REAL :: result = 0.0

 !$OMP DISPATCH
 result = vecadd_base ()

 IF (result == 1048576.0) then
 PRINT *, "PASSED: correct results"
 ELSE
 PRINT *, "FAILED: incorrect results"
 ENDIF
END PROGRAM

See Also
OpenMP Fortran Compiler Directives
OpenMP* Contexts
OpenMP* Context Selectors
Syntax Rules for Compiler Directives
INTEROP
DISPATCH
TARGET DATA

Intel® Fortran Compiler Classic and Intel® Fortran Compiler Developer Guide and Reference 1

1377

DECODE
Statement: Translates data from character to internal
form. It is comparable to using internal files in
formatted sequential READ statements.

Syntax
DECODE (c,f,b[, IOSTAT=i-var] [, ERR=label]) [io-list]

c Is a scalar integer expression. It is the number of characters to be
translated to internal form.

f Is a format identifier. An error occurs if more than one record is
specified.

b Is a scalar or array reference. If b is an array reference, its elements
are processed in the order of subscript progression.

b contains the characters to be translated to internal form.

i-var Is a scalar integer variable that is defined as a positive integer if an
error occurs and as zero if no error occurs (see I/O Status Specifier).

label Is the label of an executable statement that receives control if an
error occurs.

io-list Is an I/O list. An I/O list is either an implied-DO list or a simple list of
variables (except for assumed-size arrays). The list receives the data
after translation to internal form.

The interaction between the format specifier and the I/O list is the
same as for a formatted I/O statement.

The number of characters that the DECODE statement can translate depends on the data type of b. For
example, an INTEGER(2) array can contain two characters per element, so that the maximum number of
characters is twice the number of elements in that array.

The maximum number of characters a character variable or character array element can contain is the length
of the character variable or character array element.

The maximum number of characters a character array can contain is the length of each element multiplied by
the number of elements.

Example

In the following example, the DECODE statement translates the 12 characters in A to integer form (as
specified by the FORMAT statement):

 DIMENSION K(3)
 CHARACTER*12 A,B
 DATA A/'123456789012'/
 DECODE(12,100,A) K
100 FORMAT(3I4)

The 12 characters are stored in array K:

K(1) = 1234
K(2) = 5678
K(3) = 9012

See Also
READ
WRITE

 1 Intel® Fortran Compiler Classic and Intel® Fortran Compiler Developer Guide and Reference

1378

ENCODE

DEFAULT Clause
Parallel Directive Clause: Lets you specify a scope
for all variables in the lexical extent of a parallel
region.

Syntax

DEFAULT (PRIVATE | FIRSTPRIVATE | SHARED | NONE)
The specifications have the following effects:

• PRIVATE - Makes all named objects in the lexical extent of the parallel region, including common block
variables but excluding THREADPRIVATE variables, private to a thread as if you explicitly listed each
variable in a PRIVATE clause.

• FIRSTPRIVATE - Makes all variables in the construct that have implicitly determined data-sharing
attributes firstprivate as if you explicitly listed each variable in a FIRSTPRIVATE clause.

• SHARED - Makes all named objects in the lexical extent of the parallel region shared among the threads in
a team, as if you explicitly listed each variable in a SHARED clause. If you do not specify a DEFAULT
clause, this is the default.

• NONE - Specifies that there is no implicit default as to whether variables are PRIVATE or SHARED. In this
case, you must specify the PRIVATE, SHARED, FIRSTPRIVATE, LASTPRIVATE, or REDUCTION property of
each variable you use in the lexical extent of the parallel region.

You can specify only one DEFAULT clause in a PARALLEL directive. You can exclude variables from a defined
default by using the PRIVATE, SHARED, FIRSTPRIVATE, LASTPRIVATE, or REDUCTION clauses.

Variables in THREADPRIVATE common blocks are not affected by this clause.

DEFINE and UNDEFINE
General Compiler Directives: DEFINE creates a
symbolic variable whose existence or value can be
tested during conditional compilation. UNDEFINE
removes a defined symbol.

Syntax
!DIR$ DEFINE name[= val]
!DIR$ UNDEFINE name

name Is the name of the variable.

val INTEGER(4). The value assigned to name.

DEFINE creates and UNDEFINE removes symbols for use with the IF (or IF DEFINED) compiler directive.
Symbols defined with DEFINE directive are local to the directive. They cannot be declared in the Fortran
program.

Because Fortran programs cannot access the named variables, the names can duplicate Fortran keywords,
intrinsic functions, or user-defined names without conflict.

To test whether a symbol has been defined, use the IF DEFINED (name) directive. You can assign an integer
value to a defined symbol. To test the assigned value of name, use the IF directive. IF test expressions can
contain most logical and arithmetic operators.

Attempting to undefine a symbol that has not been defined produces a compiler warning.

The DEFINE and UNDEFINE directives can appear anywhere in a program, enabling and disabling symbol
definitions.

Intel® Fortran Compiler Classic and Intel® Fortran Compiler Developer Guide and Reference 1

1379

Example

!DIR$ DEFINE testflag
!DIR$ IF DEFINED (testflag)
 write (*,*) 'Compiling first line'
!DIR$ ELSE
 write (*,*) 'Compiling second line'
!DIR$ ENDIF
!DIR$ UNDEFINE testflag

See Also
IF Directive Construct
General Compiler Directives
Syntax Rules for Compiler Directives
D compiler option
Equivalent Compiler Options

DEFINE FILE
Statement: Establishes the size and structure of files
with relative organization and associates them with a
logical unit number.

Syntax
DEFINE FILE u(m,n,U,asv) [,u(m,n,U,asv)] ...

u Is a scalar 32-bit integer constant or variable that specifies the logical
unit number.

m Is a scalar integer constant or variable that specifies the number of
records in the file.

n Is a scalar integer constant or variable that specifies the length of
each record in 16-bit words (2 bytes). For files with record lengths
greater than 232 -1, the OPEN statement should be used.

U Specifies that the file is unformatted (binary); this is the only
acceptable entry in this position.

asv Is a scalar integer variable, called the associated variable of the file.
At the end of each direct access I/O operation, the record number of
the next higher numbered record in the file is assigned to asv; asv
must not be a dummy argument.

The DEFINE FILE statement is comparable to the OPEN statement. In situations where you can use the OPEN
statement, OPEN is the preferable mechanism for creating and opening files.

The DEFINE FILE statement specifies that a file containing m fixed-length records, each composed of n16-bit
words, exists (or will exist) on the specified logical unit. The records in the file are numbered sequentially
from 1 through m.

A DEFINE FILE statement does not itself open a file. However, the statement must be executed before the
first direct access I/O statement referring to the specified file. The file is opened when the I/O statement is
executed.

If this I/O statement is a WRITE statement, a direct access sequential file is opened, or created if necessary.

If the I/O statement is a READ or FIND statement, an existing file is opened, unless the specified file does
not exist. If a file does not exist, an error occurs.

 1 Intel® Fortran Compiler Classic and Intel® Fortran Compiler Developer Guide and Reference

1380

The DEFINE FILE statement establishes the variable asv as the associated variable of a file. At the end of
each direct access I/O operation, the Fortran I/O system places in asv the record number of the record
immediately following the one just read or written.

The associated variable always points to the next sequential record in the file (unless the associated variable
is redefined by an assignment, input, or FIND statement). So, direct access I/O statements can perform
sequential processing on the file by using the associated variable of the file as the record number specifier.

Example

 DEFINE FILE 3(1000,48,U,NREC)
In this example, the DEFINE FILE statement specifies that the logical unit 3 is to be connected to a file of
1000 fixed-length records; each record is forty-eight 16-bit words long. The records are numbered
sequentially from 1 through 1000 and are unformatted.

After each direct access I/O operation on this file, the integer variable NREC will contain the record number
of the record immediately following the record just processed.

See Also
OPEN

DELDIRQQ
Portability Function: Deletes a specified directory.

Module

USE IFPORT

Syntax
result = DELDIRQQ (dir)

dir (Input) Character*(*). String containing the path of the directory to
be deleted.

Results

The result type is LOGICAL(4). The result is .TRUE. if successful; otherwise, .FALSE..

The directory to be deleted must be empty. It cannot be the current directory, the root directory, or a
directory currently in use by another process.

Example

See the example for GETDRIVEDIRQQ.

See Also
GETDRIVEDIRQQ
GETDRIVEDIRQQ
MAKEDIRQQ
CHANGEDIRQQ
CHANGEDRIVEQQ
UNLINK

DELETE
Statement: Deletes a record from a relative file.

Syntax
DELETE ([UNIT=] io-unit[, REC=r][, ERR=label] [, IOSTAT=i-var])

Intel® Fortran Compiler Classic and Intel® Fortran Compiler Developer Guide and Reference 1

1381

io-unit Is an external unit specifier.

r Is a scalar numeric expression indicating the record number to be
deleted.

label Is the label of the branch target statement that receives control if an
error occurs.

i-var Is a scalar integer variable that is defined as a positive integer if an
error occurs and zero if no error occurs.

In a relative file, the DELETE statement deletes the direct access record specified by r. If REC= r is omitted,
the current record is deleted. When the direct access record is deleted, any associated variable is set to the
next record number.

The DELETE statement logically removes the appropriate record from the specified file by locating the record
and marking it as a deleted record. It then frees the position formerly occupied by the deleted record so that
a new record can be written at that position.

NOTE
You must use compiler option vms for READs to detect that a record has been deleted.

Example

The following statement deletes the fifth record in the file connected to I/O unit 10:

 DELETE (10, REC=5)
Suppose the following statement is specified:

 DELETE (UNIT=9, REC=10, IOSTAT=IOS, ERR=20)
The tenth record in the file connected to unit 9 is deleted. If an error occurs, control is transferred to the
statement labeled 20, and a positive integer is stored in the variable IOS.

See Also
Data Transfer I/O Statements
Branch Specifiers
vms compiler option

DELFILESQQ
Portability Function: Deletes all files matching the
name specification, which can contain wildcards (*
and ?).

Module

USE IFPORT

Syntax
result = DELFILESQQ (files)

files (Input) Character*(*). Files to be deleted. Can contain wildcards (*
and ?).

Results

The result type is INTEGER(2). The result is the number of files deleted.

 1 Intel® Fortran Compiler Classic and Intel® Fortran Compiler Developer Guide and Reference

1382

You can use wildcards to delete more than one file at a time. DELFILESQQ does not delete directories or
system, hidden, or read-only files. Use this function with caution because it can delete many files at once. If
a file is in use by another process (for example, if it is open in another process), it cannot be deleted.

Example

USE IFPORT
USE IFCORE
INTEGER(4) len, count
CHARACTER(80) file
CHARACTER(1) ch
WRITE(*,*) "Enter names of files to delete: "
len = GETSTRQQ(file)
IF (file(1:len) .EQ. '*.*') THEN
 WRITE(*,*) "Are you sure (Y/N)?"
 ch = GETCHARQQ()
 IF ((ch .NE. 'Y') .AND. (ch .NE. 'y')) STOP
END IF
count = DELFILESQQ(file)
WRITE(*,*) "Deleted ", count, " files."
END

See Also
FINDFILEQQ

DEPEND Clause
Parallel Directive Clause: Enforces additional
constraints on the scheduling of a task or loop
iterations by enabling dependences between sibling
tasks in the task region.

Syntax

It takes one of the following forms:
In Synchronization Directive !$OMP ORDERED

DEPEND (SOURCE) -or-
DEPEND (SINK:vec)
The above forms of the DEPEND clause have been deprecated and replaced by the DOACROSS clause in the
ORDERED construct.
In all other directives:

DEPEND ([depend-modifier,] dependence-type : locator-list)

depend-modifier ITERATOR clause modifier

dependence-type Can be any one of the following clauses: IN, OUT, or INOUT,
MUTEXINOUTSET, INOUTSET, or DEPOBJ. Clauses MUTEXINOUTSET,
INOUTSET, and DEPOBJ are only supported for ifx.

locator If dependence-type is DEPOBJ, locator must be a depend object in the
initialized state.

Otherwise, it is a variable or a non-zero length array section. Zero-
sized arrays and common block names are not permitted as locator-
list items.

Intel® Fortran Compiler Classic and Intel® Fortran Compiler Developer Guide and Reference 1

1383

Any locator-list item used in a DEPEND clause of the same task or
sibling tasks must indicate identical storage or disjoint storage; partial
overlap is not permitted. Two locators match if their storage locations
are the same, or if the OpenMP reserved locator symbol
OMP_ALL_MEMORY appears in the list; in that case, all list items
match.

If dependence-type is OUT or INOUT, locator must not be the OpenMP
reserved locator OMP_ALL_MEMORY.

The behavior is undefined in these cases:

• If locator has the POINTER attribute and its association status is
disassociated or undefined

• If locator has the ALLOCATABLE attribute and its allocation status is
unallocated

Note that this enforced task dependence establishes a synchronization
of accesses to each locator-list item performed by a dependent task,
with respect to accesses to the same locator-list item performed by
any previous tasks. You must properly synchronize access with respect
to other concurrent accesses to each locator-list item.

SOURCE Specifies the satisfaction of cross-iteration dependences that arise
from the current iteration.

SINK Specifies a cross-iteration dependence, where the iteration vector vec
indicates the iteration that satisfies the dependence.

vec Is the iteration vector. It has the form:

where n is the value specified by the ORDERED clause in the DO loop
directive, xi denotes the loop iteration variable of the i-th nested loop
associated with the loop directive, and di is a non-negative integer
scalar constant.

If vec does not occur in the iteration space, the DEPEND clause is
ignored. Note that if vec does not indicate a lexicographically earlier
iteration, it can cause a deadlock.

For a vec element form of xi + di or xi - di, the expression xi + di or xi
- di for any value of the integer loop iteration variable xi that can
encounter the ordered construct must be computable in the loop
iteration variable's type without overflow.

Rules related to sibling task dependency:

• The generated task is a dependent task of the sibling task if any of the following are true:

• If one or more locator-list items specified in dependence-type IN matches a locator-list item appearing
in any of the following DEPEND clause dependence-types on a construct that previously generated a
sibling task: OUT, INOUT, MUTEXINOUTSET, or INOUTSET.

• If one or more locator-list items specified in dependence-type OUT or INOUT matches a locator-list
item appearing in any of the following DEPEND clause dependence-types on a construct that previously
generated a sibling task: IN, OUT, INOUT, MUTEXINOUTSET, or INOUTSET.

• If one or more locator-list items specified in dependence-type INOUTSET matches a locator-list item
appearing in any of the following DEPEND clause dependence-types on a construct that previously
generated a sibling task: IN, OUT, INOUT, or MUTEXINOUTSET.

 1 Intel® Fortran Compiler Classic and Intel® Fortran Compiler Developer Guide and Reference

1384

• If one or more locator-list items specified in dependence-type MUTEXINOUTSET matches a locator-list
item appearing in any of the following DEPEND clause dependence-types on a construct that previously
generated a sibling task: IN, OUT, INOUT, or INOUTSET.

• The sibling tasks are mutually exclusive if the following is true:

• If one or more locator-list items specified in dependence-type MUTEXINOUTSET matches a locator-list
item appearing in a DEPEND clause with MUTEXINOUTSET dependence-type on a different task
generating construct and both constructs generate sibling tasks.

When dependence-type is DEPOBJ, the locators must all be depend objects. The dependence-types are
derived from the depend objects. For each depend object, the behavior is as if the current construct
contained the DEPEND clause of the most recently executed DEPOBJ construct that initialized or updated the
depend object.

If a DEPEND clause appears in a TARGET or TARGET UPDATE directive, it is treated as if it had appeared on
the implicit task construct that encloses the TARGET construct.

See Also
DEPOBJ

DEPOBJ
OpenMP* Fortran Compiler Directive: Initializes,
updates, or uninitializes an OpenMP depend object.
This feature is only available for ifx.

Syntax

!$OMP DEPOBJ(depend-object) clause

depend-object Is a scalar integer variable with kind type OMP_DEPEND_KIND, a
named integer kind type constant defined in module omp_lib.

clause Is one of the following:

• DEPEND (dependence-type : locator)

Sets the state of depend-object to initialized with a value that
represents the dependence specified. depend-object must be in an
uninitialized state.

dependence-type and locator are as described in the DEPEND
clause with the following exceptions:

• dependence-type must not specify the SOURCE or SINK
dependence type.

• The DEPEND clause of a DEPOBJ construct can contain only one
locator.

• DESTROY - this form is deprecated

DESTROY (destroy-var)

Sets the state of destroy-var to be uninitialized.

The destroy-var must be a scalar integer variable with kind type
OMP_DEPEND_KIND and be in an initialized state or the behavior
of the program is unspecified. destroy-var must be the same
variable as depend-object.

When DESTROY is specified, the interop-type is the interop-type
used to initialize destroy-var. Argument interop-type is defined in
the description of directive INTEROP.

Intel® Fortran Compiler Classic and Intel® Fortran Compiler Developer Guide and Reference 1

1385

After execution of a DEPOBJ directive with a DESTROY clause, the
object specified by destroy-var is unusable until it has been
initialized by execution of an INTEROP construct.

If destroy-var does not appear, it is as if destroy-var appeared and
is the same variable as specified for depend-object. Note that the
form DESTROY with no argument has been deprecated in OpenMP*
specification 5.2.

• UPDATE (dependence-type)

Changes the dependence-type of an initialized depend-object to
the dependence-type specified. depend-object must be in an
initialized state. dependence-type can not specify SOURCE, SINK,
or DEPOBJ dependence types.

Description

A depend object allows dynamic user-computed dependencies to be used in DEPEND clauses.

Depend objects must only be modified in a DEPOBJ construct, and referenced in a DEPEND clause. Any other
use of a variable that is a depend object makes the program a non-conforming OpenMP program. Depend
objects have two states, uninitialized and initialized. Depend objects have an initial state of uninitialized.

The DEPOBJ directive is a standalone construct; it does not affect any loop-nest or structured-block following
it. The binding thread set for a DEPOBJ regions is the thread that encounters it.

See Also
OpenMP Fortran Compiler Directives
Syntax Rules for Compiler Directives
INTEROP

DEVICE Clause
Parallel Directive Clause: Specifies the target
device for a processor control directive like TARGET.

Syntax

DEVICE (scalar-integer-expression)

scalar-integer-expression Is an integer expression. It must evaluate to a positive scalar integer
value.

At most one DEVICE clause can appear in a directive that allows the clause.

If DEVICE is not specified, the default device is determined by the internal control variable (ICV) named
device-num-var.

DEVICE_TYPE Clause
Parallel Directive Clause: Specifies whether a
version of a procedure or a copy of a data entity is to
be available on a HOST device, a non-HOST device, or
both. This feature is only available for ifx.

Syntax

DEVICE_TYPE (device)

device Is HOST, NOHOST, or ANY.

 1 Intel® Fortran Compiler Classic and Intel® Fortran Compiler Developer Guide and Reference

1386

The DEVICE_TYPE clause specifies whether a variable, COMMON block, or procedure is to be made available
on a HOST device, a non-HOST device, or both device types.

If HOST is specified, only a HOST version of the data or procedure is available. At this time, ifx will produce
an error if HOST is specified because there is only support for device compilation.

NOHOST indicates that only a device version of the data or procedure is made available.

ANY specifies that both a device and a host version of the data or procedure are made available. At this time,
specifying ANY results in a warning that only device compilation is supported.

If a directive that accepts a DEVICE_TYPE clause does not specify the DEVICE_TYPE clause, the behavior is
as if DEVICE_TYPE (ANY) had appeared.

DFLOAT
Elemental Intrinsic Function (Generic): Converts
an integer to double-precision real type.

Syntax
result = DFLOAT (a)

a (Input) Must be of type integer.

Results

The result type is double-precision real (by default, REAL(8) or REAL*8). Functions that cause conversion of
one data type to another type have the same effect as the implied conversion in assignment statements.

Specific Name 1 Argument Type Result Type 2

INTEGER(1) REAL(8)

DFLOTI INTEGER(2) REAL(8)

DFLOTJ INTEGER(4) REAL(8)

DFLOTK INTEGER(8) REAL(8)

1These specific functions cannot be passed as actual arguments.
2The setting of compiler options specifying double size can affect DFLOAT.

Example

DFLOAT (-4) has the value -4.0.

See Also
REAL

DFLOATI, DFLOATJ, DFLOATK
Portability Functions: Convert an integer to double-
precision real type.

Module

USE IFPORT

Syntax
result = DFLOATI (i)
result = DFLOATJ (j)

Intel® Fortran Compiler Classic and Intel® Fortran Compiler Developer Guide and Reference 1

1387

result = DFLOATK (k)

i (Input) Must be of type INTEGER(2).

j (Input) Must be of type INTEGER(4).

k (Input) Must be of type INTEGER(8).

Results

The result type is double-precision real (REAL(8) or REAL*8).

See Also
DFLOAT

DIGITS
Inquiry Intrinsic Function (Generic): Returns the
number of significant digits for numbers of the same
type and kind parameters as the argument.

Syntax
result = DIGITS (x)

x (Input) Must be of type integer or real; it can be scalar or array
valued.

Results

The result is a scalar of type default integer.

The result has the value q if x is of type integer; it has the value p if x is of type real. Integer parameter q is
defined in Model for Integer Data; real parameter p is defined in Model for Real Data.

Example

If x is of type REAL(4), DIGITS(x) has the value 24.

See Also
EXPONENT
RADIX
FRACTION
Data Representation Models

DIM
Elemental Intrinsic Function (Generic): Returns
the difference between two numbers (if the difference
is positive).

Syntax
result = DIM (x, y)

x (Input) Must be of type integer or real.

y (Input) Must have the same type and kind parameters as x.

Results

The result type and kind are the same as x. The value of the result is x- y if x is greater than y; otherwise,
the value of the result is zero.

 1 Intel® Fortran Compiler Classic and Intel® Fortran Compiler Developer Guide and Reference

1388

The setting of compiler options specifying integer size can affect this function.

Specific Name Argument type Result Type

BDIM INTEGER(1) INTEGER(1)

IIDIM1 INTEGER(2) INTEGER(2)

IDIM 2 INTEGER(4) INTEGER(4)

KIDIM INTEGER(8) INTEGER(8)

DIM REAL(4) REAL(4)

DDIM REAL(8) REAL(8)

QDIM REAL(16) REAL(16)

1Or HDIM.
2Or JIDIM. For compatibility, IDIM can also be specified as a generic function for integer types.

Example

DIM (6, 2) has the value 4.

DIM (-4.0, 3.0) has the value 0.0.

The following shows another example:

 INTEGER i
 REAL r
 REAL(8) d
 i = IDIM(10, 5) ! returns 5
 r = DIM (-5.1, 3.7) ! returns 0.0
 d = DDIM (10.0D0, -5.0D0) ! returns 15.0D0

See Also
Argument Keywords in Intrinsic Procedures

DIMENSION
Statement and Attribute: Specifies that an object is
an array, and defines the shape of the array.

Syntax
The DIMENSION attribute can be specified in a type declaration statement or a DIMENSION statement, and
takes one of the following forms:

Type Declaration Statement:

type,[att-ls,] DIMENSION (a-spec) [, att-ls] :: a[(a-spec)][, a[(a-spec)]] ...
Statement:

DIMENSION [::]a(a-spec) [, a(a-spec)] ...

type Is a data type specifier.

att-ls Is an optional list of attribute specifiers.

a-spec Is an array specification. It can be any of the following:

• An explicit-shape specification; for example, a(10,10)

Intel® Fortran Compiler Classic and Intel® Fortran Compiler Developer Guide and Reference 1

1389

• An assumed-shape specification; for example, a(:)
• A deferred-shape specification; for example, a(:,:)
• An assumed-size specification; for example, a(10,*)
• An assumed-rank specification; for example, a(..)
• An implicit-shape specification; for example, a(*)

For more information on array specifications, see Declaration
Statements for Arrays.

In a type declaration statement, any array specification following an
array overrides any array specification following DIMENSION.

a Is the name of the array being declared.

Description

The DIMENSION attribute allocates a number of storage elements to each array named, one storage element
to each array element in each dimension. The size of each storage element is determined by the data type of
the array.

The total number of storage elements assigned to an array is equal to the number produced by multiplying
together the number of elements in each dimension in the array specification. For example, the following
statement defines ARRAY as having 16 real elements of 4 bytes each and defines MATRIX as having 125
integer elements of 4 bytes each:

 DIMENSION ARRAY(4,4), MATRIX(5,5,5)
An array can also be declared in the following statements: ALLOCATABLE, AUTOMATIC, COMMON, POINTER,
STATIC, TARGET.

Example

The following examples show type declaration statements specifying the DIMENSION attribute:

 REAL, DIMENSION(10, 10) :: A, B, C(10, 15) ! Specification following C
 ! overrides the one following
 ! DIMENSION
 REAL(8), DIMENSION(5,-2:2) :: A,B,C

The following are examples of the DIMENSION statement:

 DIMENSION BOTTOM(12,24,10)
 DIMENSION X(5,5,5), Y(4,85), Z(100)
 DIMENSION MARK(4,4,4,4)
 SUBROUTINE APROC(A1,A2,N1,N2,N3)
 DIMENSION A1(N1:N2), A2(N3:*)
 CHARACTER(LEN = 20) D
 DIMENSION A(15), B(15, 40), C(-5:8, 7), D(15)

You can declare arrays by using type statements and ALLOCATABLE attributes and statements, for example:

 INTEGER A(2,0:2)
 COMPLEX F
 ALLOCATABLE F(:,:)
 REAL(8), ALLOCATABLE, DIMENSION(:, :, :) :: E

You can declare an implicit-shape constant array by using a type statement and a PARAMETER attribute, for
example:

 INTEGER, PARAMETER :: R(*) = [1,2,3]

 1 Intel® Fortran Compiler Classic and Intel® Fortran Compiler Developer Guide and Reference

1390

You can also declare arrays by using type and ALLOCATABLE statements, for example:

 INTEGER A(2,0:2)
 COMPLEX F
 ALLOCATABLE F(:,:)
 REAL(8), ALLOCATABLE, DIMENSION(:, :, :) :: E

You can specify both the upper and lower dimension bounds. If, for example, one array contains data from
experiments numbered 28 through 112, you could dimension the array as follows:

 DIMENSION experiment(28:112)
Then, to refer to the data from experiment 72, you would reference experiment(72).

Array elements are stored in column-major order: the leftmost subscript is incremented first when the array
is mapped into contiguous memory addresses. For example, consider the following statements:

 INTEGER(2) a(2, 0:2)
 DATA a /1, 2, 3, 4, 5, 6/

These are equivalent to:

 INTEGER(2) a
 DIMENSION a(2, 0:2)
 DATA a /1, 2, 3, 4, 5, 6/

If a is placed at location decimal 1000 in memory, the preceding DATA statement produces the following
mapping.

Array element Address (decimal) Value

a(1,0) 1000 1

a(2,0) 1002 2

a(1,1) 1004 3

a(2,1) 1006 4

a(1,2) 1008 5

a(2,2) 100A 6

The following DIMENSION statement defines an assumed-size array in a subprogram:

 DIMENSION data (19,*)
At execution time, the array data is given the size of the corresponding array in the calling program.

The following program fragment dimensions two arrays:

 ...
 SUBROUTINE Subr (matrix, rows, vector)
 REAL MATRIX, VECTOR
 INTEGER ROWS
 DIMENSION MATRIX (ROWS,*), VECTOR (10),
 + LOCAL (2,4,8)
 MATRIX (1,1) = VECTOR (5)
 ...

See Also
ALLOCATE
Declaration Statements for Arrays
Arrays

Intel® Fortran Compiler Classic and Intel® Fortran Compiler Developer Guide and Reference 1

1391

DISPATCH
OpenMP* Fortran Compiler Directive: Determines
whether a variant of a procedure is called for a given
function or subroutine call. This feature is only
available for ifx.

Syntax

!$OMP DISPATCH [clause[[,] clause]...]
 statement
[!$OMP END DISPATCH]

clause Is one or more of the following:

• DEPEND ([depend-modifier,] dependence-type : locator-list)

Adds the DEPEND properties to the interoperability set.
• DEVICE (scalar-integer-expression)

Causes the value of the default-device-var ICV of the
generated task to be set to the value of the DEVICE clause
expression.

• INTEROP (list)

Specifies interop-variables to be substituted for the appended
interop arguments constructed by the APPEND_ARGS clause in the
corresponding DECLARE VARIANT declaration when variant
dispatch occurs.

The list items are integer scalar variables with kind type
OMP_INTEROP_TYPE.

If there are n variables in the list, the first n modifiers in the
APPEND_ARGS clause of the associated DECLARE VARIANT
directive are skipped, and the n variables are passed as the first n
appended arguments, in the order that they appear in list.

If the INTEROP clause appears in the DISPATCH directive, the
corresponding DECLARE VARIANT directive must have an
APPEND_ARGS clause with at least as many interop-types listed as
there are list items in the INTEROP clause in the DISPATCH
directive.

If the INTEROP directive appears with only one list item and the
DEVICE clause does not appear, it is as if DEVICE was specified
with the device number property of the listed interop-var.

The DEVICE clause is required if there is more than one list item
specified in the INTEROP clause.

• IS_DEVICE_PTR (list)

Identifies its list items as device pointers. The IS_DEVICE_PTR
property for each list item is added to the interoperability
requirement set.

Each IS_DEVICE_PTR list item must be of type C_PTR from the
intrinsic module ISO_C_BINDING

• NOCONTEXT (scalar-logical-expression)

 1 Intel® Fortran Compiler Classic and Intel® Fortran Compiler Developer Guide and Reference

1392

If a NOCONTEXT clause appears and the scalar-logical-expression
evaluates to .TRUE., the DISPATCH construct is not added to the
construct set of the OpenMP context.

If the NOCONTEXT expression evaluates to .FALSE., the DISPATCH
directive is added to the OpenMP* context.

• NOVARIANTS (scalar-logical-expression)

If a NOVARIANTS clause appears, and the scalar-logical-expression
evaluates to .TRUE., no function variant is selected for execution as
the target-call, even if one would otherwise have been selected.

If the NOVARIANTS expression evaluates to .FALSE., and a variant
exists that specified an OpenMP* context in the MATCH clause that
matches the current context, the variant is called

• NOWAIT

Adds the NOWAIT property to the interoperability requirement set.

Variables used in the expression of a NOVARIANTS clause or a
NOCONTEXT clause are implicitly referenced in all enclosing contexts
of the DISPATCH directive.

Only one of each of the following clauses is permitted in a DISPATCH
directive: NOWAIT, NOCONTEXT, and NOVARIANT.

statement Is a Fortran statement with one of these forms:

• var = target_proc ([argument-list])
• CALL target_proc [([argument-list])]

target_proc must be a procedure name; it cannot be a procedure
pointer.

The DISPATCH directive creates an explicit task around the associated code as if a TASK construct was
present. Properties added to the interoperability requirement set can be removed by other directives. The
task will be an included task if the interoperability requirement set does not contain a NOWAIT property.

If the interoperability requirements set contains DEPEND properties, it is as if the TASK construct contained
the corresponding DEPEND clauses.

See Also
OpenMP Fortran Compiler Directives
Syntax Rules for Compiler Directives
DECLARE VARIANT
INTEROP

DISTRIBUTE
OpenMP* Fortran Compiler Directive: Specifies
that loop iterations will be distributed among the
primary threads of all thread teams in a league
created by a teams construct.

Syntax

!$OMP DISTRIBUTE [clause[[,] clause]...]
 do-loop
[!$OMP END DISTRIBUTE]

Intel® Fortran Compiler Classic and Intel® Fortran Compiler Developer Guide and Reference 1

1393

clause Is one of the following:

• ALLOCATE ([allocator :] list)
• COLLAPSE (n)
• DIST_SCHEDULE (kind [, chunk-size])

Specifies how iterations are divided.

The kind must be STATIC (see SCHEDULE in DO Directive).

The chunk-size must be a positive scalar integer expression. If
specified, iterations are divided into chunks of size chunk-size.
Chunks are assigned round-robin to the teams of the parallel
region in the order of the team numbers.

When no chunk-size is specified, iterations are divided into chunks
that are approximately equal in size. In this case, at most one
chunk is distributed to each team of the parallel region.

• FIRSTPRIVATE (list)
• LASTPRIVATE ([CONDITIONAL:] list)
• ORDER ([order-modifier :] CONCURRENT) (ifx only)
• PRIVATE (list)

do-loop Is one or more DO iterations (DO loops). The DO iteration cannot be a
DO WHILE or a DO loop without loop control. The DO loop iteration
variable must be of type integer.

If an END DO directive follows a DO construct in which several loop
statements share a DO termination statement, then the directive can
only be specified for the outermost of these DO statements. The
DISTRIBUTE construct inherits the restrictions of the loop construct.

The iterations of the DO loop are distributed across the existing team
of threads. The values of the loop control parameters of the DO loop
associated with a DO directive must be the same for all the threads in
the team.

If more than one loop is associated with the DISTRIBUTE construct,
then the iterations of all associated loops are collapsed into one larger
iteration space. The sequential execution of the iterations in all
associated loops determines the order of the iterations in the
collapsed iteration space.

You cannot branch out of a DO loop associated with a DISTRIBUTE
directive.

The binding thread set for a DISTRIBUTE construct is the set of primary threads created by a TEAMS
construct. A DISTRIBUTE region binds to the innermost enclosing team's parallel region. Only the threads
that execute the binding team's parallel region participate in the execution of the loop iterations. A
DISTRIBUTE construct must be closely nested in a team's region.

If used, the END DISTRIBUTE directive must appear immediately after the end of the loop. If you do not
specify an END DISTRIBUTE directive, an END DISTRIBUTE directive is assumed at the end of the do-loop.

The DISTRIBUTE construct is associated with loop iterations that follow the directive. The iterations are
distributed across the primary threads of all teams that execute the team's parallel region to which the
DISTRIBUTE region binds.

A list item may appear in a FIRSTPRIVATE or LASTPRIVATE clause but not both.

See Also
OpenMP Fortran Compiler Directives

 1 Intel® Fortran Compiler Classic and Intel® Fortran Compiler Developer Guide and Reference

1394

Syntax Rules for Compiler Directives
DO Directive
TEAMS
Parallel Processing Model for information about Binding Sets

DISTRIBUTE PARALLEL DO
OpenMP* Fortran Compiler Directive: Specifies a
loop that can be executed in parallel by multiple
threads that are members of multiple teams.

Syntax

!$OMP DISTRIBUTE PARALLEL DO [clause[[,] clause]...]
 do-loop
[!$OMP END DISTRIBUTE PARALLEL DO]

clause Can be any of the clauses accepted by the DISTRIBUTE or PARALLEL
DO directives with identical meanings and restrictions except for
ORDERED and LINEAR .

do-loop Is one or more DO iterations (DO loops). The DO iteration cannot be a
DO WHILE or a DO loop without loop control. The DO loop iteration
variable must be of type integer.

All loops associated with the construct must be structured and
perfectly nested; that is, there must be no intervening code and no
other OpenMP* Fortran directives between any two loops.

The iterations of the DO loop are distributed across the existing team
of threads. The values of the loop control parameters of the DO loop
associated with a DO directive must be the same for all the threads in
the team.

If the END DISTRIBUTE PARALLEL DO directive is not specified, an END DISTRIBUTE PARALLEL DO directive
is assumed at the end of do-loop.

This directive specifies a composite construct.

See Also
OpenMP Fortran Compiler Directives
Syntax Rules for Compiler Directives

DISTRIBUTE PARALLEL DO SIMD
OpenMP* Fortran Compiler Directive: Specifies a
loop that will be executed in parallel by multiple
threads that are members of multiple teams. It will be
executed concurrently using SIMD instructions.

Syntax

!$OMP DISTRIBUTE PARALLEL DO SIMD [clause[[,] clause]...]
 do-loop
[!$OMP END DISTRIBUTE PARALLEL DO SIMD]

clause Can be any of the clauses accepted by the DISTRIBUTE or PARALLEL
DO SIMD directives with identical meanings and restrictions.

Intel® Fortran Compiler Classic and Intel® Fortran Compiler Developer Guide and Reference 1

1395

do-loop Is one or more DO iterations (DO loops). The DO iteration cannot be a
DO WHILE or a DO loop without loop control. The DO loop iteration
variable must be of type integer.

All loops associated with the construct must be structured and
perfectly nested; that is, there must be no intervening code and no
other OpenMP* Fortran directives between any two loops.

The iterations of the DO loop are distributed across the existing team
of threads. The values of the loop control parameters of the DO loop
associated with a DO directive must be the same for all the threads in
the team.

If the END DISTRIBUTE PARALLEL DO SIMD directive is not specified, an END DISTRIBUTE PARALLEL DO
SIMD directive is assumed at the end of do-loop.

This directive specifies a composite construct.

See Also
OpenMP Fortran Compiler Directives
Syntax Rules for Compiler Directives

DISTRIBUTE POINT
General Compiler Directive: Specifies loop
distribution. It suggests a location at which a DO loop
can be split.

Syntax
!DIR$ DISTRIBUTE POINT
Loop distribution causes large loops to be distributed (split) into smaller ones. The resulting loops contain a
subset of the instructions from the initial loop. Loop distribution can enable software pipelining to be applied
to more loops. It can also reduce register pressure and improve both instruction and data cache use.

If the directive is placed before a loop, the compiler will determine where to distribute; data dependencies
are observed.

If the directive is placed inside a loop, the distribution is performed after the directive and any loop-carried
dependencies are ignored. Currently only one distribute directive is supported if the directive is placed inside
the loop.

Example

!DIR$ DISTRIBUTE POINT
 do i =1, m
 b(i) = a(i) +1

 c(i) = a(i) + b(i) ! Compiler will decide
 ! where to distribute.
 ! Data dependencies are
 ! observed

 d(i) = c(i) + 1
 enddo
 do i =1, m
 b(i) = a(i) +1

!DIR$ DISTRIBUTE POINT
 call sub(a, n)! Distribution will start here,

 1 Intel® Fortran Compiler Classic and Intel® Fortran Compiler Developer Guide and Reference

1396

 ! ignoring all loop-carried
 ! depedencies
 c(i) = a(i) + b(i)

 d(i) = c(i) + 1
 enddo

See Also
General Compiler Directives

Syntax Rules for Compiler Directives
Rules for General Directives that Affect DO Loops

DISTRIBUTE SIMD
OpenMP* Fortran Compiler Directive: Specifies a
loop that will be distributed across the primary
threads of the teams region. It will be executed
concurrently using SIMD instructions.

Syntax

!$OMP DISTRIBUTE SIMD [clause[[,] clause]...]
 do-loop
[!$OMP END DISTRIBUTE SIMD]

clause Can be any of the clauses accepted by the DISTRIBUTE or SIMD
directives with identical meanings and restrictions.

do-loop Is one or more DO iterations (DO loops). The DO iteration cannot be a
DO WHILE or a DO loop without loop control. The DO loop iteration
variable must be of type integer.

All loops associated with the construct must be structured and
perfectly nested; that is, there must be no intervening code and no
other OpenMP* Fortran directives between any two loops.

The iterations of the DO loop are distributed across the existing team
of threads. The values of the loop control parameters of the DO loop
associated with a DO directive must be the same for all the threads in
the team.

If the END DISTRIBUTE SIMD directive is not specified, an END DISTRIBUTE SIMD directive is assumed at
the end of do-loop.

This directive specifies a composite construct.

See Also
OpenMP Fortran Compiler Directives
Syntax Rules for Compiler Directives

DNUM
Elemental Intrinsic Function (Specific): Converts
a character string to a REAL(8) value. This function
cannot be passed as an actual argument.

Syntax
result = DNUM (i)

Intel® Fortran Compiler Classic and Intel® Fortran Compiler Developer Guide and Reference 1

1397

i (Input) Must be of type character.

Results

The result type is REAL(8). The result value is the double-precision real value represented by the character
string i.

Example

DNUM ("3.14159") has the value 3.14159 of type REAL(8).

The following sets x to 311.0:

 CHARACTER(3) i
 DOUBLE PRECISION x
 i = "311"
 x = DNUM(i)

DO Directive
OpenMP* Fortran Compiler Directive: Specifies
that the iterations of the immediately following DO
loop must be executed in parallel.

Syntax

!$OMP DO [clause[[,] clause] ...]
 do_loop
[!$OMP END DO [NOWAIT]]

clause Is one of the following:

• ALLOCATE ([allocator :] list)
• COLLAPSE (n)
• FIRSTPRIVATE (list)
• LASTPRIVATE ([CONDITIONAL:] list)
• LINEAR (linear-list [: linear-modifier [, linear-modifier]])
• NOWAIT
• ORDER ([order-modifier :] CONCURRENT) (ifx only)
• ORDERED [(n)]

Must be used if ordered sections are contained in the dynamic
extent of the DO directive. For more information about ordered
sections, see the ORDERED directive.

If n is specified, it must be a positive scalar integer constant
expression.

The ORDERED clause must not appear in the worksharing-loop
(DO) directive if the loops associated with the worksharing-loop
construct include loops generated as the result of a TILE directive,
or if the ORDER clause is specified.

• PRIVATE (list)
• REDUCTION ([reduction-modifier,]reduction-identifier : list)

If the REDUCTION clause contains the INSCAN reduction-modifier,
the DO directive must not contain an ORDERED or a SCHEDULE
clause.

• SCHEDULE ([modifier [, modifier]:] kind[, chunk_size])

 1 Intel® Fortran Compiler Classic and Intel® Fortran Compiler Developer Guide and Reference

1398

Specifies how iterations of the DO loop are divided among the
threads of the team. chunk_size must be a loop invariant positive
scalar integer expression. The value of chunk_size must be the
same for all threads in the team. The following kinds are permitted,
only some of which allow the optional parameter chunk_size:

Kinds Effect

STATIC Divides iterations into
contiguous pieces by dividing
the number of iterations by the
number of threads in the team.
Each piece is then dispatched to
a thread before loop execution
begins.

If chunk_size is specified,
iterations are divided into pieces
of a size specified by
chunk_size. The pieces are
statically dispatched to threads
in the team in a round-robin
fashion in the order of the
thread number.

DYNAMIC Can be used to get a set of
iterations dynamically. It
defaults to 1 unless chunk_size
is specified.

If chunk_size is specified, the
iterations are broken into pieces
of a size specified by chunk. As
each thread finishes a piece of
the iteration space, it
dynamically gets the next set of
iterations.

GUIDED Can be used to specify a
minimum number of iterations.
It defaults to 1 unless
chunk_size is specified.

If chunk_size is specified, the
chunk size is reduced
exponentially with each
succeeding dispatch. The
chunk_size specifies the
minimum number of iterations
to dispatch each time. If there
are less than chunk_size
iterations remaining, the rest
are dispatched.

AUTO1 Delegates the scheduling
decision until compile time or
runtime. The schedule is

Intel® Fortran Compiler Classic and Intel® Fortran Compiler Developer Guide and Reference 1

1399

Kinds Effect

processor dependent. The
programmer gives the
implementation the freedom to
choose any possible mapping of
iterations to threads in the
team.

RUNTIME1 Defers the scheduling decision
until runtime. You can choose a
schedule type and chunk size at
runtime by using the
environment variable
OMP_SCHEDULE.

1No chunk_size is permitted for this type.

At most one SCHEDULE clause can appear. If the SCHEDULE clause
is not used, the default schedule type is STATIC.

modifier can be one of the following:

Modifier Effect

MONOTONIC Each thread executes the chunks
that it is assigned in increasing
logical iteration order.

NONMONOTONIC1 Chunks are assigned to threads
in any order and the behavior of
an application that depends on
any execution order of the
chunks is unspecified.

SIMD When do_loop is associated with
an OMP SIMD construct, the
chunk_size for all chunks except
the first and last chunks is:

new_chunk_size = (chunk_size /
simd_width)*simd_width

where simd_width is an
implementation-defined value.

The first chunk will have at least
new_chunk_size iterations
unless it is also the last chunk.
The last chunk may have fewer
iterations than new_chunk_size.

If SIMD is specified and the loop
is not associated with an OMP
SIMD construct, the modifier is
ignored.

 1 Intel® Fortran Compiler Classic and Intel® Fortran Compiler Developer Guide and Reference

1400

Modifier Effect

1NONMONOTONIC can only be specified with SCHEDULE(DYNAMIC)
or SCHEDULE(GUIDED).

If the schedule kind is STATIC or if the ORDERED clause appears,
and if MONOTONIC does not appear, the effect will be as if
MONOTONIC was specified. NONMONOTONIC cannot be specified if
the ORDERED clause appears. Either MONOTONIC or
NONMONTONIC can appear but not both.

modifier cannot appear if the LINEAR clause appears.

The SIMD modifier can be used with MONOTONIC or
NONMONOTONIC in either order. The SIMD modifier and the
MONOTONIC modifier can be used with all kinds.

do_loop Is a DO iteration (an iterative DO loop). It cannot be a DO WHILE or a
DO loop without loop control. The DO loop iteration variable must be
of type integer.

The iterations of the DO loop are distributed across the existing team
of threads. The values of the loop control parameters of the DO loop
associated with a DO directive must be the same for all the threads in
the team.

You cannot branch out of a DO loop associated with a DO directive.

The binding thread set for a DO construct is the current team. A DO loop region binds to the innermost
enclosing parallel region.

If used, the END DO directive must appear immediately after the end of the loop. If you do not specify an
END DO directive, an END DO directive is assumed at the end of the DO loop.

If you specify NOWAIT, threads do not synchronize at the end of the parallel loop. Threads that finish early
proceed straight to the instruction following the loop without waiting for the other members of the team to
finish the DO directive.

Parallel DO loop control variables are block-level entities within the DO loop. If the loop control variable also
appears in the LASTPRIVATE list of the parallel DO, it is copied out to a variable of the same name in the
enclosing PARALLEL region. The variable in the enclosing PARALLEL region must be SHARED if it is specified
in the LASTPRIVATE list of a DO directive.

Only a single SCHEDULE, COLLAPSE, or ORDERED clause can appear in a DO directive.

ORDERED (n) specifies how many loops are associated with the DO directive and it specifies that those
associated loops form a doacross loop nest. n does not affect how the logical iteration space is divided.

If you specify COLLAPSE (M) ORDERED (N) for loops nested K deep, the following rules apply:

• If either M > K or N > K, the behavior is unspecified.
• N must be greater than M

A LINEAR clause or an ORDERED (n) clause can be specified in a DO directive, but not both.

DO directives must be encountered by all threads in a team or by none at all. It must also be encountered in
the same order by all threads in a team.

Intel® Fortran Compiler Classic and Intel® Fortran Compiler Developer Guide and Reference 1

1401

Example

In the following example, the loop iteration variable is private by default, and it is not necessary to explicitly
declare it. The END DO directive is optional:

 !$OMP PARALLEL
 !$OMP DO
 DO I=1,N
 B(I) = (A(I) + A(I-1)) / 2.0
 END DO
 !$OMP END DO
 !$OMP END PARALLEL

If there are multiple independent loops within a parallel region, you can use the NOWAIT keyword in the END
DO directive, or the NOWAIT clause in the DO directive, to avoid the implied BARRIER at the end of the DO
directive, as follows:

 !$OMP PARALLEL
 !$OMP DO
 DO I=2,N
 B(I) = (A(I) + A(I-1)) / 2.0
 END DO
 !$OMP END DO NOWAIT
 !$OMP DO
 DO I=1,M
 Y(I) = SQRT(Z(I))
 END DO
 !$OMP END DO NOWAIT
 !$OMP END PARALLEL

Correct execution sometimes depends on the value that the last iteration of a loop assigns to a variable.
Such programs must list all such variables as arguments to a LASTPRIVATE clause so that the values of the
variables are the same as when the loop is executed sequentially, as follows:

 !$OMP PARALLEL
 !$OMP DO LASTPRIVATE(I)
 DO I=1,N
 A(I) = B(I) + C(I)
 END DO
 !$OMP END PARALLEL
 CALL REVERSE(I)

In this case, the value of I at the end of the parallel region equals N+1, as in the sequential case.

Ordered sections are useful for sequentially ordering the output from work that is done in parallel. Assuming
that a reentrant I/O library exists, the following program prints out the indexes in sequential order:

 !$OMP DO ORDERED SCHEDULE(DYNAMIC)
 DO I=LB,UB,ST
 CALL WORK(I)
 END DO
 ...
 SUBROUTINE WORK(K)
 !$OMP ORDERED
 WRITE(*,*) K
 !$OMP END ORDERED

 1 Intel® Fortran Compiler Classic and Intel® Fortran Compiler Developer Guide and Reference

1402

In the next example, the loops over J1 and J2 are collapsed and their iteration space is executed by all
threads of the current team:

!$OMP DO COLLAPSE(2) PRIVATE(J1, J2, J3)
 DO J1 = J1_L, J1_U, J1_S
 DO J2 = J2_L, J2_U, J2_S
 DO J3 = J3_L, J3_U, J3_S
 CALL BAR(A, J1, J2, J3)
 ENDDO
 ENDDO
 ENDDO
!$OMP END DO

See Also
OpenMP Fortran Compiler Directives
Syntax Rules for Compiler Directives
Rules for General Directives that Affect DO Loops
TILE directive
Parallel Processing Model for information about Binding Sets

DO Statement
Statement: Marks the beginning of a DO construct.
The DO construct controls the repeated execution of a
block of statements or constructs. This repeated
execution is called a loop.

Syntax
A DO construct takes one of the following forms:

Block Form:

[name:] DO [label[,]] [loop-control]
 block
[label] term-stmt
Non-block Form:

DO label [,] [loop-control]
 block
[label] ex-term-stmt

name (Optional) Is the name of the DO construct.

label (Optional) Is a statement label identifying the terminal statement.

loop-control Is one of the following:

• a loop iteration (see Iteration Loop Control)
• WHILE (see the DO WHILE statement)
• CONCURRENT (see the DO CONCURRENT statement)

block Is a sequence of zero or more statements or constructs that make up
the DO range.

term-stmt Is the terminal statement for the block form of the construct.

ex-term-stmt Is the terminal statement for the non-block form of the construct.

Intel® Fortran Compiler Classic and Intel® Fortran Compiler Developer Guide and Reference 1

1403

Description

The terminal statement (term-stmt) for a block DO construct is an END DO or CONTINUE statement. If the
block DO statement contains a label, the terminal statement must be identified with the same label. If no
label appears, the terminal statement must be an END DO statement.

If a construct name is specified in a block DO statement, the same name must appear in the terminal END
DO statement. If no construct name is specified in the block DO statement, no name can appear in the
terminal END DO statement.

The terminal statement (ex-term-stmt) for a non-block DO construct is an executable statement (or
construct) that is identified by the label specified in the non-block DO statement. A non-block DO construct
can share a terminal statement with another non-block DO construct. A block DO construct cannot share a
terminal statement.

The following cannot be terminal statements for non-block DO constructs:

• CONTINUE (allowed if it is a shared terminal statement)
• CYCLE
• END (for a program or subprogram)
• EXIT
• GO TO (unconditional or assigned)
• Arithmetic IF
• RETURN
• STOP

The non-block DO construct is a deleted feature in the Fortran Standard. Intel® Fortran fully supports
features deleted in the Fortran Standard.

The labeled form of a DO loop is an obsolescent feature in the Fortran Standard.

Example

The following example shows a simple block DO construct (contains no iteration count or DO WHILE
statement):

 DO
 READ *, N
 IF (N == 0) STOP
 CALL SUBN
 END DO

The DO block executes repeatedly until the value of zero is read. Then the DO construct terminates.

The following example shows a named block DO construct:

 LOOP_1: DO I = 1, N
 A(I) = C * B(I)
 END DO LOOP_1

The following example shows a nonblock DO construct with a shared terminal statement:

 DO 20 I = 1, N
 DO 20 J = 1 + I, N
 20 RESULT(I,J) = 1.0 / REAL(I + J)

The following two program fragments are also examples of DO statements:

 C Initialize the even elements of a 20-element real array
 DIMENSION array(20)
 DO j = 2, 20, 2
 array(j) = 12.0
 END DO

 1 Intel® Fortran Compiler Classic and Intel® Fortran Compiler Developer Guide and Reference

1404

 C
 C Perform a function 11 times
 DO k = -30, -60, -3
 int = j / 3
 isb = -9 - k
 array(isb) = MyFunc (int)
 END DO

The following shows the final value of a DO variable (in this case 11):

 DO j = 1, 10
 WRITE (*, '(I5)') j
 END DO
 WRITE (*, '(I5)') j

See Also
CONTINUE
CYCLE
EXIT
DO WHILE
DO CONCURRENT
Execution Control

DO CONCURRENT
Statement: Specifies that there are no data
dependencies between the iterations of a DO loop.

Syntax
The DO CONCURRENT statement takes the following form:

[name:] DO [label [,]] CONCURRENT concurrent-header [locality-spec]
 block
[END DO [name]]

name (Optional) Is the name of the DO CONCURRENT construct.

concurrent-header Is ([type ::] concurrent-spec [, mask-expr])

If type appears, the index-name has the specified type and type
parameters. Otherwise, it has the type and type parameters that it
would have if it were the name of a variable in the innermost
executable construct or scoping unit.

If type is omitted, the index-name must not be the same as a local
identifier, an accessible global identifier, or an identifier of an outer
construct entity, except for a common block name or a scalar variable
name.

type (Optional) Is an integer data type.

concurrent-spec Is an assignment using a triplet specification in the form index-name
= concurrent-limit : concurrent-limit [: concurrent-step]

index-name Is a named scalar variable of type integer. It becomes defined when
the index-name value set is evaluated. It has the scope of the
construct.

Intel® Fortran Compiler Classic and Intel® Fortran Compiler Developer Guide and Reference 1

1405

The index-name of a contained FORALL or DO CONCURRENT construct
must not be the same as an index-name of any of its containing
FORALL or DO CONCURRENT constructs.

concurrent-limit Is a scalar integer expression.

concurrent-step (Optional) Is a scalar integer expression.

mask-expr (Optional) Is a masked expression that is scalar and of type logical.

Any procedure referenced in mask-expr must be pure, including one
referenced by a defined operator.

index-name can appear in mask-expr. The set of index values to be
executed is the set of all index-name values for which mask-expr is
true.

label (Optional) Is a label specifying an executable statement in the same
program unit.

locality-spec (Optional) Can be any of the following:

• DEFAULT (NONE)

You can specify DEFAULT (NONE) only once in a DO CONCURRENT
statement. If specified, any variable or construct entity that is
accessible in the scope containing the DO CONCURRENT statement
that appears in the block of the DO CONCURRENT construct must
have its locality explicitly specified.

• LOCAL (variable-name-list)
• LOCAL_INIT (variable-name-list)
• REDUCE (reduction-oper : variable-name-list)

reduction-oper is one of the intrinsic binary-reduction-operators +,
*, .AND., .OR., .EQV., or .NEQV., or one of the intrinsic function-
reduction-operator names IAND, IEOR, IOR, MAX or MIN.

A variable in variable-name-list cannot be coindexed, be an
assumed-size array, or have the ASYNCHRONUS, INTENT(IN),
OPTIONAL, or VOLATILE attribute. It must be of an intrinsic type
that is compatible with the intrinsic reduction-oper.

• SHARED (variable-name-list)

References in a DO CONCURRENT construct to a SHARED variable
are references to the variable in the innermost construct or scope
containing the DO CONCURRENT construct.

If the variable is defined or becomes undefined in one iteration, it
cannot be referenced, defined, or become undefined in another
iteration.

If the variable becomes pointer assigned, allocated, deallocated, or
nullified in an iteration, its dynamic type, allocation or allocations
status, shape, bounds, or a deferred-type parameter cannot be
inquired about in another iteration.

A SHARED noncontiguous array cannot be used as an actual
argument associated with a contiguous INTENT(INOUT) dummy
argument within the construct.

You can specify LOCAL, LOCAL_INIT, REDUCE, SHARED, and DEFAULT
(NONE) in the same DO CONCURRENT statement.

 1 Intel® Fortran Compiler Classic and Intel® Fortran Compiler Developer Guide and Reference

1406

You can specify more than one of the following in the same DO
CONCURRENT statement: LOCAL, LOCAL_INIT, REDUCE, and SHARED.

block Is a sequence of zero or more statements or constructs that make up
the DO range.

A variable that appears in a mask-expr, concurrent-step, or concurrent-limit of a concurrent-header, cannot
appear in a LOCAL locality-spec in the same DO CONCURRENT statement.

If a construct name is specified in a DO CONCURRENT statement, the same name must appear in a terminal
END DO statement. If no construct name is specified in the DO CONCURRENT statement, no name can
appear in the terminal END DO statement, if one is specified.

If END DO is specified, it terminates the construct. If END DO is not specified, when all of the iterations have
completed execution, the loop terminates, and the DO construct becomes inactive. You can branch to the
END DO statement only from within the construct.

When the DO CONCURRENT construct terminates, a variable that is defined or becomes undefined during
more than one iteration of the construct becomes undefined.

The DO CONCURRENT range is executed for every active combination of the index-name values.

Each execution of the range is an iteration. The executions can occur in any order.

Execution of a CYCLE statement that belongs to a DO CONCURRENT construct completes execution of that
iteration of the construct.

A branch within a DO CONCURRENT construct must not have a branch target that is outside the construct.

The following cannot appear in a DO CONCURRENT construct:

• A RETURN statement
• An image control statement
• A branch to a target outside the construct block
• A statement that may result in the deallocation of a polymorphic variable
• An input/output statement with an ADVANCE= specifier
• A reference to a nonpure procedure
• A reference to module IEEE_EXCEPTIONS procedure IEEE_GET_FLAG, IEEE_SET_HALTING_MODE, IEEE

GET_STATUS, IEEE_SET_MODES, IEEE_SET_STATUS, or IEEE_GET_HALTING_MODE
• A reference to module IEEE_ARITHMETIC procedure IEEE_SET_ROUNDING_MODE or

IEE_SET_UNDERFLOW_MODE

An EXIT statement must not appear within a DO CONCURRENT construct if it belongs to that construct or an
outer construct.

A variable with LOCAL or LOCAL_INIT locality is a construct entity with the same type, type parameters, and
rank as variable with the same name in the innermost construct or scope containing the DO CONCURRENT
construct. The variable outside the construct is inaccessible by that name inside the DO CONCURRENT
construct.

The following are rules for variable-name in a locality-spec:

• A variable-name must be the name of a variable that is accessible in the innermost construct containing
the DO CONCURRENT statement. variable-name can appear at most once in any locality-spec of a DO
CONCURRENT statement. It cannot be the same as index-name of the same DO CONCURRENT statement.

• A variable-name in a LOCAL or LOCAL_INIT locality-spec cannot have the OPTIONAL, ALLOCATABLE, or
INTENT(IN) attribute, it cannot be a non-pointer polymorphic dummy argument, a coarray or an
assumed-size array, or be of a type that is finalizable.

• variable-name is not permitted in a LOCAL, LOCAL_INIT, or REDUCE locality-spec if it is not permitted in a
variable-definition context.

Intel® Fortran Compiler Classic and Intel® Fortran Compiler Developer Guide and Reference 1

1407

At the beginning of each iteration, a variable with LOCAL locality that is a pointer has pointer association
status of undefined; otherwise, it is undefined except for any subobjects that are default initialized. A
variable with LOCAL_INIT locality has the definition status and pointer association status of the variable
outside the construct. The variable outside the construct cannot be an undefined nonallocatable nonpointer
variable, or an undefined pointer.

A variable with the REDUCE locality is a construct entity with the same type, type parameters, rank, and
bounds as the variable with the same name in the innermost construct or scope containing the DO
CONCURENT construct (outside variable). Within the construct, the outside variable is inaccessible by that
name. The following are additional rules:

• If the outside variable has the ALLOCATABLE attribute, it must be allocated; if it has the POINTER
attribute, it must be associated.

• If the outside variable has the CONTIGUOUS attribute, the construct entity has the CONTIGUOUS
attribute.

• The construct entity does not have the ALLOCATABLE, BIND, INTENT, POINTER, PROTECTED, SAVE,
TARGET or VALUE attribute, even if the outside variable does. The construct entity is initialized with the
value of the reduction-oper as specified in the following table prior to beginning execution of the
iterations:

The reduction-oper Initial Value of Construct Entity

+ 0

* 1

.AND. .TRUE.

.EQV. .TRUE.

.NEQV. .FALSE.

.OR. .FALSE.

IAND All bits set

IEOR 0

IOR 0

MAX Largest representable value for type and kind

MIN Smallest representable value for type and kind

In the block of a DO CONCURRENT construct, variables with REDUCE locality can only appear in the
designator of a variable, as the object name, or as the leftmost part name of an array element or array
section in an intrinsic assignment statement that takes one of the following forms:

variable = variable binary-reduction-operator expr
variable = expr binary-reduction-operator variable
variable = function-reduction-operator ([expr ,]... variable [, expr] ...)

Each occurrence of variable in the statement must have the same form.

When the DO CONCURRENT construct completes, the outside variable of a variable with REDUCE locality is
updated by combining the outside value with the values of the associated construct entities upon completion
of the construct using reduction-operator. This combination can occur in any order.

A pointer that becomes associated with a LOCAL or LOCAL_INIT TARGET variable becomes undefined at the
end of the iteration. If a LOCAL or LOCAL_INIT variable appears in an input/output statement, the input/
output operation must complete before the iteration completes.

 1 Intel® Fortran Compiler Classic and Intel® Fortran Compiler Developer Guide and Reference

1408

A construct or statement entity with the SAVE attribute and with unspecified locality in a DO CONCURRENT
construct has SHARED locality. If it does not have the SAVE attribute, it is a different entity in each iteration
of the construct.

The construct entity does not have the BIND, SAVE, VALUE, PROTECTED, or INTENT attribute, even if the
variable with the same name outside the construct has the attribute. The construct entity does have the
VOLATILE, CONTIGUOUS, POINTER, TARGET or ASYCHRONOUS attribute if the variable outside the construct
with the same name has the attribute. If it is a non-pointer, it has the same bounds as the variable outside
the construct.

The following are rules for variables with unspecified locality in DO CONCURRENT constructs:

• A variable that is referenced in an iteration must be previously defined during that iteration, or it must not
be defined or become undefined during any other iteration.

A variable that is defined or becomes undefined by more than one iteration becomes undefined when the
loop terminates.

• An allocatable object that is allocated in more than one iteration must be subsequently deallocated during
the same iteration in which it was allocated.

An object that is allocated or deallocated in only one iteration must not be referenced, allocated,
deallocated, defined, or become undefined in a different iteration.

• A pointer that is referenced in an iteration must have been pointer associated previously during that
iteration, or it must not have its pointer association changed during any iteration.

A pointer that has its pointer association changed in more than one iteration has an association status of
undefined when the construct terminates.

• An input/output statement must not write data to a file record or position in one iteration and read from
the same record or position in a different iteration.

• Records written by output statements in the range of the loop to a sequential-access file appear in the file
in an indeterminate order.

The restrictions on referencing variables defined in an iteration of a DO CONCURRENT construct also apply to
any procedure invoked within the loop. These restrictions ensure no interdependencies occur that might
affect code optimizations.

NOTE
If compiler option [q or Q]openmp or option [Q]parallel is specified, the compiler will attempt to
parallelize the construct.

NOTE
If ifx compiler option -fopenmp-target-do-concurrent (Linux*)
or /Qopenmp-target-do-concurrent (Windows*) is specified, the compiler will attempt to convert
the construct into an OpenMP TARGET offload region. An I/O statement in the construct will inhibit
conversion to a TARGET region; it can still be parallelized.

See the DO statement for the semantics of labeled and block forms of DO loops.

The labeled form of a DO CONCURRENT loop is an obsolescent feature in the Fortran Standard.

Intel® Fortran Compiler Classic and Intel® Fortran Compiler Developer Guide and Reference 1

1409

Examples

The following example shows a DO CONCURRENT construct with a mask-expr and locality specified for
variables:

INTEGER,DIMENSION(N) :: J, K
INTEGER :: I, M
M = 10
I = 15
DO CONCURRENT (I = 1:N, J(I)> 0)LOCAL (M) SHARED (J, K)
 M = MOD (K(I), J(I))
 K(I) = K(I) – M
END DO
PRINT *, I, M ! Prints 15 10

The following example shows a DO CONCURRENT construct that has a variable with REDUCE locality. The
variable has a value of 100 prior to the DO CONCURRENT construct. The values of the array are added to the
variable in a sum reduction of the array:

INTEGER,DIMENSION(10) :: ARRAY
INTEGER :: I, SUM_PLUS_100 = 100

ARRAY = [1, 2, 3, 4, 5, 6, 7, 8, 9, 10]
DO CONCURRENT (I = 1:10) REDUCE (+ : SUM_PLUS_100)
 SUM_PLUS_100 = SUM_PLUS_100 + ARRAY(I)
END DO
PRINT *, SUM_PLUS_100 ! Prints 155

See Also
qopenmp, Qopenmp compiler option
fopenmp-target-do-concurrent, Qopenmp-target-do-concurrent compiler option
parallel, Qparallel compiler option (ifort)
parallel, Qparallel compiler option (ifx)
The article titled: Using Fortran DO CONCURRENT for Accelerator Offload

DO SIMD
OpenMP* Fortran Compiler Directive: Specifies
that the iterations of the loop will be distributed across
threads in the team. Iterations executed by each
thread can also be executed concurrently using SIMD
instructions.

Syntax

!$OMP DO SIMD [clause[[,] clause] ...]
 do-loop
[!$OMP END DO SIMD[NOWAIT]]

clause Can be any of the clauses accepted by the DO or SIMD directives.

do-loop Is one or more DO iterations (DO loops). The DO iteration cannot be a
DO WHILE or a DO loop without loop control. The DO loop iteration
variable must be of type integer.

All loops associated with the construct must be structured and
perfectly nested; that is, there must be no intervening code and no
other OpenMP* Fortran directives between any two loops.

 1 Intel® Fortran Compiler Classic and Intel® Fortran Compiler Developer Guide and Reference

1410

https://www.intel.com/content/www/us/en/developer/articles/technical/using-fortran-do-current-for-accelerator-offload.html#gs.5v71es

The iterations of the DO loop are distributed across the existing team
of threads. The values of the loop control parameters of the DO loop
associated with a DO directive must be the same for all the threads in
the team.

You cannot branch out of a DO loop associated with a DO SIMD
directive.

If the END DO SIMD directive is not specified, an END DO SIMD directive is assumed at the end of do-loop.

You can specify the NOWAIT clause or keyword to avoid the implied barrier at the end of a loop construct.

The DO SIMD construct converts the associated DO loop to a SIMD loop in a way that is consistent with any
clauses that apply to the SIMD construct. The resulting SIMD chunks and any remaining iterations will be
distributed across the implicit tasks of the parallel region in a way that is consistent with any clauses that
apply to the DO construct.

This directive specifies a composite construct.

See Also
OpenMP Fortran Compiler Directives
Syntax Rules for Compiler Directives
NOWAIT clause

DO WHILE
Statement: Executes the range of a DO construct
while a specified condition remains true.

Syntax
[name:] DO [label[,]] WHILE (expr)
 block
[END DO [name]]

name (Optional) Is the name of the DO WHILE construct.

label (Optional) Is a label specifying an executable statement in the same
program unit.

expr Is a scalar logical (test) expression enclosed in parentheses.

block Is a sequence of zero or more statements or constructs that make up
the DO range.

Description

If a construct name is specified in a DO WHILE statement, the same name must appear in a terminal END
DO statement. If no construct name is specified in the DO WHILE statement, no name can appear in the
terminal END DO statement, if one is specified.

Before each execution of the DO range, the logical expression is evaluated. If it is true, the statements in the
body of the loop are executed. If it is false, the DO construct terminates and control transfers to the
statement following the loop.

If END DO is specified, it terminates the construct. If END DO is not specified, when all of the iterations have
completed execution, the loop terminates, and the DO construct becomes inactive.

If no label appears in a DO WHILE statement, the DO WHILE loop must be terminated with an END DO
statement. See the description of the DO statement for the semantics of labeled and block forms of DO
loops.

Intel® Fortran Compiler Classic and Intel® Fortran Compiler Developer Guide and Reference 1

1411

You can transfer control out of a DO WHILE loop but not into a loop from elsewhere in the program.

Terminating a DO WHILE loop with an executable statement other than a DO WHILE or a CONTINUE
statement is a deleted feature in the Fortran Standard. Intel® Fortran fully supports features deleted in the
Fortran Standard.

The labeled form of a DO WHILE loop is an obsolescent feature in the Fortran Standard.

Example

The following example shows a DO WHILE statement:

 CHARACTER*132 LINE
 ...
 I = 1
 DO WHILE (LINE(I:I) .EQ. ' ')
 I = I + 1
 END DO

The following examples show required and optional END DO statements:

RequiredOptional
 DO WHILE (I .GT. J) DO 10 WHILE (I .GT. J)
 ARRAY(I,J) = 1.0 ARRAY(I,J) = 1.0
 I = I - 1 I = I - 1
 END DO 10 END DO

The following shows another example:

 CHARACTER(1) input
 input = ' '
 DO WHILE ((input .NE. 'n') .AND. (input .NE. 'y'))
 WRITE (*, '(A,\)') 'Enter y or n: '
 READ (*, '(A)') input
 END DO

See Also
CONTINUE
CYCLE
EXIT
DO statement
Execution Control

DOT_PRODUCT
Transformational Intrinsic Function (Generic):
Performs dot-product multiplication of numeric or
logical vectors (rank-one arrays).

Syntax
result = DOT_PRODUCT (vector_a,vector_b)

vector_a (Input) Must be a rank-one array of numeric (integer, real, or
complex) or logical type.

vector_b (Input) Must be a rank-one array of numeric type if vector_a is of
numeric type, or of logical type if vector_a is of logical type. It must
be the same size as vector_a.

Results

The result is a scalar whose type depends on the types of vector_a and vector_b.

 1 Intel® Fortran Compiler Classic and Intel® Fortran Compiler Developer Guide and Reference

1412

If vector_a is of type integer or real, the result value is SUM (vector_a* vector_b).

If vector_a is of type complex, the result value is SUM (CONJG (vector_a)* vector_b).

If vector_a is of type logical, the result has the value ANY (vector_a.AND. vector_b).

If either rank-one array has size zero, the result is zero if the array is of numeric type, and false if the array
is of logical type.

Example

DOT_PRODUCT ((/1, 2, 3/), (/3, 4, 5/)) has the value 26, calculated as follows:

((1 x 3) + (2 x 4) + (3 x 5)) = 26
DOT_PRODUCT ((/ (1.0, 2.0), (2.0, 3.0) /), (/ (1.0, 1.0), (1.0, 4.0) /)) has the value (17.0, 4.0).

DOT_PRODUCT ((/ .TRUE., .FALSE. /), (/ .FALSE., .TRUE. /)) has the value false.

The following shows another example:

 I = DOT_PRODUCT((/1,2,3/), (/4,5,6/)) ! returns the value 32

See Also
PRODUCT
MATMUL
TRANSPOSE

DOUBLE COMPLEX
Statement: Specifies the DOUBLE COMPLEX data
type.

Syntax
DOUBLE COMPLEX
A COMPLEX(8) or DOUBLE COMPLEX constant is a pair of constants that represents a complex number. One
of the pair must be a double-precision real constant, the other can be an integer, single-precision real, or
double-precision real constant.

A COMPLEX(8) or DOUBLE COMPLEX constant occupies 16 bytes of memory and is interpreted as a complex
number.

The rules for DOUBLE PRECISION (REAL(8)) constants also apply to the double precision portion of
COMPLEX(KIND=8) or DOUBLE COMPLEX constants. (For more information, see REAL and DOUBLE
PRECISION.)

The DOUBLE PRECISION constants in a COMPLEX(8) or DOUBLE COMPLEX constant have IEEE* binary64
format.

Example

DOUBLE COMPLEX vector, arrays(7,29)
DOUBLE COMPLEX pi, pi2 /3.141592654,6.283185308/

Valid COMPLEX(8) or DOUBLE COMPLEX constants

(547.3E0_8,-1.44_8)

(1.7039E0,-1.7039D0)

(+12739D3,0.D0)

Intel® Fortran Compiler Classic and Intel® Fortran Compiler Developer Guide and Reference 1

1413

Invalid COMPLEX(8) or DOUBLE COMPLEX constants

(1.23D0,) Second constant missing.

(1D1,2H12) Hollerith constants not allowed.

(1,1.2) Neither constant is DOUBLE PRECISION; this is a
valid single-precision real constant.

See Also
General Rules for Complex Constants
COMPLEX Statement
Complex Data Types
DOUBLE PRECISION
REAL

DOUBLE PRECISION
Statement: Specifies the DOUBLE PRECISION data
type.

Syntax
DOUBLE PRECISION
A REAL(8) or DOUBLE PRECISION constant has more than twice the accuracy of a REAL(4) number, and
greater range.

A REAL(8) or DOUBLE PRECISION constant occupies eight bytes of memory. The number of digits that
precede the exponent is unlimited, but typically only the leftmost 15 digits are significant.

IEEE* binary64 format is used.

For more information, see General Rules for Real Constants.

Example

DOUBLE PRECISION varnam
DOUBLE PRECISION,PRIVATE :: zz

Valid REAL(8) or DOUBLE PRECISION constants

123456789D+5

123456789E+5_8

+2.7843D00

-.522D-12

2E200_8

2.3_8

3.4E7_8

Invalid REAL(8) or DOUBLE PRECISION constants

-.25D0_2 2 is not a valid kind type for reals.

+2.7182812846182 No D exponent designator is present; this is a valid
single-precision constant.

 1 Intel® Fortran Compiler Classic and Intel® Fortran Compiler Developer Guide and Reference

1414

123456789.D400 Too large for any double-precision format.

123456789.D-400 Too small for any double-precision format.

See Also
REAL Statement
REAL(8) or DOUBLE PRECISION Constants
Data Types, Constants, and Variables
Real Data Types

DPROD
Elemental Intrinsic Function (Specific): Produces
a higher precision product. This is a specific function
that has no generic function associated with it.

Syntax
result = DPROD (x, y)

x (Input) Must be of type REAL(4) or REAL(8).

y (Input) Must have the same type and kind parameters as x.

Results

If x and y are of type REAL(4), the result type is double-precision real (REAL(8) or REAL*8). If x and y are of
type REAL(8), the result type is REAL(16). The result value is equal to x* y.

The setting of compiler options specifying real size can affect this function.

Example

DPROD (2.0, -4.0) has the value -8.00D0.

DPROD (5.0D0, 3.0D0) has the value 15.00Q0.

The following shows another example:

 REAL(4) e
 REAL(8) d
 e = 123456.7
 d = 123456.7D0
 ! DPROD (e,e) returns 15241557546.4944

 ! DPROD (d,d) returns 15241556774.8899992813874268904328

DRAND, DRANDM
Portability Functions: Return double-precision
random numbers in the range 0.0 to 1.0, not including
the end points.

Module

USE IFPORT

Syntax
result = DRAND (iflag)
result = DRANDM (iflag)

Intel® Fortran Compiler Classic and Intel® Fortran Compiler Developer Guide and Reference 1

1415

iflag (Input) INTEGER(4). Controls the way the random number is selected.

Results

The result type is REAL(8). DRAND and DRANDM return random numbers in the range 0.0 to 1.0, not
including the end points.

Value of iflag Selection process

1 The generator is restarted and the first random
value is selected.

0 The next random number in the sequence is
selected.

Otherwise The generator is reseeded using iflag, then
restarted, and the first random value is selected.

There is no difference between DRAND and DRANDM. Both functions are included to insure portability of
existing code that references one or both of them.

The intrinsic subroutines RANDOM_INIT, RANDOM_NUMBER, and RANDOM_SEED provide the same
functionality and they are the recommended functions to use when writing programs to generate random
numbers.

Example

USE IFPORT
REAL(8) num
INTEGER(4) f
f=1
CALL print_rand
f=0
CALL print_rand
f=22
CALL print_rand
CONTAINS
 SUBROUTINE print_rand
 num = drand(f)
 print *, 'f= ',f,':',num
 END SUBROUTINE
END

See Also
RANDOM_INIT

RANDOM_NUMBER
RANDOM_SEED

DRANSET
Portability Subroutine: Sets the seed for the
random number generator.

Module

USE IFPORT

Syntax
CALL DRANSET (seed)

 1 Intel® Fortran Compiler Classic and Intel® Fortran Compiler Developer Guide and Reference

1416

seed (Input) REAL(8). The reset value for the seed.

See Also
RANGET

DREAL
Elemental Intrinsic Function (Specific): Converts
the real part of a double complex argument to double-
precision type. This is a specific function that has no
generic function associated with it. It cannot be
passed as an actual argument.

Syntax
result = DREAL (a)

a (Input) Must be of type double complex (COMPLEX(8) or
COMPLEX*16).

Results

The result type is double precision real (REAL(8) or REAL*8).

Example

DREAL ((2.0d0, 3.0d0)) has the value 2.0d0.

See Also
REAL

DSHIFTL
Elemental Intrinsic Function (Specific): Selects
the left 64 bits after shifting a 128-bit integer value to
the left. This function cannot be passed as an actual
argument.

Syntax
result = DSHIFTL (i,j,shift)

i (Input) Must be of type integer, or a binary, octal, or hexadecimal
literal constant.

j (Input) Must be of type integer, or a binary, octal, or hexadecimal
literal constant.

If both i and j are of type integer, they must have the same kind type
parameter. i and j must not both be binary, octal, or hexadecimal
literal constants.

shift (Input) Integer. Must be nonnegative and less than or equal to 64.
This is the shift count.

Results

The result type is integer. The result value is the 64-bit value starting at bit 128 - shift of the 128-bit
concatenation of the values of i and j.

Intel® Fortran Compiler Classic and Intel® Fortran Compiler Developer Guide and Reference 1

1417

If either i or j is a binary, octal, or hexadecimal literal constant, it is first converted as if by the intrinsic
function INT to type integer with the kind type parameter of the other. The rightmost shift bits of the result
value are the same as the leftmost bits of i, and the remaining bits of the result value are the same as the
rightmost bits of j. This is equal to IOR (SHIFTL (I, SHIFT), SHIFTR (J, BIT SIZE (J) - SHIFT)).

Example

Consider the following:

INTEGER(8) ILEFT / Z'111122221111222' /
INTEGER(8) IRIGHT / Z'FFFFFFFFFFFFF' /
PRINT *, DSHIFTL (ILEFT, IRIGHT, 16_8) ! prints 1306643199093243919

See Also
Binary, Octal, Hexadecimal, and Hollerith Constants
Model for Bit Data

DSHIFTR
Elemental Intrinsic Function (Specific): Selects
the left 64 bits after shifting a 128-bit integer value to
the right. This function cannot be passed as an actual
argument.

Syntax
result = DSHIFTR (i,j,shift)

i (Input) Must be of type integer, or a binary, octal, or hexadecimal
literal constant.

j (Input) Must be of type integer, or a binary, octal, or hexadecimal
literal constant.

shift (Input) Integer. Must be nonnegative and less than or equal to 64.
This is the shift count.

Results

The result type is integer. The result value is the 64-bit value starting at bit 64 + shift of the 128-bit
concatenation of the values of i and j.

If either i or j is a binary, octal, or hexadecimal literal constant, it is first converted as if by the intrinsic
function INT to type integer with the kind type parameter of the other. The leftmost shift bits of the result
value are the same as the rightmost bits of i, and the remaining bits of the result value are the same as the
leftmost bits of j. This is equal to IOR (SHIFTL (I, BIT SIZE (I) - SHIFT), SHIFTR (J, SHIFT)).

Example

Consider the following:

INTEGER(8) ILEFT / Z'111122221111222' /
INTEGER(8) IRIGHT / Z'FFFFFFFFFFFFF' /
PRINT *, DSHIFTR (ILEFT, IRIGHT, 16_8) ! prints 1306606910610341887

See Also
Binary, Octal, Hexadecimal, and Hollerith Constants
Model for Bit Data

 1 Intel® Fortran Compiler Classic and Intel® Fortran Compiler Developer Guide and Reference

1418

DTIME
Portability Function: Returns the elapsed CPU time
since the start of program execution when first called,
and the elapsed execution time since the last call to
DTIME thereafter.

Module

USE IFPORT

Syntax
result = DTIME (tarray)

tarray (Output) REAL(4). A rank one array with two elements:

• tarray(1) - Elapsed user time, which is time spent executing user
code. This value includes time running protected Windows
subsystem code.

• tarray(2) - Elapsed system time, which is time spent executing
privileged code (code in the Windows Executive).

Results

The result type is REAL(4). The result is the total CPU time, which is the sum of tarray(1) and tarray(2). If an
error occurs, -1 is returned.

Example

 USE IFPORT
 REAL(4) I, TA(2)
 I = DTIME(TA)
 write(*,*) 'Program has been running for', I, 'seconds.'
 write(*,*) ' This includes', TA(1), 'seconds of user time and', &
& TA(2), 'seconds of system time.'

See Also
DATE_AND_TIME
CPU_TIME

E to F
This section describes language features that start with E or F.

E to F
ELEMENTAL
Keyword: Asserts that a user-defined procedure is
defined in scalar arguments that can be called with
array arguments. Unless declared IMPURE, an
ELEMENTAL procedure is by default PURE.

Description

An elemental procedure is an elemental intrinsic procedure, an intrinsic module procedure that is specified to
be elemental, a user-defined procedure that is specified to be elemental, or a type-bound procedure that is
bound to an elemental procedure. A procedure pointer or a dummy procedure cannot be specified to be
elemental.

To specify an elemental procedure, use this keyword in a FUNCTION or SUBROUTINE statement.

An explicit interface must be visible to the caller of an ELEMENTAL procedure.

Intel® Fortran Compiler Classic and Intel® Fortran Compiler Developer Guide and Reference 1

1419

An elemental procedure can be passed an array, which is acted upon one element at a time.

For functions, the result must be scalar; it cannot have the POINTER or ALLOCATABLE attribute.

Dummy arguments in ELEMENTAL procedures may appear in specification expressions in the procedure.

Dummy arguments have the following restrictions:

• They must be scalar.
• They cannot have the POINTER or ALLOCATABLE attribute.
• They cannot be an alternate return specifier (*).
• They cannot be dummy procedures.

If the actual arguments are all scalar, the result is scalar. If the actual arguments are array valued, the
values of the elements (if any) of the result are the same as if the function or subroutine had been applied
separately, in any order, to corresponding elements of each array actual argument.

Elemental procedures are pure procedures by default and all rules that apply to pure procedures also apply
to elemental procedures, unless you specify that the elemental procedure is IMPURE. In that case, the rules
for pure procedures do not apply.

Example

Consider the following:

 MIN (A, 0, B) ! A and B are arrays of shape (S, T)
In this case, the elemental reference to the MIN intrinsic function is an array expression whose elements
have the following values:

 MIN (A(I,J), 0, B(I,J)), I = 1, 2, ..., S, J = 1, 2, ..., T
Consider the following example:

ELEMENTAL REAL FUNCTION F (A, B, ORDER)
REAL, INTENT (IN) :: A, B
INTEGER, INTENT (IN) :: ORDER
REAL :: TEMP (ORDER)

In the above, the size of TEMP depends on the specification expression that is the value of the ORDER
dummy argument.

See Also
FUNCTION
SUBROUTINE
IMPURE
Determining When Procedures Require Explicit Interfaces
Optional Arguments

ELSE Directive
Statement: Marks an optional branch in an IF
Directive Construct.

See Also
See IF Directive Construct.

ELSE Statement
Statement: Marks an optional branch in an IF
Construct.

See Also
See IF Construct.

 1 Intel® Fortran Compiler Classic and Intel® Fortran Compiler Developer Guide and Reference

1420

ELSEIF Directive
Statement: Marks an optional branch in an IF
Directive Construct.

See Also
See IF Directive Construct.

ELSE IF
Statement: Marks an optional branch in an IF
Construct.

See Also
See IF Construct.

ELSE WHERE
Statement: Marks the beginning of an ELSE WHERE
block within a WHERE construct.

Syntax
[name:]WHERE (mask-expr1)
 [where-body-stmt]...
[ELSE WHERE(mask-expr2) [name]
 [where-body-stmt]...]
[ELSE WHERE[name]
 [where-body-stmt]...]
END WHERE [name]

name Is the name of the WHERE construct.

mask-expr1, mask-expr2 Are logical array expressions (called mask expressions).

where-body-stmt Is one of the following:

• An assignment statement of the form: array variable = array
expression.

The assignment can be a defined assignment only if the routine
implementing the defined assignment is elemental.

• A WHERE statement or construct

Description

Every assignment statement following the ELSE WHERE is executed as if it were a WHERE statement with
".NOT. mask-expr1". If ELSE WHERE specifies "mask-expr2", it is executed as "(.NOT. mask-expr1) .AND.
mask-expr2" during the processing of the ELSE WHERE statement.

Example

WHERE (pressure <= 1.0)
 pressure = pressure + inc_pressure
 temp = temp - 5.0
ELSEWHERE
 raining = .TRUE.
END WHERE

The variables temp, pressure, and raining are all arrays.

Intel® Fortran Compiler Classic and Intel® Fortran Compiler Developer Guide and Reference 1

1421

See Also
WHERE

ENCODE
Statement: Translates data from internal (binary)
form to character form. It is comparable to using
internal files in formatted sequential WRITE
statements.

Syntax
ENCODE (c,f,b[, IOSTAT=i-var] [, ERR=label]) [io-list]

c Is a scalar integer expression. It is the number of characters to be
translated to internal form.

f Is a format identifier. An error occurs if more than one record is
specified.

b Is a scalar or array reference. If b is an array reference, its elements
are processed in the order of subscript progression.

b contains the characters to be translated to internal form.

i-var Is a scalar integer variable that is defined as a positive integer if an
error occurs and as zero if no error occurs (see I/O Status Specifier).

label Is the label of an executable statement that receives control if an
error occurs.

io-list Is an I/O list. An I/O list is either an implied-DO list or a simple list of
variables (except for assumed-size arrays). The list contains the data
to be translated to character form.

The interaction between the format specifier and the I/O list is the
same as for a formatted I/O statement.

The number of characters that the ENCODE statement can translate depends on the data type of b. For
example, an INTEGER(2) array can contain two characters per element, so that the maximum number of
characters is twice the number of elements in that array.

The maximum number of characters a character variable or character array element can contain is the length
of the character variable or character array element.

The maximum number of characters a character array can contain is the length of each element multiplied by
the number of elements.

Example

Consider the following:

 DIMENSION K(3)
 CHARACTER*12 A,B
 DATA A/'123456789012'/
 DECODE(12,100,A) K
100 FORMAT(3I4)
 ENCODE(12,100,B) K(3), K(2), K(1)

 1 Intel® Fortran Compiler Classic and Intel® Fortran Compiler Developer Guide and Reference

1422

The DECODE statement stores the 12 characters into array K:

K(1) = 1234
K(2) = 5678
K(3) = 9012

The ENCODE statement translates the values K(3), K(2), and K(1) to character form and stores the
characters in the character variable B.:

B = '901256781234'

See Also
READ
WRITE
DECODE

END
Statement: Marks the end of a program unit. It takes
one of the following forms:

Syntax
END [PROGRAM [program-name]]
END [FUNCTION [function-name]]
END [SUBROUTINE [subroutine-name]]
END [MODULE [module-name]]
END [SUBMODULE [module-name]]
END [BLOCK DATA [block-data-name]]
In main programs, function subprograms, and subroutine subprograms, END statements are executable and
can be branch target statements. If control reaches the END statement in these program units, the following
occurs:

• In a main program, execution of the END statement initiates normal termination of the image that
executes it.

• In a function or subroutine subprogram, a RETURN statement is implicitly executed.

The END statement cannot be continued in a program unit, and no other statement in the program unit can
have an initial line that appears to be the program unit END statement.

The END statements in a module or block data program unit are nonexecutable.

Example

C An END statement must be the last statement in a program
C unit:
 PROGRAM MyProg
 WRITE (*, '("Hello, world!")')
 END
C
C An example of a named subroutine
C
 SUBROUTINE EXT1 (X,Y,Z)
 Real, Dimension (100,100) :: X, Y, Z
 END SUBROUTINE EXT1

See Also
Program Units and Procedures

Intel® Fortran Compiler Classic and Intel® Fortran Compiler Developer Guide and Reference 1

1423

Branch Statements
Program Termination

END DO
Statement: Marks the end of a DO or DO WHILE
loop.

Syntax
END DO

Description

There must be a matching END DO statement for every DO or DO WHILE statement that does not contain a
label reference.

An END DO statement can terminate only one DO or DO WHILE statement. If you name the DO or DO WHILE
statement, the END DO statement can specify the same name.

Example

The following examples both produce the same output:

 DO ivar = 1, 10
 PRINT ivar
 END DO
 ivar = 0
do2: DO WHILE (ivar .LT. 10)
 ivar = ivar + 1
 PRINT ivar
 END DO do2

See Also
DO
DO WHILE
CONTINUE

ENDIF Directive
Statement: Marks the end of an IF Directive
Construct.

See Also
See IF Directive Construct.

END IF
Statement: Marks the end of an IF Construct.

See Also
See IF Construct.

ENDFILE
Statement: For sequential files, writes an end-of-file
record to the file and positions the file after this record
(the terminal point). For direct access files, truncates
the file after the current record.

Syntax
It can have either of the following forms:

ENDFILE ([UNIT=] io-unit[, ERR=label] [, IOMSG=msg-var] [, IOSTAT=i-var])

 1 Intel® Fortran Compiler Classic and Intel® Fortran Compiler Developer Guide and Reference

1424

ENDFILE io-unit

io-unit (Input) Is an external unit specifier.

label Is the label of the branch target statement that receives control if an
error occurs.

msg-var (Output) Is a scalar default character variable that is assigned an
explanatory message if an I/O error occurs.

i-var (Output) Is a scalar integer variable that is defined as a positive
integer if an error occurs and zero if no error occurs.

Description

If the unit specified in the ENDFILE statement is not open, the default file is opened for unformatted output.

An end-of-file record can be written only to files with sequential organization that are accessed as formatted-
sequential or unformatted-segmented sequential files. An ENDFILE performed on a direct access file always
truncates the file.

End-of-file records should not be written in files that are read by programs written in a language other than
Fortran.

NOTE
If you use compiler option vms and an ENDFILE is performed on a sequential unit, an actual
one byte record containing a CTRL+Zis written to the file. If this option is not specified, an
internal ENDFILE flag is set and the file is truncated. The option does not affect ENDFILE on
relative files; such files are truncated.

If a parameter of the ENDFILE statement is an expression that calls a function, that function must not cause
an I/O statement or the EOF intrinsic functionto be executed, because unpredictable results can occur.

Example

The following statement writes an end-of-file record to I/O unit 2:

 ENDFILE 2
Suppose the following statement is specified:

 ENDFILE (UNIT=9, IOSTAT=IOS, ERR=10)
An end-of-file record is written to the file connected to unit 9. If an error occurs, control is transferred to the
statement labeled 10, and a positive integer is stored in variable IOS.

The following shows another example:

 WRITE (6, *) x
 ENDFILE 6
 REWIND 6
 READ (6, *) y

See Also
BACKSPACE
REWIND
Data Transfer I/O Statements
Branch Specifiers

Intel® Fortran Compiler Classic and Intel® Fortran Compiler Developer Guide and Reference 1

1425

END FORALL
Statement: Marks the end of a FORALL construct.
The FORALL construct is an obsolescent language
feature in Fortran 2018.

See Also
See FORALL.

END INTERFACE
Statement: Marks the end of an INTERFACE block.

See Also
See INTERFACE.

END TYPE
Statement: Specifies the end of a derived type TYPE
statement.

See Also
See TYPE Statement (Derived Types).

END WHERE
Statement: Marks the end of a WHERE construct.

Example

 WHERE (pressure <= 1.0)
 pressure = pressure + inc_pressure
 temp = temp - 5.0
 ELSEWHERE
 raining = .TRUE.
 END WHERE

Note that the variables temp, pressure, and raining are all arrays.

See Also
See WHERE.

ENTRY
Statement: Provides one or more entry points within
a subprogram. It is not executable. The ENTRY
statement is an obsolescent feature in the Fortran
standard.

Syntax
ENTRY name[([d-arg[,d-arg]...]) [suffix]]

name Is the name of an entry point. If RESULT is specified, this entry name
must not appear in any specification statement in the scoping unit of
the function subprogram.

d-arg (Optional) Is a dummy argument. The dummy argument can be an
alternate return indicator (*) only if the ENTRY statement is within a
subroutine subprogram.

suffix (Optional) Is one of the following:

RESULT (r-name) [language-binding-spec]

 1 Intel® Fortran Compiler Classic and Intel® Fortran Compiler Developer Guide and Reference

1426

or

language-binding-spec [RESULT (r-name)]

r-name (Optional) Is the name of a function result. This name must not be the
same as the name of the entry point, or the name of any other
function or function result. This parameter can only be specified for
function subprograms.

language-binding-spec Is the following:

BIND (C [, NAME = scalar-default-char-constant-expr])

If NAME appears, scalar-default-char-constant-expr specifies the
external name of the procedure defined by this ENTRY statement.

Description

ENTRY statements can only appear in an external procedure or a module that is not the definition of a
separate module procedure. An ENTRY statement cannot appear in an internal procedure. A subprogram can
contain zero or more ENTRY statements.

An ENTRY statement must not appear in an executable construct.

When the ENTRY statement appears in a subroutine subprogram, it is referenced by a CALL statement. When
the ENTRY statement appears in a function subprogram, it is referenced by a function reference.

An entry name within a function subprogram can appear in a type declaration statement, unless RESULT is
specified. If RESULT is specified, r-name can appear in a type declaration statement, and the entry name
cannot appear in a type declaration statement or other specification statements.

Within the subprogram containing the ENTRY statement, the entry name must not appear as a dummy
argument in the FUNCTION or SUBROUTINE statement, and it must not appear in an EXTERNAL or
INTRINSIC statement. For example, neither of the following are valid:

(1) SUBROUTINE SUB(E)
 ENTRY E
 ...

(2) SUBROUTINE SUB
 EXTERNAL E
 ENTRY E
 ...

The procedure defined by an ENTRY statement can reference itself if the function or subroutine was defined
as RECURSIVE.

Dummy arguments can be used in ENTRY statements even if they differ in order, number, type and kind
parameters, and name from the dummy arguments used in the FUNCTION, SUBROUTINE, and other ENTRY
statements in the same subprogram. However, each reference to a function, subroutine, or entry must use
an actual argument list that agrees in order, number, and type with the dummy argument list in the
corresponding FUNCTION, SUBROUTINE, or ENTRY statement.

Dummy arguments can be referred to only in executable statements that follow the first SUBROUTINE,
FUNCTION, or ENTRY statement in which the dummy argument is specified. If a dummy argument is not
currently associated with an actual argument, the dummy argument is undefined and cannot be referenced.
Arguments do not retain their association from one reference of a subprogram to another.

Intel® Fortran Compiler Classic and Intel® Fortran Compiler Developer Guide and Reference 1

1427

Example

C This fragment writes a message indicating
C whether num is positive or negative
 IF (num .GE. 0) THEN
 CALL Sign
 ELSE
 CALL Negative
 END IF
 ...
 END
SUBROUTINE Sign
 WRITE (*, *) 'It''s positive.'
 RETURN
 ENTRY Negative
 WRITE (*, *) 'It''s negative.'
 RETURN
END SUBROUTINE

See Also
BIND (C)
Program Units and Procedures
ENTRY Statements in Function Subprograms
ENTRY Statements in Subroutine Subprograms
Obsolescent Language Features in the Fortran Standard

EOF
Inquiry Intrinsic Function (Generic): Checks
whether a file is at or beyond the end-of-file record.

Syntax
result = EOF (unit)

unit (Input) Must be of type integer. It represents a unit specifier
corresponding to an open file. It cannot be zero unless you have
reconnected unit zero to a unit other than the screen or keyboard.

Results

The result type is default logical. The value of the result is .TRUE. if the file connected to unit is at or beyond
the end-of-file record; otherwise, .FALSE..

Example

! Creates a file of random numbers, reads them back
 REAL x, total
 INTEGER count
 OPEN (1, FILE = 'TEST.DAT')
 DO I = 1, 20
 CALL RANDOM_NUMBER(x)
 WRITE (1, '(F6.3)') x * 100.0
 END DO
 CLOSE(1)
 OPEN (1, FILE = 'TEST.DAT')
 count = 0
 total = 0.0
 DO WHILE (.NOT. EOF(1))
 count = count + 1

 1 Intel® Fortran Compiler Classic and Intel® Fortran Compiler Developer Guide and Reference

1428

 READ (1, *) value
 total = total + value
 END DO
100 IF (count .GT. 0) THEN
 WRITE (*,*) 'Average is: ', total / count
 ELSE
 WRITE (*,*) 'Input file is empty '
 END IF
 STOP
 END

See Also
ENDFILE
READ Statement for details on an END specifier in a READ statement
BACKSPACE
REWIND

EOSHIFT
Transformational Intrinsic Function (Generic):
Performs an end-off shift on a rank-one array, or
performs end-off shifts on all the complete rank-one
sections along a given dimension of an array of rank
two or greater. Elements are shifted off at one end of
a section and copies of a boundary value are filled in
at the other end. Different sections can have different
boundary values and can be shifted by different
amounts and in different directions.

Syntax
result = EOSHIFT (array,shift [,boundary][,dim])

array (Input) Must be an array (of any data type).

shift (Input) Must be a scalar integer or an array with a rank that is one
less than array, and shape (d1, d2, ..., ddim-1, ddim+1, ..., dn), where
(d1, d2, ..., dn) is the shape of array.

boundary (Input; optional) Must have the same type and kind parameters as
array. It must be a scalar or an array with a rank that is one less than
array, and shape (d1, d2, ..., ddim-1, ddim+1, ..., dn). The boundary
specifies a value to replace spaces left by the shifting procedure.

If boundary is not specified, it is assumed to have the following
default values (depending on the data type of array):

array Type boundary Value

Integer 0

Real 0.0

Complex (0.0, 0.0)

Logical false

Character(len) len blanks

Intel® Fortran Compiler Classic and Intel® Fortran Compiler Developer Guide and Reference 1

1429

dim (Input; optional) Must be a scalar integer with a value in the range 1
to n, where n is the rank of array. If dim is omitted, it is assumed to
be 1.

Results

The result is an array with the same type and kind parameters, and shape as array.

If array has rank one, the same shift is applied to each element. If an element is shifted off one end of the
array, the boundary value is placed at the other end the array.

If array has rank greater than one, each section (s1, s2, ..., sdim-1, :, sdim+1, ..., sn) of the result is shifted as
follows:

• By the value of shift, if shift is scalar
• According to the corresponding value in shift(s1, s2, ..., sdim-1, sdim+1, ..., sn), if shift is an array

If an element is shifted off one end of a section, the boundary value is placed at the other end of the section.

The value of shift determines the amount and direction of the end- off shift. A positive shift value causes a
shift to the left (in rows) or up (in columns). A negative shift value causes a shift to the right (in rows) or
down (in columns).

Example

V is the integer array (1, 2, 3, 4, 5, 6).

EOSHIFT (V, SHIFT=2) shifts the elements in V to the left by 2 positions, producing the value (3, 4, 5, 6, 0,
0). 1 and 2 are shifted off the beginning and two elements with the default BOUNDARY value are placed at
the end.

EOSHIFT (V, SHIFT= -3, BOUNDARY= 99) shifts the elements in V to the right by 3 positions, producing the
value (99, 99, 99, 1, 2, 3). 4, 5, and 6 are shifted off the end and three elements with BOUNDARY value 99
are placed at the beginning.

M is the CHARACTER(LEN=1) array

 [1 2 3]
 [4 5 6]
 [7 8 9].

EOSHIFT (M, SHIFT = 1, BOUNDARY = '*', DIM = 2) produces the result

 [2 3 *]
 [5 6 *]
 [8 9 *].

Each element in rows 1, 2, and 3 is shifted to the left by 1 position. This causes the first element in each row
to be shifted off the beginning, and the BOUNDARY value to be placed at the end.

EOSHIFT (M, SHIFT = -1, DIM = 1) produces the result

 [^ ^ ^]
 [1 2 3]
 [4 5 6].

Each element in columns 1, 2, and 3 is shifted down by 1 position. This causes the last element in each
column to be shifted off the end and the BOUNDARY value (the default character boundary value <space>,
represented by "^") to be placed at the beginning.

 1 Intel® Fortran Compiler Classic and Intel® Fortran Compiler Developer Guide and Reference

1430

EOSHIFT (M, SHIFT = (/1, -1, 0/), BOUNDARY = (/ '*', '?', '/' /), DIM = 2) produces the result

 [2 3 *]
 [? 4 5]
 [7 8 9].

Each element in row 1 is shifted to the left by 1 position, causing the first element to be shifted off the
beginning and the BOUNDARY value * to be placed at the end. Each element in row 2 is shifted to the right
by 1 position, causing the last element to be shifted off the end and the BOUNDARY value ? to be placed at
the beginning. No element in row 3 is shifted at all, so the specified BOUNDARY value is not used.

The following shows another example:

INTEGER shift(3)
CHARACTER(1) array(3, 3), AR1(3, 3)
array = RESHAPE ((/'A', 'D', 'G', 'B', 'E', 'H', &
 'C', 'F', 'I'/), (/3,3/))
! array is A B C
! D E F
! G H I
shift = (/-1, 1, 0/)
AR1 = EOSHIFT (array, shift, BOUNDARY = (/'*','?','#'/), DIM= 2)
! returns * A B
! E F ?
! G H I

See Also
CSHIFT
ISHFT
ISHFTC
TRANSPOSE

EPSILON
Inquiry Intrinsic Function (Generic): Returns a
positive model number that is almost negligible
compared to unity in the model representing real
numbers.

Syntax
result = EPSILON (x)

x (Input) Must be of type real; it can be scalar or array valued.

Results

The result is a scalar of the same type and kind parameters as x. The result has the value b 1-p. Parameters b
and p are defined in Model for Real Data.

EPSILON makes it easy to select a delta for algorithms (such as root locators) that search until the
calculation is within delta of an estimate. If delta is too small (smaller than the decimal resolution of the data
type), the algorithm might never halt. By scaling the value returned by EPSILON to the estimate, you obtain
a delta that ensures search termination.

Example

If x is of type REAL(4), EPSILON (X) has the value 2 -23.

See Also
PRECISION

Intel® Fortran Compiler Classic and Intel® Fortran Compiler Developer Guide and Reference 1

1431

TINY
Data Representation Models

EQUIVALENCE
Statement: Specifies that a storage area is shared by
two or more objects in a program unit. This causes
total or partial storage association of the objects that
share the storage area. EQUIVALENCE is an
obsolescent language feature in Standard Fortran.

Syntax
EQUIVALENCE (equiv-list) [,(equiv-list)]...

equiv-list Is a list of two or more variable names, array elements, or substrings,
separated by commas (also called an equivalence set). If an object of
derived type is specified, it must be a sequence type. Objects cannot
have the TARGET attribute.

Each expression in a subscript or a substring reference must be an
integer constant expression. A substring must not have a length of
zero.

Description

The following objects cannot be specified in EQUIVALENCE statements:

• A dummy argument
• An allocatable variable
• An automatic object
• A pointer
• An object of nonsequence derived type
• A derived-type object that has an allocatable or pointer component at any level
• A component of a derived-type object
• A function, entry, or result name
• A named constant
• A structure component
• A subobject of any of the above objects
• A coarray
• An object with either the DLLIMPORT or DLLEXPORT attribute
• A variable with the BIND attribute
• A variable in a common block that has the BIND attribute

The EQUIVALENCE statement causes all of the entities in one parenthesized list to be allocated storage
beginning at the same storage location.

If an equivalence object has the PROTECTED attribute, all of the objects in the equivalence set must have the
PROTECTED attribute.

Association of objects depends on their types, as follows:

Type of Object Type of Associated Object

Intrinsic numeric 1or numeric sequence Can be of any of these types

Default character or character sequence Can be of either of these types 2

Any other intrinsic type Must have the same type and kind parameters

Any other sequence type Must have the same type

 1 Intel® Fortran Compiler Classic and Intel® Fortran Compiler Developer Guide and Reference

1432

Type of Object Type of Associated Object

1Default integer, default real, double precision real, default complex, double complex, or default logical.
2The lengths do not have to be equal.

So, objects can be associated if they are of different numeric type. For example, the following is valid:

 INTEGER A(20)
 REAL Y(20)
 EQUIVALENCE(A, Y)

Objects of default character do not need to have the same length. The following example associates
character variable D with the last 4 (of the 6) characters of character array F:

 CHARACTER(LEN=4) D
 CHARACTER(LEN=3) F(2)
 EQUIVALENCE(D, F(1)(3:))

Entities having different data types can be associated because multiple components of one data type can
share storage with a single component of a higher-ranked data type. For example, if you make an integer
variable equivalent to a complex variable, the integer variable shares storage with the real part of the
complex variable.

The same storage unit cannot occur more than once in a storage sequence, and consecutive storage units
cannot be specified in a way that would make them nonconsecutive.

Intel® Fortran lets you associate character and noncharacter entities, for example:

 CHARACTER*1 char1(10)
 REAL reala, realb
 EQUIVALENCE (reala, char1(1))
 EQUIVALENCE (realb, char1(2))

EQUIVALENCE statements require only the first subscript of a multidimensional array (unless the STRICT
compiler directive is in effect). For example, the array declaration var(3,3), var(4) could appear in an
EQUIVALENCE statement. The reference is to the fourth element of the array (var(1,2)), not to the beginning
of the fourth row or column.

If you use the STRICT directive, the following rules apply to the kinds of variables and arrays that you can
associate:

• If an EQUIVALENCE object is default integer, default real, double-precision real, default complex, default
logical, or a sequenced derived type of all numeric or logical components, all objects in the EQUIVALENCE
statement must be one of these types, though it is not necessary that they be the same type.

• If an EQUIVALENCE object is default character or a sequenced derived type of all character components,
all objects in the EQUIVALENCE statement must be one of these types. The lengths do not need to be the
same.

• If an EQUIVALENCE object is a sequenced derived type that is not purely numeric or purely character, all
objects in the EQUIVALENCE statement must be the same derived type.

• If an EQUIVALENCE object is an intrinsic type other than the default (for example, INTEGER(1)), all
objects in the EQUIVALENCE statement must be the same type and kind.

Example

The following EQUIVALENCE statement is invalid because it specifies the same storage unit for X(1) and
X(2):

 REAL, DIMENSION(2) :: X
 REAL :: Y
 EQUIVALENCE(X(1), Y), (X(2), Y)

Intel® Fortran Compiler Classic and Intel® Fortran Compiler Developer Guide and Reference 1

1433

The following EQUIVALENCE statement is invalid because A(1) and A(2) will not be consecutive:

 REAL A(2)
 DOUBLE PRECISION D(2)
 EQUIVALENCE(A(1), D(1)), (A(2), D(2))

In the following example, the EQUIVALENCE statement causes the four elements of the integer array IARR to
share the same storage as that of the double-precision variable DVAR:

 DOUBLE PRECISION DVAR
 INTEGER(KIND=2) IARR(4)
 EQUIVALENCE(DVAR, IARR(1))

In the following example, the EQUIVALENCE statement causes the first character of the character variables
KEY and STAR to share the same storage location. The character variable STAR is equivalent to the substring
KEY(1:10).

 CHARACTER KEY*16, STAR*10
 EQUIVALENCE(KEY, STAR)

The following shows another example:

 CHARACTER name, first, middle, last
 DIMENSION name(60), first(20), middle(20), last(20)
 EQUIVALENCE (name(1), first(1)), (name(21), middle(1))
 EQUIVALENCE (name(41), last(1))

Consider the following:

 CHARACTER (LEN = 4) :: a, b
 CHARACTER (LEN = 3) :: c(2)
 EQUIVALENCE (a, c(1)), (b, c(2))

This causes the following alignment:

 1 2 3 4 5 6 7
 a(1:1) a(2:2) a(3:3) a(4:4)
 b(1:1) b(2:2) b(3:3) b(4:4)
 c(1)(1:1) c(1)(2:2) c(1)(3:3) c(2)(1:1) c(2)(2:2) c(2)(3:3)

Note that the fourth element of a, the first element of b, and the first element of c(2) share the same storage
unit.

See Also
Initialization Expressions
Derived Data Types
Storage Association
STRICT Directive
Obsolescent Language Features in the Fortran Standard

ERF
Elemental Intrinsic Function (Generic): Returns
the error function of an argument.

Syntax
result = ERF (x)

x (Input) Must be of type real.

Results

The result type and kind are the same as x. The result is in the range -1 to 1.

 1 Intel® Fortran Compiler Classic and Intel® Fortran Compiler Developer Guide and Reference

1434

ERF returns the error function of x defined as follows:

Specific Name Argument Type Result Type

ERF REAL(4) REAL(4)

DERF REAL(8) REAL(8)

QERF REAL(16) REAL(16)

Example

ERF (1.0) has the value 0.842700794.

See Also
ERFC

ERFC
Elemental Intrinsic Function (Generic): Returns
the complementary error function of an argument.

Syntax
result = ERFC (x)

x (Input) Must be of type real.

Results

The result type and kind are the same as x. The result is in the range 0 to 2.

ERFC returns 1 - ERF(x) and is defined as follows:

ERFC is provided because of the extreme loss of relative accuracy if ERF(x) is called for large x and the result
is subtracted from 1.

Specific Name Argument Type Result Type

ERFC REAL(4) REAL(4)

DERFC REAL(8) REAL(8)

QERFC REAL(16) REAL(16)

Example

ERFC (1.0) has the value 0.1572992057.

See Also
ERF

Intel® Fortran Compiler Classic and Intel® Fortran Compiler Developer Guide and Reference 1

1435

ERFC_SCALED
Elemental Intrinsic Function (Generic): Returns
the scaled complementary error function of an
argument.

Syntax
result = ERFC_SCALED (x)

x (Input) Must be of type real.

Results

The result type and kind are the same as x.

The result has a value equal to a processor-dependent approximation to the exponentially-scaled
complementary error function of

NOTE

The complementary error function is asymptotic to . As such it

underflows for when using IEEE single precision arithmetic. The exponentially-scaled

complementary error function is asymptotic to . As such it does not underflow until

.

Example

ERFC_SCALED (20.0) has the approximate value 0.02817434874.

See Also
ERFC

ERROR Directive for OpenMP
OpenMP* Fortran Compiler Directive: Causes the
compiler or runtime system to process an error
condition. This feature is only available for ifx.

Syntax

!$OMP ERROR [clause[[,] clause]...]

clause Is one or more of the following:

• AT (action-time)

Determines when an implementation processes an error condition.

action-time is COMPILATION or EXECUTION.

 1 Intel® Fortran Compiler Classic and Intel® Fortran Compiler Developer Guide and Reference

1436

If action-time is COMPILATION and the directive appears in the
specification part of a program unit, the error action occurs during
compilation. If the directive appears in the executable part of the
program unit that is not reachable at runtime, the error action may
or may not occur.

If action-time is EXECUTION, the error action occurs when a thread
encounters the directive. An ERROR direction that specifies AT
(EXECUTION) is considered an executable directive.

If an AT clause is not specified in the ERROR directive, it is as if AT
(COMPILATION) was specified.

• MESSAGE (scalar-default-char-expression)

Specifies a message string to be included in the implementation
defined message issued when the error action occurs.

If action-time is COMPILATION, scalar-default-char-expression
must be a constant.

• SEVERITY (level)

Indicates the severity level of the error.

level is WARNING or FATAL.

If level is WARNING, a message containing scalar-default-char-
expression is displayed and processing (compilation of execution)
continues.

If level is FATAL, a message containing scalar-default-char-
expression is displayed and program termination is initiated.

If a SEVERITY clause is not specified in the ERROR directive, it is as
if SEVERITY (FATAL) was specified.

The ERROR directive is a utility directive that causes either the compiler or the runtime system to flag an
error condition producing an implementation defined error message.

The directive is pure only if COMPILATION is specified for the AT clause, or the AT clause does not appear.
Pure directives can appear in Fortran PURE procedures.

Each clause can appear at most once in the ERROR directive.

See Also
OpenMP Fortran Compiler Directives
Syntax Rules for Compiler Directives

ERRSNS
Intrinsic Subroutine (Generic): Returns
information about the most recently detected I/O
system error condition. Intrinsic subroutines cannot be
passed as actual arguments.

Syntax
CALL ERRSNS ([io_err] [,sys_err] [,stat] [,unit] [,cond])

io_err (Output; Optional) Is an integer variable or array element that stores
the most recent Runtime Library error number that occurred during
program execution. For a listing of error numbers, see Error Handling.

Intel® Fortran Compiler Classic and Intel® Fortran Compiler Developer Guide and Reference 1

1437

A zero indicates no error has occurred since the last call to ERRSNS or
since the start of program execution.

sys_err (Output; Optional) Is an integer variable or array element that stores
the most recent system error number associated with io_err. This
code is one of the following:

• Linux

It is an errno value. (See errno(2).)
• Windows

It is the value returned by GETLASTERROR() at the time of the
error.

stat (Output; Optional) Is an integer variable or array element that stores
a status value that occurred during program execution. This value is
always set to zero.

unit (Output; Optional) Is an integer variable or array element that stores
the logical unit number, if the last error was an I/O error.

cond (Output; Optional) Is an integer variable or array element that stores
the actual processor value. This value is always set to zero.

If you specify INTEGER(2) arguments, only the low-order 16 bits of information are returned or adjacent
data can be overwritten. Because of this, it is best to use INTEGER(4) arguments.

The saved error information is set to zero after each call to ERRSNS.

Example

Any of the arguments can be omitted. For example, the following is valid:

CALL ERRSNS (SYS_ERR=I1, STAT=I2, UNIT=I4)

ESTABLISHQQ
Portability Function: Lets you specify a function to
handle errors detected by the Runtime Library (RTL).
It lets you take appropriate steps in addition to the
RTL's error-handling behavior, or it lets you replace
that behavior.

Module

USE IFESTABLISH

Syntax
result = ESTABLISHQQ (handler_routine,context,prev_handler,prev_context)

handler_routine (Input) Is of type "procedure(establishqq_handler)", which is defined
in module IFESTABLISH. This is the function that will handle errors
detected by the RTL.

context (Input) INTEGER(INT_PTR_KIND()). This is the way you pass
information to the handler function for use when it is called. It can be
data or a pointer to a block of data.

 1 Intel® Fortran Compiler Classic and Intel® Fortran Compiler Developer Guide and Reference

1438

prev_handler (Optional; output) Is of type "procedure(establishqq_handler), pointer,
intent(out), optional", which is defined in module IFESTABLISH. This is
the previous handler function, if any.

prev_context (Optional; output) INTEGER(INT_PTR_KIND()). This is the context
specified for the previous handler function, if any; otherwise, zero.

Results

The result type for ESTABLISHQQ is LOGICAL(4). It indicates whether the handler was successfully
established. .TRUE. means it was established successfully; .FALSE. means it was not.

The handler function is called when an error occurs. The result for the handler is set by your code in the
handler. .TRUE. means that the error has been handled and the application should not issue an error
message. .FALSE. means that the application should issue an error message and continue as if there had
never been a handler.

After you use ESTABLISHQQ to specify an error handler function and an error occurs, the handler function is
called with the following input arguments. They are set up by the RTL when it calls the handler function:

Handler Function Syntax:

result = Handler_Function (error_code, continuable, message_string, context)

Handler_Function is a function you supply that has a compatible interface. It must use the Intel® Fortran
compiler defaults for calling mechanism and argument passing. When the Intel Fortran Runtime Library
detects an error, it first calls your handler function with the following arguments:

error_code (Input) INTEGER(4). This is the number of the error
that occurred and it is the value that will be set in
an IOSTAT= or STAT= specifier variable.

A list of runtime error codes can be found at List of
Runtime Error Messages.

continuable (Input) LOGICAL(4). If execution can be continued
after handling this error, this argument is passed
the value .TRUE., otherwise, it is passed the
value .FALSE..

Do not compare this value using arithmetic equality
operators; use logical data type tests or .EQV..

If an error is not continuable, the program exits
after processing the error.

message_string (Input) CHARACTER(*). This is the text of the error
message as it would otherwise be displayed to the
user.

context (Input) INTEGER(INT_PTR_KIND()). This is the
value passed for the context argument to
ESTABLISHQQ.

Your handler function can use this for any purpose.

The function result of the handler function is type LOGICAL(4). The handler function should return .TRUE. if it
successfully handled the error; otherwise, .FALSE..

If the handler function returns .TRUE. and the error is continuable, execution of the program continues. If the
handler function returns .FALSE., normal error processing is performed, such as message output to the user
and possible program termination.

Intel® Fortran Compiler Classic and Intel® Fortran Compiler Developer Guide and Reference 1

1439

The handler function can be written in any language, but it must follow the Intel Fortran conventions. Note
that for argument message_string, an address-sized length is passed by value after argument context.

If you want to handle errors using a C/C++ handler, use the ISO_C_BINDINGS module features to call the
C/C++ routine.

Example

! Compile with "-fpe0 -check bounds".
!
program example
use ifestablish
implicit none

 procedure(establishqq_handler), pointer :: old_handler_1
 procedure(establishqq_handler), pointer :: old_handler_2
 procedure(establishqq_handler), pointer :: old_handler_3
 procedure(establishqq_handler) :: my_handler_1
 procedure(establishqq_handler) :: my_handler_2
 procedure(establishqq_handler) :: my_handler_3

 logical :: ret
 integer(INT_PTR_KIND()) :: old_context, my_context = 0
 real, volatile :: x,y,z
 integer, volatile :: i, eleven, a(10)

 my_context = 1
 eleven = 11

 ! Test that handlers can be established and restored.
 !
 old_handler_1 => null()
 print *, "== Establish first handler"
 ret = ESTABLISHQQ(my_handler_1, my_context, old_handler_1, old_context)

 if (associated(old_handler_1)) then
 print *, "** Unexpected old handler on first ESTABLISH **"
 ret = old_handler_1(100, .true., "call number one", 1)
 print *, "back from call of old handler with", ret
 else
 print *,"== Got expected NULL old handler"
 end if

 print *,"== Violate array bounds; expect first handler"
 i = a(eleven)

 ! Establish second handler
 !
 old_handler_2 => null()
 print *, "== Establish second handler"
 ret = ESTABLISHQQ(my_handler_2, my_context, old_handler_2, old_context)

 if (associated(old_handler_2)) then
 print *, "== Expect first handler as old handler"
 ret = old_handler_2(100, .true., "call number one", 1)
 else
 print *,"** Unexpectedly didn't get first handler as old handler **"
 end if

 1 Intel® Fortran Compiler Classic and Intel® Fortran Compiler Developer Guide and Reference

1440

 print *,"== Violate array bounds; expect second handler"
 i = a(eleven)

 ! Establish third handler
 !
 old_handler_3 => null()
 print *, "== Establish third handler"
 ret = ESTABLISHQQ(my_handler_3, my_context, old_handler_3, old_context)
 !print *, "Got return value ", ret, "old context", old_context

 if (associated(old_handler_3)) then
 print *, "== Expect second handler as old handler"
 ret = old_handler_3(100, .true., "call number one", 1)
 !print *, "back from call of old handler with", ret

 else
 print *,"** Unexpectedly didn't get second handler as old handler **"
 end if

 print *,"== Violate array bounds; expect third handler"
 i = a(eleven)

 ! Put back old handlers in stack-wise order, testing.
 !
 ret = ESTABLISHQQ(old_handler_3, old_context)
 print *,"== Violate array bounds; expect second handler"
 i = a(eleven)

 ret = ESTABLISHQQ(old_handler_2, old_context)
 print *,"== Violate array bounds; expect first handler"
 i = a(eleven)

 ret = ESTABLISHQQ(old_handler_1, old_context)
 print *,"== Violate array bounds; expect no handler and exit"
 i = a(eleven)
end

function my_handler_1 (error_code, continuable, message_string, context)
 use, intrinsic :: iso_c_binding
 implicit none
 logical :: my_handler_1
 !DEC$ ATTRIBUTES DEFAULT :: my_handler_1

 ! Arguments
 !
 integer, intent(in) :: error_code ! RTL error code from IOSTAT table
 logical, intent(in) :: continuable ! True if condition is continuable
 character(*), intent(in) :: message_string ! Formatted message string a la ERRMSG/IOMSG
 integer(INT_PTR_KIND()), intent(in) :: context ! Address-sized integer passed in to call
 ! ESTABLISHQQ, for whatever purpose
 ! the programmer desires

 my_handler_1 = .TRUE. ! Continue by default

 if (context == 1) then
 print *, " Handler 1, continue"

Intel® Fortran Compiler Classic and Intel® Fortran Compiler Developer Guide and Reference 1

1441

 else if (context == 2) then
 print *, " Handler 1, continue"

 else if (context == 3) then
 print *, " Handler 1, code should be 73: ", error_code
 if (continuable) then
 print *," - is continuable (** an error! **)"
 else
 print *," - not continuable"
 end if
 ! We will return .TRUE., asking to continue, but because this is not
 ! a continuable error, the application will exit.

 else
 print *, " ** Error -- wrong context value"
 end if

 return

end function my_handler_1

function my_handler_2 (error_code, continuable, message_string, context)
 use, intrinsic :: iso_c_binding
 implicit none
 logical :: my_handler_2
 !DEC$ ATTRIBUTES DEFAULT :: my_handler_2

 ! Arguments
 !
 integer, intent(in) :: error_code ! RTL error code from IOSTAT table
 logical, intent(in) :: continuable ! True if condition is continuable
 character(*), intent(in) :: message_string ! Formatted message string a la ERRMSG/IOMSG
 integer(INT_PTR_KIND()), intent(in) :: context ! Address-sized integer passed in to call
 ! ESTABLISHQQ, for whatever purpose
 ! the programmer desires
 if (context == 1) then
 print *," Handler 2, continue"
 my_handler_2 = .TRUE. ! Continue

 else if (context == 2) then
 print *, " Handler 2, exit"
 my_handler_2 = .FALSE. ! Exit
 end if

 return
end function my_handler_2

function my_handler_3 (error_code, continuable, message_string, context)
 use, intrinsic :: iso_c_binding
 implicit none
 logical :: my_handler_3
 !DEC$ ATTRIBUTES DEFAULT :: my_handler_3

 ! Arguments
 !
 logical :: my_handler_3
 integer, intent(in) :: error_code ! RTL error code from IOSTAT table
 logical, intent(in) :: continuable ! True if condition is continuable

 1 Intel® Fortran Compiler Classic and Intel® Fortran Compiler Developer Guide and Reference

1442

 character(*), intent(in) :: message_string ! Formatted message string a la ERRMSG/IOMSG
 integer(INT_PTR_KIND()), intent(in) :: context ! Address-sized integer passed in to call
 ! ESTABLISHQQ, for whatever purpose
 ! the programmer desires
 if (context == 1) then
 print *," Handler 3, continue"
 else if (context == 2) then
 print *, " Handler 3, error is ", error_code, message_string
 end if

 my_handler_3 = .TRUE. ! Continue
 return

end function my_handler_3

See Also
Understand Runtime Errors
List of Runtime Error Messages

ETIME
Portability Function: On single processor systems,
returns the elapsed CPU time, in seconds, of the
process that calls it. On multi-core or multi-processor
systems, returns the elapsed wall-clock time, in
seconds.

Module

USE IFPORT

Syntax
result = ETIME (array)

array (Output) REAL(4). Must be a rank one array with two elements:

• array(1) − Elapsed user time, which is time spent executing user
code. This value includes time running protected Windows
subsystem code. On single processors, ETIME returns the elapsed
CPU time, in seconds, of the process that calls it. On multiple
processors, ETIME returns the elapsed wall-clock time, in seconds.

• array(2) − Elapsed system time, which is time spent executing
privileged code (code in the Windows Executive) on single
processors; on multiple processors, this value is zero.

Results

The result type is REAL(4). The result is the total CPU time, which is the sum of array(1) and array(2).

Example

 USE IFPORT
 REAL(4) I, TA(2)
 I = ETIME(TA)
 write(*,*) 'Program has used', I, 'seconds of CPU time.'
 write(*,*) ' This includes', TA(1), 'seconds of user time and', &
& TA(2), 'seconds of system time.'

Intel® Fortran Compiler Classic and Intel® Fortran Compiler Developer Guide and Reference 1

1443

See Also
DATE_AND_TIME

EVENT POST and EVENT WAIT
Statements: The EVENT POST statement allows an
image to notify another image that it can proceed to
work on tasks that use common resources. The EVENT
WAIT statement allows an image to wait on events
posted by other images. They take the following
forms:

Syntax
EVENT POST (event-var [, sync-stat-list])
EVENT WAIT (event-var [, wait-spec-list])

event-var Is a scalar variable of type EVENT_TYPE. For more information, see
intrinsic module ISO_FORTRAN_ENV.

It must not depend on the value of stat-var or err-var.

It cannot be a coindexed variable in an EVENT WAIT statement.

sync-stat-list Is STAT=stat-var

or ERRMSG=err-var

stat-var Is a scalar integer variable in which the status of the synchronization
is stored.

err-var Is a scalar default character variable in which explanatory text is
stored if an error occurs.

wait-spec-list Is until-spec

or sync-stat-list

until-spec Is UNTIL_COUNT= scalar-integer-expression.

Each specifier is optional and may appear at most once in a sync-stat-list or in a wait-spec-list.

Description

An EVENT POST statement atomically increments the value of event-var by one. Its value is processor
dependent if an error condition occurs during the execution of an EVENT POST statement. The completion of
an EVENT POST statement does not in any way depend on execution of a corresponding EVEN WAIT
statement.

The following actions occur during the execution of an EVENT WAIT statement:

• If UNTIL_COUNT is not specified, the threshold value is one; otherwise, it is the maximum value of one
and the specified scalar-integer-expression.

• The image executing the EVENT WAIT statement waits until the value of event-var is equal to or greater
than the threshold value; otherwise, an error condition occurs.

• If no error condition has occurred, event-var is atomically decremented by the threshold value.

The value of event-var is processor dependent if an error condition occurs during the execution of an EVENT
WAIT statement.

 1 Intel® Fortran Compiler Classic and Intel® Fortran Compiler Developer Guide and Reference

1444

An EVEN POST statement execution is initially unsatisfied. The successful execution of an EVENT WAIT
statement with a threshold value of n satisfies the first n unsatisfied EVENT POST statement executions for
the specified event-var. The EVENT WAIT statement delays execution of the segment following the EVENT
WAIT statement to execute after the segments which precede the first n EVENT POST statement executions
for the specified event-var.

Example

The following example shows the use of EVENT POST and EVENT WAIT statements to synchronize each
image with its left and right neighbor. Image 1 and image NUM_IMAGES() treat each other as left and right
neighbors, conceptually laying the images out in a circle.

USE, INTRINSIC :: ISO_FORTRAN_ENV
TYPE(EVENT_TYPE) :: EVENT[*]
INTEGER :: LEFT, RIGHT
...
IF ((THIS_IMAGE().NE. 1) .AND. (THIS_IMAGE() .NE. NUM_IMAGES()) THEN
 LEFT = THIS_IMAGE() – 1
 RIGHT = THIS_IMAGE() + 1
ELSE IF (THIS_IMAGE() == 1) THEN
 LEFT = NUM_IMAGES()
 RIGHT = 2
ELSE IF (THIS_IMAGE()== NUM_IMAGES()) THEN
 LEFT = NUM_IMAGES() - 1
 RIGHT = 1
END IF

EVENT POST (EVENT[LEFT]) ! Signal left neighbor you got here
EVENT POST (EVENT[RIGHT]) ! Signal right neighbor you got here
EVENT WAIT (EVENT, UNTIL_COUNT = 2) ! Wait until your neighbors have both reached this point also

See Also
ISO_FORTRAN_ENV
Image Control Statements
Coarrays
Using Coarrays

EVENT_QUERY
Intrinsic Subroutine (Generic): Queries the event
count of an event variable.

Syntax

CALL EVENT_QUERY (event, count [, stat])

event (Input) Must be an event variable of type EVENT_TYPE, and must not
be coindexed. The event variable is accessed atomically with respect
to the execution of EVENT POST statements in unordered segments, in
exact analogy to atomic subroutines.

count (Output) Must be an integer scalar with a decimal range no smaller
than that of default integer. If no error condition occurs, count is
assigned the value of the count of event, otherwise it is assigned the
value -1.

Intel® Fortran Compiler Classic and Intel® Fortran Compiler Developer Guide and Reference 1

1445

stat (Output; optional) Must be an integer scalar with a decimal exponent
range of at least four. It must not be coindexed. If the stat argument
is present, it is assigned a processor-dependent positive value if an
error condition occurs, or zero if no error occurs. If an error occurs
and stat is not present, error termination is initiated.

Example

Consider the following example:

CALL EVENT_QUERY (EVENT, COUNT)
If there have been six successful posts to EVENT, and 3 successful waits that did not specify UNTIL_COUNT=
in the preceding segments, the variable COUNT will have the value 3. If there have been no successful posts
or waits in the preceding segments, COUNT will have the value 0.

See Also
EVENT POST and EVENT WAIT

EXECUTE_COMMAND_LINE
Intrinsic Subroutine: Executes a command line.

Syntax

CALL EXECUTE_COMMAND_LINE (command [,wait,exitstat,cmdstat,cmdmsg])

command (Input) Must be a scalar of type default character. It is the command
line to be executed. The interpretation is processor dependent.

wait (Input; optional) Must be a scalar of type logical. If wait is present
with the value FALSE and the processor supports asynchronous
execution of the command, the command is executed asynchronously;
otherwise it is executed synchronously.

exitstat (Inout; optional) Must be a scalar of type integer. If the command is
executed synchronously, exitstat is assigned the value of the
processor-dependent exit status of the executed command.
Otherwise, the value of exitstat is unchanged.

cmdstat (Output; optional) Must be a scalar of type integer. It is assigned one
of the following values:

• -1 if the processor does not support command line execution
• A processor-dependent positive value if an error condition occurs
• -2 if no error condition occurs but wait is present with the value

FALSE and the processor does not support asynchronous execution.
• 0 otherwise

cmdmsg (Inout; optional) Must be a scalar of type default character. If an error
condition occurs, cmdmsg is assigned a processor-dependent
explanatory message. Otherwise, cmdmsg is unchanged.

Description

When command is executed synchronously, EXECUTE_COMMAND_LINE returns after the command line has
completed execution. Otherwise, EXECUTE_COMMAND_LINE returns without waiting.

If a condition occurs that would assign a nonzero value to cmdstat but cmdstat is not present, execution is
terminated.

 1 Intel® Fortran Compiler Classic and Intel® Fortran Compiler Developer Guide and Reference

1446

NOTE
If the application has a standard console window, command output will appear in that
window. On Windows* systems, if the application does not have a console window, including
QuickWin applications, command output will not be shown.

Example

INTEGER :: CSTAT, ESTAT
CHARACTER(100) :: CMSG
CALL EXECUTE_COMMAND_LINE ("dir > dir.txt", EXITSTAT=ESTAT, &
 CMDSTAT=CSTAT, CMDMSG=CMSG)
IF (CSTAT > 0) THEN
 PRINT *, "Command execution failed with error ", TRIM(CMSG)
ELSE IF (CSTAT < 0) THEN
 PRINT *, "Command execution not supported"
ELSE
 PRINT *, "Command completed with status ", ESTAT
END IF
END

In the above example, EXECUTE_COMMAND_LINE is called to execute a "dir" command with output
redirected to a file. Since the WAIT argument was omitted, the call waits for the command to complete and
the command's exit status is returned in ESTAT. If the command cannot be executed, the error message
returned in CMSG is displayed, but note that this is not based on the success or failure of the command itself.

EXIT Statement
Statement: Terminates execution of a DO loop or a
named construct.

Syntax
EXIT [name]

name (Optional) Is the name of the DO loop or construct.

Description

The EXIT statement causes execution of a DO loop or a named construct to be terminated.

If name is specified, the EXIT statement must be within the range of that named construct. Otherwise, the
EXIT statement must be within a DO loop and it exits the innermost DO within which it appears.

If a DO loop is terminated, any inner DO loops are also terminated and the DO control variables retain their
last value. If a non-DO construct is terminated, any DO loops inside that construct are also terminated.

An EXIT statement must not appear within a DO CONCURRENT construct if it belongs to that construct or an
outer construct.

An EXIT statement must not appear in a CHANGE TEAM or CRITICAL construct if it belongs to an outer
construct.

An EXIT statement can appear in any of the following constructs:

• ASSOCIATE
• BLOCK
• CHANGE TEAM
• CRITICAL
• DO
• IF

Intel® Fortran Compiler Classic and Intel® Fortran Compiler Developer Guide and Reference 1

1447

• SELECT CASE
• SELECT RANK
• SELECT TYPE

An EXIT statement cannot appear in a WHERE or FORALL construct.

Example

The following examples demonstrate EXIT statements.

Example 1:

LOOP_A : DO I = 1, 15
 N = N + 1
 IF (N > I) EXIT LOOP_A
END DO LOOP_A

Example 2:

 INTEGER numpoints, point
 REAL datarray(1000), sum
 sum = 0.0
 DO point = 1, 1000
 sum = sum + datarray(point)
 IF (datarray(point+1) .EQ. 0.0) EXIT
 END DO

Example 3:

DO I=1,N
 MyBlock: BLOCK
 REAL :: T
 T = A(I) + B(I)
 IF (T == 0.0) EXIT MyBlock
 C(I) = T + SQRT(T)
 END BLOCK
END DO

Example 4:

DO CONCURRENT (I = 1:N)
 MyBlock: BLOCK
 REAL :: T
 T = A(I) + B(I)
 IF (T == 0.0) EXIT MyBlock
 C(I) = T + SQRT(T)
 END BLOCK
END DO

The following example shows illegal EXIT statements in DO CONCURRENT and CRITICAL:

LOOP_1 : DO CONCURRENT (I = 1:N)
 N = N + 1
 IF (N > I) EXIT LOOP_1 ! cannot EXIT DO CONCURRENT
END DO LOOP_1

LOOP_2 : DO I = 1, 15
 CRITICAL
 N = N + 1
 IF (N > I) EXIT LOOP_2 ! cannot EXIT outer construct from inside
 END CRITICAL ! CHANGE TEAM, DO CONCURRENT, or CRITICAL
END DO LOOP_2

 1 Intel® Fortran Compiler Classic and Intel® Fortran Compiler Developer Guide and Reference

1448

See Also
DO
DO WHILE

EXIT Subroutine
Intrinsic Subroutine (Generic): Terminates
program execution, closes all files, and returns control
to the operating system. Intrinsic subroutines cannot
be passed as actual arguments.

Syntax
CALL EXIT [([status])]

status (Output; optional) Is an integer argument you can use to specify the
image exit-status value.

The exit-status value may not be accessible after program termination in some application environments.

Example

 INTEGER(4) exvalue
! all is well, exit with 1
 exvalue = 1
 CALL EXIT(exvalue)
! all is not well, exit with diagnostic -4
 exvalue = -4
 CALL EXIT(exvalue)
! give no diagnostic, just exit
 CALL EXIT ()

See Also
END
ABORT

EXP
Elemental Intrinsic Function (Generic): Computes
an exponential value.

Syntax
result = EXP (x)

x (Input) Must be of type real or complex.

Results

The result type and kind are the same as x. The value of the result is e x. If x is of type complex, its
imaginary part is regarded as a value in radians.

Specific Name Argument Type Result Type

EXP REAL(4) REAL(4)

DEXP REAL(8) REAL(8)

QEXP REAL(16) REAL(16)

CEXP 1 COMPLEX(4) COMPLEX(4)

Intel® Fortran Compiler Classic and Intel® Fortran Compiler Developer Guide and Reference 1

1449

Specific Name Argument Type Result Type

CDEXP2 COMPLEX(8) COMPLEX(8)

CQEXP COMPLEX(16) COMPLEX(16)

1The setting of compiler options specifying real size can affect CEXP.
2This function can also be specified as ZEXP.

Example

EXP (2.0) has the value 7.389056.

EXP (1.3) has the value 3.669297.

The following shows another example:

! Given initial size and growth rate,
! calculates the size of a colony at a given time.
 REAL sizei, sizef, time, rate
 sizei = 10000.0
 time = 40.5
 rate = 0.0875
 sizef = sizei * EXP (rate * time)
 WRITE (*, 100) sizef
100 FORMAT (' The final size is ', E12.6)
 END

See Also
EXP10
LOG

EXP10
Elemental Intrinsic Function (Generic): Computes
a base 10 exponential value.

Syntax

result = EXP10 (x)

x (Input) Must be of type real or complex.

Results

The result type and kind are the same as x. The value is 10 raised to the power of x. If x is of type complex,
its imaginary part is regarded as a value in radians.

Specific Name Argument Type Result Type

EXP10 REAL(4) REAL(4)

DEXP10 REAL(8) REAL(8)

QEXP10 REAL(16) REAL(16)

CEXP10 1 COMPLEX(4) COMPLEX(4)

CDEXP10 COMPLEX(8) COMPLEX(8)

CQEXP10 COMPLEX(16) COMPLEX(16)

 1 Intel® Fortran Compiler Classic and Intel® Fortran Compiler Developer Guide and Reference

1450

Specific Name Argument Type Result Type

1The setting of compiler options specifying real size can affect CEXP10.

Example

EXP10 (2.0) has the value 100.00.

EXP10 (1.3) has the value 19.95262.

See Also
LOG10
EXP

EXPONENT
Elemental Intrinsic Function (Generic): Returns
the exponent part of the argument when represented
as a model number.

Syntax
result = EXPONENT (x)

x (Input) must be of type real.

Results

The result type is default integer. If x is not equal to zero, the result value is the exponent part of x. The
exponent must be within default integer range; otherwise, the result is undefined.

If x is zero, the exponent of x is zero. For more information on the exponent part (e) in the real model, see
Model for Real Data.

Example

EXPONENT (2.0) has the value 2.

If 4.1 is a REAL(4) value, EXPONENT (4.1) has the value 3.

The following shows another example:

 REAL(4) r1, r2
 REAL(8) r3, r4
 r1 = 1.0
 r2 = 123456.7
 r3 = 1.0D0
 r4 = 123456789123456.7
 write(*,*) EXPONENT(r1) ! prints 1
 write(*,*) EXPONENT(r2) ! prints 17
 write(*,*) EXPONENT(r3) ! prints 1
 write(*,*) EXPONENT(r4) ! prints 47
 END

See Also
DIGITS
RADIX
FRACTION
MAXEXPONENT
MINEXPONENT
Data Representation Models

Intel® Fortran Compiler Classic and Intel® Fortran Compiler Developer Guide and Reference 1

1451

EXTENDS_TYPE_OF
Inquiry Intrinsic Function (Generic): Inquires
whether the dynamic type of an object is an extension
type of the dynamic type of another object.

Syntax
result = EXTENDS_TYPE_OF (a , mold)

a (Input) Is an object of extensible type. If it is a pointer, it must not
have an undefined association status.

mold (Input) Is an object of extensible type. If it is a polymorphic pointer, it
must not have an undefined association status.

Results

The result type is default logical scalar.

The following determines the result value:

• If mold is unlimited polymorphic and is a disassociated pointer or an unallocated allocatable, the result
is .TRUE..

• If a is unlimited polymorphic and is a disassociated pointer or an unallocated allocatable, the result
is .FALSE..

• If the dynamic type of a or mold is extensible, the result is true only if the dynamic type of a is an
extension type of the dynamic type of mold.

Otherwise, the result is processor dependent.

EXTERNAL
Statement and Attribute: Allows an external
procedure, a dummy procedure, a procedure pointer,
or a block data subprogram to be used as an actual
argument. (To specify intrinsic procedures as actual
arguments, use the INTRINSIC attribute.)

Syntax
The EXTERNAL attribute can be specified in a type declaration statement or an EXTERNAL statement, and
takes one of the following forms:

Type Declaration Statement:

type,[att-ls,] EXTERNAL [, att-ls] :: ex-pro[, ex-pro]...
Statement:

EXTERNAL [::]ex-pro[, ex-pro]...

type Is a data type specifier.

att-ls Is an optional list of attribute specifiers.

ex-pro Is the name of an external (user-supplied) procedure, a dummy
procedure, a procedure pointer, or block data subprogram.

Description

In a type declaration statement, only functions can be declared EXTERNAL. However, you can use the
EXTERNAL statement to declare subroutines and block data program units, as well as functions, to be
external.

 1 Intel® Fortran Compiler Classic and Intel® Fortran Compiler Developer Guide and Reference

1452

The name declared EXTERNAL is assumed to be the name of an external procedure, even if the name is the
same as that of an intrinsic procedure. For example, if SIN is declared with the EXTERNAL attribute, all
subsequent references to SIN are to a user-supplied function named SIN, not to the intrinsic function of the
same name.

You can include the name of a block data program unit in the EXTERNAL statement to force a search of the
object module libraries for the block data program unit at link time. However, the name of the block data
program unit must not be used in a type declaration statement.

If you want to describe a routine with greater detail, use the INTERFACE statement. This statement
automatically declares a routine as EXTERNAL, and provides information on result types and argument types.

A procedure that has both the EXTERNAL and POINTER attributes is a procedure pointer.

Example

The following example shows type declaration statements specifying the EXTERNAL attribute:

PROGRAM TEST
...
INTEGER, EXTERNAL :: BETA
LOGICAL, EXTERNAL :: COS
...
CALL SUB(BETA) ! External function BETA is an actual argument

You can use a name specified in an EXTERNAL statement as an actual argument to a subprogram, and the
subprogram can then use the corresponding dummy argument in a function reference or a CALL statement;
for example:

EXTERNAL FACET
CALL BAR(FACET)
SUBROUTINE BAR(F)
EXTERNAL F
CALL F(2)

Used as an argument, a complete function reference represents a value, not a subprogram; for example,
FUNC(B) represents a value in the following statement:

CALL SUBR(A, FUNC(B), C)
The following shows another example:

EXTERNAL MyFunc, MySub
C MyFunc and MySub are arguments to Calc
 CALL Calc (MyFunc, MySub)
C Example of a user-defined function replacing an
C intrinsic
 EXTERNAL SIN
 x = SIN (a, 4.2, 37)

See Also
INTRINSIC
Program Units and Procedures
Type Declarations
INTRINSIC
Compatible attributes
FORTRAN 66 Interpretation of the External Statement

Intel® Fortran Compiler Classic and Intel® Fortran Compiler Developer Guide and Reference 1

1453

F_C_STRING
Intrinsic Module Function (Generic): Creates a C
null terminated string from a Fortran string.

Module

USE, INTRINSIC :: ISO_C_BINDING

Syntax

F_C_STRING (string[, asis])

string (Input) Is a scalar character of kind C_CHAR.

asis (Optional, input) Is a LOGICAL scalar.

Results

The result is a scalar character of type C_CHAR. If asis is present and has the value .TRUE., the length
parameter of the result has a value equal to LEN (string) + 1, and the result has the value equal to string //
C_NULL_CHAR.

If asis is present with the value .FALSE., or if asis is not present, the length parameter of the result has a
value equal to LEN (TRIM stringstring)) + 1, and the result has the value equal to TRIM (string) //
C_NULL_CHAR.

Example

If STRING is declared as CHARACTER(LEN=7, KIND=C_CHAR) and it has the value "12345 " (two trailing
blanks), then F_C_STRING () has the value "12345"//C_NULL_CHAR, and F_C_STRING (STRING, .TRUE.)
has the value "12345 "//C_NULL_CHAR.

See Also
Intrinsic Modules

ISO_C_BINDING Module

FAIL IMAGE
Statement: Causes the image that executes it to stop
participating in program execution, without initiating
termination.

Syntax
FAIL IMAGE
This statement allows you to simulate image failure and to test and debug image failure recovery in a
program, without requiring an actual image failure.

After execution of a FAIL IMAGE statement, no additional statements are executed by the image.

A FAIL IMAGE statement is not an image control statement.

The detection of a failed image may happen at different times in the execution of other images; for more
information, see FAILED_IMAGES.

 1 Intel® Fortran Compiler Classic and Intel® Fortran Compiler Developer Guide and Reference

1454

NOTE
If you use a FAIL IMAGE statement to make an image fail, you should use a STAT= specifier or a STAT
argument in all coarray operations that might encounter that failed image if the statement or
operation permits, or you should specify either the assume failed_images or standard-semantics
compiler option. If you do not use a STAT= specifier, a STAT argument, or specify one of the compiler
options, those operations will not check for failed images. They may then try to coordinate with the
failed image, waiting for a response from it. The response would never happen and so the application
would hang.

Examples

The following example demonstrates using the STAT= specifier to prevent an application hang (see Note
above):

SUBROUTINE FAIL_AND_SYNC (THIS_ONE)
 INTEGER THIS_ONE
 INTEGER MY_STAT
 IF (THIS_IMAGE() .EQ. THIS_ONE) THEN
 FAIL IMAGE
 END IF
 SYNC ALL (STAT=MY_STAT) ! Would hang without STAT=
END SUBROUTINE FAIL_AND_SYNC

If an image calls the following procedure at regular time intervals, it has a one in ten thousand chance of
failure in each time step:

SUBROUTINE RANDOM_FAILURE ()
 REAL RANDOM
 CALL RANDOM_NUMBER (RANDOM)
 IF (RANDOM > 0.9999) FAIL IMAGE
 RETURN
END SUBROUTINE RANDOM_FAILURE

See Also
FAILED_IMAGES
IMAGE_STATUS
standard-semantics compiler option
assume [no]failed_images compiler option

FAILED_IMAGES
Transformational Intrinsic Function (Generic):
Returns an array of index images that have failed.

Syntax
result = FAILED_IMAGES ([team, kind])

team (Input; optional) Must be a scalar of type TEAM_TYPE defined in the
intrinsic module ISO_FORTRAN_ENV whose value represents the
current or an ancestor team. If not present, the current team is
assumed.

kind (Input; optional) Must be a scalar integer expression with a value that
is a valid INTEGER kind type parameter.

Intel® Fortran Compiler Classic and Intel® Fortran Compiler Developer Guide and Reference 1

1455

Results

The result is a rank-one integer array with the same type kind parameters as kind if present; otherwise,
default integer. The size of the array is equal to the number of images in the specified team that are known
to have failed.

The result array elements are the image index values of images on the current team that are known to have
failed. The indices are arranged in increasing numeric order.

If the image executing the FAILED_IMAGES reference previously executed a collective subroutine whose
STAT argument returned the value STAT_FAILED_IMAGES defined in the intrinsic module ISO_FORTRAN_ENV,
or if the image executed an image control statement whose STAT= specifier returned the value
STAT_FAILED_IMAGE, at least one image in the team executing the collective or image control statement is
known to have failed.

Failed images may lead to unavoidable hangs

Coarray programs are parallel programs, so between synchronization points the relative ordering of events in
different images is unknown and undefined. The failure of an image or the execution of the FAIL IMAGE
statement is such an event. It happens at a definite time in the image that fails, but the other images will
discover the failure at different points in their execution. Also, because a failed image does not participate in
synchronization points, it is possible for the discovery to happen before a synchronization point in one image
and after it in another.

This means that when other images synchronize (such as with a SYNC ALL), it is possible that some will
know that that image has failed and some will not. In this case, the images that don't know will attempt to
synchronize with the failed image and the application will hang, making no progress.

There is no certain way to prevent a hang when an image fails. However, if you structure your program so
that synchronizations points are infrequent, the chance of a failure happening just before a synchronization
point is lower. If images frequently do coarray loads and stores, or check image status, they are more likely
to discover a failed image sooner. The FAILED_IMAGES intrinsic will check for failed images, but other images
might not get the same result from that call.

Example

If image 5 and 12 of the current team are known to have failed, the result of FAILED_IMAGES () is an array
of default integer type with size 2 defined with the value [5, 12]. If no images in the current team are known
to have failed, the result of FAILED_IMAGES () is a zero-sized array.

See Also
IMAGE_STATUS
STOPPED_IMAGES
ISO_FORTRAN_ENV Module

FDATE
Portability Function and Subroutine: Returns the
current date and time as an ASCII string.

Module

USE IFPORT

Syntax
Function Syntax

result = FDATE()
Subroutine Syntax:

CALL FDATE ([string])

 1 Intel® Fortran Compiler Classic and Intel® Fortran Compiler Developer Guide and Reference

1456

string (Output; optional) Character*(*). It is returned as a 24-character
string in the form:

 Mon Jan 31 04:37:23 2001
Any value in string before the call is destroyed.

Results

The result of the function FDATE and the value of string returned by the subroutine FDATE(string) are
identical. Newline and NULL are not included in the string.

When you use FDATE as a function, declare it as:

 CHARACTER*24 FDATE

Example

USE IFPORT
CHARACTER*24 today
!
CALL FDATE(today)
write (*,*), 'Today is ', today
!
write (*,*), 'Today is ', fdate()

See Also
DATE_AND_TIME

FGETC
Portability Function: Reads the next available
character from a file specified by a Fortran unit
number.

Module

USE IFPORT

Syntax
result = FGETC (lunit,char)

lunit (Input) INTEGER(4). Unit number of a file. Must be currently
connected to a file when the function is called.

char (Output) CHARACTER*1. Next available character in the file. If lunit
is connected to a console device, then no characters are returned until
the Enter key is pressed.

Results

The result type is INTEGER(4). The result is zero if the read is successful, or -1 if an end-of-file is detected. A
positive value is either a system error code or a Fortran I/O error code, such as:

EINVAL: The specified unit is invalid (either not already open, or an invalid unit number).

If you use WRITE, READ, or any other Fortran I/O statements with lunit, be sure to read Portability Routines.

Example

USE IFPORT
CHARACTER inchar
INTEGER istatus

Intel® Fortran Compiler Classic and Intel® Fortran Compiler Developer Guide and Reference 1

1457

istatus = FGETC(5,inchar)
PRINT *, inchar
END

See Also
GETCHARQQ
READ

FINAL Clause
Parallel Directive Clause: Specifies that the
generated task will be a final task.

Syntax

FINAL (scalar-logical-expression)

scalar-logical-expression Is a scalar logical expression. When the expression evaluates
to .TRUE., it specifies that the generated task will be a final task.

All task constructs encountered during execution of a final task will generate included tasks.

Note that if a variable is used in a FINAL clause expression of a directive construct, it causes an implicit
reference to the variable in all enclosing constructs.

Only a single FINAL clause can appear in the directive.

FINAL Statement
Statement: Denotes a finalization procedure that
defines one or more final subroutines that are bound
to a derived type.

Syntax
The FINAL statement takes the following form:

FINAL [::] sub1 [, sub2]...

sub1, sub2, ... Is a final subroutine, which is a module procedure with exactly one
dummy argument of the derived type. The dummy argument cannot
be INTENT(OUT), it cannot have the VALUE attribute, it cannot be
optional, and it cannot be a pointer, allocatable, or a coarray. All array
shape and length type parameters are assumed.

Description

A final subroutine must not have a dummy argument with the same kind type parameters and rank as the
dummy argument of another final subroutine of the type.

You cannot specify a subroutine that was previously specified as a final subroutine for the derived type.

If a final subroutine has an assumed-rank dummy argument, no other final subroutine of that type can have
a dummy argument with the same kind type parameters.

This statement is used in derived-type type-bound procedures.

A derived type is finalizable only if it has a final subroutine or a nonpointer, nonallocatable component of
finalizable type. A nonpointer data entity is finalizable only if it is of finalizable type.

When an entity is finalized, the following actions occur in this order:

 1 Intel® Fortran Compiler Classic and Intel® Fortran Compiler Developer Guide and Reference

1458

1. If the dynamic type of the entity has a final subroutine whose dummy argument has the same kind
type parameters and rank as the entity being finalized, it is called with the entity as an actual
argument.

Otherwise, if there is an elemental final subroutine whose dummy argument has the same kind type
parameters as the entity being finalized, or a final subroutine whose dummy argument is assumed-rank
with the same kind type parameters as the entity being finalized, it is called with the entity as an actual
argument. Otherwise, no subroutine is called.

2. Finalizable components in the type are finalized. If the entity is an array, each finalizable component of
each element is finalized. The order of finalization is processor dependent.

3. If the entity is of an extended type with a finalizable parent type, the parent component is finalized.

Effects of Finalization

If the variable of an intrinsic assignment is not an unallocated allocatable array when the statement is
executed, the variable is finalized after the expression on the right-hand side (RHS) is evaluated and before
the variable is defined. If the variable is an allocated allocatable variable or has an allocated allocatable
subobject that would be deallocated by intrinsic assignment, finalization occurs before deallocation.

When a pointer is deallocated, its target is finalized. When an allocatable entity is deallocated, it is finalized
unless it is the variable on the left-hand side (LHS) of the intrinsic assignment or a subobject of the variable.

A nonpointer, nonallocatable object that is not a dummy argument or function result is finalized immediately
before it would become undefined due to execution of a RETURN or END statement.

If the entity is of extended type and the parent type is finalizable, the parent component is finalized.

A nonpointer, nonallocatable local variable of a BLOCK construct is finalized immediately before it would
become undefined due to termination of the BLOCK construct.

The following rules also apply:

• If an executable construct references a nonpointer function, the result is finalized after execution of the
innermost executable construct containing the reference.

• If a specification expression in a scoping unit references a function, the result is finalized before execution
of the executable constructs in the scoping unit.

• A nonpointer, nonallocatable, INTENT(OUT) dummy argument of a procedure is finalized when the
procedure is invoked before the dummy argument becomes undefined. Finalization of INTENT(OUT)
dummy arguments occurs in the invoked procedure; for elemental procedures, an INTENT(OUT) argument
will be finalized only if a scalar or elemental final subroutine is available, regardless of the rank of the
argument.

• If image execution is terminated, either by an error or by execution of a ERROR STOP, STOP, or END
PROGRAM statement, any entities that exist immediately before termination are not finalized.

Example

The following example declares two module subroutines to be final:

TYPE MY_TYPE
... ! Component declarations
CONTAINS
 FINAL :: CLEAN1, CLEAN2
END TYPE MY_TYPE

See Also
Type-Bound Procedures

Intel® Fortran Compiler Classic and Intel® Fortran Compiler Developer Guide and Reference 1

1459

FIND
Statement: Positions a direct access file at a
particular record and sets the associated variable of
the file to that record number. It is comparable to a
direct access READ statement with no I/O list, and it
can open an existing file. No data transfer takes place.

Syntax
FIND ([UNIT=] io-unit, REC= r[, ERR= label] [, IOSTAT= i-var])
FIND (io-unit 'r [, ERR=label] [, IOSTAT=i-var])

io-unit Is a logical unit number. It must refer to a relative organization file
(see Unit Specifier).

r Is the direct access record number. It cannot be less than one or
greater than the number of records defined for the file (see Record
Specifier).

label Is the label of the executable statement that receives control if an
error occurs.

i-var Is a scalar integer variable that is defined as a positive integer if an
error occurs, and as zero if no error occurs (see I/O Status Specifier).

Example

In the following example, the FIND statement positions logical unit 1 at the first record in the file. The file's
associated variable is set to one:

 FIND(1, REC=1)
In the following example, the FIND statement positions the file at the record identified by the content of
INDX. The file's associated variable is set to the value of INDX:

 FIND(4, REC=INDX)

See Also
Forms for Direct-Access READ Statements
I/O Control List

FINDLOC
Transformational Intrinsic Function (Generic):
Finds the location of a specified value in an array.

Syntax

result = FINDLOC (array, value, dim [, mask, kind, back])
result = FINDLOC (array, value[, mask, kind, back])

array (Input) Must be an array of intrinsic type.

value (Input) Must be scalar and in type conformance with array.

If only one element matches value, that element’s subscripts are
returned.

 1 Intel® Fortran Compiler Classic and Intel® Fortran Compiler Developer Guide and Reference

1460

If more than one element matches value and back is absent or
present with the value .FALSE., the element whose subscripts are
returned is the first element, taken in array element order. If back is
present with the value .TRUE., the element whose subscripts are
returned is the last element, taken in array element order.

dim (Input) Must be a scalar integer with a value in the range 1 <= dim
<= n, where n is the rank of array.

mask (Input; optional) Must be of type logical and conformable with array.

kind (Input; optional) Must be a scalar integer constant expression.

back (Input; optional) Must be a scalar of type logical.

If both array and value are of type logical, the comparison is performed with the .EQV. operator; otherwise,
the comparison is performed with the == operator. If the value of the comparison is true, that element of
array matches value.

Results

The result is integer. If kind is present, the kind type parameter is that specified by the value of kind.
Otherwise, the kind type parameter is that of default integer type.

If dim does not appear, the result is an array of rank one and of size equal to the rank of array; otherwise,
the result is of rank n - 1 and shape (d1, d2,...ddim-1, ddim+1,...dn), where (d1, d2,...dn) is the shape of array.

The result of FINDLOC (array, valuevalue) is a rank-one array whose element values are the values of the
subscripts of an element of array whose value matches value. If there is such a value, the ith subscript
returned is in the range 1 to ei, where ei is the extent of the ith dimension of array. If no elements match
value or if array has size zero, all elements of the result are zero.

The result of FINDLOC (array, value, MASK = mask) is a rank-one array whose element values are the values
of the subscripts of an element of array, corresponding to a true element of mask, whose value matches
value. If there is such a value, the ith subscript returned is in the range 1 to ei, where ei is the extent of the
ith dimension of array. If no elements match value, or array has size zero, or every element of mask has the
value .FALSE., all elements of the result are zero.

If array has rank one, the result of FINDLOC (array, value, DIM = dim [, MASK = mask]) is a scalar whose
value is equal to that of the first element of FINDLOC (array, value [, MASK = mask]). Otherwise, the value
of element (s1, s2,...sdim-1, sdim+1,...sn) of the result is equal to FINDLOC (array (s1, s2,...sdim-1, :, sdim

+1,...sn), value, DIM = 1 [, MASK = mask (s1, s2,...sdim-1, :, sdim+1,...sn)]).

The setting of compiler options specifying integer size can affect this function.

Examples

The value of FINDLOC ([2, 6, 4, 6], VALUE = 6) is [2].

The value of FINDLOC ([2, 6, 4, 6], VALUE = 6, BACK = .TRUE.) is [4].

If A has the value

 [0 −5 7 7]
 [3 4 −1 2]
 [1 5 6 7]

Intel® Fortran Compiler Classic and Intel® Fortran Compiler Developer Guide and Reference 1

1461

and M has the value

 [T T F T]
 [T T F T]
 [T T F T]

then FINDLOC (A, 7, MASK = M) is [1, 4] and FINDLOC (A, 7, MASK = M, BACK = .TRUE.) is [3, 4].

This is independent of the declared lower bounds for A.

The value of FINDLOC ([2, 6, 4], VALUE = 6, DIM = 1) is 2.

If B has the value

 [1 2 -9]
 [2 3 6]

then FINDLOC (B, VALUE = 2, DIM = 1) is [2, 1, 0] and FINDLOC (B, VALUE = 2, DIM = 2) is [2, 1].

This is independent of the declared lower bounds for B.

See Also
MAXLOC
MINLOC

FINDFILEQQ
Portability Function: Searches for a specified file in
the directories listed in the path contained in the
environment variable.

Module

USE IFPORT

Syntax
result = FINDFILEQQ (filename,varname,pathbuf)

filename (Input) Character*(*). Name of the file to be found.

varname (Input) Character*(*). Name of an environment variable containing
the path to be searched.

pathbuf (Output) Character*(*). Buffer to receive the full path of the file
found.

Results

The result type is INTEGER(4). The result is the length of the string containing the full path of the found file
returned in pathbuf, or 0 if no file is found.

Example

USE IFPORT
CHARACTER(256) pathname
INTEGER(4) pathlen
pathlen = FINDFILEQQ("libfmt.lib", "LIB", pathname)
WRITE (*,*) pathname
END

See Also
FULLPATHQQ

 1 Intel® Fortran Compiler Classic and Intel® Fortran Compiler Developer Guide and Reference

1462

GETFILEINFOQQ
SPLITPATHQQ

FIRSTPRIVATE
Parallel Directive Clause: Provides a superset of the
functionality provided by the PRIVATE clause. It
declares one or more variables to be private to each
thread in a team, and initializes each of them with the
value of the corresponding original variable.

Syntax

FIRSTPRIVATE (list)

list Is the name of one or more variables or common blocks that are
accessible to the scoping unit. Subobjects cannot be specified. Each
name must be separated by a comma, and a named common block
must appear between slashes (/ /).

Variables that appear in a FIRSTPRIVATE list are subject to PRIVATE clause semantics. In addition, private
(local) copies of each variable in the different threads are initialized to the value the variable had upon
entering the parallel region.

To avoid race conditions, which are caused by unintended sharing of data, concurrent updates of the original
variable must be synchronized with the read of the original variable that occurs as a result of the
FIRSTPRIVATE clause.

If the original variable has the POINTER attribute, the new variable receives the same association status of
the original variable as if by pointer assignment.

If the original variable does not have the POINTER attribute, initialization of the new variable occurs as if by
intrinsic assignment, unless the original variable has the allocation status of "not currently allocated". In this
case, the new variable also has the status of " not currently un allocated".

The following are restrictions for the FIRSTPRIVATE clause:

• A variable that is part of another variable (as an array or structure element) must not appear in a
FIRSTPRIVATE clause.

• A variable that is private within a parallel region must not appear in a FIRSTPRIVATE clause in a
worksharing construct if any of the worksharing regions arising from the worksharing construct ever bind
to any of the parallel regions arising from the parallel construct.

• A variable that appears in a REDUCTION clause of a PARALLEL construct must not appear in a
FIRSTPRIVATE clause in a worksharing or task construct if any of the worksharing or task regions arising
from the worksharing or task construct ever bind to any of the parallel regions arising from the parallel
construct.

• A variable that appears in a REDUCTION clause in a WORKSHARE construct must not appear in a
FIRSTPRIVATE clause in a task construct encountered during execution of any of the worksharing regions
arising from the worksharing construct.

• Assumed-size arrays must not appear in a PRIVATE clause.
• Variables that appear in NAMELIST statements, in variable format expressions, and in expressions for

statement function definitions, must not appear in a PRIVATE clause.
• If a list item appears in both the FIRSTPRIVATE and LASTPRIVATE clauses, the update required for

LASTPRIVATE occurs after all of the initializations for FIRSTPRIVATE.

NOTE
If a variable appears in both FIRSTPRIVATE and LASTPRIVATE clauses, the update required for
LASTPRIVATE occurs after all initializations for FIRSTPRIVATE..

Intel® Fortran Compiler Classic and Intel® Fortran Compiler Developer Guide and Reference 1

1463

Example

Consider the following:

A = 3
B = 4
!$OMP PARALLEL PRIVATE(A) FIRSTPRIVATE(B)

In this case, variable A has an undefined value at the beginning of the parallel region. However, variable B
has the value 4, which was specified in the serial region preceding the parallel region.

See Also
PRIVATE clause
LASTPRIVATE clause

FIXEDFORMLINESIZE
General Compiler Directive: Sets the line length for
fixed-form Fortran source code.

Syntax
!DIR$ FIXEDFORMLINESIZE:{72 | 80 | 132}
You can set FIXEDFORMLINESIZE to 72 (the default), 80, or 132 characters. The FIXEDFORMLINESIZE
setting remains in effect until the end of the file, or until it is reset.

The FIXEDFORMLINESIZE directive sets the source-code line length in include files, but not in USE modules,
which are compiled separately. If an include file resets the line length, the change does not affect the host
file.

This directive has no effect on free-form source code.

Example

 !DIR$ NOFREEFORM
 !DIR$ FIXEDFORMLINESIZE:132
 WRITE (*,*) 'Sentence that goes beyond the 72nd column without continuation.'

See Also
FREEFORM and NOFREEFORM
Source Forms
General Compiler Directives
Syntax Rules for Compiler Directives
Equivalent Compiler Options

FLOAT
Elemental Intrinsic Function (Generic): Converts
an integer to REAL(4).

See Also
REAL

FLOOR
Elemental Intrinsic Function (Generic): Returns
the greatest integer less than or equal to its
argument.

Syntax
result = FLOOR (a[,kind])

 1 Intel® Fortran Compiler Classic and Intel® Fortran Compiler Developer Guide and Reference

1464

a (Input) Must be of type real.

kind (Input; optional) Must be a scalar integer constant expression.

Results

The result type is integer. If kind is present, the kind parameter of the result is that specified by kind;
otherwise, the kind parameter of the result is that of default integer. If the processor cannot represent the
result value in the kind of the result, the result is undefined.

The value of the result is equal to the greatest integer less than or equal to a.

The setting of compiler options specifying integer size can affect this function.

Example

FLOOR (4.8) has the value 4.

FLOOR (-5.6) has the value -6.

The following shows another example:

I = FLOOR(3.1) ! returns 3
I = FLOOR(-3.1) ! returns -4

See Also
CEILING

FLUSH Directive
OpenMP* Fortran Compiler Directive: Identifies
synchronization points at which the threads in a team
must provide a consistent view of memory.

Syntax
!$OMP FLUSH [(list)]

list Is the name of one or more variables to be flushed. Names must be
separated by commas.

The binding thread set for a FLUSH construct is the encountering thread.

The FLUSH directive must appear at the precise point in the code at which the synchronization is required. To
avoid flushing all variables, specify a list.

Thread-visible variables are written back to memory at the point at which this directive appears.
Modifications to thread-visible variables are visible to all threads after this point. Subsequent reads of thread-
visible variables fetch the latest copy of the data.

Thread-visible variables include the following data items:

• Globally visible variables (common blocks and modules)
• Local variables that do not have the SAVE attribute but have had their address taken and saved or have

had their address passed to another subprogram
• Local variables that do not have the SAVE attribute that are declared shared in a parallel region within the

subprogram
• Dummy arguments
• All pointer dereferences

The FLUSH directive is implied for the following directives (unless the NOWAIT keyword is used):

• ATOMIC and END ATOMIC
• BARRIER

Intel® Fortran Compiler Classic and Intel® Fortran Compiler Developer Guide and Reference 1

1465

• CRITICAL and END CRITICAL
• END DO
• END PARALLEL
• END SECTIONS
• END SINGLE
• END WORKSHARE
• ORDERED and END ORDERED
• PARALLEL and END PARALLEL
• PARALLEL DO and END PARALLEL DO
• PARALLEL SECTIONS and END PARALLEL SECTIONS
• TARGET
• TARGET DATA
• TARGET ENTER DATA on entry
• TARGET EXIT DATA on exit
• TARGET UPDATE on entry if TO is present and on exit if FROM is present

These directives are only available on Linux* systems: TARGET, TARGET DATA, TARGET ENTER DATA, TARGET
EXIT DATA, TARGET UPDATE.

Example

The following example uses the FLUSH directive for point-to-point synchronization between pairs of threads:

 !$OMP PARALLEL DEFAULT(PRIVATE) SHARED(ISYNC)
 IAM = OMP_GET_THREAD_NUM()
 ISYNC(IAM) = 0
 !$OMP BARRIER
 CALL WORK()
 C I AM DONE WITH MY WORK, SYNCHRONIZE WITH MY NEIGHBOR
 ISYNC(IAM) = 1
 !$OMP FLUSH(ISYNC)
 C WAIT TILL NEIGHBOR IS DONE
 DO WHILE (ISYNC(NEIGH) .EQ. 0)
 !$OMP FLUSH(ISYNC)
 END DO
 !$OMP END PARALLEL

See Also
OpenMP Fortran Compiler Directives
Syntax Rules for Compiler Directives
Parallel Processing Model for information about Binding Sets

FLUSH Statement
Statement: Causes data written to a file to become
available to other processes or causes data written to
a file outside of Fortran to be accessible to a READ
statement. It takes one of the following forms:

Syntax
FLUSH([UNIT=]io-unit [, ERR=label] [, IOMSG=msg-var] [IOSTAT=i-var])
FLUSH io-unit

io-unit (Input) Is an external unit specifier.

label (Input) Is the label of the branch target statement that receives
control if an error occurs.

 1 Intel® Fortran Compiler Classic and Intel® Fortran Compiler Developer Guide and Reference

1466

msg-var (Output) Is a scalar default character variable that is assigned an
explanatory message if an I/O error occurs.

i-var (Output) Is a scalar integer variable that is defined as a positive
integer if an error occurs and zero if no error occurs.

The FLUSH statement specifiers can appear in any order. An I/O unit must be specified, but the UNIT=
keyword is optional if the unit specifier is the first item in the I/O control list.

This statement has no effect on file position.

FLUSH Subroutine
Portability Subroutine: Flushes the contents of an
external unit buffer into its associated file.

Module

USE IFPORT

Syntax
CALL FLUSH (lunit)

lunit (Input) INTEGER(4). Number of the external unit to be flushed. Must
be currently connected to a file when the subroutine is called. This
routine is thread-safe, and locks the associated stream before I/O is
performed.

NOTE
The flush is performed in a non-blocking mode. In this mode, the command may return before the
physical write is completed. If you want to use a blocking mode of FLUSH use COMMITQQ.

See Also
COMMITQQ

FMA and NOFMA
General Compiler Directives: Tells the compiler to
allow generation of fused multiply-add (FMA)
instructions, also known as floating-point contractions.
NOFMA disables the generation of FMA instructions.

Syntax
!DIR$ FMA
!DIR$ NOFMA
These directives affect the current program unit but they also apply to subsequent program units in the
source file, unless and until a program unit containing another FMA or NOFMA directive is encountered.

Once a NOFMA directive has been specified, it is in effect from that point forward. The setting impacts later
routines in the source file. For example, consider that the following are in the same source file:

 real function fms_mul2(a, b, c, d)
 implicit none
 real :: a, b, c, d
! the default !dir$ fma leads to fma generation:
! this is transformed into FMS(a,b,FMA(c,d,0))

Intel® Fortran Compiler Classic and Intel® Fortran Compiler Developer Guide and Reference 1

1467

!dir$ nofma
 fms_mul2 = a*b - c*d ! no fma generation here
 end function fms_mul2

 real function fms_mul(a, b, c, d)
 implicit none
 real :: a, b, c, d
 fms_mul = (a*b) - (c*d) ! no fma generation here
 end function fms_mul

The NOFMA directive specified in fms_mul2 will also impact the routine fms_mul. You must explicitly specify
the FMA directive to override the effect of the NOFMA directive.

See Also
General Compiler Directives
Syntax Rules for Compiler Directives
fma, Qfma compiler option
fp-model strict, fp:strict compiler option

FOR_DESCRIPTOR_ASSIGN
Runtime Subroutine: Creates an array descriptor in
memory. This routine is only available for Windows.

Module

USE IFCORE

Syntax
CALL FOR_DESCRIPTOR_ASSIGN (dp,base,size,reserved,rank,dims_info)

dp (Input) A Fortran pointer to an array; the array can be of any data
type.

base (Input) INTEGER(4) or INTEGER(8). The base address of the data
being described by dp.

Note that a Fortran pointer describes both the location and type of the
data item.

size (Input) INTEGER(4). The size of the data type; for example, 4 for
INTEGER(4).

reserved (Input) INTEGER(4). A logical bitwise OR combination of the following
constants, which are defined in IFCORE.F90:

• FOR_DESCRIPTOR_ARRAY_DEFINED - Specifies whether the array
pointed to has been allocated or associated. If the bit is set, the
array has been allocated or associated.

 1 Intel® Fortran Compiler Classic and Intel® Fortran Compiler Developer Guide and Reference

1468

• FOR_DESCRIPTOR_ARRAY_NODEALLOC - Specifies whether the
array points to something that can be deallocated by a call to
DEALLOCATE, or whether it points to something that cannot be
deallocated. For example:

 integer, pointer :: p(:)
 integer, target :: t
 p => t ! t cannot be deallocated
 allocate(p(10)) ! t can be deallocated

If the bit is set, the array cannot be deallocated.
• FOR_DESCRIPTOR_ARRAY_CONTIGUOUS - Specifies whether the

array pointed to is completely contiguous in memory or whether it
is a slice that is not contiguous. If the bit is set, the array is
contiguous.

rank (Input) INTEGER(4). The rank of the array pointed to.

dims_info (Input) An array of derived type FOR_DIMS_INFO; you must specify a
rank for this array. The derived type FOR_DIMS_INFO is defined in
IFCORE.F90 as follows:

TYPE FOR_DIMS_INFO
 INTEGER(4) LOWERBOUND !Lower bound for the dimension
 INTEGER(4) UPPERBOUND !Upper bound for the dimension
 INTEGER(4) STRIDE !Stride for the dimension
END TYPE FOR_DIMS_INFO

The FOR_DESCRIPTOR_ASSIGN routine is similar to a Fortran pointer assignment, but gives you more control
over the assignment, allowing, for example, assignment to any location in memory.

You can also use this routine to create an array that can be used from both Fortran or C.

Example

use IFCORE
common/c_array/ array
real(8) array(5,5)
external init_array
external c_print_array
real(8),pointer :: p_array(:,:)
type(FOR_DIMS_INFO) dims_info(2)
 call init_array()

 do i=1,5
 do j=1,5
 print *,i,j, array(i,j)
 end do
 end do

 dims_info(1)%LOWERBOUND = 11
 dims_info(1)%UPPERBOUND = 15
 dims_info(1)%STRIDE = 1

 dims_info(2)%LOWERBOUND = -5
 dims_info(2)%UPPERBOUND = -1
 dims_info(2)%STRIDE = 1

Intel® Fortran Compiler Classic and Intel® Fortran Compiler Developer Guide and Reference 1

1469

 call FOR_DESCRIPTOR_ASSIGN(p_array, &
 LOC(array), &
 SIZEOF(array(1,1)), &
 FOR_DESCRIPTOR_ARRAY_DEFINED .or. &
 FOR_DESCRIPTOR_ARRAY_NODEALLOC .or. &
 FOR_DESCRIPTOR_ARRAY_CONTIGUOUS, &
 2, &
 dims_info)

p_array = p_array + 1
call c_print_array()
end

The following shows the C program containing init_array and c_print_array:

#include <stdio.h>
#if !defined(_WIN32) && !defined(_WIN64)
#define C_ARRAY c_array_
#define INIT_ARRAY init_array_
#define C_PRINT_ARRAY c_print_array_
#endif
double C_ARRAY[5][5];
void INIT_ARRAY(void);
void C_PRINT_ARRAY(void);
void INIT_ARRAY(void)
{
 int i,j;
 for(i=0;i<5;i++)
 for(j=0;j<5;j++)
 C_ARRAY[i][j] = j + 10*i;
}
void C_PRINT_ARRAY(void)
{
 int i,j;
 for(i=0;i<5;i++){
 for(j=0;j<5;j++)
 printf("%f ", C_ARRAY[i][j]);
 printf("\n");
 }
}

See Also
POINTER - Fortran

FOR_GET_FPE
Runtime Function: Returns the current settings of
floating-point exception flags. This routine can be
called from a C or Fortran program.

Module

USE IFCORE

Syntax
result = FOR_GET_FPE()

 1 Intel® Fortran Compiler Classic and Intel® Fortran Compiler Developer Guide and Reference

1470

Results

The result type is INTEGER(4). The return value represents the settings of the current floating-point
exception flags. The meanings of the bits are defined in the IFPORT module file.

To set floating-point exception flags after program initialization, use FOR_SET_FPE.

Example

USE IFCORE
INTEGER*4 FPE_FLAGS
FPE_FLAGS = FOR_GET_FPE ()

See Also
FOR_SET_FPE

FOR_IFCORE_VERSION
Portability Function: Returns the version of the
Fortran runtime library (ifcore).

Module

USE IFPORT

Syntax
result = FOR_IFCORE_VERSION (string)

string (Output) Character*(*). The version information for the Fortran
runtime library (ifcore).

Results

The result type is INTEGER(4). The result is non-zero if successful; otherwise, zero.

If string is not long enough to contain the version information, the result is truncated on the right. If string is
longer than the version information, the result is blank-padded on the right. The result may contain multiple
blank or ASCII tab characters.

Example

Consider the following:

program what_ifcore
 use ifport
 integer :: res
 character*56 :: str

 res = for_ifcore_version(str)
 print ("(3A)"), "'", str, "'"

end program what_ifcore
The above example will produce a result similar to the following, depending on spacing and the actual version
information:

'Intel Fortran RTL Core Library Vvv.m-eeeMmm dd yyyy '
where:

vv Is a major version number

Intel® Fortran Compiler Classic and Intel® Fortran Compiler Developer Guide and Reference 1

1471

m Is a minor version number

eee Is an edit number

Mmm Is a three-character abbreviation for the month

dd Is a two-digit day of the month

yyyy Is a four-digit year

See Also
FOR_IFCORE_VERSION

FOR_IFPORT_VERSION
Portability Function: Returns the version of the
Fortran portability library (ifport).

Module

USE IFPORT

Syntax
result = FOR_IFPORT_VERSION (string)

string (Output) Character*(*). The version information for the Fortran
portability library (ifport).

Results

The result type is INTEGER(4). The result is non-zero if successful; otherwise, zero.

If string is not long enough to contain the version information, the result is truncated on the right. If string is
longer than the version information, the result is blank-padded on the right. The result may contain multiple
blank or ASCII tab characters.

Example

Consider the following:

program what_ifport
 use ifport
 integer :: res
 character*56 :: str

 res = for_ifport_version(str)
 print ("(3A)"), "'", str, "'"

end program what_ifport
The above example will produce a result similar to the following, depending on spacing and the actual version
information:

'Intel Fortran portability library Vvv.m-eeeMmm dd yyyy '
where:

vv Is a major version number

m Is a minor version number

eee Is an edit number

 1 Intel® Fortran Compiler Classic and Intel® Fortran Compiler Developer Guide and Reference

1472

Mmm Is a three-character abbreviation for the month

dd Is a two-digit day of the month

yyyy Is a four-digit year

See Also
FOR_IFPORT_VERSION

FOR_LFENCE
Runtime Subroutine: Inserts a memory load fence
instruction that ensures completion of preceding load
instructions.

Module

USE IFCORE

Syntax
CALL FOR_LFENCE ()
Using this subroutine guarantees that in program order, every load instruction that precedes the load fence
instruction is globally visible before any load instruction that follows the load fence.

FOR_MFENCE
Runtime Subroutine: Inserts a memory fence
instruction that ensures completion of all preceding
load and store instructions.

Module

USE IFCORE

Syntax
CALL FOR_MFENCE ()
Using this subroutine guarantees that in program order, every load and store instruction that precedes the
memory fence instruction is globally visible before any load or store instruction that follows the memory
fence can proceed.

for_rtl_finish_
Runtime Function: Cleans up the Fortran runtime
environment; for example, flushing buffers and closing
files. It also issues messages about floating-point
exceptions, if any occur.

Syntax
This routine should be called from a C main program; it is invoked by default from a Fortran main program.

result = for_rtl_finish_ ()

Results

The result is an I/O status value. For information on these status values, see Use the IOSTAT Specifier and
Fortran Exit Codes

To initialize the Fortran runtime environment, use function for_rtl_init_ .

Intel® Fortran Compiler Classic and Intel® Fortran Compiler Developer Guide and Reference 1

1473

Example

Consider the following C code:

int io_status;
int for_rtl_finish_ ();
io_status = for_rtl_finish_ ();

See Also
for_rtl_init_

for_rtl_init_
Runtime Subroutine: Initializes the Fortran runtime
environment and causes Fortran procedures and
subroutines to behave the same as when called from a
Fortran main program. On Linux*, it also establishes
handlers and floating-point exception handling.

Syntax
This routine should be called from a C main program; it is invoked by default from a Fortran main program.

CALL for_rtl_init_ (argcount,actarg)

argcount Is a command-line parameter describing the argument count.

actarg Is a command-line parameter describing the actual arguments.

To clean up the Fortran runtime environment, use function for_rtl_finish_.

Example

Consider the following C code:

int argc;
char **argv;
void for_rtl_init_ (int *, char **);
for_rtl_init_ (&argc, argv);

See Also
for_rtl_finish_

FOR_SET_FPE
Runtime Function: Sets the floating-point exception
flags. This routine can be called from a C or Fortran
program.

Module

USE IFCORE

Syntax
result = FOR_SET_FPE (a)

a Must be of type INTEGER(4). It contains bit flags controlling floating-
point exception trapping, reporting, and result handling.

Results

The result type is INTEGER(4). The return value represents the previous settings of the floating-point
exception flags. The meanings of the bits are defined in the IFCORE module file.

 1 Intel® Fortran Compiler Classic and Intel® Fortran Compiler Developer Guide and Reference

1474

To get the current settings of the floating-point exception flags, use FOR_GET_FPE.

Example

USE IFCORE
INTEGER*4 OLD_FPE_FLAGS, NEW_FPE_FLAGS
OLD_FPE_FLAGS = FOR_SET_FPE (NEW_FPE_FLAGS)

The following example program is compiled without any fpe options. However, it uses calls to for_set_fpe
to enable the same flags as when compiling with option fpe:0. The new flags can be verified by compiling
the program with option -fpe:0.

 program samplefpe
 use ifcore
 implicit none

 INTEGER(4) :: ORIGINAL_FPE_FLAGS, NEW_FPE_FLAGS
 INTEGER(4) :: CURRENT_FPE_FLAGS, PREVIOUS_FPE_FLAGS

 NEW_FPE_FLAGS = FPE_M_TRAP_UND + FPE_M_TRAP_OVF + FPE_M_TRAP_DIV0 &
 + FPE_M_TRAP_INV + FPE_M_ABRUPT_UND + FPE_M_ABRUPT_DMZ
 ORIGINAL_FPE_FLAGS = FOR_SET_FPE (NEW_FPE_FLAGS)
 CURRENT_FPE_FLAGS = FOR_GET_FPE ()

 print *,"The original FPE FLAGS were:"
 CALL PRINT_FPE_FLAGS(ORIGINAL_FPE_FLAGS)

 print *," " print *,"The new FPE FLAGS are:"
 CALL PRINT_FPE_FLAGS(CURRENT_FPE_FLAGS)

!! restore the fpe flag to their original values
 PREVIOUS_FPE_FLAGS = FOR_SET_FPE (ORIGINAL_FPE_FLAGS)

 end

 subroutine PRINT_FPE_FLAGS(fpe_flags)
 use ifcore
 implicit none
 integer(4) :: fpe_flags
 character(3) :: toggle

 print 10, fpe_flags, fpe_flags
10 format(X,'FPE FLAGS = 0X',Z8.8," B'",B32.32)

 if (IAND(fpe_flags, FPE_M_TRAP_UND) .ne. 0) then
 toggle = "ON"
 else
 toggle = "OFF"
 endif
 write(*,*) " FPE_TRAP_UND :", toggle

 if (IAND(fpe_flags, FPE_M_TRAP_OVF) .ne. 0) then
 toggle = "ON"
 else
 toggle = "OFF"
 endif
 write(*,*) " FPE_TRAP_OVF :", toggle

 if (IAND(fpe_flags, FPE_M_TRAP_DIV0) .ne. 0) then

Intel® Fortran Compiler Classic and Intel® Fortran Compiler Developer Guide and Reference 1

1475

 toggle = "ON"
 else
 toggle = "OFF"
 endif
 write(*,*) " FPE_TRAP_DIV0 :", toggle

 if (IAND(fpe_flags, FPE_M_TRAP_INV) .ne. 0) then
 toggle = "ON"
 else
 toggle = "OFF"
 endif
 write(*,*) " FPE_TRAP_INV :", toggle

 if (IAND(fpe_flags, FPE_M_ABRUPT_UND) .ne. 0) then
 toggle = "ON"
 else
 toggle = "OFF"
 endif
 write(*,*) " FPE_ABRUPT_UND :", toggle

 if (IAND(fpe_flags, FPE_M_ABRUPT_OVF) .ne. 0) then
 toggle = "ON"
 else
 toggle = "OFF"
 endif
 write(*,*) " FPE_ABRUPT_OVF :", toggle

 if (IAND(fpe_flags, FPE_M_ABRUPT_DMZ) .ne. 0) then
 toggle = "ON"
 else
 toggle = "OFF"
 endif
 write(*,*) " FPE_ABRUPT_DIV0 :", toggle

 if (IAND(fpe_flags, FPE_M_ABRUPT_DIV0) .ne. 0) then
 toggle = "ON"
 else
 toggle = "OFF"
 endif
 write(*,*) " FPE_ABRUPT_INV :", toggle

 if (IAND(fpe_flags, FPE_M_ABRUPT_DMZ) .ne. 0) then ! ABRUPT_DMZ
 toggle = "ON"
 else
 toggle = "OFF"
 endif
 write(*,*) " FPE_ABRUPT_DMZ :", toggle, " (ftz related)"

 end subroutine PRINT_FPE_FLAGS
The following shows the output from the above program:

>ifx set_fpe_sample01.f90
>set_fpe_sample01.exe
 The original FPE FLAGS were:
 FPE FLAGS = 0X00000000 B'00000000000000000000000000000000
 FPE_TRAP_UND :OFF
 FPE_TRAP_OVF :OFF
 FPE_TRAP_DIV0 :OFF

 1 Intel® Fortran Compiler Classic and Intel® Fortran Compiler Developer Guide and Reference

1476

 FPE_TRAP_INV :OFF
 FPE_ABRUPT_UND :OFF
 FPE_ABRUPT_OVF :OFF
 FPE_ABRUPT_DIV0 :OFF
 FPE_ABRUPT_INV :OFF
 FPE_ABRUPT_DMZ :OFF (ftz related)

 The new FPE FLAGS are:
 FPE FLAGS = 0X0011000F B'00000000000100010000000000001111
 FPE_TRAP_UND :ON
 FPE_TRAP_OVF :ON
 FPE_TRAP_DIV0 :ON
 FPE_TRAP_INV :ON
 FPE_ABRUPT_UND :ON
 FPE_ABRUPT_OVF :OFF
 FPE_ABRUPT_DIV0 :ON
 FPE_ABRUPT_INV :OFF
 FPE_ABRUPT_DMZ :ON (ftz related)

The following example builds a library that has to have a particular setting of the fpe flags internally, and has
to work with user programs built with any combination of the fpe flags.

 !-- file USE.F90 starts here
subroutine use_subnorms
 use, intrinsic :: ieee_arithmetic
 use ifcore

 use, intrinsic :: ieee_features, only: ieee_subnormal
 implicit none

 !--- Declaration for use in example code
 real, volatile :: x, y
 integer i
 !--- End declarations for example code

 integer(4) :: orig_flags, off_flags, not_flags, new_flags

 if (ieee_support_subnormal()) then
 print *, "Subnormals already supported"
 else
 orig_flags = for_get_fpe()

 off_flags = IOR(FPE_M_ABRUPT_UND, FPE_M_ABRUPT_DMZ)
 off_flags = IOR(off_flags, FPE_M_TRAP_UND)
 off_flags = IOR(off_flags, FPE_M_MSG_UND)
 not_flags = NOT(off_flags) ! "INOT" is the 16-bit version!

 new_flags = IAND(orig_flags, not_flags)
 orig_flags = for_set_fpe(new_flags)

 if (ieee_support_subnormal()) then
 print *, "Subnormals are now supported"
 else
 print *, "Error: Subnormals still not supported after FOR_SET_FPE call"
 end if
 end if

 !-- Begin example of user code using subnorms
1 FORMAT(1X,Z)

Intel® Fortran Compiler Classic and Intel® Fortran Compiler Developer Guide and Reference 1

1477

2 FORMAT("Use subnormals",1X,E40.25)

 x = 0.0
 y = tiny(x)

 ! Print as real values
 ! print 2, x, y

 ! Expect non-zero numbers
 !
 do i = 1, 20
 y = y / 2.0
 print 1,y
 enddo
 !-- End example of user code using subnorms

 end subroutine use_subnorms
 !-- end of file USE.F90

 !-- File FLUSH.F90 starts here
subroutine flush_subnorms
 use, intrinsic :: ieee_arithmetic
 use ifcore
 use, intrinsic :: ieee_features
 implicit none

 !--- Declaration for use in example code
 real, volatile :: x, y
 integer i
 !--- End declarations for example code

 integer(4) :: orig_flags, off_flags, new_flags

 if (ieee_support_subnormal()) then
 print *, "Subnormals already supported; turn off"
 orig_flags = for_get_fpe()

 off_flags = IOR(FPE_M_ABRUPT_UND, FPE_M_ABRUPT_DMZ)
 off_flags = IOR(off_flags, FPE_M_TRAP_UND)
 off_flags = IOR(off_flags, FPE_M_MSG_UND)

 new_flags = IOR(orig_flags, off_flags)
 orig_flags = for_set_fpe(new_flags)

 if (ieee_support_subnormal()) then
 print *, "Error: Subnormals still supported after FOR_SET_FPE call"
 else
 print *, "Subnormals are now NOT supported, should flush to zero"
 end if

 else
 print *, "Subnormals already not supported"
 end if

 !-- Begin example of user code doing flush-to-zero

1 FORMAT(1X,Z)
2 FORMAT("Flush to zero",1X,E40.25)

 1 Intel® Fortran Compiler Classic and Intel® Fortran Compiler Developer Guide and Reference

1478

 x = 0.0
 y = tiny(x)

 ! Print as real values
 !
 print 2, x, y

 ! Expect zeros
 !
 do i = 1, 20
 y = y / 2.0
 print 1,y
 enddo

 !-- End example of user code doing flush-to-zero

end subroutine flush_subnorms
 !-- end of file FLUSH.F90

 !-- File MAIN.F90 starts here
program example
 implicit none

 call use_subnorms ! Will use subnorms
 call flush_subnorms ! Will flush
 call use_subnorms ! Will also flush, but WON'T use subnorms!

end program example
 !-- end of file MAIN.F90

You can specify the following lines to compile and link the above program:

ifx -c -fpic -no-ftz -fpe3 use.f90
ifx -c -fpic -ftz flush.f90
ifx -c -fpic main.f90
ifx -o main.exe main.o use.o flush.o

FOR_SET_FTN_ALLOC
Runtime Function: Lets you specify your own routine
to dynamically allocate common blocks. This function
is especially useful when you are sharing libraries.

Syntax
result = FOR_SET_FTN_ALLOC(alloc_routine)

alloc_routine (Input) Character. Is the name of a user-defined allocation routine.
The routine takes the same arguments as the routine prototype
_FTN_ALLOC, which is defined in module IFCORE. For more
information on _FTN_ALLOC and its arguments, see Allocating
Common Blocks.

Results

The result has the same type as the type of the argument. The return value is a pointer to the previous
allocation routine you specified for allocation of COMMONs, or to a null pointer if you did not specify a
previous allocation routine.

Intel® Fortran Compiler Classic and Intel® Fortran Compiler Developer Guide and Reference 1

1479

The caller of FOR_SET_FTN_ALLOC must include a USE IFCOMMONALLOC statement. The allocation routine
should include ISO_C_BINDING so it can correctly declare the arguments.

This function takes precedence over _FTN_ALLOC.

Example

The following shows an example of a user-defined routine that can be used with FOR_SET_FTN_ALLOC.

Note that you must compile the program using option [Q]dyncom to name the commons you want to be
dynamically allocated.

! User's allocation routine
!
subroutine my_Fortran_alloc_routine (mem, size, name)
 use, intrinsic :: ISO_C_BINDING
 implicit none

 type(C_PTR), intent(OUT) :: mem
 integer(C_INT), intent(INOUT) :: size
 character, dimension(*), intent(IN) :: name

 ! Users would put their allocation code here. This example text
 ! does not contain code to allocate memory.

end subroutine my_Fortran_alloc_routine

! This routine uses module IFCOMMONALLOC to swap allocation
! routines for dynamic COMMONs.
!
subroutine swap_alloc_routines(for_old)
 use ifcommonalloc
 use, intrinsic :: ISO_C_BINDING
 implicit none

 logical for_old

 ! The routine to use, defined above.
 !
 procedure(alloc_rtn) :: my_Fortran_alloc_routine

 ! Where to save the old one.
 !
 type(C_FUNPTR) :: saved_alloc_routine

 ! Do the swap
 !
 print *, "my_Fortran_alloc_routine"
 if (for_old) then
 saved_alloc_routine = set_ftn_alloc(C_FUNLOC(my_Fortran_alloc_routine))
 else
 saved_alloc_routine = set_ftn_alloc(saved_alloc_routine)
 end if

end subroutine swap_alloc_routines

! Routines with dynamic commons would go here

 1 Intel® Fortran Compiler Classic and Intel® Fortran Compiler Developer Guide and Reference

1480

! The main program doesn't need to know about module IFCOMMONALLOC.
!
program main
 implicit none

 ! Dynamic commons in routines first called in this region will use the
 ! default allocation method.

 swap_alloc_routines(.true.)

 ! Dynamic commons in routines first called in this region will use
 ! my_Fortran_alloc_routine.

 swap_alloc_routines(.false.)

 ! Dynamic commons in routines first called in this region will use the
 ! default allocation method.

end program main

See Also
Allocating Common Blocks
dyncom, Qdyncom compiler option
ISO_C_BINDING

FOR_SET_REENTRANCY
Runtime Function: Controls the type of reentrancy
protection that the Fortran Runtime Library (RTL)
exhibits. This routine can be called from a C or Fortran
program.

Module

USE IFCORE

Syntax
result = FOR_SET_REENTRANCY (mode)

mode Must be of type INTEGER(4) and contain one of the following options:

FOR_K_REENTRANCY_N
ONE

Tells the Fortran RTL to perform simple
locking around critical sections of RTL code.
This type of reentrancy should be used when
the Fortran RTL will not be reentered due to
asynchronous system traps (ASTs) or
threads within the application.

FOR_K_REENTRANCY_A
SYNCH

Tells the Fortran RTL to perform simple
locking and disables ASTs around critical
sections of RTL code. This type of reentrancy
should be used when the application contains
AST handlers that call the Fortran RTL.

FOR_K_REENTRANCY_T
HREADED

Tells the Fortran RTL to perform thread
locking. This type of reentrancy should be
used in multithreaded applications.

Intel® Fortran Compiler Classic and Intel® Fortran Compiler Developer Guide and Reference 1

1481

FOR_K_REENTRANCY_I
NFO

Tells the Fortran RTL to return the current
reentrancy mode.

Results

The result type is INTEGER(4). The return value represents the previous setting of the Fortran Runtime
Library reentrancy mode, unless the argument is FOR_K_REENTRANCY_INFO, in which case the return value
represents the current setting.

You must be using an RTL that supports the level of reentrancy you desire. For example,
FOR_SET_REENTRANCY ignores a request for thread protection (FOR_K_REENTRANCY_THREADED) if you do
not build your program with the thread-safe RTL.

Example

 PROGRAM SETREENT
 USE IFCORE
 INTEGER*4 MODE
 CHARACTER*10 REENT_TXT(3) /'NONE ','ASYNCH ','THREADED'/
 PRINT*,'Setting Reentrancy mode to ',REENT_TXT(MODE+1)
 MODE = FOR_SET_REENTRANCY(FOR_K_REENTRANCY_NONE)
 PRINT*,'Previous Reentrancy mode was ',REENT_TXT(MODE+1)
 MODE = FOR_SET_REENTRANCY(FOR_K_REENTRANCY_INFO)
 PRINT*,'Current Reentrancy mode is ',REENT_TXT(MODE+1)
 END

FOR_SFENCE
Runtime Subroutine: Inserts a memory store fence
instruction that ensures completion of preceding store
instructions.

Module

USE IFCORE

Syntax
CALL FOR_SFENCE ()
Using this subroutine guarantees that in program order, every store instruction that precedes the store fence
instruction is globally visible before any store instruction that follows the store fence.

FORALL
Statement and Construct: The FORALL statement
and construct is an element-by-element generalization
of the masked array assignment in the WHERE
statement and construct. It allows more general array
shapes to be assigned, especially in construct form.
The FORALL construct is an obsolescent language
feature in Fortran 2018.

Syntax
Statement:

FORALL (triplet-spec[, triplet-spec] ...[, mask-expr]) assign-stmt
Construct:

[name:] FORALL (triplet-spec[, triplet-spec] ...[, mask-expr])
 forall-body-stmt

 1 Intel® Fortran Compiler Classic and Intel® Fortran Compiler Developer Guide and Reference

1482

 [forall-body-stmt]...
END FORALL [name]

triplet-spec Is a triplet specification with the following form:

[type::] subscript-name = subscript-1: subscript-2[:
stride]
The type is an optional integer data type. If type appears, the
subscript-name has the specified type and type parameters.
Otherwise, it has the type and type parameters that it would have if it
were the name of a variable in the innermost executable construct or
scoping unit.

If type does not appear, the subscript-name must not be the same as
a local identifier, an accessible global identifier, or an identifier of an
outer construct entity, except for a common block name or a scalar
variable name.

The subscript-name is a scalar of type integer. It is valid only within
the scope of the FORALL; its value is undefined on completion of the
FORALL.

The subscripts and stride cannot contain a reference to any subscript-
name in triplet-spec.

The stride cannot be zero. If it is omitted, the default value is 1.

Evaluation of an expression in a triplet specification must not affect
the result of evaluating any other expression in another triplet
specification.

mask-expr Is a logical array expression (called the mask expression). If it is
omitted, the value .TRUE. is assumed. The mask expression can
reference the subscript name in triplet-spec.

Description

If a construct name is specified in the FORALL statement, the same name must appear in the corresponding
END FORALL statement.

A FORALL statement is executed by first evaluating all bounds and stride expressions in the triplet
specifications, giving a set of values for each subscript name. The FORALL assignment statement is executed
for all combinations of subscript name values for which the mask expression is true.

The FORALL assignment statement is executed as if all expressions (on both sides of the assignment) are
completely evaluated before any part of the left side is changed. Valid values are assigned to corresponding
elements of the array being assigned to. No element of an array can be assigned a value more than once.

A FORALL construct is executed as if it were multiple FORALL statements, with the same triplet specifications
and mask expressions. Each statement in the FORALL body is executed completely before execution begins
on the next FORALL body statement.

Any procedure referenced in the mask expression or FORALL assignment statement must be pure.

Pure functions can be used in the mask expression or called directly in a FORALL statement. Pure subroutines
cannot be called directly in a FORALL statement, but can be called from other pure procedures.

Starting with Fortran 2018, the FORALL statement and construct are obsolescent features.

Intel® Fortran Compiler Classic and Intel® Fortran Compiler Developer Guide and Reference 1

1483

Example

The following example, which is not expressible using array syntax, sets diagonal elements of an array to 1:

 REAL, DIMENSION(N, N) :: A
 FORALL (I=1:N) A(I, I) = 1

Consider the following:

 FORALL(I = 1:N, J = 1:N, A(I, J) .NE. 0.0) B(I, J) = 1.0 / A(I, J)
This statement takes the reciprocal of each nonzero element of array A(1:N, 1:N) and assigns it to the
corresponding element of array B. Elements of A that are zero do not have their reciprocal taken, and no
assignments are made to corresponding elements of B.

Every array assignment statement and WHERE statement can be written as a FORALL statement, but some
FORALL statements cannot be written using just array syntax. For example, the preceding FORALL statement
is equivalent to the following:

 WHERE(A /= 0.0) B = 1.0 / A
However, the following FORALL example cannot be written using just array syntax:

 FORALL(I = 1:N, J = 1:N) H(I, J) = 1.0/REAL(I + J - 1)
This statement sets array element H(I, J) to the value 1.0/REAL(I + J - 1) for values of I and J between 1
and N.

Consider the following:

TYPE MONARCH
 INTEGER, POINTER :: P
END TYPE MONARCH
TYPE(MONARCH), DIMENSION(8) :: PATTERN
INTEGER, DIMENSION(8), TARGET :: OBJECT
FORALL(J=1:8) PATTERN(J)%P => OBJECT(1+IEOR(J-1,2))

This FORALL statement causes elements 1 through 8 of array PATTERN to point to elements 3, 4, 1, 2, 7, 8,
5, and 6, respectively, of OBJECT. IEOR can be referenced here because it is pure.

The following example shows a FORALL construct:

FORALL(I = 3:N + 1, J = 3:N + 1)
 C(I, J) = C(I, J + 2) + C(I, J - 2) + C(I + 2, J) + C(I - 2, J)
 D(I, J) = C(I, J)
END FORALL

The assignment to array D uses the values of C computed in the first statement in the construct, not the
values before the construct began execution.

See Also
WHERE

FORMAT
Statement: Specifies the form of data being
transferred and the data conversion (editing) required
to achieve that form.

Syntax
FORMAT (format-list)

format-list Is a list of one or more of the following edit descriptors, separated by
commas or slashes (/):

 1 Intel® Fortran Compiler Classic and Intel® Fortran Compiler Developer Guide and Reference

1484

Data edit descriptors: I, B, O, Z, F, E, EN, ES, D, G, L,
and A.

Control edit descriptors: T, TL, TR, X, S, SP, SS, BN, BZ,
P, :, /, $, \, and Q.

String edit descriptors: H, 'c', and "c", where c is a
character constant.

A comma can be omitted in the following cases:

• Between a P edit descriptor and an immediately following F, E, EN,
ES, D, or G edit descriptor

• Before a slash (/) edit descriptor when the optional repeat
specification is not present

• After a slash (/) edit descriptor
• Before or after a colon (:) edit descriptor

Edit descriptors can be nested and a repeat specification can precede
data edit descriptors, the slash edit descriptor, or a parenthesized list
of edit descriptors.

Description

A FORMAT statement must be labeled.

Named constants are not permitted in format specifications.

If the associated I/O statement contains an I/O list, the format specification must contain at least one data
edit descriptor or the control edit descriptor Q.

Blank characters can precede the initial left parenthesis, and additional blanks can appear anywhere within
the format specification. These blanks have no meaning unless they are within a character string edit
descriptor.

When a formatted input statement is executed, the setting of the BLANK specifier (for the relevant logical
unit) determines the interpretation of blanks within the specification. If the BN or BZ edit descriptors are
specified for a formatted input statement, they supersede the default interpretation of blanks. (For more
information on BLANK defaults, see the OPEN statement.

For formatted input, you can use the comma as an external field separator. The comma terminates the input
of fields (for noncharacter data types) that are shorter than the number of characters expected. It can also
designate null (zero-length) fields.

The first character of a record transmitted to a line printer or terminal is typically used for carriage control; it
is not printed. The first character of such a record should be a blank, 0, 1, $,+, or ASCII NUL. Any other
character is treated as a blank.

A format specification cannot specify more output characters than the external record can contain. For
example, a line printer record cannot contain more than 133 characters, including the carriage control
character.

Whenever an edit descriptor requires an integer constant, you can specify an expression enclosed in angle
brackets (< and >). For more information, see Variable Format Expressions.

The integer expression can be any valid Fortran expression, including function calls and references to dummy
arguments, with the following restrictions:

• Expressions cannot be used with the H edit descriptor.
• Expressions cannot contain graphical relational operators (such as > and <).

Intel® Fortran Compiler Classic and Intel® Fortran Compiler Developer Guide and Reference 1

1485

The value of the expression is reevaluated each time an input/output item is processed during the execution
of the READ, WRITE, or PRINT statement.

The following tables summarize the different kinds of edit descriptors:

Data Edit Descriptors

Code Form 1 Effect

A A[w] Transfers character or Hollerith
values.

B Bw[.m] Transfers binary values.

D Dw.d Transfers real values with D
exponents.

E Ew.d[Ee] Transfers real values with E
exponents.

EN ENw.d[Ee] Transfers real values with
engineering notation.

ES ESw.d[Ee] Transfers real values with
scientific notation.

F Fw.d Transfers real values with no
exponent.

G Gw.d[Ee] Transfers values of all intrinsic
types.

I Iw[.m] Transfers decimal integer values.

L Lw Transfers logical values: on input,
transfers characters; on output,
transfers T or F.

O Ow[.m] Transfers octal values.

Z Zw[.m] Transfers hexadecimal values.

1w is the field width.

m is the minimum number of digits that must be in the field (including zeros).

d is the number of digits to the right of the decimal point.

E is the exponent field.

e is the number of digits in the exponent.

Control Edit Descriptors

Code Form Effect

BN BN Ignores embedded and trailing
blanks in a numeric input field.

BZ BZ Treats embedded and trailing
blanks in a numeric input field as
zeros.

 1 Intel® Fortran Compiler Classic and Intel® Fortran Compiler Developer Guide and Reference

1486

Code Form Effect

P kP Interprets certain real numbers
with a specified scale factor.

Q Q Returns the number of characters
remaining in an input record.

S S Reinvokes optional plus sign (+)
in numeric output fields; counters
the action of SP and SS.

SP SP Writes optional plus sign (+) into
numeric output fields.

SS SS Suppresses optional plus sign (+)
in numeric output fields.

T Tn Tabs to specified position.

TL TLn Tabs left the specified number of
positions.

TR TRn Tabs right the specified number
of positions.

X nX Skips the specified number of
positions.

$ $ Suppresses trailing carriage
return during interactive I/O.

: : Terminates format control if there
are no more items in the I/O list.

/ [r]/ Terminates the current record
and moves to the next record.

\ \ Continues the same record; same
as $.

String Edit Descriptors

Code Form Effect

H nHch[ch...] Transfers characters following the
H edit descriptor to an output
record.

'c' 2 'c' Transfers the character literal
constant (between the delimiters)
to an output record.

2 These delimiters can also be quotation marks (").

Example

 INTEGER width, value
 width = 2
 read (*,1) width, value

Intel® Fortran Compiler Classic and Intel® Fortran Compiler Developer Guide and Reference 1

1487

! if the input is 3123, prints 123, not 12
1 format (i1, i<width>)
 print *, value
 END

See Also
I/O Formatting
Format Specifications
Variable Format Expressions
Data Edit Descriptors

FORM TEAM
Statement: Defines team variables; creates one or
more teams of images from the images on the current
team.

Syntax

The FORM TEAM statement takes the following form:

FORM TEAM(team-number, team-variable [, form-team-spec-list])

team-number Is a scalar-integer-expression.

team-variable Is a scalar variable of type TEAM_TYPE defined in the intrinsic module
ISO_FORTRAN_ENV.

form-team-spec NEW_INDEX = scalar-integer-expression

or sync-stat-list

sync-stat-list Is STAT= stat-var or ERRMSG = err-var

stat-var Is a scalar integer variable in which the status of the FORM TEAM
operation is stored.

err-var Is a scalar default character variable in which explanatory text is
stored if an error occurs.

The form-team-spec items can appear in any order. Each specifier in a FORM TEAM statement can appear at
most once. stat-var and err-var cannot be coindexed variables.

Description

A FORM TEAM statement creates a new team for each unique team-number specified by the active images of
the current team. The teams are identified by their team numbers, which are positive integers. An image
becomes a member of the team-number specified on the FORM TEAM statement the image executes. The
team-variable becomes defined with values that describe the team.

An image index must be positive and less than or equal to n, the number of images on the team. If
NEW_INDEX= is specified, the value of the scalar-integer-expression is the image index the image executing
the FORM TEAM statement will have on its new team. Its value must be different from any value specified for
every other image that is assigned to the same new team. If NEW_IMAGE= is not specified, the image is
given a processor-dependent unique image index in the range 1, 2, … n on the new team.

All active images of the current team must execute the same FORM TEAM statement. An implicit SYNC ALL
occurs at the FORM TEAM statement. Execution of the segment following the FORM TEAM statement is
delayed until other images of the current team have executed the same FORM TEAM statement the same
number of times. FORM TEAM is an image control statement; all segments executed before the FORM TEAM
statement precede all segments that execute after the FORM TEAM statement.

 1 Intel® Fortran Compiler Classic and Intel® Fortran Compiler Developer Guide and Reference

1488

If STAT= appears and no error occurs, stat-var becomes defined with the value 0. If an image on the current
team has executed a STOP statement, stat-var is assigned the value STAT_STOPPED_IMAGE from the
intrinsic module ISO_FORTRAN_ENV. If there is a failed image on the current team and no other error occurs,
stat-var is assigned the value STAT_FAILED_IMAGE from ISO_FORTRAN_ENV. Otherwise, stat-var is assigned
a positive integer value different from STAT_FAILED_IMAGE and STAT_STOPPED_IMAGE.

team-variable becomes undefined if an error condition occurs.

Examples

Example 1:

 USE ISO_FORTRAN_ENV
 TYPE (TEAM_TYPE) :: one_or_two
 IF (THIS_IMAGE() .LE. NUM_IMAGES() / 2) THEN
 new_team = 1
 ELSE
 new_team = 2
 END IF
 FORM TEAM (new_team, one_or_two)

If the initial team has seven images, and the initial team executes the above FORM TEAM statement, two
teams are formed. The new image indices are assigned by the runtime system in a processor-dependent
manner.

Team number 1 has three images, images [1, 2, 3] of the initial team with new image indices [1, 2, 3]. Team
number 2 has four images, images [4, 5, 6, 7] from the initial team, with new image indices [1, 2, 3, 4]. The
team variable one_or_two on initial team images [1, 2, 3] collectively describe team number 1, while the
team variable one_or_two on the initial team images [4, 5, 6, 7] collectively describe team number 2.

Example 2:

 USE ISO_FORTRAN_ENV
 TYPE (TEAM_TYPE) :: odd_even
 FORM TEAM (2-MOD(THIS_IMAGE(), 2), odd_even)

If a team with 10 images executes the above code, two teams are formed. Team number 1 contains the odd
numbered images [1, 3, 5, 7, 9] of the parent team, and team number 2 contains the even numbered
images [2, 4, 6, 8, 10] of the parent. New image indices on each team are assigned by the processor. The
team variable odd_even across the odd numbered images on the parent team collectively describe team
number 1, and the team variable odd_even across the even numbered images on the parent team
collectively describe team number 2.

Example 3:

 USE ISO_FORTRAN_ENV
 INTEGER, PARAMETER :: n = 4
 TYPE (TEAM_TYPE) :: column
 REAL,CODIMENSION[n, *] :: co_array
 INTEGER,DIMENSION(2) :: my_cosubscripts
 my_cosubscripts (:) = THIS_IMAGE(co_array)
 FORM TEAM (my_cosubscripts(2), column, NEW_INDEX = my_cosubscripts(1))

If there are 16 images on the initial team, the scalar coarray co_array will be distributed across a 4x4 grid
of processors. The image indices of the 4x4 grid are:

1 5 9 13

2 6 10 14

3 7 11 15

4 8 12 16

Intel® Fortran Compiler Classic and Intel® Fortran Compiler Developer Guide and Reference 1

1489

THIS_IMAGE (co_array) will return a two element array of integer cosubscripts of co_array on the image
that executes the reference to THIS_IMAGE. The cosubscripts of each image are:

1,1 1,2 1,3 1,4

2,1 2,2 2,3 2,4

3,1 3,2 3,3 3,4

4,1 4,2 4,3 4,4

Execution of the FORM TEAM statement divides the initial team into four teams of four images. Each team
contains the images of one column of the grid of processors. The team number of each team is the column
number in the processor grid, and the image indices on each new team are the row indices of the processor
grid. The new image numbers on each team are shown below:

Team
Number

1 2 3 4

1 1 1 1

2 2 2 2

3 3 3 3

4 4 4 4

Example 4:

This example divides a 4x4 grid of images into 4 2x2 grids of images. Team numbers are assigned in the
FORM TEAM statement that reflect the position of each team in the grid of subteams. The example also
shows the use of NEW_INDEX to assign image indices to the images of the new teams.

The image indices of the 4x4 grid are:

1 5 9 13

2 6 10 14

3 7 11 15

4 8 12 16

The 2x2 grids are laid out and identified symbolically and with team numbers as:

top_lef
t (1,1)

top_rig
ht (1,2)

bot_lef
t (2,1)

bot_rig
ht (2,2)

The image numbers on each of the teams in the 2x2 grids become:

1 3 1 3

2 4 2 4

1 3 1 3

2 4 2 4

 PROGRAM MAIN
 USE ISO_FORTRAN_ENV
 INTEGER,PARAMETER :: top_left=11, bot_left=21, top_right=12, bot_right=22
 INTEGER,DIMENSION(16) :: quads = [top_left, top_left, bot_left, bot_left, &
 top_left, top_left, bot_left_ bot_left, &
 top_right, top_right, bot_right, bot_right, &
 top_right, top_right, bot_right, bot_right]
 INTEGER,DIMENSION(16) :: images = [1,2,1,2,3,4,3,4,1,2,1,2,3,4,3,4]
 TYPE(TEAM_TYPE) :: quadrants
 INTEGER :: me

 me = THIS_IMAGE()

 1 Intel® Fortran Compiler Classic and Intel® Fortran Compiler Developer Guide and Reference

1490

 FORM TEAM (quads(me), quadrants, NEW_INDEX=images(me))
 . . .
 END PROGRAM

Example 5:

 USE ISO_FORTRAN_ENV
 TYPE (TEAM_TYPE) :: original
 FORM TEAM (1, original, NEW_INDEX = THIS_IMAGE())

This example forms a single subteam described by the team variable original. The subteam has the same
number of images as the initial team, and each image has the same image number on the initial team as on
the subteam. However, original describes a team that is different but functionally the same as the initial
team. It has a parent team, while the initial team does not.

See Also
Image Control Statements
Coarrays
Using Coarrays

FP_CLASS
Elemental Intrinsic Function (Generic): Returns
the class of an IEEE* real (binary32, binary64, and
binary128) argument. This function cannot be passed
as an actual argument.

Syntax
result = FP_CLASS (x)

x (Input) Must be of type real.

Results

The result type is INTEGER(4). The return value is one of the following:

Class of Argument Return Value

Signaling NaN FOR_K_FP_SNAN

Quiet NaN FOR_K_FP_QNAN

Positive Infinity FOR_K_FP_POS_INF

Negative Infinity FOR_K_FP_NEG_INF

Positive Normalized Number FOR_K_FP_POS_NORM

Negative Normalized Number FOR_K_FP_NEG_NORM

Positive Subnormal Number FOR_K_FP_POS_DENORM

Negative Subnormal Number FOR_K_FP_NEG_DENORM

Positive Zero FOR_K_FP_POS_ZERO

Negative Zero FOR_K_FP_NEG_ZERO

The preceding return values are defined in file for_fpclass.for.

Intel® Fortran Compiler Classic and Intel® Fortran Compiler Developer Guide and Reference 1

1491

Example

FP_CLASS (4.0_8) has the value 4 (FOR_K_FP_POS_NORM).

FPUTC
Portability Function: Writes a character to the file
specified by a Fortran external unit, bypassing normal
Fortran input/output.

Module

USE IFPORT

Syntax
result = FPUTC (lunit,char)

lunit (Input) INTEGER(4). Unit number of a file.

char (Output) Character*(*). Variable whose value is to be written to the
file corresponding to lunit.

Results

The result type is INTEGER(4). The result is zero if the write was successful; otherwise, an error code, such
as:

EINVAL - The specified unit is invalid (either not already open, or an invalid unit number)

If you use WRITE, READ, or any other Fortran I/O statements with lunit, be sure to read Input and Output
Routines in Overview of Portability Routines.

Example

use IFPORT
integer*4 lunit, i4
character*26 string
character*1 char1
lunit = 1
open (lunit,file = 'fputc.dat')
do i = 1,26
 char1 = char(123-i)
 i4 = fputc(1,char1) !make valid writes
 if (i4.ne.0) iflag = 1
enddo
rewind (1)
read (1,'(a)') string
print *, string

See Also
I/O Formatting

FRACTION
Elemental Intrinsic Function (Generic): Returns
the fractional part of the model representation of the
argument value.

Syntax
result = FRACTION (x)

 1 Intel® Fortran Compiler Classic and Intel® Fortran Compiler Developer Guide and Reference

1492

x (Input) Must be of type real.

Results

The result type and kind are the same as x.

The result has the value x* b e. Parameters b and e are defined in Model for Real Data.

If x has the value zero, the result has the value zero.

Example

If 3.0 is a REAL(4) value, FRACTION (3.0) has the value 0.75.

The following shows another example:

REAL result
result = FRACTION(3.0) ! returns 0.75
result = FRACTION(1024.0) ! returns 0.5

See Also
DIGITS
RADIX
EXPONENT
Data Representation Models

FREE
Intrinsic Subroutine (Specific): Frees a block of
memory that is currently allocated. Intrinsic
subroutines cannot be passed as actual arguments.

Syntax
CALL FREE (addr)

addr (Input) Must be of type INTEGER(4) on IA-32 architecture;
INTEGER(8) on Intel® 64 architecture. This value is the starting
address of the memory block to be freed, previously allocated by
MALLOC.

If the freed address was not previously allocated by MALLOC, or if an address is freed more than once,
results are unpredictable.

Example

 INTEGER(4) SIZE
 REAL(4) STORAGE(*)
 POINTER (ADDR, STORAGE) ! ADDR will point to STORAGE
 SIZE = 1024 ! Size in bytes
 ADDR = MALLOC(SIZE) ! Allocate the memory
 CALL FREE(ADDR) ! Free it

FREEFORM and NOFREEFORM
General Compiler Directives: FREEFORM specifies
that source code is in free-form format. NOFREEFORM
specifies that source code is in fixed-form format.

Syntax
!DIR$ FREEFORM

Intel® Fortran Compiler Classic and Intel® Fortran Compiler Developer Guide and Reference 1

1493

!DIR$ NOFREEFORM
When the FREEFORM or NOFREEFORM directives are used, they remain in effect for the remainder of the
source or include file in which the directive appears, or until the opposite directive is used. When in effect,
they apply to include files, but do not affect USE modules, which are compiled separately.

source or include file in which the directive appears

Example

Consider the following:

 SUBROUTINE F (A, NX,NY,I1,I2,J1,J2)
! is in column 1 and fixed form
! X is in column 7
 REAL (8) :: A (NX,NY)
!DIR$ ASSUME_ALIGNED A:32
!DIR$ FREEFORM ! what follows is freeform
 !DIR$ ASSUME (MOD(NX,8) .EQ. 0)
 ! ensure that the first array access in the loop is aligned
 !DIR$ ASSUME (MOD(I1,8) .EQ. 1)
 DO J=J1,J2
 DO I=I1,I2
 A(I,J) = A(I,J) + A(I,J+1) + A(I,J-1)
 ENDDO
 ENDDO
 !DIR$ NOFREEFORM ! and now back to fixed form
 END SUBROUTINE F

See Also
Source Forms
General Compiler Directives
Syntax Rules for Compiler Directives
free compiler option
Equivalent Compiler Options

FSEEK
Portability Function: Repositions a file specified by a
Fortran external unit.

Module

USE IFPORT

Syntax
result = FSEEK (lunit,offset,from)

lunit (Input) INTEGER(4). External unit number of a file.

offset (Input) INTEGER(4) or INTEGER(8). Offset in bytes, relative to from,
that is to be the new location of the file marker.

from (Input) INTEGER(4). A position in the file. It must be one of the
following:

 1 Intel® Fortran Compiler Classic and Intel® Fortran Compiler Developer Guide and Reference

1494

Value Variable Position

0 SEEK_SET Positions the file
relative to the
beginning of the file.

1 SEEK_CUR Positions the file
relative to the
current position.

2 SEEK_END Positions the file
relative to the end of
the file.

Results

The result type is INTEGER(4). The result is zero if the repositioning was successful; otherwise, an error
code, such as:

EINVAL: The specified unit is invalid because either the unit is not already open, an invalid unit number was
specified, or the from parameter is invalid.

The file specified in lunit must be open.

Example

USE IFPORT
integer(4) istat, offset, ipos
character ichar
OPEN (unit=1,file='datfile.dat')
offset = 5
ipos = 0
istat=fseek(1,offset,ipos)
if (.NOT. stat) then
 istat=fgetc(1,ichar)
 print *, 'data is ',ichar
end if

FSTAT
Portability Function: Returns detailed information
about a file specified by a external unit number.

Module

USE IFPORT

Syntax
result = FSTAT (lunit,statb)

lunit (Input) INTEGER(4). External unit number of the file to examine.

statb (Output) INTEGER(4) or INTEGER(8). One-dimensional array of size
12; where the system information is stored. The elements of statb
contain the following values:

Intel® Fortran Compiler Classic and Intel® Fortran Compiler Developer Guide and Reference 1

1495

Element Description Values or Notes

statb(1) Device the file
resides on

Windows: Always 0

Linux: System
dependent

statb(2) File inode number Windows: Always 0

Linux: System
dependent

statb(3) Access mode of the
file

See the table in
Results

statb(4) Number of hard links
to the file

Windows: Always 1

Linux: System
dependent

statb(5) User ID of owner Windows: Always 1

Linux: System
dependent

statb(6) Group ID of owner Windows: Always 1

Linux: System
dependent

statb(7) Raw device the file
resides on

Windows: Always 0

Linux: System
dependent

statb(8) Size of the file

statb(9) Time when the file
was last accessed1

Windows: Only
available on non-FAT
file systems;
undefined on FAT
systems

Linux: System
dependent

statb(10) Time when the file
was last modified1

statb(11) Time of last file
status change1

Windows: Same as
stat(10)

Linux: System
dependent

statb(12) Blocksize for file
system I/O
operations

Windows: Always 1

Linux: System
dependent

 1 Intel® Fortran Compiler Classic and Intel® Fortran Compiler Developer Guide and Reference

1496

Element Description Values or Notes

1Times are in the same format returned by the TIME function
(number of seconds since 00:00:00 Greenwich mean time, January
1, 1970).

Results

The result type is INTEGER(4). The result is zero if successful; otherwise, returns an error code equal to
EINVAL (lunit is not a valid unit number, or is not open).

The access mode (the third element of statb) is a bitmap consisting of an IOR of the following constants:

Symbolic name Constant Description Notes

S_IFMT O'0170000' Type of file

S_IFDIR O'0040000' Directory

S_IFCHR O'0020000' Character special Never set on Windows*
systems

S_IFBLK O'0060000' Block special Never set on Windows
systems

S_IFREG O'0100000' Regular

S_IFLNK O'0120000' Symbolic link Never set on Windows
systems

S_IFSOCK O'0140000' Socket Never set on Windows
systems

S_ISUID O'0004000' Set user ID on
execution

Never set on Windows
systems

S_ISGID O'0002000' Set group ID on
execution

Never set on Windows
systems

S_ISVTX O'0001000' Save swapped text Never set on Windows
systems

S_IRWXU O'0000700' Owner's file permissions

S_IRUSR, S_IREAD O'0000400' Owner's read permission Always true on Windows
systems

S_IWUSR, S_IWRITE O'0000200' Owner's write
permission

S_IXUSR, S_IEXEC O'0000100' Owner's execute
permission

Based on file extension
(.EXE, .COM, .CMD,
or .BAT)

S_IRWXG O'0000070' Group's file permissions Same as S_IRWXU on
Windows systems

S_IRGRP O'0000040' Group's read permission Same as S_IRUSR on
Windows systems

Intel® Fortran Compiler Classic and Intel® Fortran Compiler Developer Guide and Reference 1

1497

Symbolic name Constant Description Notes

S_IWGRP O'0000020' Group's write permission Same as S_IWUSR on
Windows systems

S_IXGRP O'0000010' Group's execute
permission

Same as S_IXUSR on
Windows systems

S_IRWXO O'0000007' Other's file permissions Same as S_IRWXU on
Windows systems

S_IROTH O'0000004' Other's read permission Same as S_IRUSR on
Windows systems

S_IWOTH O'0000002' Other's write permission Same as S_IWUSR on
Windows systems

S_IXOTH O'0000001' Other's execute
permission

Same as S_IXUSR on
Windows systems

STAT returns the same information as FSTAT, but accesses files by name instead of external unit number.

Example

USE IFPORT
integer(4) statarray(12), istat
OPEN (unit=1,file='datfile.dat')
ISTAT = FSTAT (1, statarray)
if (.NOT. istat) then
 print *, statarray
end if

See Also
INQUIRE
STAT

FTELL, FTELLI8
Portability Functions: Return the current position of
a file.

Module

USE IFPORT

Syntax
result = FTELL (lunit)
result = FTELLI8 (lunit)

lunit (Input) INTEGER(4). External unit number of a file.

Results

The result type is INTEGER(4) for FTELL; INTEGER(8) for FTELLI8. The result is the offset, in bytes, from the
beginning of the file. A negative value indicates an error, which is the negation of the IERRNO error code. The
following is an example of an error code:

EINVAL: lunit is not a valid unit number, or is not open.

 1 Intel® Fortran Compiler Classic and Intel® Fortran Compiler Developer Guide and Reference

1498

FULLPATHQQ
Portability Function: Returns the full path for a
specified file or directory.

Module

USE IFPORT

Syntax
result = FULLPATHQQ (name,pathbuf)

name (Input) Character*(*). Item for which you want the full path. Can be
the name of a file in the current directory, a relative directory or file
name, or a network uniform naming convention (UNC) path.

pathbuf (Output) Character*(*). Buffer to receive full path of the item
specified in name.

Results

The result type is INTEGER(4). The result is the length of the full path in bytes, or 0 if the function fails. This
function does not verify that the resulting path and file name are valid nor that they exist.

The length of the full path depends upon how deeply the directories are nested on the drive you are using. If
the full path is longer than the character buffer provided to return it (pathbuf), FULLPATHQQ returns only
that portion of the path that fits into the buffer.

Check the length of the path before using the string returned in pathbuf. If the longest full path you are likely
to encounter does not fit into the buffer you are using, allocate a larger character buffer. You can allocate the
largest possible path buffer with the following statements:

 USE IFPORT
 CHARACTER($MAXPATH) pathbuf

$MAXPATH is a symbolic constant defined in IFPORT.F90 as 260.

Example

 USE IFPORT
 USE IFCORE
 CHARACTER($MAXPATH) buf
 CHARACTER(3) drive
 CHARACTER(256) dir
 CHARACTER(256) name
 CHARACTER(256) ext
 CHARACTER(256) file
 INTEGER(4) len
 DO WHILE (.TRUE.)
 WRITE (*,*)
 WRITE (*,'(A, \)') ' Enter filename (Hit &
 RETURN to exit): '
 len = GETSTRQQ(file)
 IF (len .EQ. 0) EXIT
 len = FULLPATHQQ(file, buf)
 IF (len .GT. 0) THEN
 WRITE (*,*) buf(:len)
 ELSE
 WRITE (*,*) 'Can''t get full path'
 EXIT
 END IF

Intel® Fortran Compiler Classic and Intel® Fortran Compiler Developer Guide and Reference 1

1499

!
! Split path
 WRITE (*,*)
 len = SPLITPATHQQ(buf, drive, dir, name, ext)
 IF (len .NE. 0) THEN
 WRITE (*, 900) ' Drive: ', drive
 WRITE (*, 900) ' Directory: ', dir(1:len)
 WRITE (*, 900) ' Name: ', name
 WRITE (*, 900) ' Extension: ', ext
 ELSE
 WRITE (*, *) 'Can''t split path'
 END IF
 END DO
900 FORMAT (A, A)
 END

See Also
SPLITPATHQQ

FUNCTION
Statement: The initial statement of a function
subprogram. A function subprogram is invoked in an
expression and returns a single value (a function
result) that is used to evaluate the expression.

Syntax
[prefix [prefix]] FUNCTION name [([d-arg-list])] [suffix]
 [specification-part]
 [execution-part]
[CONTAINS
 [internal-subprogram-part]]
END [FUNCTION [name]]

prefix (Optional) Is any of the following:

• A data type specifier
• ELEMENTAL

Acts on one array element at a time. This is a restricted form of a
procedure.

• IMPURE

Asserts that the procedure has side effects.
• MODULE

Indicates a separate module procedure. See separate module
procedures.

• NON_RECURSIVE

Indicates the function is not recursive.
• PURE

Asserts that the procedure has no side effects.
• RECURSIVE

 1 Intel® Fortran Compiler Classic and Intel® Fortran Compiler Developer Guide and Reference

1500

Permits direct and indirect recursion to occur. If a function is
directly recursive and array valued, and RESULT is not specified,
any reference to the function name in the executable part of the
function is a reference to the function result variable.

At most one of each of the above can be specified. You cannot specify
both NON_RECURSIVE and RECURSIVE. You cannot specify both PURE
and IMPURE. You cannot specify ELEMENTAL if lang-binding is
specified in suffix.

name Is the name of the function. If RESULT is specified, the function name
must not appear in any specification statement in the scoping unit of
the function subprogram.

The function name can be followed by the length of the data type. The
length is specified by an asterisk (*) followed by any unsigned,
nonzero integer that is a valid length for the function's type. For
example, REAL FUNCTION LGFUNC*8 (Y, Z) specifies the function
result as REAL(8) (or REAL*8).

This optional length specification is not permitted if the length has
already been specified following the keyword CHARACTER.

d-arg-list (Optional) Is a list of one or more dummy arguments.

If there are no dummy arguments, no suffix, and no RESULT variable,
the parentheses can be omitted. For example, the following is valid:

 FUNCTION F

suffix (Optional) Takes one of the following forms:

[RESULT (r-name)] lang-binding

lang-binding [RESULT (r-name)]

r-name (Optional) Is the name of the function result.
This name must not be the same as the
function name.

lang-binding Takes the following form:

BIND (C [, NAME=ext-name])

ext-name Is a character scalar
constant expression that
can be used to construct the
external name.

specification-part Is one or more specification statements.

execution-part Is one or more executable constructs or statements.

internal-subprogram-part Is one or more internal subprograms (defining internal procedures).
The internal-subprogram-part is preceded by a CONTAINS
statement.

Intel® Fortran Compiler Classic and Intel® Fortran Compiler Developer Guide and Reference 1

1501

Description

The type and kind parameters (if any) of the function's result can be defined in the FUNCTION statement or
in a type declaration statement within the function subprogram, but not both. If no type is specified, the type
is determined by implicit typing rules in effect for the function subprogram.

Execution begins with the first executable construct or statement following the FUNCTION statement. Control
returns to the calling program unit once the END statement (or a RETURN statement) is executed.

If you specify CHARACTER(LEN=*) as the type of the function, the function assumes the length declared for
it in the program unit that invokes it. This type of the resulting character function can have different lengths
when it is invoked by different program units. An assumed-length character function cannot be directly
recursive. Assumed-length character functions are an obsolescent feature in the Fortran standard.

If the character length is specified as an integer constant, the value must agree with the length of the
function specified in the program unit that invokes the function. If no length is specified, a length of 1 is
assumed.

If the function is array-valued, allocatable, or a pointer, the declarations within the function must state these
attributes for the function result name. The specification of the function result attributes, dummy argument
attributes, and the information in the procedure heading collectively define the interface of the function.

The value of the result variable is returned by the function when it completes execution. Certain rules apply
depending on whether the result is a pointer, as follows:

• If the result is a pointer, its allocation status must be determined before the function completes execution.
The function must associate a target with the pointer, or cause the pointer to be explicitly disassociated
from a target.

If the pointer result points to a TARGET with the INTENT(IN) attribute, the function can give the result a
value but the caller is not allowed to change the value pointed to.

• The shape of the value returned by the function is determined by the shape of the result variable when
the function completes execution.

• If the result is not a pointer, its value must be defined before the function completes execution. If the
result is an array, all the elements must be defined. If the result is a derived-type structure, all the
components must be defined.

A function subprogram cannot contain a BLOCK DATA statement, a PROGRAM statement, a MODULE
statement, or a SUBMODULE statement. A function can contain SUBROUTINE and FUNCTION statements to
define internal procedures. ENTRY statements can be included to provide multiple entry points to the
subprogram.

Example

The following example uses the Newton-Raphson iteration method (F(X) = cosh(X) + cos(X) - A = 0)
to get the root of the function:

 FUNCTION ROOT(A)
 IF (A >= 2.0) THEN
 X = 1.0
 DO
 EX = EXP(X)
 EMINX = 1./EX
 ROOT = X - ((EX+EMINX)*.5+COS(X)-A)/((EX-EMINX)*.5-SIN(X))
 IF (ABS((X-ROOT)/ROOT) .LT. 1E-6) RETURN
 X = ROOT
 END DO
 ELSE

 1 Intel® Fortran Compiler Classic and Intel® Fortran Compiler Developer Guide and Reference

1502

 STOP 'in FUNCTION ROOT, A must be >= 2.0'
 ENDIF
 END

In the preceding example, the following formula is calculated repeatedly until the difference between Xi and
Xi+1 is less than 1.0E-6:

The following example shows an assumed-length character function:

 CHARACTER*(*) FUNCTION REDO(CARG)
 CHARACTER*1 CARG
 DO I=1,LEN(REDO)
 REDO(I:I) = CARG
 END DO
 RETURN
 END FUNCTION

This function returns the value of its argument, repeated to fill the length of the function.

Within any given program unit, all references to an assumed-length character function must have the same
length. In the following example, the REDO function has a length of 1000:

 CHARACTER*1000 REDO, MANYAS, MANYZS
 MANYAS = REDO('A')
 MANYZS = REDO('Z')

Another program unit within the executable program can specify a different length. For example, the
following REDO function has a length of 2:

 CHARACTER HOLD*6, REDO*2
 HOLD = REDO('A')//REDO('B')//REDO('C')

The following example shows a dynamic array-valued function:

 FUNCTION SUB (N)
 REAL, DIMENSION(N) :: SUB
 ...
 END FUNCTION

The following shows another example:

 INTEGER Divby2
10 PRINT *, 'Enter a number'
 READ *, i
 Print *, Divby2(i)
 GOTO 10
 END
C
C This is the function definition
C
 INTEGER FUNCTION Divby2 (num)
 Divby2=num / 2
 END FUNCTION

Intel® Fortran Compiler Classic and Intel® Fortran Compiler Developer Guide and Reference 1

1503

The following example shows an allocatable function with allocatable arguments:

MODULE AP
CONTAINS

 FUNCTION ADD_VEC(P1,P2)
 ! Function to add two allocatable arrays of possibly differing lengths.
 ! The arrays may be thought of as polynomials (coefficients)
 REAL, ALLOCATABLE :: ADD_VEC(:), P1(:), P2(:)

 ! This function returns an allocatable array whose length is set to
 ! the length of the larger input array.
 ALLOCATE(ADD_VEC(MAX(SIZE(P1), SIZE(P2))))
 M = MIN(SIZE(P1), SIZE(P2))
 ! Add up to the shorter input array size
 ADD_VEC(:M) = P1(:M) + P2(:M)
 ! Use the larger input array elements afterwards (from P1 or P2)
 IF(SIZE(P1) > M) THEN
 ADD_VEC(M+1:) = P1(M+1:)
 ELSE IF(SIZE(P2) > M) THEN
 ADD_VEC(M+1:) = P2(M+1:)
 ENDIF
 END FUNCTION
END MODULE

PROGRAM TEST
 USE AP
 REAL, ALLOCATABLE :: P(:), Q(:), R(:), S(:)
 ALLOCATE(P(3))
 ALLOCATE(Q(2))
 ALLOCATE(R(3))
 ALLOCATE(S(3))

 ! Notice that P and Q differ in length
 P = (/4,2,1/) ! P = X**2 + 2X + 4
 Q = (/-1,1/) ! Q = X - 1
 PRINT *,' Result should be: 3.000000 3.000000 1.000000'
 PRINT *,' Coefficients are: ', ADD_VEC(P, Q) ! X**2 + 3X + 3

 P = (/1,1,1/) ! P = X**2 + X + 1
 R = (/2,2,2/) ! R = 2X**2 + 2X + 2
 S = (/3,3,3/) ! S = 3X**2 + 3X + 3
 PRINT *,' Result should be: 6.000000 6.000000 6.000000'
 PRINT *,' Coefficients are: ', ADD_VEC(ADD_VEC(P,R), S)
END

Consider the following example:

module mymodule
type :: vec
 integer :: x(3)
contains
 procedure :: at
end type vec

contains
 function at(this, i) result(p)
 implicit none
 class(vec), intent(in), target :: this
 integer, intent(in) :: i

 1 Intel® Fortran Compiler Classic and Intel® Fortran Compiler Developer Guide and Reference

1504

 integer, pointer :: p

 p => this%x(i)
 end function at
end module mymodule

program test
use mymodule
implicit none
type(vec) :: myvec

myvec%x = [1,2,3]

! pointer returned by function at gives the correct values: 1, 2, and 3
write(6,*) myvec%at(1), myvec%at(2), myvec%at(3)

! changing any array element is an error
myvec%at(1) = 4
myvec%at(2) = 5
myvec%at(3) = 6
…
end program test

See Also
BIND (C)
ENTRY
SUBROUTINE
PURE
IMPURE
ELEMENTAL
RESULT keyword
RECURSIVE and NONRECURSIVE
Function References
Program Units and Procedures
General Rules for Function and Subroutine Subprograms

G
This section describes language features that start with G.

G
GAMMA
Elemental Intrinsic Function (Generic): Returns
the gamma value of its argument.

Syntax
result = GAMMA (x)

x (Input) Must be of type real. It must not be zero or a negative
number.

Results

The result type and kind are the same as x.

The result has a value equal to a processor-dependent approximation to the gamma function of x,

Intel® Fortran Compiler Classic and Intel® Fortran Compiler Developer Guide and Reference 1

1505

Example

GAMMA (1.0) has the approximate value 1.000.

GENERIC
Statement: Declares a generic interface that is bound
to a derived type-bound procedure, or specifies a
generic identifier for one or more specific procedures.

Syntax
The GENERIC statement takes the following form:

GENERIC [, access-spec]:: generic-spec => binding-name1 [, binding-name2]...

access-spec (Optional) Is the PUBLIC or PRIVATE attribute. Only one can be
specified. access-spec specifies the accessibility of generic-spec.
access-spec can only appear in the specification part of a module.

generic-spec Is an explicit INTERFACE statement using one of the following:

• generic-name

generic-spec can be the name of a previously declared accessible
generic name, in which case this statement extends that interface.
For more information, see Defining Generic Names for Procedures.

• OPERATOR (op)

op is an intrinsic or a user-defined operator. For more information,
see Defining Generic Operators.

• ASSIGNMENT (=)

See Defining Generic Assignment.
• defined-io-spec, which is one of the following:

• READ (FORMATTED)
• READ (UNFORMATTED)
• WRITE (FORMATTED)
• WRITE (UNFORMATTED)

See Defined I/O Procedures.

The same generic-spec can be used in several generic bindings. In this
case, every occurrence of the same generic-spec must have the same
accessibility.

binding-spec1 [, binding-
spec2,...]

Is the name of a specific procedure. It cannot be the name of a
specific procedure that has been specified in an accessible generic
interface with the same generic identifier. At most one of the specific
names can be the same as the generic name.

 1 Intel® Fortran Compiler Classic and Intel® Fortran Compiler Developer Guide and Reference

1506

Examples

Consider the following:

GENERIC :: GEN_FUNC => INT_FUNC, REAL_FUNC
GENERIC :: GEN_FUNC => CMPLX_FUNC

If INT_FUNC, REAL_FUNC, and CMPLX_FUNC are all functions with accessible interfaces, the first GENERIC
statement declares GEN_FUNC to be a generic function name that can resolve to INT_FUNC or REAL_FUNC.
The second GENERIC statement extends GEN_FUNC to be resolvable to a third specific function, CMPLX_FUNC.

Consider the following:

TYPE MY_TYPE2
...
CONTAINS
 PROCEDURE :: MYPROC => MYPROC1
 PROCEDURE,PASS(C) :: UPROC => UPROC1
 GENERIC :: OPERATOR(+) => MYPROC, UPROC
END TYPE MY_TYPE2
...
TYPE,EXTENDS(MY_TYPE2) :: MY_TYPE3
...
CONTAINS
 PROCEDURE :: MYPROC => MYPROC2
 PROCEDURE,PASS(C) :: UPROC => UPROC2
END TYPE MY_TYPE3

The type MY_TYPE3 inherits the generic operator '+'. Invoking the generic (+) invokes the specific type-
bound procedure. For entities of type MY_TYPE3, that invokes the overriding actual procedure (MYPROC2 or
UPROC2).

Consider the following:

TYPE MY_TYPE4
...
CONTAINS
 PROCEDURE :: FMTREAD => MY_TYPE4_FMTREAD
 PROCEDURE :: FMTWRITE => MY_TYPE4_FMTWRITE
 GENERIC :: READ (FORMATTED) => FMTREAD
 GENERIC :: WRITE (FORMATTED) => FMTWRITE
END TYPE MY_TYPE4

When an object of type MY_TYPE4 appears in an I/O list and is associated with a DT format edit descriptor in
a formatted READ statement, MY_TYPE4_FMTREAD is called to perform the read of the object. In a formatted
WRITE, MY_TYPE4_FMTWRITE is called to perform the output of the object.

See Also
Type-Bound Procedures
Defining Generic Names for Procedures

GERROR
Runtime Subroutine: Returns a message for the last
error detected by a Fortran runtime routine.

Module

USE IFCORE

Syntax
CALL GERROR (string)

Intel® Fortran Compiler Classic and Intel® Fortran Compiler Developer Guide and Reference 1

1507

string (Output) Character*(*). Message corresponding to the last detected
error.

The last detected error does not necessarily correspond to the most recent function call. The compiler resets
string only when another error occurs.

Example

USE IFCORE
character*40 errtext
character char1
integer*4 iflag, i4
. . .!Open unit 1 here
i4=fgetc(1,char1)
if (i4) then
 iflag = 1
 Call GERROR (errtext)
 print *, errtext
end if

See Also
PERROR
IERRNO

GETARG
Intrinsic Subroutine: Returns the specified
command-line argument (where the command itself is
argument number zero). Intrinsic subroutines cannot
be passed as actual arguments.

Syntax
CALL GETARG (n,buffer[,status])

n (Input) Must be a scalar of type integer. This value is the position of
the command-line argument to retrieve. The command itself is
argument number 0.

buffer (Output) Must be a scalar of type default character. Its value is the
returned command-line argument.

status (Output; optional) Must be a scalar of type integer. If specified, its
value is the returned completion status.

If there were no errors, status returns the number of characters in
the retrieved command-line argument before truncation or blank-
padding. (That is, status is the original number of characters in the
command-line argument.) Errors return a value of -1. Errors include
specifying an argument position less than 0 or greater than the value
returned by IARGC.

GETARG returns the nth command-line argument. If n is zero, the name of the executing program file is
returned.

GETARG returns command-line arguments as they were entered. There is no case conversion.

If the command-line argument is shorter than buffer, GETARG pads buffer on the right with blanks. If the
argument is longer than buffer, GETARG truncates the argument on the right. If there is an error, GETARG
fills buffer with blanks.

 1 Intel® Fortran Compiler Classic and Intel® Fortran Compiler Developer Guide and Reference

1508

Example

Assume a command-line invocation of PROG1 -g -c -a, and that buffer is at least five characters long. The
following calls to GETARG return the corresponding arguments in buffer and status:

Statement String returned in buffer Length returned in status

CALL GETARG (0, buffer, status) PROG1 5

CALL GETARG (1, buffer) -g undefined

CALL GETARG (2, buffer, status) -c 2

CALL GETARG (3, buffer) -a undefined

CALL GETARG (4, buffer, status) all blanks -1

See Also
NARGS
IARGC
COMMAND_ARGUMENT_COUNT
GET_COMMAND
GET_COMMAND_ARGUMENT

GETC
Portability Function: Reads the next available
character from external unit 5, which is normally
connected to the console.

Module

USE IFPORT

Syntax
result = GETC (char)

char (Output) Character*(*). First character typed at the keyboard after
the call to GETC. If unit 5 is connected to a console device, then no
characters are returned until the Enter key is pressed.

Results

The result type is INTEGER(4). The result is zero if successful, or -1 if an end-of-file was detected.

Example

 use IFPORT
 character ans,errtxt*40
 print *, 'Enter a character: '
 ISTAT = GETC (ans)
 if (istat) then
 call gerror(errtxt)
 end if

See Also
GETCHARQQ
GETSTRQQ

Intel® Fortran Compiler Classic and Intel® Fortran Compiler Developer Guide and Reference 1

1509

GETCHARQQ
Runtime Function: Returns the next keystroke.

Module

USE IFCORE

Syntax
result = GETCHARQQ()

Results

The result type is character with length 1. The result is the character representing the key that was pressed.
The value can be any ASCII character.

If the key pressed is represented by a single ASCII character, GETCHARQQ returns the character. If the key
pressed is a function or direction key, a hex Z'00' or Z'E0' is returned. If you need to know which function or
direction was pressed, call GETCHARQQ a second time to get the extended code for the key.

If there is no keystroke waiting in the keyboard buffer, GETCHARQQ waits until there is one, and then returns
it. Compare this to the function PEEKCHARQQ, which returns .TRUE. if there is a character waiting in the
keyboard buffer, and .FALSE. if not. You can use PEEKCHARQQ to determine if GETCHARQQ should be called.
This can prevent a program from hanging while GETCHARQQ waits for a keystroke that isn't there. Note that
PEEKCHARQQ is only supported in console applications.

If your application is a QuickWin or Standard Graphics application, you may want to put a call to
PASSDIRKEYSQQ in your program. This will enable the program to get characters that would otherwise be
trapped. These extra characters are described in PASSDIRKEYSQQ.

Note that the GETCHARQQ routine used in a console application is a different routine than the one used in a
QuickWin or Standard Graphics application. The GETCHARQQ used with a console application does not trap
characters that are used in QuickWin for a special purpose, such as scrolling. Console applications do not
need, and cannot use PASSDIRKEYSQQ.

Example

! Program to demonstrate GETCHARQQ
USE IFCORE
CHARACTER(1) key / 'A' /
PARAMETER (ESC = 27)
PARAMETER (NOREP = 0)
WRITE (*,*) ' Type a key: (or q to quit)'
! Read keys until ESC or q is pressed
DO WHILE (ICHAR (key) .NE. ESC)
 key = GETCHARQQ()
! Some extended keys have no ASCII representation
 IF(ICHAR(key) .EQ. NOREP) THEN
 key = GETCHARQQ()
 WRITE (*, 900) 'Not ASCII. Char = NA'
 WRITE (*,*)
! Otherwise, there is only one key
 ELSE
 WRITE (*,900) 'ASCII. Char = '
 WRITE (*,901) key
 END IF
 IF (key .EQ. 'q') THEN
 EXIT
 END IF
 END DO

 1 Intel® Fortran Compiler Classic and Intel® Fortran Compiler Developer Guide and Reference

1510

900 FORMAT (1X, A, \)
901 FORMAT (A)
END

See Also
PEEKCHARQQ
GETSTRQQ
INCHARQQ
MBINCHARQQ
GETC
FGETC
PASSDIRKEYSQQ

GET_COMMAND
Intrinsic Subroutine: Returns the entire command
that was used to invoke the program.

Syntax
CALL GET_COMMAND ([command, length, status, errmsg])

command (Output; optional) Must be a scalar of type default character. If
specified, its value is the entire command that was used to invoke the
program. If the command cannot be determined, its value is all
blanks.

length (Output; optional) Must be a scalar of type integer. If specified, its
value is the significant length of the command that was used to invoke
the program. This length includes trailing blanks, but it does not
include any truncation or padding used in the command. If the
command length cannot be determined, its value is zero.

status (Output; optional) Must be a scalar of type integer. If specified, its
value is -1 if the command argument is present and has a length less
than the significant length of the command. If the command cannot
be retrieved, its value is positive; otherwise, it is assigned the value
zero.

errmsg (Input; output; optional) Must be a scalar of type default character. If
an error occurs, it is assigned a processor-dependent explanatory
message; otherwise, it is unchanged.

Example

See the example in COMMAND_ARGUMENT_COUNT.

See Also
GETARG
NARGS
IARGC
COMMAND_ARGUMENT_COUNT
GET_COMMAND_ARGUMENT

Intel® Fortran Compiler Classic and Intel® Fortran Compiler Developer Guide and Reference 1

1511

GET_COMMAND_ARGUMENT
Intrinsic Subroutine: Returns a command line
argument of the command that invoked the program.
Intrinsic subroutines cannot be passed as actual
arguments.

Syntax
CALL GET_COMMAND_ARGUMENT (number [, value, length, status, errmsg])

number (Input) Must be a scalar of type integer. It must be non-negative and
less than or equal to the value returned by the
COMMAND_ARGUMENT_COUNT function. Its value is the position of
the command-line argument to retrieve. The command itself is
argument number zero.

value (Output; optional) Must be a scalar of type default character. If
specified, its value is the returned command-line argument or all
blanks if the value is unknown.

length (Output; optional) Must be a scalar of type integer. If specified, its
value is the length of the returned command-line argument or zero if
the length of the argument is unknown. This length includes
significant trailing blanks. It does not include any truncation or
padding that occurs when the argument is assigned to the value
argument.

status (Output; optional) Must be a scalar of type integer. If specified, its
value is the returned completion status. It is assigned the value -1 if
the value argument is present and has a length less than the
significant length of the command argument specified by number. It is
assigned a processor-dependent positive value if the argument
retrieval fails. Otherwise, it is assigned the value zero.

errmsg (Input; output; optional) Must be a scalar of type default character. If
an error occurs, it is assigned a processor-dependent explanatory
message; otherwise, it is unchanged.

GET_COMMAND_ARGUMENT returns command-line arguments as they were entered. There is no case
conversion.

Example

See the example in COMMAND_ARGUMENT_COUNT.

See Also
GETARG
NARGS
IARGC
COMMAND_ARGUMENT_COUNT
GET_COMMAND

GETCONTROLFPQQ
Portability Subroutine: Returns the floating-point
processor control word.

Module

USE IFPORT

 1 Intel® Fortran Compiler Classic and Intel® Fortran Compiler Developer Guide and Reference

1512

Syntax
CALL GETCONTROLFPQQ (controlword)

controlword (Output) INTEGER(2). Floating-point processor control word.

The floating-point control word is a bit flag that controls various
modes of the floating-point processor.

The control word can be any of the following constants (defined in
IFPORT.F90):

Parameter name Hex value Description

FPCW$MCW_IC Z'1000' Infinity control
mask

FPCW$AFFINE Z'1000' Affine infinity

FPCW$PROJECTIVE Z'0000' Projective infinity

FPCW$MCW_PC Z'0300' Precision control
mask

FPCW$64 Z'0300' 64-bit precision

FPCW$53 Z'0200' 53-bit precision

FPCW$24 Z'0000' 24-bit precision

FPCW$MCW_RC Z'0C00' Rounding control
mask

FPCW$CHOP Z'0C00' Truncate

FPCW$UP Z'0800' Round up

FPCW$DOWN Z'0400' Round down

FPCW$NEAR Z'0000' Round to nearest

FPCW$MCW_EM Z'003F' Exception mask

FPCW$INVALID Z'0001' Allow invalid
numbers

FPCW$DENORMAL Z'0002' Allow subnormals
(very small
numbers)

FPCW$SUBNORMAL Z'0002' Allow subnormals
(very small
numbers)

FPCW$ZERODIVIDE Z'0004' Allow divide by zero

FPCW$OVERFLOW Z'0008' Allow overflow

FPCW$UNDERFLOW Z'0010' Allow underflow

FPCW$INEXACT Z'0020' Allow inexact
precision

Intel® Fortran Compiler Classic and Intel® Fortran Compiler Developer Guide and Reference 1

1513

An exception is disabled if its control bit is set to 1. An exception is enabled if its control bit is cleared to 0.
Exceptions can be disabled by setting the control bits to 1 with SETCONTROLFPQQ.

If an exception is disabled, it does not cause an interrupt when it occurs. Instead, floating-point processes
generate an appropriate special value (NaN or signed infinity), but the program continues.

You can find out which exceptions (if any) occurred by calling GETSTATUSFPQQ. If errors on floating-point
exceptions are enabled (by clearing the control bits to 0 with SETCONTROLFPQQ), the operating system
generates an interrupt when the exception occurs. By default, these interrupts cause runtime errors, but you
can capture the interrupts with SIGNALQQ and branch to your own error-handling routines.

You can use GETCONTROLFPQQ to retrieve the current control word and SETCONTROLFPQQ to change the
control word. Most users do not need to change the default settings.

Example

USE IFPORT
INTEGER(2) control
CALL GETCONTROLFPQQ (control)
 ! if not rounding down
IF (IAND(control, FPCW$DOWN) .NE. FPCW$DOWN) THEN
 control = IAND(control, NOT(FPCW$MCW_RC)) ! clear all
 ! rounding
 control = IOR(control, FPCW$DOWN) ! set to
 ! round down
 CALL SETCONTROLFPQQ(control)
END IF
END

See Also
SETCONTROLFPQQ
GETSTATUSFPQQ
SIGNALQQ
CLEARSTATUSFPQQ

GETCWD
Portability Function: Returns the path of the current
working directory.

Module

USE IFPORT

Syntax
result = GETCWD (dirname)

dirname (Output) Character *(*). Name of the current working directory path,
including drive letter.

Results

The result type is INTEGER(4). The result is zero if successful; otherwise, an error code.

Example

 USE IFPORT
 character*30 dirname
! variable dirname must be long enough to hold entire string

 1 Intel® Fortran Compiler Classic and Intel® Fortran Compiler Developer Guide and Reference

1514

 integer(4) istat
 ISTAT = GETCWD (dirname)
 IF (ISTAT == 0) write *, 'Current directory is ',dirname

See Also
GETDRIVEDIRQQ

GETDAT
Portability Subroutine: Returns the date.

Module

USE IFPORT

Syntax
CALL GETDAT (iyr, imon, iday)

iyr (Output) INTEGER(4) or INTEGER(2). Year (xxxxAD).

imon (Output) INTEGER(4) or INTEGER(2). Month (1-12).

iday (Output) INTEGER(4) or INTEGER(2). Day of the month (1-31).

This subroutine is thread-safe.

All arguments must be of the same integer kind, that is, all must be INTEGER(2) or all must be INTEGER(4).

If INTEGER(2) arguments are passed, you must specify USE IFPORT.

Example

! Program to demonstrate GETDAT and GETTIM
USE IFPORT
INTEGER(4) tmpday, tmpmonth, tmpyear
INTEGER(4) tmphour, tmpminute, tmpsecond, tmphund
CHARACTER(1) mer
CALL GETDAT(tmpyear, tmpmonth, tmpday)
CALL GETTIM(tmphour, tmpminute, tmpsecond, tmphund)
IF (tmphour .GT. 12) THEN
 mer = 'p'
 tmphour = tmphour - 12
ELSE
 mer = 'a'
END IF
WRITE (*, 900) tmpmonth, tmpday, tmpyear
900 FORMAT(I2, '/', I2.2, '/', I4.4)
WRITE (*, 901) tmphour, tmpminute, tmpsecond, tmphund, mer
901 FORMAT(I2, ':', I2.2, ':', I2.2, ':', I2.2, ' ',&
 A, 'm')
END

See Also
GETTIM

SETDAT

SETTIM

DATE portability routine

Intel® Fortran Compiler Classic and Intel® Fortran Compiler Developer Guide and Reference 1

1515

FDATE

IDATE portability routine

JDATE

GETDRIVEDIRQQ
Portability Function: Returns the path of the current
working directory on a specified drive.

Module

USE IFPORT

Syntax
result = GETDRIVEDIRQQ (drivedir)

drivedir (Input; output) Character*(*). On input, the drive whose current
working directory path is to be returned. On output, the string
containing the current directory on that drive in the form d:\dir.

Results

The result type is INTEGER(4). The result is the length (in bytes) of the full path of the directory on the
specified drive. Zero is returned if the path is longer than the size of the character buffer drivedir.

You specify the drive from which to return the current working directory by putting the drive letter into
drivedir before calling GETDRIVEDIRQQ. To make sure you get information about the current drive, put the
symbolic constant FILE$CURDRIVE (defined in IFPORT.F90) into drivedir.

Because drives are identified by a single alphabetic character, GETDRIVEDIRQQ examines only the first letter
of drivedir. For instance, if drivedir contains the path c:\fps90\bin, GETDRIVEDIRQQ (drivedir) returns the
current working directory on drive C and disregards the rest of the path. The drive letter can be uppercase or
lowercase.

The length of the path returned depends on how deeply the directories are nested on the drive specified in
drivedir. If the full path is longer than the length of drivedir, GETDRIVEDIRQQ returns only the portion of the
path that fits into drivedir. If you are likely to encounter a long path, allocate a buffer of size $MAXPATH
($MAXPATH = 260).

On Linux* systems, the function gets a path only when symbolic constant FILE$CURDRIVE has been applied
to drivedir.

Example

! Program to demonstrate GETDRIVEDIRQQ
USE IFPORT
CHARACTER($MAXPATH) dir
INTEGER(4) length
! Get current directory
dir = FILE$CURDRIVE
length = GETDRIVEDIRQQ(dir)
IF (length .GT. 0) THEN
 WRITE (*,*) 'Current directory is: '
 WRITE (*,*) dir
ELSE

 1 Intel® Fortran Compiler Classic and Intel® Fortran Compiler Developer Guide and Reference

1516

 WRITE (*,*) 'Failed to get current directory'
END IF
END

See Also
CHANGEDRIVEQQ
CHANGEDIRQQ
GETDRIVESIZEQQ
GETDRIVESQQ
GETLASTERRORQQ
SPLITPATHQQ

GETDRIVESIZEQQ
Portability Function: Returns the total size of the
specified drive and space available on it.

Module

USE IFPORT

Syntax
result = GETDRIVESIZEQQ (drive,total,avail)

drive (Input) Character*(*). String containing the letter of the drive to get
information about.

total (Output) INTEGER(4) or INTEGER(4), DIMENSION(2) or INTEGER(8).
Total number of bytes on the drive.

avail (Output) INTEGER(4) or INTEGER(4), DIMENSION(2) or INTEGER(8).
Number of bytes of available space on the drive.

Results

The result type is LOGICAL(4). The result is .TRUE. if successful; otherwise, .FALSE..

The data types and dimension (if any) specified for the total and avail arguments must be the same.
Specifying an array of two INTEGER(4) elements, or an INTEGER(8) argument, allows drive sizes larger than
2147483647 to be returned.

If an array of two INTEGER(4) elements is specified, the least-significant 32 bits are returned in the first
element, the most-significant 32 bits in the second element. If an INTEGER(4) scalar is specified, the least-
significant 32 bits are returned.

Because drives are identified by a single alphabetic character, GETDRIVESIZEQQ examines only the first
letter of drive. The drive letter can be uppercase or lowercase. You can use the constant FILE$CURDRIVE
(defined in IFPORT.F90) to get the size of the current drive.

If GETDRIVESIZEQQ fails, use GETLASTERRORQQ to determine the reason.

Example

! Program to demonstrate GETDRIVESQQ and GETDRIVESIZEQQ
USE IFPORT
CHARACTER(26) drives
CHARACTER(1) adrive
LOGICAL(4) status
INTEGER(4) total, avail
INTEGER(2) i

Intel® Fortran Compiler Classic and Intel® Fortran Compiler Developer Guide and Reference 1

1517

! Get the list of drives
drives = GETDRIVESQQ()
WRITE (*,'(A, A)') ' Drives available: ', drives
!
!Cycle through them for free space and write to console
DO i = 1, 26
 adrive = drives(i:i)
 status = .FALSE.
 WRITE (*,'(A, A, A, \)') ' Drive ', CHAR(i + 64), ':'
 IF (adrive .NE. ' ') THEN
 status = GETDRIVESIZEQQ(adrive, total, avail)
 END IF
 IF (status) THEN
 WRITE (*,*) avail, ' of ', total, ' bytes free.'
 ELSE
 WRITE (*,*) 'Not available'
 END IF
END DO
END

See Also
GETLASTERRORQQ
GETDRIVESQQ
GETDRIVEDIRQQ
CHANGEDRIVEQQ
CHANGEDIRQQ

GETDRIVESQQ
Portability Function: Reports which drives are
available to the system.

Module

USE IFPORT

Syntax
result = GETDRIVESQQ()

Results

The result type is character with length 26. It is the positional character string containing the letters of the
drives available in the system.

The returned string contains letters for drives that are available, and blanks for drives that are not available.
For example, on a system with A, C, and D drives, the string 'A CD' is returned.

On Linux* systems, the function returns a string filled with spaces.

Example

See the example for GETDRIVESIZEQQ.

See Also
GETDRIVEDIRQQ
GETDRIVESIZEQQ
CHANGEDRIVEQQ

 1 Intel® Fortran Compiler Classic and Intel® Fortran Compiler Developer Guide and Reference

1518

GETENV
Portability Subroutine: Returns the value of an
environment variable.

Module

USE IFPORT

Syntax
CALL GETENV (ename,evalue)

ename (Input) Character*(*). Environment variable to search for.

evalue (Output) Character*(*). Value found for ename. Blank if ename is not
found.

Example

use IFPORT
character*40 libname
CALL GETENV ("LIB",libname)
TYPE *, "The LIB variable points to ",libname

See Also
GETENVQQ

GET_ENVIRONMENT_VARIABLE
Intrinsic Subroutine: Gets the value of an
environment variable.

Syntax
CALL GET_ENVIRONMENT_VARIABLE (name [, value, length, status, trim_name, errmsg])

name (Input) Must be a scalar of type default character. It is the name of
the environment variable.

value (Output; optional) Must be a scalar of type default character. If
specified, it is assigned the value of the environment variable specified
by name. If the environment variable does not exist, value is assigned
all blanks.

length (Output; optional) Must be a scalar of type integer. If specified, its
value is the length of the environment variable, if it exists; otherwise,
length is set to 0.

status (Output; optional) Must be a scalar of type integer. If specified, it is
assigned a value of 0 if the environment variable exists and either has
no value or its value is successfully assigned to value.

It is assigned a value of -1 if the value argument is present and has a
length less than the significant length of the environment variable
value. It is assigned a value of 1 if the environment variable does not
exist. For other error conditions, it is assigned a processor-dependent
value greater than 2.

Intel® Fortran Compiler Classic and Intel® Fortran Compiler Developer Guide and Reference 1

1519

trim_name (Input; optional) Must be a scalar of type logical. If the value is
FALSE, then trailing blanks in name are considered significant.
Otherwise, they are not considered part of the environment variable's
name.

errmsg (Input; output; optional) Must be a scalar of type default character. If
an error occurs, it is assigned a processor-dependent explanatory
message; otherwise, it is unchanged.

Example

The following program asks for the name of an environment variable. If the environment variable exists in
the program's environment, it prints out its value:

 program print_env_var
 character name*20, val*40
 integer len, status
 write (*,*) 'enter the name of the environment variable'
 read (*,*) name
 call get_environment_variable (name, val, len, status, .true.)
 if (status .ge. 2) then
 write (*,*) 'get_environment_variable failed: status = ', status
 stop
 end if
 if (status .eq. 1) then
 write (*,*) 'env var does not exist'
 stop
 end if
 if (status .eq. -1) then
 write (*,*) 'env var length = ', len, ' truncated to 40'
 len = 40
 end if
 if (len .eq. 0) then
 write (*,*) 'env var exists but has no value'
 stop
 end if
 write (*,*) 'env var value = ', val (1:len)
 end

When the above program is invoked, the following line is displayed:

 enter the name of the environment variable
The following shows an example of what could be displayed if you enter "HOME".

• On a Linux* system:

 env var value = /home/our_space/usr4
• On a Windows* system:

 env var value = C:/
The following shows an example of what could be displayed if you enter "PATH".

• On a Linux system:

 env var length = 307 truncated to 40
 env var value = /site/our_space/usr4/progs/build_area

 1 Intel® Fortran Compiler Classic and Intel® Fortran Compiler Developer Guide and Reference

1520

• On a Windows system:

 env var length = 829 truncated to 40
 env var value = C:\OUR_SPACE\BUILD_AREA\build_objects\

GETENVQQ
Portability Function: Returns the value of an
environment variable.

Module

USE IFPORT

Syntax
result = GETENVQQ (varname,value)

varname (Input) Character*(*). Name of environment variable.

value (Output) Character*(*). Value of the specified environment variable,
in uppercase.

Results

The result type is INTEGER(4). The result is the length of the string returned in value. Zero is returned if the
given variable is not defined.

GETENVQQ searches the list of environment variables for an entry corresponding to varname. Environment
variables define the environment in which a process executes. For example, the LIB environment variable
defines the default search path for libraries to be linked with a program.

Note that some environment variables may exist only on a per-process basis and may not be present at the
command-line level.

GETENVQQ uses the C runtime routine getenv and SETENVQQ uses the C runtime routine _putenv. From the
C documentation:

getenv and _putenv use the copy of the environment pointed to by the global variable _environ to access the
environment. getenv operates only on the data structures accessible to the runtime library and not on the
environment segment created for the process by the operating system.

In a program that uses the main function, _environ is initialized at program startup to settings taken from
the operating system's environment.

Changes made outside the program by the console SET command, for example, SET MY_VAR=ABCDE, will be
reflected by GETENVQQ.

GETENVQQ and SETENVQQ will not work properly with the Windows* APIs GetEnvironmentVariable and
SetEnvironmentVariable.

Example

! Program to demonstrate GETENVQQ and SETENVQQ
USE IFPORT
USE IFCORE
INTEGER(4) lenv, lval
CHARACTER(80) env, val, enval
WRITE (*,900) ' Enter environment variable name to create, &
 modify, or delete: '
lenv = GETSTRQQ(env)
IF (lenv .EQ. 0) STOP
WRITE (*,900) ' Value of variable (ENTER to delete): '

Intel® Fortran Compiler Classic and Intel® Fortran Compiler Developer Guide and Reference 1

1521

lval = GETSTRQQ(val)
IF (lval .EQ. 0) val = ' '
enval = env(1:lenv) // '=' // val(1:lval)
IF (SETENVQQ(enval)) THEN
 lval = GETENVQQ(env(1:lenv), val)
 IF (lval .EQ. 0) THEN
 WRITE (*,*) 'Can''t get environment variable'
 ELSE IF (lval .GT. LEN(val)) THEN
 WRITE (*,*) 'Buffer too small'
 ELSE
 WRITE (*,*) env(:lenv), ': ', val(:lval)
 WRITE (*,*) 'Length: ', lval
 END IF
ELSE
 WRITE (*,*) 'Can''t set environment variable'
END IF
900 FORMAT (A, \)
END

See Also
SETENVQQ
GETLASTERRORQQ

GETEXCEPTIONPTRSQQ
Runtime Function: Returns a pointer to C runtime
exception information pointers appropriate for use in
signal handlers established with SIGNALQQ or direct
calls to the C rtl signal() routine. This routine is only
available for Windows.

Module

USE IFCORE

Syntax
result = GETEXCEPTIONPTRSQQ()

Results

The result type is INTEGER(4) on IA-32 architecture; INTEGER(8) on Intel® 64 architecture. The return value
is the address of a data structure whose members are pointers to exception information captured by the C
runtime at the time of an exception. This result value can then be used as the eptr argument to routine
TRACEBACKQQ to generate a stack trace from a user-defined handler or to inspect the exception context
record directly.

Calling GETEXCEPTIONPTRSQQ is only valid within a user-defined handler that was established with
SIGNALQQ or a direct call to the C rtl signal() function.

For a full description of exceptions and error handling, see Error Handling.

Example

 PROGRAM SIGTEST
 USE IFCORE
 ...
 R3 = 0.0E0
 STS = SIGNALQQ(MY_HANDLER)
 ! Cause a divide by zero exception
 R1 = 3.0E0/R3

 1 Intel® Fortran Compiler Classic and Intel® Fortran Compiler Developer Guide and Reference

1522

 ...
 END
 INTEGER(4) FUNCTION MY_HANDLER(SIGNUM,EXCNUM)
 USE IFCORE
 ...
 EPTRS = GETEXCEPTIONPTRSQQ()
 ...
 CALL TRACEBACKQQ("Application SIGFPE error!",USER_EXIT_CODE=-1,EPTR=EPTRS)
 ...
 MY_HANDLER = 1
 END

See Also
TRACEBACKQQ
GETSTATUSFPQQ
CLEARSTATUSFPQQ
SETCONTROLFPQQ
GETCONTROLFPQQ
SIGNALQQ

GETFILEINFOQQ
Portability Function: Returns information about the
specified file. File names can contain wildcards (*
and ?).

Module

USE IFPORT

Syntax
result = GETFILEINFOQQ (files,buffer,handle)

files (Input) Character*(*). Name or pattern of files you are searching for.
Can include a full path and wildcards (* and ?).

buffer (Output) Derived type FILE$INFO or derived type FILE$INFOI8.
Information about a file that matches the search criteria in files.

The derived type FILE$INFO is defined in IFPORT.F90 as follows:

TYPE FILE$INFO
 INTEGER(4) CREATION ! CREATION TIME (-1 on FAT)
 INTEGER(4) LASTWRITE ! LAST WRITE TO FILE
 INTEGER(4) LASTACCESS ! LAST ACCESS (-1 on FAT)
 INTEGER(4) LENGTH ! LENGTH OF FILE
 INTEGER(4) PERMIT ! FILE ACCESS MODE
 CHARACTER(255) NAME ! FILE NAME
END TYPE FILE$INFO

The derived type FILE$INFOI8 is defined in IFPORT.F90 as follows:

TYPE FILE$INFOI8
 INTEGER(4) CREATION ! CREATION TIME (-1 on FAT)
 INTEGER(4) LASTWRITE ! LAST WRITE TO FILE
 INTEGER(4) LASTACCESS ! LAST ACCESS (-1 on FAT)
 INTEGER(8) LENGTH ! LENGTH OF FILE

Intel® Fortran Compiler Classic and Intel® Fortran Compiler Developer Guide and Reference 1

1523

 INTEGER(4) PERMIT ! FILE ACCESS MODE
 CHARACTER(255) NAME ! FILE NAME
END TYPE FILE$INFOI8

handle (Input; output) INTEGER(4) on IA-32 architecture; INTEGER(8) on
Intel® 64 architecture. Control mechanism. One of the following
constants, defined in IFPORT.F90:

• FILE$FIRST - First matching file found.
• FILE$LAST - Previous file was the last valid file.
• FILE$ERROR - No matching file found.

Results

The result type is INTEGER(4). The result is the nonblank length of the file name if a match was found, or 0 if
no matching files were found.

To get information about one or more files, set the handle to FILE$FIRST and call GETFILEINFOQQ. This will
return information about the first file which matches the name and return a handle. If the program wants
more files, it should call GETFILEINFOQQ with the handle. GETFILEINFOQQ must be called with the handle
until GETFILEINFOQQ sets handle to FILE$LAST, or system resources may be lost.

The derived-type element variables FILE$INFO%CREATION, FILE$INFO%LASTWRITE, and FILE$INFO
%LASTACCESS contain packed date and time information that indicates when the file was created, last
written to, and last accessed, respectively.

To break the time and date into component parts, call UNPACKTIMEQQ. FILE$INFO%LENGTH contains the
length of the file in bytes. FILE$INFO%PERMIT contains a set of bit flags describing access information about
the file as follows:

Bit flag Access information for the file

FILE$ARCHIVE Marked as having been copied to a backup device.

FILE$DIR A subdirectory of the current directory. Each MS-
DOS* directory contains two special files, "." and
"..". These are directory aliases created by MS-DOS
for use in relative directory notation. The first refers
to the current directory, and the second refers to
the current directory's parent directory.

FILE$HIDDEN Hidden. It does not appear in the directory list you
request from the command line, the Microsoft*
visual development environment browser, or File
Manager.

FILE$READONLY Write-protected. You can read the file, but you
cannot make changes to it.

FILE$SYSTEM Used by the operating system.

FILE$VOLUME A logical volume, or partition, on a physical disk
drive. This type of file appears only in the root
directory of a physical device.

You can use the constant FILE$NORMAL to check that all bit flags are set to 0. If the derived-type element
variable FILE$INFO%PERMIT is equal to FILE$NORMAL, the file has no special attributes. The variable FILE
$INFO%NAME contains the short name of the file, not the full path of the file.

If an error occurs, call GETLASTERRORQQ to retrieve the error message, such as:

 1 Intel® Fortran Compiler Classic and Intel® Fortran Compiler Developer Guide and Reference

1524

• ERR$NOENT: The file or path specified was not found.
• ERR$NOMEM: Not enough memory is available to execute the command, the available memory has been

corrupted, or an invalid block exists, indicating that the process making the call was not allocated
properly.

Example

USE IFPORT
USE IFCORE
 CALL SHOWPERMISSION()
END

! SUBROUTINE to demonstrate GETFILEINFOQQ
SUBROUTINE SHOWPERMISSION()
USE IFPORT
 CHARACTER(80) files
 INTEGER(KIND=INT_PTR_KIND()) handle
 INTEGER(4) length
 CHARACTER(5) permit
 TYPE (FILE$INFO) info
 WRITE (*, 900) ' Enter wildcard of files to view: '
 900 FORMAT (A, \)

 length = GETSTRQQ(files)
 handle = FILE$FIRST

 DO WHILE (.TRUE.)
 length = GETFILEINFOQQ(files, info, handle)
 IF ((handle .EQ. FILE$LAST) .OR. &
 (handle .EQ. FILE$ERROR)) THEN
 SELECT CASE (GETLASTERRORQQ())
 CASE (ERR$NOMEM)
 WRITE (*,*) 'Out of memory'
 CASE (ERR$NOENT)
 EXIT
 CASE DEFAULT
 WRITE (*,*) 'Invalid file or path name'
 END SELECT
 END IF

 permit = ' '
 IF ((info%permit .AND. FILE$HIDDEN) .NE. 0) &
 permit(1:1) = 'H'
 IF ((info%permit .AND. FILE$SYSTEM) .NE. 0) &
 permit(2:2) = 'S'
 IF ((info%permit .AND. FILE$READONLY) .NE. 0) &
 permit(3:3) = 'R'
 IF ((info%permit .AND. FILE$ARCHIVE) .NE. 0) &
 permit(4:4) = 'A'
 IF ((info%permit .AND. FILE$DIR) .NE. 0) &
 permit(5:5) = 'D'
 WRITE (*, 9000) info%name, info%length, permit
 9000 FORMAT (1X, A5, I9, ' ',A6)
 END DO
END SUBROUTINE

See Also
SETFILEACCESSQQ
SETFILETIMEQQ

Intel® Fortran Compiler Classic and Intel® Fortran Compiler Developer Guide and Reference 1

1525

UNPACKTIMEQQ

GETGID
Portability Function: Returns the group ID of the
user of a process.

Module

USE IFPORT

Syntax
result = GETGID()

Results

The result type is INTEGER(4). The result corresponds to the primary group of the user under whose identity
the program is running. The result is returned as follows:

• Linux

This function returns the group identity for the current process.
• Windows

This function returns the last subauthority of the security identifier for the process. This is unique on a
local machine and unique within a domain for domain accounts.

Note that on Windows systems, domain accounts and local accounts can overlap.

Example

 USE IFPORT
 ISTAT = GETGID()

GETLASTERROR
Portability Function: Returns the last error set.

Module

USE IFPORT

Syntax
result = GETLASTERROR()

Results

The result type is INTEGER(4). The result is the integer corresponding to the last runtime error value that
was set.

For example, if you use an ERR= specifier in an I/O statement, your program will not abort if an error occurs.
GETLASTERROR provides a way to determine what the error condition was, with a better degree of certainty
than just examining errno. Your application can then take appropriate action based upon the error number.

GETLASTERRORQQ
Portability Function: Returns the last error set by a
runtime procedure.

Module

USE IFPORT

 1 Intel® Fortran Compiler Classic and Intel® Fortran Compiler Developer Guide and Reference

1526

Syntax
result = GETLASTERRORQQ()

Results

The result type is INTEGER(4). The result is the most recent error code generated by a runtime procedure.

Library functions that return a logical or integer value sometimes also provide an error code that identifies
the cause of errors. GETLASTERRORQQ retrieves the most recent error message. The error constants are
defined in IFPORT.F90. The following table shows some library routines and the errors each routine
produces:

Library routine Errors produced

BEEPQQ no error

BSEARCHQQ ERR$INVAL

CHANGEDIRQQ ERR$NOMEM, ERR$NOENT

CHANGEDRIVEQQ ERR$INVAL, ERR$NOENT

COMMITQQ ERR$BADF

DELDIRQQ ERR$NOMEM, ERR$ACCES, ERR$NOENT

DELFILESQQ ERR$NOMEM, ERR$ACCES, ERR$NOENT, ERR
$INVAL

FINDFILEQQ ERR$NOMEM, ERR$NOENT

FULLPATHQQ ERR$NOMEM, ERR$INVAL

GETCHARQQ no error

GETDRIVEDIRQQ ERR$NOMEM, ERR$RANGE

GETDRIVESIZEQQ ERR$INVAL, ERR$NOENT

GETDRIVESQQ no error

GETENVQQ ERR$NOMEM, ERR$NOENT

GETFILEINFOQQ ERR$NOMEM, ERR$NOENT, ERR$INVAL

GETLASTERRORQQ no error

GETSTRQQ no error

MAKEDIRQQ ERR$NOMEM, ERR$ACCES, ERR$EXIST, ERR
$NOENT

PACKTIMEQQ no error

PEEKCHARQQ no error

RENAMEFILEQQ ERR$NOMEM, ERR$ACCES, ERR$NOENT, ERR$XDEV

RUNQQ ERR$NOMEM, ERR$2BIG, ERR$INVAL, ERR$NOENT,
ERR$NOEXEC

SETERRORMODEQQ no error

Intel® Fortran Compiler Classic and Intel® Fortran Compiler Developer Guide and Reference 1

1527

Library routine Errors produced

SETENVQQ ERR$NOMEM, ERR$INVAL

SETFILEACCESSQQ ERR$NOMEM, ERR$INVAL, ERR$ACCES

SETFILETIMEQQ ERR$NOMEM, ERR$ACCES, ERR$INVAL, ERR
$MFILE, ERR$NOENT

SLEEPQQ no error

SORTQQ ERR$INVAL

SPLITPATHQQ ERR$NOMEM, ERR$INVAL

SYSTEMQQ ERR$NOMEM, ERR$2BIG, ERR$NOENT, ERR
$NOEXEC

UNPACKTIMEQQ no error

GETLOG
Portability Subroutine: Returns the user's login
name.

Module

USE IFPORT

Syntax
CALL GETLOG (name)

name (Output) Character*(*). User's login name.

The login name must be less than or equal to 64 characters. If the login name is longer than 64 characters, it
is truncated. The actual parameter corresponding to name should be long enough to hold the login name. If
the supplied actual parameter is too short to hold the login name, the login name is truncated.

If the login name is shorter than the actual parameter corresponding to name, the login name is padded with
blanks at the end, until it reaches the length of the actual parameter.

If the login name cannot be determined, all blanks are returned.

Example

use IFPORT
character*20 username
CALL GETLOG (username)
print *, "You logged in as ",username

GETPID
Portability Function: Returns the process ID of the
current process.

Module

USE IFPORT

Syntax
result = GETPID()

 1 Intel® Fortran Compiler Classic and Intel® Fortran Compiler Developer Guide and Reference

1528

Results

The result type is INTEGER(4). The result is the process ID number of the current process.

Example

USE IFPORT
INTEGER(4) istat
istat = GETPID()

GETPOS, GETPOSI8
Portability Functions: Return the current position of
a file.

Module

USE IFPORT

Syntax
result = GETPOS (lunit)
result = GETPOSI8 (lunit)

lunit (Input) INTEGER(4). External unit number of a file. The value must be
in the range 0 to 100 and the file must be connected.

Results

The result type is INTEGER(4) for GETPOS; INTEGER(8) for GETPOSI8. The result is the offset, in bytes, from
the beginning of the file. If an error occurs, the result value is -1 and the following error code is returned in
errno:

EINVAL: lunit is not a valid unit number, or is not open.

These functions are equivalent to FTELL, FTELLI8.

GETSTATUSFPQQ
Portability Subroutine: Returns the floating-point
processor status word. This routine is only available
for Windows.

Module

USE IFPORT

Syntax
CALL GETSTATUSFPQQ (status)

status (Output) INTEGER(2). Floating-point processor status word.

The floating-point status word shows whether various floating-point exception conditions have occurred. The
compiler initially clears (sets to 0) all status flags, but after an exception occurs it does not reset the flags
before performing additional floating-point operations. A status flag with a value of one thus shows there has
been at least one occurrence of the corresponding exception. The following table lists the status flags and
their values:

Intel® Fortran Compiler Classic and Intel® Fortran Compiler Developer Guide and Reference 1

1529

Parameter name Hex value Description

FPSW$MSW_EM Z'003F' Status Mask (set all flags to 1)

FPSW$INVALID Z'0001' An invalid result occurred

FPSW$DENORMAL Z'0002' A subnormal (very small number)
occurred

FPSW$SUBNORMAL Z'0002' A subnormal (very small number)
occurred

FPSW$ZERODIVIDE Z'0004' A divide by zero occurred

FPSW$OVERFLOW Z'0008' An overflow occurred

FPSW$UNDERFLOW Z'0010' An underflow occurred

FPSW$INEXACT Z'0020' Inexact precision occurred

You can use a logical comparison on the status word returned by GETSTATUSFPQQ to determine which of the
six floating-point exceptions listed in the table has occurred.

An exception is disabled if its control bit is set to 1. An exception is enabled if its control bit is cleared to 0.
By default, all exception traps are disabled. Exceptions can be enabled and disabled by clearing and setting
the flags with SETCONTROLFPQQ. You can use GETCONTROLFPQQ to determine which exceptions are
currently enabled and disabled.

If an exception is disabled, it does not cause an interrupt when it occurs. Instead, floating-point processes
generate an appropriate special value (NaN or signed infinity), but the program continues. You can find out
which exceptions (if any) occurred by calling GETSTATUSFPQQ.

If errors on floating-point exceptions are enabled (by clearing the flags to 0 with SETCONTROLFPQQ), the
operating system generates an interrupt when the exception occurs. By default, these interrupts cause
runtime errors, but you can capture the interrupts with SIGNALQQ and branch to your own error-handling
routines.

Example

! Program to demonstrate GETSTATUSFPQQ
 USE IFPORT
 INTEGER(2) status
 CALL GETSTATUSFPQQ(status)
! check for divide by zero
 IF (IAND(status, FPSW$ZERODIVIDE) .NE. 0) THEN
 WRITE (*,*) 'Divide by zero occurred. Look &
 for NaN or signed infinity in resultant data.'
 END IF
END

See Also
SETCONTROLFPQQ
GETCONTROLFPQQ
SIGNALQQ
CLEARSTATUSFPQQ

GETSTRQQ
Runtime Function: Reads a character string from the
keyboard using buffered input.

 1 Intel® Fortran Compiler Classic and Intel® Fortran Compiler Developer Guide and Reference

1530

Module

USE IFCORE

Syntax
result = GETSTRQQ (buffer)

buffer (Output) Character*(*). Character string returned from keyboard,
padded on the right with blanks.

Results

The result type is INTEGER(4). The result is the number of characters placed in buffer.

The function does not complete until you press Return or Enter.

Example

! Program to demonstrate GETSTRQQ
 USE IFCORE
 USE IFPORT
 INTEGER(4) length, result
 CHARACTER(80) prog, args
 WRITE (*, '(A, \)') ' Enter program to run: '
 length = GETSTRQQ (prog)
 WRITE (*, '(A, \)') ' Enter arguments: '
 length = GETSTRQQ (args)
 result = RUNQQ (prog, args)
 IF (result .EQ. -1) THEN
 WRITE (*,*) 'Couldn''t run program'
 ELSE
 WRITE (*, '(A, Z4, A)') 'Return code : ', result, 'h'
 END IF
 END

See Also
READ
GETCHARQQ
PEEKCHARQQ

GET_TEAM
Transformational Intrinsic Function (Generic):
Returns a copy of a team variable.

Syntax

result = GET_TEAM ([level])

level (Optional, Input) Must be a scalar integer whose value is equal to one
of the named constants INITIAL_TEAM, CURRENT_TEAM, or
PARENT_TEAM defined in the ISO_FORTRAN_ENV intrinsic module.

Results

The result is type TEAM_TYPE from the ISO_FORTRAN_ENV intrinsic module. If level is not present, or if
CURRENT_TEAM is specified, the result is a team variable describing the current team. If level has the value
PARENT_TEAM, the result is a team variable describing the parent team of the current team. If level has the
value INITIAL_TEAM, the result is a team variable describing the initial team.

Intel® Fortran Compiler Classic and Intel® Fortran Compiler Developer Guide and Reference 1

1531

Example

Consider the following program fragment:

 PROGRAM main
 USE, INTRINSIC :: ISO_FORTRAN_ENV
 TYPE (TEAM_TYPE) :: original
 original = GET_TEAM (INITIAL_TEAM)

After execution of the GET_TEAM function, original is defined with a team value describing the initial team.

GETTIM
Portability Subroutine: Returns the time.

Module

USE IFPORT

Syntax
CALL GETTIM (ihr, imin, isec, i100th)

ihr (Output) INTEGER(4) or INTEGER(2). Hour (0-23).

imin (Output) INTEGER(4) or INTEGER(2). Minute (0-59).

isec (Output) INTEGER(4) or INTEGER(2). Second (0-59).

i100th (Output) INTEGER(4) or INTEGER(2). Hundredths of a second (0-99).

All arguments must be of the same integer kind, that is, all must be INTEGER(2) or all must be INTEGER(4).

If INTEGER(2) arguments are passed, you must specify USE IFPORT.

Example

See the example in GETDAT.

See Also
GETDAT

SETDAT

SETTIM

CLOCK

CTIME

DTIME

ETIME

GMTIME

ITIME

LTIME

RTC

 1 Intel® Fortran Compiler Classic and Intel® Fortran Compiler Developer Guide and Reference

1532

SECNDS portability routine

TIME portability routine

TIMEF

GETTIMEOFDAY
Portability Subroutine: Returns seconds and
microseconds since 00:00 Jan 1, 1970.

Module

USE IFPORT

Syntax
CALL GETTIMEOFDAY (ret, err)

ret (Output) INTEGER(4). One-dimensional array with 2 elements used to
contain numeric time data. The elements of ret are returned as
follows:

Element Value

ret(1) Seconds

ret(2) Microseconds

err (Output) INTEGER(4).

If an error occurs, err contains a value equal to -1 and array ret contains zeros.

On Windows* systems, this subroutine has millisecond precision, and the last three digits of the returned
value are not significant.

GETUID
Portability Function: Returns the user ID of the
calling process.

Module

USE IFPORT

Syntax
result = GETUID()

Results

The result type is INTEGER(4). The result corresponds to the user identity under which the program is
running. The result is returned as follows:

• Linux

This function returns the user identity for the current process.
• Windows

This function returns the last subauthority of the security identifier for the process. This is unique on a
local machine and unique within a domain for domain accounts.

Intel® Fortran Compiler Classic and Intel® Fortran Compiler Developer Guide and Reference 1

1533

Note that on Windows systems, domain accounts and local accounts can overlap.

Example

USE IFPORT
integer(4) istat
istat = GETUID()

GMTIME
Portability Subroutine: Returns the Greenwich
mean time in an array of time elements.

Module

USE IFPORT

Syntax
CALL GMTIME (stime,tarray)

stime (Input) INTEGER(4). Numeric time data to be formatted. Number of
seconds since 00:00:00 Greenwich mean time, January 1, 1970.

tarray (Output) INTEGER(4). One-dimensional array with 9 elements used to
contain numeric time data. The elements of tarray are returned as
follows:

Element Value

tarray(1) Seconds (0-61, where 60-61 can
be returned for leap seconds)

tarray(2) Minutes (0-59)

tarray(3) Hours (0-23)

tarray(4) Day of month (1-31)

tarray(5) Month (0-11)

tarray(6) Number of years since 1900

tarray(7) Day of week (0-6, where 0 is
Sunday)

tarray(8) Day of year (0-365)

tarray(9) Daylight saving flag (0 if
standard time, 1 if daylight
saving time)

Caution
This subroutine may cause problems with the year 2000. Use DATE_AND_TIME instead.

Example

use IFPORT
integer(4) stime, timearray(9)
! initialize stime to number of seconds since

 1 Intel® Fortran Compiler Classic and Intel® Fortran Compiler Developer Guide and Reference

1534

! 00:00:00 GMT January 1, 1970
stime = time()
CALL GMTIME (stime, timearray)
print *, timearray
end

See Also
DATE_AND_TIME

GOTO - Assigned
Statement: Transfers control to the statement whose
label was most recently assigned to a variable. This
feature has been deleted in the Fortran Standard.
Intel® Fortran fully supports features deleted in the
Fortran Standard.

Syntax
GOTO var[[,] (label-list)]

var Is a scalar integer variable.

label-list Is a list of labels (separated by commas) of valid branch target
statements in the same scoping unit as the assigned GO TO
statement. The same label can appear more than once in this list.

The variable must have a statement label value assigned to it by an ASSIGN statement (not an arithmetic
assignment statement) before the GO TO statement is executed.

If a list of labels appears, the statement label assigned to the variable is not checked against the labels in the
list.

Both the assigned GO TO statement and its associated ASSIGN statement must be in the same scoping unit.

Example

The following example is equivalent to GO TO 200:

 ASSIGN 200 TO IGO
 GO TO IGO

The following example is equivalent to GO TO 450:

 ASSIGN 450 TO IBEG
 GO TO IBEG, (300,450,1000,25)

The following example shows an invalid use of an assigned variable:

 ASSIGN 10 TO I
 J = I
 GO TO J

In this case, variable J is not the variable assigned to, so it cannot be used in the assigned GO TO statement.

The following shows another example:

 ASSIGN 10 TO N
 GOTO N
 10 CONTINUE

Intel® Fortran Compiler Classic and Intel® Fortran Compiler Developer Guide and Reference 1

1535

The following example uses an assigned GOTO statement with a label-list but it is not checked against the
value of VIEW:

 ASSIGN 300 TO VIEW
 GOTO VIEW (100, 200, 400) ! this will go to label 300

See Also
Obsolescent Language Features in the Fortran Standard
GOTO - Computed GOTO
GOTO - Unconditional GOTO
Execution Control

GOTO - Computed
Statement: Transfers control to one of a set of
labeled branch target statements based on the value
of an expression. It is an obsolescent feature in
Fortran 95.

Syntax
GOTO (label-list) [,] expr

label-list Is a list of labels (separated by commas) of valid branch target
statements in the same scoping unit as the computed GO TO
statement. (Also called the transfer list.) The same label can appear
more than once in this list.

expr Is a scalar numeric expression in the range 1 to n, where n is the
number of statement labels in label-list. If necessary, it is
converted to integer data type.

When the computed GO TO statement is executed, the expression is evaluated first. The value of the
expression represents the ordinal position of a label in the associated list of labels. Control is transferred to
the statement identified by the label. For example, if the list contains (30,20,30,40) and the value of the
expression is 2, control is transferred to the statement identified with label 20.

If the value of the expression is less than 1 or greater than the number of labels in the list, control is
transferred to the next executable statement or construct following the computed GO TO statement.

Example

The following example shows valid computed GO TO statements:

GO TO (12,24,36), INDEX
GO TO (320,330,340,350,360), SITU(J,K) + 1

The following shows another example:

 next = 1
C
C The following statement transfers control to statement 10:
C
 GOTO (10, 20) next
 ...
10 CONTINUE
 ...
20 CONTINUE

See Also
Obsolescent Language Features in the Fortran Standard

 1 Intel® Fortran Compiler Classic and Intel® Fortran Compiler Developer Guide and Reference

1536

GOTO - Unconditional GOTO
Execution Control

GOTO - Unconditional
Statement: Transfers control to the same branch
target statement every time it executes.

Syntax
GO TO label

label Is the label of a valid branch target statement in the same scoping
unit as the GO TO statement.

The unconditional GO TO statement transfers control to the branch target statement identified by the
specified label.

Example

The following are examples of GO TO statements:

 GO TO 7734
 GO TO 99999

The following shows another example:

 integer(2) in
10 print *, 'enter a number from one to ten: '
 read *, in
 select case (in)
 case (1:10)
 exit
 case default
 print *, 'wrong entry, try again'
 goto 10
 end select

See Also
GOTO - Computed GOTO
Execution Control

GROUPPRIVATE
OpenMP* Fortran Compiler Directive: Specifies
that a variable is replicated once for a group of
threads participating in a parallel region. This feature
is only available for ifx.

Syntax

!$OMP GROUPPRIVATE (list)[clause [[,] clause]...]

list Is a comma-separated list of variables or named common blocks. A
common block name must be enclosed in slashes (/ /).

If a list item has the BIND attribute, the corresponding C entities must
also appear in a GROUPPRIVATE directive.

List items must have the SAVE attribute, either implicitly or explicitly,
or be declared in the specification part of a module.

List items cannot appear in an EQUIVALENCE statement, and they
cannot be any of the following:

Intel® Fortran Compiler Classic and Intel® Fortran Compiler Developer Guide and Reference 1

1537

• Coarrays
• Associate names
• Elements of a COMMON block
• Initialized variables

clause Is a DEVICE_TYPE (device) clause.

The GROUPPRIVATE directive is a declarative directive that must appear in the specification part of the scope
where its list items are declared. If a list item is a COMMON block name, all scopes that declare a COMMON
block with the same name must contain a GROUPPRIVATE directive containing the COMMON block name
enclosed in slashes.

GROUPPRIVATE directives containing COMMON block names must appear after the last COMMON statement
declaring a COMMON block that appears as a list item in that directive.

List items in a GROUPPRIVATE directive are replicated such that there is one copy for each contention group.
A contention group consists of all implicit tasks and their descendent tasks generated in an implicit parallel
region R, and all nested regions for which R is the innermost enclosing parallel region.

List items are uninitialized when they are replicated, and their lifetime is limited to that of all tasks in the
contention group. References to list items refer to the GROUPPRIVATE copy created for the contention group
of the innermost enclosing implicit parallel region.

If no DEVICE_TYPE clause appears, the behavior is as if DEVICE_TYPE (ANY) had been specified.

References to GROUPPRIVATE list items in a DO CONCURRENT construct are undefined.

See Also
OpenMP Fortran Compiler Directives
Syntax Rules for Compiler Directives

H to I
This section describes language features that start with H or I.

H to I
HINT
Parallel Directive Clause: Provides information
about the expected runtime behavior of the region
that corresponds to the construct where it is specified
for optimization purposes.

Syntax

HINT (hint-expression)

hint-expression Is an integer expression with a kind type of OMP_SYNC_HINT_KIND
with a value that is a valid synchronization hint.

The HINT clause provides information about the expected runtime properties of the construct where it
appears. It does not change the semantics of the construct.

If a HINT clause does not appear in a construct that accepts a HINT clause, it is as if HINT
(OMP_SYNC_HINT_NONE) appears in the construct.

The predefined KIND type OMP_SYNC_HINT_KIND is used to specify the kind-type parameter for an integer
that is to be used in hint-expression. The following table lists the predefined synchronization HINT constants.
They appear in the Fortran module file omp_lib.mod and the Fortran include file omp_lib.h.

 1 Intel® Fortran Compiler Classic and Intel® Fortran Compiler Developer Guide and Reference

1538

Synchronization HINT
constant name

Value Description

OMP_SYNC_HINT_NONE 0 Provides documentation clarity. It has no effect on the
construct transformation.

OMP_SYNC_HINT_UNCONTENDE
D

1 Indicates low contention in the construct. Few threads
are expected to encounter the region at the same
time in a manner requiring synchronization.

OMP_SYNC_HINT_CONTENDED 2 Indicates high contention in the construct. Many
threads will encounter the region at the same time
requiring synchronization.

OMP_SYNC_HINT_SPECULATIVE 4 Suggests that the operation be implemented using
speculative techniques such as transactional memory.

OMP_SYNC_HINT_NONSPECULAT
IVE

8 Suggests that the operation not be implemented
using speculative techniques such as transactional
memory.

Synchronization HINT constants can be combined in expressions with the plus (+) operator. Combining a
synchronization HINT constant with OMP_SYNC_HINT_NONE is the same as just specifying the
synchronization HINT constant alone.

You cannot combine the following HINT constants:

• OMP_SYNC_HINT_UNCONTENDED and OMP_SYNC_HINT_CONTENDED
• OMP_SYNC_HINT_SPECULATIVE and OMP_SYNC_HINT_NONSPECULATIVE

An implementation can provide additional pre-defined synchronization HINT constants.

See Also
ATOMIC directive
CRITICAL directive

HOSTNAM
Portability Function: Returns the current host
computer name. This function can also be specified as
HOSTNM.

Module

USE IFPORT

Syntax
result = HOSTNAM (name)

name (Output) Character*(*). Name of the current host. Should be at least
as long as MAX_HOSTNAM_LENGTH + 1. MAX_HOSTNAM_LENGTH is
defined in the IFPORT module.

Results

The result type is INTEGER(4). The result is zero if successful. If name is not long enough to contain all of
the host name, the function truncates the host name and returns -1.

Intel® Fortran Compiler Classic and Intel® Fortran Compiler Developer Guide and Reference 1

1539

Example

use IFPORT
character(MAX_HOSTNAM_LENGTH + 1) hostname
integer(4) istat
ISTAT = HOSTNAM (hostname)

HUGE
Inquiry Intrinsic Function (Generic): Returns the
largest number in the model representing the same
type and kind parameters as the argument.

Syntax
result = HUGE (x)

x (Input) Must be of type integer or real; it can be scalar or array
valued.

Results

The result is a scalar of the same type and kind parameters as x. If x is of type integer, the result has the
value r q - 1. If x is of type real, the result has the value (1 - b -p)b emax.

Integer parameters r and q are defined in Model for Integer Data; real parameters b, p, and e maxare defined
in Model for Real Data.

Example

If X is of type REAL(4), HUGE (X) has the value (1 - 2 -24) x 2 128.

See Also
TINY
Data Representation Models

HYPOT
Elemental Intrinsic Function (Generic): Returns
the value of the Euclidean distance of the arguments.

Syntax
result = HYPOT (x,y)

x (Input) Must be of type real.

y (Input) Must be of type real. It must be the same type and kind as x.

Results

The result type and kind are the same as x.

The result has a value equal to a processor-dependent approximation to the Euclidean distance, ,
without undue overflow or underflow.

Example

HYPOT (3.0, 4.0) has the approximate value 5.0.

 1 Intel® Fortran Compiler Classic and Intel® Fortran Compiler Developer Guide and Reference

1540

IACHAR
Elemental Intrinsic Function (Generic): Returns
the position of a character in the ASCII character set,
even if the processor's default character set is
different. In Intel® Fortran, IACHAR is equivalent to
the ICHAR function.

Syntax
result = IACHAR (c [, kind])

c (Input) Must be of type character of length 1.

kind (Input; optional) Must be a scalar integer constant expression.

Results

The result type is integer. If kind is present, the kind parameter of the result is that specified by kind;
otherwise, the kind parameter of the result is that of default integer. If c is in the ASCII collating sequence,
the result is the position of c in that sequence and satisfies the inequality (0 .le. IACHAR(c) .le. 127).

The results must be consistent with the LGE, LGT, LLE, and LLT lexical comparison functions. For example, if
LLE(C, D) is true, IACHAR(C) .LE. IACHAR(D) is also true.

Example

IACHAR ('Y') has the value 89.

IACHAR ('%') has the value 37.

See Also
ASCII and Key Code Charts
ACHAR
CHAR
ICHAR
LGE
LGT
LLE
LLT

IALL
Transformational Intrinsic Function (Generic):
Reduces an array with a bitwise AND operation.

Syntax
result = IALL (array, dim [, mask])
result = IALL (array [, mask])

array (Input) Must be an array of type integer.

dim (Input) Must be a scalar integer with a value in the range 1 <= dim
<= n, where n is the rank of array.

mask (Input; optional) Must be of type logical and conformable with array.

Intel® Fortran Compiler Classic and Intel® Fortran Compiler Developer Guide and Reference 1

1541

Results

The result has the same type and kind parameters as array. It is scalar if dim does not appear or if array has
rank one; otherwise, the result is an array of rank n - 1 and shape [d1, d2, ..., ddim-1, ddim+1 , ..., dn] where
[d1, d2,..., dn] is the shape of array.

If array has size zero the result value is equal to NOT (INT (0, KIND (array))). Otherwise, the result of IALL
(array) has a value equal to the bitwise AND of all the elements of array.

The result of IALL (array, MASK=mask) has a value equal to IALL (PACK (array, mask)).

The result of IALL (array, DIM=dim [, MASK=mask]) has a value equal to that of IALL (array [,
MASK=mask]) if array has rank one. Otherwise, the value of element (s1, s2, ..., sdim-1, sdim+1 , ..., sn) of the
result is equal to IALL (array (s1, s2, ..., sdim-1 , :, sdim+1 , ..., sn) [, MASK = mask (s1, s2, ..., sdim-1 , :, sdim

+1 , ..., sn)]).

Example

IALL ([14, 13, 11]) has the value 8. IALL ([14, 13, 11], MASK=[.true., .false., .true]) has the value 10.

See Also
IANY
IPARITY

IAND
Elemental Intrinsic Function (Generic): Performs
a logical AND on corresponding bits. This function can
also be specified as AND.

Syntax
result = IAND (i,j)

i (Input) Must be of type integer or logical (which is treated as an
integer), or a binary, octal, or hexadecimal literal constant.

j (Input) Must be of type integer or logical, or a binary, octal, or
hexadecimal literal constant.

If both i and j are of type integer or logical, they must have the same
kind type parameter. If the kinds of i and j do not match, the value
with the smaller kind is extended with its sign bit on the left and the
larger kind is used for the operation and the result. i and j must not
both be binary, octal, or hexadecimal literal constants.

Results

If both i and j are of type integer or logical, the result type and kind are the same as i. If either i or j is a
binary, octal, or hexadecimal literal constant, it is first converted as if by the intrinsic function INT to type
integer with the kind type parameter of the other.

The result value is derived by combining i and j bit-by-bit according to the following truth table:

 i j IAND (i, j)
 1 1 1
 1 0 0
 0 1 0
 0 0 0

The model for the interpretation of an integer value as a sequence of bits is shown in Model for Bit Data.

 1 Intel® Fortran Compiler Classic and Intel® Fortran Compiler Developer Guide and Reference

1542

Specific Name Argument Type Result Type

BIAND INTEGER(1) INTEGER(1)

IIAND 1 INTEGER(2) INTEGER(2)

JIAND INTEGER(4) INTEGER(4)

KIAND INTEGER(8) INTEGER(8)

1Or HIAND.

Example

IAND (2, 3) has the value 2.

IAND (4, 6) has the value 4.

The following shows another example:

 INTEGER(1) i, m
 INTEGER result
 INTEGER(2) result2
 i = 1
 m = 3
 result = IAND(i,m) ! returns an integer of default type
 ! (INTEGER(4) unless reset by user) whose
 ! value = 1
 result2 = IAND(i,m) ! returns an INTEGER(2) with value = 1

See Also
Binary, Octal, Hexadecimal, and Hollerith Constants
IEOR
IOR
NOT
IALL
IANY
IPARITY

IANY
Transformational Intrinsic Function (Generic):
Reduces an array with a bitwise OR operation.

Syntax
result = IANY (array, dim [, mask])
result = IANY (array [, mask])

array (Input) Must be an array of type integer.

dim (Input) Must be a scalar integer with a value in the range 1 <= dim
<= n, where n is the rank of array.

mask (Input; optional) Must be of type logical and conformable with array.

Intel® Fortran Compiler Classic and Intel® Fortran Compiler Developer Guide and Reference 1

1543

Results

The result has the same type and kind parameters as array. It is scalar if dim does not appear; otherwise,
the result is an array of rank n - 1 and shape [d1, d2, ..., ddim-1, ddim+1 , ..., dn] where [d1, d2,..., dn] is the
shape of array.

The result of IANY (array) is the bitwise OR of all the elements of array. If array has size zero, the result
value is equal to zero.

The result of IANY (array, MASK=mask) has a value equal to IANY (PACK (array, mask)).

The result of IANY (array, DIM=dim [, MASK=mask]) has a value equal to that of IANY (array [,
MASK=mask]) if array has rank one. Otherwise, the value of element (s1, s2, ..., sdim-1, sdim+1 , ..., sn) of the
result is equal to IANY (array (s1, s2, ..., sdim-1 , :, sdim+1 , ..., sn) [, MASK = mask (s1, s2, ..., sdim-1 , :, sdim

+1 , ..., sn)]).

Example

IANY ([14, 13, 8]) has the value 15. IANY ([14, 13, 8], MASK=[.true., .false., .true]) has the value 14.

See Also
IALL
IPARITY

IARGC
Inquiry Intrinsic Function (Specific): Returns the
index of the last command-line argument. It cannot
be passed as an actual argument. This function can
also be specified as IARG or NUMARG.

Syntax
result = IARGC()

Results

The result type is INTEGER(4). The result is the index of the last command-line argument, which is also the
number of arguments on the command line. The command is not included in the count. For example, IARGC
returns 3 for the command-line invocation of PROG1 -g -c -a.

IARGC returns a value that is 1 less than that returned by NARGS.

Example

integer(4) no_of_arguments
no_of_arguments = IARGC ()
print *, 'total command line arguments are ', no_of_arguments

For a command-line invocation of PROG1 -g -c -a, the program above prints:

total command line arguments are 3

See Also
GETARG
NARGS
COMMAND_ARGUMENT_COUNT
GET_COMMAND
GET_COMMAND_ARGUMENT

 1 Intel® Fortran Compiler Classic and Intel® Fortran Compiler Developer Guide and Reference

1544

IBCHNG
Elemental Intrinsic Function (Generic): Reverses
the value of a specified bit in an integer.

Syntax
result = IBCHNG (i,pos)

i (Input) Must be of type integer or of type logical (which is treated as
an integer). This argument contains the bit to be reversed.

pos (Input) Must be of type integer. This argument is the position of the
bit to be changed.

The rightmost (least significant) bit of i is in position 0.

Results

The result type and kind are the same as i. The result is equal to i with the bit in position pos reversed.

For more information, see Bit Functions.

Example

 INTEGER J, K
 J = IBCHNG(10, 2) ! returns 14 = 1110
 K = IBCHNG(10, 1) ! returns 8 = 1000

See Also
BTEST
IAND
IBCLR
IBSET
IEOR
IOR
ISHA
ISHC
ISHL
ISHFT
NOT

IBCLR
Elemental Intrinsic Function (Generic): Clears one
bit to zero.

Syntax
result = IBCLR (i,pos)

i (Input) Must be of type integer or of type logical (which is treated as
an integer).

pos (Input) Must be of type integer. It must not be negative and it must
be less than BIT_SIZE(i).

The rightmost (least significant) bit of i is in position 0.

Intel® Fortran Compiler Classic and Intel® Fortran Compiler Developer Guide and Reference 1

1545

Results

The result type and kind are the same as i. The result has the value of the sequence of bits of i, except that
bit pos of i is set to zero.

For more information, see Bit Functions.

The model for the interpretation of an integer value as a sequence of bits is shown in Model for Bit Data.

Specific Name Argument Type Result Type

BBCLR INTEGER(1) INTEGER(1)

IIBCLR1 INTEGER(2) INTEGER(2)

JIBCLR INTEGER(4) INTEGER(4)

KIBCLR INTEGER(8) INTEGER(8)

1Or HBCLR.

Example

IBCLR (18, 1) has the value 16.

If V has the value (1, 2, 3, 4), the value of IBCLR (POS = V, I = 15) is (13, 11, 7, 15).

The following shows another example:

INTEGER J, K
J = IBCLR(7, 1) ! returns 5 = 0101
K = IBCLR(5, 1) ! returns 5 = 0101

See Also
BTEST
IAND
IBCHNG
IBSET
IEOR
IOR
ISHA
ISHC
ISHL
ISHFT
NOT

IBITS
Elemental Intrinsic Function (Generic): Extracts a
sequence of bits (a bit field).

Syntax
result = IBITS (i,pos,len)

i (Input) Must be of type integer.

pos (Input) Must be of type integer. It must not be negative and pos+ len
must be less than or equal to BIT_SIZE(i).

The rightmost (least significant) bit of i is in position 0.

 1 Intel® Fortran Compiler Classic and Intel® Fortran Compiler Developer Guide and Reference

1546

len (Input) Must be of type integer. It must not be negative.

Results

The result type and kind are the same as i. The result has the value of the sequence of len bits in i,
beginning at pos, right-adjusted and with all other bits zero.

For more information, see Bit Functions.

The model for the interpretation of an integer value as a sequence of bits is shown in Model for Bit Data.

Specific Name Argument Type Result Type

BBITS INTEGER(1) INTEGER(1)

IIBITS1 INTEGER(2) INTEGER(2)

JIBITS INTEGER(4) INTEGER(4)

KIBITS INTEGER(8) INTEGER(8)

1 Or HBITS

Example

IBITS (12, 1, 4) has the value 6.

IBITS (10, 1, 7) has the value 5.

See Also
BTEST
BIT_SIZE
IBCLR
IBSET
ISHFT
ISHFTC
MVBITS

IBSET
Elemental Intrinsic Function (Generic): Sets one
bit to 1.

Syntax
result = IBSET (i,pos)

i (Input) Must be of type integer or of type logical (which is treated as
an integer).

pos (Input) Must be of type integer. It must not be negative and it must
be less than BIT_SIZE(i).

The rightmost (least significant) bit of i is in position 0.

Results

The result type and kind are the same as i. The result has the value of the sequence of bits of i, except that
bit pos of i is set to 1.

For more information, see Bit Functions.

The model for the interpretation of an integer value as a sequence of bits is shown in Model for Bit Data.

Intel® Fortran Compiler Classic and Intel® Fortran Compiler Developer Guide and Reference 1

1547

Specific Name Argument Type Result Type

BBSET INTEGER(1) INTEGER(1)

IIBSET1 INTEGER(2) INTEGER(2)

JIBSET INTEGER(4) INTEGER(4)

KIBSET INTEGER(8) INTEGER(8)

1Or HBSET.

Example

IBSET (8, 1) has the value 10.

If V has the value (1, 2, 3, 4), the value of IBSET (POS = V, I = 2) is (2, 6, 10, 18).

The following shows another example:

INTEGER I
I = IBSET(8, 2) ! returns 12 = 1100

See Also
BTEST
IAND
IBCHNG
IBCLR
IEOR
IOR
ISHA
ISHC
ISHL
ISHFT
NOT

ICHAR
Elemental Intrinsic Function (Generic): Returns
the position of a character in the processor's character
set.

Syntax
result = ICHAR (c [, kind])

c (Input) Must be of type character of length 1.

kind (Input; optional) Must be a scalar integer constant expression.

Results

The result type is integer. If kind is present, the kind parameter of the result is that specified by kind;
otherwise, the kind parameter of the result is that of default integer.

The result value is the position of c in the processor's character set. c is in the range zero to n - 1, where n is
the number of characters in the character set.

For any characters C and D (capable of representation in the processor), C .LE. D is true only if
ICHAR(C) .LE. ICHAR(D) is true, and C .EQ. D is true only if ICHAR(C) .EQ. ICHAR(D) is true.

 1 Intel® Fortran Compiler Classic and Intel® Fortran Compiler Developer Guide and Reference

1548

Specific Name Argument Type Result Type

CHARACTER INTEGER(2)

ICHAR 1 CHARACTER INTEGER(4)

CHARACTER INTEGER(8)

1This specific function cannot be passed as an actual argument.

Example

ICHAR ('W') has the value 87.

ICHAR ('#') has the value 35.

See Also
IACHAR
CHAR
ASCII and Key Code Charts

IDATE Intrinsic Procedure
Intrinsic Subroutine (Generic): Returns three
integer values representing the current month, day,
and year. IDATE can be used as an intrinsic
subroutine or as a portability routine. It is an intrinsic
procedure unless you specify USE IFPORT. Intrinsic
subroutines cannot be passed as actual arguments.

Syntax
CALL IDATE (i, j, k)

i (Output) Must be of type integer. It is the current month.

j (Output) Must be of type integer with the same kind type parameter
as i. It is the current day.

k (Output) Must be of type integer with the same kind type parameter
as i. It is the current year.

The current month is returned in i; the current day in j. The last two digits of the current year are returned
in k.

Caution
The two-digit year return value may cause problems with the year 2000. Use DATE_AND_TIME
instead.

Example

If the current date is September 16, 1999, the values of the integer variables upon return are: I = 9, J = 16,
and K = 99.

See Also
DATE intrinsic procedure

DATE_AND_TIME

Intel® Fortran Compiler Classic and Intel® Fortran Compiler Developer Guide and Reference 1

1549

GETDAT

IDATE portability routine

IDATE Portability Routine
Portability Subroutine: Returns the month, day,
and year of the current system. IDATE can be used as
a portability subroutine or as an intrinsic procedure. It
is an intrinsic procedure unless you specify USE
IFPORT.

Module

USE IFPORT

Syntax
CALL IDATE (i, j, k)
-or-

CALL IDATE (iarray)

i (Output) INTEGER(4). Is the current system month.

j (Output) INTEGER(4). Is the current system day.

k (Output) INTEGER(4). Is the current system year as an offset from
1900.

iarray (Output) INTEGER(4). Is a three-element array that holds day as
element 1, month as element 2, and year as element 3. The month is
between 1 and 12. The year is greater than or equal to 1969 and is
returned as 2 digits.

Caution
The two-digit year return value may cause problems with the year 2000. Use DATE_AND_TIME
instead.

Example

Consider the following:

 use IFPORT
 integer(4) imonth, iday, iyear, datarray(3)
! If the date is July 11, 1999:
 CALL IDATE(IMONTH, IDAY, IYEAR)
! sets IMONTH to 7, IDAY to 11 and IYEAR to 99.
 CALL IDATE (DATARRAY)
! datarray is (/11,7,99/)

See Also
DATE portability routine

DATE_AND_TIME

GETDAT

 1 Intel® Fortran Compiler Classic and Intel® Fortran Compiler Developer Guide and Reference

1550

IDATE intrinsic procedure

IDATE4
Portability Subroutine: Returns the month, day,
and year of the current system.

Module

USE IFPORT

Syntax
CALL IDATE4 (i,j,k)
-or-

CALL IDATE4 (iarray)

i (Output) INTEGER(4). The current system month.

j (Output) INTEGER(4). The current system day.

k (Output) INTEGER(4). The current system year as an offset from
1900.

iarray (Output) INTEGER(4). A three-element array that holds day as
element 1, month as element 2, and year as element 3. The month is
between 1 and 12. The year is returned as an offset from 1900, if the
year is less than 2000. For years greater than or equal to 2000, this
element simply returns the integer year, such as 2003.

IDENT
General Compiler Directive: Specifies a string that
identifies an object module. The compiler places the
string in the identification field of an object module
when it generates the module for each source
program unit.

Syntax
!DIR$ IDENT string

string Is a character constant containing printable characters. The number of
characters is limited by the length of the source line.

Only the first IDENT directive is effective; the compiler ignores any additional IDENT directives in a program
unit or module.

See Also
General Compiler Directives

Syntax Rules for Compiler Directives

IDFLOAT
Portability Function: Converts an INTEGER(4)
argument to double-precision real type.

Intel® Fortran Compiler Classic and Intel® Fortran Compiler Developer Guide and Reference 1

1551

Module

USE IFPORT

Syntax
result = IDFLOAT (i)

i (Input) Must be of type INTEGER(4).

Results

The result type is double-precision real (REAL(8) or REAL*8).

See Also
DFLOAT

IEEE_CLASS
Elemental Module Intrinsic Function (Generic):
Returns the IEEE class.

Module

USE, INTRINSIC :: IEEE_ARITHMETIC

Syntax
result = IEEE_CLASS (x)

x (Input) Must be of type REAL.

Results

The result is of type TYPE(IEEE_CLASS_TYPE). The result value is one of the following:

IEEE_SIGNALING_NAN IEEE_NEGATIVE_NORMAL

IEEE_QUIET_NAN IEEE_POSITIVE_DENORMAL

IEEE_POSITIVE_INF IEEE_NEGATIVE_DENORMAL

IEEE_NEGATIVE_INF IEEE_POSITIVE_ZERO

IEEE_POSITIVE_NORMAL IEEE_NEGATIVE_ZERO

IEEE_CLASS does not return IEEE_OTHER_VALUE in Intel® Fortran.

Example

IEEE_CLASS(1.0) has the value IEEE_POSITIVE_NORMAL.

See Also
IEEE_ARITHMETIC Intrinsic Module
IEEE Intrinsic Modules Quick Reference Tables

IEEE_COPY_SIGN
Elemental Module Intrinsic Function (Generic):
Returns an argument with a copied sign. This is
equivalent to the IEEE copySign function.

Module

USE, INTRINSIC :: IEEE_ARITHMETIC

 1 Intel® Fortran Compiler Classic and Intel® Fortran Compiler Developer Guide and Reference

1552

Syntax
result = IEEE_COPY_SIGN (x,y)

x (Input) Must be of type REAL.

y (Input) Must be of type REAL.

Results

The result type and kind are the same as x. The result has the value x with the sign of y. This is true even for
IEEE special values, such as NaN or infinity.

The flags information is returned as a set of 1-bit flags.

Example

The value of IEEE_COPY_SIGN (X,3.0) is ABS (X), even when X is NaN.

See Also
IEEE_ARITHMETIC Intrinsic Module
IEEE Intrinsic Modules Quick Reference Tables

IEEE_FLAGS
Portability Function: Gets, sets or clears IEEE flags
for rounding direction and precision as well as queries
or controls exception status. This function provides
easy access to the modes and status required to use
the features of ISO/IEC 60559:2020 arithmetic in a
Fortran program.

Module

USE IFPORT

Syntax
result = IEEE_FLAGS (action,mode,in,out)

action (Input) Character*(*). One of the following literal values: 'GET', 'SET',
'CLEAR', or 'CLEARALL'.

mode (Input) Character*(*). One of the following literal values: 'direction',
'precision', or 'exception'.

in (Input) Character*(*). One of the following literal values: 'inexact',
'division', 'underflow','overflow', 'invalid', 'all', 'common', 'nearest',
'tozero', 'negative', 'positive','extended', 'double', 'single', or ' ', which
represents an unused (null) value.

out (Output) Must be at least CHARACTER*9. One of the literal values
listed for in.

The descriptions for the values allowed for in and out can be
summarized as follows:

Value Description

'nearest'

'tozero'

Rounding direction flags

Intel® Fortran Compiler Classic and Intel® Fortran Compiler Developer Guide and Reference 1

1553

Value Description

'negative'

'positive'

'single'

'double'

'extended'

Rounding precision flags

'inexact'

'underflow'

'overflow'

'division'

'invalid'

Math exception flags

'all' All math exception flags above

'common' The math exception flags:
'invalid', 'division', 'overflow',
and 'underflow'

The values for in and out depend on the action and mode they are
used with. The interaction of the parameters can be summarized as
follows:

Value of
action

Value of
mode

Value of
in

Value of
out

Functional
ity and
return
value

GET 'direction' Null (' ') One of
'nearest',
'tozero',
'negative',
or 'positive'

Tests
rounding
direction
settings.

Returns the
current
setting, or
'not
available'.

'exception' Null (' ') One of
'inexact',
'division',
'underflow'
,
'overflow',
'invalid',
'all', or
'common'

Tests math
exception
settings.

Returns the
current
setting, or
0.

 1 Intel® Fortran Compiler Classic and Intel® Fortran Compiler Developer Guide and Reference

1554

Value of
action

Value of
mode

Value of
in

Value of
out

Functional
ity and
return
value

'precision' Null (' ') One of
'single ',
'double ',
or
'extended'

Tests
rounding
precision
settings.

Returns the
current
setting, or
'not
available'.

SET 'direction' One of
'nearest',
'tozero',
'negative',
or 'positive'

Null (' ') Sets a
rounding
direction.

'exception' One of
'inexact',
'division',
'underflow'
,
'overflow',
'invalid',
'all', or
'common'

Null (' ') Sets a
floating-
point math
exception.

'precision' One of
'single ',
'double ',
or
'extended'

Null (' ') Sets a
rounding
precision.

CLEAR 'direction' Null (' ') Null (' ') Clears the
mode. Sets
rounding to
'nearest'.

Returns 0 if
successful.

'exception' One of
'inexact',
'division',
'underflow',
'overflow',
'invalid',
'all', or
'common'

Null (' ') Clears the
mode.

Returns 0 if
successful.

Intel® Fortran Compiler Classic and Intel® Fortran Compiler Developer Guide and Reference 1

1555

Value of
action

Value of
mode

Value of
in

Value of
out

Functional
ity and
return
value

'precision' Null (' ') Null (' ') Clears the
mode. Sets
precision to
'double'
(Windows)
or
'extended'
(Linux).

Returns 0 if
successful.

CLEARALL Null (' ') Null (' ') Null (' ') Clears all
flags. Sets
rounding to
'nearest',
sets
precision to
'double'
(Windows)
or
'extended'
(Linux),
and sets all
exception
flags to 0.

Returns 0 if
successful.

Results

IEEE_FLAGS is an elemental, integer-valued function that sets IEEE flags for GET, SET, CLEAR, or CLEARALL
procedures. It lets you control rounding direction and rounding precision, query exception status, and control
exception enabling or disabling by using the SET or CLEAR procedures, respectively.

The flags information is returned as a set of 1-bit flags.

Example

The following example gets the highest priority exception that has a flag raised. It passes the input argument
in as a null string:

USE IFPORT
INTEGER*4 iflag
CHARACTER*9 out
iflag = ieee_flags('get', 'exception', '', out)
PRINT *, out, ' flag raised'

 1 Intel® Fortran Compiler Classic and Intel® Fortran Compiler Developer Guide and Reference

1556

The following example sets the rounding direction to round toward zero, unless the hardware does not
support directed rounding modes:

USE IFPORT
INTEGER*4 iflag
CHARACTER*10 mode, out, in
iflag = ieee_flags('set', 'direction', 'tozero', out)

The following example sets the rounding direction to the default ('nearest'):

USE IFPORT
INTEGER*4 iflag
CHARACTER*10 out, in
iflag = ieee_flags('clear','direction', '', '')

The following example clears all exceptions:

USE IFPORT
INTEGER*4 iflag
CHARACTER*10 out
iflag = ieee_flags('clear','exception', 'all', '')

The following example restores default direction and precision settings, and sets all exception flags to 0:

USE IFPORT
INTEGER*4 iflag
CHARACTER*10 mode, out, in
iflag = ieee_flags('clearall', '', '', '')

The following example detects an underflow exception:

USE IFPORT
CHARACTER*20 out, in
excep_detect = ieee_flags('get', 'exception', 'underflow', out)
if (out .eq.'underflow') stop 'underflow'

IEEE_FMA
Elemental Module Intrinsic Function (Generic):
Returns the result of a fused multiply-add operation.
This is equivalent to the IEEE fusedMultiplyAdd
operation.

Module

USE, INTRINSIC :: IEEE_ARITHMETIC

Syntax

result = IEEE_FMA (a,b,c)

a (Input) Must be of type REAL.

b (Input) Must be of type REAL with the same kind type parameter as a.

c (Input) Must be of type REAL with the same kind type parameter as a.

Results

The result type is REAL with the same kind type parameter as a. When the result is in range, the value of the
result is the mathematical value of (a * b) + c rounded according to the rounding mode of the representation
method of a. Only the final step in the calculation may cause IEEE_INEXACT, IEEE_OVERFLOW, or
IEEE_UNDERFLOW to signal; intermediate calculations do not.

This is the fusedMultiplyAdd operation as specified in the ISO/IEC 60559:2020 standard.

Intel® Fortran Compiler Classic and Intel® Fortran Compiler Developer Guide and Reference 1

1557

Example

The result value of IEEE_FMA (TINY(0.0), TINY(0.0) 1.0) is equal to 1.0 when the rounding mode is set to
NEAREST. The exception IEEE_INEXACT is signaled.

See Also
IEEE_ARITHMETIC Intrinsic Module
IEEE Intrinsic Modules Quick Reference Tables

IEEE_GET_FLAG
Elemental Module Intrinsic Subroutine
(Generic): Returns whether an exception flag is
signaling.

Module

USE, INTRINSIC :: IEEE_EXCEPTIONS

Syntax
CALL IEEE_GET_FLAG (flag, flag_value)

flag (Input) Must be of type TYPE (IEEE_FLAG_TYPE). It specifies one of
the following IEEE flags:

IEEE_DIVIDE_BY_ZERO, IEEE_INEXACT, IEEE_INVALID,
IEEE_OVERFLOW, or IEEE_UNDERFLOW.

flag_value (Output) Must be of type logical. If the exception in flag is signaling,
the result is true; otherwise, false.

Example

Consider the following:

USE, INTRINSIC :: IEEE_EXCEPTIONS
LOGICAL ON
...
CALL IEEE_GET_FLAG(IEEE_INVALID, ON)

If flag IEEE_INVALID is signaling, the value of ON is true; if it is quiet, the value of ON is false.

See Also
IEEE_EXCEPTIONS Intrinsic Module
IEEE Intrinsic Modules Quick Reference Tables

IEEE_GET_HALTING_MODE
Elemental Module Intrinsic Subroutine
(Generic): Stores the halting mode for an exception.

Module

USE, INTRINSIC :: IEEE_EXCEPTIONS

Syntax
CALL IEEE_GET_HALTING_MODE (flag, halting)

flag (Input) Must be of type TYPE (IEEE_FLAG_TYPE). It specifies one of
the following IEEE flags:

 1 Intel® Fortran Compiler Classic and Intel® Fortran Compiler Developer Guide and Reference

1558

IEEE_DIVIDE_BY_ZERO, IEEE_INEXACT, IEEE_INVALID,
IEEE_OVERFLOW, or IEEE_UNDERFLOW.

halting (Output) Must be of type logical. If the exception in flag causes
halting, the result is true; otherwise, false.

Example

Consider the following:

USE, INTRINSIC :: IEEE_EXCEPTIONS
LOGICAL HALT
...
CALL IEEE_GET_HALTING_MODE(IEEE_INVALID, HALT) ! Stores the halting mode
CALL IEEE_SET_HALTING_MODE(IEEE_INVALID, .FALSE.) ! Stops halting
...
CALL IEEE_SET_HALTING_MODE(IEEE_INVALID, HALT) ! Restores halting

See Also
IEEE_EXCEPTIONS Intrinsic Module
IEEE Intrinsic Modules Quick Reference Tables

IEEE_GET_MODES
Intrinsic Module Subroutine (Generic): Stores the
current IEEE floating-point modes. This is an impure
subroutine.

Module

USE, INTRINSIC :: IEEE_EXCEPTIONS

Syntax
CALL IEEE_GET_MODES (modes)

modes (Output) Must be scalar and of type TYPE (IEEE_MODES_TYPE). It is
assigned the value of the floating-point modes.

Example

Consider the following:

USE, INTRINSIC :: IEEE_EXCEPTIONS ! Can also use IEEE_ARITHMETIC
TYPE (IEEE_MODE_TYPE) MODES
...
CALL IEEE_GET_MODES (MODES) ! Stores the floating-point modes
CALL IEEE_SET_UNDERFLOW_MODE (.TRUE.) ! Sets the underflow mode to gradual
...
CALL IEEE_SET_MODES (MODES) ! Restores the floating-point modes

See Also
IEEE_EXCEPTIONS Intrinsic Module
IEEE Intrinsic Modules Quick Reference Tables

IEEE_GET_ROUNDING_MODE
Intrinsic Module Subroutine (Generic): Stores the
current IEEE rounding mode. This is an impure
subroutine.

Intel® Fortran Compiler Classic and Intel® Fortran Compiler Developer Guide and Reference 1

1559

Module

USE, INTRINSIC :: IEEE_ARITHMETIC

Syntax
CALL IEEE_GET_ROUNDING_MODE (round_value [, radix])

round_value (Output) Must be scalar and of type TYPE (IEEE_ROUND_TYPE). It
returns one of the following IEEE floating-point rounding values:

IEEE_DOWN, IEEE_NEAREST, IEEE_TO_ZERO, or IEEE_UP; otherwise,
IEEE_OTHER.

The result can only be used if IEEE_SET_ROUNDING_MODE is
invoked.

radix (Input; optional) Must be an integer scalar with a value of two or ten.
The rounding mode queried is the binary rounding mode, unless radix
is present with the value ten, in which case it is the decimal rounding
mode queried.

Example

Consider the following:

USE, INTRINSIC :: IEEE_ARITHMETIC
TYPE(IEEE_ROUND_TYPE) ROUND
...
CALL IEEE_GET_ROUNDING_MODE(ROUND) ! Stores the rounding mode
CALL IEEE_SET_ROUNDING_MODE(IEEE_UP) ! Resets the rounding mode
...
CALL IEEE_SET_ROUNDING_MODE(ROUND) ! Restores the previous rounding mode

See Also
IEEE_ARITHMETIC Intrinsic Module
IEEE Intrinsic Modules Quick Reference Tables

IEEE_GET_STATUS
Intrinsic Module Subroutine (Generic): Stores the
current state of the floating-point environment. This is
an impure subroutine.

Module

USE, INTRINSIC :: IEEE_EXCEPTIONS

Syntax
CALL IEEE_GET_STATUS (status_value)

status_value (Input) Must be scalar and of type TYPE (IEEE_STATUS_TYPE).

It stores the floating-point status. The result can only be used if
IEEE_SET_STATUS is invoked.

Example

Consider the following:

USE, INTRINSIC :: IEEE_EXCEPTIONS ! Can also use IEEE_ARITHMETIC
TYPE(IEEE_ STATUS_TYPE) STATUS
...

 1 Intel® Fortran Compiler Classic and Intel® Fortran Compiler Developer Guide and Reference

1560

CALL IEEE_GET_STATUS(STATUS) ! Stores the floating-point status
CALL IEEE_SET_FLAG(IEEE_ALL,.FALSE.) ! Sets all flags to be quiet
...
CALL IEEE_SET_STATUS(STATUS) ! Restores the floating-point status

See Also
IEEE_EXCEPTIONS Intrinsic Module
IEEE Intrinsic Modules Quick Reference Tables

IEEE_GET_UNDERFLOW_MODE
Intrinsic Module Subroutine (Generic): Stores the
current underflow mode. This is an impure subroutine.

Module

USE, INTRINSIC :: IEEE_ARITHMETIC

Syntax
CALL IEEE_GET_UNDERFLOW_MODE (gradual)

gradual (Output) Must be logical scalar.

The result is true if the current underflow mode is gradual (IEEE
subnormals are allowed) and false if the current underflow mode is
abrupt (underflowed results are set to zero).

Example

Consider the following:

USE, INTRINSIC :: IEEE_EXCEPTIONS
LOGICAL GRAD
...
CALL IEEE_GET_UNDERFLOW_MODE(GRAD)
IF (GRAD) THEN ! underflows are gradual
...
ELSE ! underflows are abrupt
...
END IF

See Also
IEEE_ARITHMETIC Intrinsic Module
IEEE Intrinsic Modules Quick Reference Tables

IEEE_HANDLER
Portability Function: Establishes a handler for IEEE
exceptions.

Module

USE IFPORT

Syntax
result = IEEE_HANDLER (action, exception, handler)

action (Input) Character*(*). One of the following literal IEEE actions: 'GET',
'SET', or 'CLEAR'. For more details on these actions, see IEEE_FLAGS.

Intel® Fortran Compiler Classic and Intel® Fortran Compiler Developer Guide and Reference 1

1561

exception (Input) Character*(*). One of the following literal IEEE exception
flags: 'inexact', 'underflow', 'overflow', 'division', 'invalid', 'all' (which
equals the previous five flags), or 'common' (which equals 'invalid',
'overflow', 'underflow', and 'division'). The flags 'all' or 'common'
should only be used for actions SET or CLEAR.

handler (Input) The address of an external signal-handling routine.

Results

The result type is INTEGER(4) on IA-32 architecture; INTEGER(8) on Intel® 64 architecture. The result is 0 if
successful; otherwise, 1.

IEEE_HANDLER calls a signal-handling routine to establish a handler for IEEE exceptions. It also enables an
FPU trap corresponding to the required exception.

The state of the FPU is not defined in the handler routine. When the FPU trap occurs, the program invokes
the handler routine. After the handler routine is executed, the program terminates.

The handler routine gets the exception code in the SIGINFO argument. SIGNO is the number of the system
signal. The meaning of the SIGINFO constants appear in the following table (defined in the IFPORT module):

FPE$INVALID Invalid operation

FPE$ZERODIVIDE Divide-by-zero

FPE$OVERFLOW Numeric overflow

FPE$UNDERFLOW Numeric underflow

FPE$INEXACT Inexact result (precision)

'GET' actions return the location of the current handler routine for exception cast to an INTEGER.

Example

The following example creates a handler routine and sets it to trap divide-by-zero:

PROGRAM TEST_IEEE
 REAL :: X, Y, Z
 CALL FPE_SETUP
 X = 0.
 Y = 1.
 Z = Y / X
END PROGRAM
SUBROUTINE FPE_SETUP
USE IFPORT
IMPLICIT NONE
 INTERFACE
 SUBROUTINE FPE_HANDLER(SIGNO, SIGINFO)
 INTEGER(4), INTENT(IN) :: SIGNO, SIGINFO
 END SUBROUTINE
 END INTERFACE
 INTEGER IR
 IR = IEEE_HANDLER('set','division',FPE_HANDLER)
END SUBROUTINE FPE_SETUP
SUBROUTINE FPE_HANDLER(SIG, CODE)
 USE IFPORT
 IMPLICIT NONE
 INTEGER SIG, CODE

 1 Intel® Fortran Compiler Classic and Intel® Fortran Compiler Developer Guide and Reference

1562

 IF(CODE.EQ.FPE$ZERODIVIDE) PRINT *,'Occurred divide by zero.'
 CALL ABORT
END SUBROUTINE FPE_HANDLER

See Also
IEEE_FLAGS

IEEE_INT
Elemental Module Intrinsic Function (Generic):
Enables conversion to INTEGER type.

Module

USE, INTRINSIC :: IEEE_ARITHMETIC

Syntax
result = IEEE_INT (a, round [, kind])

a (Input) Must be of type REAL or INTEGER.

round (Input) Must be of type IEEE_ROUND_TYPE.

kind (Input; optional) Must be a scalar INTEGER constant.

Results

The result type is INTEGER. If kind is present, the kind type parameter is that specified by kind; otherwise,
the kind type parameter is default integer.

The result is the value of a converted to integer according to the rounding mode specified by round if the
values can be represented in the representation method of the result type kind; otherwise, the result is
processor dependent and IEEE_INVALID is signaled.

The result must be consistent with the ISO/IEC 60559:2020 operation convertToInteger{round} or
convertToIntegerExact{round}. The processor consistently chooses which operation is performed.

Example

The result value of IEEE_INT (63.5, IEEE_DOWN) is 63. If converToIntegerExact{round} is used,
IEEE_INEXACT will signal.

See Also
IEEE_ARITHMETIC Intrinsic Module
IEEE Intrinsic Modules Quick Reference Tables

IEEE_IS_FINITE
Elemental Module Intrinsic Function (Generic):
Returns whether an IEEE value is finite.

Module

USE, INTRINSIC :: IEEE_ARITHMETIC

Syntax
result = IEEE_IS_FINITE (x)

x (Input) Must be of type REAL.

Intel® Fortran Compiler Classic and Intel® Fortran Compiler Developer Guide and Reference 1

1563

Results

The result type is default logical. The result has the value true if the value of x is finite; otherwise, false.

An IEEE value is finite if IEEE_CLASS(x) has one of the following values:

IEEE_POSITIVE_NORMAL IEEE_NEGATIVE_DENORMAL

IEEE_NEGATIVE_NORMAL IEEE_POSITIVE_ZERO

IEEE_POSITIVE_DENORMAL IEEE_NEGATIVE_ZERO

Example

IEEE_IS_FINITE (-2.0) has the value true.

See Also
IEEE_ARITHMETIC Intrinsic Module
IEEE Intrinsic Modules Quick Reference Tables

IEEE_IS_NAN
Elemental Module Intrinsic Function (Generic):
Returns whether an IEEE value is Not-a-Number
(NaN).

Module

USE, INTRINSIC :: IEEE_ARITHMETIC

Syntax
result = IEEE_IS_NAN (x)

x (Input) Must be of type REAL.

Results

The result type is default logical. The result has the value true if the value of x is NaN; otherwise, false.

Example

IEEE_IS_NAN (SQRT(-2.0)) has the value true if IEEE_SUPPORT_SQRT (2.0) has the value true.

See Also
IEEE_ARITHMETIC Intrinsic Module
IEEE Intrinsic Modules Quick Reference Tables

IEEE_IS_NEGATIVE
Elemental Module Intrinsic Function (Generic):
Returns whether an IEEE value is negative.

Module

USE, INTRINSIC :: IEEE_ARITHMETIC

Syntax
result = IEEE_IS_NEGATIVE (x)

x (Input) Must be of type REAL.

 1 Intel® Fortran Compiler Classic and Intel® Fortran Compiler Developer Guide and Reference

1564

Results

The result type is default logical. The result has the value true if the value of x is negative; otherwise, false.

An IEEE value is negative if IEEE_CLASS(x) has one of the following values::

IEEE_NEGATIVE_NORMAL IEEE_NEGATIVE_ZERO

IEEE_NEGATIVE_DENORMAL IEEE_NEGATIVE_INF

Example

IEEE_IS_NEGATIVE (2.0) has the value false.

See Also
IEEE_ARITHMETIC Intrinsic Module
IEEE Intrinsic Modules Quick Reference Tables

IEEE_IS_NORMAL
Elemental Module Intrinsic Function (Generic):
Returns whether an IEEE value is normal.

Module

USE, INTRINSIC :: IEEE_ARITHMETIC

Syntax
result = IEEE_IS_NORMAL (x)

x (Input) Must be of type REAL.

Results

The result type is default logical. The result has the value true if the value of x is normal; otherwise, false.

An IEEE value is normal if IEEE_CLASS(x) has one of the following values:

IEEE_POSITIVE_NORMAL IEEE_POSITIVE_ZERO

IEEE_NEGATIVE_NORMAL IEEE_NEGATIVE_ZERO

Example

IEEE_IS_NORMAL (SQRT(-2.0)) has the value false if IEEE_SUPPORT_SQRT (-2.0) has the value true.

See Also
IEEE_ARITHMETIC Intrinsic Module
IEEE Intrinsic Modules Quick Reference Tables

IEEE_LOGB
Elemental Module Intrinsic Function (Generic):
Returns a floating-point value equal to the unbiased
exponent of the argument. This is equivalent to the
IEEE logB function.

Module

USE, INTRINSIC :: IEEE_ARITHMETIC

Intel® Fortran Compiler Classic and Intel® Fortran Compiler Developer Guide and Reference 1

1565

Syntax
result = IEEE_LOGB (x)

x (Input) Must be of type REAL.

Results

The result type and kind are the same as x. The result has the value of the unbiased exponent of x if the
value of x is not zero, infinity, or NaN. The value of the result is equal to EXPONENT(x) - 1.

If x is equal to 0, the result is -infinity if IEEE_SUPPORT_INF(x) is true; otherwise, -HUGE(x). In either case,
the IEEE_DIVIDE_BY_ZERO exception is signaled.

Example

IEEE_LOGB (3.4) has the value 1.0; IEEE_LOGB (4.0) has the value 2.0.

See Also
IEEE_ARITHMETIC Intrinsic Module
IEEE Intrinsic Modules Quick Reference Tables

IEEE_MAX_NUM
Inquiry Module Intrinsic Function (Generic):
Returns the maximum of two values. This is
equivalent to the IEEE maxNum operation.

Module

USE, INTRINSIC :: IEEE_ARITHMETIC

Syntax
result = IEEE_MAX_NUM (x,y)

x (Input) Must be of type REAL.

y (Input) Must be of type REAL with the same kind type parameter as x.

Results

The result type is REAL with the same kind type parameter as x. The result is x if y < x. The result is y if x <
y.

If one of the arguments is a quiet NaN, the result is the value of the argument which is not a quiet NaN. If
either or both of the arguments is a signaling NaN, the result is a NaN and IEEE_INVALID signals. Otherwise,
the result value is that of either x or y (processor dependent). No exceptions are signaled unless x or y is a
signaling NaN.

This is the maxNum operation as specified in the ISO/IEC/IEEE 60559:2011 standard.

Example

The result value of IEEE_MAX_NUM (3.7, IEEE_VALUE (0.0, IEEE_SIGNALING_NAN)) is a NaN. The exception
IEEE_INVALID is signaled.

See Also
IEEE_ARITHMETIC Intrinsic Module
IEEE Intrinsic Modules Quick Reference Tables

 1 Intel® Fortran Compiler Classic and Intel® Fortran Compiler Developer Guide and Reference

1566

IEEE_MAX_NUM_MAG
Inquiry Module Intrinsic Function (Generic):
Returns the maximum magnitude of two values. This
is equivalent to the IEEE maxNumMag operation.

Module

USE, INTRINSIC :: IEEE_ARITHMETIC

Syntax
result = IEEE_MAX_NUM_MAG (x,y)

x (Input) Must be of type REAL.

y (Input) Must be of type REAL with the same kind type parameter as x.

Results

The result type is REAL with the same kind type parameter as x. The result is x if ABS(y) < ABS(x). The
result is the value of y if ABS(x) < ABS(y).

If one of the arguments is a quiet NaN, the result is the value of the argument which is not a quiet Nan. If
either or both of the arguments is a signaling NaN, the result is a NaN and IEEE_INVALID signals. Otherwise,
the result value is that of either x or y (processor dependent). No exceptions are signaled unless x or y is a
signaling NaN.

This is the maxNumMag operation as specified in the ISO/IEC/IEEE 60559:2011 standard.

Example

The result value of IEEE_MAX_NUM_MAG (3.7, -7.5) is -7.5.

See Also
IEEE_ARITHMETIC Intrinsic Module
IEEE Intrinsic Modules Quick Reference Tables

IEEE_MIN_NUM
Inquiry Module Intrinsic Function (Generic):
Returns the minimum of two values. This is equivalent
to the IEEE minNum operation.

Module

USE, INTRINSIC :: IEEE_ARITHMETIC

Syntax
result = IEEE_MIN_NUM (x,y)

x (Input) Must be of type REAL.

y (Input) Must be of type REAL with the same kind type parameter as x.

Results

The result type is REAL with the same kind type parameter as x. The result is x if x < y. The result is y if y <
x.

If one of the arguments is a quiet NaN, the result is the value of the argument which is not a quiet NaN. If
either or both of the arguments is a signaling NaN, the result is a NaN and IEEE_INVALID signals. Otherwise,
the result value is that of either x or y (processor dependent). No exceptions are signaled unless x or y is a
signaling NaN.

Intel® Fortran Compiler Classic and Intel® Fortran Compiler Developer Guide and Reference 1

1567

This is the minNum operation as specified in the ISO/IEC/IEEE 60559:2011 standard.

Example

The result value of IEEE_MIN_NUM (3.7, IEEE_VALUE (0.0, IEEE_QUIET _NAN)) is 3.7. No exceptions are
signaled.

See Also
IEEE_ARITHMETIC Intrinsic Module
IEEE Intrinsic Modules Quick Reference Tables

IEEE_MIN_NUM_MAG
Inquiry Module Intrinsic Function (Generic):
Returns the minimum magnitude of two values. This is
equivalent to the IEEE minNumMag operation.

Module

USE, INTRINSIC :: IEEE_ARITHMETIC

Syntax
result = IEEE_MIN_NUM_MAG (x,y)

x (Input) Must be of type REAL.

y (Input) Must be of type REAL with the same kind type parameter as x.

Results

The result type is REAL with the same kind type parameter as x. The result is y if ABS(y) < ABS(x). The
result is the value of x if ABS(x) < ABS(y).

If one of the arguments is a quiet NaN, the result is the value of the argument which is not a quiet NaN. If
either or both of the arguments is a signaling NaN, the result is a NaN and IEEE_INVALID signals. Otherwise,
the result value is that of either x or y (processor dependent). No exceptions are signaled unless x or y is a
signaling NaN.

This is the minNumMag operation as specified in the ISO/IEC/IEEE 60559:2011 standard.

Example

The result value of IEEE_MIN_NUM_MAG (3.7, -7.5) is 3.7.

See Also
IEEE_ARITHMETIC Intrinsic Module
IEEE Intrinsic Modules Quick Reference Tables

IEEE_NEXT_AFTER
Elemental Module Intrinsic Function (Generic):
Returns the next representable value after X toward Y.
This is equivalent to the IEEE nextAfter function.

Module

USE, INTRINSIC :: IEEE_ARITHMETIC

Syntax
result = IEEE_NEXT_AFTER (x,y)

 1 Intel® Fortran Compiler Classic and Intel® Fortran Compiler Developer Guide and Reference

1568

x (Input) Must be of type REAL.

y (Input) Must be of type REAL.

Results

The result type and kind are the same as x. If x is equal to y, the result is x; no exception is signaled. If x is
not equal to y, the result has the value of the next representable neighbor of x toward y. The neighbors of
zero (of either sign) are both nonzero.

The following exceptions are signaled under certain cases:

Exception Signaled

IEEE_OVERFLOW When X is finite but IEEE_NEXT_AFTER(X,Y) is
infinite

IEEE_UNDERFLOW When IEEE_NEXT_AFTER(X,Y) is subnormal

IEEE_INEXACT In both the above cases

Example

The value of IEEE_NEXT_AFTER (2.0,3.0) is 2.0 + EPSILON (X).

See Also
IEEE_ARITHMETIC Intrinsic Module
IEEE Intrinsic Modules Quick Reference Tables

IEEE_NEXT_DOWN
Elemental Module Intrinsic Function (Generic):
Returns the next lower adjacent machine number.
This is equivalent to the IEEE nextDown operation.

Module

USE, INTRINSIC :: IEEE_ARITHMETIC

Syntax
result = IEEE_NEXT_DOWN (x)

x (Input) Must be of type REAL.

Results

The result type and kind are the same as x. The value of the result is the greatest value that compares less
than x - except when x has the value NaN, the result is NaN, and when x has the value - ∞ , the result is -
∞ . If x is a signaling NaN, IEEE_INVALID signals; otherwise, no exception is signaled.

This is the nextDown operation as specified in the ISO/IEC 60559:2020 standard.

Example

The value of IEEE_NEXT_DOWN(+0.0) is the negative subnormal number with the least magnitude if the
value if IEEE_SUPPORT_SUBNORMAL (0.0) is .TRUE..

See Also
IEEE_ARITHMETIC Intrinsic Module
IEEE Intrinsic Modules Quick Reference Tables

Intel® Fortran Compiler Classic and Intel® Fortran Compiler Developer Guide and Reference 1

1569

IEEE_NEXT_UP
Elemental Module Intrinsic Function (Generic):
Returns the next higher adjacent machine number.
This is equivalent to the IEEE nextUp operation.

Module

USE, INTRINSIC :: IEEE_ARITHMETIC

Syntax
result = IEEE_NEXT_UP (x)

x (Input) Must be of type REAL.

Results

The result type and kind are the same as x. The value of the result is the least value that compares greater
than x - except when x has the value NaN, the result is NaN, and when x has the value + ∞, the result is +
∞. If x is a signaling NaN, IEEE_INVALID signals; otherwise, no exception is signaled.

This is the nextUp operation as specified in the ISO/IEC 60559:2020 standard.

Example

The value of IEEE_NEXT_UP (HUGE (x)) is + ∞ if the value of IEEE_SUPPORT_INF (x) is .true..

See Also
IEEE_ARITHMETIC Intrinsic Module
IEEE Intrinsic Modules Quick Reference Tables

IEEE_QUIET_EQ
Elemental Module Intrinsic Function (Generic):
Performs a non-signaling comparison for equality. This
is equivalent to the IEEE compareQuietEqual
operation.

Module

USE, INTRINSIC :: IEEE_ARITHMETIC

Syntax
result = IEEE_QUIET_EQ (a,b)

a (Input) Must be of type REAL.

b (Input) Must be of type REAL with the same kind type parameter as a.

Results

The result type is default LOGICAL. It has the value true if a compares equal to b. If a or b is a NaN, the
result is false. IEEE_INVALID signals if either a or b is a signaling NaN, otherwise no exception is signaled.

This is the compareQuietEqual operation as specified in the ISO/IEC 60559:2020 standard.

Example

The result value of IEEE_QUIET_EQ (3.7, IEEE_VALUE (0.0, IEEE_QUIET_NAN)) is false and no exception is
signaled.

See Also
IEEE_ARITHMETIC Intrinsic Module

 1 Intel® Fortran Compiler Classic and Intel® Fortran Compiler Developer Guide and Reference

1570

IEEE Intrinsic Modules Quick Reference Tables

IEEE_QUIET_GE
Elemental Module Intrinsic Function (Generic):
Performs a non-signaling comparison for greater than
or equal. This is equivalent to the IEEE
compareQuietGreaterEqual operation.

Module

USE, INTRINSIC :: IEEE_ARITHMETIC

Syntax
result = IEEE_QUIET_GE (a,b)

a (Input) Must be of type REAL.

b (Input) Must be of type REAL with the same kind type parameter as a.

Results

The result type is default LOGICAL. It has the value true if a compares greater than or equal to b. If a or b is
a NaN, the result is false. IEEE_INVALID signals if either a or b is a signaling NaN, otherwise no exception is
signaled.

This is the compareQuietGreaterEqual operation as specified in the ISO/IEC 60559:2020 standard.

Example

The result value of IEEE_QUIET_GE (3.7, IEEE_VALUE (0.0, IEEE_QUIET_NAN)) is false and no exception is
signaled.

See Also
IEEE_ARITHMETIC Intrinsic Module
IEEE Intrinsic Modules Quick Reference Tables

IEEE_QUIET_GT
Elemental Module Intrinsic Function (Generic):
Performs a non-signaling comparison for greater than.
This is equivalent to the IEEE compareQuietGreater
operation.

Module

USE, INTRINSIC :: IEEE_ARITHMETIC

Syntax
result = IEEE_QUIET_GT (a,b)

a (Input) Must be of type REAL.

b (Input) Must be of type REAL with the same kind type parameter as a.

Results

The result type is default LOGICAL. It has the value true if a compares greater than b. If a or b is a NaN, the
result is false. IEEE_INVALID signals if either a or b is a signaling NaN, otherwise no exception is signaled.

This is the compareQuietGreater operation as specified in the ISO/IEC 60559:2020 standard.

Intel® Fortran Compiler Classic and Intel® Fortran Compiler Developer Guide and Reference 1

1571

Example

The result value of IEEE_QUIET_GT (3.7, IEEE_VALUE (0.0, IEEE_QUIET_NAN)) is false and no exception is
signaled.

See Also
IEEE_ARITHMETIC Intrinsic Module
IEEE Intrinsic Modules Quick Reference Tables

IEEE_QUIET_LE
Elemental Module Intrinsic Function (Generic):
Performs a non-signaling comparison for less than or
equal. This is equivalent to the IEEE
compareQuietLessEqual operation.

Module

USE, INTRINSIC :: IEEE_ARITHMETIC

Syntax
result = IEEE_QUIET_LE (a,b)

a (Input) Must be of type REAL.

b (Input) Must be of type REAL with the same kind type parameter as a.

Results

The result type is default LOGICAL. It has the value true if a compares less than or equal to b. If a or b is a
NaN, the result is false. IEEE_INVALID signals if either a or b is a signaling NaN, otherwise no exception is
signaled.

This is the compareQuietLessEqual operation as specified in the ISO/IEC 60559:2020 standard.

Example

The result value of IEEE_QUIET_LE (3.7, IEEE_VALUE (0.0, IEEE_QUIET_NAN)) is false and no exception is
signaled.

See Also
IEEE_ARITHMETIC Intrinsic Module
IEEE Intrinsic Modules Quick Reference Tables

IEEE_QUIET_LT
Elemental Module Intrinsic Function (Generic):
Performs a non-signaling comparison for less than.
This is equivalent to the IEEE compareQuietLess
operation.

Module

USE, INTRINSIC :: IEEE_ARITHMETIC

Syntax
result = IEEE_QUIET_LT (a,b)

a (Input) Must be of type REAL.

b (Input) Must be of type REAL with the same kind type parameter as a.

 1 Intel® Fortran Compiler Classic and Intel® Fortran Compiler Developer Guide and Reference

1572

Results

The result type is default LOGICAL. It has the value true if a compares less than b. If a or b is a NaN, the
result is false. IEEE_INVALID signals if either a or b is a signaling NaN, otherwise no exception is signaled.

This is the compareQuietLess operation as specified in the ISO/IEC 60559:2020 standard.

Example

The result value of IEEE_QUIET_LT (3.7, IEEE_VALUE (0.0, IEEE_QUIET_NAN)) is false and no exception is
signaled.

See Also
IEEE_ARITHMETIC Intrinsic Module
IEEE Intrinsic Modules Quick Reference Tables

IEEE_QUIET_NE
Elemental Module Intrinsic Function (Generic):
Performs a non-signaling comparison for inequality.
This is equivalent to the IEEE compareQuietNotEqual
operation.

Module

USE, INTRINSIC :: IEEE_ARITHMETIC

Syntax
result = IEEE_QUIET_NE (a,b)

a (Input) Must be of type REAL.

b (Input) Must be of type REAL with the same kind type parameter as a.

Results

The result type is default LOGICAL. It has the value true if a compares not equal to b. If a or b is a NaN, the
result is true. IEEE_INVALID signals if either a or b is a signaling NaN, otherwise no exception is signaled.

This is the compareQuietNotEqual operation specified as specified in the ISO/IEC 60559:2020 standard.

Example

The result value of IEEE_QUIET_NE (3.7, IEEE_VALUE (0.0, IEEE_QUIET_NAN)) is true and no exception is
signaled.

See Also
IEEE_ARITHMETIC Intrinsic Module
IEEE Intrinsic Modules Quick Reference Tables

IEEE_REAL
Elemental Module Intrinsic Function (Generic):
Enables conversion to REAL type.

Module

USE, INTRINSIC :: IEEE_ARITHMETIC

Syntax
result = IEEE_REAL (a [, kind])

Intel® Fortran Compiler Classic and Intel® Fortran Compiler Developer Guide and Reference 1

1573

a (Input) Must be of type REAL or INTEGER.

kind (Input; optional) Must be a scalar INTEGER constant.

Results

The result type is REAL. If kind is present, the kind type parameter is that specified by kind; otherwise, the
kind type parameter is default real.

The result has the same value as a if that value is representable in the representation method of the result
type kind; otherwise, it is rounded according to the current rounding mode.

The result must be consistent with the ISO/IEC 60559:2020 operation convertFromInt if a is an integer, and
with operation convertFormat if a is real.

Example

The result value of IEEE_REAL (987) is 987.0.

See Also
IEEE_ARITHMETIC Intrinsic Module
IEEE Intrinsic Modules Quick Reference Tables

IEEE_REM
Elemental Module Intrinsic Function (Generic):
Returns the result of an exact remainder operation.
This is equivalent to the IEEE remainder function.

Module

USE, INTRINSIC :: IEEE_ARITHMETIC

Syntax
result = IEEE_REM (x,y)

x (Input) Must be of type REAL.

y (Input) Must be of type REAL with a radix that is the same as that of
x.

Results

The result type is real with the kind type parameter of whichever argument has greater precision.

Regardless of the rounding mode, the result value is x - y*N, where N is the integer nearest to the value x /
y. If |N – x / y | = 1/2, N is even. If the result value is zero, the sign is the same as x.

Example

The value of IEEE_REM (5.0,4.0) is 1.0; the value of IEEE_REM (2.0,1.0) is 0.0; the value of IEEE_REM
(3.0,2.0) is -1.0.

See Also
IEEE_ARITHMETIC Intrinsic Module
IEEE Intrinsic Modules Quick Reference Tables

 1 Intel® Fortran Compiler Classic and Intel® Fortran Compiler Developer Guide and Reference

1574

IEEE_RINT
Elemental Module Intrinsic Function (Generic):
Returns an integer value rounded according to the
current rounding mode.

Module

USE, INTRINSIC :: IEEE_ARITHMETIC

Syntax
result = IEEE_RINT (x [, round])

x (Input) Must be of type REAL.

round (Input; optional) Must be of type TYPE (IEEE_ROUND_TYPE).

Results

The result type and kind are the same as x.

The value of the result is x rounded to an integer according to the current rounding mode if round is not
present. If round is present, the value of the result is x rounded to an integer according to the mode
specified by round; this is the operation roundToInteger (rounding) as specified by ISO/IEC 60559:2020.

If the result value is zero, the sign is the same as x.

The rounding mode specified by round, if present, is used to perform the conversion. The rounding mode
before and after the call remains unchanged.

Example

If the current rounding mode is IEEE_UP, the value of IEEE_RINT (2.2) is 3.0.

If the current rounding mode is IEEE_NEAREST, the value of IEEE_RINT (2.2) is 2.0.

The value of IEEE_RINT (7.4, IEEE_DOWN) is 7.0.

See Also
IEEE_ARITHMETIC Intrinsic Module
IEEE Intrinsic Modules Quick Reference Tables

IEEE_SCALB
Elemental Module Intrinsic Function (Generic):
Returns the exponent of a radix-independent floating-
point number. This is equivalent to the IEEE scalB
function.

Module

USE, INTRINSIC :: IEEE_ARITHMETIC

Syntax
result = IEEE_SCALB (x,i)

x (Input) Must be of type REAL.

i (Input) Must be of type INTEGER.

Results

The result type and kind are the same as x. The result is x multiplied by 2**i, if the value can be represented
as a normal number.

Intel® Fortran Compiler Classic and Intel® Fortran Compiler Developer Guide and Reference 1

1575

If x (2**i) is too small and there is a loss of accuracy, the exception IEEE_UNDERFLOW is signaled. The
result value is the nearest number that can be represented with the same sign as x.

If x is finite and x (2**i) is too large, an IEEE_OVERFLOW exception occurs. If IEEE_SUPPORT_INF (x) is
true, the result value is infinity with the same sign as x; otherwise, the result value is SIGN (HUGE(x), x).

If x is infinite, the result is the same as x; no exception is signaled.

Example

The value of IEEE_SCALB (2.0,3) is 16.0.

See Also
IEEE_ARITHMETIC Intrinsic Module
IEEE Intrinsic Modules Quick Reference Tables

IEEE_SELECTED_REAL_KIND
Transformational Module Intrinsic Function
(Generic): Returns the value of the kind parameter of
an IEEE REAL data type.

Module

USE, INTRINSIC :: IEEE_ARITHMETIC

Syntax
result = IEEE_SELECTED_REAL_KIND ([p][,r][,radix])

p (Input; optional) Must be scalar and of type INTEGER.

r (Input; optional) Must be scalar and of type INTEGER.

radix (Input; optional) Must be scalar and of type INTEGER.

At least argument p or r must be present.

Results

If p or r is absent, the result is as if the argument was present with the value zero. If radix is absent, there
is no requirement on the radix of the selected kind.

The result is a scalar of type default integer. The result has a value equal to a value of the kind parameter of
an IEEE real data type with decimal precision, as returned by the function PRECISION, of at least p digits, a
decimal exponent range, as returned by the function RANGE, of at least r, and a radix, as returned by the
function RADIX, of radix.

If no such kind type parameter is available on the processor, the result is as follows:

• -1 if the precision is not available
• -2 if the exponent range is not available
• -3 if neither the precision nor the exponent range is available
• -4 if one but not both of the precision and the exponent range is available
• -5 if the radix is not available

If more than one kind type parameter value meets the criteria, the value returned is the one with the
smallest decimal precision.

Example

IEEE_SELECTED_REAL_KIND (6, 70, 2) = 8.

 1 Intel® Fortran Compiler Classic and Intel® Fortran Compiler Developer Guide and Reference

1576

See Also
IEEE_ARITHMETIC Intrinsic Module
IEEE Intrinsic Modules Quick Reference Tables
SELECTED_REAL_KIND
Model for Real Data
 for information on the real model.

IEEE_SET_FLAG
Elemental Module Intrinsic Function (Generic):
Assigns a value to an exception flag. This is a pure
subroutine.

Module

USE, INTRINSIC :: IEEE_EXCEPTIONS

Syntax
CALL IEEE_SET_FLAG (flag,flag_value)

flag (Input) Must be of type TYPE (IEEE_FLAG_TYPE). It specifies one of
the following IEEE flags:

IEEE_DIVIDE_BY_ZERO, IEEE_INEXACT, IEEE_INVALID,
IEEE_OVERFLOW, or IEEE_UNDERFLOW.

flag_value (Output) Must be of type logical. If it has the value true, the exception
in flag is set to signal; otherwise, the exception is set to be quiet.

Example

Consider the following:

USE, INTRINSIC :: IEEE_EXCEPTIONS ! Can also use module IEEE_ARITHMETIC
...
CALL IEEE_SET_FLAG (IEEE_INVALID, .TRUE.) ! Sets the IEEE_INVALID flag to signal

See Also
IEEE_EXCEPTIONS Intrinsic Module
IEEE Intrinsic Modules Quick Reference Tables

IEEE_SET_HALTING_MODE
Elemental Module Intrinsic Function (Generic):
Controls halting or continuation after an exception.
This is a pure subroutine.

Module

USE, INTRINSIC :: IEEE_EXCEPTIONS

Syntax
CALL IEEE_SET_HALTING_MODE (flag, halting)

flag (Input) Must be of type TYPE (IEEE_FLAG_TYPE). It specifies one of
the following IEEE flags:

IEEE_DIVIDE_BY_ZERO, IEEE_INEXACT, IEEE_INVALID,
IEEE_OVERFLOW, or IEEE_UNDERFLOW

Intel® Fortran Compiler Classic and Intel® Fortran Compiler Developer Guide and Reference 1

1577

halting (Input) Must be scalar and of type logical. If the value is true, the
exception specified in flag will cause halting; otherwise, execution will
continue after this exception.

Example

Consider the following:

USE, INTRINSIC :: IEEE_EXCEPTIONS
LOGICAL HALT
...
CALL IEEE_GET_HALTING_MODE(IEEE_INVALID, HALT) ! Stores the halting mode
CALL IEEE_SET_HALTING_MODE(IEEE_INVALID, .FALSE.) ! Stops halting
...
CALL IEEE_SET_HALTING_MODE(IEEE_INVALID, HALT) ! Restores halting

See Also
IEEE_EXCEPTIONS Intrinsic Module
IEEE Intrinsic Modules Quick Reference Tables

IEEE_SET_MODES
Intrinsic Module Subroutine (Generic): Restores
the current IEEE floating-point modes. This is an
impure subroutine.

Module

USE, INTRINSIC :: IEEE_EXCEPTIONS

Syntax
CALL IEEE_SET_MODES (modes)

modes (Input) Must be scalar and of type TYPE (IEEE_MODES_TYPE). Its
value must be a value that was assigned to the modes argument of a
previous call to IEEE_GET_MODES.

A call to IEEE_SET_MODES restores the value of the floating-point
modes to the state at the time IEEE_GET_MODES was called.

Example

Consider the following:

USE, INTRINSIC :: IEEE_EXCEPTIONS ! Can also use IEEE_ARITHMETIC
TYPE (IEEE_MODE_TYPE) MODES
...
CALL IEEE_GET_MODES (MODES) ! Stores the floating-point modes
CALL IEEE_SET_UNDERFLOW_MODE (.TRUE.) ! Sets the underflow mode to gradual
...
CALL IEEE_SET_MODES (MODES) ! Restores the floating-point modes

See Also
IEEE_EXCEPTIONS Intrinsic Module
IEEE Intrinsic Modules Quick Reference Tables

IEEE_SET_ROUNDING_MODE
Intrinsic Module Subroutine (Generic): Sets the
IEEE rounding mode. This is an impure subroutine.

 1 Intel® Fortran Compiler Classic and Intel® Fortran Compiler Developer Guide and Reference

1578

Module

USE, INTRINSIC :: IEEE_ARITHMETIC

Syntax
CALL IEEE_SET_ROUNDING_MODE (round_value [, radix])

round_value (Input) Must be scalar and of type TYPE (IEEE_ROUND_TYPE). It
specifies one of the following IEEE floating-point rounding values:

IEEE_DOWN, IEEE_NEAREST, IEEE_TO_ZERO, IEEE_UP, or
IEEE_OTHER.

radix (Input; optional) Must be an integer scalar with a value of ten or two.
The rounding mode set is the binary rounding mode unless radix is
present with the value of ten, in which case it is the decimal rounding
mode set.

Example

Consider the following:

USE, INTRINSIC :: IEEE_ARITHMETIC
TYPE (IEEE_ROUND_TYPE) ROUND
...
CALL IEEE_GET_ROUNDING_MODE (ROUND) ! Stores the rounding mode
CALL IEEE_SET_ROUNDING_MODE (IEEE_UP) ! Resets the rounding mode
...
CALL IEEE_SET_ROUNDING_MODE (ROUND) ! Restores the previous rounding mode

IEEE_SET_STATUS
Intrinsic Module Subroutine (Generic): Restores
the state of the floating-point environment. This is an
impure subroutine.

Module

USE, INTRINSIC :: IEEE_EXCEPTIONS

Syntax
CALL IEEE_SET_STATUS (status_value)

status_value (Input) Must be scalar and of type TYPE (IEEE_STATUS_TYPE). Its
value must be set in a previous invocation of IEEE_GET_STATUS.

Example

Consider the following:

USE, INTRINSIC :: IEEE_EXCEPTIONS ! Can also use IEEE_ARITHMETIC
TYPE (IEEE_STATUS_TYPE) STATUS
...
CALL IEEE_GET_STATUS (STATUS) ! Stores the floating-point status
CALL IEEE_SET_FLAG (IEEE_ALL,.FALSE.) ! Sets all flags to be quiet
...
CALL IEEE_SET_STATUS (STATUS) ! Restores the floating-point status

Intel® Fortran Compiler Classic and Intel® Fortran Compiler Developer Guide and Reference 1

1579

IEEE_SET_UNDERFLOW_MODE
Intrinsic Module Subroutine (Generic): Sets the
current underflow mode. This is an impure subroutine.

Module

USE, INTRINSIC :: IEEE_ARITHMETIC

Syntax
CALL IEEE_SET_UNDERFLOW_MODE (gradual)

gradual (Input) Must be scalar and of type logical. If it is true, the current
underflow mode is set to gradual underflow (subnormals may be
produced on underflow). If it is false, the current underflow mode is
set to abrupt (underflowed results are set to zero).

Example

Consider the following:

USE, INTRINSIC :: IEEE_EXCEPTIONS
LOGICAL :: SG
...
CALL IEEE_GET_UNDERFLOW_MODE (SG) ! Stores underflow mode
CALL IEEE_SET_UNDERFLOW_MODE (.FALSE.) ! Resets underflow mode
... ! Abrupt underflows happens here
CALL IEEE_SET_UNDERFLOW_MODE (SG) ! Restores previous underflow mode

IEEE_SIGNALING_EQ
Elemental Module Intrinsic Function (Generic):
Performs a signaling comparison for equality. This is
equivalent to the IEEE compareSignalingEqual
operation.

Module

USE, INTRINSIC :: IEEE_ARITHMETIC

Syntax
result = IEEE_SIGNALING_EQ (a,b)

a (Input) Must be of type REAL.

b (Input) Must be of type REAL with the same kind type parameter as a.

Results

The result type is default LOGICAL. It has the value true if a compares equal to b. If a or b is a NaN, the
result is false and IEEE_INVALID signals, otherwise no exception is signaled.

This is the compareSignalingEqual operation as specified in the ISO/IEC 60559:2020 standard.

Example

The result value of IEEE_SIGNALING_EQ (3.7, IEEE_VALUE (0.0, IEEE_QUIET_NAN)) is false and
IEEE_INVALID is signaled.

See Also
IEEE_ARITHMETIC Intrinsic Module
IEEE Intrinsic Modules Quick Reference Tables

 1 Intel® Fortran Compiler Classic and Intel® Fortran Compiler Developer Guide and Reference

1580

IEEE_SIGNALING_GE
Elemental Module Intrinsic Function (Generic):
Performs a signaling comparison for greater than or
equal. This is equivalent to the IEEE
compareSignalingGreaterEqual operation.

Module

USE, INTRINSIC :: IEEE_ARITHMETIC

Syntax
result = IEEE_SIGNALING_GE (a,b)

a (Input) Must be of type REAL.

b (Input) Must be of type REAL with the same kind type parameter as a.

Results

The result type is default LOGICAL. It has the value true if a compares greater than or equal to b. If a or b is
a NaN, the result is false and IEEE_INVALID signals, otherwise no exception is signaled.

This is the compareSignalingGreaterEqual operation as specified in the ISO/IEC 60559:2020 standard.

Example

The result value of IEEE_SIGNALING_GE (3.7, IEEE_VALUE (0.0, IEEE_QUIET_NAN)) is false and
IEEE_INVALID is signaled.

See Also
IEEE_ARITHMETIC Intrinsic Module
IEEE Intrinsic Modules Quick Reference Tables

IEEE_SIGNALING_GT
Elemental Module Intrinsic Function (Generic):
Performs a signaling comparison for greater than. This
is equivalent to the IEEE compareSignalingGreater
operation.

Module

USE, INTRINSIC :: IEEE_ARITHMETIC

Syntax
result = IEEE_SIGNALING_GT (a,b)

a (Input) Must be of type REAL.

b (Input) Must be of type REAL with the same kind type parameter as a.

Results

The result type is default LOGICAL. It has the value true if a compares greater than b. If a or b is a NaN, the
result is false and IEEE_INVALID signals, otherwise no exception is signaled.

This is the compareSignalingGreater operation as specified in the ISO/IEC 60559:2020 standard.

Example

The result value of IEEE_SIGNALING_GT (3.7, IEEE_VALUE (0.0, IEEE_QUIET_NAN)) is false and
IEEE_INVALID is signaled.

Intel® Fortran Compiler Classic and Intel® Fortran Compiler Developer Guide and Reference 1

1581

See Also
IEEE_ARITHMETIC Intrinsic Module
IEEE Intrinsic Modules Quick Reference Tables

IEEE_SIGNALING_LE
Elemental Module Intrinsic Function (Generic):
Performs a signaling comparison for less than or
equal. This is equivalent to the IEEE
compareSignalingLessEqual operation.

Module

USE, INTRINSIC :: IEEE_ARITHMETIC

Syntax
result = IEEE_SIGNALING_LE (a,b)

a (Input) Must be of type REAL.

b (Input) Must be of type REAL with the same kind type parameter as a.

Results

The result type is default LOGICAL. It has the value true if a compares less than or equal to b. If a or b is a
NaN, the result is false and IEEE_INVALID signals, otherwise no exception is signaled.

This is the compareSignalingLessEqual operation as specified in the ISO/IEC 60559:2020 standard.

Example

The result value of IEEE_SIGNALING_LE (3.7, IEEE_VALUE (0.0, IEEE_QUIET_NAN)) is false and
IEEE_INVALID is signaled.

See Also
IEEE_ARITHMETIC Intrinsic Module
IEEE Intrinsic Modules Quick Reference Tables

IEEE_SIGNALING_LT
Elemental Module Intrinsic Function (Generic):
Performs a signaling comparison for less than. This is
equivalent to the IEEE compareSignalingLess
operation.

Module

USE, INTRINSIC :: IEEE_ARITHMETIC

Syntax
result = IEEE_SIGNALING_LT (a,b)

a (Input) Must be of type REAL.

b (Input) Must be of type REAL with the same kind type parameter as a.

Results

The result type is default LOGICAL. It has the value true if a compares less than b. If a or b is a NaN, the
result is false and IEEE_INVALID signals, otherwise no exception is signaled.

This is the compareSignalingLess operation as specified in the ISO/IEC 60559:2020 standard.

 1 Intel® Fortran Compiler Classic and Intel® Fortran Compiler Developer Guide and Reference

1582

Example

The result value of IEEE_SIGNALING_LT (3.7, IEEE_VALUE (0.0, IEEE_QUIET_NAN)) is false and
IEEE_INVALID is signaled.

See Also
IEEE_ARITHMETIC Intrinsic Module
IEEE Intrinsic Modules Quick Reference Tables

IEEE_SIGNALING_NE
Elemental Module Intrinsic Function (Generic):
Performs a signaling comparison for inequality. This is
equivalent to the IEEE compareSignalingNotEqual
operation.

Module

USE, INTRINSIC :: IEEE_ARITHMETIC

Syntax
result = IEEE_SIGNALING_NE (a,b)

a (Input) Must be of type REAL.

b (Input) Must be of type REAL with the same kind type parameter as a.

Results

The result type is default LOGICAL. It has the value true if a compares not equal to b. If a or b is a NaN, the
result is true and IEEE_INVALID signals, otherwise no exception is signaled.

This is the compareSignalingNotEqual operation as specified in the ISO/IEC 60559:2020 standard.

Example

The result value of IEEE_SIGNALING_NE (3.7, IEEE_VALUE (0.0, IEEE_QUIET_NAN)) is true and
IEEE_INVALID is signaled.

See Also
IEEE_ARITHMETIC Intrinsic Module
IEEE Intrinsic Modules Quick Reference Tables

IEEE_SIGNBIT
Elemental Module Intrinsic Function (Generic):
Tests to determine if the argument's sign bit is set.
This is equivalent to the IEEE isSignMinus operation.

Module

USE, INTRINSIC :: IEEE_ARITHMETIC

Syntax

result = IEEE_SIGNBIT (x)

x (Input) Must be of type REAL.

Intel® Fortran Compiler Classic and Intel® Fortran Compiler Developer Guide and Reference 1

1583

Results

The result is a scalar of type default logical. The result has the value .true. if the sign bit of x is set
(nonzero); otherwise, it has the value .false.. No exception is signaled even if x has the value of a signaling
NaN.

This is the isSignMinus operation as specified in the ISO/IEC 60559:2020 standard.

Example

The result of IEEE_SIGNBIT (-3.14) is .true..

See Also
IEEE_ARITHMETIC Intrinsic Module
IEEE Intrinsic Modules Quick Reference Tables

IEEE_SUPPORT_DATATYPE
Inquiry Module Intrinsic Function (Generic):
Returns whether the processor supports IEEE
arithmetic.

Module

USE, INTRINSIC :: IEEE_ARITHMETIC

Syntax
result = IEEE_SUPPORT_DATATYPE ([x])

x (Input; optional) Must be scalar and of type REAL.

Results

The result is a scalar of type default logical. If x is omitted, the result has the value true if the processor
supports IEEE arithmetic for all real values; otherwise, false.

If x is specified, the result has the value true if the processor supports IEEE arithmetic for real variables of
the same kind type parameter as x; otherwise, false.

If real values are implemented according to the IEEE standard except that underflowed values flush to zero
(abrupt) instead of being subnormal.

Example

IEEE_SUPPORT_DATATYPE (3.0) has the value true.

See Also
IEEE_ARITHMETIC Intrinsic Module
IEEE Intrinsic Modules Quick Reference Tables

IEEE_SUPPORT_DENORMAL
Inquiry Module Intrinsic Function (Generic):
Returns whether the processor supports IEEE
subnormal numbers.

Module

USE, INTRINSIC :: IEEE_ARITHMETIC

Syntax
result = IEEE_SUPPORT_DENORMAL ([x])

 1 Intel® Fortran Compiler Classic and Intel® Fortran Compiler Developer Guide and Reference

1584

x (Input; optional) Must be of type REAL; it can be scalar or array
valued.

Results

The result is a scalar of type default logical. If x is omitted, the result has the value true if the processor
supports arithmetic operations and assignments with subnormal numbers for all real values; otherwise, false.

If x is specified, the result has the value true if the processor supports arithmetic operations and assignments
with subnormal numbers for real variables of the same kind type parameter as x; otherwise, false.

IEEE_SUPPORT_DENORMAL() and IEEE_SUPPORT_DENORMAL(0.0_16) return .TRUE. even though Intel®
Fortran’s implementation does not signal when an underflow results in a REAL(16) denormal value. Intel®
Fortran’s implementation does signal when an underflow results in a REAL(16) zero.

Example

IEEE_SUPPORT_DENORMAL () has the value true if IEEE subnormal numbers are supported for all real types.

See Also
IEEE_ARITHMETIC Intrinsic Module
IEEE Intrinsic Modules Quick Reference Tables

IEEE_SUPPORT_DIVIDE
Inquiry Module Intrinsic Function (Generic):
Returns whether the processor supports IEEE divide.

Module

USE, INTRINSIC :: IEEE_ARITHMETIC

Syntax
result = IEEE_SUPPORT_DIVIDE ([x])

x (Input; optional) Must be of type REAL; it can be scalar or array
valued.

Results

The result is a scalar of type default logical. If x is omitted, the result has the value true if the processor
supports divide with the accuracy specified by the IEEE standard for all real values; otherwise, false.

If x is specified, the result has the value true if the processor supports divide with the accuracy specified by
the IEEE standard for real variables of the same kind type parameter as x; otherwise, false.

Example

IEEE_SUPPORT_DIVIDE () has the value true if IEEE divide is supported for all real types.

See Also
IEEE_ARITHMETIC Intrinsic Module
IEEE Intrinsic Modules Quick Reference Tables

IEEE_SUPPORT_FLAG
Transformational Module Intrinsic Function
(Generic): Returns whether the processor supports
IEEE exceptions.

Intel® Fortran Compiler Classic and Intel® Fortran Compiler Developer Guide and Reference 1

1585

Module

USE, INTRINSIC :: IEEE_EXCEPTIONS

Syntax
result = IEEE_SUPPORT_FLAG (flag [, x])

flag (Input) Must be a scalar of type TYPE (IEEE_FLAG_TYPE). Its value is
one of the following IEEE flags:

IEEE_DIVIDE_BY_ZERO, IEEE_INEXACT, IEEE_INVALID,
IEEE_OVERFLOW, or IEEE_UNDERFLOW.

x (Input; optional) Must be of type REAL; it can be scalar or array
valued.

Results

The result is a scalar of type default logical. If x is omitted, the result has the value true if the processor
supports detection of the exception specified by flag for all real values; otherwise, false.

If x is specified, the result has the value true if the processor supports detection of the exception specified by
flag for real variables of the same kind type parameter as x; otherwise, false.

Example

IEEE_SUPPORT_FLAG (IEEE_UNDERFLOW) has the value true if the IEEE_UNDERFLOW exception is
supported for all real types.

See Also
IEEE_EXCEPTIONS Intrinsic Module
IEEE Intrinsic Modules Quick Reference Tables

IEEE_SUPPORT_HALTING
Transformational Module Intrinsic Function
(Generic): Returns whether the processor supports
IEEE halting.

Module

USE, INTRINSIC :: IEEE_EXCEPTIONS

Syntax
result = IEEE_SUPPORT_HALTING(flag)

flag (Input) Must be of type TYPE (IEEE_FLAG_TYPE). It specifies one of
the following IEEE flags:

IEEE_DIVIDE_BY_ZERO, IEEE_INEXACT, IEEE_INVALID,
IEEE_OVERFLOW, or IEEE_UNDERFLOW.

Results

The result is a scalar of type default logical. The result has the value true if the processor supports the ability
to control halting after the exception specified by flag; otherwise, false.

Example

IEEE_SUPPORT_HALTING (IEEE_UNDERFLOW) has the value true if halting is supported after an
IEEE_UNDERFLOW exception

 1 Intel® Fortran Compiler Classic and Intel® Fortran Compiler Developer Guide and Reference

1586

See Also
IEEE_EXCEPTIONS Intrinsic Module
IEEE Intrinsic Modules Quick Reference Tables

IEEE_SUPPORT_INF
Inquiry Module Intrinsic Function (Generic):
Returns whether the processor supports IEEE
infinities.

Module

USE, INTRINSIC :: IEEE_ARITHMETIC

Syntax
result = IEEE_SUPPORT_INF ([x])

x (Input; optional) Must be of type REAL; it can be scalar or array
valued.

Results

The result is a scalar of type default logical. If x is omitted, the result has the value true if the processor
supports IEEE infinities (positive and negative) for all real values; otherwise, false.

If x is specified, the result has the value true if the processor supports IEEE infinities for real variables of the
same kind type parameter as x; otherwise, false.

Example

IEEE_SUPPORT_INF() has the value true if IEEE infinities are supported for all real types.

See Also
IEEE_ARITHMETIC Intrinsic Module
IEEE Intrinsic Modules Quick Reference Tables

IEEE_SUPPORT_IO
Inquiry Module Intrinsic Function (Generic):
Returns whether the processor supports IEEE base
conversion rounding during formatted I/O.

Module

USE, INTRINSIC :: IEEE_ARITHMETIC

Syntax
result = IEEE_SUPPORT_IO ([x])

x (Input; optional) Must be of type REAL; it can be scalar or array
valued.

Results

The result is a scalar of type default logical. If x is omitted, the result has the value true if the processor
supports base conversion rounding during formatted input and output for all real values; otherwise, false.

If x is specified, the result has the value true if the processor supports base conversion rounding during
formatted input and output for real variables of the same kind type parameter as x; otherwise, false.

The base conversion rounding applies to modes IEEE_UP, IEEE_DOWN, IEEE_TO_ZERO, and IEEE_NEAREST.

Intel® Fortran Compiler Classic and Intel® Fortran Compiler Developer Guide and Reference 1

1587

Example

IEEE_SUPPORT_IO () has the value true if base conversion rounding is supported for all real types during
formatted I/O.

See Also
IEEE_ARITHMETIC Intrinsic Module
IEEE Intrinsic Modules Quick Reference Tables

IEEE_SUPPORT_NAN
Inquiry Module Intrinsic Function (Generic):
Returns whether the processor supports IEEE Not-a-
Number feature.

Module

USE, INTRINSIC :: IEEE_ARITHMETIC

Syntax
result = IEEE_SUPPORT_NAN ([x])

x (Input; optional) Must be of type REAL; it can be scalar or array
valued.

Results

The result is a scalar of type default logical. If x is omitted, the result has the value true if the processor
supports NaNs for all real values; otherwise, false.

If x is specified, the result has the value true if the processor supports NaNs for real variables of the same
kind type parameter as x; otherwise, false.

Example

IEEE_SUPPORT_NAN () has the value true if IEEE NaNs are supported for all real types.

See Also
IEEE_ARITHMETIC Intrinsic Module
IEEE Intrinsic Modules Quick Reference Tables

IEEE_SUPPORT_ROUNDING
Transformational Module Intrinsic Function
(Generic): Returns whether the processor supports
IEEE rounding mode.

Module

USE, INTRINSIC :: IEEE_ARITHMETIC

Syntax
result = IEEE_SUPPORT_ROUNDING (round_value [, x])

round_value (Input) Must be of type TYPE(IEEE_ROUND_TYPE). It specifies one of
the following rounding modes:

IEEE_AWAY, IEEE_DOWN, IEEE_NEAREST, IEEE_TO_ZERO, and
IEEE_UP.

 1 Intel® Fortran Compiler Classic and Intel® Fortran Compiler Developer Guide and Reference

1588

x (Input; optional) Must be of type REAL; it can be scalar or array
valued.

Results

The result is a scalar of type default logical. If x is omitted, the result has the value true if the processor
supports the rounding mode specified by round_value for all real values; otherwise, false.

If x is specified, the result has the value true if the processor supports the rounding mode specified by
round_value for real variables of the same kind type parameter as x; otherwise, false.

Example

IEEE_SUPPORT_ROUNDING (IEEE_DOWN) has the value true if rounding mode IEEE_DOWN is supported for
all real types.

See Also
IEEE_ARITHMETIC Intrinsic Module
IEEE Intrinsic Modules Quick Reference Tables

IEEE_SUPPORT_SQRT
Inquiry Module Intrinsic Function (Generic):
Returns whether the processor supports IEEE SQRT
(square root).

Module

USE, INTRINSIC :: IEEE_ARITHMETIC

Syntax
result = IEEE_SUPPORT_SQRT ([x])

x (Input; optional) Must be of type REAL; it can be scalar or array
valued.

Results

The result is a scalar of type default logical. If x is omitted, the result has the value true if the processor
implements SQRT in accord with the IEEE standard for all real values; otherwise, false.

If x is specified, the result has the value true if the processor implements SQRT in accord with the IEEE
standard for real variables of the same kind type parameter as x; otherwise, false.

Example

IEEE_SUPPORT_SQRT () has the value true if IEEE SQRT is supported for all real types.

See Also
IEEE_ARITHMETIC Intrinsic Module
IEEE Intrinsic Modules Quick Reference Tables

IEEE_SUPPORT_STANDARD
Inquiry Module Intrinsic Function (Generic):
Returns whether the processor supports IEEE features
defined in the standard.

Module

USE, INTRINSIC :: IEEE_ARITHMETIC

Intel® Fortran Compiler Classic and Intel® Fortran Compiler Developer Guide and Reference 1

1589

Syntax
result = IEEE_SUPPORT_STANDARD ([x])

x (Input; optional) Must be of type REAL; it can be scalar or array
valued.

Results

The result is a scalar of type default logical. The result has the value true if the results of all the following
functions are true (x can be omitted):

IEEE_SUPPORT_DATATYPE([x])

IEEE_SUPPORT_DENORMAL([x])

IEEE_SUPPORT_DIVIDE([x])

IEEE_SUPPORT_FLAG(flag [, x])1

IEEE_SUPPORT_HALTING(flag)1

IEEE_SUPPORT_INF([x])

IEEE_SUPPORT_NAN([x])

IEEE_SUPPORT_ROUNDING(round_value [, x])2

IEEE_SUPPORT_SQRT([x])

1 "flag" must be a valid value
2 "round_value" must be a valid value

Otherwise, the result has the value, false.

Example

IEEE_SUPPORT_STANDARD () has the value false if both IEEE and non-IEEE real kinds are supported.

See Also
IEEE_ARITHMETIC Intrinsic Module
IEEE Intrinsic Modules Quick Reference Tables

IEEE_SUPPORT_SUBNORMAL
Inquiry Module Intrinsic Function (Generic):
Returns whether the processor supports IEEE
subnormal numbers.

Module

USE, INTRINSIC :: IEEE_ARITHMETIC

Syntax
result = IEEE_SUPPORT_SUBNORMAL ([x])

x (Input; optional) Must be of type REAL; it can be scalar or array
valued.

 1 Intel® Fortran Compiler Classic and Intel® Fortran Compiler Developer Guide and Reference

1590

Results

The result is a scalar of type default logical. If x is omitted, the result has the value true if the processor
supports arithmetic operations and assignments with subnormal numbers for all real values; otherwise, false.

If x is specified, the result has the value true if the processor supports arithmetic operations and assignments
with subnormal numbers for real variables of the same kind type parameter as x; otherwise, false.

IEEE_SUPPORT_SUBNORMAL () and IEEE_SUPPORT_SUBNORMAL (0.0_16) return .TRUE. even though Intel®
Fortran’s implementation does not signal when an underflow results in a REAL (16) subnormal value. Intel®
Fortran’s implementation does signal when an underflow results in a REAL (16) zero.

Example

IEEE_SUPPORT_SUBNORMAL () has the value true if IEEE subnormal numbers are supported for all real
types.

See Also
IEEE_ARITHMETIC Intrinsic Module
IEEE Intrinsic Modules Quick Reference Tables

IEEE_SUPPORT_UNDERFLOW_CONTROL
Inquiry Module Intrinsic Function (Generic):
Returns whether the processor supports the ability to
control the underflow mode.

Module

USE, INTRINSIC :: IEEE_ARITHMETIC

Syntax
result = IEEE_SUPPORT_UNDERFLOW_CONTROL ([x])

x (Input; optional) Must be of type REAL; it can be scalar or array
valued.

Results

The result is a scalar of type default logical. If x is omitted, the result has the value true if the processor
supports controlling the underflow mode for all real values; otherwise, false.

If x is specified, the result has the value true if the processor supports controlling the underflow mode for
real variables of the same kind type parameter as x; otherwise, false.

Example

IEEE_SUPPORT_UNDERFLOW _CONTROL () has the value true if controlling the underflow mode is supported
for all real types.

See Also
IEEE_ARITHMETIC Intrinsic Module
IEEE Intrinsic Modules Quick Reference Tables

IEEE_UNORDERED
Elemental Module Intrinsic Function (Generic):
Returns whether one or more of the arguments is Not-
a-Number (NaN). This is equivalent to the IEEE
unordered function.

Intel® Fortran Compiler Classic and Intel® Fortran Compiler Developer Guide and Reference 1

1591

Module

USE, INTRINSIC :: IEEE_ARITHMETIC

Syntax
result = IEEE_UNORDERED (x,y)

x (Input) Must be of type REAL.

y (Input) Must be of type REAL.

Results

The result type is default logical. The result has the value true if x or y is a NaN, or both are NaNs;
otherwise, false.

Example

IEEE_UNORDERED (0.0, SQRT(-2.0)) has the value true if IEEE_SUPPORT_SQRT (2.0) has the value true.

See Also
IEEE_ARITHMETIC Intrinsic Module
IEEE Intrinsic Modules Quick Reference Tables

IEEE_VALUE
Elemental Module Intrinsic Function (Generic):
Creates an IEEE value.

Module

USE, INTRINSIC :: IEEE_ARITHMETIC

Syntax
result = IEEE_VALUE (x, class)

x (Input) Must be of type REAL.

class (Input) Must be of type TYPE (IEEE_CLASS_TYPE). Its value is one of
the following:

IEEE_SIGNALING_NAN IEEE_NEGATIVE_NORMAL

IEEE_QUIET_NAN IEEE_POSITIVE_DENORMAL

IEEE_POSITIVE_INF IEEE_NEGATIVE_DENORMAL

IEEE_NEGATIVE_INF IEEE_POSITIVE_ZERO

IEEE_POSITIVE_NORMAL IEEE_NEGATIVE_ZERO

Results

The result type and kind are the same as x. The result value is an IEEE value as specified by "class".

When IEEE_VALUE returns a signaling NaN, it is processor dependent whether or not invalid is signaled and
processor dependent whether or not the signaling NaN is converted to a quiet NaN.

Example

IEEE_VALUE (1.0,IEEE_POSITIVE_INF) has the value +infinity.

 1 Intel® Fortran Compiler Classic and Intel® Fortran Compiler Developer Guide and Reference

1592

See Also
IEEE_ARITHMETIC Intrinsic Module
IEEE Intrinsic Modules Quick Reference Tables

IEOR
Elemental Intrinsic Function (Generic): Performs
an exclusive OR on corresponding bits. This function
can also be specified as XOR or IXOR.

Syntax
result = IEOR (i,j)

i (Input) Must be of type integer, logical (which is treated as an
integer), or a binary, octal, or hexadecimal literal constant.

j (Input) Must be of type integer or logical, or a binary, octal, or
hexadecimal literal constant.

If both i and j are of type integer or logical, they must have the same
kind type parameter. If the kinds of i and j do not match, the value
with the smaller kind is extended with its sign bit on the left and the
larger kind is used for the operation and the result. i and j must not
both be binary, octal, or hexadecimal literal constants.

Results

The result is the same as i if i is of type integer or logical; otherwise, the result is the same as j. If either i or
j is a binary, octal, or hexadecimal literal constant, it is first converted as if by the intrinsic function INT to
type integer with the kind type parameter of the other.

The result value is derived by combining i and j bit-by-bit according to the following truth table:

 i j IEOR (i, j)
 1 1 0
 1 0 1
 0 1 1
 0 0 0

The model for the interpretation of an integer value as a sequence of bits is shown in Model for Bit Data.

Specific Name Argument Type Result Type

BIEOR1 INTEGER(1) INTEGER(1)

IIEOR2 INTEGER(2) INTEGER(2)

JIEOR3 INTEGER(4) INTEGER(4)

KIEOR INTEGER(8) INTEGER(8)

1Or BIXOR
2Or HIEOR, HIXOR, or IIXOR
3Or JIXOR

Example

IEOR (12, 7) has the value 11; binary 1100 exclusive OR with binary 0111 is binary 1011.

Intel® Fortran Compiler Classic and Intel® Fortran Compiler Developer Guide and Reference 1

1593

The following shows another example:

INTEGER I
I = IEOR(240, 90) ! returns 170
 ! IEOR (B'11110000', B'1011010') == B'10101010'

The following shows an example using alternate option XOR:

 INTEGER i, j, k
 i = 3 ! B'011'
 j = 5 ! B'101'
 k = XOR(i, j) ! returns 6 = B'110'

See Also
Binary, Octal, Hexadecimal, and Hollerith Constants
IAND
IOR
NOT
IALL
IANY
IPARITY

IERRNO
Portability Function: Returns the number of the last
detected error from any routines in the IFPORT
module that return error codes.

Module

USE IFPORT

Syntax
result = IERRNO()

Results

The result type is INTEGER(4). The result value is the last error code from any portability routines that return
error codes. These error codes are analogous to errno on a Linux* system. The module IFPORT.F90
provides parameter definitions for the following errno names (typically found in errno.h on Linux
systems):

Symbolic name Number Description

EPERM 1 Insufficient permission for
operation

ENOENT 2 No such file or directory

ESRCH 3 No such process

EIO 5 I/O error

E2BIG 7 Argument list too long

ENOEXEC 8 File is not executable

ENOMEM 12 Not enough resources

 1 Intel® Fortran Compiler Classic and Intel® Fortran Compiler Developer Guide and Reference

1594

Symbolic name Number Description

EACCES 13 Permission denied

EXDEV 18 Cross-device link

ENOTDIR 20 Not a directory

EINVAL 22 Invalid argument

The value returned by IERRNO is updated only when an error occurs. For example, if an error occurs on a
GETLOG call and then two CHMOD calls succeed, a subsequent call to IERRNO returns the error for the
GETLOG call.

Examine IERRNO immediately after returning from a portability routine. IERRNO is set on a per thread basis.

Example

USE IFPORT
CHARACTER*20 username
INTEGER(4) ierrval
ierrval=0 !initialize return value
CALL GETLOG(username)
IF (IERRNO() == ierrval) then
 print *, 'User name is ',username
 exit
ELSE
 ierrval = ierrno()
 print *, 'Error is ',ierrval
END IF

IF - Arithmetic
Statement: Conditionally transfers control to one of
three statements, based on the value of an arithmetic
expression. The arithmetic IF statement is a deleted
feature in the Fortran Standard. Intel® Fortran fully
supports features deleted in the Fortran Standard.

Syntax
IF (expr) label1,label2,label3

expr Is a scalar numeric expression of type integer or real (enclosed in
parentheses).

label1, label2, label3 Are the labels of valid branch target statements that are in the same
scoping unit as the arithmetic IF statement.

Description

All three labels are required, but they do not need to refer to three different statements. The same label can
appear more than once in the same arithmetic IF statement.

During execution, the expression is evaluated first. Depending on the value of the expression, control is then
transferred as follows:

If the Value of expr is: Control Transfers To:

Less than 0 Statement label1

Intel® Fortran Compiler Classic and Intel® Fortran Compiler Developer Guide and Reference 1

1595

If the Value of expr is: Control Transfers To:

Equal to 0 Statement label2

Greater than 0 Statement label3

Example

The following example transfers control to statement 50 if the real variable THETA is less than or equal to the
real variable CHI. Control passes to statement 100 only if THETA is greater than CHI.

 IF (THETA-CHI) 50,50,100
The following example transfers control to statement 40 if the value of the integer variable NUMBERis even. It
transfers control to statement 20 if the value is odd.

 IF (NUMBER / 2*2 - NUMBER) 20,40,20
The following statement transfers control to statement 10 for n < 10, to statement 20 for n = 10, and to
statement 30 for n > 10:

 IF (n-10) 10, 20, 30
The following statement transfers control to statement 10 if n <= 10, and to statement 30 for n > 10:

 IF (n-10) 10, 10, 30

See Also
SELECT CASE...END SELECT
Execution Control
Deleted Language Features in the Fortran Standard

IF - Logical
Statement: Conditionally executes one statement
based on the value of a logical expression. (This
statement was called a logical IF statement in
FORTRAN 77.)

Syntax
IF (expr) stmt

expr Is a scalar logical expression enclosed in parentheses.

stmt Is any complete, unlabeled, executable Fortran statement, except for
the following:

• A CASE, DO, IF, FORALL, or WHERE construct
• Another IF statement
• The END statement for a program, function, or subroutine

When an IF statement is executed, the logical expression is evaluated first. If the value is true, the
statement is executed. If the value is false, the statement is not executed and control transfers to the next
statement in the program.

 1 Intel® Fortran Compiler Classic and Intel® Fortran Compiler Developer Guide and Reference

1596

Example

The following examples show valid IF statements:

IF (J.GT.4 .OR. J.LT.1) GO TO 250

IF (REF(J,K) .NE. HOLD) REF(J,K) = REF(J,K) * (-1.5D0)

IF (ENDRUN) CALL EXIT
The following shows another example:

 USE IFPORT
 INTEGER(4) istat, errget
 character(inchar)
 real x
 istat = getc(inchar)
 IF (istat) errget = -1
 ...
! IF (x .GT. 2.3) call new_subr(x)
 ...

See Also
IF Construct
Execution Control

IF Clause
Parallel Directive Clause: Specifies a conditional
expression. If the expression evaluates to .FALSE., the
construct is not executed.

Syntax

IF ([directive-name-modifier:] scalar-logical-expression)

directive-name-modifier Names the associated construct that the IF clause applies to.
Currently, you can specify one of the following associated constructs
(directives): PARALLEL, SIMD, TARGET DATA, TARGET, TARGET
UPDATE, TARGET ENTER DATA, TARGET EXIT DATA, TASK, or
TASKLOOP.

These directives are only available on Linux* systems: TARGET DATA,
TARGET, TARGET UPDATE, TARGET ENTER DATA, TARGET EXIT DATA.

scalar-logical-expression Must be a scalar logical expression that evaluates to .TRUE.
or .FALSE..

At most one IF clause can appear in a non-combined directive. In combined directives, IF clauses with
different directive-name-modifiers can occur, at most one for each constituent directive making up the
combined directive where IF is allowed.

Description

The effect of the IF clause depends on the construct to which it is applied:

• For combined or composite constructs, the IF clause only applies to the semantics of the construct named
in the directive-name-modifier if one is specified.

• If no directive-name-modifier is specified for a combined or composite construct then the IF clause applies
to all constructs to which an IF clause can apply.

The following are additional rules that apply to specific OpenMP Fortran directives:

Intel® Fortran Compiler Classic and Intel® Fortran Compiler Developer Guide and Reference 1

1597

• For the CANCEL OpenMP* Fortran directive, if scalar-logical-expression evaluates to false, the construct
does not request cancellation. Note that directive-name-modifier cannot specify CANCEL.

• For the PARALLEL OpenMP Fortran directive:

• The enclosed code section is executed in parallel only if scalar-logical-expression evaluates to .TRUE..
Otherwise, the parallel region is serialized. If this clause is not used, the region is executed as if an
IF(.TRUE.) clause were specified.

• This clause is evaluated in the context outside of this construct.
• For the SIMD OpenMP Fortran directive, if scalar-logical-expression evaluates to .FALSE., the number of

iterations to be executed concurrently is one.
• For the TARGET OpenMP Fortran directive, if scalar-logical-expression evaluates to .FALSE., the target

region is not executed by the device. It is executed by the encountering task.
• For the TARGET DATA OpenMP Fortran directive, if scalar-logical-expression evaluates to .FALSE., the new

device data environment is not created.
• For the TARGET UPDATE OpenMP Fortran directive, if scalar-logical-expression evaluates to .FALSE., the

TARGET UPDATE directive is ignored.
• For the TASK OpenMP Fortran directive:

• If scalar-logical-expression evaluates to .FALSE., the encountering thread must suspend the current
task region and begin execution of the generated task immediately. The suspended task region will not
be resumed until the generated task is completed.

• This clause is evaluated in the context outside of this construct.

IF Construct
Statement: Conditionally executes one block of
constructs or statements depending on the evaluation
of a logical expression. (This construct was called a
block IF statement in FORTRAN 77.)

Syntax
[name:] IF (expr) THEN
 block
[ELSE IF (expr) THEN [name]
 block]
[ELSE [name]
 block]
END IF [name]

name (Optional) Is the name of the IF construct.

expr Is a scalar logical expression enclosed in parentheses.

block Is a sequence of zero or more statements or constructs.

Description

If a construct name is specified at the beginning of an IF THEN statement, the same name must appear in
the corresponding END IF statement. If a construct name is specified on an ELSE IF or ELSE statement, the
same name must appear in the corresponding IF THEN and END IF statements.

The same construct name must not be used for different named constructs in the same scoping unit.

Depending on the evaluation of the logical expression, one block or no block is executed. The logical
expressions are evaluated in the order in which they appear, until a true value is found or an ELSE or END IF
statement is encountered.

 1 Intel® Fortran Compiler Classic and Intel® Fortran Compiler Developer Guide and Reference

1598

Once a true value is found or an ELSE statement is encountered, the block immediately following it is
executed and the construct execution terminates.

If none of the logical expressions evaluate to true and no ELSE statement appears in the construct, no block
in the construct is executed and the construct execution terminates.

NOTE
No additional statement can be placed after the IF THEN statement in a block IF construct.
For example, the following statement is invalid in the block IF construct:

 IF (e) THEN I = J
This statement is translated as the following logical IF statement:

 IF (e) THENI = J

You cannot use branching statements to transfer control to an ELSE IF statement or ELSE statement.
However, you can branch to an END IF statement from within the IF construct.

The following figure shows the flow of control in IF constructs:

Intel® Fortran Compiler Classic and Intel® Fortran Compiler Developer Guide and Reference 1

1599

You can include an IF construct in the statement block of another IF construct, if the nested IF construct is
completely contained within a statement block. It cannot overlap statement blocks.

 1 Intel® Fortran Compiler Classic and Intel® Fortran Compiler Developer Guide and Reference

1600

Example

The following example shows the simplest form of an IF construct:

Form Example
 IF (expr) THEN IF (ABS(ADJU) .GE. 1.0E-6) THEN
 block TOTERR = TOTERR + ABS(ADJU)
 QUEST = ADJU/FNDVAL
 END IF END IF

This construct conditionally executes the block of statements between the IF THEN and the END IF
statements.

The following shows another example:

! Simple block IF:
 IF (i .LT. 10) THEN
 ! the next two statements are only executed if i < 10
 j = i
 slice = TAN (angle)
 END IF

The following example shows a named IF construct:

 BLOCK_A: IF (D > 0.0) THEN ! Initial statement for named construct

 RADIANS = ACOS(D) ! These two statements
 DEGREES = ACOSD(D) ! form a block

 END IF BLOCK_A ! Terminal statement for named construct
The following example shows an IF construct containing an ELSE statement:

Form Example
 IF (expr) THEN IF (NAME .LT. 'N') THEN
 block1 IFRONT = IFRONT + 1
 FRLET(IFRONT) = NAME(1:2)
 ELSE ELSE
 block2 IBACK = IBACK + 1
 END IF END IF

Block1 consists of all the statements between the IF THEN and ELSE statements. Block2 consists of all the
statements between the ELSE and the END IF statements.

If the value of the character variable NAME is less than 'N ', block1 is executed. If the value of NAME is
greater than or equal to 'N ', block2 is executed.

The following example shows an IF construct containing an ELSE IF THEN statement:

Form Example
 IF (expr) THEN IF (A .GT. B) THEN
 block1 D = B
 F = A - B
 ELSE IF (expr) THEN ELSE IF (A .GT. B/2.) THEN
 block2 D = B/2.
 F = A - B/2.
 END IF END IF

If A is greater than B, block1 is executed. If A is not greater than B, but A is greater than B/2, block2 is
executed. If A is not greater than B and A is not greater than B/2, neither block1 nor block2 is executed.
Control transfers directly to the next executable statement after the END IF statement.

Intel® Fortran Compiler Classic and Intel® Fortran Compiler Developer Guide and Reference 1

1601

The following shows another example:

! Block IF with ELSE IF statements:

 IF (j .GT. 1000) THEN
 ! Statements here are executed only if J > 1000
 ELSE IF (j .GT. 100) THEN
 ! Statements here are executed only if J > 100 and j <= 1000
 ELSE IF (j .GT. 10) THEN
 ! Statements here are executed only if J > 10 and j <= 100
 ELSE
 ! Statements here are executed only if j <= 10
 END IF

The following example shows an IF construct containing several ELSE IF THEN statements and an ELSE
statement:

Form Example
 IF (expr) THEN IF (A .GT. B) THEN
 block1 D = B
 F = A - B
 ELSE IF (expr) THEN ELSE IF (A .GT. C) THEN
 block2 D = C
 F = A - C
 ELSE IF (expr) THEN ELSE IF (A .GT. Z) THEN
 block3 D = Z
 F = A - Z
 ELSE ELSE
 block4 D = 0.0
 F = A
 END IF END IF

If A is greater than B, block1 is executed. If A is not greater than B but is greater than C, block2 is executed.
If A is not greater than B or C but is greater than Z, block3 is executed. If A is not greater than B, C, or Z,
block4 is executed.

The following example shows a nested IF construct:

Form Example
 IF (expr) THEN IF (A .LT. 100) THEN
 block1 INRAN = INRAN + 1
 IF (expr2) THEN IF (ABS(A-AVG) .LE. 5.) THEN
 block1a INAVG = INAVG + 1
 ELSE ELSE
 block1b OUTAVG = OUTAVG + 1
 END IF END IF
 ELSE ELSE
 block2 OUTRAN = OUTRAN + 1
 END IF END IF

If A is less than 100, the code immediately following the IF is executed. This code contains a nested IF
construct. If the absolute value of A minus AVG is less than or equal to 5, block1a is executed. If the
absolute value of A minus AVG is greater than 5, block1b is executed.

If A is greater than or equal to 100, block2 is executed, and the nested IF construct (in block1) is not
executed.

The following shows another example:

! Nesting of constructs and use of an ELSE statement following
! a block IF without intervening ELSE IF statements:
 IF (i .LT. 100) THEN

 1 Intel® Fortran Compiler Classic and Intel® Fortran Compiler Developer Guide and Reference

1602

 ! Statements here executed only if i < 100
 IF (j .LT. 10) THEN
 ! Statements here executed only if i < 100 and j < 10
 END IF
 ! Statements here executed only if i < 100
 ELSE
 ! Statements here executed only if i >= 100
 IF (j .LT. 10) THEN
 ! Statements here executed only if i >= 100 and j < 10
 END IF
 ! Statements here executed only if i >= 100
 END IF

See Also
Execution Control
IF - Logical
IF - Arithmetic

IF Directive Construct
General Compiler Directive: A conditional
compilation construct that begins with an IF or IF
DEFINED directive. IF tests whether a logical
expression is .TRUE. or .FALSE.. IF DEFINED tests
whether a symbol has been defined.

Syntax

!DIR$ IF (expr) -or- !DIR$ IF DEFINED (name)

 block
[!DIR$ ELSEIF (expr)
 block] ...
[!DIR$ ELSE
 block]
!DIR$ ENDIF

expr Is a logical expression that evaluates to .TRUE. or .FALSE..

name Is the name of a symbol to be tested for definition.

block Are executable statements that are compiled (or not) depending on
the value of logical expressions in the IF directive construct.

The IF and IF DEFINED directive constructs end with an ENDIF directive and can contain one or more ELSEIF
directives and at most one ELSE directive. If the logical condition within a directive evaluates to .TRUE. at
compilation, and all preceding conditions in the IF construct evaluate to .FALSE., then the statements
contained in the directive block are compiled.

A name can be defined with a DEFINE directive, and can optionally be assigned an integer value. If the
symbol has been defined, with or without being assigned a value, IF DEFINED (name) evaluates to .TRUE.;
otherwise, it evaluates to .FALSE..

If the logical condition in the IF or IF DEFINED directive is .TRUE., statements within the IF or IF DEFINED
block are compiled. If the condition is .FALSE., control transfers to the next ELSEIF or ELSE directive, if any.

If the logical expression in an ELSEIF directive is .TRUE., statements within the ELSEIF block are compiled. If
the expression is .FALSE., control transfers to the next ELSEIF or ELSE directive, if any.

Intel® Fortran Compiler Classic and Intel® Fortran Compiler Developer Guide and Reference 1

1603

If control reaches an ELSE directive because all previous logical conditions in the IF construct evaluated
to .FALSE., the statements in an ELSE block are compiled unconditionally.

You can use any Fortran logical or relational operator or symbol in the logical expression of the directive,
including: .LT., <, .GT., >, .EQ., ==, .LE., <=, .GE., >=, .NE., /=, .EQV., .NEQV., .NOT., .AND., .OR.,
and .XOR.. The logical expression can be as complex as you like, but the whole directive must fit on one line.

Example

! When the following code is compiled and run,
! the output is:
! Or this compiled if all preceding conditions .FALSE.
!
!DIR$ DEFINE flag=3
!DIR$ IF (flag .LT. 2)
 WRITE (*,*) "This is compiled if flag less than 2."
!DIR$ ELSEIF (flag >= 8)
 WRITE (*,*) "Or this compiled if flag greater than &
 or equal to 8."
!DIR$ ELSE
 WRITE (*,*) "Or this compiled if all preceding &
 conditions .FALSE."
!DIR$ ENDIF
END

See Also
DEFINE and UNDEFINE
IF Construct
General Compiler Directives
Syntax Rules for Compiler Directives

IF DEFINED Directive
Statement: Marks the start of an IF Directive
Construct.

See Also
See IF Directive Construct.

IFIX
Elemental Intrinsic Function (Generic): Converts
a single-precision real argument to an integer by
truncating.

See Also
See INT.

IFLOATI, IFLOATJ
Portability Functions: Convert an integer to single-
precision real type.

Module

USE IFPORT

Syntax
result = IFLOATI (i)
result = IFLOATJ (j)

 1 Intel® Fortran Compiler Classic and Intel® Fortran Compiler Developer Guide and Reference

1604

i (Input) Must be of type INTEGER(2).

j (Input) Must be of type INTEGER(4).

Results

The result type is single-precision real (REAL(4) or REAL*4).

See Also
DFLOAT

ILEN
Inquiry Intrinsic Function (Generic): Returns the
length (in bits) of the two's complement
representation of an integer.

Syntax
result = ILEN (i)

i Must be of type integer.

Results

The result type and kind are the same as i. The result value is (LOG2(i+ 1)) if i is not negative; otherwise,
the result value is (LOG2(- i)).

Example

ILEN (4) has the value 3.

ILEN (-4) has the value 2.

IMAGE_INDEX
Transformational Intrinsic Function (Generic):
Converts cosubscripts to an image index.

Syntax
result = IMAGE_INDEX (coarray, sub)
result = IMAGE_INDEX (coarray, sub, team)
result = IMAGE_INDEX (coarray, sub, team_number)

coarray (Input) Must be a coarray; it can be of any type.

sub (Input) Must be a rank-one integer array of size equal to the corank of
coarray.

team (Input) Must be a scalar of type TEAM_TYPE defined in the intrinsic
module ISO_FORTRAN_ENV. Its value must identify the current or an
ancestor team.

team_number (Input) Must be an integer scalar. It must identify the initial team (-1)
or a team formed by the same execution of the FORM TEAM statement
that created the current team (a sibling team of the current team).

Intel® Fortran Compiler Classic and Intel® Fortran Compiler Developer Guide and Reference 1

1605

Results

The result is default integer scalar. The result is the index of the corresponding image if the value of sub is a
valid sequence of cosubscripts for coarray on the team specified by team or team_number, or for the current
team if neither team nor team_number is specified. Otherwise, the result is zero.

Examples

If coarray D is declared as D [0:*] and coarray C is declared as C(5,10) [10, 0:9, 0:*], IMAGE_INDEX (D,
[0]) has the value 1 and IMAGE_INDEX (C, [3, 1, 2]) has the value 213 (on any image).

Consider the following program:

 PROGRAM main
 USE, INTRINSIC :: ISO_FORTRAN_ENV
 TYPE (TEAM_TYPE) :: initial, odd_even
 REAL :: ca1[4:*], ca2[2, *]
 INTEGER :: i, j, k, l
 initial = GET_TEAM (CURRENT_TEAM)
 FORM TEAM (2-MOD(THIS_IMAGE(), 2), odd_even)
 PRINT *, THIS_IMAGE()
 PRINT *, THIS_IMAGE (coarray1)
 PRINT *, THIS_IMAGE (coarray2, 2)
 CHANGE TEAM (odd_even)
 . . .
 i = IMAGE_INDEX(ca1, [6], 2)
 j = IMAGE_INDEX(ca1, [6], 1)
 k = IMAGE_INDEX(ca2, [2, 4], initial)
 l = IMAGE_INDEX(ca1, [12], -1)
 . . .
 END TEAM
 . . .
 END PROGRAM

If there are 10 images on the initial team, ca1[4] will be on image 1, ca1[5] on image 2, and ca1[13] will be
on image 10. Similarly, ca2[1, 1] will be on image 1, ca[2, 1] on image 2, ending with ca2[2, 5] will be on
image 10. The FORM TEAM statement divides the images into two teams, with team 1 having images [1, 3,
5, 7, 9] with image numbers [1, 2, 3, 4, 5] respectively, and team 2 having images [2, 4, 6, 8, 10] with
image numbers [1, 2, 3, 4, 5] respectively.

After the 4 calls to IMAGE_INDEX, the value of i will be zero (ca1[6] is not on an image in team 2), j will
have the value 2, k will have the value 8, and l will have the value 9. Note that the team number -1 always
refers to the initial team. Note also that if the FORM TEAM does not specify NEW_INDEX, the image numbers
on the new teams formed by the FORM TEAM are assigned in a processor-dependent manner.

See Also
FORM TEAM

IMAGE_STATUS
Elemental Intrinsic Function (Generic): Returns
the execution status value of the specified image.

Syntax
result = IMAGE_STATUS (image [, team])

image (Input) Must be a positive integer with a value equal to or less than
the number of executing images on the specified team.

 1 Intel® Fortran Compiler Classic and Intel® Fortran Compiler Developer Guide and Reference

1606

team (Input; optional) Must be a scalar of type TEAM_TYPE defined in the
intrinsic module ISO_FORTRAN_ENV whose value represents the
current or an ancestor team. If not present, the current team is
assumed.

Results

The result type is default integer. If image on the specified team has initiated normal termination, the result
is the value STAT_STOPPED_IMAGE defined in the intrinsic module ISO_FORTRAN_ENV. If image on the
specified team has failed, the result is the value STAT_FAILED_IMAGE defined in the intrinsic module
ISO_FORTRAN_ENV. Otherwise, the result value is zero.

Example

If image 5 on the specified team has initiated normal termination, and image 12 on the specified team is
known to have failed, then IMAGE_STATUS (5) returns the value STAT_STOPPED_IMAGE and IMAGE_STATUS
(12) returns the value STAT_FAILED_IMAGE. If image 3 on the specified team has neither initiated normal
termination nor failed, IMAGE_STATUS (3) returns the value zero.

See Also
FAILED_IMAGES
STOPPED_IMAGES
ISO_FORTRAN_ENV Module

IMPLICIT
Statement: Overrides the default implicit typing rules
for names. (The default data type is default INTEGER
kind for names beginning with the letters I through N,
and default REAL kind for names beginning with any
other letter.) An IMPLICIT NONE statement overrides
all implicit typing in a scoping unit, or it indicates that
all dummy procedures and externals must explicitly be
given the external attribute.

Syntax
The IMPLICIT statement takes one of the following forms:

IMPLICIT type(a[,a]...)[,type(a[,a]...)]...
IMPLICIT NONE [(spec-list])

type Is a data type specifier (CHARACTER*(*) is not allowed).

a Is a single letter, a dollar sign ($),or a range of letters in alphabetical
order. The form for a range of letters is a1-a2, where the second letter
follows the first alphabetically (for example, A-C).

spec Is TYPE or EXTERNAL. The keyword must appear in parentheses. If
more than one keyword is present, they must be separated by
commas.

The dollar sign can be used at the end of a range of letters, since IMPLICIT interprets the dollar sign to
alphabetically follow the letter Z. For example, a range of X-$ would apply to identifiers beginning with the
letters X, Y, Z, or $.

In Intel® Fortran, the parentheses around the list of letters are optional.

Intel® Fortran Compiler Classic and Intel® Fortran Compiler Developer Guide and Reference 1

1607

Description

The IMPLICIT statement assigns the specified data type (and kind parameter) to all names that have no
explicit data type and begin with the specified letter or range of letters. It has no effect on the default types
of intrinsic procedures.

When the data type is CHARACTER*len, len is the length for character type. The len is an unsigned integer
constant or an integer specification expression enclosed in parentheses. The range for len is 1 to 2**31-1 on
IA-32 architecture; 1 to 2**63-1 on Intel® 64 architecture.

Names beginning with a dollar sign ($) are implicitly INTEGER.

The IMPLICIT NONE statement disables all implicit typing defaults. When IMPLICIT NONE is used, all names
in a program unit must be explicitly declared. An IMPLICIT NONE statement must precede any PARAMETER
statements, and there must be no other IMPLICIT statements in the scoping unit. An IMPLICIT NONE (TYPE)
statement is the same as an IMPLICIT NONE statement. If an IMPLICIT NONE (EXTERNAL) statement
appears in a scoping unit, all dummy procedures and external procedures in that scope or a contained scope
of BLOCK must have an accessible explicit interface or be declared EXTERNAL.

NOTE
To receive diagnostic messages when variables are used but not declared, you can specify
compiler option warn declarations instead of using IMPLICIT NONE or IMPLICIT NONE
(TYPE). To receive diagnostic messages when external and dummy procedures have not
explicitly been given the EXTERNAL attribute, you can specify compiler option
warn externals instead of using IMPLICIT NONE (EXTERNAL).

The following IMPLICIT statement represents the default typing as specified by the Fortran Standard for
names when they are not explicitly typed:

IMPLICIT INTEGER (I-N), REAL (A-H, O-Z)

Example

The following are examples of the IMPLICIT statement:

IMPLICIT DOUBLE PRECISION (D) IMPLICIT COMPLEX (S,Y), LOGICAL(1) (L,A-C)
IMPLICIT CHARACTER*32 (T-V)
IMPLICIT CHARACTER*2 (W)
IMPLICIT TYPE(COLORS) (E-F), INTEGER (G-H)
IMPLICIT NONE (EXTERNALS, TYPE) ! Must be the only IMPLICIT statement in a scoping unit

The following shows another example:

SUBROUTINE FF (J)
IMPLICIT INTEGER (a-b), CHARACTER*(J+1) (n), TYPE(fried) (c-d)
TYPE fried
INTEGER e, f
REAL g, h
END TYPE
age = 10 ! integer
name = 'Paul' ! character
c%e = 1 ! type fried, integer component

See Also
Data Types, Constants, and Variables
warn declarations compiler option
warn externals compiler option

 1 Intel® Fortran Compiler Classic and Intel® Fortran Compiler Developer Guide and Reference

1608

IMPORT
Statement: Controls accessibility of host entities in a
submodule, module procedure, a contained procedure,
a block construct, or in the interface body of an
interface block.

Syntax
The IMPORT statement takes the following form:

IMPORT [[::] import-name-list]
IMPORT,ONLY: import-name-list
IMPORT,NONE
IMPORT,ALL

import-name-list (Input) Is the name of one or more entities accessible in the host
scoping unit.

An IMPORT statement can appear in a submodule, module procedure, a contained procedure, the
specification part of a BLOCK construct, or in an interface body. It can not appear in the specification part of
a main program, external procedure, module, or block data except in an interface body.

An IMPORT statement must appear after any USE statements, and before any other specification statements.
Each of the named entities must be an accessible entity in the host scoping unit. Within an interface body
each named entity must be explicitly declared before the interface body, or accessible by use or host
association in the host containing the IMPORT statement.

If IMPORT, ONLY appears within a scoping unit, all other IMPORT statements in that scoping unit must be
IMPORT, ONLY statements. An entity is host associated in a scoping unit which contains an IMPORT, ONLY
statement if it appears in an import-name-list in that scoping unit.

If IMPORT, NONE is specified, no entities in the host are accessible by host association in that scoping unit.
This is the default behavior for interface bodies for a dummy or external procedure. IMPORT, NONE must not
appear in the specification part of a submodule.

If an IMPORT, ALL or an IMPORT, NONE statement appears in a scoping unit, it must be the only IMPORT
statement in that scoping unit.

If import-name-list is not specified, and if ALL, ONLY, or NONE are not specified, all of the accessible named
entities in the host scoping unit are imported unless they are made inaccessible by an entity of the same
name in the local scope. This is the default behavior for a nested scoping unit, other than an interface body,
for a dummy or external procedure.

If IMPORT, ALL is specified, all entities in the host are accessible by host association. If an entity is made
accessible by an IMPORT, ALL statement or by its name appearing in an import-name-list, it cannot be made
inaccessible by declaring another entity with the same name in the local scope.

If an IMPORT statement with an import-name-list appears, only the named entities are available by host
association.

Examples

The following examples show how the IMPORT statement can be applied.

module mymod
type mytype
 integer comp
end type mytype
interface
 subroutine sub (arg)
 import

Intel® Fortran Compiler Classic and Intel® Fortran Compiler Developer Guide and Reference 1

1609

 type(mytype) :: arg
 end subroutine sub
end interface
end module mymod

module host
 integer :: i, j, k
 contains
 subroutine sub1 ()
 import :: i, j
 k = i + j ! only i and j are host associated, k is local to sub1
 end subroutine
 subroutine sub2 ()
 import, none
 k = i + j ! i, j, and k are local to sub2
 end subroutine
 subroutine sub3 ()
 import all
 k = i + j ! i, j, and k are all host associated
 end subroutine
 subroutine sub4 ()
 import, only : i
 import, only : j
 k = i + j ! i and j are host associated, k is local
 end subroutine
end module

IMPURE
Keyword: Asserts that a user-defined procedure has
side effects.

Description

This kind of procedure is specified by using the prefix IMPURE in a FUNCTION or SUBROUTINE statement. By
default all user-defined procedures are impure, that is, they are allowed to have side effects, except for
elemental procedures, which are by default PURE.

An IMPURE elemental procedure has the restrictions that apply to elemental procedures, but it does not have
any of the restrictions of PURE elemental procedures.

An impure elemental procedure can have side effects and it can contain the following:

• Any external I/O statement (including a READ or WRITE statement whose I/O unit is an external file unit
number or *)

• A PAUSE statement
• A STOP statement or an ERROR STOP statement
• An image control statement

An impure elemental procedure cannot be referenced in a context that requires a procedure to be pure; for
example:

• It cannot be called directly in a FORALL statement or be used in the mask expression of a FORALL
statement.

• It cannot be called from a pure procedure. Pure procedures can only call other pure procedures, including
one referenced by means of a defined operator, defined assignment, or finalization.

• It cannot be passed as an actual argument to a pure procedure.

 1 Intel® Fortran Compiler Classic and Intel® Fortran Compiler Developer Guide and Reference

1610

Example

module my_rand_mod
integer, save :: my_rand_seed (8)

 contains
 impure elemental subroutine my_rand (r)

 ! my_rand updates module variable my_rand_seed (an array)
 ! and returns the next value of a "pseudo" random sequence in
 ! output dummy argument r

 real, intent(out) :: r

 ! code goes here

 end subroutine my_rand
end module my_rand_mod

See Also
FUNCTION
SUBROUTINE

IN_REDUCTION
Parallel Directive Clause: Specifies that a task
participates in a reduction. The IN_REDUCTION clause
is a reduction participating clause.

Syntax

IN_REDUCTION (reduction-identifier : list)

reduction identifier and list These are defined in the REDUCTION clause description. All the
common restrictions for the REDUCTION clause apply to the
IN_REDUCTION clause.

A list item that appears in an IN_REDUCTION clause must appear in a TASK_REDUCTION clause or a
REDUCTION clause with the TASK reduction modifier. The construct associated with the innermost region that
meets this condition must specify the same reduction-identifier as the IN_REDUCTION clause.

If the IN_REDUCTION clause appears in a TARGET construct, the target task becomes the task participating
in the reduction. A private copy of each list item is created in the data environment of the target task. The
copy is implicitly mapped into the data environment of the target device if the target device is not the parent
device.

If the IN_REDUCTION clause is associated with a TASK construct, the generated task is the participating
task, and a private copy of each list item may be created.

At the end of the region, the value of private copies of list items are combined with the value of a private
copy created by a reduction scoping clause, and finally with the original list item.

The list items specified in an IN_REDUCTION clause must match the list items that appear in a
TASK_REDUCTION clause or in a REDUCTION clause with the TASK reduction modifier. The construct
specifying the TASK_REDUCTION or REDUCTION clause corresponds to a region in which the participating
task’s region is closely nested. The innermost enclosing construct that meets this condition must also specify
the same reduction-identifier specified in the IN_REDUCTION clause.

Intel® Fortran Compiler Classic and Intel® Fortran Compiler Developer Guide and Reference 1

1611

In the following example, the IN_REDUCTION clause at (3) must name the same operator (+) and variable
(a) as in the TASK_REDUCTION clause in (2). The IN_REDUCTION clause at (4) must name the same
operator (*) and variable (a) as in the TASK_REDUCTION clause in (1).

!$omp taskgroup task_reduction(*:a) ! (1) *:a
 ...
!$omp taskgroup task_reduction(+:a) ! (2) +:a
!$omp task in_reduction(+:a) ! (3) +:a matches (2)
 a = a + x
!$omp end task ! ends (3) +:a
 ...
!$omp end taskgroup ! ends (2) +:a
 ...
!$omp task in_reduction(*:a) ! (4) *:a matches (1)
 a = a * y
!$omp end task ! ends (4) *:a
!$omp end taskgroup ! ends (1) *:a

See Also
REDUCTION
DECLARE REDUCTION
TASK_REDUCTION
TARGET
TASK
TASKLOOP

INCLUDE
Statement: Directs the compiler to stop reading
statements from the current file and read statements
in an included file or text module.

Syntax
The INCLUDE line takes the following form:

INCLUDE 'filename[/[NO]LIST]'

filename Is a character string specifying the name of the file to be included; it
must not be a named constant.

The form of the file name must be acceptable to the operating system,
as described in your system documentation.

[NO]LIST Specifies whether the incorporated code is to appear in the
compilation source listing. In the listing, a number precedes each
incorporated statement. The number indicates the "include" nesting
depth of the code. The default is /NOLIST. /LIST and /NOLIST must be
spelled completely.

You can only use /[NO]LIST if you specify compiler option vms (which
sets OpenVMS defaults).

Description

An INCLUDE line can appear anywhere within a scoping unit. The line can span more than one source line,
but no other statement can appear on the same line. The source line cannot be labeled.

An included file or text module cannot begin with a continuation line, and each Fortran statement must be
completely contained within a single file.

 1 Intel® Fortran Compiler Classic and Intel® Fortran Compiler Developer Guide and Reference

1612

An included file or text module can contain any source text, but it cannot begin or end with an incomplete
Fortran statement.

The included statements, when combined with the other statements in the compilation, must satisfy the
statement-ordering restrictions shown in Statements.

Included files or text modules can contain additional INCLUDE lines, but they must not be recursive.
INCLUDE lines can be nested until system resources are exhausted.

When the included file or text module completes execution, compilation resumes with the statement
following the INCLUDE line.

You can use modules instead of include files to achieve encapsulation of related data types and procedures.
For example, one module can contain derived type definitions as well as special operators and procedures
that apply to those types. For information on how to use modules, see Program Units and Procedures.

Example

In the following example, a file named COMMON.FOR (in the current working directory) is included and read
as input.

Including Text from a File

Main Program File COMMON.FOR File

PROGRAM
 INCLUDE 'COMMON.FOR' INTEGER, PARAMETER :: M=100
 REAL, DIMENSION(M) :: Z REAL, DIMENSION(M) :: X, Y
 CALL CUBE COMMON X, Y
 DO I = 1, M
 Z(I) = X(I) + SQRT(Y(I))
 ...
 END DO
END

SUBROUTINE CUBE
 INCLUDE 'COMMON.FOR'
 DO I=1,M
 X(I) = Y(I)**3
 END DO
 RETURN
END

The file COMMON.FOR defines a named constant M, and defines arrays X and Y as part of blank common.

The following example program declares its common data in an include file. The contents of the file
INCLUDE.INC are inserted in the source code in place of every INCLUDE 'INCLUDE.INC' line. This guarantees
that all references to common storage variables are consistent.

INTEGER i
REAL x
INCLUDE 'INCLUDE.INC'

DO i = 1, 5
 READ (*, '(F10.5)') x
 CALL Push (x)
END DO

See Also
MODULE

Intel® Fortran Compiler Classic and Intel® Fortran Compiler Developer Guide and Reference 1

1613

USE

INDEX
Elemental Intrinsic Function (Generic): Returns
the starting position of a substring within a string.

Syntax
result = INDEX (string, substring [,back] [, kind])

string (Input) Must be of type character.

substring (Input) Must be of type character.

back (Input; optional) Must be of type logical.

kind (Input; optional) Must be a scalar integer constant expression.

Results

The result is of type integer. If kind is present, the kind parameter of the result is that specified by kind;
otherwise, the kind parameter of the result is that of default integer. If the processor cannot represent the
result value in the kind of the result, the result is undefined.

If back does not appear (or appears with the value false), the value returned is the minimum value of I such
that string(I : I + LEN (substring) - 1) = substring(or zero if there is no such value). If LEN (string) < LEN
(substring), zero is returned. If LEN (substring) = zero, 1 is returned.

If back appears with the value true, the value returned is the maximum value of I such that string(I : I +
LEN (substring) - 1) = substring (or zero if there is no such value). If LEN(string) < LEN (substring), zero is
returned. If LEN (substring) = zero, LEN (string) + 1 is returned.

Specific Name Argument Type Result Type

CHARACTER INTEGER(1)

CHARACTER INTEGER(2)

INDEX 1 CHARACTER INTEGER(4)

CHARACTER INTEGER(8)

1The setting of compiler options specifying integer size can affect this function.

Example

INDEX ('FORTRAN', 'O', BACK = .TRUE.) has the value 2.

INDEX ('XXXX', " ", BACK = .TRUE.) has the value 5.

The following shows another example:

 I = INDEX('banana','an', BACK = .TRUE.) ! returns 4
 I = INDEX('banana', 'an') ! returns 2

See Also
SCAN

INLINE, FORCEINLINE, and NOINLINE
General Compiler Directives: Tell the compiler to
perform the specified inlining on routines within
statements or DO loops.

 1 Intel® Fortran Compiler Classic and Intel® Fortran Compiler Developer Guide and Reference

1614

Syntax
!DIR$ INLINE [RECURSIVE]
!DIR$ FORCEINLINE [RECURSIVE]
!DIR$ NOINLINE
The INLINE directive specifies that the routines can be inlined.

The FORCEINLINE directive specifies that a routine should be inlined whenever the compiler can do so. This
condition can also be specified by using compiler option [Q]inline-forceinline.

The NOINLINE directive specifies that a routine should not be inlined.

These directives apply only to the immediately following statement or DO construct. All statements within the
immediately following DO construct are affected.

If keyword RECURSIVE is specified, the specified inlining is performed when the routine calls itself directly or
indirectly.

The inlining can be ignored by the compiler if inline heuristics determine it may have a negative impact on
performance or will cause too much of an increase in code size.

Caution
When you use directive FORCEINLINE, the compiler may do so much additional inlining that it runs out
of memory and terminates with an "out of memory" message.

Example

Consider the following:

!DIR$ INLINE
A = F(B) + G(C) ! inline the call to function F and inline the call to function G

!DIR$ INLINE
 DO I = 1, N
 CALL F1 (G1(A), G2(A)) ! inline the call to F1 and the function executions of G1 and G2
 !DIR$ NOINLINE
 DO J = 1, M
 M(J) = F (M(J)) ! do not inline this call to F {M is a data array}
 END DO
 M(I) = F2 (X) ! F2 gets inlined from the directive before DO I

 !DIR$ FORCEINLINE RECURSIVE
 CALL F3 () ! F3 must be inlined and it calls itself recursively so inline those
calls too
 END DO

See Also
General Compiler Directives

Syntax Rules for Compiler Directives
Rules for General Directives that Affect DO Loops
Rules for Loop Directives that Affect Array Assignment Statements
inline-forceinline, Qinline-forceinline compiler option

Intel® Fortran Compiler Classic and Intel® Fortran Compiler Developer Guide and Reference 1

1615

INMAX
Portability Function: Returns the maximum positive
value for an integer.

Module

USE IFPORT

Syntax
result = INMAX (i)

i (Input) INTEGER(4).

Results

The result type is INTEGER(4). The result is the maximum 4-byte signed integer value for the argument.

INQUIRE
Statement: Returns information on the status of
specified properties of a file, logical unit, or directory.
It takes one of the following forms:

Syntax
Inquiring by File:

INQUIRE (FILE=name[, ERR=label] [, ID=id-var] [, IOMSG=msg-var] [, SIZE=sz] [, IOSTAT=i-
var] [, DEFAULTFILE=def] slist)
Inquiring by Unit:

INQUIRE ([UNIT=]io-unit [, ERR=label] [, ID=id-var] [, IOMSG=msg-var] [, SIZE=sz] [,
IOSTAT=i-var] slist)
Inquiring by Directory:

INQUIRE (DIRECTORY=dir, EXIST=ex [, DIRSPEC=dirspec] [, ERR=label] [, ID=id-var] [,
IOMSG=msg-var] [, SIZE=sz] [, IOSTAT=i-var])
Inquiring by Output List:

INQUIRE (IOLENGTH=len) out-item-list

name Is a scalar default character expression specifying the name of the file
for inquiry. For more information, see FILE Specifier and STATUS
Specifier.

label Is the label of the branch target statement that receives control if an
error occurs. For more information, see Branch Specifiers.

id-var Is a scalar integer expression identifying a data transfer operation that
was returned using the ID= specifier in a previous asynchronous READ
or WRITE statement. For more information, see ID Specifier.

msg-var Is a scalar default character variable that is assigned an explanatory
message if an I/O error occurs. For more information, see I/O
Message Specifier.

sz Is a scalar integer variable that is assigned the size of the file in file
storage units. For more information, see Size Specifier.

 1 Intel® Fortran Compiler Classic and Intel® Fortran Compiler Developer Guide and Reference

1616

i-var Is a scalar integer variable that is defined as a positive integer if an
error occurs and zero if no error occurs. For more information, see I/O
Status Specifier.

def Is a scalar default character expression specifying a default file
pathname string. (For more information, see the DEFAULTFILE
specifier.)

slist Is one or more of the following inquiry specifiers (each specifier can
appear only once):

ACCESS DELIM NEXTREC RECL

ACTION DIRECT NUMBER RECORDTYPE

ASYNCHRONO
US

ENCODING OPENED ROUND

BINARY EXIST ORGANIZATIO
N

SEQUENTIAL

BLANK FORM PAD SHARE

BLOCKSIZE FORMATTED PENDING SIGN

BUFFERED IOFOCUS POS SIZE

CARRIAGECON
TROL

MODE POSITION UNFORMATTED

CONVERT NAME READ WRITE

DECIMAL NAMED READWRITE

io-unit Is an external unit specifier.

The unit does not have to exist, nor does it need to be connected to a
file. If the unit is connected to a file, the inquiry encompasses both
the connection and the file.

dir Is a scalar default character expression specifying the name of the
directory for inquiry. If you are inquiring by directory, it must be
present.

ex Is a scalar default logical variable that is assigned the value .TRUE. if
dir names a directory that exists; otherwise, ex is assigned the
value .FALSE.. If you are inquiring by directory, it must be present. For
more information, see the EXIST Specifier.

dirspec Is a scalar default character variable that is assigned the value of the
full directory specification of dir if ex is assigned the value .TRUE..
This specifier can only be used when inquiring by directory.

len (Output) Is a scalar integer variable that is assigned a value
corresponding to the length of an unformatted, direct-access record
resulting from the use of the out-item-list in a WRITE statement.

The value is suitable to use as a RECL specifier value in an OPEN
statement that connects a file for unformatted, direct access.

Intel® Fortran Compiler Classic and Intel® Fortran Compiler Developer Guide and Reference 1

1617

The unit of the value is 4-byte longwords, by default. However, if you
specify compiler option assume byterecl, the unit is bytes.

out-item-list (Output) Is a list of one or more output items (see I/O Lists).

Description

The control specifiers ([UNIT=] io-unit, ERR= label, and IOSTAT= i-var) and inquiry specifiers can appear
anywhere within the parentheses following INQUIRE. However, if the UNIT keyword is omitted, the io-unit
must appear first in the list.

An INQUIRE statement can be executed before, during, or after a file is connected to a unit. The specifier
values returned are those that are current when the INQUIRE statement executes.

To get file characteristics, specify the INQUIRE statement after opening the file.

Examples

The following shows examples of INQUIRE statements.

In the last statement, you can use the length returned in LEN as the value for the RECL specifier in an OPEN
statement that connects a file for unformatted direct access. If you have already specified a value for RECL,
you can check LEN to verify that A and B are less than or equal to the record length you specified.

INQUIRE (FILE='FILE_B', EXIST=EXT)
INQUIRE (4, FORM=FM, IOSTAT=IOS, ERR=20)
INQUIRE (IOLENGTH=LEN) A, B

In the following example, the program prompts for the name of a data file. The INQUIRE statement then
determines whether the file exists. If it does not, the program prompts for another file name.

 CHARACTER*12 fname
 LOGICAL exists

! Get the name of a file:
100 WRITE (*, '(1X, A\)') 'Enter the file name: '
 READ (*, '(A)') fname

! INQUIRE about file's existence:
 INQUIRE (FILE = fname, EXIST = exists)

 IF (.NOT. exists) THEN
 WRITE (*,'(2A/)') ' >> Cannot find file ', fname
 GOTO 100
 END IF
 END

See Also
OPEN statement
UNIT control specifier
ERR control specifier
ID control specifier
IOMSG control specifier
IOSTAT control specifier
RECL specifier in OPEN statements
FILE specifier in OPEN statements
DEFAULTFILE specifier in OPEN statements
assume:byterecl compiler option

 1 Intel® Fortran Compiler Classic and Intel® Fortran Compiler Developer Guide and Reference

1618

INT
Elemental Intrinsic Function (Generic): Converts
a value to integer type.

Syntax
result = INT (a[,kind])

a (Input) Must be of type integer, real, or complex, or a binary, octal, or
hexadecimal literal constant.

kind (Input; optional) Must be a scalar integer constant expression.

Results

The result type is integer. If kind is present, the kind parameter of the result is that specified by kind;
otherwise, the kind parameter of the result is shown in the following table. If the processor cannot represent
the result value in the kind of the result, the result is undefined.

Functions that cause conversion of one data type to another type have the same effect as the implied
conversion in assignment statements.

The result value depends on the type and absolute value of a as follows:

• If a is of type integer, INT(a) = a.
• If a is of type real and | a | < 1, INT(a) has the value zero.

If a is of type real and | a | >=1, INT(a) is the integer whose magnitude is the largest integer that does
not exceed the magnitude of a and whose sign is the same as the sign of a.

• If a is of type complex, INT(a) is the value obtained by applying the preceding rules (for a real argument)
to the real part of a.

• If a is a binary, octal, or hexadecimal literal constant, the value of the result is the value whose bit
sequence according to the model in Bit Model is the same as that of a as modified by padding or
truncation according to the following:

• If the length of the sequence of bits specified by a is less than the size in bits of a scalar variable of the
same type and kind type parameter as the result, the binary, octal, or hexadecimal literal constant is
treated as if it were extended to a length equal to the size in bits of the result by padding on the left
with zero bits.

• If the length of the sequence of bits specified by a is greater than the size in bits of a scalar variable of
the same type and kind type parameter as the result, the binary, octal, or hexadecimal literal constant
is treated as if it were truncated from the left to a length equal to the size in bits of the result.

Specific Name 1 Argument Type Result Type

INTEGER(1), INTEGER(2),
INTEGER(4)

INTEGER(4)

INTEGER(1), INTEGER(2),
INTEGER(4),

INTEGER(8)

INTEGER(8)

IJINT INTEGER(4) INTEGER(2)

IIFIX2 REAL(4) INTEGER(2)

IINT REAL(4) INTEGER(2)

IFIX 3, 4 REAL(4) INTEGER(4)

Intel® Fortran Compiler Classic and Intel® Fortran Compiler Developer Guide and Reference 1

1619

Specific Name 1 Argument Type Result Type

JFIX INTEGER(1), INTEGER(2),
INTEGER(4),

INTEGER(8), REAL(4), REAL(8),
REAL(16),

COMPLEX(4), COMPLEX(8),
COMPLEX(16)

INTEGER(4)

INT 5, 6, 7 REAL(4) INTEGER(4)

KIFIX REAL(4) INTEGER(8)

KINT REAL(4) INTEGER(8)

IIDINT REAL(8) INTEGER(2)

IDINT 6, 8 REAL(8) INTEGER(4)

KIDINT REAL(8) INTEGER(8)

IIQINT REAL(16) INTEGER(2)

IQINT6, 9 REAL(16) INTEGER(4)

KIQINT REAL(16) INTEGER(8)

COMPLEX(4), COMPLEX(8),
COMPLEX(16)

INTEGER(2)

COMPLEX(4), COMPLEX(8),
COMPLEX(16)

INTEGER(4)

COMPLEX(4), COMPLEX(8),
COMPLEX(16)

INTEGER(8)

INT110 INTEGER(1), INTEGER(2),
INTEGER(4),

INTEGER(8), REAL(4), REAL(8),
REAL(16),

COMPLEX(4), COMPLEX(8),
COMPLEX(16)

INTEGER(1)

INT210 INTEGER(1), INTEGER(2),
INTEGER(4),

INTEGER(8), REAL(4), REAL(8),
REAL(16),

COMPLEX(4), COMPLEX(8),
COMPLEX(16)

INTEGER(2)

INT410 INTEGER(1), INTEGER(2),
INTEGER(4),

INTEGER(8), REAL(4), REAL(8),
REAL(16),

INTEGER(4)

 1 Intel® Fortran Compiler Classic and Intel® Fortran Compiler Developer Guide and Reference

1620

Specific Name 1 Argument Type Result Type

COMPLEX(4), COMPLEX(8),
COMPLEX(16)

INT810 INTEGER(1), INTEGER(2),
INTEGER(4),

INTEGER(8), REAL(4), REAL(8),
REAL(16),

COMPLEX(4), COMPLEX(8),
COMPLEX(16)

INTEGER(8)

1These specific functions cannot be passed as actual arguments.
2This function can also be specified as HFIX.
3The setting of compiler options specifying integer size or real size can affect IFIX.
4For compatibility with older versions of Fortran, IFIX is treated as a generic function.
5Or JINT.
6The setting of compiler options specifying integer size can affect INT, IDINT, and IQINT.
7Or JIFIX.
8Or JIDINT. For compatibility with older versions of Fortran, IDINT can also be specified as a generic
function.
9Or JIQINT. For compatibility with older versions of Fortran, IQINT can also be specified as a generic
function.
10For compatibility, these functions can also be specified as generic functions.

If the argument is a binary, octal, or hexadecimal constant, the result is affected by the assume old-boz
option. The default option setting, noold-boz, treats the argument as a bit string that represents a value of
the data type of the intrinsic, that is, the bits are not converted. If setting old-boz is specified, the
argument is treated as a signed integer and the bits are converted.

Example

INT (-4.2) has the value -4.

INT (7.8) has the value 7.

See Also
Binary, Octal, Hexadecimal, and Hollerith Constants
NINT
AINT
ANINT
REAL
DBLE
SNGL

INTC
Portability Function: Converts an INTEGER(4)
argument to INTEGER(2) type.

Module

USE IFPORT

Intel® Fortran Compiler Classic and Intel® Fortran Compiler Developer Guide and Reference 1

1621

Syntax
result = INTC (i)

i (Input) INTEGER(4). A value or expression.

Results

The result type is INTEGER(2). The result is the value of i with type INTEGER(2). Overflow is ignored.

INT_PTR_KIND
Inquiry Intrinsic Function (Specific): Returns the
INTEGER KIND that will hold an address. This is a
specific function that has no generic function
associated with it. It cannot be passed as an actual
argument.

Syntax
result = INT_PTR_KIND()

Results

The result type is default integer. The result is a scalar with the value equal to the value of the kind
parameter of the integer data type that can represent an address on the targeted platform.

The result value is 4 on IA-32 target architecture; 8 on Intel® 64 architecture.

Example

 REAL A(100)
 POINTER (P, A)
 INTEGER (KIND=INT_PTR_KIND()) SAVE_P
 P = MALLOC (400)
 SAVE_P = P

INTEGER Statement
Statement: Specifies the INTEGER data type.

Syntax
INTEGER
INTEGER([KIND=] n)
INTEGER*n

n Is kind 1, 2, 4, or 8.

If a kind parameter is specified, the integer has the kind specified. If a kind parameter is not specified,
integer constants are interpreted as follows:

• If the integer constant is within the default integer kind range, the kind is default integer.
• If the integer constant is outside the default integer kind range, the kind of the integer constant is the

smallest integer kind which holds the constant.

The default kind can also be changed by using the INTEGER directive or compiler options specifying integer
size.

 1 Intel® Fortran Compiler Classic and Intel® Fortran Compiler Developer Guide and Reference

1622

Example

! Entity-oriented declarations:
INTEGER, DIMENSION(:), POINTER :: days, hours
INTEGER (2) :: k=4
INTEGER (2), PARAMETER :: limit=12

! Attribute-oriented declarations:
INTEGER days, hours
INTEGER (2):: k=4, limit
DIMENSION days(:), hours(:)
POINTER days, hours
PARAMETER (limit=12)

See Also
INTEGER Directive
Integer Data Types
Integer Constants

INTEGER Directive
General Compiler Directive: Specifies the default
integer kind.

Syntax
!DIR$ INTEGER:{ 2 | 4 | 8 }
The INTEGER directive specifies a size of 2 (KIND=2), 4 (KIND=4), or 8 (KIND=8) bytes for default integer
numbers.

When the INTEGER directive is in effect, all default integer variables are of the kind specified. Only numbers
specified or implied as INTEGER without KIND are affected.

The INTEGER directive can only appear at the top of a program unit. A program unit is a main program, an
external subroutine or function, a module or a block data program unit. INTEGER cannot appear at the
beginning of internal subprograms. It does not affect modules invoked with the USE statement in the
program unit that contains it.

The default logical kind is the same as the default integer kind. So, when you change the default integer kind
you also change the default logical kind.

Example

INTEGER i ! a 4-byte integer
WRITE(*,*) KIND(i)
CALL INTEGER2()
WRITE(*,*) KIND(i) ! still a 4-byte integer
 ! not affected by setting in subroutine
END

SUBROUTINE INTEGER2()
 !DIR$ INTEGER:2
 INTEGER j ! a 2-byte integer
 WRITE(*,*) KIND(j)
END SUBROUTINE

See Also
INTEGER
REAL Directive
General Compiler Directives

Intel® Fortran Compiler Classic and Intel® Fortran Compiler Developer Guide and Reference 1

1623

Syntax Rules for Compiler Directives
Integer Data Types
Integer Constants

INTENT
Statement and Attribute: Specifies the intended use
of one or more dummy arguments.

Syntax
The INTENT attribute can be specified in a type declaration statement or an INTENT statement, and takes
one of the following forms:

Type Declaration Statement:

type,[att-ls,] INTENT (intent-spec) [, att-ls] :: d-arg[, d-arg]...
Statement:

INTENT (intent-spec) [::] d-arg[, d-arg] ...

type Is a data type specifier.

att-ls Is an optional list of attribute specifiers.

intent-spec Is one of the following specifiers:

IN Specifies that the dummy argument will be
used only to provide data to the procedure.
The dummy argument must not be redefined
(or become undefined) during execution of
the procedure.

OUT Specifies that the dummy argument will be
used to pass data from the procedure back
to the calling program. The dummy
argument is undefined on entry, although it
may have subcomponents that are initialized
by default. An undefined argument must be
defined before it is referenced in the
procedure.

Any associated actual argument must be
definable.

INOUT Specifies that the dummy argument can both
provide data to the procedure and return
data to the calling program.

Any associated actual argument must be
definable.

d-arg Is the name of a dummy argument or dummy pointer. It cannot be a
dummy procedure.

Description

The INTENT statement can only appear in the specification part of a subprogram or interface body.

If no INTENT attribute is specified for a dummy argument, its use is subject to the limitations of the
associated actual argument.

If a function specifies a defined operator, the dummy arguments must have intent IN.

 1 Intel® Fortran Compiler Classic and Intel® Fortran Compiler Developer Guide and Reference

1624

If a subroutine specifies defined assignment, the first argument must have intent OUT or INOUT, and the
second argument must have intent IN or the VALUE attribute, or both IN and the VALUE attribute.

An entity with the INTENT (OUT) attribute must not be an allocatable coarray or have a subobject that is an
allocatable coarray. It must not be of, or have a subcomponent of, type EVENT_TYPE or type LOCK_TYPE
from the ISO_FORTRAN_ENV module.

A non-pointer dummy argument with intent IN (or a subobject of such a dummy argument) must not appear
as any of the following:

• A DO variable
• The variable of an assignment statement
• The pointer-object of a pointer assignment statement
• An object or STAT variable in an ALLOCATE or DEALLOCATE statement
• An input item in a READ statement
• A variable name in a NAMELIST statement if the namelist group name appears in a NML specifier in a

READ statement
• An internal file unit in a WRITE statement
• A definable variable in an INQUIRE statement
• An IOSTAT or SIZE specifier in an I/O statement
• An actual argument in a reference to a procedure with an explicit interface if the associated dummy

argument has intent OUT or INOUT

INTENT on a pointer dummy argument refers to the pointer association status of the pointer and has no
effect on the value of the target of the pointer.

A pointer dummy argument with intent IN (or a subobject of such a pointer argument) must not appear as
any of the following:

• A pointer-object in a NULLIFY statement
• A pointer-object in a pointer assignment statement
• An object in an ALLOCATE or DEALLOCATE statement
• An actual argument in a reference to a procedure if the associated dummy argument is a pointer with the

INTENT(OUT) or INTENT(INOUT) attribute.

A pointer dummy argument with INTENT(IN) can be argument associated with a non-pointer actual
argument with the TARGET attribute. During the execution of the procedure, it is pointer associated with the
actual argument.

If an actual argument is an array section with a vector subscript, it cannot be associated with a dummy array
that is defined or redefined (has intent OUT or INOUT).

On entry to a routine, given an INTENT(OUT) dummy argument:

• If it is a pointer, it should be deallocated.
• If it is an allocatable, all of its allocatable subcomponents should be deallocated, and then it should also

be deallocated.
• If it is a non-pointer, non-allocatable, all its allocatable subcomponents should be deallocated, and then

default initialization should be applied, as specified by the program.

Example

The following example shows type declaration statements specifying the INTENT attribute:

SUBROUTINE TEST(I, J)
 INTEGER, INTENT(IN) :: I
 INTEGER, INTENT(OUT), DIMENSION(I) :: J

Intel® Fortran Compiler Classic and Intel® Fortran Compiler Developer Guide and Reference 1

1625

The following are examples of the INTENT statement:

SUBROUTINE TEST(A, B, X)
 INTENT(INOUT) :: A, B
 ...
SUBROUTINE CHANGE(FROM, TO)
 USE EMPLOYEE_MODULE
 TYPE(EMPLOYEE) FROM, TO
 INTENT(IN) FROM
 INTENT(OUT) TO
 ...

The following shows another example:

SUBROUTINE AVERAGE(value,data1, cube_ave)
 TYPE DATA
 INTEGER count
 REAL avg
 END TYPE
 TYPE(DATA) data1
 REAL tmp
 ! value cannot be changed, while cube_ave must be defined
 ! before it can be used. Data1 is defined when the procedure is
 ! invoked, and becomes redefined in the subroutine.
 INTENT(IN)::value; INTENT(OUT)::cube_ave
 INTENT(INOUT)::data1
 ! count number of times AVERAGE has been called on the data set
 ! being passed.
 tmp = data1%count*data1%avg + value
 data1%count = data1%count + 1
 data1%avg = tmp/data1%count
 cube_ave = data1%avg**3
END SUBROUTINE

See Also
Argument Association
Type Declarations
ISO_FORTRAN_ENV
Compatible attributes

INTERFACE
Statement: Defines an explicit interface for an
external or dummy procedure. It can also be used to
define a generic name for procedures, a new operator
for functions, and a new form of assignment for
subroutines.

Syntax
INTERFACE [generic-spec]
 [interface-body]...
 [[MODULE]PROCEDURE [::]name-list]...
END INTERFACE [generic-spec]

generic-spec (Optional) Is one of the following:

• A generic name

 1 Intel® Fortran Compiler Classic and Intel® Fortran Compiler Developer Guide and Reference

1626

For information on generic names, see Defining Generic Names for
Procedures.

• OPERATOR (op)

Defines a generic operator (op). It can be a defined unary, defined
binary, or extended intrinsic operator. For information on defined
operators, see Defining Generic Operators.

• ASSIGNMENT (=)

Defines generic assignment. For information on defined
assignment, see Defining Generic Assignment.

interface-body Is one or more function or subroutine subprograms or a procedure
pointer.

An interface body must not contain a DATA, ENTRY, statement
function, or FORMAT statement. An entry name can be used as a
procedure name.

The subprogram can contain a USE statement. It can also contain the
prefix MODULE before FUNCTION or SUBROUTINE to indicate a
separate module procedure.

The subprogram can contain an IMPORT statement to make entities
from the interfaces host scoping unit accessible to the interface body.

Executable code and specification statements that are not used to
specify characteristics of the subprogram or its dummy arguments in
an interface body are ignored.

name-list Is the name of one or more nonintrinsic procedures that are accessible
in the host. The MODULE keyword is only allowed if the interface block
specifies a generic-spec and has a host that is a module, or
accesses a module by use association.

The characteristics of module procedures or internal procedures are
not given in interface blocks, but are assumed from the module
subprogram definitions or the USE associated interfaces.

Description

Interface blocks can appear in the specification part of the program unit that invokes the external or dummy
procedure.

A generic-spec can only appear in the END INTERFACE statement if one appears in the INTERFACE
statement; they must be identical.

The characteristics specified for the external or dummy procedure must be consistent with those specified in
the procedure's definition.

An interface block must not appear in a block data program unit.

An interface block comprises its own scoping unit, and does not inherit anything from its host through host
association unless an IMPORT statement appears in an interface body.

Internal, module, and intrinsic procedures are all considered to have explicit interfaces. External procedures
have implicit interfaces by default; when you specify an interface block for them, their interface becomes
explicit. A procedure must not have more than one explicit interface in a given scoping unit. This means that
you cannot include internal, module, or intrinsic procedures in an interface block, unless you want to define a
generic name for them.

Intel® Fortran Compiler Classic and Intel® Fortran Compiler Developer Guide and Reference 1

1627

The function or subroutine named in the interface-body cannot have the same name as a keyword that
specifies an intrinsic type.

A interface block containing generic-spec specifies a generic interface for the following procedures:

• The procedures within the interface block

Any generic name, defined operator, or equals symbol that appears is a generic identifier for all the
procedures in the interface block. For the rules on how any two procedures with the same generic
identifier must differ, see Unambiguous Generic Procedure References.

• The module procedures listed in the MODULE PROCEDURE statement

The module procedures must be accessible by a USE statement.

To make an interface block available to multiple program units (through a USE statement), place the
interface block in a module.

The following rules apply to interface blocks containing pure procedures:

• The interface specification of a pure procedure must declare the INTENT of all dummy arguments except
pointer and procedure arguments.

• A procedure that is declared pure in its definition can also be declared pure in an interface block. However,
if it is not declared pure in its definition, it must not be declared pure in an interface block.

Example

The following example shows a simple procedure interface block with no generic specification:

SUBROUTINE SUB_B (B, FB)
 REAL B
 ...
 INTERFACE
 FUNCTION FB (GN)
 REAL FB, GN
 END FUNCTION
 END INTERFACE

The following shows another example:

!An interface to an external subroutine SUB1 with header:
!SUBROUTINE SUB1(I1,I2,R1,R2)
!INTEGER I1,I2
!REAL R1,R2
INTERFACE
 SUBROUTINE SUB1(int1,int2,real1,real2)
 INTEGER int1,int2
 REAL real1,real2
 END SUBROUTINE SUB1
END INTERFACE
INTEGER int
...

See Also
ABSTRACT INTERFACE
CALL
PROCEDURE
FUNCTION
IMPORT
MODULE
SUBMODULE
MODULE PROCEDURE

 1 Intel® Fortran Compiler Classic and Intel® Fortran Compiler Developer Guide and Reference

1628

SUBROUTINE
PURE
Procedure Interfaces
Procedures that Require Explicit Interfaces
Use and Host Association

INTERFACE TO
Statement: Identifies a subprogram and its actual
arguments before it is referenced or called.

Syntax
INTERFACE TO subprogram-stmt
 [formal-declarations]
END

subprogram-stmt Is a function or subroutine declaration statement.

formal-declarations (Optional) Are type declaration statements (including optional
attributes) for the arguments.

The INTERFACE TO block defines an explicit interface, but it contains specifications for only the procedure
declared in the INTERFACE TO statement. The explicit interface is defined only in the program unit that
contains the INTERFACE TO statement.

The recommended method for defining explicit interfaces is to use an INTERFACE block.

Example

Consider that a C function that has the following prototype:

extern void Foo (int i);
The following INTERFACE TO block declares the Fortran call to this function:

INTERFACE TO SUBROUTINE Foo [C.ALIAS: '_Foo'] (I)
 INTEGER*4 I
END

See Also
INTERFACE

INTEROP
OpenMP* Fortran Compiler Directive: Identifies a
foreign runtime context and identifies runtime
characteristics of that context, enabling
interoperability with it. This feature is only available
for ifx.

Syntax

!$OMP INTEROP clause[[[,] clause]...]

clause Is one or more of the following:

• DEPEND ([depend-modifier,] dependence-type : locator-list)

A DEPEND clause can appear only if TARGETSYNC appears as the
interop-type in an action-clause, or if interop-var is initialized with
the TARGETSYNC interop-type.

Intel® Fortran Compiler Classic and Intel® Fortran Compiler Developer Guide and Reference 1

1629

• DEVICE (scalar-integer-expression)

Only one DEVICE clause can appear in the directive. The integer-
expression of the DEVICE clause must evaluate to a non-negative
value equal to or less than the result of a call to the
omp_get_num_devices runtime function.

• NOWAIT

Only one NOWAIT clause is permitted in the directive.
• An action-clause

action-clause Is one of the following:

• INIT (modifier-list : interop-var)

Causes the interop-var to be initialized to refer to the list of
properties associated with the specified interop-type.

The properties device_num, type, type_name, vendor, and
vendor_name are available for all interop-types.

If the specified device does not exist or it is not supported, the
interop-var is initialized to the value of omp_interop_none, which is
defined to be zero.

• DESTROY (interop-var)

Causes interop-var to be set to omp_interop_none after the
resources associated with the interop-var are released. This action
makes interop-var unusable until it is reinitialized by another
INTEROP construct.

• USE (interop-var)

Causes interop-var to be used for the effects of the directive, but
interop-var is not initialized, destroyed, or modified.

You must specify at least one action-clause. Each interop-type can
appear at most once in an action-clause.

For the USE and DESTROY action-clauses, the interop-type is
whatever interop-type was used when initializing the interop-var.

modifier-list Is interop-type [[, interop-type] . . .]

interop-type Is one of the following:

• PREFER_TYPE (preference-list)
• TARGET

Provides the following properties:

• device - the foreign device handle
• device_context - the foreign device context handle
• platform - the handle to the foreign platform of the device

• TARGETSYNC

Enables synchronization between foreign tasks executing in the
foreign execution context and OpenMP* tasks.

TARGET and TARGETSYNC may appear at most once in the clause. At
least one modifier must be specified.

 1 Intel® Fortran Compiler Classic and Intel® Fortran Compiler Developer Guide and Reference

1630

preference-list Is a list of one or more foreign-runtime-ids, which can be character
constants or integer constant expressions with kind type
omp_interop_fr_kind. If you specify more than one foreign-runtime-id,
they must be separated by commas.

The character values recognized by ifx are "opencl", "sycl", and
"level_zero", which have corresponding integer values of 3, 4, and 6,
respectively.

You can specify integer constants OMP_IFR_OPENCL, OMP_IFR_SYCL,
and OMP_IFR_LEVEL_ZERO in the preference-list. Definitions for these
integer constants are in module omp_lib.

Other character, integer, or named constants are accepted and silently
ignored.

The list of foreign-runtime-ids is scanned in left-to-right lexical order.
The left-most supported foreign-runtime-id in preference-list is used.
If the implementation does not support any of the listed foreign-
runtime-ids in preference-list, the behavior is unspecified.

interop-var Is a scalar integer variable with kind type omp_interop_kind.

The interop-var of an INIT or DESTROY action-clause must not be a
constant. The same interop-var cannot be specified in more than one
action-clause of the INTEROP construct.

A task that encounters an INTEROP construct executes the region.

If a DEVICE clause is not specified, the behavior is as if a DEVICE clause is present with the integer value
equal to the value of the internal control variable (ICV) default-device-var specified.

OpenMP* may interoperate with one or more foreign runtime environments using the INTEROP directive, the
INTEROP clause on a DECLARE VARIANT directive, or the interoperability functions in the OpenMP* runtime
API.

A task has an interoperability requirement set, which is a logical set of properties. Properties can be added to
or removed from the set by different directives. The properties can be queried by other constructs that have
interoperability semantics. The following properties can be added by a construct:

• DEPEND - requires the construct enforce the synchronization relationship specified by the DEPEND clause
• IS_DEVICE_PTR (list-item) - indicates that the list-item is a device pointer within the construct
• NOWAIT - indicates that the construct is asynchronous

The DISPATCH directive can add properties to the interoperability requirement set.

The DECLARE VARIANT directive can remove properties from the interoperability requirement set.

If the interop-var is initialized with TARGETSYNC, an empty mergeable task is generated. DEPEND clauses
apply to the generated task. If NOWAIT is omitted, the generated task is also an included task. The INTEROP
construct guarantees ordered execution of the generated task with respect to foreign tasks executing in
foreign contexts through the foreign synchronization object accessible through the TARGETSYNC property of
the interop-var.

If a foreign task is created prior to encountering an INTEROP construct, the foreign task must complete
execution before the generated task executes. If the creation of a foreign task occurs after an INTEROP
construct is encountered, the foreign task cannot begin execution until the generated task finishes execution.
The INTEROP construct imposes no ordering between the thread that encounters it and foreign tasks or
OpenMP* tasks.

See Also
OpenMP Fortran Compiler Directives

Intel® Fortran Compiler Classic and Intel® Fortran Compiler Developer Guide and Reference 1

1631

Syntax Rules for Compiler Directives
DECLARE VARIANT directive
DISPATCH directive

INTRINSIC
Statement and Attribute: Allows the specific name
of an intrinsic procedure to be used as an actual
argument.

Syntax
The INTRINSIC attribute can be specified in a type declaration statement or an INTRINSIC statement, and
takes one of the following forms:

Type Declaration Statement:

type,[att-ls,] INTRINSIC [, att-ls] :: in-pro[, in-pro]...
Statement:

INTRINSIC [::] in-pro[, in-pro] ...

type Is a data type specifier.

att-ls Is an optional list of attribute specifiers.

in-pro Is the name of an intrinsic procedure.

Description

In a type declaration statement, only functions can be declared INTRINSIC. However, you can use the
INTRINSIC statement to declare subroutines, as well as functions, to be intrinsic.

The name declared INTRINSIC is assumed to be the name of an intrinsic procedure. If a generic intrinsic
function name is given the INTRINSIC attribute, the name retains its generic properties.

Some specific intrinsic function names cannot be used as actual arguments. For more information, see table
Specific Functions Not Allowed as Actual Arguments in Intrinsic Procedures.

Example

The following example shows a type declaration statement specifying the INTRINSIC attribute:

PROGRAM EXAMPLE
...
REAL(8), INTRINSIC :: DACOS
...
CALL TEST(X, DACOS) ! Intrinsic function DACOS is an actual argument

The following example shows an INTRINSIC statement:

Main Program Subprogram

EXTERNAL CTN SUBROUTINE TRIG(X,F,Y)

INTRINSIC SIN, COS Y = F(X)

. . . RETURN

END

CALL TRIG(ANGLE,SIN,SINE)

. . . FUNCTION CTN(X)

 1 Intel® Fortran Compiler Classic and Intel® Fortran Compiler Developer Guide and Reference

1632

Main Program Subprogram

CTN = COS(X)/SIN(X)

CALL TRIG(ANGLE,COS,COSINE) RETURN

. . . END

CALL TRIG(ANGLE,CTN,COTANGENT)

Note that when TRIG is called with a second argument of SIN or COS, the function reference F(X) references
the Standard Fortran library functions SIN and COS; but when TRIG is called with a second argument of CTN,
F(X) references the user function CTN.

The following shows another example:

 INTRINSIC SIN, COS
 REAL X, Y, R
 ! SIN and COS are arguments to Calc2:
 R = Calc2 (SIN, COS)

See Also
References to Generic Procedures
Type Declarations
Compatible attributes

INUM
Elemental Intrinsic Function (Specific): Converts
a character string to an INTEGER(2) value. This
function cannot be passed as an actual argument.

Syntax
result = INUM (i)

i (Input) Must be of type character.

Results

The result type is INTEGER(2). The result value is the INTEGER(2) value represented by the character string
i.

If the argument contains characters that are illegal in an integer value, an error is signaled and execution
stops.

Example

INUM ("451") has the value 451 of type INTEGER(2).

IOR
Elemental Intrinsic Function (Generic): Performs
an inclusive OR on corresponding bits. This function
can also be specified as OR.

Syntax
result = IOR (i,j)

Intel® Fortran Compiler Classic and Intel® Fortran Compiler Developer Guide and Reference 1

1633

i (Input) Must be of type integer, logical (which is treated as an
integer), or a binary, octal, or hexadecimal literal constant.

j (Input) Must be of type integer, or a binary, octal, or hexadecimal
literal constant.

If both i and j are of type integer, they must have the same kind type
parameter. If the kinds of i and j do not match, the value with the
smaller kind is extended with its sign bit on the left and the larger
kind is used for the operation and the result. i and j must not both be
binary, octal, or hexadecimal literal constants.

Results

The result is the same as i if i is of type integer; otherwise, the result is the same as j. If either i or j is a
binary, octal, or hexadecimal literal constant, it is first converted as if by the intrinsic function INT to type
integer with the kind type parameter of the other.

The result value is derived by combining i and j bit-by-bit according to the following truth table:

 i j IOR (i, j)
 1 1 1
 1 0 1
 0 1 1
 0 0 0

The model for the interpretation of an integer value as a sequence of bits is shown in Model for Bit Data.

Specific Name Argument Type Result Type

BIOR INTEGER(1) INTEGER(1)

IIOR1 INTEGER(2) INTEGER(2)

JIOR INTEGER(4) INTEGER(4)

KIOR INTEGER(8) INTEGER(8)

1Or HIOR.

Example

IOR (1, 4) has the value 5.

IOR (1, 2) has the value 3.

The following shows another example:

 INTEGER result
 result = IOR(240, 90) ! returns 250

See Also
Binary, Octal, Hexadecimal, and Hollerith Constants
IAND
IEOR
NOT
IALL
IANY
IPARITY

 1 Intel® Fortran Compiler Classic and Intel® Fortran Compiler Developer Guide and Reference

1634

IPARITY
Transformational Intrinsic Function (Generic):
Returns the result of a bitwise exclusive OR operation.

Syntax
result = IPARITY (array, dim [, mask])
result = IPARITY (array [, mask])

array (Input) Must be an array of type integer.

dim (Input) Must be a scalar integer with a value in the range 1 <= dim
<= n, where n is the rank of array.

mask (Input; optional) Must be of type logical and conformable with array.

Results

The result has the same type and kind parameters as array. It is scalar if dim does not appear; otherwise,
the result has rank n - 1 and shape [d1, d2, ..., ddim-1, ddim+1 , ..., dn] where [d1, d2,..., dn] is the shape of
array.

The result of IPARITY (array) has a value equal to the bitwise exclusive OR of all the elements of array. If
array has size zero, the result value is equal to zero.

The result of IPARITY (array, MASK=mask) has a value equal to IPARITY (PACK (array, mask)).

The result of IPARITY (array, DIM=dim [, MASK=mask]) has a value equal to that of IPARITY (array [,
MASK=mask]) if array has rank one. Otherwise, the value of element (s1, s2, ..., sdim-1, sdim+1 , ..., sn) of the
result is equal to IPARITY (array (s1, s2, ..., sdim-1 , :, sdim+1 , ..., sn) [, MASK = mask (s1, s2, ..., sdim-1 , :,
sdim+1 , ..., sn)]).

Example

IPARITY ([14, 13, 8]) has the value 11. IPARITY ([14, 13, 8], MASK=[.true., .false., .true]) has the value 6.

See Also
IANY
IALL

IRAND, IRANDM
Portability Functions: Return random numbers in
the range 0 through (2**31)-1, or 0 through
(2**15)-1 if called without an argument.

Module

USE IFPORT

Syntax
result = IRAND ([iflag])
result = IRANDM ([iflag])

iflag (Input) INTEGER(4). Optional for IRAND. Controls the way the
returned random number is chosen. If iflag is omitted, it is assumed
to be 0, and the return range is 0 through (2**15)-1 (inclusive).

Intel® Fortran Compiler Classic and Intel® Fortran Compiler Developer Guide and Reference 1

1635

Results

The result type is INTEGER(4). If iflag is 1, the generator is restarted and the first random value is returned.
If iflag is 0, the next random number in the sequence is returned. If iflag is neither zero nor 1, it is used as a
new seed for the random number generator, and the functions return the first new random value.

IRAND and IRANDM are equivalent and return the same random numbers. Both functions are included to
ensure portability of existing code that references one or both of them.

You can use SRAND to restart the pseudorandom number generator used by these functions.

Example

 USE IFPORT
 INTEGER(4) istat, flag_value, r_nums(20)
 flag_value=1
 r_nums(1) = IRAND (flag_value)
 flag_value=0
 do istat=2,20
 r_nums(istat) = irand(flag_value)
 end do

See Also
RANDOM_INIT

RANDOM_NUMBER
RANDOM_SEED
SRAND

IRANGET
Portability Subroutine: Returns the current seed.

Module

USE IFPORT

Syntax
CALL IRANGET (seed)

seed (Output) INTEGER(4). The current seed value.

See Also
IRANSET

IRANSET
Portability Subroutine: Sets the seed for the
random number generator.

Module

USE IFPORT

Syntax
CALL IRANSET (seed)

seed (Input) INTEGER(4). The reset value for the seed.

 1 Intel® Fortran Compiler Classic and Intel® Fortran Compiler Developer Guide and Reference

1636

See Also
IRANGET

IS_CONTIGUOUS
Inquiry Intrinsic Function (Generic): Tests the
contiguity of an array.

Syntax
result = IS_CONTIGUOUS (array)

array (Input) Is an array; it can be of any data type. If it is a pointer, it
must be associated.

Results

The result is default logical scalar. The result has the value .TRUE. if array is contiguous; otherwise, .FALSE..

Example

After the pointer assignment MY_P => TARGET (2:20:4), IS_CONTIGUOUS (MY_P) has the value .FALSE..

See Also
CONTIGUOUS

IS_DEVICE_PTR Clause
Parallel Directive Clause: Indicates that a list item
is a device pointer currently in the device data
environment and that it should be used directly.

Syntax

IS_DEVICE_PTR (list)

list Is a list of one or more variables that are of type C_PTR from the
intrinsic module ISO_C_BINDING, or that do not have the POINTER,
ALLOCATABLE, or VALUE attribute1. Each list item is a device pointer
currently in the device data environment and that it should be used
directly.

1 List items not of type C_PTR have been deprecated in the OpenMP* specification.

If a list item in a MAP clause is an array section, and the array section is derived from a variable with a
POINTER or ALLOCATABLE attribute, then the behavior is unspecified if the corresponding list item's variable
is modified in the region.

A list item may be a device address returned as the result of a call to the OpenMP* runtime library memory
management function omp_target_alloc function.

IS_IOSTAT_END
Elemental Intrinsic Function (Generic): Tests for
an end-of-file condition.

Syntax
result=IS_IOSTAT_END(i)

i (Input) Must be of type integer.

Intel® Fortran Compiler Classic and Intel® Fortran Compiler Developer Guide and Reference 1

1637

Results

The result type is default logical. The value of the result is true only if i is a value that could be assigned to
the scalar integer variable in an IOSTAT= specifier to indicate an end-of-file condition.

Example

INTEGER IO_STATUS
…
READ (20, IOSTAT=IO_STATUS) A, B, C
IF (IS_IOSTAT_END (IO_STATUS)) THEN
… ! process end of file
ENDIF
… ! process data read

IS_IOSTAT_EOR
Elemental Intrinsic Function (Generic): Tests for
an end-of-record condition.

Syntax
result=IS_IOSTAT_EOR(i)

i (Input) Must be of type integer.

Results

The result type is default logical. The value of the result is true only if i is a value that could be assigned to
the scalar integer variable in an IOSTAT= specifier to indicate an end-of-record condition.

Example

INTEGER IO_STATUS
…
READ (30, ADVANCE='YES', IOSTAT=IO_STATUS) A, B, C
IF (IS_IOSTAT_EOR (IO_STATUS)) THEN
… ! process end of record
ENDIF
… ! process data read

ISATTY
Portability Function: Checks whether a logical unit
number is a terminal.

Module

USE IFPORT

Syntax
result = ISATTY (lunit)

iunit (Input) INTEGER(4). An integer expression corresponding to a Fortran
logical unit number. Must be in the range 0 to 100 and must be
connected.

Results

The result type is LOGICAL(4). The result is .TRUE. if the specified logical unit is connected to a terminal
device; otherwise, .FALSE..

 1 Intel® Fortran Compiler Classic and Intel® Fortran Compiler Developer Guide and Reference

1638

If lunit is out of range or is not connected, zero is returned.

ISHA
Elemental Intrinsic Function (Generic):
Arithmetically shifts an integer left or right by a
specified number of bits.

Syntax
result = ISHA (i,shift)

i (Input) Must be of type integer. This argument is the value to be
shifted.

shift (Input) Must be of type integer. This argument is the direction and
distance of shift.

Positive shifts are left (toward the most significant bit); negative shifts
are right (toward the least significant bit).

Results

The result type and kind are the same as i. The result is equal to i shifted arithmetically by shift bits.

If shift is positive, the shift is to the left; if shift is negative, the shift is to the right. If shift is zero, no shift is
performed.

Bits shifted out from the left or from the right, as appropriate, are lost. If the shift is to the left, zeros are
shifted in on the right. If the shift is to the right, copies of the sign bit (0 for non-negative i; 1 for negative i)
are shifted in on the left.

The kind of integer is important in arithmetic shifting because sign varies among integer representations (see
the following example). If you want to shift a one-byte or two-byte argument, you must declare it as
INTEGER(1) or INTEGER(2).

Example

 INTEGER(1) i, res1
 INTEGER(2) j, res2
 i = -128 ! equal to 10000000
 j = -32768 ! equal to 10000000 00000000
 res1 = ISHA (i, -4) ! returns 11111000 = -8
 res2 = ISHA (j, -4) ! returns 11111000 10100000 = -2048

See Also
ISHC
ISHL
ISHFT
ISHFTC

ISHC
Elemental Intrinsic Function (Generic): Rotates
an integer left or right by specified number of bits.
Bits shifted out one end are shifted in the other end.
No bits are lost.

Syntax
result = ISHC (i,shift)

Intel® Fortran Compiler Classic and Intel® Fortran Compiler Developer Guide and Reference 1

1639

i (Input) Must be of type integer. This argument is the value to be
rotated.

shift (Input) Must be of type integer. This argument is the direction and
distance of rotation.

Positive rotations are left (toward the most significant bit); negative
rotations are right (toward the least significant bit).

Results

The result type and kind are the same as i. The result is equal to i circularly rotated by shift bits.

If shift is positive, i is rotated left shift bits. If shift is negative, i is rotated right shift bits. Bits shifted out one
end are shifted in the other. No bits are lost.

The kind of integer is important in circular shifting. With an INTEGER(4) argument, all 32 bits are shifted. If
you want to rotate a one-byte or two-byte argument, you must declare it as INTEGER(1) or INTEGER(2).

Example

 INTEGER(1) i, res1
 INTEGER(2) j, res2
 i = 10 ! equal to 00001010
 j = 10 ! equal to 00000000 00001010
 res1 = ISHC (i, -3) ! returns 01000001 = 65
 res2 = ISHC (j, -3) ! returns 01000000 00000001 =
 ! 16385

See Also
ISHA
ISHL
ISHFT
ISHFTC

ISHFT
Elemental Intrinsic Function (Generic): Performs
a logical shift.

Syntax
result = ISHFT (i,shift)

i (Input) Must be of type integer.

shift (Input) Must be of type integer. The absolute value for shift must be
less than or equal to BIT_SIZE(i).

Results

The result type and kind are the same as i. The result has the value obtained by shifting the bits of i by shift
positions. If shift is positive, the shift is to the left; if shift is negative, the shift is to the right. If shift is zero,
no shift is performed.

Bits shifted out from the left or from the right, as appropriate, are lost. Zeros are shifted in from the opposite
end.

ISHFT with a positive shift can also be specified as LSHIFT (or LSHFT). ISHFT with a negative shift can also
be specified as RSHIFT (or RSHFT) with | shift |.

For more information on bit functions, see Bit Functions.

 1 Intel® Fortran Compiler Classic and Intel® Fortran Compiler Developer Guide and Reference

1640

The model for the interpretation of an integer value as a sequence of bits is shown in Model for Bit Data.

Specific Name Argument Type Result Type

BSHFT INTEGER(1) INTEGER(1)

IISHFT1 INTEGER(2) INTEGER(2)

JISHFT INTEGER(4) INTEGER(4)

KISHFT INTEGER(8) INTEGER(8)

1Or HSHFT.

Example

ISHFT (2, 1) has the value 4.

ISHFT (2, -1) has the value 1.

The following shows another example:

 INTEGER(1) i, res1
 INTEGER(2) j, k(3), res2
 i = 10 ! equal to 00001010
 j = 10 ! equal to 00000000 00001010
 res1 = ISHFT (i, 5) ! returns 01000000 = 64
 res2 = ISHFT (j, 5) ! returns 00000001 01000000 =
 ! 320
 k = ISHFT((/3, 5, 1/), (/1, -1, 0/)) ! returns array
 ! /6, 2, 1/

See Also
BIT_SIZE
ISHFTC
ISHA
ISHC

ISHFTC
Elemental Intrinsic Function (Generic): Performs
a circular shift of the rightmost bits.

Syntax
result = ISHFTC (i,shift[,size])

i (Input) Must be of type integer.

shift (Input) Must be of type integer. The absolute value of shift must be
less than or equal to size. 1

size (Input; optional) Must be of type integer. The value of size must be
positive2 and must not exceed BIT_SIZE(i). If size is omitted, it is
assumed to have the value of BIT_SIZE(i).

1SHIFT can be a value whose absolute value is greater than SIZE. In this case, the effect is as if SHIFT has
the value MOD (SHIFT, SIZE) if SIZE is positive.
2SIZE can be zero. In this case, no circular shift is performed and the function result is the value of i, the first
argument.

Intel® Fortran Compiler Classic and Intel® Fortran Compiler Developer Guide and Reference 1

1641

Results

The result type and kind are the same as i. The result value is obtained by circular shifting the size rightmost
bits of i by shift positions. If shift is positive, the shift is to the left; if shift is negative, the shift is to the
right. If shift is zero, no shift is performed.

No bits are lost. Bits in i beyond the value specified by size are unaffected.

For more information on bit functions, see Bit Functions.

The model for the interpretation of an integer value as a sequence of bits is shown in Model for Bit Data.

Specific Name Argument Type Result Type

BSHFTC INTEGER(1) INTEGER(1)

IISHFTC3 INTEGER(2) INTEGER(2)

JISHFTC INTEGER(4) INTEGER(4)

KISHFTC INTEGER(8) INTEGER(8)

3Or HSHFTC.

Example

ISHFTC (4, 2, 4) has the value 1.

ISHFTC (3, 1, 3) has the value 6.

The following shows another example:

 INTEGER(1) i, res1
 INTEGER(2) j, res2
 i = 10 ! equal to 00001010
 j = 10 ! equal to 00000000 00001010
 res1 = ISHFTC (i, 2, 3) ! rotates the 3 rightmost
 ! bits by 2 (left) and
 ! returns 00001001 = 9
 res1 = ISHFTC (i, -2, 3) ! rotates the 3 rightmost
 ! bits by -2 (right) and
 ! returns 00001100 = 12
 res2 = ISHFTC (j, 2, 3) ! rotates the 3 rightmost
 ! bits by 2 and returns
 ! 00000000 00001001 = 9

See Also
BIT_SIZE
ISHFT
MVBITS

ISHL
Elemental Intrinsic Function (Generic): Logically
shifts an integer left or right by the specified bits.
Zeros are shifted in from the opposite end.

Syntax
result = ISHL (i,shift)

 1 Intel® Fortran Compiler Classic and Intel® Fortran Compiler Developer Guide and Reference

1642

i (Input) Must be of type integer. This argument is the value to be
shifted.

shift (Input) Must be of type integer. This argument is the direction and
distance of shift.

If positive, i is shifted left (toward the most significant bit). If
negative, i is shifted right (toward the least significant bit).

Results

The result type and kind are the same as i. The result is equal to i logically shifted by shift bits. Zeros are
shifted in from the opposite end.

Unlike circular or arithmetic shifts, which can shift ones into the number being shifted, logical shifts shift in
zeros only, regardless of the direction or size of the shift. The integer kind, however, still determines the end
that bits are shifted out of, which can make a difference in the result (see the following example).

Example

 INTEGER(1) i, res1
 INTEGER(2) j, res2
 i = 10 ! equal to 00001010
 j = 10 ! equal to 00000000 00001010
 res1 = ISHL (i, 5) ! returns 01000000 = 64
 res2 = ISHL (j, 5) ! returns 00000001 01000000 = 320

See Also
ISHA
ISHC
ISHFT
ISHFTC

ISNAN
Elemental Intrinsic Function (Generic): Tests
whether IEEE* real (binary32, binary64, and
binary128) numbers are Not-a-Number (NaN) values.

Syntax
result = ISNAN (x)

x (Input) Must be of type real.

Results

The result type is default logical. The result is .TRUE. if x is an IEEE NaN; otherwise, the result is .FALSE..

Example

 LOGICAL A
 DOUBLE PRECISION B
 ...
 A = ISNAN(B)

A is assigned the value .TRUE. if B is an IEEE NaN; otherwise, the value assigned is .FALSE..

Intel® Fortran Compiler Classic and Intel® Fortran Compiler Developer Guide and Reference 1

1643

ITERATOR Clause Modifier
Parallel Directive Clause Modifier: An identifier
that assumes multiple values in the clause in which it
appears. This feature is only available for ifx.

Syntax

ITERATOR (iterators-definition)

iterators-definition Is iterators-specifier [, iterators-definition]

iterators-specifier Is [iterator-type ::] iterator = range-spec

iterator-type Is an integer type. If not specified, the iterator type is default integer.

iterator Is a Fortran identifier.

range-spec Has the form:

first : last [: stride]

where first and last are scalar expressions that can be converted to
iterator-type, and stride is a scalar, non-zero integer expression. If
stride is not specified, it is assumed to be 1.

Description

An iterator is similar in function to an implied DO variable. If a list-item in a clause is modified with an
iterator, it is as if the list-item appears in the clause with each value of the iterator that the iterator assumes
in the clause. If the set of values the iterator assumes is empty, it is as if the list item did not appear in the
clause.

An iterator assumes the values i1 … iN where i1 = first, ij = ij-1 + stride where j >= 2 and

if stride > 0: i1 <= last

iN <= last

iN + stride > last

if stride < 0: i1 >= last

iN >= last

iN + stride < last

For each value i in the set of values the iterator assumes, the value i + stride must be representable as a
value of type iterator-type.

The scope of an iterator is the clause argument (list-item) that it modifies. It blocks accessible symbols with
the same name in the context of the clause item it modifies. A variable used in an expression of a range-spec
is an implicit reference to that variable in all enclosing OpenMP constructs.

An iterator cannot appear in a range-spec in the same clause. An iterator can only be defined once in a
clause.

If the value of stride is zero, the behavior is undefined.

Example

In the following example, the parallel region uses a SINGLE construct containing a loop to generate n tasks,
each with an OUT dependency specified through an element of the array vector. Each task calls subroutine
ASSIGN_ELEMENT to assign the value i to the corresponding element of the array vector.

 1 Intel® Fortran Compiler Classic and Intel® Fortran Compiler Developer Guide and Reference

1644

Following the loop, another task is generated with n IN dependencies, one for each element of the array
vector. The dependencies are created using an iterator. This task waits for the tasks generated by the loop to
complete and then calls PRINT_VECTOR to print the elements of the array vector.

SUBROUTINE SUB (VECTOR, N)
INTEGER :: I, N, VECTOR (N)
 !$OMP PARALLEL
 !$OMP SINGLE
 DO I=1,N
 !$OMP TASK DEPEND (OUT: VECTOR (I))
 CALL ASSIGN_ELEMENT (VECTOR(I), I)
 !$OMP END TASK
 END DO

 !$OMP TASK DEPEND (ITERATOR (INTEGER :: ITER = 1:N), IN: VECTOR(ITER))
 CALL PRINT_VECTOR (VECTOR, N)
 !$OMP END TASK
 !$OMP END SINGLE
 !$OMP END PARALLEL
END SUBROUTINE SUB

ITIME
Portability Subroutine: Returns the time in numeric
form.

Module

USE IFPORT

Syntax
CALL ITIME (array)

array (Output) INTEGER(4). A rank one array with three elements used to
store numeric time data:

• array(1) - the hour
• array(2) - the minute
• array(3) - the second

Example

USE IFPORT
 INTEGER(4) time_array(3)
 CALL ITIME (time_array)
 write(*,10) time_array
 10 format (1X,I2,':',I2,':',I2)
 END

See Also
DATE_AND_TIME

IVDEP
General Compiler Directive: Assists the compiler's
dependence analysis of iterative DO loops.

Syntax
!DIR$ IVDEP [: option]

Intel® Fortran Compiler Classic and Intel® Fortran Compiler Developer Guide and Reference 1

1645

option Is LOOP or BACK.

The IVDEP directive is an assertion to the compiler's optimizer about the order of memory references inside a
DO loop.

IVDEP:LOOP implies no loop-carried dependencies. IVDEP:BACK implies no backward dependencies.

When no option is specified, the following occurs:

• The compiler begins dependence analysis by assuming all dependences occur in the same forward
direction as their appearance in the normal scalar execution order. This contrasts with normal compiler
behavior, which is for the dependence analysis to make no initial assumptions about the direction of a
dependence.

!DIR$ IVDEP with no option can also be spelled !DIR$ INIT_DEP_FWD (INITialize DEPendences ForWarD).

The IVDEP directive is applied to a DO loop in which the user knows that dependences are in lexical order.
For example, if two memory references in the loop touch the same memory location and one of them
modifies the memory location, then the first reference to touch the location has to be the one that appears
earlier lexically in the program source code. This assumes that the right-hand side of an assignment
statement is "earlier" than the left-hand side.

The IVDEP directive informs the compiler that the program would behave correctly if the statements were
executed in certain orders other than the sequential execution order, such as executing the first statement or
block to completion for all iterations, then the next statement or block for all iterations, and so forth. The
optimizer can use this information, along with whatever else it can prove about the dependences, to choose
other execution orders.

Example

In the following example, the IVDEP directive provides more information about the dependences within the
loop, which may enable loop transformations to occur:

 !DIR$ IVDEP
 DO I=1, N
 A(INDARR(I)) = A(INDARR(I)) + B(I)
 END DO

In this case, the scalar execution order follows:

1. Retrieve INDARR(I).
2. Use the result from step 1 to retrieve A(INDARR(I)).
3. Retrieve B(I).
4. Add the results from steps 2 and 3.
5. Store the results from step 4 into the location indicated by A(INDARR(I)) from step 1.

IVDEP directs the compiler to initially assume that when steps 1 and 5 access a common memory location,
step 1 always accesses the location first because step 1 occurs earlier in the execution sequence. This
approach lets the compiler reorder instructions, as long as it chooses an instruction schedule that maintains
the relative order of the array references.

See Also
General Compiler Directives
Syntax Rules for Compiler Directives
Rules for General Directives that Affect DO Loops
Rules for Loop Directives that Affect Array Assignment Statements

J to L
This section describes language features that start with J, K, or L.

 1 Intel® Fortran Compiler Classic and Intel® Fortran Compiler Developer Guide and Reference

1646

J to L
JABS
Portability Function: Returns an absolute value.

Module

USE IFPORT

Syntax
result = JABS (i)

i (Input) INTEGER(4). A value.

Results

The result type is INTEGER(4). The value of the result is | i |.

JDATE
Portability Function: Returns an 8-character string
with the Julian date in the form "yyddd". Three spaces
terminate this string.

Module

USE IFPORT

Syntax
result = JDATE()

Results

The result type is character with length 8. The result is the Julian date, in the form YYDDD, followed by three
spaces.

The Julian date is a five-digit number whose first two digits are the last two digits of the year, and whose
final three digits represent the day of the year (1 for January 1, 366 for December 31 of a leap year, and so
on). For example, the Julian date for February 1, 1999 is 99032.

Caution
The two-digit year return value may cause problems with the year 2000. Use
DATE_AND_TIME instead.

Example

! Sets julian to today's julian date
 USE IFPORT
 CHARACTER*8 julian
 julian = JDATE()

See Also
DATE_AND_TIME

JDATE4
Portability Function: Returns a 10-character string
with the Julian date in the form "yyyyddd". Three
spaces terminate this string.

Intel® Fortran Compiler Classic and Intel® Fortran Compiler Developer Guide and Reference 1

1647

Module

USE IFPORT

Syntax
result = JDATE4()

Results

The result type is character with length 10. The result is the Julian date, in the form YYYYDDD, followed by
three spaces.

The Julian date is a seven-digit number whose first four digits are the year, and whose final three represent
the day of the year (1 for January 1, 366 for December 31 of a leap year, and so on). For example, the Julian
date for February 1, 1999 is 1999032.

See Also
DATE_AND_TIME

JNUM
Elemental Intrinsic Function (Specific): Converts
a character string to an INTEGER(4) value. This
function cannot be passed as an actual argument.

Syntax
result = JNUM (i)

i (Input) Must be of type character.

Results

The result type is INTEGER(4). The result value is the integer value represented by the character string i.

If the argument contains characters that are illegal in an integer value, an error is signaled and execution
stops.

Example

JNUM ("46616") has the value 46616 of type INTEGER(4).

KILL
Portability Function: Sends a signal to the process
given by ID.

Module

USE IFPORT

Syntax
result = KILL (pid,signum)

pid (Input) INTEGER(4). ID of a process to be signaled.

signum (Input) INTEGER(4). A signal value. For the definition of signal values,
see the SIGNALfunction.

Results

The result type is INTEGER(4). The result is zero if the call was successful; otherwise, an error code. Possible
error codes are:

 1 Intel® Fortran Compiler Classic and Intel® Fortran Compiler Developer Guide and Reference

1648

• EINVAL: The signum is not a valid signal number, or PID is not the same as getpid() and signum does not
equal SIGKILL.

• ESRCH: The given PID could not be found.
• EPERM: The current process does not have permission to send a signal to the process given by PID.

On Windows* systems, arbitrary signals can be sent only to the calling process (where pid= getpid()). Other
processes can send only the SIGKILL signal (signum= 9), and only if the calling process has permission.

Example

USE IFPORT
integer(4) id_number, sig_val, istat
id_number=getpid()
ISTAT = KILL (id_number, sig_val)

See Also
SIGNAL
RAISEQQ
SIGNALQQ

KIND
Inquiry Intrinsic Function (Generic): Returns the
kind parameter of the argument.

Syntax
result = KIND (x)

x (Input) Can be of any intrinsic type.

Results

The result is a scalar of type default integer. The result has a value equal to the kind type parameter value of
x.

Example

KIND (0.0) has the kind value of default real type.

KIND (12) has the kind value of default integer type.

The following shows another example:

INTEGER i ! a 4-byte integer
WRITE(*,*) KIND(i)
CALL INTEGER2()
WRITE(*,*) KIND(i) ! still a 4-byte integer
 ! not affected by setting in subroutine
END
SUBROUTINE INTEGER2()
 !DIR$INTEGER:2
 INTEGER j ! a 2-byte integer
 WRITE(*,*) KIND(j)
END SUBROUTINE

See Also
SELECTED_INT_KIND
SELECTED_REAL_KIND
CMPLX
INT

Intel® Fortran Compiler Classic and Intel® Fortran Compiler Developer Guide and Reference 1

1649

REAL
LOGICAL
CHAR
Intrinsic Data Types
Argument Keywords in Intrinsic Procedures

KNUM
Elemental Intrinsic Function (Specific): Converts
a character string to an INTEGER(8) value.

Syntax

result = KNUM (i)

i (Input) Must be of type character.

Results

The result type is INTEGER(8). The result value is the integer value represented by the character string i.

If the argument contains characters that are illegal in an integer value, an error is signaled and execution
stops.

Example

KNUM ("46616") has the value 46616 of type INTEGER(8).

LASTPRIVATE
Parallel Directive Clause: Provides a superset of the
functionality provided by the PRIVATE clause. It
declares one or more variables to be private to an
implicit task, and causes the corresponding original
variable to be updated after the end of the region.

Syntax

LASTPRIVATE ([CONDITIONAL:] list)

CONDITIONAL Is an optional modifier specifying that the last value assigned to a list
item can be from the sequentially last iteration of the associated loops
or the lexically last section construct.

list Is the name of one or more variables or common blocks that are
accessible to the scoping unit. Subobjects cannot be specified. Each
name must be separated by a comma, and a named common block
must appear between slashes (/ /).

If CONDITIONAL is present, list items must be scalar of intrinsic type
(INTEGER, REAL, COMPLEX, LOGICAL, and CHARACTER) and they
must have neither the POINTER nor the ALLOCATABLE attribute.

Variables that appear in a LASTPRIVATE list are subject to PRIVATE clause semantics. In addition, once the
parallel region is exited, each variable has the value provided by the sequentially last section or loop
iteration.

Multiple LASTPRIVATE clauses are allowed on all of the directives that accept them. A list item may not
appear in more than one LASTPRIVATE clause. LASTPRIVATE (CONDITIONAL:A,B) is equivalent to
LASTPRIVATE(CONDITIONAL:A) LASTPRIVATE(CONDITIONAL:B).

LASTPRIVATE (CONDITIONAL:list) can appear in the following directives:

 1 Intel® Fortran Compiler Classic and Intel® Fortran Compiler Developer Guide and Reference

1650

• OMP DISTRIBUTE
• OMP DO
• OMP SECTIONS
• OMP SIMD
• OMP TASKLOOP
• Any and all of the combination directives of the above directives

The OMP PARALLEL directive does not allow the LASTPRIVATE clause.

If the original variable has the POINTER attribute, its update occurs as if by pointer assignment.

If the original variable does not have the POINTER attribute, its update occurs as if by intrinsic assignment.

When a LASTPRIVATE clause without the CONDITIONAL modifier appears in a worksharing or a SIMD
directive, the value of each new list item from the sequentially last iteration of the associated loops, or the
lexically last section, is assigned to the original list item.

When the CONDITIONAL modifier is specified, the final value written by the sequentially last iteration or
lexically last section that writes to a list item, if any, is assigned to the original list item.

When the CONDITIONAL modifier is not specified, list items that are not assigned a value by the sequentially
last iteration of the loops, or by the lexically last section, have unspecified values after the construct.

Therefore, variables specified in the list of a LASTPRIVATE clause that contains a CONDITIONAL modifier
should be variables that are conditionally assigned to in the loop/region/sections. The variables in the list of a
LASTPRIVATE clause that does not contain a CONDITIONAL modifier should be variables that are
unconditionally assigned to in the loop or sections.

Subobjects that are not assigned a value by the last iteration of the DO or the lexically last SECTION of the
SECTIONS directive are undefined after the construct.

The original variable becomes defined at the end of the construct if there is an implicit barrier at that point.
To avoid race conditions, concurrent reads or updates of the original variable must be synchronized with the
update of the original variable that occurs as a result of the LASTPRIVATE clause.

If the LASTPRIVATE clause is used in a construct for which NOWAIT is specified, accesses to the original
variable may create a data race. To avoid this, synchronization must be inserted to ensure that the
sequentially last iteration or lexically last section construct has stored and flushed that variable.

The following are restrictions for the LASTPRIVATE clause:

• A variable that is part of another variable (as an array or structure element) must not appear in a
PRIVATE clause.

• A variable that is private within a parallel region, or that appears in the REDUCTION clause of a PARALLEL
construct, must not appear in a LASTPRIVATE clause on a worksharing construct if any of the
corresponding worksharing regions ever binds to any of the corresponding parallel regions.

• A variable that appears in a LASTPRIVATE clause must be definable.
• An original variable with the ALLOCATABLE attribute must be in the allocated state at entry to the

construct containing the LASTPRIVATE clause. The variable in the sequentially last iteration or lexically last
section must be in the allocated state upon exit from that iteration or section with the same bounds as the
corresponding original variable.

• Assumed-size arrays must not appear in a PRIVATE clause.
• Variables that appear in NAMELIST statements, in variable format expressions, and in expressions for

statement function definitions, must not appear in a PRIVATE clause.
• If a list item appears in both the FIRSTPRIVATE and LASTPRIVATE clauses, the update required for

LASTPRIVATE occurs after all of the initializations for FIRSTPRIVATE.

Intel® Fortran Compiler Classic and Intel® Fortran Compiler Developer Guide and Reference 1

1651

NOTE
If a variable appears in both FIRSTPRIVATE and LASTPRIVATE clauses, the update required for
LASTPRIVATE occurs after all initializations for FIRSTPRIVATE.

NOTE
If a variable appears in a LASTPRIVATE clause on a combined construct for which the first construct is
TARGET, it is treated as if it had appeared in a MAP clause with a map-type of FROM.

Example

Consider the following:

!$OMP DO PRIVATE(I) LASTPRIVATE(B)
 DO I = 1, 1000
 B = I
 ENDDO
!$OMP END DO

In this case, after the construct is exited, variable B has the value 1000.

Consider the following:

!$OMP SECTIONS LASTPRIVATE(B)
!$OMP SECTION
 B = 2
!$OMP SECTION
 B = 4
!$OMP SECTION
 D = 6
!$OMP END SECTIONS

In this case the thread that executes the lexically last SECTION updates the original variable B to have a
value of 4. However, variable D was not specified in the LASTPRIVATE clause, so it has an undefined value
after the construct is exited.

Consider the following example:

 P = 0
!$OMP DO PRIVATE(I), FIRSTPRIVATE(P), LASTPRIVATE(CONDITIONAL:P)
 DO I = 1, 1000
 IF (A(I) .EQ. B) THEN
 P = I
 EXIT
 END IF
 ENDDO
!$OMP END DO

After the loop, P will be the index of the first element of A to match B; if no match is found, P will be zero.

See Also
PRIVATE Clause
FIRSTPRIVATE clause

LBOUND
Inquiry Intrinsic Function (Generic): Returns the
lower bounds for all dimensions of an array, or the
lower bound for a specified dimension.

 1 Intel® Fortran Compiler Classic and Intel® Fortran Compiler Developer Guide and Reference

1652

Syntax
result = LBOUND (array [, dim] [, kind])

array (Input) Must be an array; it can be assumed-rank. It may be of any
data type. It must not be an allocatable array that is not allocated, or
a disassociated pointer.

dim (Input; optional) Must be a scalar integer with a value in the range 1
to n, where n is the rank array.

kind (Input; optional) Must be a scalar integer constant expression.

Results

The result type is integer. If kind is present, the kind parameter of the result is that specified by kind;
otherwise, the kind parameter of the result is that of default integer. If the processor cannot represent the
result value in the kind of the result, the result is undefined.

If dim is present, the result is a scalar. Otherwise, the result is a rank-one array with one element for each
dimension of array. Each element in the result corresponds to a dimension of array.

If array is an array section or an array expression that is not a whole array or array structure component,
each element of the result has the value 1.

If array is a whole array or array structure component, LBOUND (array, dim) has a value equal to the lower
bound for subscript dim of array(if dim is nonzero or array is an assumed-size array of rank dim). Otherwise,
the corresponding element of the result has the value 1.

If LBOUND is invoked for an assumed-rank object that is associated with a scalar and dim is absent, the
result is a zero-sized array. LBOUND cannot be invoked for an assumed-rank object that is associated with a
scalar if dim is present because the rank of a scalar is zero and dim must be >= 1.

The setting of compiler options specifying integer size can affect this function.

Example

Consider the following:

 REAL ARRAY_A (1:3, 5:8)
 REAL ARRAY_B (2:8, -3:20)

LBOUND(ARRAY_A) is (1, 5). LBOUND(ARRAY_A, DIM=2) is 5.

LBOUND(ARRAY_B) is (2, -3). LBOUND(ARRAY_B (5:8, :)) is (1,1) because the arguments are array sections.

The following shows another example:

 REAL ar1(2:3, 4:5, -1:14), vec1(35)
 INTEGER res1(3), res2, res3(1)
 res1 = LBOUND (ar1) ! returns [2, 4, -1]
 res2 = LBOUND (ar1, DIM= 3) ! returns -1
 res3 = LBOUND (vec1) ! returns [1]
 END

See Also
UBOUND

LCOBOUND
Inquiry Intrinsic Function (Generic): Returns the
lower cobounds of a coarray.

Intel® Fortran Compiler Classic and Intel® Fortran Compiler Developer Guide and Reference 1

1653

Syntax
result = LCOBOUND (coarray [,dim [, kind])

coarray (Input) Must be a coarray; it can be of any type. It can be a scalar or
an array. If it is allocatable, it must be allocated.

dim (Input; optional) Must be an integer scalar with a value in the range 1
<= dim <= n, where n is the corank of coarray. The corresponding
actual argument must not be an optional dummy argument.

kind (Input; optional) Must be a scalar integer constant expression.

Results

The result type is integer. If kind is present, the kind parameter is that specified by kind; otherwise, the kind
parameter is that of default integer type. The result is scalar if dim is present; otherwise, the result is an
array of rank one and size n, wheren is the corank of coarray.

The result depends on whether dim is specified:

• If dim is specified, LCOBOUND (COARRAY, DIM) has a value equal to the lower cobound for cosubscript
dim of coarray.

• If dim is not specified, LCOBOUND (COARRAY) has a value whose ith element is equal to LCOBOUND
(COARRAY, i), for i = 1, 2,. . . , n, where n is the corank of coarray.

Example

If B is allocated by the statement ALLOCATE (B [2:3, 8:*]), then LCOBOUND (B) is [2, 8] and LCOBOUND (B,
DIM=2) is 8.

LCWRQQ
Portability Subroutine: Sets the value of the
floating-point processor control word.

Module

USE IFPORT

Syntax
CALL LCWRQQ (controlword)

controlword (Input) INTEGER(2). Floating-point processor control word.

LCWRQQ performs the same function as the runtime subroutine SETCONTROLFPQQ and is provided for
compatibility.

Example

USE IFPORT
INTEGER(2) control
CALL SCWRQQ(control) ! get control word
! Set control word to make processor round up
control = control .AND. (.NOT. FPCW$MCW_RC) ! Clear
 ! control word with inverse
 ! of rounding control mask
control = control .OR. FPCW$UP ! Set control word
 ! to round up
CALL LCWRQQ(control)

 1 Intel® Fortran Compiler Classic and Intel® Fortran Compiler Developer Guide and Reference

1654

WRITE (*, 9000) 'Control word: ', control
9000 FORMAT (1X, A, Z4)
END

See Also
SETCONTROLFPQQ

LEADZ
Elemental Intrinsic Function (Specific): Returns
the number of leading zero bits in an integer.

Syntax
result = LEADZ (i)

i (Input) Must be of type integer or logical.

Results

The result type is default integer. The result value is the number of leading zeros in the binary representation
of the integer i.

The model for the interpretation of an integer value as a sequence of bits is shown in Model for Bit Data.

Example

Consider the following:

 INTEGER*8 J, TWO
 PARAMETER (TWO=2)
 DO J= -1, 40
 TYPE *, LEADZ(TWO**J) ! Prints 64 down to 23 (leading zeros)
 ENDDO
 END

LEN
Inquiry Intrinsic Function (Generic): Returns the
length of a character expression.

Syntax
result = LEN (string [, kind])

string (Input) Must be of type character; it can be scalar or array valued. (It
can be an array of strings.)

kind (Input; optional) Must be a scalar integer constant expression.

Results

The result is a scalar of type integer. If kind is present, the kind parameter of the result is that specified by
kind; otherwise, the kind parameter of the result is that of default integer. If the processor cannot represent
the result value in the kind of the result, the result is undefined.

The result has a value equal to the number of characters in string(if it is scalar) or in an element of string(if
it is array valued).

Specific Name Argument Type Result Type

LEN 1 CHARACTER INTEGER(4)

Intel® Fortran Compiler Classic and Intel® Fortran Compiler Developer Guide and Reference 1

1655

Specific Name Argument Type Result Type

CHARACTER INTEGER(8)

1The setting of compiler options specifying integer size can affect this function.

Example

Consider the following example:

 CHARACTER (15) C (50)
 CHARACTER (25) D

LEN (C) has the value 15, and LEN (D) has the value 25.

The following shows another example:

CHARACTER(11) STR(100)
INTEGER I
I = LEN (STR) ! returns 11
I = LEN('A phrase with 5 trailing blanks.^^^^^')
 ! returns 37

See Also
LEN_TRIM
Declaration Statements for Character Types
Character Data Type

LEN_TRIM
Elemental Intrinsic Function (Generic): Returns
the length of the character argument without counting
trailing blank characters.

Syntax
result = LEN_TRIM (string [, kind])

string (Input) Must be of type character.

kind (Input; optional) Must be a scalar integer constant expression.

Results

The result is a scalar of type integer. If kind is present, the kind parameter of the result is that specified by
kind; otherwise, the kind parameter of the result is that of default integer. If the processor cannot represent
the result value in the kind of the result, the result is undefined.

The result has a value equal to the number of characters remaining after any trailing blanks in string are
removed. If the argument contains only blank characters, the result is zero.

The setting of compiler options specifying integer size can affect this function.

Example

LEN_TRIM (' C D ') has the value 4.

LEN_TRIM (' ') has the value 0.

The following shows another example:

INTEGER LEN1
LEN1 = LEN_TRIM (' GOOD DAY ') ! returns 9
LEN1 = LEN_TRIM (' ') ! returns 0

 1 Intel® Fortran Compiler Classic and Intel® Fortran Compiler Developer Guide and Reference

1656

See Also
LEN
LNBLNK

LGE
Elemental Intrinsic Function (Generic):
Determines if a string is lexically greater than or equal
to another string, based on the ASCII collating
sequence, even if the processor's default collating
sequence is different. In Intel® Fortran, LGE is
equivalent to the (.GE.) operator.

Syntax
result = LGE (string_a,string_b)

string_a (Input) Must be of type character.

string_b (Input) Must be of type character.

Results

The result type is default logical. If the strings are of unequal length, the comparison is made as if the
shorter string were extended on the right with blanks, to the length of the longer string.

The result is true if the strings are equal, both strings are of zero length, or if string_a follows string_b in the
ASCII collating sequence; otherwise, the result is false.

Specific Name Argument Type Result Type

LGE 1,2 CHARACTER LOGICAL(4)

1 This specific function cannot be passed as an actual argument.
2The setting of compiler options specifying integer size can affect this function.

Example

LGE ('ONE', 'SIX') has the value false.

LGE ('TWO', 'THREE') has the value true.

The following shows another example:

LOGICAL L
L = LGE('ABC','ABD') ! returns .FALSE.
L = LGE ('AB', 'AAAAAAAB') ! returns .TRUE.

See Also
LGT
LLE
LLT
ASCII and Key Code Charts

LGT
Elemental Intrinsic Function (Generic):
Determines whether a string is lexically greater than
another string, based on the ASCII collating sequence,

Intel® Fortran Compiler Classic and Intel® Fortran Compiler Developer Guide and Reference 1

1657

even if the processor's default collating sequence is
different. In Intel® Fortran, LGT is equivalent to the >
(.GT.) operator.

Syntax
result = LGT (string_a,string_b)

string_a (Input) Must be of type character.

string_b (Input) Must be of type character.

Results

The result type is default logical. If the strings are of unequal length, the comparison is made as if the
shorter string were extended on the right with blanks, to the length of the longer string.

The result is true if string_a follows string_b in the ASCII collating sequence; otherwise, the result is false. If
both strings are of zero length, the result is also false.

Specific Name Argument Type Result Type

LGT 1,2 CHARACTER LOGICAL(4)

1This specific function cannot be passed as an actual argument.
2The setting of compiler options specifying integer size can affect this function.

Example

LGT ('TWO', 'THREE') has the value true.

LGT ('ONE', 'FOUR') has the value true.

The following shows another example:

LOGICAL L
L = LGT('ABC', 'ABC') ! returns .FALSE.
L = LGT('ABC', 'AABC') ! returns .TRUE.

See Also
LGE
LLE
LLT
ASCII and Key Code Charts

LINEAR Clause
Parallel Directive Clause: Specifies that all variables
in a list are private to a SIMD lane and that they have
a linear relationship within the iteration space of a
loop.

Syntax

LINEAR (linear-list [: linear-modifier [, linear-modifier]])
-or deprecated form-

LINEAR (old-linear-list[: linear-step])

 1 Intel® Fortran Compiler Classic and Intel® Fortran Compiler Developer Guide and Reference

1658

linear-list Is a comma-separated list of one or more integer variables or dummy
arguments. If the clause appears in a declarative directive, linear-list
items must be dummy arguments of the procedure that will be
invoked concurrently on each SIMD lane.

List items must be scalar and of type integer, unless the linear-
modifier REF is specified, in which case list items can be dummy
arguments of any type and rank. Each list item must comply with
PRIVATE clause semantics.

List items cannot have the POINTER attribute or be Cray* pointers.

linear-modifier Is step-modifier or modifier.

step-modifier Is STEP (linear-step) or linear-step. linear-step must appear if STEP
appears. If step-modifier is present, it must be the first (leftmost)
linear-modifer specified.

linear-step Is a compile-time positive, integer, scalar constant expression. If
linear-step is not specified, it is assumed to be 1.

modifier Is one of the following:

• REF

Specifies that the storage location of each linear-list item on each
lane corresponds to an array at the storage location upon entry to
the function indexed by the logical number of the lane times linear-
step. The REF modifier can only appear in a LINEAR clause of a
declarative directive.

The referenced values passed into the routine (which forms a
vector for calculations) are located sequentially, like in an array,
with the distance between elements equal to linear-step.

This modifier can be used only for dummy arrays passed by
reference. The dummy arrays can be explicit shape or assumed
shape, and they can have the ALLOCATABLE attribute.

• VAL

Specifies that the value of each linear-list item on each lane
corresponds to the value of the linear-list item upon entry to the
function plus the logical number of the lane times linear-step.

On each iteration of the loop from which the routine is called, the
value of the parameter can be calculated as
(value_on_previous_iteration + linear-step).

• UVAL

Similar to VAL, but each invocation uses the same storage location
for each SIMD lane. This storage location is updated with the final
value of the logically last lane. It differs from VAL as follows:

• For VAL, a vector of addresses (references) is passed to the
vector variant of the routine.

• For UVAL, only one address (reference) is passed, which may
improve performance.

This modifier can be used only for dummy arguments passed by
reference. A UVAL modifier can only appear in a LINEAR clause of a
declarative directive.

Intel® Fortran Compiler Classic and Intel® Fortran Compiler Developer Guide and Reference 1

1659

If modifier is not specified or it is VAL or UVAL, the value of each
linear-list item on each lane corresponds to the value of the linear-list
item upon entry to the function plus the logical number of the lane
times linear-step.

You can only use REF or VAL if the linear-list item is a dummy
argument without the Fortran Standard VALUE attribute.

old-linear-list Is one of the following:

• linear-list
• modifier (linear-list)

A LINEAR clause can specify at most one step-modifier and one modifier. Multiple LINEAR clauses can be
used to specify different values for linear-step and/or modifiers. The linear-step expression must be invariant
(must not be changed) during the execution of the associated construct. Multiple LINEAR clauses are merged
as a union.

The value of the linear-list item on a given iteration is equal to the value of the original list item plus the
logical number of the iteration times linear-step. The value corresponding to the sequentially last iteration of
the associated loops is assigned to the original linear-list item. If modifier is not REF and the linear-list item
has the ALLOCATABLE attribute, in the sequentially last iteration the allocation status of the linear-list item
must be allocated upon completion of that iteration.

A linear-list item in a LINEAR clause cannot appear in any other data scope attribute clause, in another
LINEAR clause in the same directive, or more than once in linear-list. For a list of data scope attribute
clauses, see the first table in Clauses Used in Multiple OpenMP* Fortran Directives.

If a linear-list item is a dummy argument without the Fortran Standard VALUE attribute and the REF modifier
is not specified, then a read of the linear-list item must be executed before any writes to the linear-list item.

If a LINEAR clause appears in a directive that also contains a REDUCTION clause with the INSCAN modifier,
only a loop iteration variable of a loop associated with the construct can appear as a linear-list item in the
LINEAR clause.

The REF modifier is very important because Fortran passes dummy arguments by reference. By default, the
compiler places consecutive addresses in a vector register, which leads to an inefficient gather of the
addresses.

In the following example, linear(x, y:ref) tells the compiler that the 4 addresses for the dummy
argument x are consecutive, and the 4 addresses for the dummy argument y are consecutive, so the code
only needs to dereference x and y once each and then copy consecutive values to vector registers.

subroutine test_linear(x, y)
!$omp declare simd (test_linear) linear(x, y:ref) ! arguments by reference
 real(8),intent(in) :: x(4)
 real(8),intent(out) :: y(4)
 y = 1. + sin(x)**3
end subroutine test_linear
… ! procedure that calls test_linear
interface ! test_linear needs an explicit interface
…
do j = 1,n
 call test_linear(a(j), b(j)) ! loop vectorized via qopenmp-simd
enddo
…

 1 Intel® Fortran Compiler Classic and Intel® Fortran Compiler Developer Guide and Reference

1660

Example

Consider the following:

! universal but slowest definition; it matches the use of func in loops 1, 2, and 3:
!$OMP DECLARE SIMD
!
! matches the use of func in loop 1:
!$OMP DECLARE SIMD LINEAR(in1) LINEAR (in2: REF) UNIFORM(mul)
!
! matches the use of func in loops 2 and 3:
!$OMP DECLARE SIMD LINEAR (in2: REF)
!
! matches the use of func in loop 2:
!$OMP DECLARE SIMD LINEAR (in2: REF) LINEAR(mul)
!
! matches the use of func in loop 3:
!$OMP DECLARE SIMD LINEAR (in2: STEP(2), VAL)

function func(in1, in2, mul)
integral in1
integral in2
integral mul
...
integral a, k
integral b(100)
integral c(100)
integral ndx(100)
...

The following are the loop examples referenced above.

!loop 1
!$OMP SIMD
 DO i=1,100
 c(i) = func(a + i, b(i), mul) ! the value of the 1st parameter is changed linearly,
 ! the 2nd parameter reference is changed linearly,
 ! the 3rd parameter is not changed
 END DO

!loop 2
!$OMP SIMD
 DO i=1,100
 c(i) = func(b(ndx(i)), b(i), i + 1 ! the value of the 1st parameter is unpredictable,
 ! the 2nd reference is changed linearly,
 ! the 3rd parameter is changed linearly
 END DO

!loop 3
!$OMP SIMD
 DO i=1,100
 k = i * 2 ! during vectorization, private variables are
 c(i) = func(b(ndx(i)), k, b(i)) ! transformed into arrays: k -> k_vec(simdlen)
 ! the value of the 1st parameter is unpredictable,
 ! for the 2nd parameter both value and reference
 ! to its location can be considered linear,
 ! the value for the 3rd parameter is unpredictable
 !
 ! the !$OMP DECLARE SIMD LINEAR(VAL(in2:2))) will
 END DO ! be chosen from the two matching variants)

Intel® Fortran Compiler Classic and Intel® Fortran Compiler Developer Guide and Reference 1

1661

See Also
VALUE statement and attribute
SIMD Directive for OpenMP
DECLARE SIMD

LLE
Elemental Intrinsic Function (Generic):
Determines whether a string is lexically less than or
equal to another string, based on the ASCII collating
sequence, even if the processor's default collating
sequence is different. In Intel® Fortran, LLE is
equivalent to the (.LE.) operator.

Syntax
result = LLE (string_a,string_b)

string_a (Input) Must be of type character.

string_b (Input) Must be of type character.

Results

The result type is default logical. If the strings are of unequal length, the comparison is made as if the
shorter string were extended on the right with blanks, to the length of the longer string.

The result is true if the strings are equal, both strings are of zero length, or if string_a precedes string_b in
the ASCII collating sequence; otherwise, the result is false.

Specific Name Argument Type Result Type

LLE 1,2 CHARACTER LOGICAL(4)

1This specific function cannot be passed as an actual argument.
2The setting of compiler options specifying integer size can affect this function.

Example

LLE ('TWO', 'THREE') has the value false.

LLE ('ONE', 'FOUR') has the value false.

The following shows another example:

LOGICAL L
L = LLE('ABC', 'ABC') ! returns .TRUE.
L = LLE('ABC', 'AABCD') ! returns .FALSE.

See Also
LGE
LGT
LLT
ASCII and Key Code Charts

LLT
Elemental Intrinsic Function (Generic):
Determines whether a string is lexically less than
another string, based on the ASCII collating sequence,

 1 Intel® Fortran Compiler Classic and Intel® Fortran Compiler Developer Guide and Reference

1662

even if the processor's default collating sequence is
different. In Intel® Fortran, LLT is equivalent to the <
(.LT.) operator.

Syntax
result = LLT (string_a,string_b)

string_a (Input) Must be of type character.

string_b (Input) Must be of type character.

Results

The result type is default logical. If the strings are of unequal length, the comparison is made as if the
shorter string were extended on the right with blanks, to the length of the longer string.

The result is true if string_a precedes string_b in the ASCII collating sequence; otherwise, the result is false.
If both strings are of zero length, the result is also false.

Specific Name Argument Type Result Type

LLT 1,2 CHARACTER LOGICAL(4)

1This specific function cannot be passed as an actual argument.
2The setting of compiler options specifying integer size can affect this function.

Example

LLT ('ONE', 'SIX') has the value true.

LLT ('ONE', 'FOUR') has the value false.

The following shows another example:

LOGICAL L
L = LLT ('ABC', 'ABC') ! returns .FALSE.
L = LLT ('AAXYZ', 'ABCDE') ! returns .TRUE.

See Also
LGE
LGT
LLE
ASCII and Key Code Charts

LNBLNK
Portability Function: Locates the position of the last
nonblank character in a string.

Module

USE IFPORT

Syntax
result = LNBLNK (string)

string (Input) Character*(*). String to be searched. Cannot be an array.

Results

The result type is INTEGER(4). The result is the index of the last nonblank character in string.

Intel® Fortran Compiler Classic and Intel® Fortran Compiler Developer Guide and Reference 1

1663

LNBLNK is very similar to the intrinsic function LEN_TRIM, except that string cannot be an array.

Example

USE IFPORT
integer(4) p
p = LNBLNK(' GOOD DAY ') ! returns 9
p = LNBLNK(' ') ! returns 0

See Also
LEN_TRIM

LOC
Inquiry Intrinsic Function (Generic): Returns the
internal address of a storage item. This function
cannot be passed as an actual argument.

Syntax
result = LOC (x)

x (Input) Is a variable, an array or record field reference, a procedure,
or a constant; it can be of any data type. It must not be the name of a
statement function. If it is a pointer, it must be defined and associated
with a target.

Results

The result type is INTEGER(4) on IA-32 architecture; INTEGER(8) on Intel® 64 architecture. The value of the
result represents the address of the data object or, in the case of pointers, the address of its associated
target. If the argument is not valid, the result is undefined.

This function performs the same function as the %LOC built-in function.

Example

The Fortran standard provides the C_LOC intrinsic module function as an alternative to the non-standard
LOC. For more information, see the descriptions of C_LOC, C_FUNLOC, C_F_POINTER and
C_F_PROCPOINTER.

! Example of using the LOC intrinsic
integer :: array(2) = [10,20]
integer :: t
pointer (p,t) ! Integer pointer extension
 ! p is pointer, t is pointee (target)
 ! This declares p as an address-sized integer

p = loc(array(1)) ! Address of array(1)
print *, t ! Prints 10
p = loc(array(2)) ! Address of array(2)
print *, t ! Prints 20

%LOC
Built-in Function: Computes the internal address of
a storage item.

Syntax
result = %LOC (a)

 1 Intel® Fortran Compiler Classic and Intel® Fortran Compiler Developer Guide and Reference

1664

a (Input) Is a variable, an array or record field reference, a procedure,
or a constant; it can be of any data type. It must not be the name of a
statement function. If it is a pointer, it must be defined and associated
with a target.

Description

The result type is INTEGER(4) on IA-32 architecture; INTEGER(8) on Intel® 64 architecture. The value of the
result represents the address of the data object or, in the case of pointers, the address of its associated
target. If the argument is not valid, the result is undefined.

This function performs the same function as the LOC intrinsic function.

LOCK and UNLOCK
Statements: A LOCK statement causes a lock
variable to become locked by an image. An UNLOCK
statement causes the lock variable to become
unlocked. They take the following forms:

Syntax
LOCK (lock-var [, ACQUIRED_LOCK=log-var] [, STAT=stat-var] [, ERRMSG=err-var])
UNLOCK (lock-var [, STAT=stat-var] [, ERRMSG=err-var])

lock-var Is a scalar variable of type LOCK_TYPE. For more information, see
intrinsic module ISO_FORTRAN_ENV.

log-var Is a scalar logical variable.

stat-var Is a scalar integer variable in which the status of the synchronization
is stored.

err-var Is a scalar default character variable in which explanatory text is
stored if an error occurs.

ACQUIRED_LOCK=, STAT=, and ERRMSG= can appear in any order, but only once in a LOCK statement.

STAT= and ERRMSG= can appear in either order, but only once in an UNLOCK statement.

Description

A lock variable is unlocked if its value is equal to that of the structure constructor LOCK_TYPE (). If it has
any other value, it is locked.

A lock variable is locked by an image if it was locked by execution of a LOCK statement on that image and
has not been subsequently unlocked by execution of an UNLOCK statement on the same image.

When a LOCK statement is specified without an ACQUIRED_LOCK= specifier, it causes the lock variable to
become locked by that image. If the lock variable is already locked by another image, that LOCK statement
causes the lock variable to become defined after the other image causes the lock variable to become
unlocked.

If the lock variable is unlocked, successful execution of a LOCK statement with an ACQUIRED LOCK=
specifier causes the lock variable to become locked by that image and the log-var to become defined with the
value TRUE. If the lock variable is already locked by a different image, successful execution of a LOCK
statement with an ACQUIRED LOCK= specifier leaves the lock variable unchanged and causes the log-var to
become defined with the value FALSE.

During the execution of the program, the value of a lock variable changes through a sequence of locked and
unlocked states when LOCK and UNLOCK statements are executed. If a lock variable becomes unlocked by
execution of an UNLOCK statement on image M and next becomes locked by execution of a LOCK statement

Intel® Fortran Compiler Classic and Intel® Fortran Compiler Developer Guide and Reference 1

1665

on image T, the segments preceding the UNLOCK statement on image M precede the segments following the
LOCK statement on image T. Execution of a LOCK statement that does not cause the lock variable to become
locked does not affect segment ordering.

An error condition occurs in the following cases:

• If the lock variable in a LOCK statement is already locked by the executing image
• If the lock variable in an UNLOCK statement is not already locked by the executing image

If an error condition occurs during execution of a LOCK or UNLOCK statement, the value of the lock variable
is not changed and the value of the ACQUIRED_LOCK variable, if any, is not changed.

Example

The following example shows the use of LOCK and UNLOCK statements to manage a work queue:

USE, INTRINSIC :: ISO_FORTRAN_ENV

TYPE(Task) :: work_queue(50)[*] ! List of tasks on queue to perform
INTEGER :: work_queue_size[*]
TYPE(LOCK_TYPE) :: work_queue_lock[*] ! Lock to manage the work queue

TYPE(Task) :: current_task
INTEGER :: my_image

my_image = THIS_IMAGE()
DO
 ! Process the next task in the work queue
 LOCK (work_queue_lock) ! Start of new segment A
 ! Segment A is ordered with respect to segment B
 ! executed by image my_image-1 below because of lock exclusion
 IF (work_queue_size>0) THEN
 ! Get the next job from the queue
 current_task = work_queue(work_queue_size)
 work_queue_size = work_queue_size-1
 END IF
 UNLOCK (work_queue_lock) ! Segment ends
...
 ! Process the task

 ! Add a new task on the neighboring queue:
 LOCK(work_queue_lock[my_image+1]) ! Starts segment B
 ! Segment B is ordered with respect to segment A
 ! executed by image my_image+1 above because of lock exclusion
 IF (work_queue_size[my_image+1]<SIZE(work_queue)) THEN
 work_queue_size[my_image+1] = work_queue_size[ti+1]+1
 work_queue(work_queue_size[my_image+1])[my_image+1] = current_task
 END IF
 UNLOCK (work_queue_lock[my_image+1]) ! Ends segment B
END DO

See Also
Image Control Statements
Coarrays
Using Coarrays

 1 Intel® Fortran Compiler Classic and Intel® Fortran Compiler Developer Guide and Reference

1666

LOG
Elemental Intrinsic Function (Generic): Returns
the natural logarithm of the argument.

Syntax
result = LOG (x)

x (Input) Must be of type real or complex. If x is real, its value must be
greater than zero. If x is complex, its value must not be zero.

Results

The result type and kind are the same as x. The result value is approximately equal to logex.

If the arguments are complex, the result is the principal value with imaginary part omega in the range -pi <=
omega <= pi.

If the real part of x < 0 and the imaginary part of x is a positive real zero, the imaginary part of the result is
pi.

If the real part of x < 0 and the imaginary part of x is a negative real zero, the imaginary part of the result is
-pi.

Specific Name Argument Type Result Type

ALOG 1,2 REAL(4) REAL(4)

DLOG REAL(8) REAL(8)

QLOG REAL(16) REAL(16)

CLOG 2 COMPLEX(4) COMPLEX(4)

CDLOG3,4 COMPLEX(8) COMPLEX(8)

CQLOG COMPLEX(16) COMPLEX(16)

1This function is treated like LOG.
2The setting of compiler options specifying real size can affect ALOG, LOG, and CLOG.
3This function can also be specified as ZLOG.
4The setting of compiler options specifying double size can affect CDLOG.

Example

LOG (8.0) has the value 2.079442.

LOG (25.0) has the value 3.218876.

The following shows another example:

REAL r
r = LOG(10.0) ! returns 2.302585

See Also
EXP
LOG10

Intel® Fortran Compiler Classic and Intel® Fortran Compiler Developer Guide and Reference 1

1667

LOG_GAMMA
Elemental Intrinsic Function (Generic): Returns
the logarithm of the absolute value of the gamma
function of the argument.

Syntax
result = LOG_GAMMA (x)

x (Input) Must be of type real. It must not be zero or a negative integer.

Results

The result type and kind are the same as x.

The result has a value equal to a processor-dependent approximation to the natural logarithm of the absolute
value of the gamma function of x.

Example

LOG_GAMMA (3.0) has the approximate value 0.693.

LOG10
Elemental Intrinsic Function (Generic): Returns
the common logarithm of the argument.

Syntax
result = LOG10 (x)

x (Input) Must be of type real or complex. If x is real, its value must be
greater than zero. If x is complex, its value must not be zero.

Results

The result type and kind are the same as x. The result value is approximately equal to log10x.

Specific Name Argument Type Result Type

ALOG10 1,2 REAL(4) REAL(4)

DLOG10 3 REAL(8) REAL(8)

QLOG10 REAL(16) REAL(16)

CLOG102 COMPLEX(4) COMPLEX(4)

CDLOG103 COMPLEX(8) COMPLEX(8)

CQLOG10 COMPLEX(16) COMPLEX(16)

1This function is treated like LOG10.
2The setting of compiler options specifying real size can affect ALOG10, CLOG10, and LOG10.
3The setting of compiler options specifying double size can affect DLOG10 and CDLOG10.

Example

LOG10 (8.0) has the value 0.9030900.

LOG10 (15.0) has the value 1.176091.

 1 Intel® Fortran Compiler Classic and Intel® Fortran Compiler Developer Guide and Reference

1668

The following shows another example:

REAL r
r = LOG10(10.0) ! returns 1.0

See Also
LOG

LOGICAL Function
Elemental Intrinsic Function (Generic): Converts
the logical value of the argument to a logical value
with different kind parameters.

Syntax
result = LOGICAL (l[,kind])

l (Input) Must be of type logical.

kind (Input; optional) Must be a scalar integer constant expression.

Results

The result is of type logical. If kind is present, the kind parameter is that specified by kind; otherwise, the
kind parameter is that of default logical. The result value is that of l.

The setting of compiler options specifying integer size can affect this function.

Example

LOGICAL (L .OR. .NOT. L) has the value true and is of type default logical regardless of the kind parameter of
logical variable L.

LOGICAL (.FALSE., 2) has the value false, with the parameter of kind 2.

See Also
CMPLX
INT
REAL
Logical Data Types

LOGICAL Statement
Statement: Specifies the LOGICAL data type.

Syntax
LOGICAL
LOGICAL([KIND=] n)
LOGICAL*n

n Is kind 1, 2, 4, or 8.

If a kind parameter is specified, the logical constant has the kind specified. If no kind parameter is specified,
the kind of the constant is default logical.

Example

LOGICAL, ALLOCATABLE :: flag1, flag2
LOGICAL (2), SAVE :: doit, dont=.FALSE.
LOGICAL switch

Intel® Fortran Compiler Classic and Intel® Fortran Compiler Developer Guide and Reference 1

1669

! An equivalent declaration is:
LOGICAL flag1, flag2
LOGICAL (2) doit, dont=.FALSE.
ALLOCATABLE flag1, flag2
SAVE doit, dont

See Also
Logical Data Types
Logical Constants
Data Types, Constants, and Variables

LONG
Portability Function: Converts an INTEGER(2)
argument to INTEGER(4) type.

Module

USE IFPORT

Syntax
result = LONG (int2)

int2 (Input) INTEGER(2). Value to be converted.

Results

The result type is INTEGER(4). The result is the value of int2 with type INTEGER(4). The upper 16 bits of the
result are zeros and the lower 16 are equal to int2.

See Also
INT
KIND

LOOP
OpenMP* Fortran Compiler Directive: Specifies
that the iterations of the associated loops can execute
concurrently. This feature is only available for ifx.

Syntax

!$OMP LOOP [clause[[,] clause]...]
 do-loop
[!$OMP END LOOP]

clause Is one of the following:

• BIND (binding)

Determines the binding region of the construct. binding is teams,
parallel, or thread.

 1 Intel® Fortran Compiler Classic and Intel® Fortran Compiler Developer Guide and Reference

1670

If teams is specified, and an innermost enclosing teams region
exists, the binding region is that innermost teams region. If
parallel is specified, the binding region is the innermost
enclosing parallel region. It may be an implicit parallel region. If
thread is specified, the binding region is not defined.

If the BIND clause does not appear and the construct is enclosed in
a teams or parallel region, the binding region is the innermost
enclosing team or parallel region. If no teams or parallel region
encloses the loop construct, the binding region is undefined.

If the binding region is a parallel region, the binding thread set
is the set of threads executing the parallel region. If the binding
region is a teams region, the biding thread set is the set of primary
threads executing the region. If the binding region is not defined,
the binding thread is the encountering thread.

• COLLAPSE (n)

For n, a value greater than 1 tells the compiler the number of
associated loops to collapse into a larger iterations space, which
executes without ordering.The associated loop nest must not
contain any OpenMP* directives between associated loops in the
nest.

If no COLLAPSE clause appears, or if it appears with a value of 1
for n, only the outermost loop is associated with the LOOP
construct.

At most one COLLAPSE clause is permitted on a LOOP directive.
• LASTPRIVATE ([CONDITIONAL:] list)

Only a loop iteration variable of a loop associated with the LOOP
construct may appear as a list item in a LASTPRIVATE clause.

• ORDER ([order-modifier :] CONCURRENT) (ifx only)
• PRIVATE (list)
• REDUCTION ([DEFAULT,] reduction-identifier : list)

do-loop Is a DO loop that may contain other nested DO loops. The DO loops
must all be in canonical loop form.

They cannot be DO WHILE loops or loops without loop control. You
cannot branch out of a DO loop associated with a LOOP directive.
CYCLE and EXIT statements are not permitted. The do-loop can be a
DO CONCURRENT loop.

The LOOP construct tells the compiler that all iterations of the associated loops can execute concurrently or in
any order.

Data sharing clauses and the COLLAPSE clause are not permitted if do-loop is a DO CONCURRENT loop. Data
sharing attributes for DO CONCURRENT loops are determined by locality-specs in the DO CONCURRENT
statement. In a DO CONCURRENT loop associated with a LOOP directive, if a variable is referenced in more
than one iteration of the DO CONCURRENT loop, and is modified in at least one iteration, the variable must
appear in a locality-spec in the DO CONCURRENT statement.

If used, the END LOOP directive must appear immediately after the end of the loop. If you do not specify an
END LOOP directive, an END LOOP directive is assumed at the end of the outermost associated do-loop.

A LOOP construct can not contain calls to procedures containing other OpenMP* constructs or calls to the
OpenMP* runtime library functions.

Intel® Fortran Compiler Classic and Intel® Fortran Compiler Developer Guide and Reference 1

1671

The only OpenMP* constructs permitted inside a LOOP construct are another LOOP, PARALLEL, or SIMD
construct or a combined construct whose leftmost construct is a PARALLEL construct.

A LOOP construct that appears in a procedure and is not nested inside another OpenMP* construct must
contain a BIND clause.

If more than one loop is associated with the construct, any intervening code between two associated loops
executes at least once per iteration of the loop containing the intervening code, and at most once per
execution of the innermost loop associated with the construct. If an associated loop has a trip count of zero
and that loop does not contain the intervening code, the behavior is undefined.

The set of threads that may execute iterations of the LOOP construct is the binding thread set. Each iteration
is executed by one of these threads.

If a loop region is bound to a teams region, the threads in the binding set can continue execution at the end
of the loop region without waiting for all iterations of the region to complete execution. All iterations of the
loop region must complete execution before the end of the teams region. If the binding region is not a teams
region, all iterations of the associated loops must complete execution before the loop region is exited.

If a loop region is bound to a teams or parallel region, it must be encountered by all or none of the
binding threads.

A LOOP construct with a BIND clause that specifies a value of teams must be strictly nested inside a teams
region. The behavior of a LOOP construct with a BIND clause specifying a value of parallel is undefined if
the loop construct is nested inside a SIMD construct.

Referencing a THREADPRIVATE variable in a LOOP construct results in undefined behavior.

If a reduction-modifier is present in a reduction clause, the only permitted value is DEFAULT.

Example

In the following example, the loop iteration variable is private by default, and it is not necessary to explicitly
declare it. The END LOOP directive is optional. Iterations of the do loop can execute in any order, or
concurrently.

 !$OMP PARALLEL
 !$OMP LOOP
 DO I=1,N
 B(I) = (A(I) + A(I-1)) / 2.0
 END DO
 !$OMP END LOOP
 !$OMP END PARALLEL

In the next example, the loops over J1 and J2 are collapsed and their iteration space is executed by all
threads of the current team. The subroutine BAR referenced in the innermost loop cannot contain OpenMP*
constructs or calls to procedures that do, and it cannot contain calls to the OpenMP* runtime library. The
END LOOP directive is optional:

!$OMP LOOP COLLAPSE(2) PRIVATE(J1, J2, J3)
 DO J1 = J1_L, J1_U, J1_S
 DO J2 = J2_L, J2_U, J2_S
 DO J3 = J3_L, J3_U, J3_S
 CALL BAR(A, J1, J2, J3)
 ENDDO
 ENDDO
 ENDDO
!$OMP END LOOP

See Also
OpenMP Fortran Compiler Directives
Syntax Rules for Compiler Directives

 1 Intel® Fortran Compiler Classic and Intel® Fortran Compiler Developer Guide and Reference

1672

Rules for General Directives that Affect DO Loops
Parallel Processing Model for information about Binding Sets

LOOP COUNT
General Compiler Directive: Specifies the iterations
(typical trip count) for a DO loop.

Syntax
!DIR$ LOOP COUNT (n1[, n2]...)
!DIR$ LOOP COUNT= n1[, n2]...
!DIR$ LOOP COUNT qualifier(n)[, qualifier(n)]...
!DIR$ LOOP COUNT qualifier=n[, qualifier=n]...

n1, n2 Is a non-negative integer constant. It indicates that the next DO loop
will iterate n1, n2, or some other number of times.

qualifier Is one or more of the following:

• MAX - specifies the maximum loop trip count.
• MIN - specifies the minimum loop trip count.
• AVG - specifies the average loop trip count.

The value of the loop count affects heuristics used in software pipelining, vectorization, and loop-
transformations.

There is no check at runtime to determine if the MAX or MIN values are exceeded.

Example

Consider the following:

!DIR$ LOOP COUNT (10000)
do i =1,m
b(i) = a(i) +1 ! This is likely to enable the loop to get software-pipelined
enddo

Note that you can specify more than one LOOP COUNT directive for a DO loop. For example, the following
directives are valid:

!DIR$ LOOP COUNT (10, 20, 30)
!DIR$ LOOP COUNT MAX=100, MIN=3, AVG=17
DO
...

See Also
General Compiler Directives

Syntax Rules for Compiler Directives
Rules for General Directives that Affect DO Loops
Rules for Loop Directives that Affect Array Assignment Statements

LSHIFT
Elemental Intrinsic Function (Generic): Shifts the
bits in an integer left by a specified number of
positions. This is the same as specifying ISHFT with a
positive shift.

Intel® Fortran Compiler Classic and Intel® Fortran Compiler Developer Guide and Reference 1

1673

See Also
See ISHFT.

LSTAT
Portability Function: Returns detailed information
about a file.

Module

USE IFPORT

Syntax
result = LSTAT (name,statb)

name (Input) Character*(*). Name of the file to examine.

statb (Output) INTEGER(4) or INTEGER(8). One-dimensional array of size
12; where the system information is stored. See STAT for the possible
values returned in statb.

Results

The result type is INTEGER(4). The result is zero if successful; otherwise, an error code (see IERRNO).

LSTAT returns detailed information about the file named in name.

On Linux* systems, if the file denoted by name is a link, LSTAT provides information on the link, while STAT
provides information on the file at the destination of the link.

On Windows* systems, LSTAT returns exactly the same information as STAT (because there are no symbolic
links on these systems). STAT is the preferred function.

INQUIRE also provides information about file properties.

Example

USE IFPORT
INTEGER(4) info_array(12), istatus
character*20 file_name
print *, "Enter name of file to examime: "
read *, file_name
ISTATUS = LSTAT (file_name, info_array)
if (.NOT. ISTATUS) then
 print *, info_array
else
 print *, 'Error ',istatus
end if

See Also
INQUIRE
GETFILEINFOQQ
STAT
FSTAT

LTIME
Portability Subroutine: Returns the components of
the local time zone time in a nine-element array.

Module

USE IFPORT

 1 Intel® Fortran Compiler Classic and Intel® Fortran Compiler Developer Guide and Reference

1674

Syntax
CALL LTIME (time,array)

time (Input) INTEGER(4). An elapsed time in seconds since 00:00:00
Greenwich mean time, January 1, 1970.

array (Output) INTEGER(4). One-dimensional array with 9 elements to
contain local date and time data derived from time.

The elements of array are returned as follows:

Element Value

array(1) Seconds (0 - 59)

array(2) Minutes (0 - 59)

array(3) Hours (0 - 23)

array(4) Day of month (1 - 31)

array(5) Month (0 - 11)

array(6) Years since 1900

array(7) Day of week (0 - 6, where 0 is
Sunday)

array(8) Day of year (1 - 365)

array(9) 1 if daylight saving time is in
effect; otherwise, 0.

Caution
This subroutine is not year-2000 compliant, use DATE_AND_TIME instead.

On Linux*, time can be a negative number returning the time before 00:00:00 Greenwich mean time,
January 1, 1970.

On Windows*, time can not be negative, in which case all 9 elements of array are set to -1.

On all operating systems, if there is a system error in getting the local time, all 9 elements of array are set to
-1.

Example

USE IFPORT
INTEGER(4) input_time, time_array(9)
! find number of seconds since 1/1/70
input_time=TIME()
! convert number of seconds to time array
CALL LTIME (input_time, time_array)
PRINT *, time_array

See Also
DATE_AND_TIME

Intel® Fortran Compiler Classic and Intel® Fortran Compiler Developer Guide and Reference 1

1675

M to N
This section describes language features that start with M or N.

M to N
MAKEDIRQQ
Portability Function: Creates a new directory with a
specified name.

Module

USE IFPORT

Syntax
result = MAKEDIRQQ (dirname)

dirname (Input) Character*(*). Name of directory to be created.

Results

The result type is LOGICAL(4). The result is .TRUE. if successful; otherwise, .FALSE..

MAKEDIRQQ can create only one directory at a time. You cannot create a new directory and a subdirectory
below it in a single command. MAKEDIRQQ does not translate path delimiters. You can use either slash (/) or
backslash (\) as valid delimiters.

If an error occurs, call GETLASTERRORQQ to retrieve the error message. Possible errors include:

• ERR$ACCES - Permission denied. The file's (or directory's) permission setting does not allow the specified
access.

• ERR$EXIST - The directory already exists.
• ERR$NOENT - The file or path specified was not found.

Example

USE IFPORT
LOGICAL(4) result
result = MAKEDIRQQ('mynewdir')
IF (result) THEN
 WRITE (*,*) 'New subdirectory successfully created'
ELSE
 WRITE (*,*) 'Failed to create subdirectory'
END IF
END

See Also
DELDIRQQ
CHANGEDIRQQ
GETLASTERRORQQ

MALLOC
Elemental Intrinsic Function (Generic): Allocates
a block of memory. This is a generic function that has
no specific function associated with it. It must not be
passed as an actual argument.

Syntax
result = MALLOC (size)

 1 Intel® Fortran Compiler Classic and Intel® Fortran Compiler Developer Guide and Reference

1676

size (Input) Must be of type integer. This value is the size (in bytes) of
memory to be allocated.

Results

The result type is INTEGER(4) on IA-32 architecture; INTEGER(8) on Intel® 64 architecture. The result is the
starting address of the allocated memory. The memory allocated can be freed by using the FREE intrinsic
function.

Example

 INTEGER(4) SIZE
 REAL(4) STORAGE(*)
 POINTER (ADDR, STORAGE) ! ADDR will point to STORAGE
 SIZE = 1024 ! Size in bytes
 ADDR = MALLOC(SIZE) ! Allocate the memory
 CALL FREE(ADDR) ! Free it

MAP Clause
Parallel Directive Clause: Maps a variable from the
data environment of the current task to the data
environment of the device associated with the
construct. This clause only applies to certain TARGET
directives. This feature is only available for ifx.

Syntax

MAP ([[map-type-modifier[,]] map-type :] list)

map-type-modifier Is one of the following:

ALWAYS Specifies that initialization should always
occur for the list items.

CLOSE Suggests to the runtime system to allocate
memory close to the target device.

MAPPER (mapper-
identifier)

Specifies the name of an accessible user-
defined mapper declared in a DECLARE
MAPPER directive. If MAPPER is not present,
it is as if MAPPER (DEFAULT) were specified.

The map behavior of a list item in a MAP
clause with the same type as the type
specified in the user-defined mapper is
modified by a user-defined mapper.

If a list item does not also appear as a list
item in a MAP clause with the PRESENT map-
type-modifier in the same directive, the
effect is to remove the list item from the
MAP clause and apply the clauses specified in
the user-defined mapper to the construct
where the MAP clause appears.

Intel® Fortran Compiler Classic and Intel® Fortran Compiler Developer Guide and Reference 1

1677

References to var in the DECLARE MAPPER
MAP clauses are replaced by the list item,
and the map type is replaced with the final
map type as determined by the table of final
map types (see DECLARE MAPPER).

PRESENT Causes an error to occur and program
termination if any list item in the clause does
not appear in the device data environment.

When the PRESENT map-type-modifier
appears in a MAP clause, it takes precedence
over all other MAP clauses in a directive. The
behavior is as if the MAP clause specifying
PRESENT appears lexically before any other
MAP clauses in the directive.

map-type Determines how a list item is initialized. Possible values are:

ALLOC On entry to the outermost device region,
each new corresponding list item has an
undefined initial value.

DELETE On exit from the device region, if the
corresponding list item is present on the
device, it is then deleted from the device.

FROM On exit from the device region, the value of
the corresponding list item is assigned to
each original list item.

This is ignored for nested regions unless
map-type-modifier ALWAYS is specified.

RELEASE On exit from the outermost device region,
the corresponding list item is deleted from
the device.

TO On entry to the device region, each new
corresponding list item is initialized with the
value of the original list item.

This is ignored for nested regions unless
map-type-modifier ALWAYS is specified.

TOFROM On entry to the device region, each new
corresponding list item is initialized with the
value of the original list item. On exit from
the device region, the value of the
corresponding list item is assigned to each
original list item.

This is ignored for nested regions unless
map-type-modifier ALWAYS is specified.

If a map-type is not specified, the default is TOFROM.

The map initialization and assignment are done as if by intrinsic
assignment, that is, through bitwise copy.

 1 Intel® Fortran Compiler Classic and Intel® Fortran Compiler Developer Guide and Reference

1678

list Is the name of one or more variables, array sections, or common
blocks that are accessible to the scoping unit. Subobjects cannot be
specified. Each name must be separated by a comma, and a common
block name must appear between slashes (/ /).

If a list item is an array section, it must specify contiguous storage.

A list item can appear in at most one of the TO, FROM, or TOFROM
clauses. If a list item appears in an ALLOC clause, it cannot appear on
a TO or TOFROM clause.

On entry to an outermost target region where this clause is used, for each original list item, a new
corresponding list item is created on the device. On exit from the outermost target region, if the
corresponding list item is present on the device, it is then deleted from the device.

At least one MAP clause must appear in a directive that allows the clause.

THREADPRIVATE variables cannot appear in a MAP clause.

For the TARGET ENTER DATA directive, map-type must be either TO or ALLOC.

For the TARGET EXIT DATA directive, map-type must be FROM, RELEASE, or DELETE.

For the TARGET and TARGET DATA directives, map-type must be TO, FROM, TOFROM, or ALLOC.

For the TARGET UPDATE directive, map-type must be TO or FROM.

If original and corresponding list items share storage, data races can result when intervening synchronization
between tasks does not occur. If variables that share storage are mapped, it causes unspecified behavior.

Any variables within a TARGET MAP region that are not specified in a MAP clause are treated as shared
variables within the region.

A list item must not contain any components that have the ALLOCATABLE attribute.

If the allocation status of a list item with the ALLOCATABLE attribute is unallocated upon entry to a target
region, the list item must be unallocated upon exit from the region.

If the allocation status of a list item with the ALLOCATABLE attribute is allocated upon entry to a target
region, the allocation status of the corresponding list item must not be changed and must not be reshaped in
the region.

If an array section of an allocatable array is mapped and the size of the section is smaller than that of the
whole array, the target region must not have any reference to the whole array.

A list item that is an array or an array section that has a type for which a user-defined mapper exists, is
mapped as if the final map type is ALLOC, RELEASE, or DELETE. Then each element is mapped with the
original map type, as if by a separate construct according to the user-defined mapper.

If a MAPPER map-type-modifier appears in the MAP clause, the type specified in the user-defined mapper
must match the type of the list items in the MAP clause.

See Also
TARGET directive clause DEFAULTMAP
DECLARE MAPPER Directive

MAP and END MAP
Statement: Specifies mapped field declarations that
are part of a UNION declaration within a STRUCTURE
declaration.

Intel® Fortran Compiler Classic and Intel® Fortran Compiler Developer Guide and Reference 1

1679

Example

UNION
 MAP
 CHARACTER*20 string
 END MAP
 MAP
 INTEGER*2 number(10)
 END MAP
END UNION

UNION
 MAP
 RECORD /Cartesian/ xcoord, ycoord
 END MAP
 MAP
 RECORD /Polar/ length, angle
 END MAP
END UNION

See Also
See STRUCTURE.

MASKED
OpenMP* Fortran Compiler Directive: Specifies a
structured block to be executed by a subset of the
threads of the current team. This feature is only
available for ifx.

Syntax

!$OMP MASKED [clause]
 loosely-structured-block
!$OMP END MASKED
-or-

!$OMP MASKED [clause]
 strictly-structured-block
[!$OMP END MASKED]

clause Is FILTER (thread_num), where thread_num is a scalar integer
expression. The clause is optional and may appear at most once.

A thread that encounters a MASKED construct with a FILTER clause
executes the block of the construct if its thread number matches the
value of thread_num specified in the FILTER clause. Otherwise, the
thread skips the block of code and continues execution after the
MASKED construct. thread_num can be a variable expression, so the
value of thread_num can vary across threads.

If the FILTER clause is not present, it is as if FILTER (0) has been
specified. In this case, only the primary thread executes the enclosed
block.

loosely-structured-block Is a structured block (section) of statements or constructs. You cannot
branch into or out of the block.

 1 Intel® Fortran Compiler Classic and Intel® Fortran Compiler Developer Guide and Reference

1680

strictly-structured-block Is a Fortran BLOCK construct. You cannot branch into or out of the
BLOCK construct.

The binding thread set for a MASKED construct is the current team. A master region binds to the innermost
enclosing parallel region.

There is no implied barrier, either on entry to or exit from the masked section.

Examples

The following example forces the primary thread to execute the routines OUTPUT and INPUT:

 !$OMP PARALLEL DEFAULT(SHARED)
 CALL WORK(X)
 !$OMP MASKED
 ! The above line is equivalent to MASKED FILTER(0)
 CALL OUTPUT(X)
 CALL INPUT(Y)
 !$OMP END MASKED
 CALL WORK(Y)
 !$OMP END PARALLEL

In the following example, only the even numbered threads execute INPUT and OUTPUT:

 !$OMP PARALLEL
 BLOCK
 INTEGER :: me = omp_get_thread_num
 CALL WORK(X)
 !$OMP MASKED FILTER (me + mod (me,2))
 CALL OUTPUT(X)
 CALL INPUT(Y)
 !$OMP END MASKED
 CALL WORK(Y)
 END BLOCK
 !$OMP END PARALLEL

See Also
OpenMP Fortran Compiler Directives
Syntax Rules for Compiler Directives
Parallel Processing Model for information about Binding Sets

MASKED TASKLOOP
OpenMP* Fortran Compiler Directive: Creates a
MASKED construct containing a TASKLOOP construct,
with no Fortran statements in the MASKED construct
that are not also in the TASKLOOP construct. This
feature is only available for ifx.

Syntax

!$OMP MASKED TASKLOOP [clause[[,] clause]...]
 loop-nest
[!$OMP END MASKED TASKLOOP]

clause Can be any of the clauses accepted by the MASKED or TASKLOOP
directives with identical meanings and restrictions.

loop-nest Is a nest of DO loops in canonical form.

Intel® Fortran Compiler Classic and Intel® Fortran Compiler Developer Guide and Reference 1

1681

This combined directive provides a shortcut for specifying a MASKED construct with a TASKLOOP construct
nested inside of it. The semantics are identical to a TASKLOOP construct specified immediately after a
MASKED construct.

All restrictions for MASKED and TASKLOOP constructs apply to this combined construct.

See Also
OpenMP Fortran Compiler Directives
Syntax Rules for Compiler Directives
MASKED directive
TASKLOOP directive
To learn more about canonical form loops, see the OpenMP* specification.

MASKED TASKLOOP SIMD
OpenMP* Fortran Compiler Directive: Creates a
MASKED construct containing a TASKLOOP SIMD
construct, with no Fortran statements in the MASKED
construct that are not also in the TASKLOOP SIMD
construct. This feature is only available for ifx.

Syntax

!$OMP MASKED TASKLOOP SIMD [clause[[,] clause]...]
 loop-nest
[!$OMP END MASKED TASKLOOP SIMD]

clause Can be any of the clauses accepted by the MASKED or TASKLOOP
SIMD directives with identical meanings and restrictions.

loop-nest Is a nest of DO loops in canonical form.

This combined directive provides a shortcut for specifying a MASKED construct with a TASKLOOP SIMD
construct nested inside of it. The semantics are identical to a TASKLOOP SIMD construct specified
immediately after a MASKED construct.

All restrictions for MASKED and TASKLOOP SIMD constructs apply to this combined construct.

See Also
OpenMP Fortran Compiler Directives
Syntax Rules for Compiler Directives
MASKED directive
TASKLOOP SIMD directive
To learn more about canonical form loops, see the OpenMP* specification.

MASKL
Elemental Intrinsic Function (Generic): Returns a
left-justified mask.

Syntax
result = MASKL (i[,kind])

i (Input) Must be of type integer or of type logical (which is treated as
an integer). It must be nonnegative and less than or equal to the
number of bits s of the model integer defined for bit manipulation
contexts.

 1 Intel® Fortran Compiler Classic and Intel® Fortran Compiler Developer Guide and Reference

1682

https://www.openmp.org/specifications/
https://www.openmp.org/specifications/

kind (Input; optional) Must be a scalar integer constant expression.

Results

The result type is integer. If kind is present, the kind parameter of the result is that specified by kind;
otherwise, the kind parameter of the result is that of default integer. If the processor cannot represent the
result value in the kind of the result, the result is undefined.

The result value has its leftmost I bits set to 1 and the remaining bits set to 0.

The model for the interpretation of an integer value as a sequence of bits is in Model for Bit Data.

Example

MASKL (3) has the value SHIFTL (7, BIT_SIZE (0) - 3).

See Also
MASKR

MASKR
Elemental Intrinsic Function (Generic): Returns a
right-justified mask.

Syntax
result = MASKR (i[,kind])

i (Input) Must be of type integer or of type logical (which is treated as
an integer). It must be nonnegative and less than or equal to the
number of bits s of the model integer defined for bit manipulation
contexts.

kind (Input; optional) Must be a scalar integer constant expression.

Results

The result type is integer. If kind is present, the kind parameter of the result is that specified by kind;
otherwise, the kind parameter of the result is that of default integer. If the processor cannot represent the
result value in the kind of the result, the result is undefined.

The result value has its rightmost I bits set to 1 and the remaining bits set to 0.

The model for the interpretation of an integer value as a sequence of bits is in Model for Bit Data.

Example

MASKR (3) has the value 7.

See Also
MASKL

MASTER
OpenMP* Fortran Compiler Directive:
(Deprecated; see MASKED) Specifies a block of code
to be executed by the master thread of the team.

Syntax

!$OMP MASTER
 loosely-structured-block
!$OMP END MASTER

Intel® Fortran Compiler Classic and Intel® Fortran Compiler Developer Guide and Reference 1

1683

-or-

!$OMP MASTER
 strictly-structured-block
[!$OMP END MASTER]

loosely-structured-block Is a structured block (section) of statements or constructs. You cannot
branch into or out of the block.

strictly-structured-block Is a Fortran BLOCK construct. You cannot branch into or out of the
BLOCK construct.

The binding thread set for a MASTER construct is the current team. A master region binds to the innermost
enclosing parallel region.

When the MASTER directive is specified, the other threads in the team skip the enclosed block (section) of
code and continue execution. There is no implied barrier, either on entry to or exit from the master section.

The MASTER directive is deprecated; you should use the MASKED directive.

Example

The following example forces the master thread to execute the routines OUTPUT and INPUT:

 !$OMP PARALLEL DEFAULT(SHARED)
 CALL WORK(X)
 !$OMP MASTER
 CALL OUTPUT(X)
 CALL INPUT(Y)
 !$OMP END MASTER
 CALL WORK(Y)
 !$OMP END PARALLEL

See Also
OpenMP Fortran Compiler Directives
Syntax Rules for Compiler Directives
Parallel Processing Model for information about Binding Sets

MASTER TASKLOOP
OpenMP* Fortran Compiler Directive:
(Deprecated; replaced by MASKED TASKLOOP)
Creates a MASTER construct containing a TASKLOOP
construct, with no Fortran statements in the MASTER
construct that are not also in the TASKLOOP construct.
This feature is only available for ifx.

Syntax

!$OMP MASTER TASKLOOP [clause[[,] clause]...]
 loop-nest
[!$OMP END MASTER TASKLOOP]

clause Can be any of the clauses accepted by the MASTER or TASKLOOP
directives with identical meanings and restrictions.

loop-nest Is a nest of DO loops in canonical form.

 1 Intel® Fortran Compiler Classic and Intel® Fortran Compiler Developer Guide and Reference

1684

This combined directive provides a shortcut for specifying a MASTER construct with a TASKLOOP construct
nested inside of it. The semantics are identical to a TASKLOOP construct specified immediately after a
MASTER construct.

All restrictions for MASTER and TASKLOOP constructs apply to this combined construct.

The MASTER TASKLOOP directive is deprecated; you should use the MASKED TASKLOOP directive.

See Also
OpenMP Fortran Compiler Directives
Syntax Rules for Compiler Directives
MASTER directive
TASKLOOP directive
To learn more about canonical form loops, see the OpenMP* specification.

MASTER TASKLOOP SIMD
OpenMP* Fortran Compiler Directive:
(Deprecated; replaced by MASKED TASKLOOP SIMD)
Creates a MASTER construct containing a TASKLOOP
SIMD construct, with no Fortran statements in the
MASTER construct that are not also in the TASKLOOP
SIMD construct. This feature is only available for ifx.

Syntax

!$OMP MASTER TASKLOOP SIMD [clause[[,] clause]...]
 loop-nest
[!$OMP END MASTER TASKLOOP SIMD]

clause Can be any of the clauses accepted by the MASTER or TASKLOOP
SIMD directives with identical meanings and restrictions.

loop-nest Is a nest of DO loops in canonical form.

This combined directive provides a shortcut for specifying a MASTER construct with a TASKLOOP SIMD
construct nested inside of it. The semantics are identical to a TASKLOOP SIMD construct specified
immediately after a MASTER construct; the only Fortran statements in the construct are inside the block.

All restrictions for MASTER and TASKLOOP SIMD constructs apply to this combined construct.

The MASTER TASKLOOP SIMD directive is deprecated; you should use the MASKED TASKLOOP SIMD
directive.

See Also
OpenMP Fortran Compiler Directives
Syntax Rules for Compiler Directives
MASTER directive
TASKLOOP SIMD directive
To learn more about canonical form loops, see the OpenMP* specification.

MATMUL
Transformational Intrinsic Function (Generic):
Performs matrix multiplication of numeric or logical
matrices.

Syntax
result = MATMUL (matrix_a,matrix_b)

Intel® Fortran Compiler Classic and Intel® Fortran Compiler Developer Guide and Reference 1

1685

https://www.openmp.org/specifications/
https://www.openmp.org/specifications/

matrix_a (Input) Must be an array of rank one or two. It must be of numeric
(integer, real, or complex) or logical type.

matrix_b (Input) Must be an array of rank one or two. It must be of numeric
type if matrix_a is of numeric type or logical type if matrix_a is
logical type.

At least one argument must be of rank two. The size of the first (or
only) dimension of matrix_b must equal the size of the last (or only)
dimension of matrix_a.

Results

The result is an array whose type depends on the data type of the arguments, according to the rules
described in Data Type of Numeric Expressions. The rank and shape of the result depends on the rank and
shapes of the arguments, as follows:

• If matrix_a has shape (n, m) and matrix_b has shape (m, k), the result is a rank-two array with shape (n,
k).

• If matrix_a has shape (m) and matrix_b has shape (m, k), the result is a rank-one array with shape (k).
• If matrix_a has shape (n, m) and matrix_b has shape (m), the result is a rank-one array with shape (n).

If the arguments are of numeric type, element (i, j) of the result has the value SUM((row i of matrix_a) *
(column j of matrix_b)). If the arguments are of logical type, element (i, j) of the result has the value
ANY((row i of matrix_a) .AND. (column j of matrix_b)).

Example

A is matrix

 [2 3 4]
 [3 4 5],

B is matrix

 [2 3]
 [3 4]
 [4 5],

X is vector (1, 2), and Y is vector (1, 2, 3).

The result of MATMUL (A, B) is the matrix-matrix product AB with the value

 [29 38]
 [38 50].

The result of MATMUL (X, A) is the vector-matrix product XA with the value (8, 11, 14).

The result of MATMUL (A, Y) is the matrix-vector product AY with the value (20, 26).

The following shows another example:

 INTEGER a(2,3), b(3,2), c(2), d(3), e(2,2), f(3), g(2)
 a = RESHAPE((/1, 2, 3, 4, 5, 6/), (/2, 3/))
 ! a is 1 3 5
 ! 2 4 6
 b = RESHAPE((/1, 2, 3, 4, 5, 6/), (/3, 2/))
 ! b is 1 4
 ! 2 5
 ! 3 6
 c = (/1, 2/) ! c is [1 2]
 d = (/1, 2, 3/) ! d is [1 2 3]

 1 Intel® Fortran Compiler Classic and Intel® Fortran Compiler Developer Guide and Reference

1686

 e = MATMUL(a, b) ! returns 22 49
 ! 28 64

 f = MATMUL(c,a) ! returns [5 11 17]
 g = MATMUL(a,d) ! returns [22 28]
 WRITE(*,*) e, f, g
 END

See Also
TRANSPOSE
PRODUCT

MAX
Elemental Intrinsic Function (Generic): Returns
the maximum value of the arguments.

Syntax
result = MAX (a1,a2[,a3]...)

a1, a2, a3 (Input) All must have the same type (integer, real, or character) and
kind parameters.

Results

For arguments of character type, the result type is character, and the length of the result is the length of the
longest argument. For MAX0, AMAX1, DMAX1, QMAX1, IMAX0, JMAX0, and KMAX0, the result type is the
same as the arguments. For MAX1, IMAX1, JMAX1, and KMAX1, the result type is integer. For AMAX0,
AIMAX0, AJMAX0, and AKMAX0, the result type is real. The value of the result is that of the largest
argument. For character arguments, the comparison is done using the ASCII collating sequence. If the
selected argument is shorter than the longest argument, the result is extended to the length of the longest
argument by inserting blank characters on the right.

The Fortran standard does not define the behavior if one or more real arguments is a NaN and at least one
argument is not a NaN. Depending on the order of the arguments, the result may be either the maximum
non-NaN value or a NaN.

Specific Name 1 Argument Type Result Type

INTEGER(1) INTEGER(1)

IMAX0 INTEGER(2) INTEGER(2)

AIMAX0 INTEGER(2) REAL(4)

MAX0 2 INTEGER(4) INTEGER(4)

AMAX0 3, 4 INTEGER(4) REAL(4)

KMAX0 INTEGER(8) INTEGER(8)

AKMAX0 INTEGER(8) REAL(4)

IMAX1 REAL(4) INTEGER(2)

MAX1 4, 5, 6 REAL(4) INTEGER(4)

KMAX1 REAL(4) INTEGER(8)

AMAX1 7 REAL(4) REAL(4)

Intel® Fortran Compiler Classic and Intel® Fortran Compiler Developer Guide and Reference 1

1687

Specific Name 1 Argument Type Result Type

DMAX1 REAL(8) REAL(8)

QMAX1 REAL(16) REAL(16)

1These specific functions cannot be passed as actual arguments.
2Or JMAX0.
3Or AJMAX0.AMAX0 is the same as REAL (MAX).
4In Standard Fortran, AMAX0 and MAX1 are specific functions with no generic name. For compatibility with
older versions of Fortran, these functions can also be specified as generic functions.
5Or JMAX1. MAX1 is the same as INT(MAX).
6The setting of compiler options specifying integer size can affect MAX1.
7The setting of compiler options specifying real size can affect AMAX1.

Example

MAX (2.0, -8.0, 6.0) has the value 6.0.

MAX (14, 32, -50) has the value 32.

The following shows another example:

 INTEGER m1, m2
 REAL r1, r2
 m1 = MAX(5, 6, 7) ! returns 7
 m2 = MAX1(5.7, 3.2, -8.3) ! returns 5
 r1 = AMAX0(5, 6, 7) ! returns 7.0
 r2 = AMAX1(6.4, -12.2, 4.9) ! returns 6.4

See Also
IEEE_MAX_NUM
MAXLOC
MAXVAL
MIN

MAXEXPONENT
Inquiry Intrinsic Function (Generic): Returns the
maximum exponent in the model representing the
same type and kind parameters as the argument.

Syntax
result = MAXEXPONENT (x)

x (Input) Must be of type real; it can be scalar or array valued.

Results

The result is a scalar of type default integer. The result has the value emax, as defined in Model for Real Data.

Example

 REAL(4) x
 INTEGER i
 i = MAXEXPONENT(x) ! returns 128.

 1 Intel® Fortran Compiler Classic and Intel® Fortran Compiler Developer Guide and Reference

1688

See Also
MINEXPONENT

MAXLOC
Transformational Intrinsic Function (Generic):
Returns the location of the maximum value of all
elements in an array, a set of elements in an array, or
elements in a specified dimension of an array.

Syntax
result = MAXLOC (array, dim [, mask, kind, back])
result = MAXLOC (array [, mask, kind, back])

array (Input) Must be an array of type integer, real, or character.

Note that the Fortran standard does not define the behavior of this
function if array is a real type and one or more elements is a Nan.

dim (Input) Must be a scalar integer with a value in the range 1 to n,
where n is the rank of array.

mask (Input; optional) Must be a logical array that is conformable with
array.

kind (Input; optional) Must be a scalar integer constant expression.

back (Input; optional) Must be a scalar of type logical.

Results

The result is an array of type integer. If kind is present, the kind parameter of the result is that specified by
kind; otherwise, the kind parameter of the result is that of default integer. If the processor cannot represent
the result value in the kind of the result, the result is undefined.

The following rules apply if dim is not specified:

• The array result has rank one and a size equal to the rank of array.
• If MAXLOC(array) is specified, the elements in the array result form the subscript of the location of the

element with the maximum value in array.

The ith subscript returned lies in the range 1 to ei, where ei is the extent of the ith dimension of array.
• If MAXLOC(array, MASK= mask) is specified, the elements in the array result form the subscript of the

location of the element with the maximum value corresponding to the condition specified by mask.

The following rules apply if dim is specified:

• The array result has a rank that is one less than array, and shape (d1, d2,...ddim-1, ddim+1,...dn), where
(d1, d2,...dn) is the shape of array.

• If array has rank one, MAXLOC(array, dim [, mask]) is a scalar and has a value equal to the first element
of MAXLOC(array [, MASK = mask]). Otherwise, the value of element (s1, s2,...sdim-1, sdim+1,...sn) of
MAXLOC(array, dim [, mask]) is equal to MAXLOC(array(s1, s2,...sdim-1, :, sdim+1,...sn) [, MASK =
mask(s1, s2,...sdim-1, :, sdim+1,...sn)]).

If only one element has the maximum value, that element’s subscripts are returned. Otherwise, if more than
one element has the maximum value and back is absent or present with the value .FALSE., the element
whose subscripts are returned is the first such element, taken in array element order. If back is present with
the value .TRUE., the element whose subscripts are returned is the last such element, taken in array element
order.

Intel® Fortran Compiler Classic and Intel® Fortran Compiler Developer Guide and Reference 1

1689

If array has size zero, or every element of mask has the value .FALSE., the value of the result is controlled by
compiler option assume [no]old_maxminloc, which can set the value of the result to either 1 or 0.

If array is of type character, the comparison is done using the ASCII collating sequence.

The setting of compiler options specifying integer size can affect this function.

Example

The value of MAXLOC((/3, 7, 4, 7/)) is (2), which is the subscript of the location of the first occurrence of the
maximum value in the rank-one array.

A is the array

 [4 0 4 2]
 [3 1 -2 6]
 [-1 -4 5 5].

MAXLOC (A, MASK=A .LT. 5) has the value (1, 1) because these are the subscripts of the location of the first
maximum value (4) that is less than 5.

MAXLOC (A, DIM=1) has the value (1, 2, 3, 2). 1 is the subscript of the location of the first maximum value
(4) in column 1; 2 is the subscript of the location of the first maximum value (1) in column 2; and so forth.

MAXLOC (A, DIM=2) has the value (1, 4, 3). 1 is the subscript of the location of the first maximum value in
row 1; 4 is the subscript of the location of the first maximum value in row 2; and so forth.

MAXLOC (A, DIM=2, BACK=.TRUE.) has the value (3, 4, 4). 3 is the subscript of the location of the last
maximum value in row 1; 4 is the subscript of the location of the last maximum value in row 2; and so forth.

The following shows another example:

 INTEGER i, maxl(1), max
 INTEGER array(3, 3)
 INTEGER, ALLOCATABLE :: AR1(:)
 ! put values in array
 array = RESHAPE((/7, 9, -1, -2, 5, 0, 3, 6, 9/), &
 (/3, 3/))
 ! array is 7 -2 3
 ! 9 5 6
 ! -1 0 9
 i = SIZE(SHAPE(array)) ! Get number of dimensions
 ! in array
 ALLOCATE (AR1(i)) ! Allocate AR1 to number
 ! of dimensions in array
 AR1 = MAXLOC (array, MASK = array .LT. 7) ! Get
 ! the location (subscripts) of
 ! largest element less than 7
 ! in array
 !
 ! MASK = array .LT. 7 creates a mask array the same
 ! size and shape as array whose elements are .TRUE. if
 ! the corresponding element in array is less than 7,
 ! and .FALSE. if it is not. This mask causes MAXLOC to
 ! return the index of the element in array with the
 ! greatest value less than 7.
 !
 ! array is 7 -2 3 and MASK=array .LT. 7 is F T T
 ! 9 5 6 F T T
 ! -1 0 9 T T F
 ! and AR1 = MAXLOC(array, MASK = array .LT. 7) returns

 1 Intel® Fortran Compiler Classic and Intel® Fortran Compiler Developer Guide and Reference

1690

 ! (2, 3), the location of the element with value 6

 maxl = MAXLOC((/1, 4, 3, 4/)) ! returns 2, the first
 ! occurrence of maximum
 END

See Also
MAXVAL
MINLOC
MINVAL
FINDLOC

MAXVAL
Transformational Intrinsic Function (Generic):
Returns the maximum value of all elements in an
array, a set of elements in an array, or elements in a
specified dimension of an array.

Syntax
result = MAXVAL (array [, mask])
result = MAXVAL (array, dim [, mask])

array (Input) Must be an array of type integer, real, or character.

Note that the Fortran standard does not define the behavior of this
function if array is a real type and one or more elements is a Nan.

dim (Input) Must be a scalar integer expression with a value in the range 1
to n, where n is the rank of array.

mask (Input; optional) Must be a logical array that is conformable with
array.

Results

The result is an array or a scalar of the same data type as array.

The result is a scalar if dim is not specified or array has rank one.

The following rules apply if dim is not specified:

• If MAXVAL(array) is specified, the result has a value equal to the maximum value of all the elements in
array.

• If MAXVAL(array, MASK= mask) is specified, the result has a value equal to the maximum value of the
elements in array corresponding to the condition specified by mask.

The following rules apply if dim is specified:

• An array result has a rank that is one less than array, and shape (d1, d2,...,ddim-1, ddim+1, ..., dn), where
(d1, d2, ..., dn) is the shape of array.

• If array has rank one, MAXVAL(array, dim[, mask]) has a value equal to that of MAXVAL(array[,MASK =
mask]). Otherwise, the value of element (s1, s2, ..., sdim-1, sdim+1, ..., sn) of MAXVAL(array, dim, [,
mask]) is equal to MAXVAL(array(s1, s2, ..., sdim-1, :, sdim+1, ..., sn) [,MASK = mask(s1, s2, ..., sdim-1, :,
sdim+1, ..., sn)]).

If array has size zero or if there are no true elements in mask, the result (if dim is omitted), or each element
in the result array (if dim is specified), has the value of the negative number of the largest magnitude
supported by the processor for numbers of the type and kind parameters of array.

If array is of type character, the comparison is done using the ASCII collating sequence.

Intel® Fortran Compiler Classic and Intel® Fortran Compiler Developer Guide and Reference 1

1691

Example

The value of MAXVAL ((/2, 3, 4/)) is 4 because that is the maximum value in the rank-one array.

MAXVAL (B, MASK=B .LT. 0.0) finds the maximum value of the negative elements of B.

C is the array

 [2 3 4]
 [5 6 7].

MAXVAL (C, DIM=1) has the value (5, 6, 7). 5 is the maximum value in column 1; 6 is the maximum value in
column 2; and so forth.

MAXVAL (C, DIM=2) has the value (4, 7). 4 is the maximum value in row 1 and 7 is the maximum value in
row 2.

The following shows another example:

 INTEGER array(2,3), i(2), max
 INTEGER, ALLOCATABLE :: AR1(:), AR2(:)
 array = RESHAPE((/1, 4, 5, 2, 3, 6/),(/2, 3/))
 ! array is 1 5 3
 ! 4 2 6
 i = SHAPE(array) ! i = [2 3]
 ALLOCATE (AR1(i(2))) ! dimension AR1 to the number of
 ! elements in dimension 2
 ! (a column) of array
 ALLOCATE (AR2(i(1))) ! dimension AR2 to the number of
 ! elements in dimension 1
 ! (a row) of array
 max = MAXVAL(array, MASK = array .LT. 4) ! returns 3
 AR1 = MAXVAL(array, DIM = 1) ! returns [4 5 6]
 AR2 = MAXVAL(array, DIM = 2) ! returns [5 6]
 END

See Also
MAXLOC
MINVAL
MINLOC

MCLOCK
Inquiry Intrinsic Function (Specific): Returns time
accounting for a program.

Syntax
result = MCLOCK()

Results

The result type is INTEGER(4). The result is the sum (in units of milliseconds) of the current process's user
time and the user and system time of all its child processes.

MERGE
Elemental Intrinsic Function (Generic): Selects
between two values or between corresponding
elements in two arrays, according to the condition
specified by a logical mask.

 1 Intel® Fortran Compiler Classic and Intel® Fortran Compiler Developer Guide and Reference

1692

Syntax
result = MERGE (tsource,fsource,mask)

tsource (Input) May be of any data type.

fsource (Input) Must be of the same type and type parameters as tsource.

mask (Input) Must be of type logical.

Results

The result type and kind are the same as tsource. The value of mask determines whether the result value is
taken from tsource (if mask is true) or fsource (if mask is false).

Example

For MERGE (1.0, 0.0, R < 0), R = -3 has the value 1.0, and R = 7 has the value 0.0.

TSOURCE is the array

 [1 3 5]
 [2 4 6],

FSOURCE is the array

 [8 9 0]
 [1 2 3],

and MASK is the array

 [F T T]
 [T T F].

MERGE (TSOURCE, FSOURCE, MASK) produces the result:

 [8 3 5]
 [2 4 3].

The following shows another example:

 INTEGER tsource(2, 3), fsource(2, 3), AR1 (2, 3)
 LOGICAL mask(2, 3)
 tsource = RESHAPE((/1, 4, 2, 5, 3, 6/),(/2, 3/))
 fsource = RESHAPE((/7, 0, 8, -1, 9, -2/), (/2, 3/))
 mask = RESHAPE((/.TRUE., .FALSE., .FALSE., .TRUE., &
 .TRUE., .FALSE./), (/2,3/))
 ! tsource is 1 2 3 , fsource is 7 8 9 , mask is T F T
 ! 4 5 6 0 -1 -2 F T F

 AR1 = MERGE(tsource, fsource, mask) ! returns 1 8 3
 ! 0 5 -2
 END

MERGE_BITS
Elemental Intrinsic Function (Generic): Merges
bits by using a mask.

Syntax
result = MERGE_BITS (i,j,mask)

Intel® Fortran Compiler Classic and Intel® Fortran Compiler Developer Guide and Reference 1

1693

i (Input) Must be of type integer, or a binary, octal, or hexadecimal
literal constant.

j (Input) Must be of type integer, or a binary, octal, or hexadecimal
literal constant.

mask (Input) Must be of type integer, or a binary, octal, or hexadecimal
literal constant.

If both i and j are of type integer they must have the same kind type parameter. They cannot both be binary,
octal, or hexadecimal literal constants.

If mask is of type integer, it must have the same kind type parameter as each other argument of type
integer.

Results

The result type and kind are the same as i if i is of type integer; otherwise, the result type and kind are the
same as j.

If any argument is a binary, octal, or hexadecimal literal constant, it is first converted as if by the intrinsic
function INT to the type and kind parameter of the result. The result has the value of IOR (IAND (i, mask),
IAND (j, NOT (mask))).

Example

MERGE_BITS (13, 18, 22) has the value 4.

MERGEABLE Clause
Parallel Directive Clause: Specifies that the
implementation may generate a merged task.

Syntax

MERGEABLE
When the generated task is an undeferred task or an included task, it specifies that the implementation may
instead generate a merged task.

When the MERGEABLE clause is present on a TASKLOOP construct, each generated task is a mergeable task.

MESSAGE
General Compiler Directive: Specifies a character
string to be sent to the standard output device during
the first compiler pass; this aids debugging.

Syntax
!DIR$ MESSAGE:string

string Is a character constant specifying a message.

Example

!DIR$ MESSAGE:'Compiling Sound Speed Equations'

See Also
General Compiler Directives
Syntax Rules for Compiler Directives

 1 Intel® Fortran Compiler Classic and Intel® Fortran Compiler Developer Guide and Reference

1694

METADIRECTIVE
OpenMP* Fortran Compiler Directive: Specifies
variant OpenMP* directives, one of which may
conditionally replace the metadirective based on the
OpenMP context enclosing the metadirective. This
feature is only available for ifx.

Syntax

!$OMP METADIRECTIVE [clause [[,] clause]...]
-or-

!$OMP BEGIN METADIRECTIVE [clause [[,] clause]...]
 statement(s)
!$OMP END METADIRECTIVE

clause Is one of the following:

• DEFAULT ([directive-variant])

This clause has been deprecated and renamed OTHERWISE.
• OTHERWISE ([directive-variant])

Identifies a default directive-variant if the context does not match
one of the WHEN clauses. Only one OTHERWISE clause can be
specified. If it appears, it must be the last clause specified. If it
does not appear, it is as if OTHERWISE (NOTHING) appears.

• WHEN (context-selector-spec :[directive-variant])

Specifies a directive-variant to replace the METADIRECTIVE when
the OpenMP context matches the context-selector specified.
Expressions in the context-selector of a WHEN clause are evaluated
if no prior WHEN clause in the directive specifies a compatible or
matching OpenMP context. The number of times an expression can
be evaluated is implementation defined.

directive-variant Is an OpenMP directive (with no sentinel). It is a candidate for
replacing the metadirective in which it appears. If directive-variant
does not appear, it is as if a NOTHING directive was specified. A
directive-variant cannot be a metadirective.

context-selector-spec Is an OpenMP context-selector. Currently, only USER context selectors
whose CONDITION is a logical constant expression are allowed. The
context-selector-spec cannot specify properties of a SIMD directive.

statement(s) Is one or more valid Fortran statements.

A METADIRECTIVE specifies one or more candidate OpenMP directives (directive-variant s) that may
conditionally replace the METADIRECTIVE. Selection of a replacement candidate depends on the OpenMP
context that encloses the METADIRECTIVE.

The order of clauses is significant. Replacement candidates are ordered according to these rules, in
decreasing precedence:

• A directive-variant candidate has higher precedence than another candidate if the score of the context-
selector of its corresponding WHEN clause is higher.

• Explicitly specified candidates have precedence over implicitly specified candidates.
• A directive-variant candidate that appears in a WHEN clause specified lexically before another in a

METADIRECTIVE has higher precedence.

Intel® Fortran Compiler Classic and Intel® Fortran Compiler Developer Guide and Reference 1

1695

The first replacement candidate in the ordered list of candidates whose corresponding WHEN clause specifies
a compatible context-selector replaces the METADIRECTIVE. See Score and Match OpenMP Context Selectors.

Replacement of the METADIRECTIVE with the selected directive-variant must result in a conforming OpenMP
program.

Example

In the program below, _OFFLOADING is a preprocessor macro.

 PROGRAM offloading_success
 USE omp_lib
 IMPLICIT NONE
 INTEGER :: errors
 LOGICAL :: is_host

 is_host = .FALSE.

 !$omp BEGIN METADIRECTIVE WHEN(USER={CONDITION(_OFFLOADING)}: PARALLEL DO SIMD) &
 WHEN(USER={CONDITION(_OFFLOADING)}: TARGET MAP (FROM: is_host)

 isHost = omp_is_initial_device ()

 !$omp END METADIRECTIVE

 ! check if target region executed on the device
 IF (is_host) THEN
 errors = 1
 PRINT *, "Failed - target region executed on the host"
 ELSE
 errors = 0
 PRINT *, "Passed"
 END IF

 IF(errors .NE. 0) STOP 1

 END PROGRAM offloading_success
If the above program is preprocessed with _OFFLOADING defined to be .TRUE., the METADIRECTIVE
construct will be replaced with the following:

 !$omp TARGET MAP (FROM:is_host)
 is_host = omp_is_initial_device ()
 !$omp END TARGET

The code following the METADIRECTIVE determines if the METADIRECTIVE resulted in a TARGET region. If so,
it tests to determine whether the TARGET region successfully offloaded to the device.

See Also
OpenMP Fortran Compiler Directives
OpenMP Contexts
OpenMP Context Selectors
Syntax Rules for Compiler Directives

MIN
Elemental Intrinsic Function (Generic): Returns
the minimum value of the arguments.

Syntax
result = MIN (a1,a2[,a3...])

 1 Intel® Fortran Compiler Classic and Intel® Fortran Compiler Developer Guide and Reference

1696

a1, a2, a3 (Input) All must have the same type (integer, real, or character) and
kind parameters.

Results

For arguments of character type, the result type is character, and the length of the result is the length of the
longest argument. For MIN0, AMIN1, DMIN1, QMIN1, IMIN0, JMIN0, and KMIN0, the result type is the same
as the arguments. For MIN1, IMIN1, JMIN1, and KMIN1, the result type is integer. For AMIN0, AIMIN0,
AJMIN0, and AKMIN0, the result type is real. The value of the result is that of the smallest argument. For
character arguments, the comparison is done using the ASCII collating sequence. If the selected argument is
shorter than the longest argument, the result is extended to the length of the longest argument by inserting
blank characters on the right.

The Fortran standard does not define the behavior if one or more real arguments is a NaN and at least one
argument is not a NaN. Depending on the order of the arguments, the result may be either the minimum
non-NaN value or a NaN.

Specific Name 1 Argument Type Result Type

INTEGER(1) INTEGER(1)

IMIN0 INTEGER(2) INTEGER(2)

AIMIN0 INTEGER(2) REAL(4)

MIN0 2 INTEGER(4) INTEGER(4)

AMIN0 3, 4 INTEGER(4) REAL(4)

KMIN0 INTEGER(8) INTEGER(8)

AKMIN0 INTEGER(8) REAL(4)

IMIN1 REAL(4) INTEGER(2)

MIN1 4, 5, 6 REAL(4) INTEGER(4)

KMIN1 REAL(4) INTEGER(8)

AMIN1 7 REAL(4) REAL(4)

DMIN1 REAL(8) REAL(8)

QMIN1 REAL(16) REAL(16)

1These specific functions cannot be passed as actual arguments.
2Or JMIN0.
3Or AJMIN0.AMIN0 is the same as REAL (MIN).
4In Standard Fortran, AMIN0 and MIN1 are specific functions with no generic name. For compatibility with
older versions of Fortran, these functions can also be specified as generic functions.
5Or JMIN1.MIN1 is the same as INT (MIN).
6The setting of compiler options specifying integer size can affect MIN1.
7The setting of compiler options specifying real size can affect AMIN1.

Example

MIN (2.0, -8.0, 6.0) has the value -8.0.

Intel® Fortran Compiler Classic and Intel® Fortran Compiler Developer Guide and Reference 1

1697

MIN (14, 32, -50) has the value -50.

The following shows another example:

 INTEGER m1, m2
 REAL r1, r2
 m1 = MIN (5, 6, 7) ! returns 5
 m2 = MIN1 (-5.7, 1.23, -3.8) ! returns -5
 r1 = AMIN0 (-5, -6, -7) ! returns -7.0
 r2 = AMIN1(-5.7, 1.23, -3.8) ! returns -5.7

See Also
IEEE_MIN_NUM
MINLOC
MINVAL
MAX

MINEXPONENT
Inquiry Intrinsic Function (Generic): Returns the
minimum exponent in the model representing the
same type and kind parameters as the argument.

Syntax
result = MINEXPONENT (x)

x (Input) must be of type real; it can be scalar or array valued.

Results

The result is a scalar of type default integer. The result has the value emin, as defined in Model for Real Data.

Example

If X is of type REAL(4), MINEXPONENT (X) has the value -125.

The following shows another example:

 REAL(8) r1 ! DOUBLE PRECISION REAL
 INTEGER i
 i = MINEXPONENT (r1) ! returns - 1021.

See Also
MAXEXPONENT

MINLOC
Transformational Intrinsic Function (Generic):
Returns the location of the minimum value of all
elements in an array, a set of elements in an array, or
elements in a specified dimension of an array.

Syntax
result = MINLOC (array, dim [, mask, kind, back])
result = MINLOC (array [, mask, kind, back])

array (Input) Must be an array of type integer, real, or character.

Note that the Fortran standard does not define the behavior of this
function if array is a real type and one or more elements is a Nan.

 1 Intel® Fortran Compiler Classic and Intel® Fortran Compiler Developer Guide and Reference

1698

dim (Input) Must be a scalar integer with a value in the range 1 to n,
where n is the rank of array.

mask (Input; optional) Must be a logical array that is conformable with
array.

kind (Input; optional) Must be a scalar integer constant expression.

back (Input; optional) Must be a scalar of type logical.

Results

The result is an array of type integer. If kind is present, the kind parameter of the result is that specified by
kind; otherwise, the kind parameter of the result is that of default integer. If the processor cannot represent
the result value in the kind of the result, the result is undefined.

The following rules apply if dim is not specified:

• The array result has rank one and a size equal to the rank of array.
• If MINLOC(array) is specified, the elements in the array result form the subscript of the location of the

element with the minimum value in array.

The ith subscript returned lies in the range 1 to ei, where ei is the extent of the ith dimension of array.
• If MINLOC(array, MASK= mask) is specified, the elements in the array result form the subscript of the

location of the element with the minimum value corresponding to the condition specified by mask.

The following rules apply if dim is specified:

• The array result has a rank that is one less than array, and shape (d1, d2,...ddim-1, ddim+1,...dn), where
(d1, d2,...dn) is the shape of array.

• If array has rank one, MINLOC(array, dim [, mask]) is a scalar and has a value equal to the first element
of MINLOC(array [,MASK = mask]). Otherwise, the value of element (s1, s2,...sdim-1, sdim+1,...sn) of
MINLOC(array, dim [, mask]) is equal to MINLOC(array(s1, s2,...sdim-1, :, sdim+1,...sn) [, MASK =
mask(s1, s2,...sdim-1, :, sdim+1,...sn)]).

If only one element has the minimum value, that element’s subscripts are returned. Otherwise, if more than
one element has the minimum value and back is absent or present with the value .FALSE., the element
whose subscripts are returned is the first such element, taken in array element order. If back is present with
the value .TRUE., the element whose subscripts are returned is the last such element, taken in array element
order.

If array has size zero, or every element of mask has the value .FALSE., the value of the result is controlled by
compiler option assume [no]old_maxminloc, which can set the value of the result to either 1 or 0.

If array is of type character, the comparison is done using the ASCII collating sequence.

The setting of compiler options specifying integer size can affect this function.

Example

The value of MINLOC ((/3, 1, 4, 1/)) is (2), which is the subscript of the location of the first occurrence of the
minimum value in the rank-one array.

A is the array

 [4 0 0 2]
 [3 -6 -2 6]
 [-1 -4 5 -4].

MINLOC (A, MASK=A .GT. -5) has the value (3, 2) because these are the subscripts of the location of the first
minimum value (-4) that is greater than -5.

Intel® Fortran Compiler Classic and Intel® Fortran Compiler Developer Guide and Reference 1

1699

MINLOC (A, DIM=1) has the value (3, 2, 2, 3). 3 is the subscript of the location of the first minimum value
(-1) in column 1; 3 is the subscript of the location of the first minimum value (-6) in column 2; and so forth.

MINLOC (A, DIM=2) has the value (2, 2, 2). 2 is the subscript of the location of the first minimum value (0)
in row 1; 2 is the subscript of the location of the first minimum value (-6) in row 2; and so forth.

MINLOC (A, DIM=2, BACK=.TRUE.) has the value (3, 2, 4). 3 is the subscript of the location of the last
minimum value (0) in row 1; 2 is the subscript of the location of the last minimum value (-6) in row 2; and
so forth.

The following shows another example:

 INTEGER i, minl(1)
 INTEGER array(2, 3)
 INTEGER, ALLOCATABLE :: AR1(:)
 ! put values in array
 array = RESHAPE((/-7, 1, -2, -9, 5, 0/),(/2, 3/))
 ! array is -7 -2 5
 ! 1 -9 0
 i = SIZE(SHAPE(array)) ! Get the number of dimensions
 ! in array
 ALLOCATE (AR1 (i)) ! Allocate AR1 to number
 ! of dimensions in array
 AR1 = MINLOC (array, MASK = array .GT. -5) ! Get the
 ! location (subscripts) of
 ! smallest element greater
 ! than -5 in array

 !
 ! MASK = array .GT. -5 creates a mask array the same
 ! size and shape as array whose elements are .TRUE. if
 ! the corresponding element in array is greater than
 ! -5, and .FALSE. if it is not. This mask causes MINLOC
 ! to return the index of the element in array with the
 ! smallest value greater than -5.
 !
 !array is -7 -2 5 and MASK= array .GT. -5 is F T T
 ! 1 -9 0 T F T
 ! and AR1 = MINLOC(array, MASK = array .GT. -5) returns
 ! (1, 2), the location of the element with value -2

 minl = MINLOC((/-7,2,-7,5/)) ! returns 1, first
 ! occurrence of minimum
 END

See Also
MAXLOC
MINVAL
MAXVAL
FINDLOC

MINVAL
Transformational Intrinsic Function (Generic):
Returns the minimum value of all elements in an
array, a set of elements in an array, or elements in a
specified dimension of an array.

 1 Intel® Fortran Compiler Classic and Intel® Fortran Compiler Developer Guide and Reference

1700

Syntax
result = MINVAL (array [, mask])
result = MINVAL (array, dim [, mask])

array (Input) Must be an array of type integer, real, or character.

Note that the Fortran standard does not define the behavior of this
function if array is a real type and one or more elements is a Nan.

dim (Input) Must be a scalar integer with a value in the range 1 to n,
where n is the rank of array.

mask (Input; optional) Must be a logical array that is conformable with
array.

Results

The result is an array or a scalar of the same data type as array.

The result is a scalar if dim is omitted or array has rank one.

The following rules apply if dim is not specified:

• If MINVAL(array) is specified, the result has a value equal to the minimum value of all the elements in
array.

• If MINVAL(array, MASK= mask) is specified, the result has a value equal to the minimum value of the
elements in array corresponding to the condition specified by mask.

The following rules apply if dim is specified:

• An array result has a rank that is one less than array, and shape (d1, d2, ..., ddim-1, ddim+1, ..., dn), where
(d1, d2, ..., dn) is the shape of array.

• If array has rank one, MINVAL(array, dim[, mask]) has a value equal to that of MINVAL(array[,MASK =
mask]). Otherwise, the value of element (s1, s2, ..., sdim-1, sdim+1, ..., sn) of MINVAL(array, dim, [,
mask]) is equal to MINVAL(array(s1, s2, ..., sdim-1, :, sdim+1, ..., sn) [,MASK = mask(s1, s2, ..., sdim-1, :,
sdim+1, ..., sn)]).

If array has size zero or if there are no true elements in mask, the result (if dim is omitted), or each element
in the result array (if dim is specified), has the value of the positive number of the largest magnitude
supported by the processor for numbers of the type and kind parameters of array.

If array is of type character, the comparison is done using the ASCII collating sequence.

Example

The value of MINVAL ((/2, 3, 4/)) is 2 because that is the minimum value in the rank-one array.

The value of MINVAL (B, MASK=B .GT. 0.0) finds the minimum value of the positive elements of B.

C is the array

 [2 3 4]
 [5 6 7].

MINVAL (C, DIM=1) has the value (2, 3, 4). 2 is the minimum value in column 1; 3 is the minimum value in
column 2; and so forth.

MINVAL (C, DIM=2) has the value (2, 5). 2 is the minimum value in row 1 and 5 is the minimum value in row
2.

Intel® Fortran Compiler Classic and Intel® Fortran Compiler Developer Guide and Reference 1

1701

The following shows another example:

 INTEGER array(2, 3), i(2), minv
 INTEGER, ALLOCATABLE :: AR1(:), AR2(:)
 array = RESHAPE((/1, 4, 5, 2, 3, 6/), (/2, 3/))
 ! array is 1 5 3
 ! 4 2 6
 i = SHAPE(array) ! i = [2 3]
 ALLOCATE(AR1(i(2))) ! dimension AR1 to number of
 ! elements in dimension 2
 ! (a column) of array.
 ALLOCATE(AR2(i(1))) ! dimension AR2 to number of
 ! elements in dimension 1
 ! (a row) of array
 minv = MINVAL(array, MASK = array .GT. 4) ! returns 5
 AR1 = MINVAL(array, DIM = 1) ! returns [1 2 3]
 AR2 = MINVAL(array, DIM = 2) ! returns [1 2]
 END

See Also
MAXVAL
MINLOC
MAXLOC

MM_PREFETCH
Intrinsic Subroutine (Generic): Prefetches data
from the specified address on one memory cache line.
Intrinsic subroutines cannot be passed as actual
arguments.

Syntax
CALL MM_PREFETCH (address[,hint] [,fault] [,exclusive])

address (Input) Is the name of a scalar or array; it can be of any type or rank.
It specifies the address of the data on the cache line to prefetch.

hint (Input; optional) Is an optional default integer constant with one of
the following values:

Value Prefetch Constant Description

0 FOR_K_PREFETCH_T
0

Prefetches into the
L1 cache (and the L2
and the L3 cache).
Use this for integer
data.

1 FOR_K_PREFETCH_T
1

Prefetches into the
L2 cache (and the L3
cache); floating-
point data is used
from the L2 cache,
not the L1 cache.
Use this for real
data.

 1 Intel® Fortran Compiler Classic and Intel® Fortran Compiler Developer Guide and Reference

1702

Value Prefetch Constant Description

2 FOR_K_PREFETCH_T
2

Prefetches into the
L2 cache (and the L3
cache); this line will
be marked for early
displacement. Use
this if you are not
going to reuse the
cache line
frequently.

3 FOR_K_PREFETCH_N
TA

Prefetches into the
L2 cache (but not
the L3 cache); this
line will be marked
for early
displacement. Use
this if you are not
going to reuse the
cache line.

The preceding constants are defined in file fordef.for on Windows*
systems and file fordef.f on Linux* systems.

If hint is omitted, 0 is assumed.

fault (Input; optional) Is an optional default logical constant. If .TRUE. is
specified, page faults are allowed to occur, if necessary; if .FALSE. is
specified, page faults are not allowed to occur. If fault is
omitted, .FALSE. is assumed. This argument is currently ignored.

exclusive (Input; optional) Is an optional default logical constant. If.TRUE. is
specified, you get exclusive ownership of the cache line because you
intend to assign to it; if .FALSE. is specified, there is no exclusive
ownership. If exclusive is omitted, .FALSE.is assumed. This
argument is currently ignored.

Example

 subroutine spread_lf (a, b)
 PARAMETER (n = 1025)

 real*8 a(n,n), b(n,n), c(n)
 do j = 1,n
 do i = 1,100
 a(i, j) = b(i-1, j) + b(i+1, j)
 call mm_prefetch (a(i+20, j), 1)
 call mm_prefetch (b(i+21, j), 1)
 enddo
 enddo

 print *, a(2, 567)

 stop
 end

Intel® Fortran Compiler Classic and Intel® Fortran Compiler Developer Guide and Reference 1

1703

MOD
Elemental Intrinsic Function (Generic): Returns
the remainder when the first argument is divided by
the second argument.

Syntax
result = MOD (a, p)

a (Input) Must be of type integer or real.

p (Input)Must have the same type and kind parameters as a. It must
not have a value of zero.

Results

The result type and kind are the same as a. If p is not equal to zero, the value of the result is a - INT(a/ p) *
p. If p is equal to zero, the result is undefined.

Specific Name Argument Type Result Type

BMOD INTEGER(1) INTEGER(1)

IMOD1 INTEGER(2) INTEGER(2)

MOD 2 INTEGER(4) INTEGER(4)

KMOD INTEGER(8) INTEGER(8)

AMOD 3 REAL(4) REAL(4)

DMOD 3,4 REAL(8) REAL(8)

QMOD REAL(16) REAL(16)

1 Or HMOD.
2 Or JMOD.
3 The setting of compiler options specifying real size can affect AMOD and DMOD.
4 The setting of compiler options specifying double size can affect DMOD.

Example

MOD (7, 3) has the value 1.

MOD (9, -6) has the value 3.

MOD (-9, 6) has the value -3.

The following shows more examples:

 INTEGER I
 REAL R
 R = MOD(9.0, 2.0) ! returns 1.0
 I = MOD(18, 5) ! returns 3
 I = MOD(-18, 5) ! returns -3
 I = MOD(8, 5) ! returns 3
 I = MOD(-8, 5) ! returns -3
 I = MOD(8,-5) ! returns 3
 I = MOD(-8,-5) ! returns -3

 1 Intel® Fortran Compiler Classic and Intel® Fortran Compiler Developer Guide and Reference

1704

See Also
MODULO

MODULE
Statement: Marks the beginning of a module
program unit, which contains specifications and
definitions that can be used by one or more program
units.

Syntax
MODULE name
 [specification-part]
[CONTAINS
 [module-subprogram
 [module-subprogram]...]]
END[MODULE [name]]

name Is the name of the module.

specification-part Is one or more specification statements, except for the following:

• ENTRY
• FORMAT
• AUTOMATIC (or its equivalent attribute)
• INTENT (or its equivalent attribute)
• OPTIONAL (or its equivalent attribute)
• Statement functions

An automatic object must not appear in a specification statement.

module-subprogram Is a function or subroutine subprogram that defines the module
procedure. A function must end with END FUNCTION and a subroutine
must end with END SUBROUTINE.

A module subprogram can contain internal procedures.

Description

If a name follows the END statement, it must be the same as the name specified in the MODULE statement.

The module name is considered global and must be unique. It cannot be the same as any local name in the
main program or the name of any other program unit, external procedure, or common block in the
executable program.

A module is host to any module procedures it contains, and entities in the module are accessible to the
module procedures through host association.

A module must not reference itself (either directly or indirectly).

You can use the PRIVATE attribute to restrict access to procedures or variables within a module.

Although ENTRY statements, FORMAT statements, and statement functions are not allowed in the
specification part of a module, they are allowed in the specification part of a module subprogram.

The following rules also apply to modules:

• The specification part of a module must not contain IMPORT, ENTRY, FORMAT, executable, or statement
function statements.

Intel® Fortran Compiler Classic and Intel® Fortran Compiler Developer Guide and Reference 1

1705

• A variable, common block, or procedure pointer declared in a submodule implicitly has the SAVE attribute,
which may be confirmed by explicit specification.

• If a specification or constant expression in the specification-part of a module includes a reference to a
generic entity, there must be no specific procedures of the generic entity defined in the submodule
subsequent to the specification or constant expression.

Any executable statements in a module can only be specified in a module subprogram.

A module can contain one or more procedure interface blocks, which let you specify an explicit interface for
an external subprogram or dummy subprogram.

A module can be extended by one or more program units called submodules. A submodule can in turn be
extended by one or more submodules.

Example

The following example shows a simple module that can be used to provide global data:

MODULE MOD_A
 INTEGER :: B, C
 REAL E(25,5)
END MODULE MOD_A
...
SUBROUTINE SUB_Z
 USE MOD_A ! Makes scalar variables B and C, and array
 ... ! E available to this subroutine
END SUBROUTINE SUB_Z

The following example shows a module procedure:

MODULE RESULTS
...
CONTAINS
 FUNCTION MOD_RESULTS(X,Y) ! A module procedure
 ...
 END FUNCTION MOD_RESULTS
END MODULE RESULTS

The following example shows a module containing a derived type:

MODULE EMPLOYEE_DATA
 TYPE EMPLOYEE
 INTEGER ID
 CHARACTER(LEN=40) NAME
 END TYPE EMPLOYEE
END MODULE

The following example shows a module containing an interface block:

MODULE ARRAY_CALCULATOR
 INTERFACE
 FUNCTION CALC_AVERAGE(D)
 REAL :: CALC_AVERAGE
 REAL, INTENT(IN) :: D(:)
 END FUNCTION
 END INTERFACE
END MODULE ARRAY_CALCULATOR

The following example shows a derived-type definition that is public with components that are private:

MODULE MATTER
 TYPE ELEMENTS
 PRIVATE

 1 Intel® Fortran Compiler Classic and Intel® Fortran Compiler Developer Guide and Reference

1706

 INTEGER C, D
 END TYPE
...
END MODULE MATTER

In this case, components C and D are private to type ELEMENTS, but type ELEMENTS is not private to
MODULE MATTER. Any program unit that uses the module MATTER can declare variables of type ELEMENTS,
and pass as arguments values of type ELEMENTS.

This design allows you to change components of a type without affecting other program units that use the
module.

If a derived type is needed in more than one program unit, the definition should be placed in a module and
accessed by a USE statement whenever it is needed, as follows:

MODULE STUDENTS
 TYPE STUDENT_RECORD
 ...
 END TYPE
CONTAINS
 SUBROUTINE COURSE_GRADE(...)
 TYPE(STUDENT_RECORD) NAME
 ...
 END SUBROUTINE
END MODULE STUDENTS
...

PROGRAM SENIOR_CLASS
 USE STUDENTS
 TYPE(STUDENT_RECORD) ID
 ...
END PROGRAM

Program SENIOR_CLASS has access to type STUDENT_RECORD, because it uses module STUDENTS. Module
procedure COURSE_GRADE also has access to type STUDENT_RECORD, because the derived-type definition
appears in its host.

See Also
SUBMODULE
PUBLIC
PRIVATE
USE
Procedure Interfaces
Program Units and Procedures
PROTECTED Attribute and Statement

MODULE FUNCTION
Statement: Indicates a separate module procedure.

Example

submodule (M) A
contains
 real module function foo (arg) result(res)
 type(tt), intent(in) :: arg
 res = arg%r
 end function foo
end submodule A

Intel® Fortran Compiler Classic and Intel® Fortran Compiler Developer Guide and Reference 1

1707

See Also
Separate Module Procedures

MODULE PROCEDURE
Statement: Identifies module procedures in an
interface block that specifies a generic name.

Example

!A program that changes non-default integers and reals
! into default integers and reals
 PROGRAM CHANGE_KIND
 USE Module1
 integer(2) in
 integer indef
 indef = DEFAULT(in)
 END PROGRAM

! procedures sub1 and sub2 defined as follows:
 MODULE Module1
 INTERFACE DEFAULT
 MODULE PROCEDURE Sub1, Sub2
 END INTERFACE
 CONTAINS
 FUNCTION Sub1(y)
 REAL(8) y
 sub1 = REAL(y)
 END FUNCTION
 FUNCTION Sub2(z)
 INTEGER Sub2
 INTEGER(2) z
 sub2 = INT(z)
 END FUNCTION
 END MODULE

See Also
INTERFACE
MODULE
Modules and Module Procedures
PROCEDURE

MODULE SUBROUTINE
Statement: Indicates a separate module procedure.

Example

submodule (M) A
contains
 module subroutine FOO (arg)
 type(tt), intent(inout) :: arg
 arg%r =1
 end subroutine FOO
end submodule A

See Also
Separate Module Procedures

 1 Intel® Fortran Compiler Classic and Intel® Fortran Compiler Developer Guide and Reference

1708

MODULO
Elemental Intrinsic Function (Generic): Returns
the modulo of the arguments.

Syntax
result = MODULO (a,p)

a (Input) Must be of type integer or real.

p (Input) Must have the same type and kind parameters as a. It must
not have a value of zero.

Results

The result type is the same a. The result value depends on the type of a, as follows:

• If a is of type integer and p is not equal to zero, the value of the result is a - FLOOR(REAL(a) / REAL(p))
* p, that is, the result has a value such that a = q * p + result where q is an integer. The following also
applies:

• If p > 0, then 0 <= result < p
• If p < 0, then p < result <= 0

• If a is of type real and p is not equal to zero, the value of the result is a - FLOOR(a/ p) * p.

If p is equal to zero (regardless of the type of a), the result is undefined.

Example

MODULO (7, 3) has the value 1.

MODULO (9, -6) has the value -3.

MODULO (-9, 6) has the value 3.

The following shows more examples:

 INTEGER I
 REAL R
 I= MODULO(8, 5) ! returns 3 Note: q=1
 I= MODULO(-8, 5) ! returns 2 Note: q=-2
 I= MODULO(8, -5) ! returns -2 Note: q=-2
 I= MODULO(-8,-5) ! returns -3 Note: q=1
 R= MODULO(7.285, 2.35) ! returns 0.2350001 Note: q=3
 R= MODULO(7.285, -2.35) ! returns -2.115 Note: q=-4

See Also
MOD

MOVE_ALLOC
Intrinsic Subroutine (Generic): Moves an allocation
from one allocatable object to another. Intrinsic
subroutines cannot be passed as actual arguments.

Syntax
CALL MOVE_ALLOC (from,to [, stat, errmsg])

from (Input; output) Can be of any type, type parameters, corank, and
rank; it must be allocatable.

Intel® Fortran Compiler Classic and Intel® Fortran Compiler Developer Guide and Reference 1

1709

to (Output) Must be type compatible with from and have the same rank
and corank; it must be allocatable. It must be polymorphic if from is
polymorphic. Each nondeferred type parameter of the declared type of
to must have the same value as the corresponding type parameter of
the declared type of from. For more information about type
compatibility, see the description in CLASS.

stat (Output, optional) Must be a non-coindexed integer scalar with a
decimal exponent range of at least 4 (KIND=2) or greater.

errmsg (Input; output; optional) Must be a non-coindexed default character
variable.

When the execution of MOVE_ALLOC is successful, or if STAT is assigned the value STAT_FAILED_IMAGE, the
following occurs:

• If to is currently allocated, it is deallocated.
• If from is allocated, to becomes allocated with the same type, type parameters, array bounds, and values

as from.
• from is deallocated.

If to has the TARGET attribute, any pointer associated with from at the time of the call to MOVE_ALLOC
becomes correspondingly associated with to. If to does not have the TARGET attribute, the pointer
association status of any pointer associated with from on entry becomes undefined.

During execution of MOVE_ALLOC, the internal descriptor contents are copied from from to to, so that the
storage pointed to by to is the storage that from used to point to.

Typically, MOVE_ALLOC is used to provide an efficient way to reallocate a variable to a larger size without
copying the data twice.

A reference to MOVE_ALLOC that has a coarray from argument has an implicit synchronization of all active
images of the current team. No image proceeds until all active images of the current team have completed
execution of the reference. If the current team contains any images that have stopped or failed, an error
condition occurs.

If the procedure reference is successful, stat becomes defined with the value zero.

If an error condition occurs and stat is not specified, error termination is initiated. If stat is present and the
current team contains an image that has stopped, stat becomes defined with the value
STAT_STOPPED_IMAGE from the intrinsic module ISO_FORTRAN_ENV. Otherwise, if stat is present, the
current team contains a failed image, and no other error condition occurs, stat becomes defined with the
value STAT_FAILED_IMAGE from the intrinsic module ISO_FORTRAN_ENV. Otherwise, stat becomes defined
with a positive integer value different from STAT_STOPPED_IMAGE and STAT_FAILED_IMAGE.

The definition status of errmsg, if present, remains unchanged if the execution of the reference is successful.
If errmsg is present and an error condition occurs, errmsg becomes defined with an explanatory message
describing the error.

Example

The following shows an example of how to increase the allocated size of X and keep the old values with only
one copy of the old values. Using only assignment, a temporary variable named Y will be allocated and X
assigned to Y. Then X will be deallocated and reallocated to be twice the size; then Y will be assigned to the
first half of X. Finally, the temporary Y is deallocated.

 ! This program uses MOVE_ALLOC to make an allocated array X bigger and
 ! keep the old values of X in the variable X. Only one copy of the old values
 ! of X is needed.

 1 Intel® Fortran Compiler Classic and Intel® Fortran Compiler Developer Guide and Reference

1710

 integer :: I, N = 2
 real, allocatable :: X(:), Y(:)
 allocate (X(N), Y(2*N)) ! Y is twice as big as X
 X = (/(I,I=1,N)/) ! put "old values" into X
 Y = -1 ! put different "old values" into Y
 print *, ' allocated of X is ', allocated (X)
 print *, ' allocated of Y is ', allocated (Y)
 print *, ' old X is ', X
 print *, ' old Y is ', Y
 Y (1:N) = X ! copy all of X into the first half of Y
 ! this is the only copying of values required
 print *, ' new Y is ', Y
 call move_alloc (Y, X) ! X is now twice as big as it was, Y is
 ! deallocated, the values were not copied from Y to X
 print *, ' allocated of X is ', allocated (X)
 print *, ' allocated of Y is ', allocated (Y)
 print *, ' new X is ', X
 end

The following shows the output for the above example:

 allocated of X is T
 allocated of Y is T
 old X is 1.000000 2.000000
 old Y is -1.000000 -1.000000 -1.000000 -1.000000
 new Y is 1.000000 2.000000 -1.000000 -1.000000
 allocated of X is T
 allocated of Y is F
 new X is 1.000000 2.000000 -1.000000 -1.000000

See Also
ISO_FORTRAN_ENV Module

MVBITS
Elemental Intrinsic Subroutine (Generic): Copies
a sequence of bits (a bit field) from one location to
another. Intrinsic subroutines cannot be passed as
actual arguments.

Syntax
CALL MVBITS (from,frompos,len,to,topos)

from (Input) Integer. Can be of any integer type. It represents the location
from which a bit field is transferred.

frompos (Input) Can be of any integer type; it must not be negative. It
identifies the first bit position in the field transferred from from.
frompos + len must be less than or equal to BIT_SIZE(from).

len (Input) Can be of any integer type; it must not be negative. It
identifies the length of the field transferred from from.

to (Input; output) Can be of any integer type, but must have the same
kind parameter as from. It represents the location to which a bit field
is transferred. to is set by copying the sequence of bits of length len,
starting at position frompos of from to position topos of to. No other
bits of to are altered.

Intel® Fortran Compiler Classic and Intel® Fortran Compiler Developer Guide and Reference 1

1711

topos (Input) Can be of any integer type; it must not be negative. It
identifies the starting position (within to) for the bits being
transferred. topos + len must be less than or equal to BIT_SIZE(to).

For more information on bit functions, see Bit Functions.

The model for the interpretation of an integer value as a sequence of bits is shown in Model for Bit Data.

You can also use the following specific routines:

BMVBITS Arguments from and to must be INTEGER(1).

HMVBITS Arguments from and to must be INTEGER(2).

IMVBITS Arguments from and to must be INTEGER(2).

JMVBITS Arguments from and to must be INTEGER(4).

KMVBITS Arguments from and to must be INTEGER(8).

Example

If TO has the initial value of 6, its value after a call to MVBITS(7, 2, 2, TO, 0) is 5.

The following shows another example:

 INTEGER(1) :: from = 13 ! 00001101
 INTEGER(1) :: to = 6 ! 00000110
 CALL MVBITS(from, 2, 2, to, 0) ! returns to = 00000111
 END

See Also
BIT_SIZE
IBCLR
IBSET
ISHFT
ISHFTC

NAMELIST
Statement: Associates a name with a list of
variables. This group name can be referenced in some
input/output operations.

Syntax
NAMELIST /group/ var-list[[,] /group/ var-list]...

group Is the name of the group.

var-list Is a list of variables (separated by commas) that are to be associated
with the preceding group name. The variables can be of any data
type.

Description

The namelist group name is used by namelist I/O statements instead of an I/O list. The unique group name
identifies a list whose entities can be modified or transferred.

A variable can appear in more than one namelist group.

 1 Intel® Fortran Compiler Classic and Intel® Fortran Compiler Developer Guide and Reference

1712

Each variable in var-list must be accessed by use or host association, or it must have its type, type
parameters, and shape explicitly or implicitly specified in the same scoping unit. If the variable is implicitly
typed, it can appear in a subsequent type declaration only if that declaration confirms the implicit typing.

You cannot specify an assumed-size array in a namelist group.

Only the variables specified in the namelist can be read or written in namelist I/O. It is not necessary for the
input records in a namelist input statement to define every variable in the associated namelist.

The order of variables in the namelist controls the order in which the values appear on namelist output. Input
of namelist values can be in any order.

If the group name has the PUBLIC attribute, no item in the variable list can have the PRIVATE attribute.

The group name can be specified in more than one NAMELIST statement in a scoping unit. The variable list
following each successive appearance of the group name is treated as a continuation of the list for that group
name.

Example

In the following example, D and E are added to the variables A, B, and C for group name LIST:

NAMELIST /LIST/ A, B, C

NAMELIST /LIST/ D, E
In the following example, two group names are defined:

CHARACTER*30 NAME(25)
NAMELIST /INPUT/ NAME, GRADE, DATE /OUTPUT/ TOTAL, NAME

Group name INPUT contains variables NAME, GRADE, and DATE. Group name OUTPUT contains variables
TOTAL and NAME.

The following shows another example:

 NAMELIST /example/ i1, l1, r4, r8, z8, z16, c1, c10, iarray
 ! The corresponding input statements could be:
 &example
 i1 = 11
 l1 = .TRUE.
 r4 = 24.0
 r8 = 28.0d0
 z8 = (38.0, 0.0)
 z16 = (316.0d0, 0.0d0)
 c1 = 'A'
 c10 = 'abcdefghij'
 iarray(8) = 41, 42, 43
 /

A sample program, NAMELIST.F90, is included in the <install-dir>/samples subdirectory.

See Also
READ
WRITE
Namelist Specifier
Namelist Input
Namelist Output

Intel® Fortran Compiler Classic and Intel® Fortran Compiler Developer Guide and Reference 1

1713

NARGS
Inquiry Intrinsic Function (Specific): Returns the
total number of command-line arguments, including
the command. This function cannot be passed as an
actual argument.

Syntax
result = NARGS()

Results

The result type is INTEGER(4). The result is the number of command-line arguments, including the
command. For example, NARGS returns 4 for the command-line invocation of PROG1 -g -c -a.

Example

 INTEGER(2) result
 result = RUNQQ('myprog', '-c -r')
 END

 ! MYPROG.F90 responds to command switches -r, -c,
 ! and/or -d
 INTEGER(4) count, num, i, status
 CHARACTER(80) buf
 REAL r1 / 0.0 /
 COMPLEX c1 / (0.0,0.0) /
 REAL(8) d1 / 0.0 /

 num = 5
 count = NARGS()
 DO i = 1, count-1
 CALL GETARG(i, buf, status)
 IF (status .lt. 0) THEN
 WRITE (*,*) 'GETARG error - exiting'
 EXIT
 END IF
 IF (buf(2:status) .EQ.'r') THEN
 r1 = REAL(num)
 WRITE (*,*) 'r1 = ',r1
 ELSE IF (buf(2:status) .EQ.'c') THEN
 c1 = CMPLX(num)
 WRITE (*,*) 'c1 = ', c1
 ELSE IF (buf(2:status) .EQ.'d') THEN
 d1 = DBLE(num)
 WRITE (*,*) 'd1 = ', d1
 ELSE
 WRITE(*,*) 'Invalid command switch: ', buf (1:status)
 END IF
 END DO
 END

See Also
GETARG
IARGC
COMMAND_ARGUMENT_COUNT
GET_COMMAND
GET_COMMAND_ARGUMENT

 1 Intel® Fortran Compiler Classic and Intel® Fortran Compiler Developer Guide and Reference

1714

NEAREST
Elemental Intrinsic Function (Generic): Returns
the nearest different number (representable on the
processor) in a given direction.

Syntax
result = NEAREST (x, s)

x (Input) Must be of type real.

s (Input) Must be of type real and nonzero.

Results

The result type and kind are the same as x. The result has a value equal to the machine representable
number that is different from and nearest to x, in the direction of the infinity with the same sign as s.

Example

If 3.0 and 2.0 are REAL(4) values, NEAREST (3.0, 2.0) has the value 3 + 2 -22, which equals approximately
3.0000002. (For more information on the model for REAL(4), see Model for Real Data.

The following shows another example:

 REAL(4) r1
 REAL(8) r2, result
 r1 = 3.0
 result = NEAREST (r1, -2.0)
 WRITE(*,*) result ! writes 2.999999761581421

 ! When finding nearest to REAL(8), can't see
 ! the difference unless output in HEX
 r2 = 111502.07D0
 result = NEAREST(r2, 2.0)
 WRITE(*,'(1x,Z16)') result ! writes 40FB38E11EB851ED
 result = NEAREST(r2, -2.0)
 WRITE(*,'(1x,Z16)') result ! writes 40FB38E11EB851EB
 END

See Also
EPSILON

NEW_LINE
Inquiry Intrinsic Function (Generic): Returns a
new line character.

Syntax

result = NEW_LINE(a)

a (Input) Must be of type default character. It may be a scalar or an
array.

Results

The result is a character scalar of length one with the same kind type parameter as a.

The result value is the ASCII newline character ACHAR(10).

Intel® Fortran Compiler Classic and Intel® Fortran Compiler Developer Guide and Reference 1

1715

NINT
Elemental Intrinsic Function (Generic): Returns
the nearest integer to the argument.

Syntax
result = NINT (a[,kind])

a (Input) Must be of type real.

kind (Input; optional) Must be a scalar integer constant expression.

Results

The result type is integer. If kind is present, the kind parameter of the result is that specified by kind;
otherwise, the kind parameter of the result is shown in the following table. If the processor cannot represent
the result value in the kind of the result, the result is undefined.

If a is greater than zero, NINT(a) has the value INT(a+ 0.5); if a is less than or equal to zero, NINT(a) has
the value INT(a- 0.5).

Specific Name Argument Type Result Type

ININT REAL(4) INTEGER(2)

NINT 1, 2 REAL(4) INTEGER(4)

KNINT REAL(4) INTEGER(8)

IIDNNT REAL(8) INTEGER(2)

IDNINT 2, 3 REAL(8) INTEGER(4)

KIDNNT REAL(8) INTEGER(8)

IIQNNT REAL(16) INTEGER(2)

IQNINT2, 4 REAL(16) INTEGER(4)

KIQNNT REAL(16) INTEGER(8)

1Or JNINT.
2The setting of compiler options specifying integer size can affect NINT, IDNINT, and IQNINT.
3Or JIDNNT. For compatibility with older versions of Fortran, IDNINT can also be specified as a generic
function.
4Or JIQNNT. For compatibility with older versions of Fortran, IQNINT can also be specified as a generic
function.

Example

NINT (3.879) has the value 4.

NINT (-2.789) has the value -3.

The following shows another example:

 INTEGER(4) i1, i2
 i1 = NINT(2.783) ! returns 3
 i2 = IDNINT(-2.783D0) ! returns -3

See Also
ANINT

 1 Intel® Fortran Compiler Classic and Intel® Fortran Compiler Developer Guide and Reference

1716

INT

NOFREEFORM
Statement: Specifies that source code is in fixed-
form format.

For more information, see FREEFORM and NOFREEFORM.

NOFUSION
General Compiler Directive: Prevents a loop from
fusing with adjacent loops.

Syntax
!DIR$ NOFUSION
The NOFUSION directive lets you fine tune your program on a loop-by-loop basis.

This directive should be placed immediately before the DO statement of the loop that should not be fused.

Example

Consider the following example that demonstrates use of the NOFUSION directive:

 subroutine sub (b,a,n)
 real a(n), b(n)
 do i=1,n
 a(i) = a(i) + b(i)
 enddo
!DIR$ NOFUSION
 do i=1,n
 a(i) = a(i) + 1
 enddo
 end

The following shows the same example, but it uses Standard Fortran array assignments, which allow implicit
arrays:

 subroutine sub (b,a,n)
 real a(n), b(n)
 a = a + b
!DIR$ NOFUSION
 a = a + 1
 end

See Also
General Compiler Directives

Syntax Rules for Compiler Directives
Rules for General Directives that Affect DO Loops
Rules for Loop Directives that Affect Array Assignment Statements

NON_RECURSIVE
Keyword: Specifies that a subroutine or function does
not call itself directly or indirectly.

For more information, see RECURSIVE and NON_RECURSIVE.

Intel® Fortran Compiler Classic and Intel® Fortran Compiler Developer Guide and Reference 1

1717

NOOPTIMIZE
Statement: Disables optimizations.

For more information, see OPTIMIZE and NOOPTIMIZE.

NOPREFETCH
Statement: Disables data prefetching.

For more information, see PREFETCH and NOPREFETCH.

NORM2
Transformational Intrinsic Function (Generic):
Returns the L2 norm of an array.

Syntax
result = NORM2 (x)
result = NORM2 (x, dim)

x (Input) Must be a real array.

dim (Input) Must be a scalar integer with a value in the range 1 <= dim
<= n, where n is the rank of x.

Results

The result is of the same type and kind parameters as x.

The result is a scalar if dim is not specified; otherwise, the result has rank n - 1 and shape [d1, d2, ..., ddim-1,
ddim+1, ..., dn], where n is the rank of x and [d1, d2, ..., dn] is the shape of x.

The result of NORM2 (x) has a value equal to a processor-dependent approximation to the generalized L2
norm of x, which is the square root of the sum of the squares of the elements of x.

The result of NORM2 (x, DIM=dim) has a value equal to that of NORM2 (x) if x has rank one.

Otherwise, the value of element (s1, s2, .., sdim-1, sdim+1, ... sn) of the result is equal to NORM2 (x (s1, s2, ..,
sdim-1, :, sdim+1, ... sn)).

It is recommended that the processor compute the result without undue overflow or underflow.

Example

The value of NORM2 ([3.0, 4.0]) is 5.0 (approximately).

If X has the value:

 [1.0 2.0]
 [3.0 4.0]

then the value of NORM2 (X, DIM=1) is approximately [3.162, 4.472] and the value of NORM2 (X, DIM=2) is
approximately [2.236,5.0].

NOSTRICT
Statement: Enables language features not found in
the language standard specified on the command line.

For more information, see STRICT and NOSTRICT.

 1 Intel® Fortran Compiler Classic and Intel® Fortran Compiler Developer Guide and Reference

1718

NOT
Elemental Intrinsic Function (Generic): Returns
the logical complement of the argument.

Syntax
result = NOT (i)

i (Input) Must be of type integer.

Results

The result type and kind are the same as i. The result value is obtained by complementing i bit-by-bit
according to the following truth table:

INOT (I)
 1 0
 0 1

The model for the interpretation of an integer value as a sequence of bits is shown in Model for Bit Data.

Specific Name Argument Type Result Type

BNOT INTEGER(1) INTEGER(1)

INOT1 INTEGER(2) INTEGER(2)

JNOT INTEGER(4) INTEGER(4)

KNOT INTEGER(8) INTEGER(8)

1Or HNOT.

Example

If I has a value equal to 10101010 (base 2), NOT (I) has the value 01010101 (base 2).

The following shows another example:

 INTEGER(2) i(2), j(2)
 i = (/4, 132/) ! i(1) = 0000000000000100
 ! i(2) = 0000000010000100
 j = NOT(i) ! returns (-5,-133)
 ! j(1) = 1111111111111011
 ! j(2) = 1111111101111011

See Also
BTEST
IAND
IBCHNG
IBCLR
IBSET
IEOR
IOR
ISHA
ISHC
ISHL
ISHFT
ISHFTC

Intel® Fortran Compiler Classic and Intel® Fortran Compiler Developer Guide and Reference 1

1719

NOTHING
OpenMP* Fortran Compiler Directive: Provides
documentary clarity in conditionally compiled code or
conditional OpenMP* code. It has no effect on the
semantics or execution of the program. This feature is
only available for ifx.

Syntax

!$OMP NOTHING
The NOTHING directive is a utility directive that provides documentary clarity in conditionally compiled code
or conditional OpenMP code. The statement by itself does nothing and has no effect on program results or
execution sequence.

The directive is pure, so it can appear in a Fortran PURE procedure.

In a conditional context, the NOTHING directive can be used to verify that no OpenMP actions are taken in
that conditional block of code.

Example

The following subroutine tests the loop trip count. If it is sufficiently large, a parallelized, vectorized loop is
executed. If the loop trip count is small, no OpenMP transformation is performed, as noted by use of the
OpenMP NOTHING directive. Otherwise, an OpenMP SIMD directive is applied to vectorize the loop.

 SUBROUTINE sub (a, b, c, d, n)
 INTEGER :: i, n
 REAL,DIMENSION(n) :: a, b, c, d
 IF (n > 4096)
 !$OMP PARALLEL DO SIMD
 DO i = 1, n
 a(i) = a(i) + b(i) * c(i) – d(i)
 END DO
 !$OMP END PARALLEL DO SIMD
 ELSE IF (N < 4)
 !$OMP NOTHING ! Run a scalar loop
 DO i = 1, n
 a(i) = a(i) + b(i) * c(i) – d(i)
 END DO
 ELSE
 !$OMP SIMD
 DO i = 1, n
 a(i) = a(i) + b(i) * c(i) – d(i)
 END DO
 !$OMP END SIMD
 END SUBROUTINE sub

See Also
OpenMP Fortran Compiler Directives
Syntax Rules for Compiler Directives

NOUNROLL
Statement: Disables the unrolling of a DO loop.

For more information, see UNROLL and NOUNROLL.

 1 Intel® Fortran Compiler Classic and Intel® Fortran Compiler Developer Guide and Reference

1720

NOUNROLL_AND_JAM
Statement: Hints to the compiler to disable loop
unrolling and jamming.

For more information, see UNROLL_AND_JAM and NOUNROLL_AND_JAM.

NOVECTOR
Statement: Disables vectorization of a DO loop.

For more information, see VECTOR and NOVECTOR.

NOWAIT Clause
Parallel Directive Clause: Specifies that threads
may resume execution before the execution of the
region completes.

Syntax

NOWAIT
When you specify this clause, it removes the synchronization barrier implied at the end of the region.

Note that NOWAIT can also be specified as a keyword in several directives.

At most one NOWAIT clause or keyword can appear in a directive that allows the clause or keyword.

If the NOWAIT clause appears in the beginning directive of a construct, the NOWAIT keyword cannot appear
in the end directive of the same construct. If a NOWAIT keyword appears in the END directive of a construct,
a NOWAIT clause cannot appear in the matching directive that begins the construct.

NULL
Transformational Intrinsic Function (Generic):
Initializes a pointer as disassociated when it is
declared.

Syntax
result = NULL ([mold])

mold (Optional) Must be a pointer; it can be of any type. Its pointer
association status can be associated, disassociated, or undefined. If its
status is associated, the target does not have to be defined with a
value.

Results

The result type and kind are the same as mold, if present; otherwise, it is determined as follows:

If NULL () Appears... Type is Determined From...

On the right side of pointer assignment The pointer on the left side

As initialization for an object in a declaration The object

As default initialization for a component The component

In a structure constructor The corresponding component

As an actual argument The corresponding dummy argument

Intel® Fortran Compiler Classic and Intel® Fortran Compiler Developer Guide and Reference 1

1721

If NULL () Appears... Type is Determined From...

In a DATA statement The corresponding pointer object

The result is a pointer with disassociated association status.

Caution
If you use module IFWIN or IFWINTY, you will have a name conflict if you use the NULL
intrinsic. To avoid this problem, rename the integer parameter constant NULL to something
else; for example:

 USE IFWIN, NULL0 => NULL
This example lets you use both NULL0 and NULL() in the same program unit with no conflict.

Example

Consider the following:

 INTEGER, POINTER :: POINT1 => NULL()
This statement defines the initial association status of POINT1 to be disassociated.

NULLIFY
Statement: Disassociates a pointer from a target.

Syntax
NULLIFY (pointer-object[,pointer-object]...)

pointer-object Is a structure component or the name of a variable; it must be a
pointer (have the POINTER attribute).

Description

The initial association status of a pointer is undefined. You can use NULLIFY to initialize an undefined pointer,
giving it disassociated status. Then the pointer can be tested using the intrinsic function ASSOCIATED.

Example

The following is an example of the NULLIFY statement:

 REAL, TARGET :: TAR(0:50)
 REAL, POINTER :: PTR_A(:), PTR_B(:)
 PTR_A => TAR
 PTR_B => TAR
 ...
 NULLIFY(PTR_A)

After these statements are executed, PTR_A will have disassociated status, while PTR_B will continue to be
associated with variable TAR.

The following shows another example:

! POINTER2.F90 Pointing at a Pointer and Target
!DIR$ FIXEDFORMLINESIZE:80

 REAL, POINTER :: arrow1 (:)
 REAL, POINTER :: arrow2 (:)
 REAL, ALLOCATABLE, TARGET :: bullseye (:)

 1 Intel® Fortran Compiler Classic and Intel® Fortran Compiler Developer Guide and Reference

1722

 ALLOCATE (bullseye (7))
 bullseye = 1.
 bullseye (1:7:2) = 10.
 WRITE (*,'(/1x,a,7f8.0)') 'target ',bullseye

 arrow1 => bullseye
 WRITE (*,'(/1x,a,7f8.0)') 'pointer',arrow1

 arrow2 => arrow1
 IF (ASSOCIATED(arrow2)) WRITE (*,'(/a/)') ' ARROW2 is pointed.'
 WRITE (*,'(1x,a,7f8.0)') 'pointer',arrow2

 NULLIFY (arrow2)
 IF (.NOT.ASSOCIATED(arrow2)) WRITE (*,'(/a/)') ' ARROW2 is not pointed.'
 WRITE (*,'(1x,a,7f8.0)') 'pointer',arrow1
 WRITE (*,'(/1x,a,7f8.0)') 'target ',bullseye

 END

See Also
ALLOCATE
ASSOCIATED
DEALLOCATE
POINTER
TARGET
NULL
Pointer Assignments
Dynamic Allocation

NUM_IMAGES
Transformational Intrinsic Function (Generic):
Returns the number of images on the current or
specified team.

Syntax
result = NUM_IMAGES()
result = NUM_IMAGES (team)result = NUM_IMAGES (team_number)

team (Input) Must be a scalar of type TEAM_TYPE defined in the intrinsic
module ISO_FORTRAN_ENV. Fortran 2018 requires the team specified
by team to be the current or an ancestor team. ifx and ifort accept
any team variable defined by a FORM TEAM statement, and will
diagnose use of a team variable which does not describe the current
or an ancestor team with a runtime message when the
check standard-behavior compiler option is selected.

team_number (Input) Must be an integer scalar. It must identify the initial team (-1),
or a valid team number of a team created by the same execution of
the FORM TEAM statement that created the current team executing
the function reference (a sibling of the current team).

Results

The result type is default integer. The result is the number of images on the current or specified team.

Intel® Fortran Compiler Classic and Intel® Fortran Compiler Developer Guide and Reference 1

1723

If neither team nor team_number are specified, the team is the current team. team and team_number may
not both be specified.

You can specify a compiler option or environment variable to modify the number of images. If both are
specified, the environment variable setting overrides the compiler option setting.

A compiler option must be specified to enable coarrays. If it is not specified and you use this intrinsic
function, an error occurs.

Example

In the following example, image 1 is used to read data. The other images then copy the data:

REAL :: R[*]

IF (THIS_IMAGE()==1) THEN
 READ (7,*) R
 DO I = 2, NUM_IMAGES()
 R[I] = R
 END DO
END IF
SYNC ALL

See Also
FORM TEAM

O to P
This section describes language features that start with O or P.

O to P
OBJCOMMENT
General Compiler Directive: Specifies a library
search path in an object file.

Syntax
!DIR$ OBJCOMMENT LIB: library

library Is a character constant specifying the name and, if necessary, the
path of the library that the linker is to search.

The linker searches for the library named in OBJCOMMENT as if you named it on the command line, that is,
before default library searches. You can place multiple library search directives in the same source file. Each
search directive appears in the object file in the order it is encountered in the source file.

If the OBJCOMMENT directive appears in the scope of a module, any program unit that uses the module also
contains the directive, just as if the OBJCOMMENT directive appeared in the source file using the module.

If you want to have the OBJCOMMENT directive in a module, but do not want it in the program units that use
the module, place the directive outside the module that is used.

Example

 ! MOD1.F90
 MODULE a
 !DIR$ OBJCOMMENT LIB: "opengl32.lib"
 END MODULE a

 ! MOD2.F90
 !DIR$ OBJCOMMENT LIB: "graftools.lib"
 MODULE b

 1 Intel® Fortran Compiler Classic and Intel® Fortran Compiler Developer Guide and Reference

1724

 !
 END MODULE b

 ! USER.F90
 PROGRAM go
 USE a ! library search contained in MODULE a
 ! included here
 USE b ! library search not included
 END

See Also
General Compiler Directives
Syntax Rules for Compiler Directives
Equivalent Compiler Options

OPEN
Statement: Connects an external file to a unit,
creates a new file and connects it to a unit, creates a
preconnected file, or changes certain properties of a
connection.

Syntax
OPEN ([UNIT=] io-unit[, FILE= name] [, ERR= label] [, IOMSG=msg-var] [, IOSTAT=i-
var],slist)

io-unit Is an external unit specifier.

name Is a character or numeric expression specifying the name of the file to
be connected. For more information, see FILE Specifier.

label Is the label of the branch target statement that receives control if an
error occurs. For more information, see Branch Specifiers.

msg-var Is a scalar default character variable that is assigned an explanatory
message if an I/O error occurs. For more information, see I/O
Message Specifier.

i-var Is a scalar integer variable that is defined as a positive integer (the
number of the error message) if an error occurs, a negative integer if
an end-of-file record is encountered, and zero if no error occurs. For
more information, see I/O Status Specifier.

slist Is one or more of the following OPEN specifiers in the form specifier=
value or specifier (each specifier can appear only once):

ACCESS DECIMAL NAME ROUND

ACTION DEFAULTFILE NEWUNIT SHARE

ASSOCIATEVA
RIABLE

DELIM NOSHARED SHARED

ASYNCHRONO
US

DISPOSE ORGANIZATIO
N

SIGN

BLANK ENCODING PAD STATUS

BLOCKSIZE FILE POSITION TITLE

Intel® Fortran Compiler Classic and Intel® Fortran Compiler Developer Guide and Reference 1

1725

BUFFERCOUNT FORM READONLY TYPE

BUFFERED IOFOCUS RECL USEROPEN

CARRIAGECON
TROL

MAXREC RECORDSIZE

CONVERT MODE RECORDTYPE

The OPEN specifiers and their acceptable values are summarized in
the OPEN Statement Overview.

The control specifiers that can be specified in an OPEN statement are
discussed in I/O Control List in the Language Reference.

Description

The control specifiers ([UNIT=] io-unit, ERR= label, and IOSTAT= i-var) and OPEN specifiers can appear
anywhere within the parentheses following OPEN. However, if the UNIT specifier is omitted, the io-unit must
appear first in the list.

If you specify BLANK=, DECIMAL=, PAD=, ROUND=, or SIGN=, you must also specify FMT= or NML=.

If you specify ID=, you must also specify ASYNCHRONOUS='YES'.

Specifier values that are scalar numeric expressions can be any integer or real expression. The value of the
expression is converted to integer data type before it is used in the OPEN statement.

If the NEWUNIT= specifier does not appear, an io-unit must be specified. If the keyword UNIT= is omitted,
the io-unit must be first in the control list.

If the NEWUNIT= specifier appears, an io-unit must not be specified.

If the NEWUNIT= specifier appears, either the FILE= specifier or the STATUS=SCRATCH specifier must also
appear.

Only one unit at a time can be connected to a file, but multiple OPENs can be performed on the same unit. If
an OPEN statement is executed for a unit that already exists, the following occurs:

• If FILE is not specified, or FILE specifies the same file name that appeared in a previous OPEN statement,
the current file remains connected.

If the file names are the same, the values for the BLANK, CARRIAGECONTROL, CONVERT, DELIM,
DISPOSE, ERR, IOSTAT, and PAD specifiers can be changed. Other OPEN specifier values cannot be
changed, and the file position is unaffected.

• If FILE specifies a different file name, the previous file is closed and the new file is connected to the unit.

The ERR and IOSTAT specifiers from any previously executed OPEN statement have no effect on any
currently executing OPEN statement. If an error occurs, no file is opened or created.

Secondary operating system messages do not display when IOSTAT is specified. To display these messages,
remove IOSTAT or use a platform-specific method.

Example

You can specify character values at runtime by substituting a character expression for a specifier value in the
OPEN statement. The character value can contain trailing blanks but not leading or embedded blanks; for
example:

 CHARACTER*6 FINAL /' '/
 ...
 IF (expr) FINAL = 'DELETE'
 OPEN (UNIT=1, STATUS='NEW', DISP=FINAL)

 1 Intel® Fortran Compiler Classic and Intel® Fortran Compiler Developer Guide and Reference

1726

The following statement creates a new sequential formatted file on unit 1 with the default file name fort.1:

 OPEN (UNIT=1, STATUS='NEW', ERR=100)
The following example opens the existing file /usr/users/someone/test.dat:

 OPEN (unit=10, DEFAULTFILE='/usr/users/someone/', FILE='test.dat',
 1 FORM='FORMATTED', STATUS='OLD')

The following example opens a new file:

 ! Prompt user for a filename and read it:
 CHARACTER*64 filename
 WRITE (*, '(A\)') ' enter file to create: '
 READ (*, '(A)') filename
 ! Open the file for formatted sequential access as unit 7.
 ! Note that the specified access need not have been specified,
 ! since it is the default (as is "formatted").
 OPEN (7, FILE = filename, ACCESS = 'SEQUENTIAL', STATUS = 'NEW')

The following example opens an existing file called DATA3.TXT:

 ! Open a file created by an editor, "DATA3.TXT", as unit 3:
 OPEN (3, FILE = 'DATA3.TXT')

See Also
READ
WRITE
CLOSE
FORMAT
INQUIRE
OPEN Statement Overview

OPTIONAL
Statement and Attribute: Permits dummy
arguments to be omitted in a procedure reference.

Syntax
The OPTIONAL attribute can be specified in a type declaration statement or an OPTIONAL statement, and
takes one of the following forms:
Type Declaration Statement:

type,[att-ls,] OPTIONAL [, att-ls] :: d-arg[, d-arg]...
Statement:

OPTIONAL [::] d-arg[, d-arg] ...

type Is a data type specifier.

att-ls Is an optional list of attribute specifiers.

d-arg Is the name of a dummy argument.

Description

The OPTIONAL attribute can only appear in the scoping unit of a subprogram or an interface body, and can
only be specified for dummy arguments. If the procedure has the BIND attribute, a dummy argument with
the OPTIONAL attribute cannot also have the VALUE attribute.

Intel® Fortran Compiler Classic and Intel® Fortran Compiler Developer Guide and Reference 1

1727

A dummy argument is "present" if it associated with an actual argument that is itself present. A dummy
argument that is not optional must be present. You can use the PRESENT intrinsic function to determine
whether an optional dummy argument is associated with an actual argument.

To call a procedure that has an optional argument, you must use an explicit interface.

If argument keywords are not used, argument association is positional. The first dummy argument becomes
associated with the first actual argument, and so on. If argument keywords are used, arguments are
associated by the keyword name, so actual arguments can be in a different order than dummy arguments. A
keyword is required for an argument only if a preceding optional argument is omitted or if the argument
sequence is changed.

Example

The following example shows a type declaration statement specifying the OPTIONAL attribute:

SUBROUTINE TEST(A)
REAL, OPTIONAL, DIMENSION(-10:2) :: A
END SUBROUTINE

The following is an example of the OPTIONAL statement:

SUBROUTINE TEST(A, B, L, X)
 OPTIONAL :: B
 INTEGER A, B, L, X
 IF (PRESENT(B)) THEN ! Printing of B is conditional
 PRINT *, A, B, L, X ! on its presence
 ELSE
 PRINT *, A, L, X
 ENDIF
END SUBROUTINE

INTERFACE
 SUBROUTINE TEST(ONE, TWO, THREE, FOUR)
 INTEGER ONE, TWO, THREE, FOUR
 OPTIONAL :: TWO
 END SUBROUTINE
END INTERFACE

INTEGER I, J, K, L
I = 1
J = 2
K = 3
L = 4

CALL TEST(I, J, K, L) ! Prints: 1 2 3 4
CALL TEST(I, THREE=K, FOUR=L) ! Prints: 1 3 4
END

Note that in the second call to subroutine TEST, the second positional (optional) argument is omitted. In this
case, all following arguments must be keyword arguments.

The following shows another example:

SUBROUTINE ADD (a,b,c,d)
 REAL a, b, d
 REAL, OPTIONAL :: c
 IF (PRESENT(c)) THEN
 d = a + b + c + d
 ELSE

 1 Intel® Fortran Compiler Classic and Intel® Fortran Compiler Developer Guide and Reference

1728

 d = a + b + d
 END IF
END SUBROUTINE

Consider the following:

SUBROUTINE EX (a, b, c)
REAL, OPTIONAL :: b,c

This subroutine can be called with any of the following statements:

CALL EX (x, y, z) !All 3 arguments are passed.
CALL EX (x) !Only the first argument is passed.
CALL EX (x, c=z) !The first optional argument is omitted.

Note that you cannot use a series of commas to indicate omitted optional arguments, as in the following
example:

CALL EX (x,,z) !Invalid statement.
This results in a compile-time error.

See Also
PRESENT
Argument Keywords in Intrinsic Procedures
Optional Arguments
Argument Association
Type Declarations
Compatible attributes

OPTIMIZE and NOOPTIMIZE
General Compiler Directive: Enables or disables
optimizations for the program unit.

Syntax
!DIR$ OPTIMIZE[: n]
!DIR$ NOOPTIMIZE

n Is the number denoting the optimization level. The number can be 0,
1, 2, or 3, which corresponds to compiler options O0, O1, O2, and O3.
If n is omitted, the default is 2, which corresponds to option O2.

The OPTIMIZE and NOOPTIMIZE directives can only appear once at the top of a procedure program unit. A
procedure program unit is a main program, an external subroutine or function, or a module. OPTIMIZE and
NOOPTIMIZE cannot appear between program units or in a block data program unit. They do not affect any
modules invoked with the USE statement in the program unit that contains them. They do affect CONTAINed
procedures that do not include an explicit OPTIMIZE or NOOPTIMIZE directive.

NOOPTIMIZE is the same as OPTIMIZE:0. They are both equivalent to −O0 (Linux*) and /Od (Windows*).

The procedure is compiled with an optimization level equal to the smaller of n and the optimization level
specified by the O compiler option on the command line. For example, if the procedure contains the directive
NOOPTIMIZE and the program is compiled with compiler option O3, this procedure is compiled at O0 while the
rest of the program is compiled at O3.

See Also
General Compiler Directives
Syntax Rules for Compiler Directives

Intel® Fortran Compiler Classic and Intel® Fortran Compiler Developer Guide and Reference 1

1729

O compiler option

OPTIONS Directive
General Compiler Directive: Affects data alignment
and warnings about data alignment. Also controls
whether a target attribute is assigned to a section of
program declarations.

Syntax

!DIR$ OPTIONS option[option]
...
!DIR$ END OPTIONS

option Is one (or more) of the following:

/WARN=[NO]ALIGNMENT Controls whether warnings are issued by the
compiler for data that is not naturally
aligned. By default, you receive compiler
messages when misaligned data is
encountered (/WARN=ALIGNMENT).

/[NO]ALIGN[= p] Controls alignment of fields in record
structures and data items in common blocks.
The fields and data items can be naturally
aligned (for performance reasons) or they
can be packed together on arbitrary byte
boundaries.

p Is a specifier with one of the
following forms:

[class=]rule
(class= rule,...)
ALL
NONE

class Is one of the
following
keywords:

• COMMONS: For
common
blocks

• RECORDS: For
records

• STRUCTURES:
A synonym
for RECORDS

rule Is one of the
following
keywords:

 1 Intel® Fortran Compiler Classic and Intel® Fortran Compiler Developer Guide and Reference

1730

PAC
KED

Packs
fields in
records
or data
items in
common
blocks on
arbitrary
byte
boundarie
s.

NAT
URA
L

Naturally
aligns
fields in
records
and data
items in
common
blocks on
up to 64-
bit
boundarie
s
(inconsist
ent with
the
Standard
Fortran).

This
keyword
causes
the
compiler
to
naturally
align all
data in a
common
block,
including
INTEGER(
KIND=8),
REAL(KIN
D=8),
and all
COMPLEX
data.

STA
NDA
RD

Naturally
aligns
data
items in

Intel® Fortran Compiler Classic and Intel® Fortran Compiler Developer Guide and Reference 1

1731

common
blocks on
up to 32-
bit
boundarie
s
(consiste
nt with
the
Standard
Fortran).

This
keyword
only
applies to
common
blocks;
so, you
can
specify /
ALIGN=C
OMMONS
=STANDA
RD, but
you
cannot
specify /
ALIGN=S
TANDARD
.

ALL Is the same as
specifying
OPTIONS /
ALIGN,
OPTIONS /
ALIGN=NATURAL
, and OPTIONS /
ALIGN=(RECORD
S=NATURAL,CO
MMONS=NATURA
L).

NONE Is the same as
specifying
OPTIONS /
NOALIGN,
OPTIONS /
ALIGN=PACKED,
and OPTIONS /

 1 Intel® Fortran Compiler Classic and Intel® Fortran Compiler Developer Guide and Reference

1732

ALIGN=(RECORD
S=PACKED,COM
MONS=PACKED).

The OPTIONS (and accompanying END OPTIONS) directives must come after OPTIONS, SUBROUTINE,
FUNCTION, and BLOCK DATA statements (if any) in the program unit, and before the executable part of the
program unit.

The OPTIONS directive supersedes the compiler option align.

For performance reasons, Intel® Fortran aligns local data items on natural boundaries. However,
EQUIVALENCE, COMMON, RECORD, and STRUCTURE data declaration statements can force misaligned data.
If /WARN=NOALIGNMENT is specified, warnings will not be issued if misaligned data is encountered.

NOTE
Misaligned data significantly increases the time it takes to execute a program. As the number of
misaligned fields encountered increases, so does the time needed to complete program execution.
Specifying /ALIGN (or compiler option align) minimizes misaligned data.

If you want aligned data in common blocks, do one of the following:

• Specify OPTIONS /ALIGN=COMMONS=STANDARD for data items up to 32 bits in length.
• Specify OPTIONS /ALIGN=COMMONS=NATURAL for data items up to 64 bits in length.
• Place source data declarations within the common block in descending size order, so that each data item

is naturally aligned.

If you want packed, unaligned data in a record structure, do one of the following:

• Specify OPTIONS /ALIGN=RECORDS=PACKED.
• Place source data declarations in the record structure so that the data is naturally aligned.

Example

Consider the following:

! directives can be nested up to 100 levels
 !DIR$ OPTIONS /ALIGN=PACKED ! Start of Group A
 declarations
 !DIR$ OPTIONS /ALIGN=RECO=NATU ! Start of nested Group B
 more declarations
 !DIR$ END OPTIONS ! End of Group B
 still more declarations
 !DIR$ END OPTIONS ! End of Group A

The OPTIONS specification for Group B only applies to RECORDS; common blocks within Group B will be
PACKED. This is because COMMONS retains the previous setting (in this case, from the Group A
specification).

See Also
General Compiler Directives
Syntax Rules for Compiler Directives
align compiler option

OPTIONS Statement
Statement: Overrides or confirms the compiler
options in effect for a program unit.

Intel® Fortran Compiler Classic and Intel® Fortran Compiler Developer Guide and Reference 1

1733

Syntax
OPTIONS option[option...]

option Is one of the following:

/ASSUME = [NO]UNDERSCORE

/CHECK = ALL

[NO]BOUNDS

NONE

/NOCHECK

/CONVERT = BIG_ENDIAN

CRAY

FDX

FGX

IBM

LITTLE_ENDIAN

NATIVE

VAXD

VAXG

/[NO]EXTEND_SOURCE

/[NO]F77

/[NO]I4

/[NO]RECURSIVE

Note that an option must always be preceded by a slash (/).

Some OPTIONS statement options are equivalent to compiler options.

The OPTIONS statement must be the first statement in a program unit, preceding the PROGRAM,
SUBROUTINE, FUNCTION, MODULE, and BLOCK DATA statements.

OPTIONS statement options override compiler options, but only until the end of the program unit for which
they are defined. If you want to override compiler options in another program unit, you must specify the
OPTIONS statement before that program unit.

Example

The following are valid OPTIONS statements:

 OPTIONS /CHECK=ALL/F77
 OPTIONS /I4

See Also
OPEN Statement CONVERT Method
OPTIONS Statement Method
For details on compiler options, see your Compiler Options reference

 1 Intel® Fortran Compiler Classic and Intel® Fortran Compiler Developer Guide and Reference

1734

OR
Elemental Intrinsic Function (Generic): Performs
a bitwise inclusive OR on its arguments.

See IOR.

Example

 INTEGER i
 i = OR(3, 10) ! returns 11

ORDER Clause
Parallel Directive Clause: Specifies an order of
execution for iterations of loops associated with a loop
directive. This feature is only available for ifx.

Syntax

ORDER ([order-modifier:] CONCURRENT)

order-modifier Is either REPRODUCIBLE or UNCONSTRAINED.

The ORDER clause provides an execution order schedule for iterations of loops associated with the loop
construct the ORDER clause appears in. CONCURRENT indicates that the iterations of the loop may execute in
any order, including concurrently.

The order-modifier affects the scheduling of loop iterations. If order-modifier is present and is
REPRODUCIBLE, or if order-modifier is not specified, the construct has a reproducible schedule. If order-
modifier is UNCONSTRAINED, the scheduling of loop iterations is not reproducible.

Inside a region that corresponds to a construct specifying the ORDER clause, the only constructs that are
permitted are LOOP, SIMD, PARALLEL, or a combined construct whose first construct is PARALLEL. The region
cannot contain calls to OpenMP* runtime API procedures, and it cannot contain calls to procedures that
contain OpenMP directives.

When a program references a THREADPRIVATE variable from within a region associated with a construct
specifying ORDER, the behavior is undefined.

See Also
Clauses used in Multiple OpenMP directives

ORDERED
OpenMP* Fortran Compiler Directive: Specifies a
block of code that the threads in a team must execute
in the natural order of the loop iterations, or, as a
stand-alone directive, it specifies cross-iteration
dependences in a doacross loop nest.

Syntax

It takes one of the following forms:

Form 1:

!$OMP ORDERED [clause [[,] clause]]
 loosely-structured-block
!$OMP END ORDERED
-or-

!$OMP ORDERED [clause [[,] clause]]

Intel® Fortran Compiler Classic and Intel® Fortran Compiler Developer Guide and Reference 1

1735

 strictly-structured-block
[!$OMP END ORDERED]
Form 2:

!$OMP ORDERED clause [[[,] clause]...]

Form 1 clause Is an optional clause. It can be one of the following:

• SIMD [keyword [, keyword]...]

Binds the ordered region to the innermost SIMD or worksharing
loop region. With ifort, you can specify one or more keywords to
apply an ordered region inside a SIMD loop. Possible values are:

• MONOTONIC (list [: linear-step])

The list is a comma-separated list of one or more integer scalar
variables. The linear-step is a positive, integer, scalar constant
expression. The linear-step expression must be invariant (it
must not be changed) during the execution of the associated
construct. If linear-step is omitted, a default value of 1 is used.

Multiple MONOTONIC keywords may appear; they are merged
into a single MONOTONIC list. You cannot specify multiple
MONOTONIC keywords with different linear-steps for the same
variable.

Each list item may have the POINTER attribute but not the
ALLOCATABLE attribute. Each list item must comply with
PRIVATE clause semantics.

• OVERLAP (expr)

The expr is an integer expression. It specifies a block of code
that has to be executed in scalar mode for overlapping loop
index values and in parallel for different loop index values within
the SIMD loop.

The OVERLAP keyword can appear no more than once in an
ORDERED directive.

• THREADS
Applies an ordered region inside a PARALLEL DO loop. If no clause
is specified, the directive behaves as if THREADS was specified.

At most one THREADS clause can appear in an ORDERED construct. At
most one SIMD clause can appear in an ORDERED construct.

Form 2 clause Is one of the following:

• DOACROSS (SOURCE : [OMP_CUR_ITERATION])
• DOACROSS (SINK : vec)
• DOACROSS (SINK : OMP_CUR_ITERATION – 1)
• DEPEND (SOURCE) - deprecated
• DEPEND (SINK : vec) - deprecated

The above DEPEND clauses have been deprecated and replaced by
DOACROSS clauses. The semantics of DEPEND and DOACROSS are
similar.

At most one DOACROSS clause can appear in an ORDERED construct
if SOURCE is specified.

 1 Intel® Fortran Compiler Classic and Intel® Fortran Compiler Developer Guide and Reference

1736

Either DOACROSS (SINK : vec) clauses or DOACROSS (SOURCE :)
clauses can appear in an ORDERED construct, but not both.

vec is an iteration vector that specifies the iteration of the loop or loop
nest that satisfies the dependency. If vec has n elements, the
innermost loop-associated construct that encloses the ORDERED
directive must specify an ORDERED clause whose parameter value is
also n.

The predefined dependence vector OMP_CUR_ITERATION specifies the
current iteration. If DOACROSS (SINK : OMP_CUR_ITERATION – 1)
appears in a triply nested loop with loop indices i, j, and k, the effect
is the same as if DOACROSS (SINK : i-1, j-1, k-1) was specified.

loosely-structured-block Is a structured block (section) of statements or constructs. You cannot
branch into or out of the block.

strictly-structured-block Is a Fortran BLOCK construct. You cannot branch into or out of the
BLOCK construct.

The binding thread set for an ORDERED construct is the current team. An ordered region binds to the
innermost enclosing loop region or the innermost enclosing SIMD region if the SIMD clause is present.

A doacross loop nest is a loop nest that has cross-iteration dependences. An iteration is dependent on one or
more lexicographically earlier iterations. The ORDERED clause parameter on a loop directive identifies the
loops associated with the doacross loop nest.

An ORDERED directive with no clause or with the THREADS clause specified can appear only in the dynamic
extent of a DO or PARALLEL DO directive. The DO directive to which the ordered section binds must have the
ORDERED clause specified.

An iteration of a loop using a DO directive must not execute the same ORDERED directive more than once,
and it must not execute more than one ORDERED directive.

One thread is allowed in an ordered section at a time. Threads are allowed to enter in the order of the loop
iterations. No thread can enter an ordered section until it can be guaranteed that all previous iterations have
completed or will never execute an ordered section. This sequentializes and orders code within ordered
sections while allowing code outside the section to run in parallel.

Ordered sections that bind to different DO directives are independent of each other.

If the SIMD clause is specified, the ordered regions encountered by any thread will use only a single SIMD
lane to execute the ordered regions in the order of the loop iterations.

You can only specify the SIMD clause (!$OMP ORDERED SIMD) within an !$OMP SIMD loop or an !$OMP
DECLARE SIMD procedure.

When a thread executing any subsequent iteration encounters an ORDERED construct with one or more
DOACROSS clauses specifying SINK, it waits until its dependences on all valid iterations specified by the
DOACCROSS clauses are satisfied before it completes execution of the ORDERED region. A specific
dependence is satisfied when a thread executing the corresponding iteration encounters an ORDERED
construct with a DOACCROSS clause specifying SOURCE.

For MONOTONIC (list: linear-step), the following rules apply:

• The value of the new list item on each iteration of the associated SIMD loop corresponds to the value of
the original list item before entering the associated loop, plus the number of the iterations for which the
conditional update happens prior to the current iteration, times linear-step.

• The value corresponding to the sequentially last iteration of the associated loop is assigned to the original
list item.

Intel® Fortran Compiler Classic and Intel® Fortran Compiler Developer Guide and Reference 1

1737

• A list item must not be used in statements that lexically precede the ORDERED SIMD to which it is bound,
that is, in the region from the OMP SIMD to the OMP ORDERED SIMD. A list item must not be modified
outside the ORDERED SIMD to which it is bound, that is, in the region from the OMP END ORDERED to the
OMP END SIMD.

NOTE
This construct is not supported within a TARGET or a DECLARE TARGET region if the target hardware is
spir64.

Examples

Ordered sections are useful for sequentially ordering the output from work that is done in parallel. Assuming
that a reentrant I/O library exists, the following program prints out the indexes in sequential order:

 !$OMP DO ORDERED SCHEDULE(DYNAMIC)
 DO I=LB,UB,ST
 CALL WORK(I)
 END DO
 ...
 SUBROUTINE WORK(K)
 !$OMP ORDERED
 WRITE(*,*) K
 !$OMP END ORDERED

Ordered SIMD sections are useful for resolving cross-iteration data dependencies in otherwise data-parallel
computations. For example, it may handle histogram updates such the following:

 !$OMP SIMD
 DO I=0,N
 AMOUNT = COMPUTE_AMOUNT(I)
 CLUSTER = COMPUTE_CLUSTER(I) ! Multiple I's may belong to the
 ! same cluster within SIMD chunk
 !$OMP ORDERED SIMD
 TOTALS(CLUSTER) = TOTALS(CLUSTER) + AMOUNT ! Requires ordering to
 ! process multiple updates
 ! to the same cluster
 !$OMP END ORDERED
 END DO
 !$OMP END SIMD

The MONOTONIC keyword in the OMP ORDERED SIMD directive specifies that the body of a loop must be
executed in the natural order of the loop iterations. In the following example, the block of code in the OMP
ORDERED SIMD is executed in the ascending, monotonic order of the loop index I:

 COUNT = 0
 !$OMP SIMD
 DO I = 1, N
 IF (COND(I)) THEN
 !$OMP ORDERED SIMD MONOTONIC (COUNT:1)
 A(COUNT) = A(COUNT) + B(I)
 COUNT = COUNT + 1
 B(I) = C(COUNT)
 !$OMP END ORDERED
 END IF
 END DO
 !$OMP END SIMD

 1 Intel® Fortran Compiler Classic and Intel® Fortran Compiler Developer Guide and Reference

1738

In the following example, the OVERLAP keyword specifies that the block of code after the OMP ORDERED
SIMD directive may contain overlap between the loop iterations:

 !$OMP SIMD
 DO I = 1, N
 INX = INDEX(I)
 !$OMP ORDERED SIMD OVERLAP (INX)
 A(INX) = A(INX) + B(I)
 !$OMP END ORDERED
 END DO
 !$OMP END SIMD

See Also
OpenMP Fortran Compiler Directives
Syntax Rules for Compiler Directives
Parallel Processing Model for information about Binding Sets

OUT_OF_RANGE
Elemental Intrinsic Function (Generic): Indicates
if a value can be safely converted to a specified type.

Syntax

result = OUT_OF_RANGE (value, mold [, round])

value (Input) Must be of type integer or real.

mold (Input) Must be a scalar of type real or integer. It need not be defined
if it is a variable.

round (Input; optional) Must be a scalar logical. round can only be present if
value is type real and mold is type integer.

Results

The result type is default logical.

If round is not present or has the value .false., and mold is an integer type, the result is .true. if value is a
NaN or an IEEE infinity, or if the integer with the largest magnitude between zero and value (inclusively) is
not representable by an object with the type and kind of mold.

If round has the value .true. and mold is an integer type, the result is .true. if value is a NaN or an IEEE
infinity, or if the integer value nearest value, or the integer of greater magnitude if the two integers are
equally near value, is not representable by an object with the type and kind of mold.

Otherwise, the result is .true. if value is a NaN or IEEE infinity that is not supported by an object of type and
kind of mold, or X is a finite number and the result of rounding value to the extended model for the kind of
mold has a magnitude larger than that of the largest finite number with the same size as value that can be
represented by objects with the type and kind of mold.

Example

If J8 is a variable with type INTEGER (KIND=1), OUT_OF_RANGE (-128.5, J8) will have the result .false. and
OUT_OF_RANGE (-128.5, J8, .TRUE.) will have the value .true..

PACK Directive
General Compiler Directive: Specifies the memory
alignment of derived-type items (and record structure
items).

Intel® Fortran Compiler Classic and Intel® Fortran Compiler Developer Guide and Reference 1

1739

Syntax
!DIR$ PACK[: {1 | 2 | 4 | 8}]
Items of derived types, unions, and structures are aligned in memory on the smaller of two sizes: the size of
the type of the item, or the current alignment setting. The current alignment setting can be 1, 2, 4, or 8
bytes. The default initial setting is 8 bytes (unless compiler option vms or align rec n bytes is specified). By
reducing the alignment setting, you can pack variables closer together in memory.

The PACK directive lets you control the packing of derived-type or record structure items inside your program
by overriding the current memory alignment setting.

For example, if PACK:1 is specified, all variables begin at the next available byte, whether odd or even.
Although this slightly increases access time, no memory space is wasted. If PACK:4 is specified, INTEGER(1),
LOGICAL(1), and all character variables begin at the next available byte, whether odd or even. INTEGER(2)
and LOGICAL(2) begin on the next even byte; all other variables begin on 4-byte boundaries.

If the PACK directive is specified without a number, packing reverts to the compiler option setting (if any), or
the default setting of 8.

The directive can appear anywhere in a program before the derived-type definition or record structure
definition. It cannot appear inside a derived-type or record structure definition.

Example

 ! Use 4-byte packing for this derived type
 ! Note PACK is used outside of the derived type definition
 !DIR$ PACK:4
 TYPE pair
 INTEGER a, b
 END TYPE
 ! revert to default or compiler option
 !DIR$ PACK

See Also
TYPE
STRUCTURE...END STRUCTURE
UNION...END UNION
General Compiler Directives
Syntax Rules for Compiler Directives
align:recnbytes compiler option
vms compiler option
Equivalent Compiler Options

PACK Function
Transformational Intrinsic Function (Generic):
Takes elements from an array and packs them into a
rank-one array under the control of a mask.

Syntax
result = PACK (array,mask[,vector])

array (Input) Must be an array. It may be of any data type.

mask (Input) Must be of type logical and conformable with array. It
determines which elements are taken from array.

 1 Intel® Fortran Compiler Classic and Intel® Fortran Compiler Developer Guide and Reference

1740

vector (Input; optional) Must be a rank-one array with the same type and
type parameters as array. Its size must be at least t, where t is the
number of true elements in mask. If mask is a scalar with value true,
vector must have at least as many elements as there are in array.

Elements in vector are used to fill out the result array if there are not
enough elements selected by mask.

Results

The result is a rank-one array with the same type and kind parameters as array. If vector is present, the size
of the result is that of vector. Otherwise, the size of the result is the number of true elements in mask, or the
number of elements in array (if mask is a scalar with value true).

Elements in array are processed in array element order to form the result array. Element i of the result is the
element of array that corresponds to the ith true element of mask. If vector is present and has more
elements than there are true values in mask, any result elements that are empty (because they were not
true according to mask) are set to the corresponding values in vector.

Example

N is the array

 [0 8 0]
 [0 0 0]
 [7 0 0].

PACK (N, MASK=N .NE. 0, VECTOR=(/1, 3, 5, 9, 11, 13/)) produces the result (7, 8, 5, 9, 11, 13).

PACK (N, MASK=N .NE. 0) produces the result (7, 8).

The following shows another example:

 INTEGER array(2, 3), vec1(2), vec2(5)
 LOGICAL mask (2, 3)
 array = RESHAPE((/7, 0, 0, -5, 0, 0/), (/2, 3/))
 mask = array .NE. 0
 ! array is 7 0 0 and mask is T F F
 ! 0 -5 0 F T F
 VEC1 = PACK(array, mask) ! returns (7, -5)
 VEC2 = PACK(array, array .GT. 0, VECTOR= (/1,2,3,4,5/))
 ! returns (7, 2, 3, 4, 5)

See Also
UNPACK

PACKTIMEQQ
Portability Subroutine: Packs time and date values.

Module

USE IFPORT

Syntax
CALL PACKTIMEQQ (timedate,iyr,imon,iday,ihr,imin,isec)

timedate (Output) INTEGER(4). Packed time and date information.

iyr (Input) INTEGER(2). Year (xxxxAD).

Intel® Fortran Compiler Classic and Intel® Fortran Compiler Developer Guide and Reference 1

1741

imon (Input) INTEGER(2). Month (1 - 12).

iday (Input) INTEGER(2). Day (1 - 31)

ihr (Input) INTEGER(2). Hour (0 - 23)

imin (Input) INTEGER(2). Minute (0 - 59)

isec (Input) INTEGER(2). Second (0 - 59)

The input values are interpreted as being in the time zone set on the local computer and following the
daylight savings rules for that time zone.

The packed time is the number of seconds since 00:00:00 Greenwich mean time, January 1, 1970. Because
packed time values can be numerically compared, you can use PACKTIMEQQ to work with relative date and
time values. Use UNPACKTIMEQQ to unpack time information. SETFILETIMEQQ uses packed time.

Example

 USE IFPORT
 INTEGER(2) year, month, day, hour, minute, second, &
 hund
 INTEGER(4) timedate
 CALL GETDAT (year, month, day)
 CALL GETTIM (hour, minute, second, hund)
 CALL PACKTIMEQQ (timedate, year, month, day, hour, &
 minute, second)
 END

See Also
UNPACKTIMEQQ
SETFILETIMEQQ
GETFILEINFOQQ
TIME portability routine

PARALLEL Directive for OpenMP
OpenMP* Fortran Compiler Directive: Defines a
parallel region.

Syntax

!$OMP PARALLEL [clause[[,] clause] ...]
 loosely-structured-block
!$OMP END PARALLEL
-or-

!$OMP PARALLEL [clause[[,] clause] ...]
 strictly-structured-block
[!$OMP END PARALLEL]

clause Is one or more of the following:

• ALLOCATE ([allocator :] list)
• COPYIN (list)
• DEFAULT (PRIVATE | FIRSTPRIVATE | SHARED | NONE)

 1 Intel® Fortran Compiler Classic and Intel® Fortran Compiler Developer Guide and Reference

1742

• FIRSTPRIVATE (list)
• IF ([PARALLEL:] scalar-logical-expression)
• NUM_THREADS (scalar_integer_expression)

Specifies the number of threads to be used in a parallel region. The
scalar_integer_expression must evaluate to a positive scalar
integer value. Only a single NUM_THREADS clause can appear in
the directive.

• PRIVATE (list)
• PROC_BIND (PRIMARY | MASTER | CLOSE | SPREAD)

Specifies a method for mapping the threads in the team to the
"places" in the current partition.

Once a thread is assigned to a place, the OpenMP* implementation
should not move it to another place.

PRIMARY instructs the execution environment to assign every
thread in the team to the same place as the primary thread.
MASTER has been deprecated and replaced by PRIMARY. CLOSE
instructs the execution environment to assign the threads to places
close to the place of the parent thread. SPREAD creates a sparse
distribution for a team of T threads among the P places of the
parent's place partition.

For CLOSE and SPREAD, the threads with the smallest numbers are
assigned starting with the place of the primary thread. For CLOSE,
threads are packed into consecutive places within the parent's
partition. For SPREAD, the partition of the primary thread is sub-
divided and threads in the team are assigned round-robin to those
subpartitions.

Only a single PROC_BIND clause can appear in the directive.
• REDUCTION ([reduction-modifier,]reduction-identifier : list)
• SHARED (list)

loosely-structured-block Is a structured block (section) of statements or constructs. You cannot
branch into or out of the block.

strictly-structured-block Is a Fortran BLOCK construct. You cannot branch into or out of the
BLOCK construct.

The PARALLEL and END PARALLEL directive pair must appear in the same routine in the executable section of
the code.

The END PARALLEL directive denotes the end of the parallel region. There is an implied barrier at this point.
Only the primary thread of the team continues execution at the end of a parallel region.

The number of threads in the team can be controlled by the NUM_THREADS clause, the environment variable
OMP_NUM_THREADS, or by calling the runtime library routine OMP_SET_NUM_THREADS from a serial
portion of the program.

NUM_THREADS supersedes the OMP_SET_NUM_THREADS routine, which supersedes the
OMP_NUM_THREADS environment variable. Subsequent parallel regions, however, are not affected unless
they have their own NUM_THREADS clauses.

Once specified, the number of threads in the team remains constant for the duration of that parallel region.

If the dynamic threads mechanism is enabled by an environment variable or a library routine, then the
number of threads requested by the NUM_THREADS clause is the maximum number to use in the parallel
region.

Intel® Fortran Compiler Classic and Intel® Fortran Compiler Developer Guide and Reference 1

1743

The code contained within the dynamic extent of the parallel region is executed on each thread, and the code
path can be different for different threads.

If a thread executing a parallel region encounters another parallel region, it creates a new team and becomes
the primary thread of that new team. By default, nested parallel regions are always serialized and executed
by a team of one thread.

A variable with LOCAL_INIT or SHARED locality in a DO CONCURRENT statement associated with a LOOP
directive that binds to the parallel region of this construct cannot appear in a PRIVATE or FIRST_PRIVATE
clause in the PARALLEL directive.

Example

You can use the PARALLEL directive in coarse-grain parallel programs. In the following example, each thread
in the parallel region decides what part of the global array X upon which to work based on the thread
number:

 !$OMP PARALLEL DEFAULT(PRIVATE) SHARED(X,NPOINTS)
 IAM = OMP_GET_THREAD_NUM()
 NP = OMP_GET_NUM_THREADS()
 IPOINTS = NPOINTS/NP
 CALL SUBDOMAIN(X,IAM,IPOINTS)
 !$OMP END PARALLEL

Assuming you previously used the environment variable OMP_NUM_THREADS to set the number of threads
to six, you can change the number of threads between parallel regions as follows:

 CALL OMP_SET_NUM_THREADS(3)
 !$OMP PARALLEL
 ...
 !$OMP END PARALLEL
 CALL OMP_SET_NUM_THREADS(4)
 !$OMP PARALLEL DO
 ...
 !$OMP END PARALLEL DO

See Also
OpenMP Fortran Compiler Directives
Syntax Rules for Compiler Directives
OpenMP* Runtime Library Routines for Fortran
PARALLEL DO
SHARED Clause
Parallel Processing Model for information about Binding Sets

PARALLEL and NOPARALLEL General Directives
General Compiler Directives: PARALLEL facilitates
auto-parallelization by assisting the compiler's
dependence analysis of the immediately following DO
loop. NOPARALLEL prevents this auto-parallelization.
This feature is only available for ifort.

Syntax

!DIR$ PARALLEL [clause[[,] clause] ...]
!DIR$ NOPARALLEL

clause Is one or more of the following:

• ALWAYS [ASSERT]

 1 Intel® Fortran Compiler Classic and Intel® Fortran Compiler Developer Guide and Reference

1744

• FIRSTPRIVATE (list)

Provides a superset of the functionality provided by the PRIVATE
clause. Variables that appear in a FIRSTPRIVATE list are subject to
PRIVATE clause semantics. In addition, private (local) copies of
each variable in the different iterations are initialized to the value
the variable had upon entering the parallel loop.

• LASTPRIVATE (list)

Provides a superset of the functionality provided by the PRIVATE
clause. Variables that appear in a LASTPRIVATE list are subject to
PRIVATE clause semantics. In addition, once the parallel loop is
exited, each variable has the value that resulted from the
sequentially last iteration of the parallel loop.

• NUM_THREADS (scalar_integer_expression)

Specifies the number of threads to be used to parallelize the
immediately following DO loop. The scalar_integer_expression
must evaluate to a positive scalar integer value. Only a single
NUM_THREADS clause can appear in the directive. Once specified,
the number of threads used remains constant for the duration of
that parallelized DO loop.

• PRIVATE (list)

Declares specified variables to be private to each thread in a team.
The declared variables become private to a task.

list Is one or more items in the form: var [:expr]…. Each list item must be
separated by a comma.

var Is a scalar or array variable. The following rules apply:

• Assumed-size arrays cannot appear in a PRIVATE clause.
• A variable that is part of another variable (for example, as an array

or structure element) cannot appear in a PRIVATE clause.
• A variable that appears in a PRIVATE clause must either be

definable, or an allocatable array. This restriction does not apply to
the FIRSTPRIVATE clause.

• Variables that appear in namelist statements, in variable format
expressions, and in expressions for statement function definitions,
cannot appear in a PRIVATE clause.

expr Is an integer expression denoting the number of array elements to
privatize. When expr is specified, var must be an array or a pointer
variable. The following rules also apply:

• If var is an array, then only its first expr elements are privatized.
If expr is omitted, the entire array is privatized.

• If var is a pointer, then the first expr elements are privatized
(element size is provided by the pointer's target type). If expr is
omitted, only the pointer variable itself is privatized.

• Program behavior is undefined if expr evaluates to a non-positive
value, or if it exceeds the array size.

PARALLEL helps the compiler to resolve dependencies, facilitating auto-parallelization of the immediately
following DO loop. It instructs the compiler to ignore dependencies that it assumes may exist and which
would prevent correct parallelization in the loop. However, if dependencies are proven, they are not ignored.

Intel® Fortran Compiler Classic and Intel® Fortran Compiler Developer Guide and Reference 1

1745

In addition, PARALLEL ALWAYS overrides the compiler heuristics that estimate the likelihood that
parallelization of a loop will increase performance. It allows a loop to be parallelized even if the compiler
thinks parallelization may not improve performance. If the ASSERT keyword is added, the compiler will
generate an error-level assertion message saying that the compiler analysis and cost model indicate that the
loop cannot be parallelized.

NOPARALLEL prevents auto-parallelization of the immediately following DO loop.

These directives take effect only if you specify the compiler option that enables auto-parallelization.

Caution
The directive PARALLEL ALWAYS should be used with care. Overriding the heuristics of the compiler
should only be done if you are absolutely sure the parallelization will improve performance.

Example

program main
parameter (n=100)
integer x(n), a(n), k
!DIR$ NOPARALLEL
 do i=1,n
 x(i) = i
 enddo
!DIR$ PARALLEL LASTPRIVATE (k)
 do i=1,n
 a(x(i)) = i
 k = x(i)
 enddo
 print *, k ! print 100, the value of x(n)
end

See Also
General Compiler Directives

Syntax Rules for Compiler Directives
Rules for General Directives that Affect DO Loops
Rules for Loop Directives that Affect Array Assignment Statements

PARALLEL DO
OpenMP* Fortran Compiler Directive: Provides an
abbreviated way to specify a parallel region containing
a single DO directive.

Syntax

!$OMP PARALLEL DO [clause[[,] clause] ...]
 do-loop
[!$OMP END PARALLEL DO]

clause Can be any of the clauses accepted by the DO or PARALLEL directives.

do-loop Is a DO iteration (a DO loop). It cannot be a DO WHILE or a DO loop
without loop control. The DO loop iteration variable must be of type
integer.

You cannot branch out of a DO loop associated with a DO directive.

 1 Intel® Fortran Compiler Classic and Intel® Fortran Compiler Developer Guide and Reference

1746

If the END PARALLEL DO directive is not specified, the PARALLEL DO is assumed to end with the DO loop that
immediately follows the PARALLEL DO directive. If used, the END PARALLEL DO directive must appear
immediately after the end of the DO loop.

The semantics are identical to explicitly specifying a PARALLEL directive immediately followed by a DO
directive.

Example

In the following example, the loop iteration variable is private by default and it is not necessary to explicitly
declare it. The END PARALLEL DO directive is optional:

 !$OMP PARALLEL DO
 DO I=1,N
 B(I) = (A(I) + A(I-1)) / 2.0
 END DO
 !$OMP END PARALLEL DO

The following example shows how to use the REDUCTION clause in a PARALLEL DO directive:

 !$OMP PARALLEL DO DEFAULT(PRIVATE) REDUCTION(+: A,B)
 DO I=1,N
 CALL WORK(ALOCAL,BLOCAL)
 A = A + ALOCAL
 B = B + BLOCAL
 END DO
 !$OMP END PARALLEL DO

See Also
OpenMP Fortran Compiler Directives
Syntax Rules for Compiler Directives

PARALLEL DO SIMD
OpenMP* Fortran Compiler Directive: Specifies a
PARALLEL construct that contains one DO SIMD
construct and no other statement.

Syntax

!$OMP PARALLEL DO SIMD [clause[[,] clause] ...]
 do-loop
[!$OMP END PARALLEL DO SIMD]

clause Can be any of the clauses accepted by the PARALLEL, DO, or SIMD
directives.

do-loop Is one or more DO iterations (DO loops). The DO iteration cannot be a
DO WHILE or a DO loop without loop control. The DO loop iteration
variable must be of type integer.

All loops associated with the construct must be structured and
perfectly nested; that is, there must be no intervening code and no
other OpenMP* Fortran directives between any two loops.

The iterations of the DO loop are distributed across the existing team
of threads. The values of the loop control parameters of the DO loop
associated with a DO directive must be the same for all the threads in
the team.

Intel® Fortran Compiler Classic and Intel® Fortran Compiler Developer Guide and Reference 1

1747

You cannot branch out of a DO loop associated with a DO SIMD
directive.

If the END PARALLEL DO SIMD directive is not specified, an END PARALLEL DO SIMD directive is assumed at
the end of do-loop.

You cannot specify NOWAIT in a PARALLEL DO SIMD directive.

See Also
OpenMP Fortran Compiler Directives
Syntax Rules for Compiler Directives

PARALLEL LOOP
OpenMP* Fortran Compiler Directive: Specifies a
shortcut for indicating that a loop or loop nest can
execute concurrently across multiple threads. This
feature is only available for ifx.

Syntax

!$OMP PARALLEL LOOP [clause[[,] clause]...]
 do-loop
[!$OMP END PARALLEL LOOP]

clause Can be any of the clauses accepted by the PARALLEL or LOOP
directives with identical meanings and restrictions.

do-loop Is a DO loop that may contain other nested DO loops. The DO loops
must all be in canonical form. The DO loop iteration variable must be
of type integer.

The loop can be a DO CONCURRENT loop, subject to the rules
specified for variables referenced in a DO CONCURRENT loop
associated with LOOP and PARALLEL constructs.

This combined directive is semantically equivalent to a LOOP construct that immediately follows a PARALLEL
directive. All restrictions for PARALLEL and LOOP constructs apply to this combined construct.

If used, the END PARALLEL LOOP directive must appear immediately after the end of the loop. If you do not
specify an END PARALLEL LOOP directive, an END PARALLEL LOOP directive is assumed at the end of the do-
loop.

See Also
OpenMP Fortran Compiler Directives
Syntax Rules for Compiler Directives
PARALLEL construct
LOOP construct

PARALLEL MASKED
OpenMP* Fortran Compiler Directive: Creates a
PARALLEL construct containing a MASKED construct,
with no Fortran statements in the PARALLEL construct
which are not also in the MASKED construct. This
feature is only available for ifx.

Syntax

!$OMP PARALLEL MASKED [clause[[,] clause]...]

 1 Intel® Fortran Compiler Classic and Intel® Fortran Compiler Developer Guide and Reference

1748

 loosely-structured-block
!$OMP END PARALLEL MASKED
-or-

!$OMP PARALLEL MASKED [clause[[,] clause]...]
 strictly-structured-block
[!$OMP END PARALLEL MASKED]

clause Can be any of the clauses accepted by the PARALLEL or MASKED
directives with identical meanings and restrictions.

loosely-structured-block Is a structured block (section) of statements or constructs. You cannot
branch into or out of the block.

strictly-structured-block Is a Fortran BLOCK construct. You cannot branch into or out of the
BLOCK construct.

This combined directive provides a shortcut for specifying a PARALLEL construct with a MASKED construct
nested inside of it. The semantics are identical to a MASKED construct specified immediately after a
PARALLEL construct; the only Fortran statements in the construct are inside the block.

All restrictions for PARALLEL and MASKED constructs apply to this combined construct.

See Also
OpenMP Fortran Compiler Directives
Syntax Rules for Compiler Directives
PARALLEL directive
MASKED directive

PARALLEL MASKED TASKLOOP
OpenMP* Fortran Compiler Directive: Creates a
PARALLEL construct containing a MASKED TASKLOOP
construct, with no Fortran statements in the PARALLEL
construct that are not also in the MASKED TASKLOOP
construct. This feature is only available for ifx.

Syntax

!$OMP PARALLEL MASKED TASKLOOP [clause[[,] clause]...]
 loop-nest
[!$OMP END PARALLEL MASKED TASKLOOP]

clause Can be any of the clauses accepted by the PARALLEL or MASKED
TASKLOOP directives with identical meanings and restrictions.

loop-nest Is a nest of DO loops in canonical form.

This combined directive provides a shortcut for specifying a PARALLEL construct with a MASKED TASKLOOP
construct nested inside of it. The semantics are identical to a MASKED TASKLOOP construct specified
immediately after a PARALLEL construct.

All restrictions for PARALLEL and MASKED TASKLOOP constructs apply to this combined construct.

See Also
OpenMP Fortran Compiler Directives
Syntax Rules for Compiler Directives

Intel® Fortran Compiler Classic and Intel® Fortran Compiler Developer Guide and Reference 1

1749

PARALLEL directive
MASKED TASKLOOP directive
To learn more about canonical form loops, see the OpenMP* specification.

PARALLEL MASKED TASKLOOP SIMD
OpenMP* Fortran Compiler Directive: Creates a
PARALLEL construct containing a MASKED TASKLOOP
SIMD construct, with no Fortran statements in the
PARALLEL construct that are not also in the MASKED
TASKLOOP SIMD construct. This feature is only
available for ifx.

Syntax

!$OMP PARALLEL MASKED TASKLOOP SIMD [clause[[,] clause]...]
 loop-nest
[!$OMP END PARALLEL MASKED TASKLOOP SIMD]

clause Can be any of the clauses accepted by the PARALLEL or MASKED
TASKLOOP SIMD directives with identical meanings and restrictions.

loop-nest Is a nest of DO loops in canonical form.

This combined directive provides a shortcut for specifying a PARALLEL construct with a MASKED TASKLOOP
SIMD construct nested inside of it. The semantics are identical to a MASKED TASKLOOP SIMD construct
specified immediately after a PARALLEL construct.

All restrictions for PARALLEL and MASKED TASKLOOP SIMD constructs apply to this combined construct.

See Also
OpenMP Fortran Compiler Directives
Syntax Rules for Compiler Directives
PARALLEL directive
MASKED TASKLOOP SIMD directive
To learn more about canonical form loops, see the OpenMP* specification.

PARALLEL MASTER
OpenMP* Fortran Compiler Directive:
(Deprecated; see PARALLEL MASKED) Creates a
PARALLEL construct containing a MASTER construct,
with no Fortran statements in the PARALLEL construct
that are not also in the MASTER construct. This
feature is only available for ifx.

Syntax

!$OMP PARALLEL MASTER [clause[[,] clause]...]
 loosely-structured-block
!$OMP END PARALLEL MASTER
-or-

!$OMP PARALLEL MASTER [clause[[,] clause]...]
 strictly-structured-block
[!$OMP END PARALLEL MASTER]

 1 Intel® Fortran Compiler Classic and Intel® Fortran Compiler Developer Guide and Reference

1750

https://www.openmp.org/specifications/
https://www.openmp.org/specifications/

clause Can be any of the clauses accepted by the PARALLEL or MASTER
directives with identical meanings and restrictions.

loosely-structured-block Is a structured block (section) of statements or constructs. You cannot
branch into or out of the block.

strictly-structured-block Is a Fortran BLOCK construct. You cannot branch into or out of the
BLOCK construct.

This combined directive provides a shortcut for specifying a PARALLEL construct with a MASTER construct
nested inside of it. The semantics are identical to a MASTER construct specified immediately after a
PARALLEL construct; the only Fortran statements in the construct are inside block.

All restrictions for PARALLEL and MASTER constructs apply to this combined construct.

The PARALLEL MASTER directive is deprecated; you should use the PARALLEL MASKED directive.

See Also
OpenMP Fortran Compiler Directives
Syntax Rules for Compiler Directives
PARALLEL directive
MASTER directive

PARALLEL MASTER TASKLOOP
OpenMP* Fortran Compiler Directive:
(Deprecated, replaced by PARALLEL MASKED
TASKLOOP) Creates a PARALLEL construct containing
a MASTER TASKLOOP construct, with no Fortran
statements in the PARALLEL construct that are not
also in the MASTER TASKLOOP construct. This feature
is only available for ifx.

Syntax

!$OMP PARALLEL MASTER TASKLOOP [clause[[,] clause]...]
 loop-nest
[!$OMP END PARALLEL MASTER TASKLOOP]

clause Can be any of the clauses accepted by the PARALLEL or MASTER
TASKLOOP directives with identical meanings and restrictions.

loop-nest Is a nest of DO loops in canonical form.

This combined directive provides a shortcut for specifying a PARALLEL construct with a MASTER TASKLOOP
construct nested inside of it. The semantics are identical to a MASTER TASKLOOP construct specified
immediately after a PARALLEL construct.

All restrictions for PARALLEL and MASTER TASKLOOP constructs apply to this combined construct.

The PARALLEL MASTER TASKLOOP directive is deprecated; you should use the PARALLEL MASKED TASKLOOP
directive.

See Also
OpenMP Fortran Compiler Directives
Syntax Rules for Compiler Directives
PARALLEL directive
MASTER TASKLOOP directive
To learn more about canonical form loops, see the OpenMP* specification.

Intel® Fortran Compiler Classic and Intel® Fortran Compiler Developer Guide and Reference 1

1751

https://www.openmp.org/specifications/

PARALLEL MASTER TASKLOOP SIMD
OpenMP* Fortran Compiler Directive:
(Deprecated, replaced by PARALLEL MASKED
TASKLOOP SIMD) Creates a PARALLEL construct
containing a MASTER TASKLOOP SIMD construct, with
no Fortran statements in the PARALLEL construct that
are not also in the MASTER TASKLOOP SIMD
construct. This feature is only available for ifx.

Syntax

!$OMP PARALLEL MASTER TASKLOOP SIMD [clause[[,] clause]...]
 loop-nest
[!$OMP END PARALLEL MASTER TASKLOOP SIMD]

clause Can be any of the clauses accepted by the PARALLEL or MASTER
TASKLOOP SIMD directives with identical meanings and restrictions.

loop-nest Is a nest of DO loops in canonical form.

This combined directive provides a shortcut for specifying a PARALLEL construct with a MASTER TASKLOOP
SIMD construct nested inside of it. The semantics are identical to a MASTER TASKLOOP SIMD construct
specified immediately after a PARALLEL construct.

All restrictions for PARALLEL and MASTER TASKLOOP SIMD constructs apply to this combined construct.

The PARALLEL MASTER TASKLOOP SIMD directive is deprecated; you should use the PARALLEL MASKED
TASKLOOP SIMD directive.

See Also
OpenMP Fortran Compiler Directives
Syntax Rules for Compiler Directives
PARALLEL directive
MASTER TASKLOOP SIMD directive
To learn more about canonical form loops, see the OpenMP* specification.

PARALLEL SECTIONS
OpenMP* Fortran Compiler Directive: Provides an
abbreviated way to specify a parallel region containing
a single SECTIONS directive. The semantics are
identical to explicitly specifying a PARALLEL directive
immediately followed by a SECTIONS directive.

Syntax

!$OMP PARALLEL SECTIONS [clause[[,] clause] ...]
[!$OMP SECTION]
 block
[!$OMP SECTION
 block]...
!$OMP END PARALLEL SECTIONS

clause Can be any of the clauses accepted by the PARALLEL or SECTIONS
directives.

 1 Intel® Fortran Compiler Classic and Intel® Fortran Compiler Developer Guide and Reference

1752

https://www.openmp.org/specifications/

block Is a structured block (section) of statements or constructs. You cannot
branch into or out of the block.

The last section ends at the END PARALLEL SECTIONS directive.

Example

In the following example, subroutines XAXIS, YAXIS, and ZAXIS can be executed concurrently:

 !$OMP PARALLEL SECTIONS
 !$OMP SECTION
 CALL XAXIS
 !$OMP SECTION
 CALL YAXIS
 !$OMP SECTION
 CALL ZAXIS
 !$OMP END PARALLEL SECTIONS

See Also
OpenMP Fortran Compiler Directives
Syntax Rules for Compiler Directives

PARALLEL WORKSHARE
OpenMP* Fortran Compiler Directive: Provides an
abbreviated way to specify a parallel region containing
a single WORKSHARE directive.

Syntax

!$OMP PARALLEL WORKSHARE [clause[[,] clause] ...]
 loosely-structured-block
!$OMP END PARALLEL WORKSHARE
-or-

!$OMP PARALLEL WORKSHARE [clause[[,] clause] ...]
 strictly-structured-block
[!$OMP END PARALLEL WORKSHARE]

clause Can be any of the clauses accepted by the PARALLEL directive.

loosely-structured-block Is a structured block (section) of statements or constructs. You cannot
branch into or out of the block.

strictly-structured-block Is a Fortran BLOCK construct. You cannot branch into or out of the
BLOCK construct.

See Also
OpenMP Fortran Compiler Directives
Syntax Rules for Compiler Directives

PARAMETER
Statement and Attribute: Defines a named
constant.

Intel® Fortran Compiler Classic and Intel® Fortran Compiler Developer Guide and Reference 1

1753

Syntax
The PARAMETER attribute can be specified in a type declaration statement or a PARAMETER statement, and
takes one of the following forms:
Type Declaration Statement:

type, [att-ls,] PARAMETER [, att-ls] :: c =expr[, c = expr] ...
Statement:

PARAMETER [(]c= expr[, c= expr] ... [)]

type Is a data type specifier.

att-ls Is an optional list of attribute specifiers.

c Is the name of the constant.

expr Is a constant expression. It can be of any data type.

Description

The type, type parameters, and shape of the named constant are determined in one of the following ways:

• By an explicit type declaration statement in the same scoping unit.
• By the implicit typing rules in effect for the scoping unit. If the named constant is implicitly typed, it can

appear in a subsequent type declaration only if that declaration confirms the implicit typing.

For example, consider the following statement:

 PARAMETER (MU=1.23)
According to implicit typing, MU is of integer type, so MU=1. For MU to equal 1.23, it should previously be
declared REAL in a type declaration or be declared in an IMPLICIT statement.

A named array constant defined by a PARAMETER statement must have its rank specified in a previous
specification statement.

A named constant must not appear in a format specification or as the character count for Hollerith constants.
For compilation purposes, writing the name is the same as writing the value.

If the named constant is used as the length specifier in a CHARACTER declaration, it must be enclosed in
parentheses.

The name of a constant cannot appear as part of another constant, although it can appear as either the real
or imaginary part of a complex constant.

You can only use the named constant within the scoping unit containing the defining PARAMETER statement.

Any named constant that appears in the constant expression must have been defined previously in the same
type declaration statement (or in a previous type declaration statement or PARAMETER statement), or made
accessible by use or host association.

An entity with the PARAMETER attribute must not be a variable, a coarray, or a procedure.

Omission of the parentheses in a PARAMETER statement is an extension controlled by compiler option
altparam. In this form, the type of the name is taken from the form of the constant rather than from implicit
or explicit typing of the name.

Example

The following example shows a type declaration statement specifying the PARAMETER attribute:

 REAL, PARAMETER :: C = 2.9979251, Y = (4.1 / 3.0)

 1 Intel® Fortran Compiler Classic and Intel® Fortran Compiler Developer Guide and Reference

1754

The following is an example of the PARAMETER statement:

 REAL(4) PI, PIOV2
 REAL(8) DPI, DPIOV2
 LOGICAL FLAG
 CHARACTER*(*) LONGNAME
 PARAMETER (PI=3.1415927, DPI=3.141592653589793238D0)
 PARAMETER (PIOV2=PI/2, DPIOV2=DPI/2)
 PARAMETER (FLAG=.TRUE., LONGNAME='A STRING OF 25 CHARACTERS')

The following shows implicit-shape arrays declared using a PARAMETER attribute and PARAMETER
statements:

 INTEGER, PARAMETER :: R(*) = [1,2,3]
 REAL :: M (2:*, -1:*)
 PARAMETER (M = RESHAPE ([R,R], [3,2]))

The following shows other examples:

 ! implicit integer type
 PARAMETER (nblocks = 10)
 !
 ! implicit real type
 IMPLICIT REAL (L-M)
 PARAMETER (loads = 10.0, mass = 32.2)
 !
 ! typed by PARAMETER statement
 ! Requires compiler option
 PARAMETER mass = 47.3, pi = 3.14159
 PARAMETER bigone = 'This constant is larger than forty characters'
 !
 ! PARAMETER in attribute syntax
 REAL, PARAMETER :: mass=47.3, pi=3.14159, loads=10.0, mass=32.2

See Also
DATA
Type Declarations
Compatible attributes
Constant Expressions
IMPLICIT
Alternative syntax for the PARAMETER statement
altparam compiler option

PARITY
Transformational Intrinsic Function (Generic):
Reduces an array by using an exclusive OR (.NEQV.)
operation.

Syntax
result = PARITY (mask)
result = PARITY (mask, dim)

mask (Input) Must be an array of type logical.

dim (Input) Must be a scalar integer with a value in the range 1 <= dim
<= n, where n is the rank of mask.

Intel® Fortran Compiler Classic and Intel® Fortran Compiler Developer Guide and Reference 1

1755

Results

The result has the same type and kind parameters as mask. It is scalar if dim is not specified; otherwise, the
result has rank n - 1 and shape [d1, d2, ..., ddim-1, ddim+1 , ..., dn] where [d1, d2,..., dn] is the shape of mask.

The result of PARITY(mask) has the value .TRUE. if an odd number of the elements of mask are true;
otherwise, .FALSE..

If mask has rank one, PARITY(mask, dim) is equal to PARITY(mask). Otherwise, the value of element (s1,
s2, ..., sdim-1, sdim+1 , ..., sn) of PARITY(mask, dim) is equal to PARITY (mask (s1, s2, ..., sdim-1 , :, sdim+1 , ...,
sn)).

Example

If A is the array

 [T F T]
 [T T F]

and T has the value .TRUE. and F has the value .FALSE., then

PARITY (A, DIM=1) has the value [F, T, T] and PARITY (A, DIM=2) has the value [F, F].

PAUSE
Statement: Temporarily suspends program execution
and lets you execute operating system commands
during the suspension. The PAUSE statement is a
deleted feature in the Fortran Standard. Intel® Fortran
fully supports features deleted in the Fortran
Standard.

Syntax
PAUSE [pause-code]

pause-code (Optional) Is an optional message. It can be either of the following:

• A scalar character constant of type default character.
• A string of up to six digits; leading zeros are ignored. (Standard

Fortran limits digits to five.)

If you specify pause-code, the PAUSE statement displays the specified message and then displays the default
prompt.

If you do not specify pause-code, the system displays the following default message:

 FORTRAN PAUSE
The following prompt is then displayed:

• On Windows* systems:

Fortran Pause - Enter command<CR> or <CR> to continue.
• On Linux* systems:

PAUSE prompt>
For alternate methods of pausing while reading from and writing to a device, see READ and WRITE.

Effect on Windows* Systems

The program waits for input on stdin. If you enter a blank line, execution resumes at the next executable
statement.

 1 Intel® Fortran Compiler Classic and Intel® Fortran Compiler Developer Guide and Reference

1756

Anything else is treated as a DOS command and is executed by a system() call. The program loops, letting
you execute multiple DOS commands, until a blank line is entered. Execution then resumes at the next
executable statement.

Effect on Linux* Systems

The effect of PAUSE differs depending on whether the program is a foreground or background process, as
follows:

• If a program is a foreground process, the program is suspended until you enter the CONTINUE command.
Execution then resumes at the next executable statement.

Any other command terminates execution.
• If a program is a background process, the behavior depends on stdin, as follows:

• If stdinis redirected from a file, the system displays the following (after the pause code and prompt):

To continue from background, execute 'kill -15 n'
In this message, nis the process id of the program.

• If stdinis not redirected from a file, the program becomes a suspended background job, and you must
specify fgto bring the job into the foreground. You can then enter a command to resume or terminate
processing.

Example

The following examples show valid PAUSE statements:

 PAUSE 701
 PAUSE 'ERRONEOUS RESULT DETECTED'

The following shows another example:

 CHARACTER*24 filename
 PAUSE 'Enter DIR to see available files or press RETURN' &
 &' if you already know filename.'
 READ(*,'(A\)') filename
 OPEN(1, FILE=filename)
 . . .

See Also
STOP
SYSTEM
Deleted and Obsolescent Language Features

PEEKCHARQQ
Runtime Function: Checks the keystroke buffer for a
recent console keystroke and returns .TRUE. if there is
a character in the buffer or .FALSE. if there is not.

Module

USE IFCORE

Syntax
result = PEEKCHARQQ()

Results

The result type is LOGICAL(4). The result is .TRUE. if there is a character waiting in the keyboard buffer;
otherwise, .FALSE..

Intel® Fortran Compiler Classic and Intel® Fortran Compiler Developer Guide and Reference 1

1757

To find out the value of the key in the buffer, call GETCHARQQ. If there is no character waiting in the buffer
when you call GETCHARQQ, GETCHARQQ waits until there is a character in the buffer. If you call
PEEKCHARQQ first, you prevent GETCHARQQ from halting your process while it waits for a keystroke. If there
is a keystroke, GETCHARQQ returns it and resets PEEKCHARQQ to .FALSE..

Example

 USE IFCORE
 LOGICAL(4) pressed / .FALSE. /
 DO WHILE (.NOT. pressed)
 WRITE(*,*) ' Press any key'
 pressed = PEEKCHARQQ ()
 END DO
 END

See Also
GETCHARQQ
GETSTRQQ
FGETC
GETC

PERROR
Runtime Subroutine: Sends a message to the
standard error stream, preceded by a specified string,
for the last detected error.

Module

USE IFCORE

Syntax
CALL PERROR (string)

string (Input) Character*(*). Message to precede the standard error
message.

The string sent is the same as that given by GERROR.

Example

 USE IFCORE
 character*24 errtext
 errtext = 'In my opinion, '
 . . .
 ! any error message generated by errtext is
 ! preceded by 'In my opinion, '
 Call PERROR (errtext)

See Also
GERROR
IERRNO

POINTER - Fortran
Statement and Attribute: Specifies that an object or
a procedure is a pointer (a dynamic variable). A
pointer does not contain data, but points to a scalar or

 1 Intel® Fortran Compiler Classic and Intel® Fortran Compiler Developer Guide and Reference

1758

array variable where data is stored. A pointer has no
initial storage set aside for it; memory storage is
created for the pointer as a program runs.

Syntax
The POINTER attribute can be specified in a type declaration statement or a POINTER statement, and takes
one of the following forms:
Type Declaration Statement:

type,[att-ls,] POINTER [, att-ls] :: ptr[(d-spec)][, ptr[(d-spec)]]...
Statement:

POINTER [::]ptr[(d-spec)][, ptr[(d-spec)]] ...

type-spec Is a data type specifier.

att-ls Is an optional list of attribute specifiers.

ptr Is the name of the pointer. The pointer cannot be declared with the
INTENT or PARAMETER attributes.

d-spec (Optional) Is a deferred-shape specification (: [, :] ...). Each colon
represents a dimension of the array.

Description

No storage space is created for a data pointer until it is allocated with an ALLOCATE statement or until it is
assigned to a allocated target.

Each pointer has an association status, which tells whether the pointer is currently associated with a target
object. When a pointer is initially declared, its status is undefined. You can use the ASSOCIATED intrinsic
function to find the association status of a pointer if the pointer's association status is defined.

Entities with the POINTER attribute can be associated with different data objects or procedures during
execution of a program.

A data pointer must not be referenced or defined unless it is pointer associated with a target object that can
be referenced or defined. A procedure pointer must not be referenced unless it is pointer associated with a
target procedure.

If the data pointer is an array, and it is given the DIMENSION attribute elsewhere in the program, it must be
declared as a deferred-shape array.

A pointer cannot be specified in an EQUIVALENCE or NAMELIST statement. A pointer in a DATA statement
can only be associated with NULL().

A procedure that has both the EXTERNAL and POINTER attributes is a procedure pointer.

An entity with the POINTER attribute must not have the ALLOCATABLE, INTRINSIC, or TARGET attribute, and
it must not be a coarray.

Fortran pointers are not the same as integer pointers. For more information, see the POINTER - Integer
statement.

Example

The following example shows type declaration statements specifying the POINTER attribute:

 TYPE(SYSTEM), POINTER :: CURRENT, LAST
 REAL, DIMENSION(:,:), POINTER :: I, J, REVERSE

Intel® Fortran Compiler Classic and Intel® Fortran Compiler Developer Guide and Reference 1

1759

The following is an example of the POINTER statement:

 TYPE(SYSTEM) :: TODAYS
 POINTER :: TODAYS, A(:,:)

The following shows another example:

 REAL, POINTER :: arrow (:)
 REAL, ALLOCATABLE, TARGET :: bullseye (:,:)

 ! The following statement associates the pointer with an unused
 ! block of memory.

 ALLOCATE (arrow (1:8), STAT = ierr)
 IF (ierr.eq.0) WRITE (*,'(/1x,a)') 'ARROW allocated'
 arrow = 5.
 WRITE (*,'(1x,8f8.0/)') arrow
 ALLOCATE (bullseye (1:8,3), STAT = ierr)
 IF (ierr.eq.0) WRITE (*,*) 'BULLSEYE allocated'
 bullseye = 1.
 bullseye (1:8:2,2) = 10.
 WRITE (*,'(1x,8f8.0)') bullseye

 ! The following association breaks the association with the first
 ! target, which being unnamed and unassociated with other pointers,
 ! becomes lost. ARROW acquires a new shape.

 arrow => bullseye (2:7,2)
 WRITE (*,'(/1x,a)') 'ARROW is repointed & resized, all the 5s are lost'
 WRITE (*,'(1x,8f8.0)') arrow

 NULLIFY (arrow)
 IF (.NOT.ASSOCIATED(arrow)) WRITE (*,'(/a/)') ' ARROW is not pointed'

 DEALLOCATE (bullseye, STAT = ierr)
 IF (ierr.eq.0) WRITE (*,*) 'Deallocation successful.'
 END

See Also
ALLOCATE
ASSOCIATED
DEALLOCATE
NULLIFY
TARGET
Deferred-Shape Arrays
Pointer Assignments
Pointer Association
Pointer Arguments
NULL
Integer POINTER statement
Type Declarations
Compatible attributes

 1 Intel® Fortran Compiler Classic and Intel® Fortran Compiler Developer Guide and Reference

1760

POINTER - Integer
Statement: Establishes pairs of objects and pointers,
in which each pointer contains the address of its
paired object. This statement is different from the
Fortran POINTER statement.

Syntax
POINTER (pointer,pointee) [,(pointer,pointee)] . . .

pointer Is a variable whose value is used as the address of the pointee.

pointee Is a variable; it can be an array name or array specification. It can
also be a procedure named in an EXTERNAL statement or in a specific
(non-generic) procedure interface block.

The following are pointer rules and behavior:

• Two pointers can have the same value, so pointer aliasing is allowed.
• When used directly, a pointer is treated like an integer variable. On IA-32 architecture, a pointer occupies

one numeric storage unit, so it is a 32-bit quantity (INTEGER(4)). On Intel® 64 architecture, a pointer
occupies two numeric storage units, so it is a 64-bit quantity (INTEGER(8)).

• A pointer cannot be a pointee.
• A pointer cannot appear in an ASSIGN statement and cannot have the following attributes:

ALLOCATABLE INTRINSIC POINTER

EXTERNAL PARAMETER TARGET

A pointer can appear in a DATA statement with integer literals only.
• Integers can be converted to pointers, so you can point to absolute memory locations.
• A pointer variable cannot be declared to have any other data type.
• A pointer cannot be a function return value.
• You can give values to pointers by doing the following:

• Retrieve addresses by using the LOC intrinsic function (or the %LOC built-in function).
• Allocate storage for an object by using the MALLOC intrinsic function (or by using malloc(3f) on Linux*

systems).

For example:

Using %LOC: Using MALLOC:

INTEGER I(10) INTEGER I(10)
INTEGER I1(10) /10*10/ POINTER (P,I)
POINTER (P,I) P = MALLOC(40)
P = %LOC(I1) I = 10
I(2) = I(2) + 1 I(2) = I(2) + 1

• The value in a pointer is used as the pointee's base address.

The following are pointee rules and behavior:

• A pointee is not allocated any storage. References to a pointee look to the current contents of its
associated pointer to find the pointee's base address.

• A pointee cannot be data-initialized or have a record structure that contains data-initialized fields.
• A pointee can appear in only one integer POINTER statement.
• A pointee array can have fixed, adjustable, or assumed dimensions.
• A pointee cannot appear in a COMMON, DATA, EQUIVALENCE, or NAMELIST statement, and it cannot have

the following attributes:

ALLOCATABLE OPTIONAL SAVE

Intel® Fortran Compiler Classic and Intel® Fortran Compiler Developer Guide and Reference 1

1761

AUTOMATIC PARAMETER STATIC

INTENT POINTER

• A pointee cannot be:

• A dummy argument
• A function return value
• A record field or an array element
• Zero-sized
• An automatic object
• The name of a generic interface block

• If a pointee is of derived type, it must be of sequence type.

Example

 POINTER (p, k)
 INTEGER j(2)

 ! This has the same effect as j(1) = 0, j(2) = 5
 p = LOC(j)
 k = 0
 p = p + SIZEOF(k) ! 4 for 4-byte integer
 k = 5

See Also
POINTER - Fortran

LOC
MALLOC
FREE

POPCNT
Elemental Intrinsic Function (Generic): Returns
the number of 1 bits in the integer argument.

Syntax
result = POPCNT (i)

i (Input) Must be of type integer or logical.

Results

The result type and kind are the same as i. The result value is the number of 1 bits in the binary
representation of the integer i.

The model for the interpretation of an integer value as a sequence of bits is shown in Model for Bit Data.

Example

If the value of I is B'0...00011010110', the value of POPCNT(I) is 5.

POPPAR
Elemental Intrinsic Function (Generic): Returns
the parity of the integer argument.

Syntax
result = POPPAR (i)

 1 Intel® Fortran Compiler Classic and Intel® Fortran Compiler Developer Guide and Reference

1762

i (Input) Must be of type integer or logical.

Results

The result type and kind are the same as i. The result value is 1 if there are an odd number of 1 bits in the
binary representation of the integer I. The result value is zero if there are an even number.

POPPAR(i) is the same as 1 .AND. POPCNT(i).

The model for the interpretation of an integer value as a sequence of bits is shown in Model for Bit Data.

Example

If the value of I is B'0...00011010110', the value of POPPAR(I) is 1.

PRECISION
Inquiry Intrinsic Function (Generic): Returns the
decimal precision in the model representing real
numbers with the same kind parameter as the
argument.

Syntax
result = PRECISION (x)

x (Input) Must be of type real or complex; it can be scalar or array
valued.

Results

The result is a scalar of type default integer. The result has the value INT((DIGITS(x) - 1) *
LOG10(RADIX(x))). If RADIX(x) is an integral power of 10, 1 is added to the result.

Example

If X is a REAL(4) value, PRECISION(X) has the value 6. The value 6 is derived from INT ((24-1) * LOG10
(2.)) = INT (6.92...). For more information on the model for REAL(4), see Model for Real Data.

PREFETCH and NOPREFETCH General Directives
General Compiler Directives: PREFETCH hints to
the compiler to prefetch data into closer levels of
cache. Prefetching data can minimize the effects of
memory latency. NOPREFETCH disables data
prefetching. These directives give fine-level control to
the programmer to influence the prefetches generated
by the compiler.

Syntax

!DIR$ PREFETCH [var1[: hint1[: distance1]] [,var2[: hint2[: distance2]]]...]
!DIR$ PREFETCH *: hint[: distance]
!DIR$ NOPREFETCH [var1[,var2]...]

var Is an optional memory reference.

Intel® Fortran Compiler Classic and Intel® Fortran Compiler Developer Guide and Reference 1

1763

hint Is an optional integer constant expression with the integer value 0, 1,
2, or 3. These are the same as the defined values
FOR_K_PREFETCH_T0, FOR_K_PREFETCH_T1, FOR_K_PREFETCH_T2,
or FOR_K_PREFETCH_NTA for hint in the intrinsic subroutine
MM_PREFETCH. To use this argument, you must also specify var.

distance Is an optional integer constant expression with a value greater than 0.
It indicates the number of (possibly vectorized) loop iterations ahead
of which a prefetch is issued, before the corresponding load or store
instruction. To use this argument, you must also specify var and
hint.

To use these directives, compiler option [q or Q]opt-prefetch must be set. Note that this option is turned
on by default if the compiler general optimization level is O2 or higher.

This directive affects the DO loop it precedes.

If you specify PREFETCH *, the hint and optional distance are used to prefetch all array accesses in the DO
loop.

If you specify NOPREFETCH with no arguments, the following occurs:

• All arrays accessed in the DO loop will NOT be prefetched.
• It negates all other PREFETCH directives for the following DO loop.

If a loop includes expression A(j), placing !DIR$ PREFETCH A:0:d in front of the loop instructs the compiler to
insert a vprefetch0 instruction for A within the loop that is d iterations ahead.

The PREFETCH directive takes precedence over the [q or Q]opt-prefetch-distance options.

The variables in a NOPREFETCH or PREFETCH directive take precedence over PREFETCH *.

A NOPREFETCH directive with no arguments negates all other PREFETCH directives for the following DO loop.

Example

! Issue no prefetches for A1
! Issue vector prefetch from L2 and higher caches for B with a distance
! of 16 vectorized iterations ahead
! Issue vector prefetch from L1 and higher caches for B with a distance
! of 4 vectorized iterations ahead
!DIR$ NOPREFETCH A1
!DIR$ PREFETCH B:1:16
!DIR$ PREFETCH B:0:4
 DO J = 1,N
 A1(J) = B(J-1) + B(J+1)
 END DO

In the following example, array A will be prefetched with hint 0 and distance 5, arrays B and C will be
prefetched with hint 1 and distance 10, and array D will not be prefetched:

!DIR$ PREFETCH *:1:10
!DIR$ PREFETCH A:0:5
!DIR$ NOPREFETCH D
 DO J = 1, N
 A (J) = B (J) + C (J) + D (J)
 END DO

See Also
General Compiler Directives

Syntax Rules for Compiler Directives

 1 Intel® Fortran Compiler Classic and Intel® Fortran Compiler Developer Guide and Reference

1764

MM_PREFETCH
O compiler option
qopt-prefetch-distance, Qopt-prefetch-distance compiler option (ifort)
qopt-prefetch-distance, Qopt-prefetch-distance compiler option (ifx)

PREFETCH DATA Directive for OpenMP
OpenMP* Fortran Compiler Directive: Suggests to
the compiler to preload data into cache. Preloading
data in cache minimizes the effects of memory
latency. This feature is only available for ifx.

Syntax

!$OMPX PREFETCH DATA([prefetch-hint-modifier:] array-section [, array-section] ...)
[clause]

prefetch-hint-modifier Is an positive integer literal constant whose value is between 0 and 7,
inclusive. If not specified, the default value is 0. The values indicate
the following:

• 0: no-op
• 1: L1 uncached and L3 uncached
• 2: L1 uncached and L3 chached
• 3: l1 cached and L3 uncached
• 4: L1 cached and L3 cached
• 5: L1 streaming load and L3 uncached
• 6: L1 streaming load and L3 cached
• 7: L1 invalidate-after-read and L3 cached

array-section Is a contiguous array section (stride value is either 1 or not specified).

clause Is the following:

IF (scalar-logical-expression)

Description

The PREFETCH DATA directive issues a prefetch to preload the data specified by array-section. If the IF
clause is present, the prefetch is done only when the scalar-logical-expression evaluates to .TRUE..

The PREFETCH DATA directive is a pure directive, so it can appear in a Fortran PURE procedure.

Example

The following code prefetches and caches elements 17 thru 1024 of the arrays y and z to L1 and L3 cache.
Each element is prefetched 16 iterations prior to its use in the computation y(i) + z(i).

SUBROUTINE sub ()
 IMPLICIT NONE
 REAL,DIMENSION(1024) :: y, x, z
 INTEGER :: i
 . . .
 DO m = 1, 1024
 !$ompx PREFETCH DATA (4: y(i+16), z(i+16)) &
 !$ompx& IF ((MOD(i, 16) .eq. 1) .and. ((i+15 .le. 1024))
 x(i) = y(i) + z(i)
 END DO
 . . .
END SUBROUTINE

Intel® Fortran Compiler Classic and Intel® Fortran Compiler Developer Guide and Reference 1

1765

See Also
OpenMP Fortran Compiler Directives
Syntax Rules for Compiler Directives

PRESENT
Inquiry Intrinsic Function (Generic): Returns
whether or not an optional dummy argument is
present, that is, whether it has an associated actual
argument.

Syntax
result = PRESENT (a)

a (Input) Must be an argument of the current procedure and must have
the OPTIONAL attribute. An explicit interface for the current procedure
must be visible to its caller; for more information, see Procedure
Interfaces.

Results

The result is a scalar of type default logical. The result is .TRUE. if a is present; otherwise, the result
is .FALSE..

Example

Consider the following:

MODULE MYMOD
CONTAINS
SUBROUTINE CHECK (X, Y)
 REAL X, Z
 REAL, OPTIONAL :: Y
 ...
 IF (PRESENT (Y)) THEN
 Z = Y
 ELSE
 Z = X * 2
 END IF
END SUBROUTINE CHECK
END MODULE MYMOD
...
USE MYMOD
CALL CHECK (15.0, 12.0) ! Causes Z to be set to 12.0
CALL CHECK (15.0) ! Causes Z to be set to 30.0

The following shows another example:

 CALL who(1, 2) ! prints "A present" "B present"
 CALL who(1) ! prints "A present"
 CALL who(b = 2) ! prints "B present"
 CALL who() ! prints nothing
 CONTAINS
 SUBROUTINE who(a, b)
 INTEGER(4), OPTIONAL :: a, b
 IF (PRESENT(a)) PRINT *,'A present'
 IF (PRESENT(b)) PRINT *,'B present'
 END SUBROUTINE who
 END

 1 Intel® Fortran Compiler Classic and Intel® Fortran Compiler Developer Guide and Reference

1766

See Also
OPTIONAL
Optional Arguments

PRINT
Statement: Displays output on the screen. TYPE is a
synonym for PRINT. All forms and rules for the PRINT
statement also apply to the TYPE statement.

Syntax
The PRINT statement is the same as a formatted, sequential WRITE statement, except that the PRINT
statement must never transfer data to user-specified I/O units. You can override this restriction by using
environment variable FOR_PRINT.

A PRINT statement takes one of the following forms:

Formatted:

PRINT form[, io-list]
Formatted - List-Directed:

PRINT *[, io-list]
Formatted - Namelist:

PRINT nml

form Is the nonkeyword form of a format specifier (no FMT=).

io-list Is an I/O list.

* Is the format specifier indicating list-directed formatting.

nml Is the nonkeyword form of a namelist specifier (no NML=) indicating
namelist formatting.

Example

In the following example, one record (containing four fields of data) is printed to the implicit output device:

 CHARACTER*16 NAME, JOB
 PRINT 400, NAME, JOB
400 FORMAT ('NAME=', A, 'JOB=', A)

The following shows another example:

! The following statements are equivalent:
 PRINT '(A11)', 'Abbottsford'
 WRITE (*, '(A11)') 'Abbottsford'
 TYPE '(A11)', 'Abbottsford'

See Also
PUTC
READ
WRITE
FORMAT
Data Transfer I/O Statements
File Operation I/O Statements
PRINT as a value in CLOSE

Intel® Fortran Compiler Classic and Intel® Fortran Compiler Developer Guide and Reference 1

1767

PRIORITY
Parallel Directive Clause: Specifies that the
generated tasks have the indicated priority for
execution.

Syntax

PRIORITY (priority-value)

priority-value Provides a hint for the priority of task execution order. priority-value
must evaluate to a non-negative scalar integer value.

Among all tasks ready to be executed, higher priority tasks (those with a higher numerical value of priority-
value) are recommended to execute before lower priority tasks. A program that relies on task execution
order being determined by this priority-value may have unspecified behavior.

At most one PRIORITY clause can appear in the directive.

If this clause is not specified, tasks generated by the construct have a task priority of zero (the default).

PRIVATE Clause
Parallel Directive Clause: Declares one or more
variables to be private to each thread in a team.

Syntax

PRIVATE (list)

list Is the name of one or more variables or common blocks that are
accessible to the scoping unit. Subobjects cannot be specified. Each
name must be separated by a comma, and a named common block
must appear between slashes (/ /).

This clause allows each thread to have its own copy of the variable and makes it a local variable to the
thread.

The following occurs when variables are declared in a PRIVATE clause:

• A new object of the same type is declared once for each thread in the team (or for each implicit task in a
region) and it is used by each thread (or task) inside the scope of the directive construct instead of the
original variable. The new object is no longer storage associated with the original object.

• All references to the original object in the lexical extent of the directive construct are replaced with
references to the private object.

• Variables defined as PRIVATE are undefined for each thread upon entering the construct and the
corresponding shared variable is undefined when the parallel construct is exited. Within a parallel,
worksharing, or task region, the initial status of a private pointer is undefined.

The value and allocation status of the original variable will change only in the following cases:

• If it is accessed and modified by means of a pointer
• If it is accessed in the region but outside of the construct
• As a side effect of directives or clauses
• If accessed and modified via construct association.

If a variable has the ALLOCATABLE attribute, the following rules apply:

• If the variable is not currently allocated, the new list item will have an initial state of "unallocated".
• If the variable is allocated, the new list item will have an initial state of allocated with the same array

bounds.

 1 Intel® Fortran Compiler Classic and Intel® Fortran Compiler Developer Guide and Reference

1768

A variable that appears in a PRIVATE clause may be storage-associated with other variables when the
PRIVATE clause is encountered by constructs such as EQUIVALENCE or COMMON. If A is a variable appearing
in a PRIVATE clause and B is a variable that is storage-associated with A, then the following applies:

• The contents, allocation, and association status of B are undefined on entry to the parallel or task region.
• Any definition of A, or any definition of its allocation or association status, causes the contents, allocation,

and association status of B to become undefined.
• Any definition of B, or any definition of its allocation or association status, causes the contents, allocation,

and association status of A to become undefined.
• A list item that appears in a private clause can be a selector in an ASSOCIATE construct. If the

ASSOCIATE construct association is established before entry to a parallel region, the association between
the associate name and the original PRIVATE list item will be retained in the parallel region.

The following are restrictions for the PRIVATE clause:

• A variable that is part of another variable (as an array or structure element) must not appear in a
PRIVATE clause.

• A variable that appears in a PRIVATE clause must either be definable or it must be an allocatable array.
This restriction does not apply to the FIRSTPRIVATE clause.

• Assumed-size arrays must not appear in a PRIVATE clause.
• A dummy argument that is a pointer with the INTENT (IN) attribute must not appear in a PRIVATE clause.

This restriction does not apply to the FIRSTPRIVATE clause.
• Variables that appear in NAMELIST statements, in variable format expressions, and in expressions for

statement function definitions, must not appear in a PRIVATE clause.

Variables in a list can appear in other clauses as follows:

• Variables that appear in a PRIVATE, FIRSTPRIVATE, or REDUCTION clause in a parallel construct can also
appear in a PRIVATE clause in an enclosed parallel, task, or worksharing construct.

• Variables that appear in a PRIVATE or FIRSTPRIVATE clause in a task construct can also appear in a
PRIVATE clause in an enclosed parallel or task construct.

• Variables that appear in a PRIVATE, FIRSTPRIVATE, LASTPRIVATE, or REDUCTION clause in a worksharing
construct can also appear in a PRIVATE clause in an enclosed parallel or task construct.

NOTE
Variables that are used as counters for explicit or implicit DO loops or FORALL commands, or common
blocks that are specified to be THREADPRIVATE become automatically private to each thread, even
though they are not explicitly included inside a PRIVATE clause at the beginning of the scope of the
parallel region.

Example

Consider the following:

!$OMP PARALLEL PRIVATE(A, B)
In this simple case, each thread will have its own copy of variables A and B. The variables can have different
values in each thread because the variables are local to the thread.

See Also
FIRSTPRIVATE clause
LASTPRIVATE clause

PRIVATE Statement
Statement and Attribute: Specifies that entities in a
module can be accessed only within the module itself.

Intel® Fortran Compiler Classic and Intel® Fortran Compiler Developer Guide and Reference 1

1769

Syntax
The PRIVATE attribute can be specified in a type declaration statement or a PRIVATE statement, and takes
one of the following forms:
Type Declaration Statement:

type,[att-ls,] PRIVATE [, att-ls] :: entity[, entity]...
Statement:

PRIVATE [[::] entity[, entity] ...]

type Is a data type specifier.

att-ls Is an optional list of attribute specifiers.

entity Is one of the following:

• A variable name
• A procedure name
• A derived type name
• A named constant
• A namelist group name
• An OpenMP* reduction-identifier

In statement form, an entity can also be one of the following:

• A module name
• A generic name
• A defined operator
• A defined assignment
• A defined I/O generic specification

Description

The PRIVATE attribute can only appear in the scoping unit of a module.

Only one PRIVATE statement without an entity list is permitted in the scoping unit of a module; it sets the
default accessibility of all entities in the module and any entities accessed from a module by USE association
whose names do not appear in a PUBLIC statement.

A module name can appear at most once in all the PUBLIC or PRIVATE statements in a scoping unit. If a
module name is specified in a PRIVATE statement, the module name must have appeared in a USE statement
within the same scoping unit.

A PRIVATE attribute can be specified on the TYPE statement of a derived-type definition in a module. This
specifies the derived-type definition is not accessible outside the module or the module's descendants.

A PRIVATE statement without an entity-list can appear in the component-definition part of a derived-type
definition, specifying the default accessibility of all components as PRIVATE. A PRIVATE statement with no
entity-list can appear in the type-bound-procedure-part of a derived-type definition specifying the default
accessibility of all type-bound procedures of that type as PRIVATE. In such cases, the default accessibility of
components and type-bound procedures can be overridden by explicitly declaring a component or type-
bound procedure PUBLIC.

A PRIVATE attribute can be specified in the statement declaring a component or a type-bound procedure of a
derived type. This specifies that the component or type-bound procedure is not accessible outside the
module or its descendants.

If no PRIVATE statements are specified in a module, the default is PUBLIC accessibility. Entities with PUBLIC
accessibility can be accessed from outside the module by means of a USE statement.

 1 Intel® Fortran Compiler Classic and Intel® Fortran Compiler Developer Guide and Reference

1770

If a derived type is declared PRIVATE in a module, its components are also PRIVATE. The derived type and its
components are accessible to any subprograms within the defining module and the module's descendants
through host association, but they are not accessible from outside the module.

If the derived type is declared PUBLIC in a module, but its components are declared PRIVATE, any scoping
unit accessing the module though use association (or host association) can access the derived-type
definition, but not its components.

If a module procedure has a dummy argument or a function result of a type that has PRIVATE accessibility,
the module procedure must have PRIVATE accessibility. If the module has a generic identifier, it must also be
declared PRIVATE.

If a procedure has a generic identifier, the accessibility of the procedure's specific name is independent of the
accessibility of its generic identifier. One can be declared PRIVATE and the other PUBLIC.

The accessibility of the components of a type is independent of the accessibility of the type name. The
following combinations are possible:

• A private type name with a private component
• A public type name with a public component
• A private type name with a public component
• A public type name with a private component

The accessibility of a type does not affect, and is not affected by, the accessibility of its components and
type-bound procedures. If a type definition is private, then the type name, and thus the structure constructor
for the type, are accessible only within the module containing the definition.

Example

The following examples show type declaration statements specifying the PUBLIC and PRIVATE attributes:

REAL, PRIVATE :: A, B, C
INTEGER, PUBLIC :: LOCAL_SUMS

The following is an example of the PUBLIC and PRIVATE statements:

MODULE SOME_DATA
 REAL ALL_B
 PUBLIC ALL_B
 TYPE RESTRICTED_DATA
 REAL LOCAL_C(50)
 END TYPE RESTRICTED_DATA
 PRIVATE RESTRICTED_DATA
END MODULE

The following derived-type declaration statement indicates that the type is restricted to the module:

TYPE, PRIVATE :: DATA
 ...
END TYPE DATA

The following example shows a PUBLIC type with PRIVATE components:

MODULE MATTER
 TYPE ELEMENTS
 PRIVATE
 INTEGER C, D
 END TYPE
...
END MODULE MATTER

Intel® Fortran Compiler Classic and Intel® Fortran Compiler Developer Guide and Reference 1

1771

In this case, components C and D are private to type ELEMENTS, but type ELEMENTS is not private to
MODULE MATTER. Any program unit that uses the module MATTER, can declare variables of type ELEMENTS,
and pass as arguments values of type ELEMENTS.

The following shows another example:

 !LENGTH in module VECTRLEN calculates the length of a 2-D vector.
 !The module contains both private and public procedures
 MODULE VECTRLEN
 PRIVATE SQUARE
 PUBLIC LENGTH
 CONTAINS
 SUBROUTINE LENGTH(x,y,z)
 REAL,INTENT(IN) x,y
 REAL,INTENT(OUT) z
 CALL SQUARE(x,y)
 z = SQRT(x + y)
 RETURN
 END SUBROUTINE
 SUBROUTINE SQUARE(x1,y1)
 REAL x1,y1
 x1 = x1**2
 y1 = y1**2
 RETURN
 END SUBROUTINE
 END MODULE

See Also
MODULE
PUBLIC
TYPE
Defining Generic Names for Procedures
USE
Use and Host Association
Type Declarations
Compatible attributes

PROCEDURE
Statement: Declares procedure pointers, dummy
procedures, and external procedures.

Syntax
PROCEDURE ([proc-interface]) [[, proc-attr-spec]... ::] proc-decl-list

proc-interface (Optional) Is the name of an interface, an intrinsic type specifier, or a
derived-type TYPE statement.

If an interface name is specified, it must be the name of an abstract
interface, a procedure that has an explicit interface, or a procedure
pointer. It must have been previously declared and it cannot be the
same as a keyword that specifies an intrinsic type.

If proc-interface is a type specifier, the declared procedures or
procedure pointers are functions that have implicit interfaces and the
specified result type. If a type is specified for an external function, its
function definition must specify the same result type and type
parameters.

 1 Intel® Fortran Compiler Classic and Intel® Fortran Compiler Developer Guide and Reference

1772

If proc-interface is the interface of an elemental procedure, each
procedure name must be an external procedure.

proc-attr-spec (Optional) Is one of the following attributes:

• PUBLIC
• PRIVATE
• BIND (C [, NAME = init-expr])

This is also called a language-binding-spec. The init-expr is a
scalar character constant expression of default character kind. If
NAME= is specified, there can only be one proc-decl item, which
cannot have the POINTER attribute or be a dummy procedure.

• INTENT(INOUT)
• OPTIONAL
• POINTER
• PROTECTED
• SAVE

Each proc-attr-spec gives the corresponding attribute to all
procedures declared in that statement.

If a procedure entity has the INTENT attribute or SAVE attribute, it
must also have the POINTER attribute.

proc-decl-list Is one or more of the following:

procedure-name [=> null-init]
where null-init is a reference to intrinsic function NULL with no
arguments. If => null-init appears, the procedure must have the
POINTER attribute. procedure-name is the name of a nonintrinsic
procedure

Description

A PROCEDURE statement declares nonintrinsic procedures (procedure pointers, dummy procedures, internal
procedures, and external procedures). If the procedure is not a procedure pointer, a module procedure, or an
internal procedure, it specifies the EXTERNAL attribute for the procedure.

You cannot use the PROCEDURE statement to identify a BLOCK DATA subprogram.

If => null-init appears, it specifies that the initial association status of the corresponding procedure entity is
disassociated. It also implies the SAVE attribute.

You can also declare procedures by using an EXTERNAL statement or a procedure component definition
statement.

If the BIND attribute is specified for a procedure, each dummy argument must be:

• An interoperable procedure or a variable that is interoperable
• Assumed shape
• Assumed rank
• Assumed type
• Of assumed-character length or has the ALLOCATABLE or POINTER attribute

If the BIND attribute is specified for a function, the function result must be an interoperable scalar variable.

A Fortran procedure is interoperable if it has the BIND attribute; that is, if its interface is specified with a
language-binding-spec.

The ALLOCATABLE or POINTER attribute must not be specified for a default-initialized dummy argument of a
procedure that has a BIND attribute.

Intel® Fortran Compiler Classic and Intel® Fortran Compiler Developer Guide and Reference 1

1773

A dummy argument of a procedure that has a BIND attribute must not have both the OPTIONAL and VALUE
attributes.

A variable that is a dummy argument of a procedure that has a BIND attribute must be of interoperable type
or assumed type.

When a procedure whose interface has the BIND attribute is called, any actual argument corresponding to a
dummy argument with the ALLOCATABLE or POINTER attribute is passed by C descriptor. Similarly, if a
Fortran procedure with a BIND attribute has such dummy arguments, they are received by C descriptor.

Example

Consider the following:

PROCEDURE (NAME_TEMP) :: NAME37
The above declares NAME37 to be a procedure with an identical interface to that of NAME_TEMP.

The following are equivalent:

PROCEDURE (INTEGER) X
INTEGER, EXTERNAL :: X

Consider the following:

ABSTRACT INTERFACE
 FUNCTION SIM_FUNC (X)
 REAL, INTENT (IN) :: X
 REAL :: SIM_FUNC
 END FUNCTION SIM_FUNC
END INTERFACE

INTERFACE
 SUBROUTINE SUB2 (X)
 REAL, INTENT (IN) :: X
 END SUBROUTINE SUB2
END INTERFACE

The following shows external and dummy procedures with explicit interfaces:

PROCEDURE (SIM_FUNC) :: VMAC, KAPPA
PROCEDURE (SUB2) :: PRINGLES

The following shows procedure pointers with an explicit interface, one initialized to NULL():

PROCEDURE (SIM_FUNC), POINTER :: P1, R1 => NULL()
PROCEDURE (SIM_FUNC), POINTER :: KAPPA_POINTER

The following shows a derived type with a procedure pointer component:

TYPE MEMO_TYPE
 PROCEDURE (SIM_FUNC), POINTER :: COMPONENT
END TYPE MEMO_TYPE

The following shows a variable of the above type:

TYPE (MEMO_TYPE) :: STRUCTA
The following shows an external or dummy function with an implicit interface:

PROCEDURE (INTEGER) :: PHIL0

See Also
Procedure Interfaces
Type-Bound Procedures

 1 Intel® Fortran Compiler Classic and Intel® Fortran Compiler Developer Guide and Reference

1774

ABSTRACT INTERFACE
INTERFACE
EXTERNAL attribute

PROCESSOR Clause
Parallel Directive Clause: Tells the compiler to
create a vector version of the routine for the specified
processor. When running on a processor that does not
match "cpuid", a scalar version will be invoked
multiple times based on vector length.

Syntax

PROCESSOR (cpuid)

cpuid Is one of the following:

ato
m

Intel Atom® processors with Supplemental
Streaming SIMD Extensions 3 (SSSE3)

ato
m_s
se4
_2

Intel Atom® processors with Intel® Streaming
SIMD Extensions 4.2 (Intel® SSE4.2)

ato
m_s
se4
2
mov
be

Intel Atom® processors with Intel® Streaming
SIMD Extensions 4.2 (Intel® SSE4.2) with
MOVBE instructions enabled

bro
adw
ell

This is a synonym for core_5th_gen_avx.

cor
e_2
_du
o_s
se4
_1

Intel® 45nm Hi-k next generation Intel® Core™
microarchitecture processors with Intel®
Streaming SIMD Extensions 4.1 (Intel® SSE4.1)

cor
e_2
_du
o_s
sse
3

Intel® Core™2 Duo processors with Intel®
Supplemental Streaming SIMD Extensions 3
(SSSE3)

cor
e_2
nd_
gen
_av
x

2nd generation Intel® Core™ processor family
with support for Intel® Advanced Vector
Extensions (Intel® AVX)

Intel® Fortran Compiler Classic and Intel® Fortran Compiler Developer Guide and Reference 1

1775

cor
e_3
rd_
gen
_av
x

3rd generation Intel® Core™ processor family
with support for Intel® Advanced Vector
Extensions (Intel® AVX) including the RDRND
instruction

cor
e_4
th_
gen
_av
x

4th generation Intel® Core™ processor family
with support for Intel® Advanced Vector
Extensions 2 (Intel® AVX2) including the RDRND
instruction

cor
e_4
th_
gen
_av
x_t
sx

4th generation Intel® Core™ processor family
with support for Intel® Advanced Vector
Extensions 2 (Intel® AVX2) including the RDRND
instruction, and support for Intel® Transactional
Synchronization Extensions (Intel® TSX)

cor
e_5
th_
gen
_av
x

5th generation Intel® Core™ processor family
with support for Intel® Advanced Vector
Extensions 2 (Intel® AVX2) including the
RDSEED and Multi-Precision Add-Carry
Instruction Extensions (ADX) instructions

cor
e_5
th_
gen
_av
x_t
sx

5th generation Intel® Core™ processor family
with support for Intel® Advanced Vector
Extensions 2 (Intel® AVX2) including the
RDSEED and Multi-Precision Add-Carry
Instruction Extensions (ADX) instructions, and
support for Intel® Transactional Synchronization
Extensions (Intel® TSX)

cor
e_a
es_
pcl
mul
qdq

Intel® Core™ processors with support for
Advanced Encryption Standard (AES)
instructions and carry-less multiplication
instruction

cor
e_i
7_s
se4
_2

Intel® Core™ i7 processors with Intel® Streaming
SIMD Extensions 4.2 (Intel® SSE4.2)
instructions

gen
eri
c

Other Intel processors for IA-32 or Intel® 64
architecture or compatible processors not
provided by Intel Corporation

 1 Intel® Fortran Compiler Classic and Intel® Fortran Compiler Developer Guide and Reference

1776

has
wel
l

This is a synonym for core_4th_gen_avx.

pen
tiu
m

Intel® Pentium® processor

pen
tiu
m_4

Intel® Pentium® 4 processor

pen
tiu
m_4
_ss
e3

Intel® Pentium® 4 processor with Intel®
Streaming SIMD Extensions 3 (Intel® SSE3)
instructions, Intel® Core™ Duo processors, Intel®
Core™ Solo processors

pen
tiu
m_i
i

Intel® Pentium® II processors

pen
tiu
m_i
ii

Intel® Pentium® III processors

pen
tiu
m_i
ii_
no_
xmm
_re
gs

Intel® Pentium® III processors with no XMM
registers

pen
tiu
m_m

Intel® Pentium® M processors

pen
tiu
m_m
mx

Intel® Pentium® processors with MMX™
technology

pen
tiu
m_p
ro

Intel® Pentium® Pro processors

sky
lak
e

Intel® microarchitecture code name Skylake.
This keyword targets the Client CPU without
support for Intel® AVX-512 instructions.

Intel® Fortran Compiler Classic and Intel® Fortran Compiler Developer Guide and Reference 1

1777

sky
lak
e_a
vx5
12

Intel® microarchitecture code name Skylake.
This keyword targets the Server CPU with
support for Intel® AVX-512 instructions.

The vector version of the routine that is created by the compiler is not affected by processor options specified
on the command line.

Multiple PROCESSOR clauses cause a syntax error.

NOTE
ifx does not support compilation for 32-bit architectures; only cpuid values for 64-bit instruction sets
may be specified for ifx.

See Also
DECLARE SIMD
ATTRIBUTES VECTOR

PRODUCT
Transformational Intrinsic Function (Generic):
Returns the product of all the elements in an entire
array or in a specified dimension of an array.

Syntax
result = PRODUCT (array [, mask])
result = PRODUCT (array, dim [, mask])

array (Input) Must be an array of type integer, real, or complex.

dim (Input) Must be a scalar integer with a value in the range 1 to n,
where n is the rank of array.

mask (Input; optional) Must be of type logical and conformable with array.

Results

The result is an array or a scalar of the same data type as array.

The result is a scalar if dim is not specified or array has rank one.

The following rules apply if dim is not specified:

• If PRODUCT(array) is specified, the result is the product of all elements of array. If array has size zero,
the result is 1.

• If PRODUCT(array, MASK= mask) is specified, the result is the product of all elements of array
corresponding to true elements of mask. If array has size zero, or every element of mask has the
value .FALSE., the result is 1.

The following rules apply if dim is specified:

• If array has rank one, the value is the same as PRODUCT(array[,MASK= mask]).
• An array result has a rank that is one less than array, and shape (d1, d2, ..., ddim-1, ddim+1, ..., dn), where

(d1, d2, ..., dn) is the shape of array.
• The value of element (s1, s2, ..., sdim-1, sdim+1, ..., sn) of PRODUCT(array, dim[, mask]) is equal to

PRODUCT(array(s1, s2, ..., sdim-1, :, sdim+1, ..., sn) [,MASK= mask(s1, s2, ..., sdim-1, :, sdim+1, ..., sn)]).

 1 Intel® Fortran Compiler Classic and Intel® Fortran Compiler Developer Guide and Reference

1778

Example

PRODUCT ((/2, 3, 4/)) returns the value 24 (the product of 2 * 3 * 4). PRODUCT ((/2, 3, 4/), DIM=1)
returns the same result.

PRODUCT (C, MASK=C .LT. 0.0) returns the product of the negative elements of C.

A is the array

 [1 4 7]
 [2 3 5].

PRODUCT (A, DIM=1) returns the value (2, 12, 35), which is the product of all elements in each column. 2 is
the product of 1 * 2 in column 1. 12 is the product of 4 * 3 in column 2, and so forth.

PRODUCT (A, DIM=2) returns the value (28, 30), which is the product of all elements in each row. 28 is the
product of 1 * 4 * 7 in row 1. 30 is the product of 2 * 3 * 5 in row 2.

If array has shape (2, 2, 2), mask is omitted, and dim is 1, the result is an array result with shape (2, 2)
whose elements have the following values.

Resultant array element Value

result(1, 1) array(1, 1, 1) * array(2, 1, 1)

result(2, 1) array(1, 2, 1) * array(2, 2, 1)

result(1, 2) array(1, 1, 2) * array(2, 1, 2)

result(2, 2) array(1, 2, 2) * array(2, 2, 2)

The following shows another example:

 INTEGER array (2, 3)
 INTEGER AR1(3), AR2(2)
 array = RESHAPE((/1, 4, 2, 5, 3, 6/),(/2,3/))
 ! array is 1 2 3
 ! 4 5 6
 AR1 = PRODUCT(array, DIM = 1) ! returns [4 10 18]
 AR2 = PRODUCT(array, MASK = array .LT. 6, DIM = 2)
 ! returns [6 20]
 END

See Also
SUM

PROGRAM
Statement: Identifies the program unit as a main
program and gives it a name.

Syntax
[PROGRAM name]
 [specification-part]
 [execution-part]
[CONTAINS
 internal-subprogram-part]
END[PROGRAM [name]]

Intel® Fortran Compiler Classic and Intel® Fortran Compiler Developer Guide and Reference 1

1779

name Is the name of the program.

specification-part Is one or more specification statements, except for the following:

• INTENT (or its equivalent attribute)
• OPTIONAL (or its equivalent attribute)
• PUBLIC and PRIVATE (or their equivalent attributes)

An automatic object must not appear in a specification statement. If a
SAVE statement is specified, it has no effect.

execution-part Is one or more executable constructs or statements, except for ENTRY
or RETURN statements.

internal-subprogram-part Is one or more internal subprograms (defining internal procedures).
The internal-subprogram-part is preceded by a CONTAINS
statement.

Description

The PROGRAM statement is optional. Within a program unit, a PROGRAM statement can be preceded only by
comment lines or an OPTIONS statement.

The END statement is the only required part of a program. If a name follows the END statement, it must be
the same as the name specified in the PROGRAM statement.

The program name is considered global and must be unique. It cannot be the same as any local name in the
main program or the name of any other program unit, external procedure, or common block in the
executable program.

A main program must not reference itself (either directly or indirectly).

Example

The following is an example of a main program:

PROGRAM TEST
 INTEGER C, D, E(20,20) ! Specification part
 CALL SUB_1 ! Executable part
...
CONTAINS
 SUBROUTINE SUB_1 ! Internal subprogram
 ...
 END SUBROUTINE SUB_1
END PROGRAM TEST

The following shows another example:

 PROGRAM MyProg
 PRINT *, 'hello world'
 END

PROTECTED
Statement and Attribute: Specifies limitations on
the use of module entities.

Syntax
The PROTECTED attribute can be specified in a type declaration statement or a PROTECTED statement, and
takes one of the following forms:

 1 Intel® Fortran Compiler Classic and Intel® Fortran Compiler Developer Guide and Reference

1780

Type Declaration Statement:

type, [att-ls,] PROTECTED [, att-ls] :: entity[, entity] ...
Statement:

PROTECTED [::]entity[, entity] ...

type Is a data type specifier.

att-ls Is an optional list of attribute specifiers.

entity Is the name of an entity in a module.

The PROTECTED attribute can only appear in the specification part of a module.

The PROTECTED attribute can only be specified for a procedure pointer or named variable that is not in a
common block.

A non-pointer object that has the PROTECTED attribute and is accessed by use association can not appear in
a variable definition or as the target in a pointer assignment statement.

A pointer object that has the PROTECTED attribute and is accessed by use association must not appear as
any of the following:

• A pointer-object in a NULLIFY statement
• A pointer-object in a pointer assignment statement
• An object in an ALLOCATE or DEALLOCATE statement
• An actual argument in a reference to a procedure if the associated dummy argument is a pointer with the

INTENT(OUT) or INTENT(INOUT) attribute.

The following restrictions apply outside of the module in which the entity has been given the PROTECTED
attribute:

• A non-pointer entity may not be defined or redefined.
• A pointer entity may not have its association status changed through the pointer.
• A data entity with the TARGET and the PROTECTED attribute that is USE associated may not appear in a

pointer initialization expression or a constructor if it corresponds to a pointer component.

Example

The following example shows a type declaration statement specifying the PROTECTED attribute:

 INTEGER, PROTECTED :: D, E
Consider the following example:

 MODULE counter_mod
 INTEGER, PROTECTED :: current = 0
 CONTAINS

 INTEGER FUNCTION next()
 current = current + 1 ! current can be modified here
 next = current
 RETURN
 END FUNCTION next
 END MODULE counter_mod

 PROGRAM test_counter
 USE counter_mod
 PRINT *, next() ! Prints 1
 current = 42 ! Error: variable is protected
 END PROGRAM test_counter

Intel® Fortran Compiler Classic and Intel® Fortran Compiler Developer Guide and Reference 1

1781

See Also
Modules and Module Procedures
Type Declarations
Compatible attributes
Pointer Assignments

PSECT
General Compiler Directive: Modifies characteristics
of a common block.

Syntax

!DIR$ PSECT /common-name/ a[,a] ...

common-name Is the name of the common block. The slashes (/) are required.

a Is one of the following:

• ALIGN= val or ALIGN= keyword

Specifies minimum alignment for the common block. ALIGN only
has an effect when specified on Windows* and Linux* systems.

The val is a constant ranging from 0 through 6 on Windows*
systems and 0 through 4 on Linux* systems. The specified number
is interpreted as a power of 2. The value of the expression is the
alignment in bytes.

The keyword is one of the following:

Keyword Equivalent to val

BYTE 0

WORD 1

LONG 2

QUAD 3

OCTA 4

PAGE On IA-32 architecture: range is
0 through 13 for Windows*; 0
through 12 for Linux*

• [NO]WRT

Determines whether the contents of a common block can be
modified during program execution.

If one program unit changes one or more characteristics of a common block, all other units that reference
that common block must also change those characteristics in the same way.

The defaults are ALIGN=OCTA and WRT.

See Also
General Compiler Directives

Syntax Rules for Compiler Directives

 1 Intel® Fortran Compiler Classic and Intel® Fortran Compiler Developer Guide and Reference

1782

PUBLIC
Statement and Attribute: Specifies that entities in a
module can be accessed from outside the module by
specifying a USE statement.

Syntax
The PUBLIC attribute can be specified in a type declaration statement or a PUBLIC statement, and takes one
of the following forms:

Type Declaration Statement:

type,[att-ls,] PUBLIC [, att-ls] :: entity [, entity]...
Statement:

PUBLIC [[::] entity [, entity] ...]

type Is a data type specifier.

att-ls Is an optional list of attribute specifiers.

entity Is one of the following:

• A variable name
• A procedure name
• A derived type name
• A named constant
• A namelist group name
• An OpenMP* reduction-identifier

In statement form, an entity can also be one of the following:

• A module name
• A generic name
• A defined operator
• A defined assignment
• A defined I/O generic specification

Description

The PUBLIC attribute can only appear in the scoping unit of a module.

Only one PUBLIC statement without an entity list is permitted in the scoping unit of a module; it sets the
default accessibility of all entities in the module and any entities accessed from a module by use association.

If no PRIVATE statements are specified in a module, the default is PUBLIC accessibility for all entities in the
module and entities accessible from other modules by use association.

A module name can appear at most once in all the PUBLIC or PRIVATE statements in a scoping unit. If a
module name is specified in a PUBLIC statement, the module name must have appeared in a USE statement
within the same scoping unit.

A PUBLIC attribute can be specified on the TYPE statement of a derived-type definition in a module. This
specifies that the derived-type definition is accessible by USE association where the module is used.

A PUBLIC attribute can be specified in the statement declaring a component or a type-bound procedure of a
derived type. This specifies that the component or type-bound procedure is accessible by USE association
where the module is used, even if the default accessibility of the components and type-bound procedures of
the derived type has been set to PRIVATE in the definition of the derived type.

If a derived type is declared PUBLIC in a module, but its components are declared PRIVATE, any scoping unit
accessing the module though use association (or host association) can access the derived-type definition, but
not its components.

Intel® Fortran Compiler Classic and Intel® Fortran Compiler Developer Guide and Reference 1

1783

If a module procedure has a dummy argument or a function result of a type that has PRIVATE accessibility,
the module procedure must have PRIVATE accessibility. If the module procedure has a generic identifier, it
must also be declared PRIVATE.

If a procedure has a generic identifier, the accessibility of the procedure's specific name is independent of the
accessibility of its generic identifier. One can be declared PRIVATE and the other PUBLIC.

The accessibility of the components of a type is independent of the accessibility of the type name. The
following combinations are possible:

• A private type name with a private component
• A public type name with a public component
• A private type name with a public component
• A public type name with a private component

The accessibility of a type does not affect, and is not affected by, the accessibility of its components and
type-bound procedures. If a type definition is private, then the type name, and thus the structure constructor
for the type, are accessible only within the module containing the derived-type definition or in the module's
descendants.

Example

The following examples show type declaration statements specifying the PUBLIC and PRIVATE attributes:

REAL, PRIVATE :: A, B, C
INTEGER, PUBLIC :: LOCAL_SUMS

The following is an example of the PUBLIC and PRIVATE statements:

MODULE SOME_DATA
 REAL ALL_B
 PUBLIC ALL_B
 TYPE RESTRICTED_DATA
 REAL LOCAL_C(50)
 END TYPE RESTRICTED_DATA
 PRIVATE RESTRICTED_DATA
END MODULE

The following example shows a PUBLIC type with PRIVATE components:

MODULE MATTER
 TYPE ELEMENTS
 PRIVATE
 INTEGER C, D
 END TYPE
...
END MODULE MATTER

In this case, components C and D are private to type ELEMENTS, but type ELEMENTS is not private to
MODULE MATTER. Any program unit that uses the module MATTER, can declare variables of type ELEMENTS,
and pass as arguments values of type ELEMENTS.

The following shows another example:

 ! LENGTH in module VECTRLEN calculates the length of a 2-D vector.
 ! The module contains both private and public procedures
 MODULE VECTRLEN
 PRIVATE SQUARE
 PUBLIC LENGTH
 CONTAINS
 SUBROUTINE LENGTH(x,y,z)
 REAL,INTENT(IN) x,y
 REAL,INTENT(OUT) z

 1 Intel® Fortran Compiler Classic and Intel® Fortran Compiler Developer Guide and Reference

1784

 CALL SQUARE(x,y)
 z = SQRT(x + y)
 RETURN
 END SUBROUTINE
 SUBROUTINE SQUARE(x1,y1)
 REAL x1,y1
 x1 = x1**2
 y1 = y1**2
 RETURN
 END SUBROUTINE
 END MODULE

See Also
PRIVATE
MODULE
TYPE
Defining Generic Names for Procedures
USE
Use and Host Association
Type Declarations
Compatible attributes

PURE
Keyword: Asserts that a user-defined procedure has
no side effects.

Description

This kind of procedure is specified by using the prefix PURE or the prefix ELEMENTAL without the prefix
IMPURE in a FUNCTION or SUBROUTINE statement.

A pure procedure has no side effects. It has no effect on the state of the program, except for the following:

• For functions: It returns a value.
• For subroutines: It modifies INTENT(OUT) and INTENT(INOUT) parameters.

The following intrinsic and library procedures are implicitly pure:

• All intrinsic functions
• The elemental intrinsic subroutine MVBITS
• The intrinsic subroutine MOVE_ALLOC
• Intrinsic module procedures that are specified to be pure

A dummy procedure or a procedure pointer can be specified to be pure. A type-bound procedure that is
bound to a pure procedure is also pure.

A statement function is pure only if all functions that it references are pure and its definition does not
reference any data object with the VOLATILE attribute.

Except for procedure arguments and pointer arguments, the following intent must be specified in the
specification part of the procedure for all dummy arguments:

• For functions: INTENT(IN) or the VALUE attribute
• For subroutines: any INTENT (IN, OUT, or INOUT) or the VALUE attribute

A local variable declared in a pure procedure (including variables declared in any internal procedure) must
not:

• Specify the SAVE attribute
• Specify the VOLATILE attribute

Intel® Fortran Compiler Classic and Intel® Fortran Compiler Developer Guide and Reference 1

1785

• Be initialized in a type declaration statement or a DATA statement

The following variables have restricted use in pure procedures (and any internal procedures):

• Global variables
• Dummy arguments with INTENT(IN)
• Dummy arguments with no declared intent that do not have the VALUE attribute
• Objects that are storage associated with any part of a global variable

They must not be used in any context that does either of the following:

• Causes their value to change. For example, they must not be used as any of the following:

• The left side of an assignment statement or pointer assignment statement
• An actual argument associated with a dummy argument with INTENT(OUT), INTENT(INOUT), or the

POINTER attribute
• An index variable in a DO or FORALL statement, or an implied-DO clause
• The variable in an ASSIGN statement
• An input item in a READ statement
• An internal file unit in a WRITE statement
• An object in an ALLOCATE, DEALLOCATE, or NULLIFY statement
• An IOSTAT or SIZE specifier in an I/O statement, the STAT or ERRMSG specifier in a ALLOCATE,

DEALLOCATE, or image control statement, or as the STAT or ERRMSG argument to the intrinsic
MOVE_ALLOC, or a collective or atomic intrinsic subroutine.

• The CMDSTAT or CMDMSG argument to the EXECUTE_COMMAND_LINE intrinsic subroutine
• The STATUS or ERRMSG argument to the GET_COMMAND or GET_COMMAND_ARGUMENT intrinsic

subroutine
• Creates a pointer to that variable. For example, they must not be used as:

• The target in a pointer assignment statement
• The right side of an assignment to a derived-type variable (including a pointer to a derived type) if the

derived type has a pointer component at any level
• The actual argument to the C_LOC function defined in the intrinsic module ISO_C_BINDING

A pure procedure must not contain the following:

• Any external I/O statement (including a READ or WRITE statement whose I/O unit is an external file unit
number or *)

• A PAUSE statement
• A STOP statement; ERROR STOP is permitted
• An image control statement
• An OpenMP* directive that is not a PURE directive

A pure procedure can be used in contexts where other procedures are restricted; for example:

• It can be called directly in a FORALL statement or be used in the mask expression of a FORALL statement.
• It can be called from a pure procedure. Pure procedures can only call other pure procedures, including

one referenced by means of a defined operator, defined assignment, defined input/output, or finalization.
• It can be passed as an actual argument to a pure procedure.

If a procedure is used in any of these contexts, its interface must be explicit and it must be declared pure in
that interface.

Example

Consider the following:

PURE FUNCTION DOUBLE(X)
 REAL, INTENT(IN) :: X
 DOUBLE = 2 * X
END FUNCTION DOUBLE

 1 Intel® Fortran Compiler Classic and Intel® Fortran Compiler Developer Guide and Reference

1786

The following shows another example:

PURE INTEGER FUNCTION MANDELBROT(X)
 COMPLEX, INTENT(IN) :: X
 COMPLEX__:: XTMP
 INTEGER__:: K
 ! Assume SHARED_DEFS includes the declaration
 ! INTEGER ITOL
 USE SHARED_DEFS

 K = 0
 XTMP = -X
 DO WHILE (ABS(XTMP) < 2.0 .AND. K < ITOL)
 XTMP = XTMP**2 - X
 K = K + 1
 END DO
 MANDELBROT = K
END FUNCTION

The following shows the preceding function used in an interface block:

INTERFACE
 PURE INTEGER FUNCTION MANDELBROT(X)
 COMPLEX, INTENT(IN) :: X
 END FUNCTION MANDELBROT
END INTERFACE

The following shows a FORALL construct calling the MANDELBROT function to update all the elements of an
array:

FORALL (I = 1:N, J = 1:M)
 A(I,J) = MANDELBROT(COMPLX((I-1)*1.0/(N-1), (J-1)*1.0/(M-1))
END FORALL

See Also
FUNCTION
SUBROUTINE
FORALL
ELEMENTAL prefix

PUTC
Portability Function: Writes a character to Fortran
external unit number 6.

Module

USE IFPORT

Syntax
result = PUTC (char)

char (Input) Character. Character to be written to external unit 6.

Results

The result type is INTEGER(4). The result is zero if successful; otherwise, an error code.

Intel® Fortran Compiler Classic and Intel® Fortran Compiler Developer Guide and Reference 1

1787

Example

 use IFPORT
 integer(4) i4
 character*1 char1
 do i = 1,26
 char1 = char(123-i)
 i4 = putc(char1)
 if (i4.ne.0) iflag = 1
 enddo

See Also
GETC
WRITE
PRINT
FPUTC

Q to R
This section describes language features that start with Q or R.

Q to R
QCMPLX
Elemental Intrinsic Function (Specific): Converts
an argument to COMPLEX(16) type. This function
cannot be passed as an actual argument.

Syntax
result = QCMPLX (x[,y])

x (Input) Must be of type integer, real, or complex.

y (Input; optional) Must be of type integer or real. It must not be
present if x is of type complex.

Results

The result type is COMPLEX(16) (or COMPLEX*32).

If only one noncomplex argument appears, it is converted into the real part of the result value and zero is
assigned to the imaginary part. If y is not specified and x is complex, the result value is CMPLX(REAL(x),
AIMAG(x)).

If two noncomplex arguments appear, the complex value is produced by converting the first argument into
the real part of the value, and converting the second argument into the imaginary part.

QCMPLX(x, y) has the complex value whose real part is REAL(x, kind=16) and whose imaginary part is
REAL(y, kind=16).

Example

QCMPLX (-3) has the value (-3.0Q0, 0.0Q0).

QCMPLX (4.1, 2.3) has the value (4.1Q0, 2.3Q0).

See Also
CMPLX
DCMPLX
FLOAT

 1 Intel® Fortran Compiler Classic and Intel® Fortran Compiler Developer Guide and Reference

1788

INT
IFIX
REAL
SNGL

QEXT
Elemental Intrinsic Function (Generic): Converts
a number to quad precision (REAL(16)) type.

Syntax
result = QEXT (a)

a (Input) Must be of type integer, real, or complex.

Results

The result type is REAL(16) (REAL*16). Functions that cause conversion of one data type to another type
have the same effect as the implied conversion in assignment statements.

If a is of type REAL(16), the result is the value of the a with no conversion (QEXT(a) = a).

If a is of type integer or real, the result has as much precision of the significant part of a as a REAL(16) value
can contain.

If a is of type complex, the result has as much precision of the significant part of the real part of a as a
REAL(16) value can contain.

Specific Name 1 Argument Type Result Type

INTEGER(1) REAL(16)

INTEGER(2) REAL(16)

INTEGER(4) REAL(16)

INTEGER(8) REAL(16)

QEXT REAL(4) REAL(16)

QEXTD REAL(8) REAL(16)

REAL(16) REAL(16)

COMPLEX(4) REAL(16)

COMPLEX(8) REAL(16)

COMPLEX(16) REAL(16)

1These specific functions cannot be passed as actual arguments.

Example

QEXT (4) has the value 4.0 (rounded; there are 32 places to the right of the decimal point).

QEXT ((3.4, 2.0)) has the value 3.4 (rounded; there are 32 places to the right of the decimal point).

QFLOAT
Elemental Intrinsic Function (Generic): Converts
an integer to quad precision (REAL(16)) type.

Intel® Fortran Compiler Classic and Intel® Fortran Compiler Developer Guide and Reference 1

1789

Syntax
result = QFLOAT (a)

a (Input) Must be of type integer.

Results

The result type is REAL(16) (REAL*16).

Functions that cause conversion of one data type to another type have the same affect as the implied
conversion in assignment statements.

Example

QFLOAT (-4) has the value -4.0 (rounded; there are 32 places to the right of the decimal point).

QNUM
Elemental Intrinsic Function (Specific): Converts
a character string to a REAL(16) value. This function
cannot be passed as an actual argument.

Syntax
result = QNUM (i)

i (Input) Must be of type character.

Results

The result type is REAL(16). The result value is the real value represented by the character string i.

Example

QNUM ("-174.23") has the value -174.23 of type REAL(16).

QRANSET
Portability Subroutine: Sets the seed for a
sequence of pseudo-random numbers.

Module

USE IFPORT

Syntax
CALL QRANSET (rseed)

rseed (Input) INTEGER(4). The reset value for the seed.

QREAL
Elemental Intrinsic Function (Specific): Converts
the real part of a COMPLEX(16) argument to REAL(16)
type. This is a specific function that has no generic
function associated with it. It cannot be passed as an
actual argument.

Syntax
result = QREAL (a)

 1 Intel® Fortran Compiler Classic and Intel® Fortran Compiler Developer Guide and Reference

1790

a (Input) Must be of type COMPLEX(16) (or COMPLEX*32).

Results

The result type is quad-precision real (REAL(16) or REAL*16).

Example

QREAL ((2.0q0, 3.0q0)) has the value 2.0q0.

See Also
REAL
DREAL

QSORT
Portability Subroutine: Performs a quick sort on an
array of rank one.

Module

USE IFPORT

Syntax
CALL QSORT (array,len,isize,compar)

array (Input) Any type except assumed-length character. A one-dimensional
array to be sorted.

If the data type does not conform to one of the predefined interfaces
for QSORT, you may have to create a new interface (see Note and
Example below).

len (Input) INTEGER(4) on IA-32 architecture; INTEGER(8) on Intel® 64
architecture. Number of elements in array.

isize (Input) INTEGER(4) on IA-32 architecture; INTEGER(8) on Intel® 64
architecture. Size, in bytes, of a single element of array:

• 4 if array is of type REAL(4)
• 8 if array is of type REAL(8) or complex
• 16 if array is of type COMPLEX(8)

compar (Input) INTEGER(2). Name of a user-defined ordering function that
determines sort order. The type declaration of compar takes the form:

INTEGER(2) FUNCTION compar(arg1, arg2)

where arg1 and arg2 have the same type as array (above) and are
not assumed-length character. Assume-length characters should be
wrapped in a derived type. After you have created an ordering
scheme, implement your sorting function so that it returns the
following:

• Negative if arg1 should precede arg2
• Zero if arg1 is equivalent to arg2
• Positive if arg1 should follow arg2

Dummy argument compar must be declared as external.

Intel® Fortran Compiler Classic and Intel® Fortran Compiler Developer Guide and Reference 1

1791

In place of an INTEGER kind, you can specify the constant
SIZEOF_SIZE_T, defined in IFPORT.F90, for argument len or isize.
Use of this constant ensures correct compilation.

NOTE
If you use QSORT with different data types, your program must have a USE IFPORT statement so that
all the calls work correctly. In addition, if you wish to use QSORT with a derived type or a type that is
not in the predefined interfaces, you must include an overload for the generic subroutine QSORT.
Examples of how to do this are in the portability module's source file, IFPORT.F90.

Example

! program showing how to call 'QSORT' on
! a user-defined type.
!
! Define the type to be shared.
!
module share_type
 type element_type
 integer :: data
 character(10) :: key
 end type
end module

! Main program calls QSORT.
!
program main

 use, intrinsic :: iso_c_binding, only: c_size_t
 use IFPORT ! To get QSORT
 use share_type ! To get shared type

 ! Define an overload of the default QSORT signature
 ! with a signature using the shared type.
 !
 interface
 subroutine QSORT_element_types(array, len, isize, comp)
 use, intrinsic :: iso_c_binding, only:c_size_t
 use share_type
 type(element_type) array(len)
 integer(C_SIZE_T) len, isize
 integer(2), external :: comp
 !
 ! Hook the overload to the real thing but be careful
 ! to connect to the correct qsort: the Fortran one, not
 ! the C one!
 !
 ! We need to call the _Fortran_ qsort, not the _C_ one, or
 ! there will be errors from the 1-origin vs. 0-origin indexing
 ! and the row-major vs. column-major ordering.
 !
 ! The symptom is that "OrderCharCI" is called with pointer values
 ! which are outside the bounds of the array to be sorted.
 !
 !DIR$ IF DEFINED(_WIN64)

 1 Intel® Fortran Compiler Classic and Intel® Fortran Compiler Developer Guide and Reference

1792

 !DIR$ ATTRIBUTES ALIAS:'QSORT' :: QSORT_element_types
 !DIR$ ELSE
 !DIR$ ATTRIBUTES ALIAS: '_QSORT' :: QSORT_element_types
 !DIR$ ENDIF
 end subroutine QSORT_element_types
 end interface

 type(element_type) :: c(7)

 integer(2), external :: OrderCharCI

 integer (C_SIZE_T) :: size_of_element, size_of_array
 ! Fill in the array to be sorted. The data value is chosen so
 ! that the sorted array will have the values in numeric order.
 ! Thus we can check the result of the sort.
 !
 c(1)%key = 'aisjdop'
 c(1)%data = 3
 c(2)%key = '35djf2'
 c(2)%data = 1
 c(3)%key = 'ss:ss'
 c(3)%data = 6
 c(4)%key = 'MMhQQ'
 c(4)%data = 4
 c(5)%key = 'mmHqq'
 c(5)%data = 5
 c(6)%key = 'aaaa'
 c(6)%data = 2
 c(7)%key = '["\/'
 c(7)%data = 7

 size_of_array = size(c) ! 7
 size_of_element = sizeof(c(1)) ! 16

 write(*,*) '"C" is:'
 do i = 1, 7
 write(*,*) ' "', c(i)%key, '" value ', c(i)%data
 end do

 write(*,*) ' '
 write(*,*) 'size of C is ', size_of_array, ' elements'
 write(*,*) 'size of element C(1) is ', size_of_element, ' bytes'
 write(*,*) 'len of key in C(1) is ', len(c(1)%key)
 write(*,*) ' '

 ! Call the overloaded QSORT routine.
 !
 Call QSort_element_types(C, size_of_array, size_of_element, OrderCharCI)

 write(*,*) 'Sorted "C" is '
 do i = 1, 7
 write(*,*) ' "', c(i)%key, '" value ', c(i)%data
 end do

end program main

! Computes order of character strings using a case insensitive ordering.
!

Intel® Fortran Compiler Classic and Intel® Fortran Compiler Developer Guide and Reference 1

1793

! Return -1 if C1 before C2, 0 if C1 = C2, and 1 if C1 after C2.
!
! Called first with the pair (2,3), then (1,2), then (1,3)...when passing
! character strings of length 10.
!
! Passing "element_type" objects, it's called first with the pair (1, <invalid>),
! and the second item has a address well before the beginning of "C".
!

function OrderCharCI(c1, c2)
 use share_type

 implicit none

 type(element_type), intent(in) :: c1 ! Character strings to be ordered.
 type(element_type), intent(in) :: c2 !

 ! Function result:
 !
 integer(2) :: OrderCharCI

 ! Locals:
 !
 character(10) :: c1L !} Local copies of c1 and c2.
 character(10) :: c2L !}

 integer :: i ! Loop index.

 write(*,*)'OrderCharCI, parameter C1 is "', c1%key, '" ', c1%data, ', len is ', len(c1%key)
 write(*,*)' len_trim is ', len_trim(c1%key)
 write(*,*) ' '

 ! SEGV on access to C2
 !
 write(*,*)'OrderCharCI, parameter C2 is "', c2%key, '" ', c2%data, ', len is ', len(c2%key)
 write(*,*)' len_trim is ', len_trim(c2%key)
 write(*,*) ' '
 c1L = c1%key
 c2L = c2%key

 write(*,*) 'about to start do loop'

 do i = 1, len_trim(C1L)
 if ('a' <= C1L(i:i) .and. c1L(i:i) <= 'z') c1L(i:i) = char(ichar(c1L(i:i)) - ichar('a')
+ ichar('A'))
 end do
 do i = 1, len_trim(C2L)
 if ('a' <= c2L(i:i) .and. c2L(i:i) <= 'z') c2L(i:i) = char(ichar(c2L(i:i)) - ichar('a')
+ ichar('A'))
 end do
 if (c1L == c2L) Then
 OrderCharCI = 0
 write(*,*) ' - equal'
 else if (c1L < c2L) Then
 OrderCharCI = -1
 write(*,*) ' - c1 is less'
 else
 OrderCharCI = 1

 1 Intel® Fortran Compiler Classic and Intel® Fortran Compiler Developer Guide and Reference

1794

 write(*,*) ' - c1 is more'
 end if
end function OrderCharCI

The following shows another example:

 PROGRAM SORTQ
 use, intrinsic :: iso_c_binding, only: c_size_t
 use IFPORT
 integer(2), external :: cmp_function
 integer(2) insort(26), i
 integer (C_SIZE_T) array_len, array_size
 array_len = 26
 array_size = 2
 do i=90,65,-1
 insort(i-64)=91 - i
 end do
 print *, "Before: "
 print *,insort
 CALL qsort(insort,array_len,array_size,cmp_function)
 print *, 'After: '
 print *, insort
 END
 !
 integer(2) function cmp_function(a1, a2)
 integer(2) a1, a2
 cmp_function=a1-a2
 end function

RADIX
Inquiry Intrinsic Function (Generic): Returns the
base of the model representing numbers of the same
type and kind as the argument.

Syntax
result = RADIX (x)

x (Input) Must be of type integer or real; it can be scalar or array
valued.

Results

The result is a scalar of type default integer. For an integer argument, the result has the value r (as defined
in Model for Integer Data). For a real argument, the result has the value b (as defined in Model for Real
Data).

Example

If X is a REAL(4) value, RADIX (X) has the value 2.

See Also
DIGITS
EXPONENT
FRACTION
Data Representation Models

Intel® Fortran Compiler Classic and Intel® Fortran Compiler Developer Guide and Reference 1

1795

RAISEQQ
Portability Function: Sends a signal to the executing
program.

Module

USE IFPORT

Syntax
result = RAISEQQ (sig)

sig (Input) INTEGER(4). Signal to raise. One of the following constants
(defined in IFPORT.F90):

• SIG$ABORT - Abnormal termination
• SIG$FPE - Floating-point error
• SIG$ILL - Illegal instruction
• SIG$INT - CTRL+Csignal
• SIG$SEGV - Illegal storage access
• SIG$TERM - Termination request

If you do not install a signal handler (with SIGNALQQ, for example), when a signal occurs the system by
default terminates the program with exit code 3.

Results

The result type is INTEGER(4). The result is zero if successful; otherwise, nonzero.

If a signal-handling routine for sig has been installed by a prior call to SIGNALQQ, RAISEQQ causes that
routine to be executed. If no handler routine has been installed, the system terminates the program (the
default action).

See Also
SIGNALQQ
SIGNAL
KILL

RAN
Nonelemental Intrinsic Function (Specific):
Returns the next number from a sequence of
pseudorandom numbers of uniform distribution over
the range 0 to 1. This is a specific function that has no
generic function associated with it. It cannot be
passed as an actual argument.

Syntax
result = RAN (i)

i (Input; output) Must be an INTEGER(4) variable or array element.

It should initially be set to a large, odd integer value. The RAN
function stores a value in the argument that is later used to calculate
the next random number.

There are no restrictions on the seed, although it should be initialized
with different values on separate runs to obtain different random
numbers.

 1 Intel® Fortran Compiler Classic and Intel® Fortran Compiler Developer Guide and Reference

1796

Results

The result type is REAL(4). The result is a floating-point number that is uniformly distributed in the range
between 0.0 inclusive and 1.0 exclusive. The result is set equal to the value associated with the argument i.

RAN is not a pure function.

Example

In RAN (I), if variable I has the value 3, RAN has the value 4.8220158E-05.

See Also
RANDOM
RANDOM_NUMBER

RAND, RANDOM
Portability Functions: Return real random numbers
in the range 0.0 to 1.0, not including the end points.

Module

USE IFPORT

Syntax
result = RAND ([iflag])
result = RANDOM (iflag)

iflag (Input) INTEGER(4). Optional for RAND. Controls the way the random
number is selected.

Results

The result type is REAL(4). RAND and RANDOM return random numbers in the range 0.0 to 1.0, not including
the end points.

Value of iflag Selection process

1 The generator is restarted and the first random
value is selected.

0 The next random number in the sequence is
selected.

Otherwise The generator is reseeded using iflag, restarted,
and the first random value is selected.

When RAND is called without an argument, the following applies:

• The value of iflag is assumed to be 0.
• You must specify USE IFPORT.

There is no difference between RAND and RANDOM. Both functions are included to ensure portability of
existing code that references one or both of them.

The intrinsic subroutines RANDOM_INIT, RANDOM_NUMBER, and RANDOM_SEED provide the same
functionality and they are the recommended functions to use when writing programs to generate random
numbers.

You can use SRAND to restart the pseudorandom number generator used by RAND.

Intel® Fortran Compiler Classic and Intel® Fortran Compiler Developer Guide and Reference 1

1797

NOTE
RANDOM is available as a function or subroutine.

Example

The following example shows how to use both the RANDOM function and the RANDOM subroutine:

use ifport
real(4) ranval
call seed(1995) ! initialize
call random(ranval) ! get next random number
print *,ranval

ranval = random(1) ! initialize
ranval = random(0) ! get next random number

print *,ranval
end

See Also
RANDOM_INIT

RANDOM_NUMBER
RANDOM_SEED
SRAND

RANDOM Subroutine
Portability Subroutine: Returns a pseudorandom
number greater than or equal to zero and less than
one from the uniform distribution.

Module

USE IFPORT

Syntax
CALL RANDOM (ranval)

ranval (Output) REAL(4). Pseudorandom number, 0 ranval< 1, from the
uniform distribution.

A given seed always produces the same sequence of values from RANDOM.

If SEED is not called before the first call to RANDOM, RANDOM begins with a seed value of one. If a program
must have a different pseudorandom sequence each time it runs, pass the constant RND$TIMESEED (defined
in IFCORE.F90) to SEED before the first call to RANDOM.

The portability routines DRAND, DRANDM, IRAND, IRANDM, RAN, RAND, and the RANDOM portability
function and subroutine use the same algorithms and thus return the same answers. They are all compatible
and can be used interchangeably. The algorithm used is a "Prime Modulus M Multiplicative Linear
Congruential Generator," a modified version of the random number generator by Park and Miller in "Random
Number Generators: Good Ones Are Hard to Find," CACM, October 1988, Vol. 31, No. 10.

 1 Intel® Fortran Compiler Classic and Intel® Fortran Compiler Developer Guide and Reference

1798

Example

 USE IFPORT
 REAL(4) ran

 CALL SEED(1995)
 CALL RANDOM(ran)

The following example shows how to use both the RANDOM subroutine and the RANDOM function:

use ifport
real(4) ranval
! from libifcore.lib
call seed(1995) ! initialize
! also from for_m_irand.c in libfor
call random(ranval) ! get next random number

print *,ranval
! from libifport.lib
ranval = random(1) ! initialize
! same
ranval = random(0) ! get next random number

print *,ranval
end

See Also
RANDOM_NUMBER
SEED
DRAND and DRANDM
IRAND and IRANDM
RAN
RAND

RANDOM_INIT
Intrinsic Subroutine: Initializes the pseudorandom
number generator used by RANDOM_NUMBER.

Syntax
CALL RANDOM_INIT (repeatable, image_distinct)

repeatable (Input) Must be scalar of type logical.

image_distinct (Input) Must be scalar of type logical.

If repeatable has the value .true. and image_distinct has the value .true., the effect of a call to
RANDOM_INIT is equivalent to calling RANDOM_SEED with a different processor-dependent value of PUT on
each image that executes the call. If the invoking image index on the initial team is the same, the value of
PUT is the same each time the program is executed.

If repeatable has the value .true. and image_distinct has the value .false., the effect of a call to
RANDOM_INIT is equivalent to calling RANDOM_SEED with the same processor-dependent value of PUT on
each image that executes the call. If the invoking image index on the initial team is the same, the value of
PUT is the same each time the program is executed.

If repeatable has the value .false. and image_distinct has the value .true., the effect of a call to
RANDOM_INIT is equivalent to calling RANDOM_SEED with a different processor-dependent value of PUT on
each image that executes the call. If the invoking image index on the initial team is the same, the value of
PUT is different each time the program is executed.

Intel® Fortran Compiler Classic and Intel® Fortran Compiler Developer Guide and Reference 1

1799

If repeatable has the value .false. and image_distinct has the value .false., the effect of a call to
RANDOM_INIT is equivalent to calling RANDOM_SEED with the same processor-dependent value of PUT on
each image that executes the call. If the invoking image index on the initial team is the same, the value of
PUT is the different each time the program is executed.

NOTE
This routine is thread safe.

Example

Consider the following:

PROGRAM main
REAL,DIMENSION(1000) :: y
CALL RANDOM_INIT (REPEATABLE=.TRUE., IMAGE_DISTINCT=.TRUE.)
CALL RANDOM_NUMBER (y)
. . .
END

After executing the above code, the array y contains a different sequence of pseudorandom numbers on each
image that executes the code. If the program is executed multiple times, for an image that has the same
image index in the initial team, the value of y is the same each time the program is run.

Consider another example:

PROGRAM main
REAL,DIMENSION(1000) :: y
CALL RANDOM_INIT (REPEATABLE=.FALSE., IMAGE_DISTINCT=.FALSE.)
CALL RANDOM_NUMBER (y)
. . .
END

After executing the above code, the array y contains the same sequence of pseudorandom numbers on each
image that executes the code. If the program is executed multiple times, the value of y is different each time
the program is run.

See Also
RANDOM_NUMBER

RANF Intrinsic Procedure

RANDOM_SEED
RANDOM
SEED
DRAND and DRANDM
IRAND and IRANDM
RAN
RAND and RANDOM

RANDOM_NUMBER
Intrinsic Subroutine: Returns one pseudorandom
number or an array of such numbers.

Syntax
CALL RANDOM_NUMBER (harvest)

 1 Intel® Fortran Compiler Classic and Intel® Fortran Compiler Developer Guide and Reference

1800

harvest (Output) Must be of type real. It can be a scalar or an array variable.
It is set to contain pseudorandom numbers from the uniform
distribution within the range 0 <= x < 1.

The seed for the pseudorandom number generator used by RANDOM_NUMBER can be set or queried with
RANDOM_SEED. If RANDOM_SEED is not used, the processor sets the seed for RANDOM_NUMBER to a
processor-dependent value.

The RANDOM_NUMBER generator uses two separate congruential generators together to produce a period of
approximately 10**18, and produces real pseudorandom results with a uniform distribution in [0, 1). It
accepts two integer seeds, the first of which is reduced to the range [1, 2147483562]. The second seed is
reduced to the range [1, 2147483398]. This means that the generator effectively uses two 31-bit seeds.

The RANDOM_NUMBER generator does not produce subnormal numbers.

For more information on the algorithm, see the following:

• Communications of the ACM vol 31 num 6 June 1988, titled: Efficient and Portable Combined Random
Number Generators by Pierre L'ecuyer.

• Springer-Verlag New York, N. Y. 2nd ed. 1987, titled: A Guide to Simulation by Bratley, P., Fox, B. L., and
Schrage, L. E.

NOTE
This routine is thread safe.

Example

Consider the following:

REAL Y, Z (5, 5)
! Initialize Y with a pseudorandom number
CALL RANDOM_NUMBER (HARVEST = Y)
CALL RANDOM_NUMBER (Z)

Y and Z contain uniformly distributed random numbers.

The following shows another example:

 REAL x, array1 (5, 5)
 CALL RANDOM_SEED()
 CALL RANDOM_NUMBER(x)
 CALL RANDOM_NUMBER(array1)

The following shows another example:

 program testrand
 intrinsic random_seed, random_number
 integer size
 integer, allocatable :: seed(:), gseed(:), hiseed(:), zseed(:)
 real harvest(10)
 call random_seed(SIZE=size)
 print *,"size ",size
 allocate(seed(size),gseed(size),hiseed(size),zseed(size))
 hiseed = -1
 zseed = 0
 seed = 123456789
 seed(size) = 987654321

Intel® Fortran Compiler Classic and Intel® Fortran Compiler Developer Guide and Reference 1

1801

 call random_seed(PUT=hiseed(1:size))
 call random_seed(GET=gseed(1:size))
 print *,"hiseed gseed", hiseed, gseed
 call random_seed(PUT=zseed(1:size))
 call random_seed(GET=gseed(1:size))
 print *,"zseed gseed ", zseed, gseed
 call random_seed(PUT=seed(1:size))
 call random_seed(GET=gseed(1:size))
 call random_number(HARVEST=harvest)
 print *, "seed gseed ", seed, gseed
 print *, "harvest"
 print *, harvest
 call random_seed(GET=gseed(1:size))
 print *,"gseed after harvest ", gseed
 end program testrand

See Also
RANF Intrinsic Procedure

RANDOM_INIT

RANDOM_SEED
RANDOM
SEED
DRAND and DRANDM
IRAND and IRANDM
RAN
RAND and RANDOM

RANDOM_SEED
Intrinsic Subroutine (Generic): Changes or queries
the seed (starting point) for the pseudorandom
number generator used by intrinsic subroutine
RANDOM_NUMBER. Intrinsic subroutines cannot be
passed as actual arguments.

Syntax
CALL RANDOM_SEED ([size] [,put] [,get])

size (Output; optional) Must be scalar and of type integer. Set to the
number of integers (N) that the processor uses to hold the value of
the seed.

put (Input; optional) Must be an integer array of rank one and size greater
than or equal to N. It is used to reset the value of the seed.

get (Output; optional) Must be an integer array of rank one and size
greater than or equal to N. It is set to the current value of the seed.

No more than one argument can be specified. If no argument is specified, a random number based on the
date and time is assigned to the seed.

You can determine the size of the array the processor uses to store the seed by calling RANDOM_SEED with
the size argument (see the second example below).

If RANDOM_SEED is called with no arguments, the seed is set to a different, unpredictable value on each call.

 1 Intel® Fortran Compiler Classic and Intel® Fortran Compiler Developer Guide and Reference

1802

NOTE
This routine is thread safe.

Example

Consider the following:

CALL RANDOM_SEED ! Processor initializes the
 ! seed randomly from the date
 ! and time
CALL RANDOM_SEED (SIZE = M) ! Sets M to N
CALL RANDOM_SEED (PUT = SEED (1 : M)) ! Sets user seed
CALL RANDOM_SEED (GET = OLD (1 : M)) ! Reads the current seed

The following shows another example:

 INTEGER I
 INTEGER, ALLOCATABLE :: new (:), old(:)
 CALL RANDOM_SEED () ! Processor reinitializes the seed
 ! randomly from the date and time
 CALL RANDOM_SEED (SIZE = I) ! I is set to the size of
 ! the seed array
 ALLOCATE (new(I))
 ALLOCATE (old(I))
 CALL RANDOM_SEED (GET=old(1:I)) ! Gets the current seed
 WRITE(*,*) old
 new = 5
 CALL RANDOM_SEED (PUT=new(1:I)) ! Sets seed from array
 ! new
 END

See Also
RANDOM_INIT

RANDOM_NUMBER
SEED
SRAND

RANDU
Intrinsic Subroutine (Generic): Computes a
pseudorandom number as a single-precision value.
Intrinsic subroutines cannot be passed as actual
arguments.

Syntax
CALL RANDU (i1,i2,x)

i1, i2 (Input; output) Must be scalars of type INTEGER(2) or INTEGER(4).
They contain the seed for computing the random number. These
values are updated during the computation so that they contain the
updated seed.

x (Output) Must be a scalar of type REAL(4). This is where the
computed random number is returned.

The result is returned in x, which must be of type REAL(4). The result value is a pseudorandom number in
the range 0.0 to 1.0. The algorithm for computing the random number value is based on the values for i1
and i2.

Intel® Fortran Compiler Classic and Intel® Fortran Compiler Developer Guide and Reference 1

1803

The result value is a pseudorandom number in the range 0.0 to 1.0. The algorithm for computing the random
number value is based on the values for i1 and i2.

If i1 = 0 and i2 = 0, the generator base is set as follows:

 x(n + 1) = 2**16 + 3
Otherwise, it is set as follows:

 x(n + 1) = (2**16 + 3) * x(n) mod 2**32
The generator base x(n + 1) is stored in i1, i2. The result is x(n + 1) scaled to a real value y(n + 1), for 0.0
<= y(n + 1) < 1.

Example

Consider the following:

REAL X
INTEGER(2) I, J
...
CALL RANDU (I, J, X)

If I and J are values 4 and 6, X has the value 5.4932479E-04.

RANF Intrinsic Procedure
Elemental Intrinsic Function (Generic): Generates
a random number between 0.0 and RAND_MAX. This
function must not be passed as an actual argument.
RANF can be used as an intrinsic procedure or as a
portability routine. It is an intrinsic procedure unless
you specify USE IFPORT.

Syntax
result = RANF ()

Results

The result type is REAL(4). The result value is a single-precision pseudo-random number between 0.0 and
(2**31) - 1.

The initial seed is set by the following:

 CALL SRAND(ISEED)
where ISEED is type INTEGER(4).

The intrinsic function RANF generates a different sequence of random numbers than the RANF portability
function generates for the same seed. The intrinsic function RANF used inside a loop can be vectorized into
one call that returns four results, but the portability function RANF cannot be so optimized.

See Also
RANDOM_NUMBER

RANF portability routine

SRAND

 1 Intel® Fortran Compiler Classic and Intel® Fortran Compiler Developer Guide and Reference

1804

RANF Portability Routine
Portability Function: Generates a random number
between 0.0 and RAND_MAX. RANF can be used as a
portability routine or as an intrinsic procedure. It is an
intrinsic procedure unless you specify USE IFPORT.

Module

USE IFPORT

Syntax
result = RANF ()

Results

The result type is REAL(4). The result value is a single-precision pseudo-random number between 0.0 and
(2**31) - 1.

The initial seed is set by the following:

 CALL SRAND(ISEED)
where ISEED is type INTEGER(4).

See Also
RANDOM_NUMBER

RANF intrinsic procedure

SRAND

RANGE
Inquiry Intrinsic Function (Generic): Returns the
decimal exponent range in the model representing
numbers with the same kind parameter as the
argument.

Syntax
result = RANGE (x)

x (Input) Must be of type integer, real, or complex; it can be scalar or
array valued.

Results

The result is a scalar of type default integer.

For an integer argument, the result has the value INT(LOG10(HUGE(x))). For information on the integer
model, see Model for Integer Data.

For a real or complex argument, the result has the value INT(MIN (LOG10(HUGE(x)), -
LOG10(TINY(x)))). For information on the real model, see Model for Real Data.

Example

If X is a REAL(4) value, RANGE (X) has the value 37. (HUGE(X) = (1 - 2 -24) x 2 128and TINY(X) = 2 -126)

See Also
HUGE
TINY

Intel® Fortran Compiler Classic and Intel® Fortran Compiler Developer Guide and Reference 1

1805

RANGET
Portability Subroutine: Returns the current seed.

Module

USE IFPORT

Syntax
CALL RANGET (seed)

seed (Output) INTEGER(4). The current seed value.

RANK
Inquiry Intrinsic Function (Generic): Returns the
rank of a data object.

Syntax
result = RANK (a)

a (Input) Is a data object. It can be of any type.

Results

The result type is default integer scalar. The result value is the rank of a.

Example

If object C is an assumed-rank dummy argument and its associated argument is an array of rank 5, RANK(C)
returns the value 5.

If D is an array declared DIMENSION (2, 3, 4), RANK(D) returned the value 3.

See Also
Assumed-Rank Specifications

RANSET
Portability Subroutine: Sets the seed for the
random number generator.

Module

USE IFPORT

Syntax
CALL RANSET (seed)

seed (Input) REAL(4). The reset value for the seed.

READ Statement
Statement: Transfers input data from external
sequential, direct-access, or internal records.

Syntax
Sequential

 1 Intel® Fortran Compiler Classic and Intel® Fortran Compiler Developer Guide and Reference

1806

Formatted:

READ (eunit, format [, advance] [, asynchronous] [, blank] [, decimal] [, id] [, pad] [,
pos] [, round] [, size] [, iostat] [, err] [, end] [, eor] [, iomsg]) [io-list]
READ form[, io-list]
Formatted - List-Directed:

READ (eunit, *[, asynchronous] [, blank] [, decimal] [, id] [, pad] [, pos] [, round] [,
size] [, iostat] [, err] [, end] [, iomsg]) [io-list]
READ *[, io-list]
Formatted - Namelist:

READ (eunit, nml-group[, asynchronous] [, blank] [, decimal] [, id] [, pad] [, pos] [,
round] [, size] [, iostat] [, err] [, end] [, iomsg])
READ nml
Unformatted:

READ (eunit [, asynchronous] [, id] [, pos] [, iostat] [, err][, end] [, iomsg]) [io-
list]
Direct-Access
Formatted:

READ (eunit, format, rec [, asynchronous] [, blank] [, decimal] [, id] [, pad] [, pos] [,
round] [, size] [, iostat] [, err] [, iomsg]) [io-list]
Unformatted:

READ (eunit, rec [, asynchronous] [, id] [, pos] [, iostat] [, err] [, iomsg]) [io-list]
Internal

READ (iunit, format [, nml-group] [, iostat] [, err] [, end] [, iomsg]) [io-list]
Internal Namelist

READ (iunit, nml-group [, iostat] [, err] [, end] [, iomsg]) [io-list]

eunit Is an external unit specifier, optionally prefaced by UNIT=. UNIT= is
required if eunit is not the first specifier in the list.

format Is a format specifier. It is optionally prefaced by FMT= if format is the
second specifier in the list and the first specifier indicates a logical or
internal unit specifier without the optional keyword UNIT=.

For internal READs, an asterisk (*) indicates list-directed formatting.
For direct-access READs, an asterisk is not permitted.

advance Is an advance specifier (ADVANCE=c-expr). If the value of c-expr is
'YES', the statement uses advancing input; if the value is 'NO', the
statement uses nonadvancing input. The default value is 'YES'.

asynchronous Is an asynchronous specifier (ASYNCHRONOUS=i-expr). If the value
of i-expr is 'YES', the statement uses asynchronous input; if the value
is 'NO', the statement uses synchronous input. The default value is
'NO'.

blank Is a blank control specifier (BLANK = blnk). If the value of blnk is
'NULL', all blanks are ignored. If the value is 'ZERO', all blanks are
treated as zeros. The default value is 'NULL'.

Intel® Fortran Compiler Classic and Intel® Fortran Compiler Developer Guide and Reference 1

1807

decimal Is a decimal mode specifier (DECIMAL=dmode) that evaluates to
'COMMA' or 'POINT'. The default value is 'POINT'.

id Is an id specifier (ID=id-var). If ASYNCHRONOUS='YES' is specified
and the operation completes successfully, the id specifier becomes
defined with an implementation-dependent value that can be specified
in a future WAIT or INQUIRE statement to identify the particular data
transfer operation. If an error occurs, the id specifier variable becomes
undefined.

pad Is a blank pading specifier (PAD = pd). If the value of pad is 'YES', the
record will be padded with blanks when necessary. If the value is 'NO',
the record will not be padded with blanks. The default value is 'YES'.

pos Is a pos specifier (POS=p) that indicates a file position in file storage
units in a stream file (ACCESS='STREAM'). It can only be specified for
a file opened for stream access. If omitted, the stream I/O occurs
starting at the next file position after the current file position.

round Is a rounding specifier (ROUND=rmode) that determines the I/O
rounding mode for this READ statement. If omitted, the rounding
mode is unchanged. Possible values are UP, DOWN, ZERO, NEAREST,
COMPATIBLE or PROCESSOR_DEFINED.

size Is a character count specifier (SIZE=i-var).

iostat Is the name of a variable to contain the completion status of the I/O
operation. Optionally prefaced by IOSTAT=.

err, end, eor Are branch specifiers if an error (ERR=label), end-of-file (END=label),
or end-of-record (EOR=label) condition occurs.

EOR can only be specified for nonadvancing READ statements.

iomsg Is an I/O message specifier (IOMSG=msg-var).

io-list Is an I/O list: the names of the variables, arrays, array elements, or
character substrings from which or to which data will be transferred.
Optionally an implied-DO list.

If an item in io-list is an expression that calls a function, that
function must not execute an I/O statement or the EOF intrinsic
function on the same external unit as eunit.

If I/O is to or from a formatted device, io-list cannot contain
derived-type variables, but it can contain components of derived
types. If I/O is to a binary or unformatted device, io-list can
contain either derived type components or a derived type variable.

form Is the nonkeyword form of a format specifier (no FMT=).

* Is the format specifier indicating list-directed formatting. (It can also
be specified as FMT=*.)

nml-group Is the namelist group specification for namelist I/O. Optionally
prefaced by NML=. NML= is required if nml-group is not the second
I/O specifier. For more information, see Namelist Specifier.

 1 Intel® Fortran Compiler Classic and Intel® Fortran Compiler Developer Guide and Reference

1808

nml Is the nonkeyword form of a namelist specifier (no NML=) indicating
namelist I/O.

rec Is the cell number of a record to be accessed directly. It must be
prefaced by REC=.

iunit Is an internal unit specifier, optionally prefaced by UNIT=. UNIT= is
required if iunit is not the first specifier in the list. It must be a
character variable. It must not be an array section with a vector
subscript.

If you specify EOR= or SIZE=, you must also specify ASYNCHRONOUS='NO'.

If you specify BLANK=, DECIMAL=, PAD=, or ROUND=, you must also specify FMT= or NML=.

If you specify ID=, you must also specify ASYNCHRONOUS='YES'.

Caution
The READ statement can disrupt the results of certain graphics text functions (such as
SETTEXTWINDOW) that alter the location of the cursor. You can avoid the problem by getting keyboard
input with the GETCHARQQ function and echoing the keystrokes to the screen using OUTTEXT.
Alternatively, you can use SETTEXTPOSITION to control cursor location.

Example

 DIMENSION ia(10,20)
 ! Read in the bounds for the array.
 ! Then read in the array in nested implied-DO lists
 ! with input format of 8 columns of width 5 each.
 READ (6, 990) il, jl, ((ia(i,j), j = 1, jl), i =1, il)
 990 FORMAT (2I5, /, (8I5))

 ! Internal read gives a variable string-represented numbers
 CHARACTER*12 str
 str = '123456'
 READ (str,'(i6)') i

 ! List-directed read uses no specified format
 REAL x, y
 INTEGER i, j
 READ (*,*) x, y, i, j

See Also
I/O Lists
I/O Control List
Forms for Sequential READ Statements
Forms for Direct-Access READ Statements
Forms and Rules for Internal READ Statements
PRINT
WRITE
I/O Formatting

REAL Directive
General Compiler Directive: Specifies the default
real kind.

Intel® Fortran Compiler Classic and Intel® Fortran Compiler Developer Guide and Reference 1

1809

Syntax
!DIR$ REAL:{ 4 | 8 | 16 }
The REAL directive selects a size of 4 (KIND=4), 8 (KIND=8), or 16 (KIND=16) bytes for default real
numbers. When the directive is in effect, all default real and complex variables are of the kind specified in the
directive. Only numbers specified or implied as REAL without KIND are affected.

The REAL directive can appear only at the top of a program unit. A program unit is a main program, an
external subroutine or function, a module, or a block data program unit. REAL cannot appear at the
beginning of internal subprograms. It does not affect modules invoked with the USE statement in the
program unit that contains it.

Example

 REAL r ! a 4-byte REAL
 WRITE(*,*) KIND(r)
 CALL REAL8()
 WRITE(*,*) KIND(r) ! still a 4-byte REAL
 ! not affected by setting in subroutine
 END
 SUBROUTINE REAL8()
 !DIR$ REAL:8
 REAL s ! an 8-byte REAL
 WRITE(*,*) KIND(s)
 END SUBROUTINE

See Also
REAL
COMPLEX
General Compiler Directives
Syntax Rules for Compiler Directives

REAL Function
Elemental Intrinsic Function (Generic): Converts
a value to real type.

Syntax
result = REAL (a[,kind])

a (Input) Must be of type integer, real, or complex, or a binary, octal, or
hexadecimal literal constant.

kind (Input; optional) Must be a scalar integer constant expression.

Results

The result type is real. If kind is present, the kind parameter is that specified by kind; otherwise, the kind
parameter of the result is shown in the following table. If the processor cannot represent the result value in
the kind of the result, the result is undefined.

Functions that cause conversion of one data type to another type have the same effect as the implied
conversion in assignment statements.

The result value depends on the type and absolute value of a as follows:

• If a is integer or real, the result is equal to an approximation of a. If a is complex, the result is equal to an
approximation of the real part of a.

 1 Intel® Fortran Compiler Classic and Intel® Fortran Compiler Developer Guide and Reference

1810

• If a is a binary, octal, or hexadecimal literal constant, the value of the result is the value whose bit
sequence according to the model in Bit Model is the same as that of a as modified by padding or
truncation according to the following:

• If the length of the sequence of bits specified by a is less than the size in bits of a scalar variable of the
same type and kind type parameter as the result, the binary, octal, or hexadecimal literal constant is
treated as if it were extended to a length equal to the size in bits of the result by padding on the left
with zero bits.

• If the length of the sequence of bits specified by a is greater than the size in bits of a scalar variable of
the same type and kind type parameter as the result, the binary, octal, or hexadecimal literal constant
is treated as if it were truncated from the left to a length equal to the size in bits of the result.

• If a binary, octal, or hexadecimal literal constant is truncated as an argument to intrinsic function
REAL, the discarded bits must all be zero.

Specific Name 1 Argument Type Result Type

INTEGER(1) REAL(4)

FLOATI INTEGER(2) REAL(4)

FLOAT 2, 3 INTEGER(4) REAL(4)

REAL 2 INTEGER(4) REAL(4)

FLOATK INTEGER(8) REAL(4)

REAL(4) REAL(4)

SNGL 2, 4 REAL(8) REAL(4)

SNGLQ REAL(16) REAL(4)

COMPLEX(4) REAL(4)

COMPLEX(8) REAL(8)

1 These specific functions cannot be passed as actual arguments.
2The setting of compiler options specifying real size can affect FLOAT, REAL, and SNGL.
3 Or FLOATJ. For compatibility with older versions of Fortran, FLOAT is generic, allowing any kind of
INTEGER argument, and returning a default real result.
4 For compatibility with older versions of Fortran, SNGL is generic, allowing any kind of REAL argument,
and returning a default real result.

If the argument is a a binary, octal, or hexadecimal constant, the result is affected by the assume old-boz
option. The default option setting, noold-boz, treats the argument as a bit string that represents a value of
the data type of the intrinsic, that is, the bits are not converted. If setting old-boz is specified, the
argument is treated as a signed integer and the bits are converted.

Example

REAL (-4) has the value -4.0.

REAL (Y) has the same kind parameter and value as the real part of complex variable Y.

If C is complex, C%RE is the same as REAL (C).

See Also
Binary, Octal, Hexadecimal, and Hollerith Constants
Model for Bit Data

Intel® Fortran Compiler Classic and Intel® Fortran Compiler Developer Guide and Reference 1

1811

DFLOAT
DREAL
DBLE
assume compiler option

REAL Statement
Statement: Specifies the REAL data type.

Syntax
REAL
REAL([KIND=] n)
REAL* n
DOUBLE PRECISION

n Is a constant expression that evaluates to kind 4, 8 or 16.

Description

If a kind parameter is specified, the real constant has the kind specified. If a kind parameter is not specified,
the kind is default real.

Default real is affected by compiler options specifying real size and by the REAL directive.

The default KIND for DOUBLE PRECISION is affected by compiler option double-size. If this compiler option is
not specified, default DOUBLE PRECISION is REAL(8).

No kind parameter is permitted for data declared with type DOUBLE PRECISION.

REAL(4) and REAL*4 (single precision) are the same data type. REAL(8), REAL*8, and DOUBLE PRECISION
are the same data type.

Example

! type declarations with attribute specifiers
REAL (8), PARAMETER :: testval=50.d0
REAL, SAVE :: a(10), b(20,30)
REAL, PARAMETER :: x = 100.

! attribute statements to declare the same entities
REAL x, a, b, testval*8
DIMENSION a(10), b(20,30)
SAVE a, b
PARAMETER (x = 100., testval=50.d0)

See Also
DOUBLE PRECISION
REAL directive
Real Data Types
General Rules for Real Constants
REAL(4) Constants
REAL(8) or DOUBLE PRECISION Constants
Real and Complex Editing
Model for Real Data

 1 Intel® Fortran Compiler Classic and Intel® Fortran Compiler Developer Guide and Reference

1812

RECORD
Statement: Declares a record structure as an entity
with a name.

Syntax
RECORD /structure-name/record-namelist [, /structure-name/record-namelist]...

structure-name Is the name of a previously declared structure.

record-namelist Is a list of one or more variable names, array names, or array
specifications, separated by commas. All of the records named in this
list have the same structure and are allocated separately in memory.

You can use record names in COMMON and DIMENSION statements, but not in DATA or NAMELIST
statements.

Records initially have undefined values unless you have defined their values in structure declarations.

STRUCTURE and RECORD constructs have been replaced by derived types, which should be used in writing
new code. See Derived Data Types.

Example

 STRUCTURE /address/
 LOGICAL*2 house_or_apt
 INTEGER*2 apt
 INTEGER*2 housenumber
 CHARACTER*30 street
 CHARACTER*20 city
 CHARACTER*2 state
 INTEGER*4 zip
 END STRUCTURE

 RECORD /address/ mailing_addr(20), shipping_addr(20)
The following shows another example:

RECORD /T1/ a, b, /T2/ c, /T3/ d, e, f
See Also
TYPE
MAP...END MAP
STRUCTURE...END STRUCTURE
UNION...END UNION
Record Structures

RECURSIVE and NON_RECURSIVE
Keywords: RECURSIVE specifies that a subroutine or
function can call itself directly or indirectly.
NON_RECURSIVE specifies that a subroutine or
function does not call itself directly or indirectly.

Description

RECURSIVE or NON_RECURSIVE can be specified once in a FUNCTION or SUBROUTINE statement. They
cannot both appear in the same statement.

Procedures not specified as RECURSIVE or NON_RECURSIVE are currently compiled as NON_RECURSIVE.

The default behavior can be changed by using the -assume [no]recursion option, the
standard-semantics option, or in an OPTIONS statement.

Intel® Fortran Compiler Classic and Intel® Fortran Compiler Developer Guide and Reference 1

1813

NOTE
The Fortran 2018 Standard specifies that the default mode is recursion; previous standards
specified the default was no recursion. The default compilation mode will change to
recursion in a future release.

If a function is directly recursive and array valued, and if the keyword RESULT is not specified in the
FUNCTION statement, the result variable is the function name, and all occurrences of the function name in
the executable part of the function are references to the function result variable.

A directly recursive function cannot have a declared type of CHARACTER if the character length is declared as
*.

A procedure interface is always explicit within the subprogram that defines the procedure.

The keyword RECURSIVE must be specified if the compilation mode is not set to recursive by a compiler
option and if any of the following applies (directly or indirectly):

• The subprogram invokes itself.
• The subprogram invokes a subprogram defined by an ENTRY statement in the same subprogram.
• An ENTRY procedure in the same subprogram invokes one of the following:

• Itself
• Another ENTRY procedure in the same subprogram
• The subprogram defined by the FUNCTION or SUBROUTINE statement

The keyword NON_RECURSIVE must be specified if the compilation mode is set to recursion by a compiler
option and the procedure is not to be compiled for recursion.

Example

 ! RECURS.F90
 !
 i = 0
 CALL Inc (i)
 END
 RECURSIVE SUBROUTINE Inc (i)
 i = i + 1
 CALL Out (i)
 IF (i.LT.20) CALL Inc (i) ! This also works in OUT
 END SUBROUTINE Inc

 SUBROUTINE Out (i)
 WRITE (*,*) i
 END SUBROUTINE Out

See Also
ENTRY
FUNCTION
SUBROUTINE
OPTIONS
Program Units and Procedures
recursive compiler option

REDUCE
Transformational Intrinsic Function (Generic):
Performs general array reduction.

 1 Intel® Fortran Compiler Classic and Intel® Fortran Compiler Developer Guide and Reference

1814

Syntax

result = REDUCE (array, operation [, mask] [, identity] [, ordered])
result = REDUCE (array, operation, dim [, mask] [, identity] [, ordered])

array (Input) Must be an array of any data type.

operation (Input) Must be a pure function with two non-optional, scalar,
nonallocatable, nonpointer, nonpolymorphic dummy arguments with
the same declared type and type-parameters as array. If one
argument has the ASYNCHRONOUS, TARGET, or VALUE attribute, the
other argument must have the same attribute. The function result
must be non-polymorphic and scalar, with the same declared type and
type parameters as array. The function should implement a
mathematically associated operation; it need not be commutative.

dim (Input) Must be a scalar integer whose value is greater than or equal
to 1 and less than or equal to the rank of array.

mask (Input; optional) Must be of type logical and conformable with array.

identity (Input; optional) Must be scalar with the same declared type and type
parameters as array.

ordered (Input; optional) Must be a scalar of type logical.

Results

The result has the same declared type and type parameters as array. If dim does not appear the result is
scalar; otherwise if n=RANK (array) the result has shape [d1, d2,...ddim-1, ddim+1,...dn] and rank n–1.

The result value is calculated differently depending on the form of the call:

1. The result of REDUCE (array, operation [, identity, ordered]) is calculated iteratively over the values of
array. The initial order of the sequence is array element order. While there is more than one element in
the sequence, each iteration calculates r = operation (a, b) replacing a and b with r.

If ordered is present with the value .true., a and b must be the first two elements of the sequence. The
process continues until the sequence has one value, and that is the value of the reduction. If array is a
zero-sized array and identity is present, the result is the value of identity; otherwise error termination
is initiated.

2. The result of REDUCE(array, operation, mask [, identity, ordered] is calculated as for case 1, but the
sequence of values consists only of those values of array for which the corresponding element of mask
has the value .true..

3. If array is a rank 1 array, REDUCE (array, operation, dim [, mask, identity, ordered) is equivalent to
REDUCE (array, operation [, mask, identity, ordered]); otherwise, the value of element (s1, s2,...,
sdim-1,sdim+1,..., sn) of REDUCE (array, operation, dim [, mask, identity, ordered] is equal to REDUCE
(array (s1, s2,..., sdim-1, :, sdim+1,..., sn), operation, dim = 1 [, mask(s1, s2,..., sdim-1, :, sdim+1,..., sn),
identity, ordered]).

Example

The following examples all use the function my_add, which returns the sum of its two real arguments.

1. The result of REDUCE ([2.0, 4.0, 6.0], my_add) is 12.0.
2. REDUCE (array, my_add, mask = array < 0.0, identity = 0.0) returns the sum of the negative elements

of array, or 0.0 if array is zero sized or all of arrays elements are non-negative.
3. If array is declared as

REAL,DIMENSION(2, 3) :: array = [1.0, 2.0, 3.0, 4.0, 5.0, 6.0]

Intel® Fortran Compiler Classic and Intel® Fortran Compiler Developer Guide and Reference 1

1815

then REDUCE (array, my_add, DIM = 2) has the result [5.0, 7.0, 9.0] and REDUCE (array, my_add,
DIM = 1) has the result [6.0, 15.0].

REDUCTION
Parallel Directive Clause: Performs a reduction
operation on the specified variables.

Syntax

REDUCTION ([reduction-modifier,]reduction-identifier : list)

reduction-modifier Is INSCAN, TASK, or DEFAULT.

reduction-identifier Is an identifier, user defined operator, or generic name which has
appeared in an accessible DECLARE REDUCTION directive, or one of
the predefined reduction operators or intrinsic names in the table of
predefined reduction-identifiers below.

list Is the name of one or more variables that are accessible to the
scoping unit. Each list item must be definable. Each name must be
separated by a comma. The type of each variable must be compatible
with a type for which the reduction-identifier has an accessible
definition.

Assumed-size arrays, procedure pointers, and dummy arguments that
are pointers with the INTENT (IN) attribute are not allowed. Array
sections are allowed.

For each list item, the number of copies is unspecified.

The same list item cannot appear in both a REDUCTION and an
IN_REDUCTION clause in the same directive.

If a reduction-modifier is not present or if DEFAULT is specified for PARALLEL, LOOP, and worksharing
constructs, one or more copies of each reduction list item is created for each implicit task in the region as if
the list item had been specified in a PRIVATE clause.

If the REDUCTION clause appears in a SIMD statement, one or more private copies of each reduction list
item is created for each SIMD lane. If the REDUCTION clause is in a TASKLOOP directive, private copies of
reduction list items are created as if a PRIVATE clause had been specified containing the list item. For a
REDUCTION clause in a TEAMS construct, one or more private copies of each reduction list item are created
for the initial task of each team in the league.

The TASK reduction-modifier can only appear in a REDUCTION clause of a PARALLEL or worksharing
construct or in a combined construct for which one of these constructs is a constituent member and the SIMD
and LOOP construct are not constituent members. If the TASK reduction-modifier is specified for a PARALLEL
or worksharing construct, it is as if each reduction list item appeared in a PRIVATE clause in the directive,
and any number of additional private copies can be created to support task reductions. If the TASK
reduction-modifier appears in a REDUCTION clause, a NOWAIT clause cannot appear for the same construct.

List items in a REDUCTION clause of the inner most enclosing worksharing or PARALLEL construct must not
be accessed in an explicit task generated by a construct unless that construct contains an IN_REDUCTION
clause that contains the same list items.

The INSCAN reduction-modifier is allowed only in a worksharing construct, a SIMD construct, or a composite
construct for which these constructs are a constituent construct, and the DISTRIBUTE is not a constituent
construct. It indicates that in each iteration of the loop, a scan computation is performed over the updates to
each list item. Each list item is made PRIVATE in the construct. Upon completion of the region, the value of
the private copy of a list item from the last logical iteration of the loops of the construct is assigned to the
original list item.

 1 Intel® Fortran Compiler Classic and Intel® Fortran Compiler Developer Guide and Reference

1816

Each list item of a REDUCTION clause with the INSCAN reduction-modifier must appear as a list item in an
INCLUSIVE or EXCLUSIVE clause in a SCAN directive contained in the loop (nest) enclosed in the construct. If
INSCAN appears in one REDUCTION clause of a construct, all REDUCTION clauses of that construct must
contain an INSCAN reduction-modifier. If an INSCAN reduction-modifier is applied to a construct that is
combined with a TARGET construct, it is as if each list item also appears in a MAP clause with a map-type of
TOFROM.

Variables that appear in a REDUCTION clause must be SHARED in the enclosing context. A private copy of
each variable in list is created for each thread as if the PRIVATE clause had been used. The private copy is
initialized according to the initializer-clause of the reduction-identifier. A dummy argument that is a pointer
with the INTENT (IN) attribute must not appear in a REDUCTION clause.

At the end of the REDUCTION, the shared variable is updated to reflect the result of combining the original
value of the shared reduction variable with the final value of each of the private copies using the combiner
specified for the reduction-identifier. Reduction operations should all be associative (except for subtraction),
and the compiler can freely reassociate the computation of the final value; the partial results of a subtraction
reduction are added to form the final value.

The value of the shared variable becomes undefined when the first thread reaches the clause containing the
reduction, and it remains undefined until the reduction computation is complete. Normally, the computation
is complete at the end of the construct containing the REDUCTION clause.

However, if the REDUCTION clause is used in a construct to which NOWAIT is also applied, the shared
variable remains undefined until a barrier synchronization has been performed. This ensures that all the
threads complete the REDUCTION clause.

Any list item copies associated with the reduction must be initialized before they are accessed by the tasks
participating in the reduction. After the end of the region, the original list item contains the result of the
reduction.

An original list item with the POINTER attribute, or any pointer component of an original list item that is
referenced, must be associated at entry to the construct that contains the REDUCTION clause. Also, the list
item, or the pointer component of the list item, must not be deallocated, allocated, or pointer assigned within
the region.

An original list item with the ALLOCATABLE attribute, or any allocatable component of an original list item
that is referenced, must be in the allocated state at entry to the construct that contains the REDUCTION
clause. Also, the list item, or the allocatable component of the list item, must be neither deallocated nor
allocated within the region.

Any number of REDUCTION clauses can be specified on the directive, but a list item can appear only once in
REDUCTION clauses for that directive.

If a list item is an array section, the following applies:

• The array section must specify contiguous storage and it cannot be a zero-length array section.
• Accesses to the elements of the array outside the specified array section result in unspecified behavior.
• The reduction clause will be applied to each separate element of the array section.
• Access to the elements of the array outside the specified array section result in unspecified behavior.

The following table lists predefined reduction-identifiers. These reduction-identifiers are implicitly defined and
cannot be redefined in a DECLARE REDUCTION directive for the types shown here. The actual initialization
value will be consistent with the data type of the reduction variable.

Predefined reduction-identifiers

reduction-identifier Type Combiner Initializer

+ INTEGER, REAL,
COMPLEX

omp_out = omp_out +
omp_in

omp_priv = 0

Intel® Fortran Compiler Classic and Intel® Fortran Compiler Developer Guide and Reference 1

1817

reduction-identifier Type Combiner Initializer

* INTEGER, REAL,
COMPLEX

omp_out = omp_out *
omp_in

omp_priv = 1

- INTEGER, REAL,
COMPLEX

omp_out = omp_out +
omp_in

omp_priv = 0

.AND. LOGICAL omp_out =
omp_out .AND. omp_in

omp_priv = .TRUE.

.OR. LOGICAL omp_out =
omp_out .OR. omp_in

omp_priv = .FALSE.

.EQV. LOGICAL omp_out =
omp_out .EQV. omp_in

omp_priv = .TRUE.

.NEQV. LOGICAL omp_out =
omp_out .NEQV. omp_in

omp_priv = .FALSE.

MAX INTEGER, REAL omp_out = max
(omp_out, omp_in)

omp_priv =Smallest
representable number

MIN INTEGER, REAL omp_out = min
(omp_out, omp_in)

omp_priv = Largest
representable number

IAND INTEGER omp_out = iand
(omp_out, omp_in)

omp_priv = All bits set

IOR INTEGER omp_out = ior
(omp_out, omp_in)

omp_priv = 0

IEOR INTEGER omp_out = ieor
(omp_out, omp_in)

omp_priv = 0

If a directive allows REDUCTION clauses, the number you can specify is not limited. However, each variable
name can appear only once in only one of the clauses.

NOTE
If a variable appears in a REDUCTION clause on a combined construct for which the first construct is
TARGET, it is treated as if it had appeared in a MAP clause with a map-type of TOFROM.

Example

In the following program fragment, time will be the sum of the time spent in the do loop across all threads:

 use omp_lib
 integer i
 double precision t1, time
 call omp_set_num_threads(4)
 ...
!$omp do reduction(+:time)
 do i = 1, omp_get_num_threads()
 t1 = omp_get_wtime()
 ...
 time = omp_get_wtime() – t1

 1 Intel® Fortran Compiler Classic and Intel® Fortran Compiler Developer Guide and Reference

1818

 end do
 !here time is equal to the total time across all threads
 ...

See Also
DECLARE REDUCTION
IN_REDUCTION
PRIVATE clause
SCAN
TASK_REDUCTION

%REF
Built-in Function: Changes the form of an actual
argument. Passes the argument by reference. In
Intel® Fortran, passing by reference is the default.

Syntax
%REF (a)

a (Input) An expression, record name, procedure name, array, character
array section, or array element.

You must specify %REF in the actual argument list of a CALL statement or function reference. You cannot use
it in any other context.

The following table lists the Intel® Fortran defaults for argument passing, and the allowed uses of %REF:

Actual Argument Data Type Default %REF

Expressions:

Logical REF Yes

Integer REF Yes

REAL(4) REF Yes

REAL(8) REF Yes

REAL(16) REF Yes

COMPLEX(4) REF Yes

COMPLEX(8) REF Yes

COMPLEX(16) REF Yes

Character See table note 1 Yes

Hollerith REF No

Aggregate2 REF Yes

Derived REF Yes

Array Name:

Numeric REF Yes

Intel® Fortran Compiler Classic and Intel® Fortran Compiler Developer Guide and Reference 1

1819

Actual Argument Data Type Default %REF

Character See table note 1 Yes

Aggregate2 REF Yes

Derived REF Yes

Procedure Name:

Numeric REF Yes

Character See table note 1 Yes

1A character argument is passed by address and hidden length.
2In Intel® Fortran record structures

The %REF and %VAL functions override related !DIR$ ATTRIBUTE settings.

Example

 CHARACTER(LEN=10) A, B
 CALL SUB(A, %REF(B))

Variable A is passed by address and hidden length. Variable B is passed by reference.

Note that on Windows* systems, compiler option iface determines how the character argument for variable
B is passed.

See Also
CALL
%VAL
%LOC
/iface compiler option

RENAME
Portability Function: Renames a file.

Module

USE IFPORT

Syntax
result = RENAME (from,to)

from (Input) Character*(*). Path of an existing file.

to (Input) Character*(*). The new path for the file (see Caution note
below).

Results

The result type is INTEGER(4). The result is zero if successful; otherwise, an error code, such as:

• EACCES - The file or directory specified by to could not be created (invalid path). This error is also
returned if the drive specified is not currently connected to a device.

• ENOENT - The file or path specified by from could not be found.
• EXDEV - Attempt to move a file to a different device.

 1 Intel® Fortran Compiler Classic and Intel® Fortran Compiler Developer Guide and Reference

1820

Caution
This routine can cause data to be lost. If the file specified in to already exists, RENAME
deletes the pre-existing file.

It is possible to rename a file to itself without error.

The paths can use forward (/) or backward (\) slashes as path separators and can include drive letters
(if permitted by your operating system).

Example

 use IFPORT
 integer(4) istatus
 character*12 old_name, new_name
 print *, "Enter file to rename: "
 read *, old_name
 print *, "Enter new name: "
 read *, new_name
 ISTATUS = RENAME (old_name, new_name)

See Also
RENAMEFILEQQ

RENAMEFILEQQ
Portability Function: Renames a file or directory.

Module

USE IFPORT

Syntax
result = RENAMEFILEQQ (oldname,newname)

oldname (Input) Character*(*). Current name of the file or directory to be
renamed.

newname (Input) Character*(*). New name of the file or directory.

Results

The result type is LOGICAL(4). The result is .TRUE. if successful; otherwise, .FALSE..

You can use RENAMEFILEQQ to move a file from one directory to another on the same drive by giving a
different path in the newname parameter.

If the function fails, call GETLASTERRORQQ to determine the reason. One of the following errors can be
returned:

• ERR$ACCES - Permission denied. The file's or directory's permission setting does not allow the specified
access.

• ERR$EXIST - The file or directory already exists.
• ERR$NOENT - File or directory or path specified by oldname not found.
• ERR$XDEV - Attempt to move a file or directory to a different device.

Example

 USE IFPORT
 USE IFCORE
 INTEGER(4) len
 CHARACTER(80) oldname, newname

Intel® Fortran Compiler Classic and Intel® Fortran Compiler Developer Guide and Reference 1

1821

 LOGICAL(4) result

 WRITE(*,'(A, \)') ' Enter old name: '
 len = GETSTRQQ(oldname)
 WRITE(*,'(A, \)') ' Enter new name: '
 len = GETSTRQQ(newname)
 result = RENAMEFILEQQ(oldname, newname)
 END

See Also
FINDFILEQQ
RENAME
GETLASTERRORQQ

REPEAT
Transformational Intrinsic Function (Generic):
Concatenates several copies of a string.

Syntax
result = REPEAT (string,ncopies)

string (Input) Must be scalar and of type character.

ncopies (Input) Must be scalar and of type integer. It must not be negative.

Results

The result is a scalar of type character and length ncopies x LEN(string). The kind parameter is the same as
string. The value of the result is the concatenation of ncopies copies of string.

Example

REPEAT ('S', 3) has the value SSS.

REPEAT ('ABC', 0) has the value of a zero-length string.

The following shows another example:

 CHARACTER(6) str
 str = REPEAT('HO', 3) ! returns HOHOHO

See Also
SPREAD

REQUIRES
OpenMP* Fortran Compiler Directive: Lists the
features that an implementation must support so that
the program compiles and runs correctly. This feature
is only available for ifx.

Syntax

!$OMP REQUIRES [clause[[,] clause]...]

clause Is one or more of the following:

• ATOMIC_DEFAULT_MEM_ORDER (SEQ_CST | ACQ_REL | RELAXED)

 1 Intel® Fortran Compiler Classic and Intel® Fortran Compiler Developer Guide and Reference

1822

Specifies the default memory ordering behavior that an
implementation must support for ATOMIC constructs.

If more than one REQUIRES directive contains an
ATOMIC_DEFAULT_MEM_ORDER clause, each REQUIRES directive
in the same compilation unit that specifies
ATOMIC_DEFAULT_MEM_ORDER must specify the same parameter
for that clause.

When this clause is specified, it must appear lexically prior to any
ATOMIC construct that does not contain a memory order clause.

For information about settings SEQ_CST, ACQ_REL, and RELAXED,
see the ATOMIC construct.

• DYNAMIC_ALLOCATORS

Tells the compiler that the USES_ALLOCATORS clause is optional in
TARGET constructs that use allocators in the corresponding TARGET
regions.

If DYNAMIC_ALLOCATORS are supported:

• Calls to OMP_INIT_ALLOCATOR and OMP_DESTROY_ALLOCATOR
are permitted in TARGET regions.

• Default allocators can be used by ALLOCATE directives and
clauses, and in the OMP_ALLOC routines in TARGET regions.

• UNIFIED_ADDRESS

Tells the compiler that all devices available through OpenMP*
directives and API procedures must have a unified address space.

A pointer to this address space will refer to the same memory
location when referenced from all available devices. OpenMP*
mechanisms returning device pointers, return device addresses
supporting pointer arithmetic.

When this clause is specified, the IS_DEVICE_POINTER clause is
not needed to obtain device addresses from device pointers for use
in TARGET regions.

Host device pointers can be passed as device pointer arguments to
device memory procedures, and device pointers can be passed as
host pointer arguments to device procedures. A non-host device
may have discreet memory. In this case, referencing a host pointer
on such a device or referencing a device pointer on the host will
result in unspecified behavior.

Memory local to a specific execution context may be exempt from
the UNIFIED_ADDRESS requirements. It may adhere to the
requirements of locality to a given thread, contention group, or
execution context.

• UNIFIED_SHARED_MEMORY

This clause implies the UNIFIED_ADDRESS clause. It also causes
memory addresses to be accessible to threads on all available
devices, with the exception of memory that is local to a specific
execution context as described in UNIFIED_ADDRESS.

All device addresses referring to memory allocated through
OpenMP* device memory routines are valid host pointers that may
be dereferenced.

Intel® Fortran Compiler Classic and Intel® Fortran Compiler Developer Guide and Reference 1

1823

If UNIFIED_SHARED_MEMORY is supported:

• The MAP clause in TARGET constructs is optional.
• The DECLARE TARGET directive is optional for static variables

accessed in procedures to which a DECLARE TARGET directive is
applied.

By default, scalar variables are FIRSTPRIVATE inside TARGET
constructs.

A value stored to memory by one device may not be visible to
another device until the two devices have synchronized, or both
devices synchronize with the host.

Only one occurrence of each clause is permitted in the REQUIRES
directive. At least one clause is required.

The REQUIRES directive identifies the requirements needed for execution of the code in the compilation unit
in which the directive appears.

The REQUIRES directive must appear in the specification part of the program unit, lexically following all USE,
IMPORT, and IMPLICIT statements.

The clauses specified in the REQUIRES directive are added to the requires trait in the OpenMP* context for all
points in the compilation unit.

See Also
OpenMP Fortran Compiler Directives
Syntax Rules for Compiler Directives

RESHAPE
Transformational Intrinsic Function (Generic):
Constructs an array with a different shape from the
argument array.

Syntax
result = RESHAPE (source,shape[,pad] [,order])

source (Input) Must be an array. It may be of any data type. It supplies the
elements for the result array. Its size must be greater than or equal to
PRODUCT(shape) if pad is omitted or has size zero.

shape (Input) Must be an integer array of up to 31 elements, with rank one
and constant size. It defines the shape of the result array. Its size
must be positive; its elements must not have negative values.

pad (Input; optional) Must be an array with the same type and kind
parameters as source. It is used to fill in extra values if the result
array is larger than source.

order (Input; optional) Must be an integer array with the same shape as
shape. Its elements must be a permutation of (1,2,...,n), where n is
the size of shape. If order is omitted, it is assumed to be (1,2,...,n).

Results

The result is an array of shape shape with the same type and kind parameters as source. The size of the
result is the product of the values of the elements of shape.

 1 Intel® Fortran Compiler Classic and Intel® Fortran Compiler Developer Guide and Reference

1824

In the result array, the array elements of source are placed in the order of dimensions specified by order. If
order is omitted, the array elements are placed in normal array element order.

The array elements of source are followed (if necessary) by the array elements of pad in array element order.
If necessary, additional copies of pad follow until all the elements of the result array have values.

NOTE
In standard Fortran array element order, the first dimension varies fastest. For example,
element order in a two-dimensional array would be (1,1), (2,1), (3,1) and so on. In a three-
dimensional array, each dimension having two elements, the array element order would be
(1,1,1), (2, 1, 1), (1, 2, 1), (2, 2, 1), (1, 1, 2), (2, 1, 2), (1, 2, 2), (2, 2, 2).

RESHAPE can be used to reorder a Fortran array to match C array ordering before the array is passed
from a Fortran to a C procedure.

Example

RESHAPE ((/3, 4, 5, 6, 7, 8/), (/2, 3/)) has the value

 [3 5 7]
 [4 6 8].

RESHAPE ((/3, 4, 5, 6, 7, 8/), (/2, 4/), (/1, 1/), (/2, 1/)) has the value

 [3 4 5 6]
 [7 8 1 1].

The following shows another example:

 INTEGER AR1(2, 5)
 REAL F(5,3,8)
 REAL C(8,3,5)
 AR1 = RESHAPE((/1,2,3,4,5,6/),(/2,5/),(/0,0/),(/2,1/))
 ! returns 1 2 3 4 5
 ! 6 0 0 0 0
 !
 ! Change Fortran array order to C array order
 C = RESHAPE(F, (/8,3,5/), ORDER = (/3, 2, 1/))
 END

See Also
PACK
SHAPE
TRANSPOSE
Array Assignment Statements

RESULT
Keyword: Specifies a name for a function result.

Description

Normally, a function result is returned in the function's name, and all references to the function name are
references to the function result.

However, if you use the RESULT keyword in a FUNCTION statement, you can specify a local variable name for
the function result. In this case, all references to the function name are recursive calls, and the function
name must not appear in specification statements.

The RESULT name must be different from the name of the function.

Intel® Fortran Compiler Classic and Intel® Fortran Compiler Developer Guide and Reference 1

1825

Example

The following shows an example of a recursive function specifying a RESULT variable:

 RECURSIVE FUNCTION FACTORIAL(P) RESULT(L)
 INTEGER, INTENT(IN) :: P
 INTEGER L
 IF (P == 1) THEN
 L = 1
 ELSE
 L = P * FACTORIAL(P - 1)
 END IF
 END FUNCTION

The following shows another example:

 recursive function FindSame(Aindex,Last,Used) &
 & result(FindSameResult)
 type(card) Last
 integer Aindex, i
 logical matched, used(5), FindSameResult
 if(Aindex > 5) then
 FindSameResult = .true.
 return
 endif
 ...

See Also
FUNCTION
ENTRY
RECURSIVE and NONRECURSIVE
Program Units and Procedures

RETURN
Statement: Transfers control from a subprogram to
the calling program unit.

Syntax
RETURN [expr]

expr Is a scalar expression that is converted to an integer value if
necessary.

The expr is only allowed in subroutines; it indicates an alternate
return. (An alternate return is an obsolescent feature in Standard
Fortran.)

Description

When a RETURN statement is executed in a function subprogram, control is transferred to the referencing
statement in the calling program unit.

When a RETURN statement is executed in a subroutine subprogram, control is transferred to the first
executable statement following the CALL statement that invoked the subroutine, or to the alternate return (if
one is specified).

 1 Intel® Fortran Compiler Classic and Intel® Fortran Compiler Developer Guide and Reference

1826

Example

The following shows how alternate returns can be used in a subroutine:

 CALL CHECK(A, B, *10, *20, C)
 ...
10 ...
20 ...
 SUBROUTINE CHECK(X, Y, *, *, C)
 ...
50 IF (X) 60, 70, 80
60 RETURN
70 RETURN 1
80 RETURN 2
 END

The value of X determines the return, as follows:

• If X < 0, a normal return occurs and control is transferred to the first executable statement following CALL
CHECK in the calling program.

• If X = = 0, the first alternate return (RETURN 1) occurs and control is transferred to the statement
identified with label 10.

• If X > 0, the second alternate return (RETURN 2) occurs and control is transferred to the statement
identified with label 20.

Note that an asterisk (*) specifies the alternate return. An ampersand (&) can also specify an alternate
return in a CALL statement, but not in a subroutine's dummy argument list.

The following shows another example:

 SUBROUTINE Loop
 CHARACTER in
 10 READ (*, '(A)') in
 IF (in .EQ. 'Y') RETURN
 GOTO 10
 ! RETURN implied by the following statement:
 END

 ! The following example shows alternate returns:
 CALL AltRet (i, *10, *20, *30)
 WRITE (*, *) 'normal return'
 GOTO 40
 10 WRITE (*, *) 'I = 10'
 GOTO 40
 20 WRITE (*, *) 'I = 20'
 GOTO 40
 30 WRITE (*, *) 'I = 30'
 40 CONTINUE
 END
 SUBROUTINE AltRet (i, *, *, *)
 IF (i .EQ. 10) RETURN 1
 IF (i .EQ. 20) RETURN 2
 IF (i .EQ. 30) RETURN 3
 END

In the above example, RETURN 1 specifies the list's first alternate-return label, which is a symbol for the
actual argument *10 in the CALL statement. RETURN 2 specifies the second alternate-return label, and
RETURN 3 specifies the third alternate-return label.

See Also
CALL

Intel® Fortran Compiler Classic and Intel® Fortran Compiler Developer Guide and Reference 1

1827

CASE

REWIND
Statement: Positions a sequential or direct access file
at the beginning of the file (the initial point). It takes
one of the following forms:

Syntax
REWIND ([UNIT=] io-unit[, ERR= label] [, IOMSG=msg-var] [, IOSTAT=i-var])
REWIND io-unit

io-unit (Input) Is an external unit specifier.

label Is the label of the branch target statement that receives control if an
error occurs.

msg-var (Output) Is a scalar default character variable that is assigned an
explanatory message if an I/O error occurs.

i-var (Output)Is a scalar integer variable that is defined as a positive
integer if an error occurs and zero if no error occurs.

Description

The unit number must refer to a file on disk or magnetic tape, and the file must be open for sequential,
direct, or append access.

If a REWIND is done on a direct access file, the NEXTREC specifier is assigned a value of 1.

If a file is already positioned at the initial point, a REWIND statement has no effect.

If a REWIND statement is specified for a unit that is not open, it has no effect.

Example

The following statement repositions the file connected to I/O unit 3 to the beginning of the file:

REWIND 3
Consider the following statement:

REWIND (UNIT=9, IOSTAT=IOS, ERR=10)
This statement positions the file connected to unit 9 at the beginning of the file. If an error occurs, control is
transferred to the statement labeled 10, and a positive integer is stored in variable IOS.

The following shows another example:

 WRITE (7, '(I10)') int
 REWIND (7)
 READ (7, '(I10)') int

See Also
OPEN
READ
WRITE
Data Transfer I/O Statements
Branch Specifiers

REWRITE
Statement: Rewrites the current record.

 1 Intel® Fortran Compiler Classic and Intel® Fortran Compiler Developer Guide and Reference

1828

Syntax
Formatted:

REWRITE (eunit, format[, iostat] [, err]) [io-list]
Unformatted:

REWRITE (eunit[, iostat][, err]) [io-list]

eunit Is an external unit specifier ([UNIT=]io-unit).

format Is a format specifier ([FMT=]format).

iostat Is a status specifier (IOSTAT=i-var).

err Is a branch specifier (ERR=label) if an error condition occurs.

io-list Is an I/O list.

Description

In the REWRITE statement, data (translated if formatted; untranslated if unformatted) is written to the
current (existing) record in a file with direct access.

The current record is the last record accessed by a preceding, successful sequential or direct-access READ
statement.

Between a READ and REWRITE statement, you should not specify any other I/O statement (except INQUIRE)
on that logical unit. Execution of any other I/O statement on the logical unit destroys the current-record
context and causes the current record to become undefined.

Only one record can be rewritten in a single REWRITE statement operation.

The output list (and format specification, if any) must not specify more characters for a record than the
record size. (Record size is specified by RECLin an OPEN statement.)

If the number of characters specified by the I/O list (and format, if any) do not fill a record, blank characters
are added to fill the record.

Example

In the following example, the current record (contained in the relative organization file connected to logical
unit 3) is updated with the values represented by NAME, AGE, and BIRTH:

 REWRITE (3, 10, ERR=99) NAME, ,AGE, BIRTH
10 FORMAT (A16, I2, A8)

RINDEX
Portability Function: Locates the index of the last
occurrence of a substring within a string.

Module

USE IFPORT

Syntax
result = RINDEX (string,substr)

string (Input) Character*(*). Original string to search.

substr (Input) Character*(*). String to search for.

Intel® Fortran Compiler Classic and Intel® Fortran Compiler Developer Guide and Reference 1

1829

Results

The result type is INTEGER(4). The result is the starting position of the final occurrence of substrg in string.
The result is zero if substring does not occur in string.

Example

 USE IFPORT
 character*80 mainstring
 character*4 shortstr
 integer(4) where
 mainstring="Hello Hello Hello Hello There There There"
 shortstr="Hello"
 where=rindex(mainstring,shortstr)
 ! where is 19

See Also
INDEX

RNUM
Elemental Intrinsic Function (Specific): Converts
a character string to a REAL(4) value. This function
cannot be passed as an actual argument.

Syntax
result = RNUM (i)

i (Input) Must be of type character.

Results

The result type is REAL(4). The result value is the real value represented by the character string i.

Example

RNUM ("821.003") has the value 821.003 of type REAL(4).

RRSPACING
Elemental Intrinsic Function (Generic): Returns
the reciprocal of the relative spacing of model
numbers near the argument value.

Syntax
result = RRSPACING (x)

x (Input) Must be of type real.

Results

The result type and kind are the same as x. The result has the value | x* b -e| x b p. Parameters b, e, p are
defined in Model for Real Data.

Example

If -3.0 is a REAL(4) value, RRSPACING (-3.0) has the value 0.75 x 2 24.

The following shows another example:

 REAL(4) res4
 REAL(8) res8, r2
 res4 = RRSPACING(3.0) ! returns 1.258291E+07

 1 Intel® Fortran Compiler Classic and Intel® Fortran Compiler Developer Guide and Reference

1830

 res4 = RRSPACING(-3.0) ! returns 1.258291E+07
 r2 = 487923.3
 res8 = RRSPACING(r2) ! returns 8.382458680573952E+015
 END

See Also
SPACING
Data Representation Models

RSHIFT
Elemental Intrinsic Function (Generic): Shifts the
bits in an integer right by a specified number of
positions. This is the same as specifying ISHFT with a
negative shift.

See Also
See ISHFT.

RTC
Portability Function: Returns the number of seconds
elapsed since a specific Greenwich mean time.

Module

USE IFPORT

Syntax
result = RTC()

Results

The result type is REAL(8). The result is the number of seconds elapsed since 00:00:00 Greenwich mean
time, January 1, 1970.

Example

 USE IFPORT
 real(8) s, s1, time_spent
 INTEGER(4) i, j
 s = RTC()
 call sleep(4)
 s1 = RTC()
 time_spent = s1 - s
 PRINT *, 'It took ',time_spent, 'seconds to run.'

See Also
DATE_AND_TIME

TIME portability routine

RUNQQ
Portability Function: Executes another program and
waits for it to complete.

Module

USE IFPORT

Intel® Fortran Compiler Classic and Intel® Fortran Compiler Developer Guide and Reference 1

1831

Syntax
result = RUNQQ (filename,commandline)

filename (Input) Character*(*). File name of a program to be executed.

commandline (Input) Character*(*). Command-line arguments passed to the
program to be executed.

Results

The result type is INTEGER(2). If the program executed with RUNQQ terminates normally, the exit code of
that program is returned to the program that launched it. If the program fails, -1 is returned.

The RUNQQ function executes a new process for the operating system using the same path, environment,
and resources as the process that launched it. The launching process is suspended until execution of the
launched process is complete.

Example

 USE IFPORT
 INTEGER(2) result
 result = RUNQQ('myprog', '-c -r')
 END

See also the example in NARGS.

See Also
NARGS
SYSTEM
NARGS

S
This section describes language features that start with S.

S
SAME_TYPE_AS
Inquiry Intrinsic Function (Generic): Inquires
whether the dynamic type of one object is the same
as the dynamic type of another object.

Syntax
result = SAME_TYPE_AS (a , b)

a (Input) Is an object of extensible type. If it is a polymorphic pointer, it
must not have an undefined association status.

b (Input) Is an object of extensible type. If it is a polymorphic pointer, it
must not have an undefined association status.

Results

The result type is default logical scalar. The result is true only if the dynamic type of a is the same as the
dynamic type of b.

 1 Intel® Fortran Compiler Classic and Intel® Fortran Compiler Developer Guide and Reference

1832

SAVE
Statement and Attribute: Causes the values and
definition of objects to be retained after execution of a
RETURN or END statement in a subprogram.

Syntax
The SAVE attribute can be specified in a type declaration statement or a SAVE statement, and takes one of
the following forms:

Type Declaration Statement:

type,[att-ls,] SAVE [, att-ls] :: entity[, entity] ...
Statement:

SAVE [[::]entity [, entity] ...]

type Is a data type specifier.

att-ls Is an optional list of attribute specifiers.

entity Is the name of an object, the name of a procedure pointer, or the
name of a common block enclosed in slashes (/common-block-
name/).

Description

In Intel® Fortran, certain variables are given the SAVE attribute, or not, by default. Variables are implicitly
given the SAVE attribute depending on whether a program unit is compiled for recursion.

NOTE
In the following lists, "initialized" means that the variable has been given an initial value in a
DATA statement, it has been initialized in a type declaration statement, it is of a derived
type that is default initialized, or it has a component that is default initialized.

The following variables are not saved by default:

• Scalar variables that are local to a recursive procedure and are not initialized (see above Note)
• Arrays of any type that are local to a recursive procedure and are not initialized (see above Note)
• Variables that are declared AUTOMATIC
• Local variables with the ALLOCATABLE attribute

The following variables are saved by default:

• Variables in COMMON blocks
• Scalar variables not of intrinsic types INTEGER, REAL, COMPLEX, and LOGICAL that are local to a non-

recursive subprogram
• Non-scalar local variables of non-recursive subprograms
• Module or submodule variables
• Initialized (see above Note) variables
• RECORD variables that are data initialized by default initialization specified in its STRUCTURE declaration

Local variables that are not described in the preceding two lists are saved by default.

NOTE
Certain compiler options (such as options [Q]save, assume norecursion, and auto) and the
use of OpenMP* features can change the defaults.

Intel® Fortran Compiler Classic and Intel® Fortran Compiler Developer Guide and Reference 1

1833

NOTE
Coarrays that do not have the ALLOCATABLE attribute and are local to the main program
unit or to a procedure are not statically allocated, but are allocated at program startup. They
are not deallocated until the program terminates.

To enhance portability and avoid possible compiler warning messages, Intel recommends that you use the
SAVE statement to name variables whose values you want to preserve between subprogram invocations.

When a SAVE statement does not explicitly contain a list, all allowable items in the scoping unit are saved.

A SAVE statement cannot specify the following (their values cannot be saved):

• A blank common
• An object in a common block
• A procedure
• A dummy argument
• A function result
• An automatic object
• A PARAMETER (named) constant

Even though a common block can be included in a SAVE statement, individual variables within the common
block can become undefined (or redefined) in another scoping unit.

If a common block is saved in any scoping unit of a program (other than the main program), it must be
saved in every scoping unit in which the common block appears.

A SAVE statement has no effect in a main program.

Example

The following example shows a type declaration statement specifying the SAVE attribute:

SUBROUTINE TEST()
 REAL, SAVE :: X, Y

The following is an example of the SAVE statement:

SAVE A, /BLOCK_B/, C, /BLOCK_D/, E
The following shows another example:

 SUBROUTINE MySub
 COMMON /z/ da, in, a, idum(10)
 real(8) x,y
 ...

 SAVE x, y, /z/
! alternate declaration
 REAL(8), SAVE :: x, y
 SAVE /z/

See Also
COMMON
DATA
RECURSIVE and NON_RECURSIVE
MODULE
MODULE PROCEDURE
Type Declarations
Compatible attributes
SAVE value in CLOSE

 1 Intel® Fortran Compiler Classic and Intel® Fortran Compiler Developer Guide and Reference

1834

SCALE
Elemental Intrinsic Function (Generic): Returns
the value of the exponent part (of the model for the
argument) changed by a specified value.

Syntax
result = SCALE (x,i)

x (Input) Must be of type real.

i (Input) Must be of type integer.

Results

The result type and kind are the same as x. The result has the value x x b i. Parameter b is defined in Model
for Real Data.

Example

If 3.0 is a REAL(4) value, SCALE (3.0, 2) has the value 12.0 and SCALE (3.0, 3) has the value 24.0.

The following shows another example:

REAL r
r = SCALE(5.2, 2) ! returns 20.8

See Also
LSHIFT
Data Representation Models

SCAN Directive
OpenMP* Fortran Compiler Directive: Specifies a
scan computation that updates each list item in each
iteration of the loop.

Syntax

loop-associated-directive

do-loop-headers

 block
 !$OMP SCAN clause
 block
do-termination-statements

[end-loop-associated-directive]

loop-associated-directive Is a SIMD or TARGET SIMD directive.

do-loop-headers Is one or more Fortran DO statements.

block Is a structured block (section) of statements or constructs.

clause Is one of the following:

• INCLUSIVE (list)
• EXCLUSIVE (list)

Intel® Fortran Compiler Classic and Intel® Fortran Compiler Developer Guide and Reference 1

1835

If an INCLUSIVE clause appears, an inclusive scan computation is
performed for each list item in the clause. If an EXCLUSIVE clause
appears, an exclusive scan computation is performed for each list item
in the clause.

do-termination-statements Is one or more Fortran DO-loop terminal statements, such as END DO,
CONTINUE, or a terminal statement for a nonblock DO construct.

end-loop-associated-directive Is an optional END SIMD or END TARGET SIMD directive.

The SCAN directive can appear in the body of a loop or loop nest that is in a worksharing construct, a
worksharing-loop SIMD, or a SIMD construct.

There are two phases for each iteration of a SCAN loop, as follows:

• The input phase

For each iteration of an INCLUSIVE scan loop, the statements that appear lexically prior to the SCAN
directive constitute the input phase.

For each iteration, except the last iteration of an EXCLUSIVE scan loop, the statements that lexically
precede the directive constitute the input phase.

• The scan phase

For each iteration of an INCLUSIVE scan loop, the statements that follow the directive constitute the scan
phase.

For each iteration, except the last iteration of an EXCLUSIVE scan loop, the statements that lexically
follow the directive constitute the scan phase.

The last loop iteration does not have an input phase. For this iteration, all statements lexically preceding and
following the directive constitute the scan phase. All computations that update a list item during an iteration
are contained in the input phase. A statement that references a list item in the scan phase uses the result of
the scan operation for that iteration.

For a given iteration, the result of a scan operation is calculated according to the last generalized prefixed
sum (PRESUMlast) applied to the sequence of values given by the original value of the list item upon entry of
the loop construct, and updated values given the list item in each of the iterations of the loop. The
PRESUMlast (op, a1, . . . an) is defined for a binary operation op and a sequence of N values a1, . . . an as
follows:

• If N = 1, a1
• If N > 1, op (PRESUMlast (op, a1, . . . ak), PRESUMlast (op, ak+1, . . . an)) where 1 <= K <= N

At the beginning of the input phase for each iteration, the list item is initialized with the initializer value of
the reduction-identifier specified by the REDUCTION clause on the innermost enclosing OpenMP* construct.
For a given iteration, the update value of a list item is the value of the list item upon completion of the
iteration’s input phase.

If orig_value is the initial value of a list item upon entry to a worksharing-loop, worksharing SIMD, or SIMD
construct, if combiner is the combiner for the reduction-identifier specified in the REDUCTION clause on the
construct, and update-valuei is the value for the list item for iteration i, then at the beginning of the scan
phase of the first iteration, a list item of an INCLUSIVE clause on a SCAN directive is assigned the result of
the operation PRESUMlast (combiner, orig_value, update-value1 . . . update-valuei). At the beginning of the
scan phase of the first iteration, a list item of an EXCLUSIVE clause on a SCAN directive is assigned the value
orig_value. At the beginning of the scan phase of each subsequent iteration, i > 1, a list item of an
EXCLUSIVE clause on a SCAN directive is the result of the operation PRESUMlast (combiner, orig_value,
update-value1 . . . update-valuei-1).

A worksharing-loop, worksharing-loop SIMD, or a SIMD construct that has a REDUCTION clause with the
INSCAN modifier must contain exactly one SCAN directive in the loop body of the construct, and a list item in
an INCLUSIVE or EXCLUSIVE clause must be a list item in the REDUCTION clause of the construct.

 1 Intel® Fortran Compiler Classic and Intel® Fortran Compiler Developer Guide and Reference

1836

With the exception of dependencies for list items in the INCLUSIVE or EXCLUSIVE clause, cross-iteration
dependencies across loop iterations are not permitted. Except for INCLUSIVE or EXCLUSIVE clause list-item
dependencies, intra-iteration dependencies between a statement lexically preceding the SCAN directive and a
statement lexically following a SCAN directive are not permitted.

In ifort, SCAN directives are only supported in SIMD construct directives.

In ifx, SCAN directives are supported in SIMD and TARGET SIMD construct directives.

Example

The following contains an inclusive and an exclusive scan SIMD loop:

 real,dimension(10) :: a, b
 real :: s
 integer :: i
 ...

 do i = 1, 10
 a(i) = real (i)
 end do
 s = 0.0
 ! Inclusive scan
 !$omp simd reduction (inscan, +:s)
 do i = 1, 10
 s = s + a(i)
 !$omp scan inclusive (s)
 b(i) = s
 end do
 print *, b

 s = 0.0
 ! Exclusive scan
 !$omp simd reduction (inscan, +:s)
 do i = 1, 10
 b(i) = s
 !$omp scan exclusive (s)
 s = s + a(i)
 end do
 print *, b

The first print statement prints the sequence 1.0 3.0 6.0 10.0 15.0 21.0 28.0 36.0 45.0 55.0. The second
print statement prints the sequence 0.0 1.0 3.0 6.0 10.0 15.0 21.0 28.0 36.0 45.0.

See Also
REDUCTION clause
SIMD OpenMP* Fortran directive
TARGET SIMD
DO statement

SCAN Function
Elemental Intrinsic Function (Generic): Scans a
string for any character in a set of characters.

Syntax
result = SCAN (string, set [, back] [, kind])

Intel® Fortran Compiler Classic and Intel® Fortran Compiler Developer Guide and Reference 1

1837

string (Input) Must be of type character.

set (Input) Must be of type character with the same kind parameter as
string.

back (Input; optional) Must be of type logical.

kind (Input; optional) Must be a scalar integer constant expression.

Results

The result type is integer. If kind is present, the kind parameter of the result is that specified by kind;
otherwise, the kind parameter of the result is that of default integer. If the processor cannot represent the
result value in the kind of the result, the result is undefined.

If back is omitted (or is present with the value false) and string has at least one character that is in set, the
value of the result is the position of the leftmost character of string that is in set.

If back is present with the value true and string has at least one character that is in set, the value of the
result is the position of the rightmost character of string that is in set.

If no character of string is in set or the length of string or set is zero, the value of the result is zero.

The setting of compiler options specifying integer size can affect this function.

Example

SCAN ('ASTRING', 'ST') has the value 2.

SCAN ('ASTRING', 'ST', BACK=.TRUE.) has the value 3.

SCAN ('ASTRING', 'CD') has the value zero.

The following shows another example:

 INTEGER i
 INTEGER array(2)
 i = SCAN ('FORTRAN', 'TR') ! returns 3
 i = SCAN ('FORTRAN', 'TR', BACK = .TRUE.) ! returns 5
 i = SCAN ('FORTRAN', 'GHA') ! returns 6
 i = SCAN ('FORTRAN', 'ora') ! returns 0
 array = SCAN ((/'FORTRAN','VISUALC'/),(/'A', 'A'/))
 ! returns (6, 5)

 ! Note that when using SCAN with arrays, the string
 ! elements must be the same length. When using string
 ! constants, blank pad to make strings the same length.
 ! For example:

 array = SCAN ((/'FORTRAN','MASM '/),(/'A', 'A'/))
 ! returns (6, 2)
 END

See Also
VERIFY

SCANENV
Portability Subroutine: Scans the environment for
the value of an environment variable.

Module

USE IFPORT

 1 Intel® Fortran Compiler Classic and Intel® Fortran Compiler Developer Guide and Reference

1838

Syntax
CALL SCANENV (envname,envtext,envvalue)

envname (Input) Character*(*). Contains the name of an environment variable
you need to find the value for.

envtext (Output) Character*(*). Set to the full text of the environment
variable if found, or to ' ' if nothing is found.

envvalue (Output) Character*(*). Set to the value associated with the
environment variable if found or to ' ' if nothing is found.

SCANENV scans for an environment variable that matches envname
and returns the value or string it is set to.

SCOPE
OpenMP* Fortran Compiler Directive: Specifies a
block of code to be executed by all threads in a team;
it may contain additional OpenMP constructs. This
feature is only available for ifx.

Syntax

!$OMP SCOPE [clause[[,] clause]...]
 loosely-structured-block
!$OMP END SCOPE [NOWAIT]
-or-

!$OMP SCOPE [clause[[,] clause]...]
 strictly-structured-block
!$OMP END SCOPE [NOWAIT]

clause Is one or more of the following:

• ALLOCATE
• NOWAIT
• PRIVATE (list)
• REDUCTION ([reduction-modifier,]reduction-identifier : list)

loosely-structured-block Is a structured block (section) of statements or constructs. You cannot
branch into or out of the block.

strictly-structured-block Is a Fortran BLOCK construct. You cannot branch into or out of the
BLOCK construct.

Description

The binding thread set for the SCOPE region is the current team.

The SCOPE region binds to the innermost parallel region in which it is enclosed. All threads of a team that
execute the binding parallel region, and only those threads, execute the statements of the block. The block
may contain additional OpenMP constructs.

If NOWAIT is not specified, the participating threads execute an implicit barrier at the end of the SCOPE
block.

Intel® Fortran Compiler Classic and Intel® Fortran Compiler Developer Guide and Reference 1

1839

Example

The following code performs a reduction on the array arr. Each thread produces a sum of the elements
dispatched to it. The SCOPE directive is used to perform a reduction of each partial sum. The sum of the
array, and the number of threads that participate, is printed.

SUBROUTINE sum_reduce (arr)
 IMPLICIT NONE
 REAL,DIMENSION(:) :: arr
 REAL :: sum = 0.0, partial_sum = 0.0
 INTEGER :: i, num_threads = 0
 !$omp PARALLEL FIRSTPRIVATE (partial_sum), SHARED (num_threads, arr)
 !$omp DO
 DO i = 1, SIZE (arr)
 partial_sum = partial_sum + arr(i)
 END DO
 !$omp END DO
 !$omp SCOPE reduction (+ : sum, num_threads)
 sum = sum + partial sum
 num_threads = num_threads + 1
 !$omp END SCOPE
 !$omp END PARALLEL
 PRINT *, "sum of arr = ", sum, " number of threads participating = ", num_threads
 RETURN
END SUBROUTINE

See Also
OpenMP Fortran Compiler Directives
Syntax Rules for Compiler Directives

SCWRQQ
Portability Subroutine: Returns the floating-point
processor control word.

Module

USE IFPORT

Syntax
CALL SCWRQQ (control)

control (Output) INTEGER(2). Floating-point processor control word.

SCRWQQ performs the same function as the runtime subroutine GETCONTROLFPQQ, and is provided for
compatibility.

Example

See the example in LCWRQQ.

See Also
GETCONTROLFPQQ
LCWRQQ

 1 Intel® Fortran Compiler Classic and Intel® Fortran Compiler Developer Guide and Reference

1840

SECNDS Intrinsic Procedure
Elemental Intrinsic Function (Generic): Provides
the system time of day, or elapsed time, as a floating-
point value in seconds. SECNDS can be used as an
intrinsic function or as a portability routine. It is an
intrinsic procedure unless you specify USE IFPORT.

Syntax
This function must not be passed as an actual argument. It is not a pure function, so it cannot be referenced
inside a FORALL construct.

result = SECNDS (x)

x (Input) Must be of type real.

Results

The result type and kind are the same as x.

If x is zero, the result value is the time in seconds since the most recent midnight (in local time).

If x is not zero, it is compared to now: the value that would be returned if x had been zero. If x is less than
now, then the result value is now - x. If x is more than now, the function assumes that x is the result of a
call to SECONDS made the previous day and returns the value between that time and now.

This function cannot detect a delay of more than one day between calls. For timing intervals longer than 24
hours, use DCLOCK.

This function does not account for daylight savings changes in either direction.

The value of SECNDS is accurate to 0.01 second, which is the resolution of the system clock.

The 24 bits of precision provide accuracy to the resolution of the system clock for about one day. However,
loss of significance can occur if you attempt to compute very small elapsed times late in the day.

Example

The following shows how to use SECNDS to perform elapsed-time computations:

C START OF TIMED SEQUENCE
 T1 = SECNDS(0.0)

C CODE TO BE TIMED
 ...
 DELTA = SECNDS(T1) ! DELTA gives the elapsed time

See Also
DATE_AND_TIME

RTC

SYSTEM_CLOCK

TIME intrinsic procedure

SECNDS portability routine

DCLOCK

Intel® Fortran Compiler Classic and Intel® Fortran Compiler Developer Guide and Reference 1

1841

SECNDS Portability Routine
Portability Function: Returns the number of seconds
that have elapsed since midnight, less the value of its
argument. SECNDS can be used as a portability
function or as an intrinsic procedure. It is an intrinsic
procedure unless you specify USE IFPORT.

Module

USE IFPORT

Syntax
result = SECNDS (time)

time (Input) REAL(4). Number of seconds, precise to a hundredth of a
second (0.01), to be subtracted.

Results

The result type is REAL(4). The result value is the number of seconds that have elapsed since midnight,
minus time, with a precision of a hundredth of a second (0.01).

To start the timing clock, call SECNDS with 0.0, and save the result in a local variable. To get the elapsed
time since the last call to SECNDS, pass the local variable to SECNDS on the next call.

Example

 USE IFPORT
 REAL(4) s
 INTEGER(4) i, j
 s = SECNDS(0.0)
 DO I = 1, 100000
 J = J + 1
 END DO
 s = SECNDS(s)
 PRINT *, 'It took ',s, 'seconds to run.'

See Also
DATE_AND_TIME

RTC

SYSTEM_CLOCK

TIME portability routine

SECNDS intrinsic procedure

SECTIONS
OpenMP* Fortran Compiler Directive: Specifies
that the enclosed SECTION directives define blocks of
code to be divided among threads in a team. Each
section is executed once by a thread in the team.

Syntax

!$OMP SECTIONS [clause[[,] clause] ...]
[!$OMP SECTION]

 1 Intel® Fortran Compiler Classic and Intel® Fortran Compiler Developer Guide and Reference

1842

 block
[!$OMP SECTION
 block]...
!$OMP END SECTIONS[NOWAIT]

clause Is one of the following:

• ALLOCATE ([allocator :] list)
• FIRSTPRIVATE (list)
• LASTPRIVATE ([CONDITIONAL:] list)
• NOWAIT
• PRIVATE (list)
• REDUCTION ([reduction-modifier,]reduction-identifier : list)

block Is a structured block (section) of statements or constructs. Any
constituent section must also be a structured block.

You cannot branch into or out of the block.

The binding thread set for a SECTIONS construct is the current team. A SECTIONS region binds to the
innermost enclosing parallel region.

Each section of code is preceded by a SECTION directive, although the directive is optional for the first
section. The SECTION directives must appear within the lexical extent of the SECTIONS and END SECTIONS
directive pair.

The last section ends at the END SECTIONS directive. Threads that complete execution of their SECTIONs
encounter an implied barrier at the END SECTIONS directive unless a NOWAIT clause appears or the NOWAIT
keyword is specified in the END SECTIONS directive.

SECTIONS directives must be encountered by all threads in a team or by none at all.

Example

In the following example, subroutines XAXIS, YAXIS, and ZAXIS can be executed concurrently:

 !$OMP PARALLEL
 !$OMP SECTIONS
 !$OMP SECTION
 CALL XAXIS
 !$OMP SECTION
 CALL YAXIS
 !$OMP SECTION
 CALL ZAXIS
 !$OMP END SECTIONS
 !$OMP END PARALLEL

See Also
OpenMP Fortran Compiler Directives
Syntax Rules for Compiler Directives
Parallel Processing Model for information about Binding Sets

SEED
Portability Subroutine: Changes the starting point
of the pseudorandom number generator.

Module

USE IFPORT

Intel® Fortran Compiler Classic and Intel® Fortran Compiler Developer Guide and Reference 1

1843

Syntax
CALL SEED (iseed)

iseed (Input) INTEGER(4). Starting point for RANDOM.

SEED uses iseed to establish the starting point of the pseudorandom number generator. A given seed always
produces the same sequence of values from RANDOM.

If SEED is not called before the first call to RANDOM, RANDOM always begins with a seed value of one. If a
program must have a different pseudorandom sequence each time it runs, pass the constant RND$TIMESEED
(defined in IFPORT.F90) to the SEED routine before the first call to RANDOM.

This routine is not thread-safe.

Example

 USE IFPORT
 REAL myrand
 CALL SEED(7531)
 CALL RANDOM(myrand)

See Also
RANDOM
RANDOM_INIT

RANDOM_SEED
RANDOM_NUMBER

SELECT CASE and END SELECT
Statement: Transfers program control to a selected
block of statements according to the value of a
controlling expression.

Example

 CHARACTER*1 cmdchar
 . . .
 Files: SELECT CASE (cmdchar)
 CASE ('0')
 WRITE (*, *) "Must retrieve one to nine files"
 CASE ('1':'9')
 CALL RetrieveNumFiles (cmdchar)
 CASE ('A', 'a')
 CALL AddEntry
 CASE ('D', 'd')
 CALL DeleteEntry
 CASE ('H', 'h')
 CALL Help
 CASE DEFAULT
 WRITE (*, *) "Command not recognized; please re-enter"
 END SELECT Files

See Also
See CASE.

 1 Intel® Fortran Compiler Classic and Intel® Fortran Compiler Developer Guide and Reference

1844

SELECT RANK
Statement: Marks the beginning of a SELECT RANK
construct. The construct selects for execution at most
one of its constituent blocks. The selection is based on
the rank of an assumed-rank variable.

Syntax
[name:] SELECT RANK ([assoc-name =>] selector)
 [rank-case-stmt
 block]...
END SELECT [name]

name (Optional) Is the name of the SELECT RANK construct.

assoc-name (Optional) Is an identifier that becomes associated with the selector.
It becomes the associating entity. The identifier name must be unique
within the construct. If unspecified, the associate name for the
construct is selector.

selector Is the name of an assumed-rank array.

rank-case-stmt (Optional) Is one of the following:

• RANK (scalar-int-const-expr) [name]
• RANK (*) [name]
• RANK DEFAULT [name]

The scalar-int-const-expr must be non-negative. The same rank value
can only be specified in one rank-case-stmt. RANK DEFAULT and RANK
(*) can be specified only once in the construct. RANK (*) cannot be
specified if selector has the ALLOCATABLE or POINTER attribute.

block (Optional) Is a sequence of zero or more statements or constructs.

Description

If a construct name is specified at the beginning of a SELECT RANK statement, the same name must appear
in the corresponding END SELECT statement. If a rank-case-stmt specifies a construct name, the
corresponding SELECT RANK statement must specify the same name. The same construct name must not be
used for different named constructs in the same scoping unit. If no name is specified at the beginning of a
SELECT RANK statement, you cannot specify one following the END SELECT statement or any corresponding
rank-case-stmt.

If no other rank-case-stmt of the construct matches the selector, a RANK DEFAULT statement, if present,
identifies the block of code to be executed.

A SELECT RANK construct selects at most one block to be executed. During execution of that block, the
associate name identifies an entity that is associated with the selector.

The following steps determine which block is selected for execution:

1. If the selector is argument associated with an assumed-size array, a RANK (*) statement identifies the
block to be executed.

2. If the selector is not argument associated with an assumed-size array, a RANK (scalar-int-const-exp)
statement identifies the block to be executed if the selector has that rank.

3. Otherwise, if there is a RANK DEFAULT statement, the block following that statement is executed.

A branch is allowed from within a block of a SELECT RANK construct to the END SELECT statement. Branches
to the END SELECT from outside the construct are not allowed.

Intel® Fortran Compiler Classic and Intel® Fortran Compiler Developer Guide and Reference 1

1845

The associating entity in the block following a RANK DEFAULT statement is assumed rank and has the same
attributes as the selector; it can used only in contexts that an assumed-rank entity can be used. The
associating entity in the block following a RANK (*) statement is an assumed-size one dimensional array and
lower bound 1, as if declared DIMENSION(1:*).

The associating entity in the block following a RANK (scalar-int-const-exp) statement has the rank specified.
The lower bound is the lower bound of the selector for each corresponding dimension, and the upper bound
is the upper bound of the selector for each corresponding dimension of the selector. The associating entity in
a RANK(*) or a RANK (scalar-int-const-exp) block is a variable and may appear in variable definition
contexts.

If the selector has the POINTER, TARGET or ALLOCATABLE attribute, the associating entity has the same
attributes.

Example

The following example shows a SELECT RANK construct that initializes scalars, rank 1, and rank 2 arrays to
zero. If the dummy argument rank is greater than 2, an error message is printed.

SUBROUTINE INITIALIZE (ARG)
 REAL :: ARG(..)
 SELECT RANK (ARG)
 RANK (0) ! Scalar
 ARG = 0.0
 RANK (1)
 ARG(:) = 0.0
 RANK (2)
 ARG(:, :) = 0.0
 RANK DEFAULT
 PRINT *, "Subroutine initialize called with unexpected rank argument"
 END SELECT
 RETURN
END SUBROUTINE

The following example shows how to use a select rank to initialize assumed-size arrays of any rank to zero:

SUBROUTINE INITIALIZE (ARG, SIZE)
 REAL,CONTIGUOUS :: ARG(..)
 INTEGER :: SIZE, I
 SELECT RANK (ARG)
 RANK (0) ! Special case the scalar case
 ARG = 0.0
 RANK (*)
 DO I = 1, SIZE
 ARG(I) = 0.0
 END DO
 END SELECT
 RETURN
END SUBROUTINE

See Also
Construct Association

SELECT TYPE
Statement: Marks the beginning of a SELECT TYPE
construct. The construct selects for execution at most
one of its constituent blocks. The selection is based on
the dynamic type of a specified expression.

 1 Intel® Fortran Compiler Classic and Intel® Fortran Compiler Developer Guide and Reference

1846

Syntax
[name:] SELECT TYPE ([assoc-name =>] selector)
 [type-guard-stmt
 block]...
END SELECT [name]

name (Optional) Is the name of the SELECT TYPE construct.

assoc-name (Optional) Is an identifier that becomes associated with the selector.
It becomes the associating entity. The identifier name must be unique
within the construct. If selector is not a named variable, assoc-name
=> must appear.

selector Is an expression or variable. It must be polymorphic. It is evaluated
when the SELECT TYPE statement is executed.

type-guard-stmt (Optional) Is one of the following:

• TYPE IS (type) [name]
• CLASS IS (derived-type) [name]
• CLASS DEFAULT [name]

CLASS DEFAULT can be specified only once in the construct. The same
type and kind parameter values can only be specified in one TYPE IS
statement and one CLASS IS statement.

type Is an intrinsic type specifier or a derived-type specifier. It must specify
that each length type parameter is assumed. It cannot be a sequence
derived type or a type with the BIND attribute.

defived-type The same as type, but it cannot be an intrinsic type specifier.

block (Optional) Is a sequence of zero or more statements or constructs.

Description

If a construct name is specified at the beginning of a SELECT TYPE statement, the same name must appear
in the corresponding END SELECT statement. The same construct name must not be used for different
named constructs in the same scoping unit. If no name is specified at the beginning of a SELECT TYPE
statement, you cannot specify one following the END SELECT statement or any type-guard-stmt. If a type-
guard-stmt specifies a construct name, it must match the construct name on the corresponding SELECT TYPE
statement.

A branch to the END SELECT statement is allowed from within the SELECT TYPE construct, but it is not
allowed from anywhere outside the construct.

Execution of a SELECT TYPE construct whose selector is not a variable causes the selector expression to be
evaluated.

A SELECT TYPE construct selects at most one block to be executed. During execution of that block, the
associate name identifies an entity that is associated with the selector. The entity associated with the
associate name has the declared type and type parameters of the selector. The entity is polymorphic only if
the selector is polymorphic.

The following steps determine which block is selected for execution:

1. If a TYPE IS statement matches the selector, the block following that statement is executed. A TYPE IS
statement matches the selector if the dynamic type and type parameter values of the selector are the
same as those specified by the statement.

Intel® Fortran Compiler Classic and Intel® Fortran Compiler Developer Guide and Reference 1

1847

2. Otherwise, if exactly one CLASS IS statement matches the selector, the block following that statement
is executed. A CLASS IS statement matches the selector if the dynamic type of the selector is an
extension of the type specified by the statement and the kind type parameters specified by the
statement are the same as the corresponding type parameters of the dynamic type of the selector.

3. Otherwise, if several CLASS IS statements match the selector, one of these statements must specify a
type that is an extension of all the types specified in the others. In this case, the block following that
statement is executed.

4. Otherwise, if there is a CLASS DEFAULT statement, the block following that statement is executed.

Within the block following a TYPE IS statement, the associating entity is not polymorphic, it has the type
named in the TYPE IS statement, and has the type parameters of the selector.

Within the block following a CLASS IS statement, the associating entity is polymorphic and has the declared
type named in the CLASS IS statement. The type parameters of the associating entity are the corresponding
type parameters of the selector.

Within the block following a CLASS DEFAULT statement, the associating entity is polymorphic and has the
same declared type as the selector. The type parameters of the associating entity are those of the declared
type of the selector.

If the declared type of the selector is M, specifying CLASS DEFAULT has the same effect as specifying CLASS
IS (M).

A type-guard-stmt cannot be a branch target statement. You can branch to an END SELECT statement only
from within its SELECT TYPE construct.

Example

The following example shows a SELECT TYPE construct:

TYPE POINT
 REAL :: X, Y
END TYPE POINT
TYPE, EXTENDS(POINT) :: POINT_3D
 REAL :: Z
END TYPE POINT_3D
TYPE, EXTENDS(POINT) :: COLOR_POINT
 INTEGER :: COLOR
END TYPE COLOR_POINT

TYPE(POINT), TARGET :: P
TYPE(POINT_3D), TARGET :: P3D
TYPE(COLOR_POINT), TARGET :: CP
CLASS(POINT), POINTER :: P_OR_CP
P_OR_CP=> CP
SELECT TYPE (AN => P_OR_CP)
CLASS IS (POINT)
 ! "CLASS (POINT) :: AN" is implied here
 PRINT *, AN%X, AN%Y ! This block gets executed
TYPE IS (POINT_3D)
 ! "TYPE (POINT_3D) :: AN" is implied here
 PRINT *, AN%X, AN%Y, AN%Z
END SELECT

The following example uses declarations from the above example, but it omits the associate name AN:

P_OR_CP => P3D
SELECT TYPE (P_OR_CP)
CLASS IS (POINT)
 ! "CLASS (POINT) :: P_OR_CP" is implied here
 PRINT *, P_OR_CP%X, P_OR_CP%Y

 1 Intel® Fortran Compiler Classic and Intel® Fortran Compiler Developer Guide and Reference

1848

TYPE IS (POINT_3D)
 ! "TYPE (POINT_3D) :: P_OR_CP" is implied here
 PRINT *, P_OR_CP%X, P_OR_CP%Y, P_OR_CP%Z ! This block gets executed
END SELECT

See Also
Construct Association
Additional Attributes Of Associate Names

SELECTED_CHAR_KIND
Transformational Intrinsic Function (Generic):
Returns the value of the kind type parameter of the
character set named by the argument.

Syntax

result = SELECTED_CHAR_KIND(name)

name (Input) Must be scalar and of type default character. Its value must be
'DEFAULT' or 'ASCII'.

Results

The result is a scalar of type default integer.

The result is a scalar of type default integer. The result value is 1 if NAME has the value 'DEFAULT' or 'ASCII';
otherwise, the result value is -1.

SELECTED_INT_KIND
Transformational Intrinsic Function (Generic):
Returns the value of the kind parameter of an integer
data type.

Syntax
result = SELECTED_INT_KIND (r)

r (Input) Must be scalar and of type integer.

Results

The result is a scalar of type default integer. The result has a value equal to the value of the kind parameter
of the integer data type that represents all values n in the range of values n with -10 r< n < 10 r.

If no such kind type parameter is available on the processor, the result is -1. If more than one kind type
parameter meets the criteria, the value returned is the one with the smallest decimal exponent range. For
more information, see Model for Integer Data.

Example

SELECTED_INT_KIND (6) = 4

The following shows another example:

 i = SELECTED_INT_KIND(8) ! returns 4
 i = SELECTED_INT_KIND(3) ! returns 2
 i = SELECTED_INT_KIND(10) ! returns 8
 i = SELECTED_INT_KIND(20) ! returns -1 because 10**20
 ! is bigger than 2**63

Intel® Fortran Compiler Classic and Intel® Fortran Compiler Developer Guide and Reference 1

1849

See Also
SELECTED_REAL_KIND

SELECTED_REAL_KIND
Transformational Intrinsic Function (Generic):
Returns the value of the kind parameter of a real data
type.

Syntax
result = SELECTED_REAL_KIND ([p] [,r] [,radix])

p (Input; optional) Must be scalar and of type integer.

r (Input; optional) Must be scalar and of type integer.

radix (Input; optional) Must be scalar and of type integer.

At least argument p or r must be present.

Results

If p or r is absent, the result is as if the argument was present with the value zero. If radix is absent, there
is no requirement on the radix of the selected kind.

The result is a scalar of type default integer. If both arguments are absent, the result is zero. Otherwise, the
result has a value equal to a value of the kind parameter of a real data type with decimal precision, as
returned by the function PRECISION, of at least p digits, a decimal exponent range, as returned by the
function RANGE, of at least r, and a radix, as returned by the function RADIX, of radix.

If no such kind type parameter is available on the processor, the result is as follows:

-1 if the precision is not available but the range is available
-2 if the exponent range is not available but the precision is available
-3 if neither is available
-4 if real types for the precision and the range are available separately but not together
-5 if no real type of the specified radix is available

If more than one kind type parameter value meets the criteria, the value returned is the one with the
smallest decimal precision. Intel® Fortran currently does not return -4 for any combination of p and r, and
supports only a radix of 2. For more information, see Model for Real Data.

Example

SELECTED_REAL_KIND (6, 70) = 8

The following shows another example:

 i = SELECTED_REAL_KIND(r=200, radix=2) ! returns 8
 i = SELECTED_REAL_KIND(13) ! returns 8
 i = SELECTED_REAL_KIND (100, 200) ! returns -1
 i = SELECTED_REAL_KIND (13, 5000) ! returns -2
 i = SELECTED_REAL_KIND (100, 5000) ! returns -3
 i = SELECTED_REAL_KIND (13, radix=42) ! returns -5

The following example gives a compile-time error:

 i = SELECTED_REAL_KIND ()

See Also
SELECTED_INT_KIND
IEEE_SELECTED_REAL_KIND

 1 Intel® Fortran Compiler Classic and Intel® Fortran Compiler Developer Guide and Reference

1850

SEQUENCE
Statement: Preserves the storage order of a derived-
type definition.

Syntax
SEQUENCE

Description

The SEQUENCE statement allows derived types to be used in common blocks and to be equivalenced.

The SEQUENCE statement appears only as part of derived-type definitions. It causes the components of the
derived type to be stored in the same sequence they are listed in the type definition. If you do not specify
SEQUENCE, the physical storage order is not necessarily the same as the order of components in the type
definition.

If a derived type is a sequence derived type, then any other derived type that includes it must also be a
sequence type.

Example

 !DIR$ PACK:1
 TYPE NUM1_SEQ
 SEQUENCE
 INTEGER(2)::int_val
 REAL(4)::real_val
 LOGICAL(2)::log_val
 END TYPE NUM1_SEQ
 TYPE num2_seq
 SEQUENCE
 logical(2)::log_val
 integer(2)::int_val
 real(4)::real_val
 end type num2_seq
 type (num1_seq) num1
 type (num2_seq) num2
 character*8 t, t1
 equivalence (num1,t)
 equivalence (num2,t1)
 num1%int_val=2
 num1%real_val=3.5
 num1%log_val=.TRUE.
 t1(1:2)=t(7:8)
 t1(3:4)=t(1:2)
 t1(5:8)=t(3:6)
 print *, num2%int_val, num2%real_val, num2%log_val
 end

See Also
Derived Data Types
Data Types, Constants, and Variables

SETCONTROLFPQQ
Portability Subroutine: Sets the value of the
floating-point processor control word.

Module

USE IFPORT

Intel® Fortran Compiler Classic and Intel® Fortran Compiler Developer Guide and Reference 1

1851

Syntax
CALL SETCONTROLFPQQ (controlword)

controlword (Input) INTEGER(2). Floating-point processor control word.

The floating-point control word specifies how various exception conditions are handled by the floating-point
math processor, sets the floating-point precision, and specifies the floating-point rounding mechanism used.

The control word can be any of the following constants (defined in IFPORT.F90):

Parameter name Hex value Description

FPCW$MCW_IC Z'1000' Infinity control mask

FPCW$AFFINE Z'1000' Affine infinity

FPCW$PROJECTIVE Z'0000' Projective infinity

FPCW$MCW_PC Z'0300' Precision control mask

FPCW$64 Z'0300' 64-bit precision

FPCW$53 Z'0200' 53-bit precision

FPCW$24 Z'0000' 24-bit precision

FPCW$MCW_RC Z'0C00' Rounding control mask

FPCW$CHOP Z'0C00' Truncate

FPCW$UP Z'0800' Round up

FPCW$DOWN Z'0400' Round down

FPCW$NEAR Z'0000' Round to nearest

FPCW$MCW_EM Z'003F' Exception mask

FPCW$INVALID Z'0001' Allow invalid numbers

FPCW$DENORMAL Z'0002' Allow subnormals (very small
numbers)

FPCW$SUBNORMAL Z'0002' Allow subnormals (very small
numbers)

FPCW$ZERODIVIDE Z'0004' Allow divide by zero

FPCW$OVERFLOW Z'0008' Allow overflow

FPCW$UNDERFLOW Z'0010' Allow underflow

FPCW$INEXACT Z'0020' Allow inexact precision

An exception is disabled if its control bit is set to 1. An exception is enabled if its control bit is cleared to 0.

Setting the floating-point precision and rounding mechanism can be useful if you are reusing old code that is
sensitive to the floating-point precision standard used and you want to get the same results as on the old
machine.

 1 Intel® Fortran Compiler Classic and Intel® Fortran Compiler Developer Guide and Reference

1852

You can use GETCONTROLFPQQ to retrieve the current control word and SETCONTROLFPQQ to change the
control word. Most users do not need to change the default settings. If you need to change the control word,
always use SETCONTROLFPQQ to make sure that special routines handling floating-point stack exceptions
and abnormal propagation work correctly.

NOTE
The Intel® Fortran exception handler allows for software masking of invalid operations, but does not
allow the math chip to mask them. If you choose to use the software masking, be aware that this can
affect program performance if you compile code written for Intel Fortran with another compiler.

Example

 USE IFPORT
 INTEGER(2) status, control, controlo
 CALL GETCONTROLFPQQ(control)
 WRITE (*, 9000) 'Control word: ', control
 ! Save old control word
 controlo = control
 ! Clear all flags
 control = control .AND. Z'0000'
 ! Set new control to round up
 control = control .OR. FPCW$UP
 CALL SETCONTROLFPQQ(control)
 CALL GETCONTROLFPQQ(control)
 WRITE (*, 9000) 'Control word: ', control
 9000 FORMAT (1X, A, Z4)
 END

See Also
GETCONTROLFPQQ
GETSTATUSFPQQ
LCWRQQ
SCWRQQ
CLEARSTATUSFPQQ

SETDAT
Portability Function: Sets the system date. This
function is only available on Windows* and Linux*
systems.

Module

USE IFPORT

Syntax
result = SETDAT (iyr, imon, iday)

iyr (Input) INTEGER(2) or INTEGER(4). Year (xxxxAD).

imon (Input) INTEGER(2) or INTEGER(4). Month (1-12).

iday (Input) INTEGER(2) or INTEGER(4). Day of the month (1-31).

Intel® Fortran Compiler Classic and Intel® Fortran Compiler Developer Guide and Reference 1

1853

Results

The result type is LOGICAL(4). The result is .TRUE. if the system date is changed; .FALSE. if no change is
made.

Actual arguments of the function SETDAT can be any valid INTEGER(2) or INTEGER(4) expression.

All arguments must be of the same integer kind, that is, all must be INTEGER(2) or all must be INTEGER(4).

If INTEGER(2) arguments are passed, you must specify USE IFPORT.

Refer to your operating system documentation for the range of permitted dates.

NOTE
On Linux systems, you must have root privileges to execute this function.

Example

 USE IFPORT
 LOGICAL(4) success
 success = SETDAT(INT2(1997+1), INT2(2*3), INT2(30))
 END

See Also
GETDAT
GETTIM
SETTIM

SETENVQQ
Portability Function: Sets the value of an existing
environment variable, or adds and sets a new
environment variable.

Module

USE IFPORT

Syntax
result = SETENVQQ (varname=value)

varname=value (Input) Character*(*). String containing both the name and the value
of the variable to be added or modified. Must be in the form: varname
= value, where varname is the name of an environment variable and
value is the value being assigned to it.

Results

The result is of type LOGICAL(4). The result is .TRUE. if successful; otherwise, .FALSE..

Environment variables define the environment in which a program executes. For example, the LIB
environment variable defines the default search path for libraries to be linked with a program.

SETENVQQ deletes any terminating blanks in the string. Although the equal sign (=) is an illegal character
within an environment value, you can use it to terminate value so that trailing blanks are preserved. For
example, the string PATH= =sets value to ''.

 1 Intel® Fortran Compiler Classic and Intel® Fortran Compiler Developer Guide and Reference

1854

You can use SETENVQQ to remove an existing variable by giving a variable name followed by an equal sign
with no value. For example, LIB= removes the variable LIB from the list of environment variables. If you
specify a value for a variable that already exists, its value is changed. If the variable does not exist, it is
created.

SETENVQQ affects only the environment that is local to the current process. You cannot use it to modify the
command-level environment. When the current process terminates, the environment reverts to the level of
the parent process. In most cases, this is the operating system level. However, you can pass the
environment modified by SETENVQQ to any child process created by RUNQQ. These child processes get new
variables and/or values added by SETENVQQ.

SETENVQQ uses the C runtime routine _putenv and GETENVQQ uses the C runtime routine getenv. From the
C documentation:

getenv and _putenv use the copy of the environment pointed to by the global variable _environ to access the
environment. getenv operates only on the data structures accessible to the runtime library and not on the
environment segment created for the process by the operating system.

SETENVQQ and GETENVQQ will not work properly with the Windows* APIs SetEnvironmentVariable and
GetEnvironmentVariable.

Example

 USE IFPORT
 LOGICAL(4) success
 success = SETENVQQ("PATH=c:\mydir\tmp")
 success = &
 SETENVQQ("LIB=c:\mylib\bessel.lib;c:\math\difq.lib")
 END

See Also
GETENVQQ
RUNQQ

SETERRORMODEQQ
Portability Subroutine: Sets the prompt mode for
critical errors that by default generate system
prompts.

Module

USE IFPORT

Syntax
CALL SETERRORMODEQQ (pmode)

pmode (Input) LOGICAL(4). Flag that determines whether a prompt is
displayed when a critical error occurs.

Certain I/O errors cause the system to display an error prompt. For example, attempting to write to a disk
drive with the drive door open generates an "Abort, Retry, Ignore" message. When the system starts up,
system error prompting is enabled by default (pmode= .TRUE.). You can also enable system error prompts by
calling SETERRORMODEQQ with pmode set to ERR$HARDPROMPT (defined in IFPORT.F90).

If prompt mode is turned off, critical errors that normally cause a system prompt are silent. Errors in I/O
statements such as OPEN, READ, and WRITE fail immediately instead of being interrupted with prompts. This
gives you more direct control over what happens when an error occurs. For example, you can use the ERR=
specifier to designate an executable statement to branch to for error handling. You can also take a different
action than that requested by the system prompt, such as opening a temporary file, giving a more
informative error message, or exiting.

Intel® Fortran Compiler Classic and Intel® Fortran Compiler Developer Guide and Reference 1

1855

You can turn off prompt mode by setting pmode to .FALSE. or to the constant ERR$HARDFAIL (defined in
IFPORT.F90).

Note that SETERRORMODEQQ affects only errors that generate a system prompt. It does not affect other I/O
errors, such as writing to a nonexistent file or attempting to open a nonexistent file with STATUS='OLD'.

Example

 !PROGRAM 1
 ! DRIVE B door open
 OPEN (10, FILE = 'B:\NOFILE.DAT', ERR = 100)
 ! Generates a system prompt error here and waits for the user
 ! to respond to the prompt before continuing
 100 WRITE(*,*) ' Continuing'
 END

 ! PROGRAM 2
 ! DRIVE B door open
 USE IFPORT
 CALL SETERRORMODEQQ(.FALSE.)
 OPEN (10, FILE = 'B:\NOFILE.DAT', ERR = 100)
 ! Causes the statement at label 100 to execute
 ! without system prompt
 100 WRITE(*,*) ' Drive B: not available, opening &
 &alternative drive.'
 OPEN (10, FILE = 'C:\NOFILE.DAT')
 END

SET_EXPONENT
Elemental Intrinsic Function (Generic): Returns
the value of the exponent part (of the model for the
argument) set to a specified value.

Syntax
result = SET_EXPONENT (x,i)

x (Input) Must be of type real.

i (Input) Must be of type integer.

Results

The result type and kind are the same as x. The result has the value x x b i-e. Parameters b and e are defined
in Model for Real Data. If x has the value zero, the result is zero.

Example

If 3.0 is a REAL(4) value, SET_EXPONENT (3.0, 1) has the value 1.5.

See Also
EXPONENT
Data Representation Models

SETFILEACCESSQQ
Portability Function: Sets the file access mode for a
specified file.

 1 Intel® Fortran Compiler Classic and Intel® Fortran Compiler Developer Guide and Reference

1856

Module

USE IFPORT

Syntax
result = SETFILEACCESSQQ (filename,access)

filename (Input) Character*(*). Name of a file to set access for.

access (Input) INTEGER(4). Constant that sets the access. Can be any
combination of the following flags, combined by an inclusive OR (such
asIOR or OR):

• FILE$ARCHIVE - Marked as having been copied to a backup device.
• FILE$HIDDEN - Hidden. The file does not appear in the directory

list that you can request from the command console.
• FILE$NORMAL - No special attributes (default).
• FILE$READONLY - Write-protected. You can read the file, but you

cannot make changes to it.
• FILE$SYSTEM - Used by the operating system.

The flags are defined in module IFPORT.F90.

Results

The result type is LOGICAL(4). The result is .TRUE. if successful; otherwise, .FALSE..

To set the access value for a file, add the constants representing the appropriate access.

Example

 USE IFPORT
 INTEGER(4) permit
 LOGICAL(4) result

 permit = 0 ! clear permit
 permit = IOR(FILE$READONLY, FILE$HIDDEN)
 result = SETFILEACCESSQQ ('formula.f90', permit)
 END

See Also
GETFILEINFOQQ

SETFILETIMEQQ
Portability Function: Sets the modification time for
a specified file.

Module

USE IFPORT

Syntax
result = SETFILETIMEQQ (filename,timedate)

filename (Input) Character*(*). Name of a file.

timedate (Input) INTEGER(4). Time and date information, as packed by
PACKTIMEQQ.

Intel® Fortran Compiler Classic and Intel® Fortran Compiler Developer Guide and Reference 1

1857

Results

The result type is LOGICAL(4). The result is .TRUE. if successful; otherwise, .FALSE..

The modification time is the time the file was last modified and is useful for keeping track of different
versions of the file. The process that calls SETFILETIMEQQ must have write access to the file; otherwise, the
time cannot be changed. If you set timedate to FILE$CURTIME (defined in IFPORT.F90), SETFILETIMEQQ
sets the modification time to the current system time.

If the function fails, call GETLASTERRORQQ to determine the reason. It can be one of the following:

• ERR$ACCES - Permission denied. The file's (or directory's) permission setting does not allow the specified
access.

• ERR$INVAL - Invalid argument; the timedate argument is invalid.
• ERR$MFILE - Too many open files (the file must be opened to change its modification time).
• ERR$NOENT - File or path not found.
• ERR$NOMEM - Not enough memory is available to execute the command; or the available memory has

been corrupted; or an invalid block exists, indicating that the process making the call was not allocated
properly.

Example

 USE IFPORT
 INTEGER(2) day, month, year
 INTEGER(2) hour, minute, second, hund
 INTEGER(4) timedate
 LOGICAL(4) result

 CALL GETDAT(year, month, day)
 CALL GETTIM(hour, minute, second, hund)
 CALL PACKTIMEQQ (timedate, year, month, day, &
 hour, minute, second)
 result = SETFILETIMEQQ('myfile.dat', timedate)
 END

See Also
PACKTIMEQQ
UNPACKTIMEQQ
GETLASTERRORQQ

SETTIM
Portability Function: Sets the system time in your
programs. This function is only available on Windows*
and Linux* systems.

Module

USE IFPORT

Syntax
result = SETTIM (ihr, imin, isec, i100th)

ihr (Output) INTEGER(4) or INTEGER(2). Hour (0-23).

imin (Output) INTEGER(4) or INTEGER(2). Minute (0-59).

isec (Output) INTEGER(4) or INTEGER(2). Second (0-59).

i100th (Output) INTEGER(4) or INTEGER(2). Hundredths of a second (0-99).

 1 Intel® Fortran Compiler Classic and Intel® Fortran Compiler Developer Guide and Reference

1858

Results

The result type is LOGICAL(4). The result is .TRUE. if the system time is changed; .FALSE. if no change is
made.

All arguments must be of the same integer kind, that is, all must be INTEGER(2) or all must be INTEGER(4).

If INTEGER(2) arguments are passed, you must specify USE IFPORT.

NOTE
On Linux systems, you must have root privileges to execute this function.

Example

 USE IFPORT
 LOGICAL(4) success
 success = SETTIM(INT2(21),INT2(53+3),&
 INT2(14*2),INT2(88))
 END

See Also
GETDAT
GETTIM
SETDAT

SHAPE
Inquiry Intrinsic Function (Generic): Returns the
shape of an array or scalar argument.

Syntax
result = SHAPE (source [, kind])

source (Input) Is a scalar or array. It may be of any data type. It must not be
an assumed-size array, a disassociated pointer, or an allocatable array
that is not allocated. It cannot be an assumed-size array.

kind (Input; optional) Must be a scalar integer constant expression.

Results

The result is a rank-one integer array whose size is equal to the rank of source. If kind is present, the kind
parameter of the result is that specified by kind; otherwise, the kind parameter of the result is that of default
integer. If the processor cannot represent the result value in the kind of the result, the result is undefined.

The value of the result is the shape of source, unless source is assumed-rank and is associated with an
assumed-size array. In that case, the last element of the value returned by SHAPE is -1.

The setting of compiler options specifying integer size can affect this function.

Example

SHAPE (2) has the value of a rank-one array of size zero.

If B is declared as B(2:4, -3:1), then SHAPE (B) has the value (3, 5).

The following shows another example:

 INTEGER VEC(2)
 REAL array(3:10, -1:3)
 VEC = SHAPE(array)

Intel® Fortran Compiler Classic and Intel® Fortran Compiler Developer Guide and Reference 1

1859

 WRITE(*,*) VEC ! prints 8 5
 END
 !
 ! Check if a mask is conformal with an array
 REAL, ALLOCATABLE :: A(:,:,:)
 LOGICAL, ALLOCATABLE :: MASK(:,:,:)
 INTEGER B(3), C(3)
 LOGICAL conform
 ALLOCATE (A(5, 4, 3))
 ALLOCATE (MASK(3, 4, 5))
 ! Check if MASK and A allocated. If they are, check
 ! that they have the same shape (conform).
 IF(ALLOCATED(A) .AND. ALLOCATED(MASK)) THEN
 B = SHAPE(A); C = SHAPE(MASK)
 IF ((B(1) .EQ. C(1)) .AND. (B(2) .EQ. C(2)) &
 .AND. (B(3) .EQ. C(3))) THEN
 conform = .TRUE.
 ELSE
 conform = .FALSE.
 END IF
 END IF
 WRITE(*,*) conform ! prints F
 END

See Also
SIZE

SHARED Clause
Parallel Directive Clause: Specifies variables that
will be shared by all the threads in a team.

Syntax

SHARED (list)

list Is the name of one or more variables or common blocks that are
accessible to the scoping unit. Subobjects cannot be specified. Each
name must be separated by a comma, and a named common block
must appear between slashes (/ /).

All threads within a team access the same storage area for SHARED data.

SHIFTA
Elemental Intrinsic Function (Specific): Performs
a right shift with fill. This function cannot be passed as
an actual argument.

Syntax
result = SHIFTA (i,shift)

i (Input) Must be of type integer. This is the value to be shifted.

shift (Input) Must be of type integer. It must be nonnegative and <=
BIT_SIZE(i). This value is the number of positions to shift.

Results

The result type and kind are the same as i.

 1 Intel® Fortran Compiler Classic and Intel® Fortran Compiler Developer Guide and Reference

1860

The result has the value obtained by shifting the bits of i to the right shift bits and replicating the leftmost bit
of i in the left shift bits.

If shift is zero the result is i. Bits shifted off the right end are lost.

The model for the interpretation of an integer value as a sequence of bits is in Model for Bit Data.

Example

SHIFTA (IBSET (0, BIT_SIZE (0) - 1), 2) is equal to SHIFTL (7, BIT_SIZE (0) - 3).

SHIFTL
Elemental Intrinsic Function (Specific): Logically
shifts an integer left by a specified number of bits.
This function cannot be passed as an actual argument.

Syntax
result = SHIFTL (i,shift)

i (Input) Must be of type integer. This is the value to be shifted.

shift (Input) Must be of type integer. The value must be nonnegative and
<= BIT_SIZE(i). This value is the number of positions to shift.

Results

The result type and kind are the same as i. The result is the value of i shifted left by shift bit positions. Bits
shifted off the left end are lost; zeros are shifted in from the opposite end.

SHIFTL (i, j) is the same as ISHFT (i, j).

See Also
ISHFT

SHIFTR
Elemental Intrinsic Function (Specific): Logically
shifts an integer right by a specified number of bits.
This function cannot be passed as an actual argument.

Syntax
result = SHIFTR (i,shift)

i (Input) Must be of type integer. This is the value to be shifted.

shift (Input) Must be of type integer. The value must be nonnegative and
<= BIT_SIZE(i). This value is the number of positions to shift.

Results

The result type and kind are the same as i. The result is the value of i shifted right by shift bit positions. Bits
shifted off the right end are lost; zeros are shifted in from the opposite end.

SHIFTR (i, j) is the same as ISHFT (i, -j).

See Also
ISHFT

Intel® Fortran Compiler Classic and Intel® Fortran Compiler Developer Guide and Reference 1

1861

SHORT
Portability Function: Converts an INTEGER(4)
argument to INTEGER(2) type.

Module

USE IFPORT

Syntax
result = SHORT (int4)

int4 (Input) INTEGER(4). Value to be converted.

Results

The result type is INTEGER(2). The result is equal to the lower 16 bits of int4. If the int4 value is greater
than 32,767, the converted INTEGER(2) value is not equal to the original.

Example

 USE IFPORT
 INTEGER(4) this_one
 INTEGER(2) that_one
 READ(*,*) this_one
 THAT_ONE = SHORT(THIS_ONE)
 WRITE(*,10) THIS_ONE, THAT_ONE
 10 FORMAT (X," Long integer: ", I16, " Short integer: ", I16)
 END

See Also
INT
Type Declarations

SIGN
Elemental Intrinsic Function (Generic): Returns
the absolute value of the first argument times the sign
of the second argument.

Syntax
result = SIGN (a, b)

a (Input) Must be of type integer or real.

b (Input) Must have the same type as a.

Results

The result type and kind are the same as a. The value of the result is as follows:

• | a | if b > zero and -| a | if b < zero.
• | a | if b is of type integer and is zero.
• If b is of type real and zero and compiler option assume minus0 is not specified, the value of the result is

| a |.
• If b is of type real and zero and compiler option assume minus0 is specified, the processor can

distinguish between positive and negative real zero and the following occurs:

• If b is positive real zero, the value of the result is | a |.
• If b is negative real zero, the value of the result is -| a |.

 1 Intel® Fortran Compiler Classic and Intel® Fortran Compiler Developer Guide and Reference

1862

The specific named versions of the function require that the arguments have the same kind parameters. The
generic form of the function permits the kind types of the arguments to differ.

Specific Name Argument Type Result Type

BSIGN INTEGER(1) INTEGER(1)

IISIGN1 INTEGER(2) INTEGER(2)

ISIGN 2 INTEGER(4) INTEGER(4)

KISIGN INTEGER(8) INTEGER(8)

SIGN 3 REAL(4) REAL(4)

DSIGN 3,4 REAL(8) REAL(8)

QSIGN REAL(16) REAL(16)

1 Or HSIGN.
2 Or JISIGN. For compatibility with older versions of Fortran, ISIGN is treated as a generic function.
3 The setting of compiler options specifying real size can affect SIGN and DSIGN .
4 The setting of compiler options specifying double size can affect DSIGN.

Example

SIGN (4.0, -6.0) has the value -4.0.

SIGN (-5.0, 2.0) has the value 5.0.

The following shows another example:

 c = SIGN (5.2, -3.1) ! returns -5.2
 c = SIGN (-5.2, -3.1) ! returns -5.2
 c = SIGN (-5.2, 3.1) ! returns 5.2

See Also
ABS
assume minus0 compiler option

SIGNAL
Portability Function: Controls interrupt signal
handling and changes the action for a specified signal.

Module

USE IFPORT

Syntax
result = SIGNAL (signum, proc, flag)

signum (Input) INTEGER(4). Number of the signal to change. The numbers
and symbolic names are listed in a table below.

proc (Input) Name of a signal-handler routine. It must be declared
EXTERNAL and INTEGER(4). This routine is called only if flag is
negative.

Intel® Fortran Compiler Classic and Intel® Fortran Compiler Developer Guide and Reference 1

1863

flag (Input) INTEGER(4). If negative, the user's proc routine is called. If
0, the signal retains its default action; if 1, the signal should be
ignored.

Results

The result type is INTEGER(4) on IA-32 architecture; INTEGER(8) on Intel® 64 architecture. The result is the
previous value of proc associated with the specified signal. For example, if the previous value of proc was
SIG_IGN, the return value is also SIG_IGN. You can use this return value in subsequent calls to SIGNAL if
the signal number supplied is invalid, if the flag value is greater than 1, or to restore a previous action
definition.

A return value of SIG_ERR indicates an error, in which case a call to IERRNO returns EINVAL. If the signal
number supplied is invalid, or if the flag value is greater than 1, SIGNAL returns -(EINVAL) and a call to
IERRNO returns EINVAL.

An initial signal handler is in place at startup for SIGFPE (signal 8); its address is returned the first time
SIGNAL is called for SIGFPE. No other signals have initial signal handlers.

Be careful when you use SIGNALQQ or the C signal function to set a handler, and then use the Portability
SIGNAL function to retrieve its value. If SIGNAL returns an address that was not previously set by a call to
SIGNAL, you cannot use that address with either SIGNALQQ or C's signal function, nor can you call it directly.
You can, however, use the return value from SIGNAL in a subsequent call to SIGNAL. This allows you to
restore a signal handler, no matter how the original signal handler was set.

The signal-handler argument proc accepts a single INTEGER(4) argument, which is the number of the signal
to be handled. The function must use the compiler's default calling conventions. If you have used compiler
options, such as option iface, to change the default conventions, add the following directive to the signal
handler function to reset the calling conventions:

!DIR$ ATTRIBUTES DEFAULT :: the-routine-specified-in-proc

The signal-handler function returns an INTEGER(4) value. If the function has handled the signal, the value
returned is an integer, but the value is not used.

Because signal-handler routines are usually called asynchronously when an interrupt occurs, it is possible
that your signal-handler function will get control when a runtime operation is incomplete and in an unknown
state. You cannot use the following kinds of signal-handler routines:

• Routines that perform low-level (such as FGETC) or high-level (such as READ) I/O.
• Heap routines or any routine that uses the heap routines (such as MALLOC and ALLOCATE).
• Functions that generate a system call (such as TIME).

The following table lists signals, their names and values:

Symbolic name Number Description

SIGABRT 6 Abnormal termination

SIGFPE 8 Floating-point error

SIGKILL1 9 Kill process

SIGILL 4 Illegal instruction

SIGINT 2 CTRL+C signal

SIGSEGV 11 Illegal storage access

SIGTERM 15 Termination request

1SIGKILL can be neither caught nor ignored.

 1 Intel® Fortran Compiler Classic and Intel® Fortran Compiler Developer Guide and Reference

1864

The default action for all signals is to terminate the program with exit code.

ABORT does not assert the SIGABRT signal. The only way to assert SIGABRT or SIGTERM is to use KILL.

SIGNAL can be used to catch SIGFPE exceptions, but it cannot be used to access the error code that caused
the SIGFPE. To do this, use SIGNALQQ instead.

Example

 USE IFPORT
 EXTERNAL h_abort
 INTEGER(4) :: h_abort
 INTEGER(4) iret1, iret2, procnum
 iret1 = SIGNAL(SIGABRT, h_abort, -1)
 WRITE(*,*) 'Set signal handler #1. Return = ', iret1

 procnum = getpid()
 iret2 = KILL(procnum, SIGABRT)
 WRITE(*,*) 'Raised signal. Return = ', iret2
 END
 !
 ! Signal-handler routine
 !
 INTEGER(4) FUNCTION h_abort (sig_num)
 INTEGER(4) sig_num
 !DIR$ ATTRIBUTES DEFAULT :: h_abort
 WRITE(*,*) 'In signal handler function h_abort for SIG$ABORT'
 WRITE(*,*) 'signum = ', sig_num
 h_abort = 1
 END

See Also
SIGNALQQ

SIGNALQQ
Portability Function: Registers the function to be
called if an interrupt signal occurs.

Module

USE IFPORT

Syntax
result = SIGNALQQ (sig,func)

sig (Input) INTEGER(4). Interrupt type. One of the following constants,
defined in IFPORT.F90:

• SIG$ABORT - Abnormal termination
• SIG$FPE - Floating-point error
• SIG$ILL - Illegal instruction
• SIG$INT - CTRL+CSIGNAL
• SIG$SEGV - Illegal storage access
• SIG$TERM - Termination request

func (Input) Function to be executed on interrupt. It must be declared
EXTERNAL.

Intel® Fortran Compiler Classic and Intel® Fortran Compiler Developer Guide and Reference 1

1865

Results

The result type is INTEGER(4) on IA-32 architecture; INTEGER(8) on Intel® 64 architecture. The result is a
positive integer if successful; otherwise, -1 (SIG$ERR).

SIGNALQQ installs the function func as the handler for a signal of the type specified by sig. If you do not
install a handler, the system by default terminates the program with exit code 3 when an interrupt signal
occurs.

The argument func is the name of a function and must be declared with either the EXTERNAL or IMPLICIT
statements, or have an explicit interface. A function described in an INTERFACE block is EXTERNAL by
default, and does not need to be declared EXTERNAL.

NOTE
All signal-handler functions must be declared with the directive !DIR$ ATTRIBUTES C.

When an interrupt occurs, except a SIG$FPE interrupt, the sig argument SIG$INT is passed to func, and then
func is executed.

When a SIG$FPE interrupt occurs, the function func is passed two arguments: SIG$FPE and the floating-point
error code (for example, FPE$ZERODIVIDE or FPE$OVERFLOW) which identifies the type of floating-point
exception that occurred. The floating-point error codes begin with the prefix FPE$ and are defined in
IFPORT.F90.

If func returns, the calling process resumes execution immediately after the point at which it received the
interrupt signal. This is true regardless of the type of interrupt or operating mode.

Because signal-handler routines are normally called asynchronously when an interrupt occurs, it is possible
that your signal-handler function will get control when a runtime operation is incomplete and in an unknown
state. Therefore, do not call heap routines or any routine that uses the heap routines (for example, I/O
routines, ALLOCATE, and DEALLOCATE).

To test your signal handler routine you can generate interrupt signals by calling RAISEQQ, which causes your
program either to branch to the signal handlers set with SIGNALQQ, or to perform the system default
behavior if SIGNALQQ has set no signal handler.

The example below shows a signal handler for SIG$ABORT.

Example

 ! This program shows a signal handler for
 ! SIG$ABORT
 USE IFPORT
 INTERFACE
 FUNCTION h_abort (signum)
 !DIR$ ATTRIBUTES C :: h_abort
 INTEGER(4) h_abort
 INTEGER(2) signum
 END FUNCTION
 END INTERFACE

 INTEGER(2) i2ret
 INTEGER(4) i4ret

 i4ret = SIGNALQQ(SIG$ABORT, h_abort)
 WRITE(*,*) 'Set signal handler. Return = ', i4ret

 i2ret = RAISEQQ(SIG$ABORT)

 1 Intel® Fortran Compiler Classic and Intel® Fortran Compiler Developer Guide and Reference

1866

 WRITE(*,*) 'Raised signal. Return = ', i2ret
 END
 !
 ! Signal handler routine
 !
 INTEGER(4) FUNCTION h_abort (signum)
 !DIR$ ATTRIBUTES C :: h_abort
 INTEGER(2) signum
 WRITE(*,*) 'In signal handler for SIG$ABORT'
 WRITE(*,*) 'signum = ', signum
 h_abort = 1
 END

See Also
RAISEQQ
SIGNAL
KILL
GETEXCEPTIONPTRSQQ

SIMD Directive for OpenMP
OpenMP* Fortran Compiler Directive: Transforms
a loop into a loop that will be executed concurrently
using Single Instruction Multiple Data (SIMD)
instructions.

Syntax

!$OMP SIMD [clause[[,] clause]...]
 do-loop
[!$OMP END SIMD]

clause Is one of the following:

• ALIGNED (list [:n])
• [NO]ASSERT

Directs the compiler to assert (produce an error) or not to assert
(produce a warning) when the vectorization fails. The default is
NOASSERT. If this clause is specified more than once, a compile-
time error occurs.

• COLLAPSE (n)
• EARLY_EXIT

Allows vectorization of multiple exit loops. When this clause is
specified the following occurs:

• Each operation before the last lexical early exit of the loop may
be executed as if the early exit were not triggered within the
SIMD chunk.

• After the last lexical early exit of the loop, all operations are
executed as if the last iteration of the loop was found.

• The last value for LINEARs and conditional LASTPRIVATEs are
preserved with respect to scalar execution.

Intel® Fortran Compiler Classic and Intel® Fortran Compiler Developer Guide and Reference 1

1867

• The last value for REDUCTIONs are computed as if the last
iteration in the last SIMD chunk was executed upon exiting the
loop.

• The shared memory state may not be preserved with regard to
scalar execution.

• Exceptions are not allowed.

When a SIMD loop is specified with the EARLY_EXIT clause, each
list item specified in the LINEAR clause is computed based on the
last iteration number upon exiting the loop.

• IF ([SIMD:] scalar-logical-expression)
• LASTPRIVATE ([CONDITIONAL:] list)
• LINEAR (linear-list [: linear-modifier [, linear-modifier]])
• NONTEMPORAL [(var1 [, var2]...)])

Directs the compiler to use non-temporal (that is, streaming)
stores.

By default, the compiler automatically determines whether a
streaming store should be used for each variable.

Streaming stores may cause significant performance improvements
over non-streaming stores for large trip-count loops on certain
processors. However, the misuse of streaming stores can
significantly degrade performance.

A variable cannot appear more than once in a NONTEMPORAL
clause, and it cannot appear in more than one NONTEMPORAL
clause.

• ORDER ([order-modifier :] CONCURRENT) (ifx only)
• PRIVATE (list)
• REDUCTION ([reduction-modifier,]reduction-identifier : list)
• SAFELEN(m)

Limits the number of iterations in a SIMD chunk (set of concurrent
iterations).

The m must be a constant positive integer expression; it indicates
the number of iterations allowed in a SIMD chunk.

When this clause is used, no two iterations executed concurrently
with SIMD instructions can have a greater distance in the logical
iteration space than m.

The number of iterations that are executed concurrently at any
given time is defined by the implementation. Each concurrent
iteration is executed by a different SIMD vector lane.

At most one SAFELEN clause can appear in a SIMD directive.
• SIMDLEN(n)

Specifies the preferred number of iterations to be executed
concurrently. n must be a positive scalar integer constant. The
number of iterations that are executed concurrently at any given
time is implementation defined. Each concurrent iteration will be
executed by a different SIMD lane.

If both SIMDLEN (n) and SAFELEN (m) are specified, the value of
the n must be less than or equal to the value of m.

 1 Intel® Fortran Compiler Classic and Intel® Fortran Compiler Developer Guide and Reference

1868

At most one SIMDLEN clause can appear in a SIMD directive.

do-loop Is one or more DO iterations (DO loops). The DO iteration cannot be a
DO WHILE or a DO loop without loop control. The DO loop iteration
variable must be of type integer.

All loops associated with the construct must be structured and
perfectly nested; that is, there must be no intervening code and no
other OpenMP* Fortran directives between any two loops.

The iterations of the DO loop are distributed across the existing team
of threads. The values of the loop control parameters of the DO loop
associated with a DO directive must be the same for all the threads in
the team.

You cannot branch out of a DO loop associated with a SIMD directive.

A SIMD construct binds to the current task region. The binding thread set of the SIMD region is the current
team.

If used, the END SIMD directive must appear immediately after the end of the loop. If you do not specify an
END SIMD directive, an END SIMD directive is assumed at the end of do-loop. The SIMD directive is a pure
directive, so it can appear in a Fortran PURE procedure.

The SIMD construct enables the execution of multiple iterations of the associated loops concurrently by
means of SIMD instructions. No other OpenMP* Fortran construct can appear in a SIMD directive.

A SIMD region binds to the current task region. The binding thread set of the SIMD region is the current
team.

When any thread encounters a SIMD construct, the iterations of the loop associated with the construct may
be executed concurrently using the SIMD lanes that are available to the thread.

If an ORDERED directive with the SIMD clause is specified inside the SIMD region, the ordered regions
encountered by any thread will use only a single SIMD lane to execute the ordered regions in the order of the
loop iterations.

Example

The following is an example using the SIMD directive:

 subroutine subr(a, b, c, n)
 implicit none
 real(kind=kind(0.0d0)),dimension(*) :: a, b, c
 integer :: n, i

 !$omp simd
 do i = 1, n
 a(i) = a(i) * b(i) + c(i)
 end do

 end subroutine
The following example demonstrates the EARLY_EXIT clause:

 !$omp simd early_exit
 do i = 1, n
 if (a(i) == i) exit
 enddo

See Also
OpenMP Fortran Compiler Directives

Intel® Fortran Compiler Classic and Intel® Fortran Compiler Developer Guide and Reference 1

1869

Syntax Rules for Compiler Directives
qsimd-honor-fp-model, Qsimd-honor-fp-model compiler option
qsimd-serialize-fp-reduction, Qsimd-serialize-fp-reduction compiler option
fp-model, fp compiler option
Nested DO Constructs
Parallel Processing Model for information about Binding Sets

SIMD Loop Directive
General Compiler Directive: Requires and controls
SIMD vectorization of loops. This directive is
deprecated and will be removed in a future
release.This feature is only available for ifort.

Syntax

!DIR$ SIMD [clause[[,] clause]...]

clause Is an optional vectorization clause. It can be one or more of the
following:

• [NO]ASSERT
Directs the compiler to assert (produce an error) or not to assert
(produce a warning) when the vectorization fails. The default is
NOASSERT. If this clause is specified more than once, a compile-
time error occurs.

• FIRSTPRIVATE(list)

list Is a list of names of one or more variables
or common blocks that are accessible to
the scoping unit.

Provides a superset of the functionality provided by the PRIVATE
clause. Variables that appear in a FIRSTPRIVATE list are subject to
PRIVATE clause semantics. In addition, each variable has its initial
value broadcast to all private instances for each iteration upon
entering the SIMD loop.

A variable in a FIRSTPRIVATE clause can appear in a LASTPRIVATE
clause.

A variable in a FIRSTPRIVATE clause cannot appear in a LINEAR,
REDUCTION, or PRIVATE clause.

• LASTPRIVATE (list)

list Is a list of names of one or more variables
or common blocks that are accessible to
the scoping unit.

Provides a superset of the functionality provided by the PRIVATE
clause. Variables that appear in a LASTPRIVATE list are subject to
PRIVATE clause semantics. In addition, when the SIMD loop is
exited, each variable has the value that resulted from the
sequentially last iteration of the SIMD loop (which may be
undefined if the last iteration does not assign to the variable).

A variable in a LASTPRIVATE clause can appear in a FIRSTPRIVATE
clause.

 1 Intel® Fortran Compiler Classic and Intel® Fortran Compiler Developer Guide and Reference

1870

A variable in a LASTPRIVATE clause cannot appear in a LINEAR,
REDUCTION, or PRIVATE clause.

• LINEAR (var1:step1 [, var2:step2]...)

var Is a scalar variable.

step Is a positive, integer, scalar expression.

For each iteration of a scalar loop, var1 is incremented by step1,
var2 is incremented by step2, and so on. Therefore, every iteration
of the vector loop increments the variables by VL (vector
length)*step1, VL*step2, …, to VL*stepN, respectively. If more
than one step is specified for a var, a compile-time error occurs.
Multiple LINEAR clauses are merged as a union.

A variable in a LINEAR clause cannot appear in a REDUCTION,
PRIVATE, FIRSTPRIVATE, or LASTPRIVATE clause.

• PRIVATE (list)

list Is a list of names of one or more variables
or common blocks that are accessible to
the scoping unit. A variable that is part of
another variable (for example, subobjects
such as an array or structure element)
cannot appear. Each name must be
separated by a comma, and a named
common block must appear between
slashes (/ /).

Causes each variable to be private to each iteration of a loop. Its
initial and last values are undefined upon entering and exiting the
SIMD loop. Multiple PRIVATE clauses are merged as a union.

A variable in a PRIVATE clause cannot appear in a LINEAR,
REDUCTION, FIRSTPRIVATE, or LASTPRIVATE clause.

• REDUCTION (reduction-identifier : var1 [, var2]...)

reduction-
identifier

Is a predefined reduction identifier (+, *,
-, .AND., .OR., .EQV., or .NEQV.), or an
accessible user-defined reduction identifier
declared in a DECLARE REDUCTION
directive.

var Is a scalar variable.

Applies the vector reduction indicated by reduction-identifier to
var1, var2, …, varN. A SIMD directive can have multiple
REDUCTION clauses using the same or different operators. If more
than one reduction operator is associated with a var, a compile-
time error occurs.

A variable in a REDUCTION clause cannot appear in a LINEAR,
PRIVATE, FIRSTPRIVATE, or LASTPRIVATE clause.

• [NO]VECREMAINDER
• VECTORLENGTH (n1 [, n2]...)

Intel® Fortran Compiler Classic and Intel® Fortran Compiler Developer Guide and Reference 1

1871

n Is a vector length (VL). It must be an
integer that is a power of 2; the value
must be 2, 4, 8, 16, 32 or 64. If you
specify more than one n, the vectorizor will
choose the VL from the values specified.

Causes each iteration in the vector loop to execute the computation
equivalent to n iterations of scalar loop execution.

The VECTORLENGTH and VECTORLENGTHFOR clauses are mutually
exclusive. You cannot use the VECTORLENGTH clause with the
VECTORLENGTHFOR clause, and vice versa.

Multiple VECTORLENGTH clauses cause a syntax error.
• VECTORLENGTHFOR (data-type)

data-type Is one of the following intrinsic data types:

Data Type Fortran Intrinsic
Type

INTEGER Default INTEGER

INTEGER(1) INTEGER
(KIND=1)

INTEGER(2) INTEGER
(KIND=2)

INTEGER(4) INTEGER
(KIND=4)

INTEGER(8) INTEGER
(KIND=8)

REAL Default REAL

REAL(4) REAL (KIND=4)

REAL(8) REAL (KIND=8)

COMPLEX Default COMPLEX

COMPLEX(4) COMPLEX
(KIND=4)

COMPLEX(8) COMPLEX
(KIND=8)

Causes each iteration in the vector loop to execute the computation
equivalent to n iterations of scalar loop execution where n is
computed from size_of_vector_register/
sizeof(data_type).

For example, VECTORLENGTHFOR (REAL (KIND=4)) results in n=4
for SSE2 to SSE4.2 targets (packed float operations available on
128-bit XMM registers) and n=8 for AVX target (packed float

 1 Intel® Fortran Compiler Classic and Intel® Fortran Compiler Developer Guide and Reference

1872

operations available on 256-bit YMM registers).
VECTORLENGTHFOR(INTEGER (KIND=4)) results in n=4 for SSE2
to AVX targets.

The VECTORLENGTHFOR and VECTORLENGTH clauses are mutually
exclusive. You cannot use the VECTORLENGTHFOR clause with the
VECTORLENGTH clause, and vice versa.

Multiple VECTORLENGTHFOR clauses cause a syntax error.

Without explicit VECTORLENGTH and VECTORLENGTHFOR clauses,
the compiler will choose a VECTORLENGTH using its own cost
model. Misclassification of variables into PRIVATE, FIRSTPRIVATE,
LASTPRIVATE, LINEAR, and REDUCTION, or the lack of appropriate
classification of variables, may lead to unintended consequences
such as runtime failures and/or incorrect results.

If you specify the SIMD directive with no clause, default rules are in effect for variable attributes, vector
length, and so forth.

If you do not explicitly specify a VECTORLENGTH clause, the compiler will choose a VECTORLENGTH using its
own cost model. Misclassification of variables into PRIVATE, FIRSTPRIVATE, LASTPRIVATE, LINEAR, and
REDUCTION, or the lack of appropriate classification of variables, may lead to unintended consequences such
as runtime failures and/or incorrect results.

You can only specify a particular variable in at most one instance of a PRIVATE, LINEAR, or REDUCTION
clause.

If the compiler is unable to vectorize a loop, a warning occurs by default. However, if ASSERT is specified, an
error occurs instead.

If the vectorizer has to stop vectorizing a loop for some reason, the fast floating-point model is used for the
SIMD loop.

A SIMD loop may contain one or more nested loops or be contained in a loop nest. Only the loop preceded by
the SIMD directive is processed for SIMD vectorization.

The vectorization performed on this loop by the SIMD directive overrides any setting you may specify for
options -fp-model (Linux*) and /fp (Windows*) for this loop.

Note that the SIMD directive may not affect all auto-vectorizable loops. Some of these loops do not have a
way to describe the SIMD vector semantics.

The following restrictions apply to the SIMD directive:

• The countable loop for the SIMD directive has to conform to the DO-loop style of an OpenMP worksharing
loop construct. Additionally, the loop control variable must be a signed integer type.

• The vector values must be signed 8-, 16-, 32-, or 64-bit integers, single or double-precision floating-point
numbers, or single- or double-precision complex numbers.

• A SIMD directive loop performs memory references unconditionally. Therefore, all address computations
must result in valid memory addresses, even though such locations may not be accessed if the loop is
executed sequentially.

To disable the SIMD transformations for vectorization, specify option -no-simd (Linux*) or /Qsimd-
(Windows*).

To disable transformations that enable more vectorization, specify options -no-vec-no-simd (Linux

) or /Qvec-/Qsimd- (Windows).

Intel® Fortran Compiler Classic and Intel® Fortran Compiler Developer Guide and Reference 1

1873

Example

Consider the following:

 ...
subroutine add(A, N, X)
 integer N, X
 real A(N)
cDIR$ SIMD
 DO I=X+1, N
 A(I) = A(I) + A(I-X)
 ENDDO
end
 ...

When the program containing this subroutine is compiled, the DO loop will be vectorized.

Because no optional clause was specified for the directive, default rules will apply for variable attributes,
vector length, and so forth.

See Also
General Compiler Directives
Syntax Rules for Compiler Directives
simd, Qsimd compiler option
qsimd-honor-fp-model, Qsimd-honor-fp-model compiler option
qsimd-serialize-fp-reduction, Qsimd-serialize-fp-reduction compiler option
fp-model, fp compiler option
vec, Qvec compiler option

SIN
Elemental Intrinsic Function (Generic): Produces
the sine of an argument in radians.

Syntax
result = SIN (x)

x (Input) Must be of type real or complex. It must be in radians and is
treated as modulo 2*pi.

Results

The result type and kind are the same as x.

If x is of type real, the result is a value in radians.

If x is of type complex, the real part of the result is a value in radians.

Specific Name Argument Type Result Type

SIN REAL(4) REAL(4)

DSIN REAL(8) REAL(8)

QSIN REAL(16) REAL(16)

CSIN 1 COMPLEX(4) COMPLEX(4)

CDSIN 2 COMPLEX(8) COMPLEX(8)

 1 Intel® Fortran Compiler Classic and Intel® Fortran Compiler Developer Guide and Reference

1874

Specific Name Argument Type Result Type

CQSIN COMPLEX(16) COMPLEX(16)

1The setting of compiler options specifying real size can affect CSIN.
2This function can also be specified as ZSIN.

Example

SIN (2.0) has the value 0.9092974.

SIN (0.8) has the value 0.7173561.

SIND
Elemental Intrinsic Function (Generic): Produces
the sine of an argument in degrees.

Syntax
result = SIND (x)

x (Input) Must be of type real. It must be in degrees and is treated as
modulo 360.

Results

The result type and kind are the same as x.

Specific Name Argument Type Result Type

SIND REAL(4) REAL(4)

DSIND REAL(8) REAL(8)

QSIND REAL(16) REAL(16)

Example

SIND (2.0) has the value 3.4899496E-02.

SIND (0.8) has the value 1.3962180E-02.

SINGLE
OpenMP* Fortran Compiler Directive: Specifies
that a block of code is to be executed by only one
thread in the team at a time.

Syntax

!$OMP SINGLE [clause[[,] clause] ...]
 loosely-structured-block
!$OMP END SINGLE [modifier]
-or-

!$OMP SINGLE [clause[[,] clause] ...]
 strictly-structured-block
[!$OMP END SINGLE [modifier]]

Intel® Fortran Compiler Classic and Intel® Fortran Compiler Developer Guide and Reference 1

1875

clause Is one of the following:

• ALLOCATE ([allocator :] list)
• COPYPRIVATE (list)
• FIRSTPRIVATE (list)
• NOWAIT
• PRIVATE (list)

loosely-structured-block Is a structured block (section) of statements or constructs. You cannot
branch into or out of the block.

strictly-structured-block Is a Fortran BLOCK construct. You cannot branch into or out of the
BLOCK construct.

modifier Is one of the following:

• COPYPRIVATE (list)
• NOWAIT

The binding thread set for a SINGLE construct is the current team. A SINGLE region binds to the innermost
enclosing parallel region.

Threads in the team that are not executing this directive wait at the END SINGLE directive unless NOWAIT is
specified. NOWAIT can be specified as a clause in the SINGLE directive, or as a modifier in the END SINGLE
directive, but not in both for a given SINGLE construct.

COPYPRIVATE can be specified as a clause in the SINGLE directive, or as a modifier in the END SINGLE
directive, but not in both for a given single construct.

SINGLE directives must be encountered by all threads in a team or by none at all. It must also be
encountered in the same order by all threads in a team.

Example

In the following example, the first thread that encounters the SINGLE directive executes subroutines OUTPUT
and INPUT:

 !$OMP PARALLEL DEFAULT(SHARED)
 CALL WORK(X)
 !$OMP BARRIER
 !$OMP SINGLE
 CALL OUTPUT(X)
 CALL INPUT(Y)
 !$OMP END SINGLE
 CALL WORK(Y)
 !$OMP END PARALLEL

You should not make assumptions as to which thread executes the SINGLE section. All other threads skip the
SINGLE section and stop at the barrier at the END SINGLE construct. If other threads can proceed without
waiting for the thread executing the SINGLE section, you can specify NOWAIT in the END SINGLE directive.

See Also
OpenMP Fortran Compiler Directives
Syntax Rules for Compiler Directives
Parallel Processing Model for information about Binding Sets

SINH
Elemental Intrinsic Function (Generic): Produces
a hyperbolic sine.

 1 Intel® Fortran Compiler Classic and Intel® Fortran Compiler Developer Guide and Reference

1876

Syntax
result = SINH (x)

x (Input) Must be of type real or complex.

Results

The result type and kind are the same as x.

If x is of type complex, the imaginary part of the result is in radians.

Specific Name Argument Type Result Type

SINH REAL(4) REAL(4)

DSINH REAL(8) REAL(8)

QSINH REAL(16) REAL(16)

Example

SINH (2.0) has the value 3.626860.

SINH (0.8) has the value 0.8881060.

SIZE Function
Inquiry Intrinsic Function (Generic): Returns the
total number of elements in an array, or the extent of
an array along a specified dimension.

Syntax
result = SIZE (array [, dim] [, kind])

array (Input) Must be an array; it can be assumed-rank. It can be of any
data type. It must not be a disassociated pointer or an allocatable
array that is not allocated. It can be an assumed-size array if dim is
present with a value less than the rank of array.

dim (Input; optional) Must be a scalar integer with a value in the range 1
to n, where n is the rank of array.

kind (Input; optional) Must be a scalar integer constant expression.

Results

The result is a scalar of type integer. If kind is present, the kind parameter of the result is that specified by
kind; otherwise, the kind parameter of the result is that of default integer. If the processor cannot represent
the result value in the kind of the result, the result is undefined.

In general, if dim is present, the result is the extent of dimension dim in array; otherwise, the result is the
total number of elements in array. However, the following exceptions apply:

• If array is assumed-rank and associated with an assumed-size array and dim is present with a value equal
to the rank of ARRAY, the result has a value of -1.

• If dim is absent and array is assumed-rank, the result has a value equal to PRODUCT(SHAPE(ARRAY,
KIND)).

The setting of compiler options specifying integer size can affect this function.

Intel® Fortran Compiler Classic and Intel® Fortran Compiler Developer Guide and Reference 1

1877

Example

If B is declared as B(2:4, -3:1), then SIZE (B, DIM=2) has the value 5 and SIZE (B) has the value 15.

The following shows another example:

 REAL(8) array (3:10, -1:3)
 INTEGER i
 i = SIZE(array, DIM = 2) ! returns 5
 i = SIZE(array) ! returns 40

See Also
SHAPE
Character Count Specifier

SIZEOF
Inquiry Intrinsic Function (Generic): Returns the
number of bytes of storage used by the argument. It
cannot be passed as an actual argument.

Syntax
result = SIZEOF (x)

x (Input) Can be a scalar or array. It may be of any data type. It must
not be an assumed-size array. If it is an assumed-rank array, it must
not be associated with an assumed-size array. If it is type
CHARACTER, it cannot be a dummy argument with LEN=*.

Results

The result type is INTEGER(4) on IA-32 architecture; INTEGER(8) on Intel® 64 architecture. The result value
is the number of bytes of storage used by x.

If x is of derived type, the result includes storage used by padding and descriptors for pointer or allocatable
components, if any, but not the storage used for the data of pointer or allocatable components. If x is an
assumed-rank array associated with an assumed-size array, the result is undefined.

Example

SIZEOF (3.44) ! has the value 4

SIZEOF ('SIZE') ! has the value 4

See Also
C_SIZEOF

SLEEP
Portability Subroutine: Suspends the execution of a
process for a specified interval.

Module

USE IFPORT

Syntax
CALL SLEEP (time)

 1 Intel® Fortran Compiler Classic and Intel® Fortran Compiler Developer Guide and Reference

1878

time (Input) INTEGER(4). Length of time, in seconds, to suspend the
calling process.

Example

 USE IFPORT
 integer(4) hold_time
 hold_time = 1 ! lets the loop execute
 DO WHILE (hold_time .NE. 0)
 write(*,'(A)') "Enter the number of seconds to suspend"
 read(*,*) hold_time
 CALL SLEEP (hold_time)
 END DO
 END

See Also
SLEEPQQ

SLEEPQQ
Portability Subroutine: Delays execution of the
program for a specified duration.

Module

USE IFPORT

Syntax
CALL SLEEPQQ (duration)

duration (Input) INTEGER(4). Number of milliseconds the program is to sleep
(delay program execution).

Example

 USE IFPORT
 INTEGER(4) delay, freq, duration
 delay = 2000
 freq = 4000
 duration = 1000
 CALL SLEEPQQ(delay)
 CALL BEEPQQ(freq, duration)
 END

SNGL
Converts a REAL value to a default REAL result.

See Also
See REAL function.

SORTQQ
Portability Subroutine: Sorts a one-dimensional
array. The array elements cannot be derived types or
record structures.

Intel® Fortran Compiler Classic and Intel® Fortran Compiler Developer Guide and Reference 1

1879

Module

USE IFPORT

Syntax
CALL SORTQQ (adrarray,count,size)

adrarray (Input) INTEGER(4) on IA-32 architecture; INTEGER(8) on Intel® 64
architecture. Address of the array (returned by LOC).

count (Input; output) INTEGER(4) on IA-32 architecture; INTEGER(8) on
Intel® 64 architecture. On input, number of elements in the array to
be sorted. On output, number of elements actually sorted.

To be certain that SORTQQ is successful, compare the value returned
in count to the value you provided. If they are the same, then
SORTQQ sorted the correct number of elements.

size (Input) INTEGER(4). Positive constant less than 32,767 that specifies
the kind of array to be sorted. The following constants, defined in
IFPORT.F90, specify type and kind for numeric arrays:

Constant Type of array

SRT$INTEGER1 INTEGER(1)

SRT$INTEGER2 INTEGER(2) or equivalent

SRT$INTEGER4 INTEGER(4) or equivalent

SRT$INTEGER8 INTEGER(8) or equivalent

SRT$REAL4 REAL(4) or equivalent

SRT$REAL8 REAL(8) or equivalent

SRT$REAL16 REAL(16) or equivalent

If the value provided in size is not a symbolic constant and is less than 32,767, the array is assumed to be a
character array with size characters per element.

Caution
The location of the array must be passed by address using the LOC function. This defeats Fortran type-
checking, so you must make certain that the count and size arguments are correct.

If you pass invalid arguments, SORTQQ attempts to sort random parts of memory. If the memory it
attempts to sort is allocated to the current process, that memory is sorted; otherwise, the operating
system intervenes, the program is halted, and you get a General Protection Violation message.

Example

 ! Sort a 1-D array
 USE IFPORT
 INTEGER(2) array(10)
 INTEGER(2) i
 DATA ARRAY /143, 99, 612, 61, 712, 9112, 6, 555, 2223, 67/
 ! Sort the array

 1 Intel® Fortran Compiler Classic and Intel® Fortran Compiler Developer Guide and Reference

1880

 Call SORTQQ (LOC(array), 10, SRT$INTEGER2)
 ! Display the sorted array
 DO i = 1, 10
 WRITE (*, 9000) i, array (i)
 9000 FORMAT(1X, ' Array(',I2, '): ', I5)
 END DO
 END

See Also
BSEARCHQQ
LOC

SPACING
Elemental Intrinsic Function (Generic): Returns
the absolute spacing of model numbers near the
argument value.

Syntax
result = SPACING (x)

x (Input) Must be of type real.

Results

The result type and kind are the same as x. The result has the value b e-p. Parameters b, e, and p are defined
in Model for Real Data. If the result value is outside of the real model range, the result is TINY(x).

Example

If 3.0 is a REAL(4) value, SPACING (3.0) has the value 2 -22.

The following shows another example:

 REAL(4) res4
 REAL(8) res8, r2
 res4 = SPACING(3.0) ! returns 2.384186E-07
 res4 = SPACING(-3.0) ! returns 2.384186E-07
 r2 = 487923.3
 res8 = SPACING(r2) ! returns 5.820766091346741E-011

See Also
TINY
RRSPACING
Data Representation Models

SPLITPATHQQ
Portability Function: Breaks a file path or directory
path into its components.

Module

USE IFPORT

Syntax
result = SPLITPATHQQ (path,drive,dir,name,ext)

Intel® Fortran Compiler Classic and Intel® Fortran Compiler Developer Guide and Reference 1

1881

path (Input) Character*(*). Path to be broken into components. Forward
slashes (/), backslashes (\), or both can be present in path.

drive (Output) Character*(*). Drive letter followed by a colon.

dir (Output) Character*(*). Path of directories, including the trailing
slash.

name (Output) Character*(*). Name of file or, if no file is specified in path,
name of the lowest directory. A file name must not include an
extension.

ext (Output) Character*(*). File name extension, if any, including the
leading period (.).

Results

The result type is INTEGER(4). The result is the length of dir.

The path parameter can be a complete or partial file specification.

$MAXPATH is a symbolic constant defined in module IFPORT.F90 as 260.

Example

 USE IFPORT
 CHARACTER($MAXPATH) buf
 CHARACTER(3) drive
 CHARACTER(256) dir
 CHARACTER(256) name
 CHARACTER(256) ext
 CHARACTER(256) file

 INTEGER(4) length

 buf = 'b:\fortran\test\runtime\tsplit.for'
 length = SPLITPATHQQ(buf, drive, dir, name, ext)
 WRITE(*,*) drive, dir, name, ext
 file = 'partial.f90'
 length = SPLITPATHQQ(file, drive, dir, name, ext)
 WRITE(*,*) drive, dir, name, ext

 END

See Also
FULLPATHQQ

SPREAD
Transformational Intrinsic Function (Generic):
Creates a replicated array with an added dimension by
making copies of existing elements along a specified
dimension.

Syntax
result = SPREAD (source,dim,ncopies)

source (Input) Must be a scalar or array. It may be of any data type. The
rank must be less than 31.

 1 Intel® Fortran Compiler Classic and Intel® Fortran Compiler Developer Guide and Reference

1882

dim (Input) Must be scalar and of type integer. It must have a value in the
range 1 to n + 1 (inclusive), where n is the rank of source.

ncopies Must be scalar and of type integer. It becomes the extent of the
additional dimension in the result.

Results

The result is an array of the same type as source and of rank that is one greater than source.

If source is an array, each array element in dimension dim of the result is equal to the corresponding array
element in source.

If source is a scalar, the result is a rank-one array with ncopies elements, each with the value source.

If ncopies less than or equal to zero, the result is an array of size zero.

Example

SPREAD ("B", 1, 4) is the character array (/"B", "B", "B", "B"/).

B is the array [3, 4, 5] and NC has the value 4.

SPREAD (B, DIM=1, NCOPIES=NC) produces the array

 [3 4 5]
 [3 4 5]
 [3 4 5]
 [3 4 5].

SPREAD (B, DIM=2, NCOPIES=NC) produces the array

 [3 3 3 3]
 [4 4 4 4]
 [5 5 5 5].

The following shows another example:

 INTEGER AR1(2, 3), AR2(3, 2)
 AR1 = SPREAD((/1,2,3/),DIM= 1,NCOPIES= 2) ! returns
 ! 1 2 3
 ! 1 2 3

 AR2 = SPREAD((/1,2,3/), 2, 2) ! returns 1 1
 ! 2 2
 ! 3 3

See Also
PACK
RESHAPE

SQRT
Elemental Intrinsic Function (Generic): Produces
the square root of its argument.

Syntax
result = SQRT (x)

x (Input) must be of type real or complex. If x is type real, its value
must be greater than or equal to zero.

Intel® Fortran Compiler Classic and Intel® Fortran Compiler Developer Guide and Reference 1

1883

Results

The result type and kind are the same as x. The result has a value equal to the square root of x.

A result of type complex is the principal value, with the real part greater than or equal to zero.

When the real part of the result is zero, the imaginary part of the result has the same sign as the imaginary
part of x , even if the imaginary part of x is a negative real zero.

Specific Name Argument Type Result Type

SQRT REAL(4) REAL(4)

DSQRT REAL(8) REAL(8)

QSQRT REAL(16) REAL(16)

CSQRT 1 COMPLEX(4) COMPLEX(4)

CDSQRT2 COMPLEX(8) COMPLEX(8)

CQSQRT COMPLEX(16) COMPLEX(16)

1The setting of compiler options specifying real size can affect CSQRT.
2This function can also be specified as ZSQRT.

Example

SQRT (16.0) has the value 4.0.

SQRT (3.0) has the value 1.732051.

The following shows another example:

 ! Calculate the hypotenuse of a right triangle
 ! from the lengths of the other two sides.
 REAL sidea, sideb, hyp
 sidea = 3.0
 sideb = 4.0
 hyp = SQRT (sidea**2 + sideb**2)
 WRITE (*, 100) hyp
 100 FORMAT (/ ' The hypotenuse is ', F10.3)
 END

SRAND
Portability Subroutine: Seeds the random number
generator used with IRAND and RAND.

Module

USE IFPORT

Syntax
CALL SRAND (iseed)

iseed (Input) INTEGER(4). Any value. The default value is 1.

SRAND seeds the random number generator used with IRAND and RAND. Calling SRAND is equivalent to
calling IRAND or RAND with a new seed.

The same value for iseed generates the same sequence of random numbers. To vary the sequence, call
SRAND with a different iseed value each time the program is executed.

 1 Intel® Fortran Compiler Classic and Intel® Fortran Compiler Developer Guide and Reference

1884

Example

 ! How many random numbers out of 100 will be between .5 and .6?
 USE IFPORT
 ICOUNT = 0
 CALL SRAND(123)
 DO I = 1, 100
 X = RAND(0)
 IF ((X>.5).AND.(x<.6)) ICOUNT = ICOUNT + 1
 END DO
 WRITE(*,*) ICOUNT, "numbers between .5 and .6!"
 END

See Also
RAND
IRAND
RANDOM_NUMBER
RANDOM_SEED

SSWRQQ
Portability Subroutine: Returns the floating-point
processor status word.

Module

USE IFPORT

Syntax
CALL SSWRQQ (status)

status (Output) INTEGER(2). Floating-point processor status word.

SSWRQQ performs the same function as the runtime subroutine GETSTATUSFPQQ and is provided for
compatibility.

Example

 USE IFPORT
 INTEGER(2) status
 CALL SSWRQQ (status)

See Also
LCWRQQ
GETSTATUSFPQQ

STAT
Portability Function: Returns detailed information
about a file.

Module

USE IFPORT

Syntax
result = STAT (name,statb)

Intel® Fortran Compiler Classic and Intel® Fortran Compiler Developer Guide and Reference 1

1885

name (Input) Character*(*). Name of the file to examine.

statb (Output) INTEGER(4) or INTEGER(8). One-dimensional array of size
12; where the system information is stored. The elements of statb
contain the following values:

Element Description Values or Notes

statb(1) Device the file
resides on

Windows: Always 0

Linux: System
dependent

statb(2) File inode number Windows: Always 0

Linux: System
dependent

statb(3) Access mode of the
file

See the table in
Results

statb(4) Number of hard links
to the file

Windows: Always 1

Linux: System
dependent

statb(5) User ID of owner Windows: Always 1

Linux: System
dependent

statb(6) Group ID of owner Windows: Always 1

Linux: System
dependent

statb(7) Raw device the file
resides on

Windows: Always 0

Linux: System
dependent

statb(8) Size of the file

statb(9) Time when the file
was last accessed1

Windows: Only
available on non-FAT
file systems;
undefined on FAT
systems

Linux: System
dependent

statb(10) Time when the file
was last modified1

statb(11) Time of last file
status change1

Windows: Same as
stat(10)

Linux: System
dependent

 1 Intel® Fortran Compiler Classic and Intel® Fortran Compiler Developer Guide and Reference

1886

Element Description Values or Notes

statb(12) Blocksize for file
system I/O
operations

Windows: Always 1

Linux: System
dependent

1Times are in the same format returned by the TIME function
(number of seconds since 00:00:00 Greenwich mean time, January
1, 1970).

Results

The result type is INTEGER(4).

On Windows* systems, the result is zero if the inquiry was successful; otherwise, the error code ENOENT
(the specified file could not be found). On Linux* systems, the file inquired about must be currently
connected to a logical unit and must already exist when STAT is called; if STAT fails, errnois set.

For a list of other error codes, see IERRNO.

The access mode (the third element of statb) is a bitmap consisting of an IOR of the following constants:

Symbolic name Constant Description Notes

S_IFMT O'0170000' Type of file

S_IFDIR O'0040000' Directory

S_IFCHR O'0020000' Character special Never set on Windows
systems

S_IFBLK O'0060000' Block special Never set on Windows
systems

S_IFREG O'0100000' Regular

S_IFLNK O'0120000' Symbolic link Never set on Windows
systems

S_IFSOCK O'0140000' Socket Never set on Windows
systems

S_ISUID O'0004000' Set user ID on
execution

Never set on Windows
systems

S_ISGID O'0002000' Set group ID on
execution

Never set on Windows
systems

S_ISVTX O'0001000' Save swapped text Never set on Windows
systems

S_IRWXU O'0000700' Owner's file permissions

S_IRUSR, S_IREAD O'0000400' Owner's read permission Always true on Windows
systems

S_IWUSR, S_IWRITE O'0000200' Owner's write
permission

Intel® Fortran Compiler Classic and Intel® Fortran Compiler Developer Guide and Reference 1

1887

Symbolic name Constant Description Notes

S_IXUSR, S_IEXEC O'0000100' Owner's execute
permission

Based on file extension
(.EXE, .COM, .CMD,
or .BAT)

S_IRWXG O'0000070' Group's file permissions Same as S_IRWXU on
Windows systems

S_IRGRP O'0000040' Group's read permission Same as S_IRUSR on
Windows systems

S_IWGRP O'0000020' Group's write permission Same as S_IWUSR on
Windows systems

S_IXGRP O'0000010' Group's execute
permission

Same as S_IXUSR on
Windows systems

S_IRWXO O'0000007' Other's file permissions Same as S_IRWXU on
Windows systems

S_IROTH O'0000004' Other's read permission Same as S_IRUSR on
Windows systems

S_IWOTH O'0000002' Other's write permission Same as S_IWUSR on
Windows systems

S_IXOTH O'0000001' Other's execute
permission

Same as S_IXUSR on
Windows systems

STAT returns the same information as FSTAT, but accesses files by name instead of external unit number.

On Windows* systems, LSTAT returns exactly the same information as STAT. On Linux systems, if the file
denoted by name is a link, LSTAT provides information on the link, while STAT provides information on the
file at the destination of the link.

You can also use the INQUIRE statement to get information about file properties.

Example

 USE IFPORT
 CHARACTER*12 file_name
 INTEGER(4) info_array(12)
 print *, 'Enter file to examine: '
 read *, file_name
 ISTATUS = STAT (file_name, info_array)
 if (.not. istatus) then
 print *, info_array else
 print *, 'Error = ',istatus
 end if
 end

See Also
INQUIRE
GETFILEINFOQQ
FSTAT

 1 Intel® Fortran Compiler Classic and Intel® Fortran Compiler Developer Guide and Reference

1888

Statement Function
Statement: Defines a function in a single statement
in the same program unit in which the procedure is
referenced. Statement functions are an obsolescent
feature of the Fortran standard. We recommend that
you use internal procedures.

Syntax
fun([d-arg [,d-arg]...]) = expr

fun Is the name of the statement function. It must be declared, either
implicitly or explicitly, to be scalar. Its type must not be a
parameterized derived type.

d-arg Is a dummy argument. A dummy argument can appear only once in
any list of dummy arguments, and its scope is local to the statement
function. It must be declared, either implicitly or explicitly, to be
scalar.

expr Is a scalar expression defining the computation to be performed.

Named constants and variables used in the expression must have
been declared previously in the specification part of the scoping unit
or made accessible by use or host association.

If the expression contains a function or statement function reference,
that function must have been declared previously as a function, or
defined previously as a statement function in the same program unit.

A statement function reference takes the following form:

fun ([a-arg[, a-arg] ...])

a-arg Is an actual argument.

Description

When a statement function reference appears in an expression, the values of the actual arguments are
associated with the dummy arguments in the statement function definition. The expression in the definition is
then evaluated. The resulting value is used to complete the evaluation of the expression containing the
function reference.

The data type of a statement function can be explicitly defined in a type declaration statement. If no type is
specified, the type is determined by implicit typing rules in effect for the program unit.

Actual arguments must agree in number, order, and data type with their corresponding dummy arguments.

Except for the data type, declarative information associated with an entity is not associated with dummy
arguments in the statement function; for example, declaring an entity to be an array or to be in a common
block does not affect a dummy argument with the same name.

The name of the statement function cannot be the same as the name of any other entity within the same
program unit.

Any reference to a statement function must appear in the same program unit as the definition of that
function.

A statement function reference must appear as (or be part of) an expression. The reference cannot appear
on the left side of an assignment statement.

A statement function must not be provided as a procedure argument.

Intel® Fortran Compiler Classic and Intel® Fortran Compiler Developer Guide and Reference 1

1889

A statement function is PURE if the only functions it references are PURE and it does not reference a data
object with the VOLATILE attribute.

Example

The following are examples of statement functions:

 REAL VOLUME, RADIUS
 VOLUME(RADIUS) = 4.189*RADIUS**3

 CHARACTER*10 CSF,A,B
 CSF(A,B) = A(6:10)//B(1:5)

The following example shows a statement function and some references to it:

 AVG(A,B,C) = (A+B+C)/3.
 ...
 GRADE = AVG(TEST1,TEST2,XLAB)
 IF (AVG(P,D,Q) .LT. AVG(X,Y,Z)) STOP
 FINAL = AVG(TEST3,TEST4,LAB2) ! Invalid reference; implicit
 ... ! type of third argument does not
 ... ! match implicit type of dummy argument

Implicit typing problems can be avoided if all arguments are explicitly typed.

The following statement function definition is invalid because it contains a constant, which cannot be used as
a dummy argument:

 REAL COMP, C, D, E
 COMP(C,D,E,3.) = (C + D - E)/3.

The following shows another example:

 Add (a, b) = a + b
 REAL(4) y, x(6)
 . . .
 DO n = 2, 6
 x(n) = Add (y, x(n-1))
 END DO

See Also
FUNCTION
Internal Procedures
Argument Association
Use and Host Association

STATIC
Statement and Attribute: Controls the storage
allocation of variables in subprograms (as does
AUTOMATIC). Variables declared as STATIC and
allocated in memory reside in the static storage area,
rather than in the stack storage area.

Syntax
The STATIC attribute can be specified in a type declaration statement or a STATIC statement, and takes one
of the following forms:
Type Declaration Statement:

type, [att-ls,] STATIC [, att-ls] :: v[, v] ...

 1 Intel® Fortran Compiler Classic and Intel® Fortran Compiler Developer Guide and Reference

1890

Statement:

STATIC[::] v[, v] ...

type Is a data type specifier.

att-ls Is an optional list of attribute specifiers.

v Is the name of a variable or an array specification. It can be of any
type.

STATIC declarations only affect how data is allocated in storage.

If you want to retain definitions of variables upon reentry to subprograms, you must use the SAVE attribute.

By default, the compiler allocates local scalar variables of non-recursive subprograms in the static storage
area. Local arrays, except for allocatable arrays, are in the static storage area by default.

The compiler may choose to allocate a variable in temporary (stack or register) storage if it notices that the
variable is always defined before use. Appropriate use of the SAVE attribute can prevent compiler warnings if
a variable is used before it is defined.

To change the default for variables, specify them as AUTOMATIC or specify RECURSIVE in one of the following
ways:

• As a keyword in a FUNCTION or SUBROUTINE statement
• As a compiler option
• As an option in an OPTIONS statement

To override any compiler option that may affect variables, explicitly specify the variables as STATIC.

NOTE
Variables that are data-initialized, and variables in COMMON and SAVE statements are always static.
This is regardless of whether a compiler option specifies recursion.

A variable cannot be specified as STATIC more than once in the same scoping unit.

If the variable is a pointer, STATIC applies only to the pointer itself, not to any associated target.

Some variables cannot be specified as STATIC. The following table shows these restrictions:

Variable STATIC

Dummy argument No

Automatic object No

Common block item Yes

Use-associated item No

Function result No

Component of a derived type No

A variable can be specified with both the STATIC and SAVE attributes.

If a variable is in a module's outer scope, it can be specified as STATIC.

Intel® Fortran Compiler Classic and Intel® Fortran Compiler Developer Guide and Reference 1

1891

Example

The following example shows a type declaration statement specifying the STATIC attribute:

INTEGER, STATIC :: ARRAY_A
The following example shows a STATIC statement:

...
CONTAINS
 INTEGER FUNCTION REDO_FUNC
 INTEGER I, J(10), K
 REAL C, D, E(30)
 AUTOMATIC I, J, K(20)
 STATIC C, D, E
 ...
 END FUNCTION
...
 INTEGER N1, N2
 N1 = -1
 DO WHILE (N1)
 N2 = N1*2
 call sub1(N1, N2)
 read *, N1
 END DO
 CONTAINS
 SUBROUTINE sub1 (iold, inew)
 INTEGER, intent(INOUT):: iold
 integer, STATIC ::N3
 integer, intent(IN) :: inew
 if (iold .eq. -1) then
 N3 = iold
 end if
 print *, 'New: ', inew, 'N3: ',N3
 END subroutine
 !
 END

See Also
AUTOMATIC
SAVE
Type Declarations

Compatible attributes
RECURSIVE
OPTIONS
POINTER
Modules and Module Procedures
recursive compiler option

STOP and ERROR STOP
Statements: The STOP statement initiates normal
termination of an image before the execution of an
END statement of the main program. The ERROR
STOP statement initiates error termination.

 1 Intel® Fortran Compiler Classic and Intel® Fortran Compiler Developer Guide and Reference

1892

Syntax
STOP [stop-code] [, QUIET = scalar-logical-expr]
ERROR STOP [stop-code] [, QUIET = scalar-logical-expr]

stop-code (Optional) A message. It can be any of the following:

• A scalar character expression of type default character
• A scalar default integer expression

An ERROR STOP statement can appear in a PURE procedure, a STOP statement cannot appear.

If QUIET= is not specified, or if scalar-logical-expr is false, the STOP or ERROR STOP statement does the
following:

• If stop-code is specified, writes the specified message to the standard error device.
• Writes one or more of the following messages to the standard error device indicating which IEEE floating-

point exceptions are signaling if assume fpe-summary is specified:

 IEEE_DIVIDE_BY_ZERO is signaling
 IEEE_INVALID is signaling
 IEEE_OVERFLOW is signaling
 IEEE_UNDERFLOW is signaling

• STOP initiates normal termination on the image that executes it. ERROR STOP initiates error termination.
If stop-code is a character expression, STOP returns a status of zero and ERROR STOP returns a status of
non-zero. If stop-code is an integer, a status equal to stop-code is returned for both STOP and
ERROR_STOP.

If stop-code is not specified, or if QUIET= is specified and scalar-logical-expr has the value .TRUE., the
executing image initiates normal or error termination, and no message is printed; for STOP, a status of zero
is returned; for ERROR STOP, a positive status value of 128 is returned

When a program is running on multiple images, a STOP statement on one image does not affect the other
images; they can continue to reference and define the coarrays located on the stopped image. An ERROR
STOP initiates execution termination on all images, which may include flushing of I/O buffers, closing of I/O
files, and reporting error status on one or more images.

Effect on Windows* Systems

In QuickWin programs, the following is displayed in a message box:

 Program terminated with Exit Code stop-code
If the application has no console window, the stop-code is displayed in a message box.

Effect on Linux* Systems

Operating system shells (such as bash, sh, csh, dash, etc.) work with a one byte exit status. So, when stop-
code is an integer, only the lowest byte is significant. For example, consider the following statement:

 STOP 99999
In this case, the program returns a status equal to 159 because integer 99999 = Z'1869F', and the lowest
byte is equal to Z'9F', which equals 159.

Example

The following examples show valid STOP statements:

STOP 98
STOP 'END OF RUN', QUIET=(J.EQ.K)

DO

Intel® Fortran Compiler Classic and Intel® Fortran Compiler Developer Guide and Reference 1

1893

 READ *, X, Y
 IF (X > Y) STOP 5555
END DO

The following shows another example:

 OPEN(1,FILE='file1.dat', status='OLD', ERR=100)
 . . .
 100 STOP 'ERROR DETECTED!'
 END

See Also
assume compiler option
EXIT
Program Termination

STOPPED_IMAGES
Transformational Intrinsic Function (Generic):
Returns an array of index images that have initiated
normal termination.

Syntax
result = STOPPED_IMAGES ([team, kind])

team (Input; optional) Must be a scalar of type TEAM_TYPE defined in the
intrinsic module ISO_FORTRAN_ENV whose value represents the
current or an ancestor team. If not present, the current team is
assumed.

kind (Input; optional) Must be a scalar integer expression with a value that
is a valid INTEGER kind type parameter.

Results

The result is a rank-one integer array with the same type kind parameters as kind if present; otherwise,
default integer. The size of the array is equal to the number of images in the specified team that have
initiated normal termination.

The result array elements are the image index values of images on the specified team that have initiated
normal termination. The indices are arranged in increasing numeric order.

Example

If image 5 and 12 of the current team have initiated normal termination, the result of STOPPED_IMAGES ()
is an array of default integer type with size 2 defined with the value [5, 12]. If no images in the current team
are known to have failed, the result of STOPPED_IMAGES () is a zero-sized array.

See Also
FAILED_IMAGES
IMAGE_STATUS

STORAGE_SIZE
Inquiry Intrinsic Function (Generic): Returns the
storage size in bits.

Syntax
result = STORAGE_SIZE (a [, kind])

 1 Intel® Fortran Compiler Classic and Intel® Fortran Compiler Developer Guide and Reference

1894

a (Input) Must be a scalar or array. It can be of any type. If it has any
deferred type parameters it must not be an unallocated allocatable
variable, or a disassociated, or undefined pointer.

kind (Input; optional) Must be a scalar integer constant expression.

Results

The result is a scalar of type integer. If kind is present, the kind parameter of the result is that specified by
kind; otherwise, the kind parameter of the result is that of default integer. If the processor cannot represent
the result value in the kind of the result, the result is undefined.

The result value is the size expressed in bits for an element of an array that has the dynamic type and kind
parameters of a.

If the type and kind parameters are such that storage association applies, the result is consistent with the
named constants defined in the intrinsic module ISO_FORTRAN_ENV.

An array element may take more bits to store than a scalar, since any hardware-imposed alignment
requirements for array elements may not apply to a scalar variable.

NOTE
The result is intended to be the size in memory that an object takes when it is stored. This
size may differ from the size it takes during expression handling (which may be the native
register size) or when stored in a file. If an object is never stored in memory but only in a
register, this function returns the size it would take if it were stored in memory.

Example

STORAGE_SIZE (1.0) has the same value as the named constant NUMERIC_STORAGE_SIZE in the intrinsic
module ISO_FORTRAN_ENV.

See Also
Storage Association
ISO_FORTRAN_ENV Module

STRICT and NOSTRICT
General Compiler Directive: STRICT disables
language features not found in the language standard
specified on the command line (Fortran 2018, Fortran
2008, Fortran 2003, Fortran 95, or Fortran 90).
NOSTRICT (the default) enables these features.

Syntax
!DIR$ STRICT
!DIR$ NOSTRICT
If STRICT is specified and no language standard is specified on the command line, the default is to disable
features not found in Fortran 2018.

The STRICT and NOSTRICT directives can appear only appear at the top of a program unit. A program unit is
a main program, an external subroutine or function, a module, or a block data program unit. STRICT and
NOSTRICT cannot appear between program units, or at the beginning of internal subprograms. They do not
affect any modules invoked with the USE statement in the program unit that contains them.

Intel® Fortran Compiler Classic and Intel® Fortran Compiler Developer Guide and Reference 1

1895

Example

 ! NOSTRICT by default
 TYPE stuff
 INTEGER(4) k
 INTEGER(4) m
 CHARACTER(4) name
 END TYPE stuff
 TYPE (stuff) examp
 DOUBLE COMPLEX cd ! non-standard data type, no error
 cd =(3.0D0, 4.0D0)
 examp.k = 4 ! non-standard component designation,
 ! no error
 END
 SUBROUTINE STRICTDEMO()
 !DIR$ STRICT
 TYPE stuff
 INTEGER(4) k
 INTEGER(4) m
 CHARACTER(4) name
 END TYPE stuff
 TYPE (stuff) samp
 DOUBLE COMPLEX cd ! ERROR
 cd =(3.0D0, 4.0D0)
 samp.k = 4 ! ERROR
 END SUBROUTINE

See Also
General Compiler Directives
Syntax Rules for Compiler Directives
stand compiler option
Equivalent Compiler Options

STRUCTURE and END STRUCTURE
Statement: Defines the field names, types of data
within fields, and order and alignment of fields within
a record structure. Fields and structures can be
initialized, but records cannot be initialized.

Syntax
STRUCTURE [/structure-name/] [field-namelist]
 field-declaration
 [field-declaration]
 . . .
 [field-declaration]
END STRUCTURE

structure-name Is the name used to identify a structure, enclosed by slashes.

Subsequent RECORD statements use the structure name to refer to
the structure. A structure name must be unique among structure
names, but structures can share names with variables (scalar or
array), record fields, PARAMETER constants, and common blocks.

 1 Intel® Fortran Compiler Classic and Intel® Fortran Compiler Developer Guide and Reference

1896

Structure declarations can be nested (contain one or more other
structure declarations). A structure name is required for the structured
declaration at the outermost level of nesting, and is optional for the
other declarations nested in it. However, if you wish to reference a
nested structure in a RECORD statement in your program, it must
have a name.

Structure, field, and record names are all local to the defining program
unit. When records are passed as arguments, the fields in the defining
structures within the calling and called subprograms must match in
type, order, and dimension.

field-namelist Is a list of fields having the structure of the associated structure
declaration. A field namelist is allowed only in nested structure
declarations.

field-declaration Also called the declaration body. A field-declaration consists of any
combination of the following:

• Type declarations

These are ordinary Fortran data type declarations.
• Substructure declarations

A field within a structure can be a substructure composed of atomic
fields, other substructures, or a combination of both.

• Union declarations

A union declaration is composed of one or more mapped field
declarations.

• PARAMETER statements

PARAMETER statements can appear in a structure declaration, but
cannot be given a data type within the declaration block.

Type declarations for PARAMETER names must precede the
PARAMETER statement and be outside of a STRUCTURE
declaration, as follows:

 INTEGER*4 P
 STRUCTURE /ABC/
 PARAMETER (P=4)
 REAL*4 F
 END STRUCTURE
 REAL*4 A(P)

The Standard Fortran derived type replaces STRUCTURE and RECORD constructs, and should be used in
writing new code. See Derived Data Types.

Unlike type declaration statements, structure declarations do not create variables. Structured variables
(records) are created when you use a RECORD statement containing the name of a previously declared
structure. The RECORD statement can be considered as a kind of type declaration statement. The difference
is that aggregate items, not single items, are being defined.

Within a structure declaration, the ordering of both the statements and the field names within the statements
is important, because this ordering determines the order of the fields in records.

In a structure declaration, each field offset is the sum of the lengths of the previous fields, so the length of
the structure is the sum of the lengths of its fields. The structure is packed; you must explicitly provide any
alignment that is needed by including, for example, unnamed fields of the appropriate length.

Intel® Fortran Compiler Classic and Intel® Fortran Compiler Developer Guide and Reference 1

1897

By default, fields are aligned on natural boundaries; misaligned fields are padded as necessary. To avoid
padding of records, you should lay out structures so that all fields are naturally aligned.

To pack fields on arbitrary byte boundaries, you must specify a compiler option. You can also specify
alignment for fields by using the OPTIONS or PACK general directive.

A field name must not be the same as any intrinsic or user-defined operator (for example, EQ cannot be used
as a field name).

Example

An item can be a RECORD statement that references a previously defined structure type:

 STRUCTURE /full_address/
 RECORD /full_name/ personsname
 RECORD /address/ ship_to
 INTEGER*1 age
 INTEGER*4 phone
 END STRUCTURE

You can specify a particular item by listing the sequence of items required to reach it, separated by a period
(.). Suppose you declare a structure variable, shippingaddress, using the full_addressstructure defined
in the previous example:

 RECORD /full_address/ shippingaddress
In this case, the ageitem would then be specified by shippingaddress.age, the first name of the receiver
by shippingaddress.personsname.first_name, and so on.

In the following example, the declaration defines a structure named APPOINTMENT. APPOINTMENT contains
the structure DATE(field APP_DATE) as a substructure. It also contains a substructure named TIME(field
APP_TIME, an array), a CHARACTER*20 array named APP_MEMO, and a LOGICAL*1 field named APP_FLAG.

 STRUCTURE /DATE/
 INTEGER*1 DAY, MONTH
 INTEGER*2 YEAR
 END STRUCTURE

 STRUCTURE /APPOINTMENT/
 RECORD /DATE/ APP_DATE
 STRUCTURE /TIME/ APP_TIME (2)
 INTEGER*1 HOUR, MINUTE
 END STRUCTURE
 CHARACTER*20 APP_MEMO (4)
 LOGICAL*1 APP_FLAG
 END STRUCTURE

The length of any instance of structure APPOINTMENT is 89 bytes.

 1 Intel® Fortran Compiler Classic and Intel® Fortran Compiler Developer Guide and Reference

1898

The following figure shows the memory mapping of any record or record array element with the structure
APPOINTMENT.

Memory Map of Structure APPOINTMENT

See Also
TYPE
MAP...END MAP
RECORD
UNION...END UNION
PACK Directive
OPTIONS Directive
Data Types, Constants, and Variables
Record Structures

SUBDEVICE
Parallel Directive Clause: Specifies which tiles or
compute slices (c-slices) of the offload device the
offloaded code will run on. This feature is only
available for ifx.

Intel® Fortran Compiler Classic and Intel® Fortran Compiler Developer Guide and Reference 1

1899

Syntax

SUBDEVICE ([level,] start [:length [:stride]])

level Is a non-negative integer constant. If level is not specified, the value
0 is used.

start Is a non-negative integer expression.

length Is a positive integer expression. If length is not specified, the value 1
is used.

stride Is a positive integer expression. If stride is not specified, the value 1
is used.

The SUBDEVICE clause specifies which sub-devices the offloaded code is to execute on. A GPU device may be
made up of multiple tiles, and each tile may be made up of multiple compute slices (also called c-slices).

Specifying level 0 selects tiles, specifying level 1 selects c-slices. The tiles and c-slices are numbered 0 to n.
start, length, and stride act like an array section subscript to select the indices of the tiles or c-slices the
offloaded code will execute on.

At most one SUBDEVICE clause can appear in a directive that allows the clause.

Example

subdevice (0, 2:5) runs on tiles 2, 3, 4, and 5.

subdevice (1, 2:6:2) runs on compute slices 2, 4 and 6.

SUBMODULE
Statement: Marks the beginning of a submodule
program unit, which contains specifications and
definitions that can be used by one or more program
units.

Syntax
SUBMODULE (ancestor-module-name [:parent-submodule-name]) name
 [specification-part]
 [module-subprogram
 [module-subprogram]...]
END [SUBMODULE [name]]

ancestor-module-name Must be the name of a nonintrinsic module. It is the name of the
module at the root of the module or submodule tree.

parent-submodule-name (Optional) Is the name of the parent submodule, if any. The parent
submodule must be a descendant of ancestor-module-name.

name Is the name of the submodule.

specification-part Is one or more specification statements, except for the following:

• ENTRY
• FORMAT
• AUTOMATIC (or its equivalent attribute)
• INTENT (or its equivalent attribute)

 1 Intel® Fortran Compiler Classic and Intel® Fortran Compiler Developer Guide and Reference

1900

• OPTIONAL (or its equivalent attribute)
• Statement functions

An automatic object must not appear in a specification statement.

module-subprogram Is a function or subroutine subprogram that defines the module
procedure. A function must end with END FUNCTION and a subroutine
must end with END SUBROUTINE.

A module subprogram can contain internal procedures.

Description

If a name follows the END statement, it must be the same as the name specified in the SUBMODULE
statement.

Each submodule has exactly one ancestor module and exactly one parent module or submodule. If the
parent is a module then it must be the ancestor module. The relationship is tree-like, with the parent module
or submodule at the root of the tree, and its descendant submodules as the branches of the tree.

A module or submodule may have one or more descendent submodules.

A submodule can access the entities from its parent module or submodule by host association. Unlike a
module, a submodule cannot be referenced in other program units by use association. Entities declared in a
submodule are only accessible from the submodule and its descendent submodules. Furthermore, a module
procedure can have its interface declared in a module or submodule and its implementation contained in a
descendent submodule in a separate file.

Submodules help the modularization of a large module in several ways:

• Internal data can be shared among submodules without being exposed to users of the module. Without
the submodule feature, when a large module is split into smaller modules, internal data may be forced to
become public in order to be shared among the modules.

• Even if a module procedure implementation in a submodule is changed, as long as the module procedure
interface declared in the ancestor module remains the same, a recompilation would not be needed for the
user of the module. This could reduce the rebuilding time for a complex system.

• Separate concepts with circular dependencies can now be implemented in different submodules. It cannot
be done with just modules.

A submodule is uniquely identified by a submodule identifier which consists of its ancestor-module-name
and the name of the submodule. The name of a submodule can therefore be the same as the name of
another submodule so long as they do not have the same ancestor module.

The following rules also apply to submodules:

• The specification part of a submodule must not contain IMPORT, ENTRY, FORMAT, executable, or statement
function statements.

• A variable, common block, or procedure pointer declared in a submodule implicitly has the SAVE attribute,
which may be confirmed by explicit specification.

• If a specification or constant expression in the specification-part of a submodule includes a reference to a
generic entity, there must be no specific procedures of the generic entity defined in the submodule
subsequent to the specification or constant expression.

Unlike a module, the specification part of a submodule must not contain PUBLIC and PRIVATE specifications.

Any executable statements in a module or submodule can only be specified in a module or submodule
subprogram.

A submodule can contain one or more procedure interface blocks, which let you specify an explicit interface
for an external subprogram or dummy subprogram.

Intel® Fortran Compiler Classic and Intel® Fortran Compiler Developer Guide and Reference 1

1901

Example

Consider the following example of a multilevel submodule system:

Module M

Submodule A Submodule B Submodule C

Submodule X Submodule Y Submodule Z

In the above example, module M is extended by submodules up to two levels. Module M is the ancestor
module of all the submodules. Entities declared in module M can be shared among all the submodules. A is
the parent submodule of X, Y, and Z. Entities declared in submodule A can be shared among submodules X,
Y, and Z, but not by B or C.

Only public entities declared in M can be available to other program units by use association.

The SUBMODULE declarations for A and X are:

 SUBMODULE (M) A
 …
 END SUBMODULE A

 SUBMODULE (M : A) X
 …
 END SUBMODULE X

The following example shows modules and submodules, separate module procedures, and how circular
dependency can be avoided with submodules. There are five parts in the example:

1. module color_points
2. level-1 submodule color_points_a
3. level-2 submodule color_points_b
4. module palette_stuff
5. program main

! part 1
module color_points ! This is the ancestor module
 type color_point
 private
 real :: x, y
 integer :: color
 end type color_point

 ! Below is the interface declaration of the separate module procedures.
 ! No IMPORT statement is used in the interface bodies.
 ! The separate module procedures are implemented in the two submodules.
 interface
 module subroutine color_point_del (p)
 type(color_point), allocatable :: p
 end subroutine color_point_del

 real module function color_point_dist (a, b)
 type(color_point), intent(in) :: a, b
 end function color_point_dist

 module subroutine color_point_draw (p)
 type(color_point), intent(in) :: p
 end subroutine color_point_draw

 1 Intel® Fortran Compiler Classic and Intel® Fortran Compiler Developer Guide and Reference

1902

 module subroutine color_point_new (p)
 type(color_point), allocatable :: p
 end subroutine color_point_new
 end interface
end module color_points

! part 2
submodule (color_points) color_points_a ! submodule of color_points
 integer :: instance_count = 0

 ! Below is the interface declaration of the separate module procedure
 ! inquire_palette, which is implemented in the submodule color_points_b.
 interface
 module subroutine inquire_palette (pt, pal)
 use palette_stuff
 ! Later you will see that module palette_stuff uses color_points.
 ! This use of palette_stuff however does not cause a circular
 ! dependence because this use is not in the module.
 type(color_point), intent(in) :: pt
 type(palette), intent(out) :: pal
 end subroutine inquire_palette
 end interface

contains
 ! Here are the implementations of three of the four separate module
 ! procedures declared in module color_point.
 module subroutine color_point_del (p)
 type(color_point), allocatable :: p
 instance_count = instance_count - 1
 deallocate (p)
 end subroutine color_point_del

 real module function color_point_dist (a, b) result (dist)
 type(color_point), intent(in) :: a, b
 dist = sqrt((b%x - a%x)**2 + (b%y - a%y)**2)
 end function color_point_dist

 module subroutine color_point_new (p)
 type(color_point), allocatable :: p
 instance_count = instance_count + 1
 allocate (p)
 end subroutine color_point_new

end submodule color_points_a

! part 3
submodule (color_points:color_points_a) color_points_b
! submodule of color_point_a
contains
 ! Implementation of a module procedure declared in the ancestor module
 module subroutine color_point_draw (p)
 use palette_stuff, only: palette
 type(color_point), intent(in) :: p
 type(palette) :: MyPalette
 ...; call inquire_palette (p, MyPalette); ...

Intel® Fortran Compiler Classic and Intel® Fortran Compiler Developer Guide and Reference 1

1903

 end subroutine color_point_draw

 ! Implementation of a module procedure declared in the parent submodule
 module procedure inquire_palette
 ...
 end procedure inquire_palette

 ! A procedure only accessible from color_points_b and its submodules
 subroutine private_stuff
 ...
 end subroutine private_stuff

end submodule color_points_b

! part 4
module palette_stuff
 type :: palette ; ... ; end type palette
contains
 subroutine test_palette (p)
 use color_points
 ! This does not cause a circular dependency because the
 ! "use palette_stuff" that is logically within color_points
 ! is in the color_points_a submodule.
 type(palette), intent(in) :: p
 ...
 end subroutine test_palette
end module palette_stuff

! part 5
program main
 use color_points
 ! Only public entities in color_points can be accessed here, not the
 ! entities from its submodules.

 ! The separate module procedure color_point_draw can be a specific
 ! procedure for a generic here. Recall that color_point_draw is
 ! implemented in a submodule, but its interface is public in a module.
 interface draw
 module procedure color_point_draw
 end interface

 type(color_point), allocatable :: c_1, c_2
 real :: rc
 ...
 call color_point_new (c_1) ! body in color_points_a, interface in
 ! color_points
 ...
 call draw (c_1) ! body in color_points_b, specific interface
 ! in color_points, generic interface here
 ...
 rc = color_point_dist (c_1, c_2) ! body in color_points_a, interface in
 ! color_points
 ...
 call color_point_del (c_1) ! body in color_points_a, interface in

 1 Intel® Fortran Compiler Classic and Intel® Fortran Compiler Developer Guide and Reference

1904

 ! color_points
 ...
end program main

See Also
MODULE
FUNCTION
SUBROUTINE
References to Generic Procedures

SUBROUTINE
Statement: The initial statement of a subroutine
subprogram. A subroutine subprogram is invoked in a
CALL statement or by a defined assignment or
operator, and does not return a particular value.

Syntax
[prefix [prefix]] SUBROUTINE name [([d-arg-list]) [lang-binding]]
 [specification-part]
 [execution-part]
[CONTAINS
 [internal-subprogram-part]]
END [SUBROUTINE [name]]

prefix (Optional) Is any of the following:

• ELEMENTAL

Acts on one array element at a time. This is a restricted form of a
procedure.

• IMPURE

Asserts that the procedure has side effects.
• MODULE

Indicates a separate module procedure. See separate module
procedures.

• NON_RECURSIVE

Indicates a procedure is not recursive.
• PURE

Asserts that the procedure has no side effects.
• RECURSIVE

Permits direct or indirect recursion to occur.

At most one of each of the above can be specified. You cannot specify
both NON_RECURSIVE and RECURSIVE. You cannot specify both PURE
and IMPURE. You cannot specify ELEMENTAL if lang-binding is
specified.

name Is the name of the subroutine.

d-arg-list (Optional) Is a list of one or more dummy arguments or alternate
return specifiers (*) .

Intel® Fortran Compiler Classic and Intel® Fortran Compiler Developer Guide and Reference 1

1905

lang-binding (Optional) Takes the following form:

BIND (C [, NAME=ext-name])

ext-name Is a character scalar constant expression
that can be used to construct the external
name.

specification-part Is one or more specification statements.

execution-part Is one or more executable constructs or statements.

internal-subprogram-part Is one or more internal subprograms (defining internal procedures).
The internal-subprogram-part is preceded by a CONTAINS
statement.

Description

A subroutine is invoked by a CALL statement or defined assignment. When a subroutine is invoked, dummy
arguments (if present) become associated with the corresponding actual arguments specified in the call.

Execution begins with the first executable construct or statement following the SUBROUTINE statement.
Control returns to the calling program unit once the END statement (or a RETURN statement) is executed.

A subroutine subprogram cannot contain a BLOCK DATA statement, a PROGRAM statement, a MODULE
statement, or a SUBMODULE statement. A subroutine can contain SUBROUTINE and FUNCTION statements
to define internal procedures. ENTRY statements can be included to provide multiple entry points to the
subprogram.

You need an interface block for a subroutine when:

• Calling arguments use argument keywords.
• Some arguments are optional.
• A dummy argument is an assumed-shape array, allocatable, a coarray, a pointer, or a target.
• The subroutine extends intrinsic assignment.
• The subroutine can be referenced by a generic name.
• The subroutine is in a dynamic-link library.

If the subroutine is in a DLL and is called from your program, use the option DLLEXPORT or DLLIMPORT,
which you can specify with the ATTRIBUTES directive.

Note that if you specify lang-binding, you have to use the parentheses even if there are no arguments. For
example, without lang-binding you can specify SUBROUTINE F but with lang-binding you have to specify
SUBROUTINE F() BIND (C).

Example

The following example shows a subroutine:

Main ProgramSubroutine
CALL HELLO_WORLD SUBROUTINE HELLO_WORLD
... PRINT *, "Hello World"
END END SUBROUTINE

The following example uses alternate return specifiers to determine where control transfers on completion of
the subroutine:

Main ProgramSubroutine
 CALL CHECK(A,B,*10,*20,C) SUBROUTINE CHECK(X,Y,*,*,Q)
 TYPE *, 'VALUE LESS THAN ZERO' ...
 GO TO 30 50 IF (Z) 60,70,80
10 TYPE*, 'VALUE EQUALS ZERO' 60 RETURN

 1 Intel® Fortran Compiler Classic and Intel® Fortran Compiler Developer Guide and Reference

1906

 GO TO 30 70 RETURN 1
20 TYPE*, 'VALUE MORE THAN ZERO' 80 RETURN 2
30 CONTINUE END
 ...

The SUBROUTINE statement argument list contains two dummy alternate return arguments corresponding to
the actual arguments *10 and *20 in the CALL statement argument list.

The value of Z determines the return, as follows:

• If Z < zero, a normal return occurs and control is transferred to the first executable statement following
CALL CHECK in the main program.

• If Z = = zero, the return is to statement label 10 in the main program.
• If Z > zero, the return is to statement label 20 in the main program.

Note that an alternate return is an obsolescent feature in the Fortran Standard.

The following shows another example:

 SUBROUTINE GetNum (num, unit)
 INTEGER num, unit
 10 READ (unit, '(I10)', ERR = 10) num
 END
 ...

See Also
BIND (C)
FUNCTION
INTERFACE
PURE
IMPURE
ELEMENTAL
CALL
RETURN
RECURSIVE and NONRECURSIVE
ENTRY
Argument Association
Program Units and Procedures
General Rules for Function and Subroutine Subprograms
Deleted and Obsolescent Language Features

SUM
Transformational Intrinsic Function (Generic):
Returns the sum of all the elements in an entire array
or in a specified dimension of an array.

Syntax
result = SUM (array [, mask])
result = SUM (array, dim [, mask])

array (Input) Must be an array of type integer, real, or complex.

dim (Input) Must be a scalar integer with a value in the range 1 to n,
where n is the rank of array.

Intel® Fortran Compiler Classic and Intel® Fortran Compiler Developer Guide and Reference 1

1907

mask (Input; optional) Must be of type logical and conformable with array.

Results

The result is an array or a scalar of the same data type as array.

The result is a scalar if dim is not specified or array has rank one.

The following rules apply if dim is not specified:

• If SUM(array) is specified, the result is the sum of all elements of array. If array has size zero, the result
is zero.

• If SUM(array, MASK= mask) is specified, the result is the sum of all elements of array corresponding to
true elements of mask. If array has size zero, or every element of mask has the value .FALSE., the result
is zero.

The following rules apply if dim is specified:

• If array has rank one, the value is the same as SUM(array[,MASK= mask]).
• An array result has a rank that is one less than array, and shape (d1, d2, ..., ddim-1, ddim+1, ..., dn), where

(d1, d2, ..., dn) is the shape of array.
• The value of element (s1, s2, ..., sdim-1, sdim+1, ..., sn) of SUM(array, dim[, mask]) is equal to

SUM(array(s1, s2, ..., sdim-1, :, sdim+1, ..., sn) [,MASK = mask(s1, s2, ..., sdim-1, :, sdim+1, ..., sn)].

Example

SUM ((/2, 3, 4/)) returns the value 9 (sum of 2 + 3 + 4). SUM ((/2, 3, 4/), DIM=1) returns the same result.

SUM (B, MASK=B .LT. 0.0) returns the arithmetic sum of the negative elements of B.

C is the array

 [1 2 3]
 [4 5 6].

SUM (C, DIM=1) returns the value (5, 7, 9), which is the sum of all elements in each column. 5 is the sum of
1 + 4 in column 1. 7 is the sum of 2 + 5 in column 2, and so forth.

SUM (C, DIM=2) returns the value (6, 15), which is the sum of all elements in each row. 6 is the sum of 1 +
2 + 3 in row 1. 15 is the sum of 4 + 5 + 6 in row 2.

The following shows another example:

 INTEGER array (2, 3), i, j(3)
 array = RESHAPE((/1, 2, 3, 4, 5, 6/), (/2, 3/))
 ! array is 1 3 5
 ! 2 4 6
 i = SUM((/ 1, 2, 3 /)) ! returns 6
 j = SUM(array, DIM = 1) ! returns [3 7 11]
 WRITE(*,*) i, j
 END

See Also
PRODUCT

SYNC ALL
Statement: Performs a synchronization of all images
on the current team.

Syntax
The SYNC ALL statement takes the following form:

SYNC ALL[([STAT=stat-var][, ERRMSG=err-var])]

 1 Intel® Fortran Compiler Classic and Intel® Fortran Compiler Developer Guide and Reference

1908

stat-var Is a scalar integer variable in which the status of the synchronization
is stored.

err-var Is a scalar default character variable in which an error condition is
stored if such a condition occurs.

STAT= and ERRMSG= can appear in either order, but only once in a SYNC ALL statement.

Description

Execution on an image, for example, C, of the segment following the SYNC ALL statement is delayed until
each other image has executed a SYNC ALL statement as many times as has image C.

The segments that executed before the SYNC ALL statement on an image, precede the segments that
execute after the SYNC ALL statement on another image.

Example

In the following example, image 5 reads data and transmits the data to other images:

REAL :: W[*]
SYNC ALL
IF (THIS_IMAGE()==5) THEN
 READ (*,*) W
 DO I = 6, NUM_IMAGES()
 W[I] = W
 END DO
END IF
...
SYNC ALL

See Also
Image Control Statements
Coarrays
Using Coarrays

SYNC IMAGES
Statement: Performs a synchronization of the image
with each of the other images in the image set.

Syntax
The SYNC IMAGES statement takes the following form:

SYNC IMAGES (image-set[, STAT=stat-var][, ERRMSG=err-var])

image-set Is an integer expression or *. If it is an integer expression, it must be
scalar or of rank one. If it is an array expression, the value of each
element must be positive and not greater than the number of images;
there must be no repeated values.

If it is a scalar expression, the value must be positive and not greater
than the number of images.

If * is specified, it indicates all images.

stat-var Is a scalar integer variable in which the status of the synchronization
is stored.

Intel® Fortran Compiler Classic and Intel® Fortran Compiler Developer Guide and Reference 1

1909

err-var Is a scalar default character variable in which an error condition is
stored if such a condition occurs.

STAT= and ERRMSG= can appear in either order, but only once in a SYNC IMAGES statement.

Description

When SYNC IMAGES statements are executed on images C and G, they correspond if the number of times
image C has executed a SYNC IMAGES statement in the current team with G in its image set is the same as
the number of times image G has executed a SYNC IMAGES statement with C in its image set in this team.
The segments that executed before the SYNC IMAGES statement on either image, precede the segments that
execute after the corresponding SYNC IMAGES statement on the other image.

In a program that uses SYNC ALL as its only synchronization mechanism, every SYNC ALL statement can be
replaced by a SYNC IMAGES (*) statement. However, SYNC ALL may provide better performance. SYNC
IMAGES statements are not required to specify the entire image set, or even the same image set, on all
images that participate in the synchronization.

Example

In the following example, image 5 waits for each of the other images to complete using the data. The other
images wait for image 5 to set up the data, but do not wait for any other image:

IF (THIS_IMAGE() == 5) then
 SYNC IMAGES(*) ! Sets up coarray data for other images
ELSE
 SYNC IMAGES(5) ! Other images use the data set up by image 5
END IF

In the following example, each image synchronizes with its neighbor:

INTEGER :: THIS_STEP, TOTAL_STEPS, TOTAL_IMAGES, MY_IMAGE
MY_IMAGE = THIS_IMAGE ()
TOTAL_IMAGES = NUM_IMAGES ()
 ! Set up calculation
SYNC ALL

DO THIS_STEP = 1, TOTAL_STEPS
 IF (MY_IMAGE > 1) SYNC IMAGES (MY_IMAGE - 1)
 ! Do the calculations
 IF (MY_IMAGE < TOTAL_IMAGES) SYNC IMAGES (MY_IMAGE + 1)
END DO
SYNC ALL

The calculation starts on image 1 since all the others will be waiting on SYNC IMAGES (TOTAL_IMAGES-1).
When this is done, image 2 starts and image 1 performs its second calculation. This continues until they are
all executing different steps at the same time. Eventually, image 1 finishes and then the others finish one by
one.

See Also
Image Control Statements
Coarrays
Using Coarrays

SYNC MEMORY
Statement: Ends one image segment and begins
another. Each segment can then be ordered in some
way with respect to segments on other images.

 1 Intel® Fortran Compiler Classic and Intel® Fortran Compiler Developer Guide and Reference

1910

Syntax
The SYNC MEMORY statement takes the following form:

SYNC MEMORY [([STAT=stat-var][, ERRMSG=err-var])]

stat-var Is a scalar integer variable in which the status of the synchronization
is stored.

err-var Is a scalar default character variable in which an error condition is
stored if such a condition occurs.

STAT= and ERRMSG= can appear in either order, but only once in a SYNC IMAGES statement.

Description

Unlike the other image control statements, this statement does not have any built-in synchronization effect.

The action regarding X on image Q precedes the action regarding Y on image Q if, by execution of statements
on image P, the following is true:

• A variable X on image Q is defined, referenced, becomes undefined, or has its allocation status, pointer
association status, array bounds, dynamic type, or type parameters changed or inquired about by
execution of a statement

• That statement precedes a successful execution of a SYNC MEMORY statement
• A variable Y on image Q is defined, referenced, becomes undefined, or has its allocation status, pointer

association status, array bounds, dynamic type, or type parameters changed or inquired about by
execution of a statement that succeeds execution of that SYNC MEMORY statement,

User-defined ordering of segment Pi on image P to precede segment Qj on image Q occurs when the
following happens:

• Image P executes an image control statement that ends segment Pi, and then executes statements that
initiate a cooperative synchronization between images P and Q

• Image Q executes statements that complete the cooperative synchronization between images P and Q
and then executes an image control statement that begins segment Qj

Execution of the cooperative synchronization between images P and Q must include a dependency that forces
execution on image P of the statements that initiate the synchronization to precede the execution on image
Q of the statements that complete the synchronization. The mechanisms available for creating such a
dependency are processor dependent.

NOTE
SYNC MEMORY usually suppresses compiler optimizations that may reorder memory
operations across the segment boundary defined by the SYNC MEMORY statement. It
ensures that all memory operations initiated in the preceding segments in its image
complete before any memory operations in the subsequent segment in its image are
started.

Example

The following example should be run on two images:

use, intrinsic :: iso_fortran_env
logical (atomic_logical_kind), save :: locked[*] = .true.
logical val
integer :: iam

iam = this_image()

Intel® Fortran Compiler Classic and Intel® Fortran Compiler Developer Guide and Reference 1

1911

if (iam == 1) then
 sync memory
 call atomic_define(locked[2], .false.)
else if (iam == 2) then
 val = .true.
 do while (val)
 call atomic_ref(val, locked)
 end do
 sync memory
end if

print *, 'success'
end

See Also
Image Control Statements
Coarrays
Using Coarrays

SYNC TEAM
Statement: Performs a synchronization of all images
on the specified team.

Syntax

The SYNC TEAM statement takes the following form:

SYNC TEAM(team-value [, STAT = stat-var] [, ERRMSG = err-var])

team-value Identifies the team to synchronize.

stat-var (Optional) Is a scalar integer variable in which the status of the
synchronization is stored.

err-var (Optional) Is a scalar default character variable in which an error
condition is stored if such a condition exists.

STAT= and ERR= can appear in any order, but each can appear at most once in a SYNC TEAM statement.

Description

A SYNC TEAM statement performs a synchronization of all images on the specified team. The team specified
must be the current team or an ancestor team, or a team whose parent is the current team. The executing
image must be a member of the specified team.

Execution of the segment following the SYNC TEAM statement is delayed on all images of the specified team
until all images of the specified team have executed the same SYNC TEAM statement the same number of
times.

A SYNC TEAM statement synchronizes a specific team, while a SYNC ALL statement synchronizes the current
team.

Example

In the following example, two teams are created by the FORM TEAM statement. Team number 1 consists of
the odd numbered images of the initial team; team number 2 consists of the even numbered images of the
initial team.

 1 Intel® Fortran Compiler Classic and Intel® Fortran Compiler Developer Guide and Reference

1912

The SYNC TEAM statement when executed by an odd numbered image on the initial team prevents all other
odd numbered images of the initial team from proceeding to segment 2 until all odd images of the initial
team have executed the SYNC TEAM statement. Similarly, all even numbered images of the initial team are
prevented from executing segment 2 until all the even numbered images on the initial team have executed
the SYNC TEAM statement.

Using a SYNC ALL statement would prevent all images of the initial team from executing segment 2 until all
images had executed the SYNC ALL statement.

 PROGRAM MAIN
 USE ISO_FORTRAN_ENV
 TYPE (TEAM_TYPE) odd_even
 FORM TEAM (2-MOD (THIS_IMAGE(), 2), odd_even)
 ! Segment 1
 SYNC TEAM (odd_even)
 ! Segment 2
 END PROGRAM

See Also
Image Control Statements
Coarrays
Using Coarrays

SYSTEM
Portability Function: Sends a command to the shell
as if it had been typed at the command line.

Module

USE IFPORT

Syntax
result = SYSTEM (string)

string (Input) Character*(*). Operating system command.

Results

The result type is INTEGER(4). The result is the exit status of the shell command. If -1, use IERRNO to
retrieve the error. Errors can be one of the following:

• E2BIG: The argument list is too long.
• ENOENT: The command interpreter cannot be found.
• ENOEXEC: The command interpreter file has an invalid format and is not executable.
• ENOMEM: Not enough system resources are available to execute the command.

On Windows* systems, the calling process waits until the command terminates. To insure compatibility and
consistent behavior, an image can be invoked directly by using the Windows API CreateProcess() in your
Fortran code.

Commands run with the SYSTEM routine are run in a separate shell. Defaults set with the SYSTEM function,
such as current working directory or environment variables, do not affect the environment the calling
program runs in.

The command line character limit for the SYSTEM function is the same limit that your operating system
command interpreter accepts.

Intel® Fortran Compiler Classic and Intel® Fortran Compiler Developer Guide and Reference 1

1913

Example

 USE IFPORT
 INTEGER(4) I, errnum
 I = SYSTEM("dir > file.lst")
 If (I .eq. -1) then
 errnum = ierrno()
 print *, 'Error ', errnum
 end if
 END

See Also
SYSTEMQQ

SYSTEM_CLOCK
Intrinsic Subroutine: Returns data from a real-time
clock. SYSTEM_CLOCK returns the number of seconds
from 00:00 Coordinated Universal Time (CUT) on 1
JAN 1970. The number is returned with no bias. To
get the elapsed time, you must call SYSTEM_CLOCK
twice, and subtract the starting time value from the
ending time value.

Syntax
CALL SYSTEM_CLOCK ([count] [, count_rate] [, count_max])

count (Output; optional) Must be scalar and of type integer with a kind type
parameter greater than 1. It is set to a value based on the current
value of the processor clock. The value is increased by one for each
clock count until the value count_max is reached, and is reset to zero
at the next count. count lies in the range 0 to count_max.

count_rate (Output; optional) Must be scalar and of type integer or real. It is set
to the number of processor clock counts per second.

If the type is INTEGER(1), count_rate is 0. If the type is INTEGER(2),
count_rate is 1000. If the type is INTEGER(4) or REAL(4), count_rate
is 10000. If the type is INTEGER(8), REAL(8), or REAL(16), count_rate
is 1000000.

If the count argument is also supplied, the value returned for
count_rate is determined by the integer kind of count, not count_rate.

count_max (Output; optional) Must be scalar and of type integer. It is set to the
value HUGE(INT(0,KIND(count))).

If the type of count_rate or count_max is INTEGER(1), count_rate and count_max are zero, indicating that
there is no clock available to Intel® Fortran with an 8-bit range. If count is INTEGER(1), a compile time
message is issued indicating that the kind type is too small.

The values of count_rate and count_max are valid only for calls to SYSTEM_CLOCK where count is the same-
sized integer (or INTEGER(8) for the case where count_rate is REAL(16)).

Example

Consider the following:

 integer(2) :: ic2, crate2, cmax2
 integer(4) :: ic4, crate4, cmax4
 call system_clock(count=ic2, count_rate=crate2, count_max=cmax2)

 1 Intel® Fortran Compiler Classic and Intel® Fortran Compiler Developer Guide and Reference

1914

 call system_clock(count=ic4, count_rate=crate4, count_max=cmax4)
 print *, ic2, crate2, cmax2
 print *, ic4, crate4, cmax4
 end

This program was run on Thursday Dec 11, 1997 at 14:23:55 EST and produced the following output:

 13880 1000 32767
 1129498807 10000 2147483647

See Also
DATE_AND_TIME
HUGE
GETTIM

SYSTEMQQ
Portability Function: Executes a system command
by passing a command string to the operating
system's command interpreter.

Module

USE IFPORT

Syntax
result = SYSTEMQQ (commandline)

commandline (Input) Character*(*). Command to be passed to the operating
system.

Results

The result type is LOGICAL(4). The result is .TRUE. if successful; otherwise, .FALSE..

The SYSTEMQQ function lets you pass operating-system commands as well as programs. SYSTEMQQ refers
to the COMSPEC and PATH environment variables that locate the command interpreter file (usually named
COMMAND.COM).

On Windows* systems, the calling process waits until the command terminates. To insure compatibility and
consistent behavior, an image can be invoked directly by using the Windows API CreateProcess() in your
Fortran code.

If the function fails, call GETLASTERRORQQ to determine the reason. One of the following errors can be
returned:

• ERR$2BIG - The argument list exceeds 128 bytes, or the space required for the environment formation
exceeds 32K.

• ERR$NOINT - The command interpreter cannot be found.
• ERR$NOEXEC - The command interpreter file has an invalid format and is not executable.
• ERR$NOMEM - Not enough memory is available to execute the command; or the available memory has

been corrupted; or an invalid block exists, indicating that the process making the call was not allocated
properly.

The command line character limit for the SYSTEMQQ function is the same limit that your operating system
command interpreter accepts.

Intel® Fortran Compiler Classic and Intel® Fortran Compiler Developer Guide and Reference 1

1915

Example

 USE IFPORT
 LOGICAL(4) result
 result = SYSTEMQQ('copy c:\bin\fmath.dat &
 c:\dat\fmath2.dat')

See Also
SYSTEM

T to Z
This section describes language features that start with T, U, V, W, X, Y, or Z.

T to Z
TAN
Elemental Intrinsic Function (Generic): Produces
the tangent of an argument in radians.

Syntax
result = TAN (x)

x (Input) Must be of type real or complex. If x is of type real, it must be
in radians and is treated as modulo.

Results

The result type and kind are the same as x.

If x is of type real, the result is a value in radians.

If x is of type complex, the real part of the result is a value in radians.

Specific Name Argument Type Result Type

TAN REAL(4) REAL(4)

DTAN REAL(8) REAL(8)

QTAN REAL(16) REAL(16)

CTAN 1 COMPLEX(4) COMPLEX(4)

CDTAN 2 COMPLEX(8) COMPLEX(8)

CQTAN COMPLEX(16) COMPLEX(16)

1The setting of compiler options specifying real size can affect CTAN.
2This function can also be specified as ZTAN.

Example

TAN (2.0) has the value -2.185040.

TAN (0.8) has the value 1.029639.

TAND
Elemental Intrinsic Function (Generic): Produces
the tangent of an argument in degrees.

 1 Intel® Fortran Compiler Classic and Intel® Fortran Compiler Developer Guide and Reference

1916

Syntax
result = TAND (x)

x (Input) Must be of type real. It must be in degrees and is treated as
modulo 360.

Results

The result type and kind are the same as x.

Specific Name Argument Type Result Type

TAND REAL(4) REAL(4)

DTAND REAL(8) REAL(8)

QTAND REAL(16) REAL(16)

Example

TAND (2.0) has the value 3.4920771E-02.

TAND (0.8) has the value 1.3963542E-02.

TANH
Elemental Intrinsic Function (Generic): Produces
a hyperbolic tangent.

Syntax
result = TANH (x)

x (Input) Must be of type real or complex.

Results

The result type and kind are the same as x.

If x is of type complex, the imaginary part of the result is in radians.

Specific Name Argument Type Result Type

TANH REAL(4) REAL(4)

DTANH REAL(8) REAL(8)

QTANH REAL(16) REAL(16)

Example

TANH (2.0) has the value 0.9640276.

TANH (0.8) has the value 0.6640368.

TARGET
OpenMP* Fortran Compiler Directive: Creates a
device data environment and executes the construct
on that device. This feature is only available for ifx.

Intel® Fortran Compiler Classic and Intel® Fortran Compiler Developer Guide and Reference 1

1917

Syntax

!$OMP TARGET [clause[[,] clause]...]
 loosely-structured-block
!$OMP END TARGET
-or-

!$OMP TARGET [clause[[,] clause]...]
 strictly-structured-block
[!$OMP END TARGET]

clause Is one or more of the following:

• ALLOCATE ([allocator :] list)
• DEFAULTMAP (implicit-behavior:SCALAR)

Causes a scalar variable to be treated as if it appeared in a MAP
clause with the map-type specified by implicit-behavior.

The implicit-behavior can be ALLOC, TO, FROM, TOFROM,
FIRSTPRIVATE, NONE, PRESENT, or DEFAULT. See MAP clause for a
description of the ALLOC, TO, FROM, and TOFROM map types.

If the implicit-behavior is DEFAULT, the clause has no effect for
scalar variables.

If the implicit-behavior is PRESENT, each scalar variable behaves as
if it appeared in a MAP clause with a map-type of ALLOC and a
map-type-modifier of PRESENT.

If the implicit-behavior is NONE, a variable referenced in the
TARGET construct that does not have a predetermined data scoping
attribute must have appeared in a TO clause of a DECLARE TARGET
directive, or it must appear in one of the following:

• A data mapping attribute clause
• A data scoping attribute clause, including a data scoping

attribute clause of a combined construct where TARGET is one
of the constructs of the combined construct

If this clause is not specified, a scalar variable is not mapped;
instead it has an implicit attribute of FIRSTPRIVATE. At most one
DEFAULTMAP clause can appear in the directive.

• DEPEND (dependence-type : list)
• DEVICE (integer-expression)
• FIRSTPRIVATE (list)
• HAS_DEVICE_ADDR (list)

Specifies variables that have device addresses and can be directly
accessed by the target device. Each list item must have valid
device address for the device data environment. You can specify an
array section as a list item.

If you access a list item whose device address is on a device other
than the device that executes the TARGET construct, it causes
undefined behavior.

 1 Intel® Fortran Compiler Classic and Intel® Fortran Compiler Developer Guide and Reference

1918

A list item that appears in a HAS_DEVICE_ADDR clause cannot also
appear in an IS_DEVICE_PTR clause in the same TARGET directive.

• IF ([TARGET:] scalar-logical-expression)
• IN_REDUCTION (reduction-identifier : list)
• IS_DEVICE_PTR (list)
• MAP ([[map-type-modifier[,]] map-type:] list)

The map-type must be one of ALLOC, FROM, TO, or TOFROM.
• NOWAIT
• PRIVATE (list)
• SUBDEVICE ([integer-constant ,] integer-expression [: integer-

expression [: integer-expression]])
• THREAD_LIMIT (scalar-integer-expression)

loosely-structured-block Is a structured block (section) of statements or constructs. You cannot
branch into or out of the block.

strictly-structured-block Is a Fortran BLOCK construct. You cannot branch into or out of the
BLOCK construct.

The binding task for a TARGET construct is the encountering task. The target region binds to the enclosing
parallel or task region.

This construct provides a superset of the functionality provided by the TARGET DATA construct, except for the
clauses USE_DEVICE_PTR and USE_DEVICE_ADDR.

A list item in an IS_DEVICE_PTR clause that has a type other than C_PTR is the same as if it was a list item
in a HAS_DEVICE_ADDR clause. List items specified in a IS_DEVICE_PTR or HAS_DEVICE_ADDR clause
cannot appear in a data sharing attribute clause in the same TARGET directive. Note that the OpenMP*
Specification has deprecated non-C_PTR type list items in an IS_DEVICE_PTR clause.

The TARGET construct also specifies that the region is executed by a device. The encountering task waits for
the device to complete the target region at the end of the construct.

If a TARGET, TARGET DATA, or TARGET UPDATE construct appears within an OMP TARGET region, the
construct is ignored.

Execution of the target task may be deferred if the NOWAIT clause is specified; if it is not specified, the
target task is an included task.

IEEE floating-point halting, rounding modes, or exception flags set prior to the target region are undefined in
the target region. Any that are set during execution of the target region become undefined upon exiting the
target region.

Variables not declared in the target region, or specified in the TARGET directive, that are referenced in the
target region must appear in a DECLARE TARGET directive.

The behavior is unspecified if a MAP clause list item is an array section derived from a variable with either the
ALLOCATABLE or POINTER attribute and that variable is modified during the target region.

On entry to a target region, the following occurs:

• If a mapped ALLOCATABLE variable has a status of ALLOCATED, it has the status ALLOCATED at the start
of the region, and its shape and allocation status cannot be modified in the region.

• If a mapped ALLOCATABLE variable has a status of UNALLOCATED, it has the allocation status
UNALLOCATED at the start of the region, and upon exit from the region it must have a status of
UNALLOCATED.

• If a mapped POINTER variable has the status ASSOCIATED, it must be associated with the same target
upon exit from the region.

• If a mapped POINTER variable is DISASSOCIATED, its association at the start of the region is
DISASSOCIATED, and it must have a DISASSOCIATED status at the end of the region.

Intel® Fortran Compiler Classic and Intel® Fortran Compiler Developer Guide and Reference 1

1919

In a target region, the association status of a procedure pointer is undefined unless it is used as the only
argument to the ASSOCIATED function, in a pointer assignment statement, or in an indirect procedure call.

If a variable or part of a variable does not appear in an IN_REDUCTION clause and is mapped by the TARGET
construct, the variable's default data-sharing attribute is shared in the data environment of the target task.

A variable that appears as a list item in an IN_REDUCTION clause is implicitly mapped as if it appears in a
MAP clause with a map-type of TOFROM, and a map-type-modifier of ALWAYS.

A variable that is fully or partially mapped by the TARGET construct and that is not a list item in an
IN_REDUCTION clause within the construct has a default data-sharing attribute of SHARED in the target
tasks data environment.

If a variable appears in a REDUCTION or LASTPRIVATE clause in a combined TARGET construct, it is treated
as if it had appeared in a MAP clause with a map-type of TOFROM for REDUCTION and a map-type of FROM
for LASTPRIVATE:

! SUM is treated as MAP (TOFROM)
!$OMP TARGET TEAMS DISTRIBUTE PARALLEL DO REDUCTION(+:SUM)

! X is treated as MAP (FROM)
!$OMP TARGET TEAMS DISTRIBUTE PARALLEL DO LASTPRIVATE(X)

A non-scalar variable referenced in a target region and not explicitly mapped is implicitly treated as MAP
(TOFROM):

INTEGER A(10)
!$OMP TARGET
 A(5) = 5 ! A is treated as MAP (TOFROM)
!$OMP END TARGET

If only a subsection of a non-scalar variable has been mapped in an outer target region, and that variable is
then mapped implicitly inside a nested target region, that variable should not access memory outside of the
mapped subsection of the variable.

See Also
OpenMP Fortran Compiler Directives
Syntax Rules for Compiler Directives
TARGET DATA
TARGET UPDATE
DECLARE TARGET
Parallel Processing Model for information about Binding Sets

TARGET DATA
OpenMP* Fortran Compiler Directive: Maps
variables to a device data environment for the extent
of the region. This feature is only available for ifx.

Syntax

!$OMP TARGET DATA [clause[[,] clause]...]
 loosely-structured-block
!$OMP END TARGET DATA
-or-

!$OMP TARGET DATA [clause[[,] clause]...]
 strictly-structured-block
[!$OMP END TARGET DATA]

 1 Intel® Fortran Compiler Classic and Intel® Fortran Compiler Developer Guide and Reference

1920

clause Is one or more of the following:

• DEVICE (integer-expression)
• IF ([TARGET DATA:] scalar-logical-expression)
• MAP ([[map-type-modifier[,]] map-type:] list)
• SUBDEVICE ([integer-constant ,] integer-expression [: integer-

expression [: integer-expression]])
• USE_DEVICE_ADDR (list)
• USE_DEVICE_PTR (ptr-list)

At most one DEVICE clause and one IF clause can appear for the
construct.

At least one USE_DEVICE_PTR, USE_DEVICE_ADDR, or MAP clause
must appear for the construct.

The map-type in a MAP clause must be TO, FROM, TOFROM, or ALLOC.

loosely-structured-block Is a structured block (section) of statements or constructs. You cannot
branch into or out of the block.

strictly-structured-block Is a Fortran BLOCK construct. You cannot branch into or out of the
BLOCK construct.

The binding task region for a TARGET DATA construct is the encountering task. The target region binds to the
enclosing parallel or task region.

When a TARGET DATA construct is encountered, a new device data environment is created, and the
encountering task executes the target data region.

Occurrences of a list item appearing in a USE_DEVICE_ADDR clause in the structured block of the construct
are references to the device address of the item if the item has corresponding storage in the device data
environment. If the list item is not mapped, it is assumed to be accessible on the target device. The host
storage of a list item that has a device address may not be accessible from within the structured block. List
items can include array sections.

If a list item in a USE_DEVICE_PTR clause is not of type C_PTR from the intrinsic module ISO_C_BINDING, it
is treated as if it appeared in a USE_DEVICE_ADDR clause. The use of non-C_PTR types in a
USE_DEVICE_PTR clause has been deprecated.

A program must not depend on any ordering of the evaluations of the clauses of the TARGET DATA directive,
or on any side effects of the evaluations of the clauses, except that list items in any MAP clause are data
mapped prior to the conversion of any list items in a USE_DEVICE_PTR or USE_DEVICE_ADDR clause to their
device storage locations within the structured block.

List items in USE_DEVICE_PTR and USE_DEVICE_ADDR clauses can not be specified more than once in the
same or any other USE_DEVICE_PTR or USE_DEVICE_ADDR clause for the construct.

A list item in a USE_DEVICE_PTR or a USE_DEVICE_ADDR clause must not be a component of a derived
type.

List items in a USE_DEVICE_ADDR clause must have been mapped to the device, or be accessible on the
device from the host data environment. Similarly, the value of a list item in a USE_DEVICE_PTR that is of
type C_PTR must be the address of an entity that has storage in the device data environment or that is
accessible on the device from the host data environment.

If a list item in a USE_DEVICE_ADDR is an array section, the designator of the base expression cannot
contain any construct association selectors.

Intel® Fortran Compiler Classic and Intel® Fortran Compiler Developer Guide and Reference 1

1921

The same variable can be used in both the MAP clause and the USE_DEVICE_PTR clause or a
USE_DEVICE_ADDR clause:

!$OMP TARGET DATA MAP(X, Y) USE_DEVICE_PTR(X) USE_DEVICE_ADDR (Y)
 block
!$OMP END TARGET DATA

See Also
OpenMP Fortran Compiler Directives
Syntax Rules for Compiler Directives
TARGET Directive
TARGET UPDATE directive
Parallel Processing Model for information about Binding Sets

TARGET Statement
Statement and Attribute: Specifies that an object
can become the target of a pointer (it can be pointed
to).

Syntax
The TARGET attribute can be specified in a type declaration statement or a TARGET statement, and takes one
of the following forms:

Type Declaration Statement:

type,[att-ls,] TARGET [, att-ls] :: object [(a-spec)] [[coarray-spec]] [, object[(a-
spec)] [[coarray-spec]]]...
Statement:

TARGET [::] object [(a-spec)] [[coarray-spec]] [, object[(a-spec)]] [[coarray-spec]]...

type Is a data type specifier.

att-ls Is an optional list of attribute specifiers.

object Is the name of the object. The object must not be declared with the
PARAMETER attribute.

a-spec (Optional) Is an array specification or a coarray specification.

coarray-spec (Optional) Is a deferred-coshape specification. The left bracket and
right bracket are required.

Description

A pointer is associated with a target by pointer assignment or by an ALLOCATE statement.

If an object does not have the TARGET attribute or has not been allocated (using an ALLOCATE statement),
no part of it can be accessed by a pointer.

Example

The following example shows type declaration statements specifying the TARGET attribute:

TYPE(SYSTEM), TARGET :: FIRST
REAL, DIMENSION(20, 20), TARGET :: C, D

The following is an example of a TARGET statement:

TARGET :: C(50, 50), D

 1 Intel® Fortran Compiler Classic and Intel® Fortran Compiler Developer Guide and Reference

1922

The following fragment is from the program POINTER2.F90 in the <install-dir>/samples subdirectory:

 ! An example of pointer assignment.
 REAL, POINTER :: arrow1 (:)
 REAL, POINTER :: arrow2 (:)
 REAL, ALLOCATABLE, TARGET :: bullseye (:)

 ALLOCATE (bullseye (7))
 bullseye = 1.
 bullseye (1:7:2) = 10.
 WRITE (*,'(/1x,a,7f8.0)') 'target ',bullseye

 arrow1 => bullseye
 WRITE (*,'(/1x,a,7f8.0)') 'pointer',arrow1
 . . .

See Also
ALLOCATE
ASSOCIATED
POINTER
Pointer Assignments
Pointer Association
Type Declarations
Compatible attributes

TARGET ENTER DATA
OpenMP* Fortran Compiler Directive: Specifies
that variables are mapped to a device data
environment. This feature is only available for ifx.

Syntax

!$OMP TARGET ENTER DATA [clause[[,] clause]...]

clause Is one or more of the following:

• DEPEND (dependence-type : list)
• DEVICE (integer-expression)
• IF ([TARGET ENTER DATA:] scalar-logical-expression)
• MAP ([[map-type-modifier[,]] map-type :] list)
• NOWAIT
• SUBDEVICE ([integer-constant ,] integer-expression [: integer-

expression [: integer-expression]])

The binding task for the TARGET ENTER DATA construct is the encountering task. TARGET ENTER DATA is a
stand-alone directive.

When a TARGET ENTER DATA construct is encountered, the list items in the MAP clauses are mapped to the
device data environment according to map-type. If a map-type is specified in a MAP clause, it must be either
TO or ALLOC. If no map-type is specified, it is as if TO appeared.

The TARGET ENTER DATA construct executes as if it was enclosed in a TASK construct.

When a DEPEND clause is present, it acts as if it appeared on the implicit TASK construct that encloses the
TARGET ENTER DATA construct.

If there is no DEVICE clause, the default device is determined by the internal control variable (ICV) named
default-device-var.

Intel® Fortran Compiler Classic and Intel® Fortran Compiler Developer Guide and Reference 1

1923

When an IF clause is present and the IF clause scalar-logical-expression evaluates to .FALSE., the device is
the host.

See Also
OpenMP Fortran Compiler Directives
Syntax Rules for Compiler Directives
TARGET EXIT DATA
Parallel Processing Model for information about Binding Sets

TARGET EXIT DATA
OpenMP* Fortran Compiler Directive: Specifies
that variables are unmapped from a device data
environment. This feature is only available for ifx.

Syntax

!$OMP TARGET EXIT DATA [clause[[,] clause]...]

clause Is one or more of the following:

• DEPEND (dependence-type : list)
• DEVICE (integer-expression)
• IF ([TARGET EXIT DATA:] scalar-logical-expression)
• MAP ([[map-type-modifier[,]] map-type :] list)
• NOWAIT
• SUBDEVICE ([integer-constant ,] integer-expression [: integer-

expression [: integer-expression]])

The binding task for the TARGET EXIT DATA construct is the encountering task. TARGET EXIT DATA is a
stand-alone directive.

When a TARGET EXIT DATA construct is encountered, the list items in the MAP clauses are unmapped from
the device data environment according to map-type. If a map-type is specified in a MAP clause, it must be
FROM, RELEASE, or DELETE. If map-type is not specified, it is as if FROM appeared.

The TARGET EXIT DATA construct executes as if it was enclosed in a task construct.

When a DEPEND clause is present, it acts as if it appeared on the implicit task construct that encloses the
TARGET EXIT DATA construct.

If there is no DEVICE clause, the default device is determined by the internal control variable (ICV) named
default-device-var.

When an IF clause is present and the IF clause scalar-logical-expression evaluates to .FALSE., the device is
the host.

See Also
OpenMP Fortran Compiler Directives
Syntax Rules for Compiler Directives
TARGET ENTER DATA
Parallel Processing Model for information about Binding Sets

TARGET PARALLEL
OpenMP* Fortran Compiler Directive: Creates a
device data environment in a parallel region and
executes the construct on that device.

Syntax

!$OMP TARGET PARALLEL [clause[[,] clause] ...]

 1 Intel® Fortran Compiler Classic and Intel® Fortran Compiler Developer Guide and Reference

1924

 loosely-structured-block
!$OMP END TARGET PARALLEL
-or-

!$OMP TARGET PARALLEL [clause[[,] clause] ...]
 strictly-structured-block
[!$OMP END TARGET PARALLEL]

clause Can be any of the clauses accepted by the TARGET or PARALLEL
directives with identical meanings and restrictions.

loosely-structured-block Is a structured block (section) of statements or constructs. You cannot
branch into or out of the block.

strictly-structured-block Is a Fortran BLOCK construct. You cannot branch into or out of the
BLOCK construct.

This directive provides a shortcut for specifying a TARGET construct immediately followed by a PARALLEL
construct. The effect of any clause that applies to both constructs is as if it were applied to both constructs
separately. The only exceptions are the following:

• If any IF clause in the directive includes a directive-name-modifier then all IF clauses in the directive must
include a directive-name-modifier.

• At most one IF clause with no directive-name-modifier can appear on the directive.
• At most one IF clause with the PARALLEL directive-name-modifier can appear on the directive.
• At most one IF clause with the TARGET directive-name-modifier can appear on the directive.

See Also
OpenMP Fortran Compiler Directives
Syntax Rules for Compiler Directives
IF Clause
TARGET Directive
PARALLEL Directive

TARGET PARALLEL DO
OpenMP* Fortran Compiler Directive: Provides an
abbreviated way to specify a TARGET directive
containing a PARALLEL DO directive and no other
statements.

Syntax

!$OMP TARGET PARALLEL DO [clause[[,] clause] ...]
 do-loop
[!$OMP END TARGET PARALLEL DO]

clause Can be any of the clauses accepted by the TARGET or PARALLEL DO
directives, except for the COPYIN clause.

do-loop Is a DO iteration (a DO loop). It cannot be a DO WHILE or a DO loop
without loop control. The DO loop iteration variable must be of type
integer.

You cannot branch out of a DO loop associated with a DO directive.

Intel® Fortran Compiler Classic and Intel® Fortran Compiler Developer Guide and Reference 1

1925

If the END TARGET PARALLEL DO directive is not specified, the TARGET PARALLEL DO is assumed at the end
of do-loop. If used, the END TARGET PARALLEL DO directive must appear immediately after the end of do-
loop.

The semantics are identical to explicitly specifying a TARGET directive immediately followed by a PARALLEL
DO directive.

The restrictions for the TARGET and PARALLEL DO constructs apply to this directive except for the following:

• If any IF clause in the directive includes a directive-name-modifier then all IF clauses in the directive must
include a directive-name-modifier.

• At most one IF clause with no directive-name-modifier can appear on the directive.
• At most one IF clause with the PARALLEL directive-name-modifier can appear on the directive.
• At most one IF clause with the TARGET directive-name-modifier can appear on the directive.

See Also
OpenMP Fortran Compiler Directives
Syntax Rules for Compiler Directives
IF Clause
TARGET Directive
PARALLEL DO

TARGET PARALLEL DO SIMD
OpenMP* Fortran Compiler Directive: Specifies a
TARGET construct that contains a PARALLEL DO SIMD
construct and no other statement.

Syntax

!$OMP TARGET PARALLEL DO SIMD [clause[[,] clause] ...]
 do-loop
[!$OMP END TARGET PARALLEL DO SIMD]

clause Can be any of the clauses accepted by the TARGET or PARALLEL DO
SIMD directives, except for the COPYIN clause.

do-loop Is one or more DO iterations (DO loops). The DO iteration cannot be a
DO WHILE or a DO loop without loop control. The DO loop iteration
variable must be of type integer.

All loops associated with the construct must be structured and
perfectly nested; that is, there must be no intervening code and no
other OpenMP* Fortran directives between any two loops.

The iterations of the DO loop are distributed across the existing team
of threads. The values of the loop control parameters of the DO loop
associated with a DO directive must be the same for all the threads in
the team.

You cannot branch out of a DO loop associated with a DO SIMD
directive.

If the END TARGET PARALLEL DO SIMD directive is not specified, an END TARGET PARALLEL DO SIMD
directive is assumed at the end of do-loop.

The restrictions for the TARGET and PARALLEL DO SIMD constructs apply to this directive except for the
following:

• If any IF clause in the directive includes a directive-name-modifier then all IF clauses in the directive must
include a directive-name-modifier.

 1 Intel® Fortran Compiler Classic and Intel® Fortran Compiler Developer Guide and Reference

1926

• At most one IF clause with no directive-name-modifier can appear on the directive.
• At most one IF clause with the PARALLEL directive-name-modifier can appear on the directive.
• At most one IF clause with the TARGET directive-name-modifier can appear on the directive.

See Also
OpenMP Fortran Compiler Directives
Syntax Rules for Compiler Directives
IF Clause
TARGET Directive
PARALLEL DO SIMD

TARGET PARALLEL LOOP
OpenMP* Fortran Compiler Directive: Specifies a
shortcut for specifying a parallel loop inside a TARGET
construct that contains no other statements than the
parallel loop. This feature is only available for ifx.

Syntax

!$OMP TARGET PARALLEL LOOP [clause[[,] clause]...]
 do-loop
[!$OMP END TARGET PARALLEL LOOP]

clause Can be any of the clauses accepted by the TARGET or PARALLEL LOOP
constructs with identical meanings and restrictions.

do-loop Is a DO loop that may contain other nested DO loops. The DO loops
must all be in canonical form. The DO loop iteration variable must be
of type integer.

The loop can be a DO CONCURRENT loop, subject to the rules
specified for variables referenced in a DO CONCURRENT loop
associated with LOOP and PARALLEL constructs.

This combined directive is semantically equivalent to a TARGET directive followed immediately by a PARALLEL
LOOP construct. The restrictions for TARGET and PARALLEL LOOP constructs apply to this combined
construct.

If used, the END TARGET PARALLEL LOOP directive must appear immediately after the end of the loop. If you
do not specify an END TARGET PARALLEL LOOP directive, an END TARGET PARALLEL LOOP directive is
assumed at the end of the do-loop.

If do-loop is a DO CONCURRENT loop, a variable that has SHARED locality in the DO CONCURRENT loop is
treated as if it appears in a MAP clause with map-type TOFROM.

See Also
OpenMP Fortran Compiler Directives
Syntax Rules for Compiler Directives
TARGET directive
PARALLEL LOOP directive

TARGET SIMD
OpenMP* Fortran Compiler Directive: Specifies a
TARGET construct that contains a SIMD construct and
no other statement.

Intel® Fortran Compiler Classic and Intel® Fortran Compiler Developer Guide and Reference 1

1927

Syntax

!$OMP TARGET SIMD [clause[[,] clause] ...]
 do-loop
[!$OMP END TARGET SIMD]

clause Can be any of the clauses accepted by the TARGET or SIMD directive,
with identical meanings and restrictions

do-loop Is one or more DO iterations (DO loops). The DO iteration cannot be a
DO WHILE or a DO loop without loop control. The DO loop iteration
variable must be of type integer.

All loops associated with the construct must be structured and
perfectly nested; that is, there must be no intervening code and no
other OpenMP* Fortran directives between any two loops.

The iterations of the DO loop are distributed across the existing team
of threads. The values of the loop control parameters of the DO loop
associated with a DO directive must be the same for all the threads in
the team.

You cannot branch out of a DO loop associated with a DO SIMD
directive.

If the END TARGET SIMD directive is not specified, an END TARGET SIMD directive is assumed at the end of
do-loop.

The restrictions for the TARGET and SIMD constructs apply to this directive.

See Also
OpenMP Fortran Compiler Directives
Syntax Rules for Compiler Directives
TARGET Directive
SIMD Directive for OpenMP

TARGET TEAMS
OpenMP* Fortran Compiler Directive: Creates a
device data environment and executes the construct
on the same device. It also creates a league of thread
teams with the primary thread in each team executing
the structured block.

Syntax

!$OMP TARGET TEAMS [clause[[,] clause]...]
 loosely-structured-block
!$OMP END TARGET TEAMS
-or-

!$OMP TARGET TEAMS [clause[[,] clause]...]
 strictly-structured-block
[!$OMP END TARGET TEAMS]

clause Can be any of the clauses accepted by the TARGET or TEAMS
directives with identical meanings and restrictions.

 1 Intel® Fortran Compiler Classic and Intel® Fortran Compiler Developer Guide and Reference

1928

loosely-structured-block Is a structured block (section) of statements or constructs. You cannot
branch into or out of the block.

strictly-structured-block Is a Fortran BLOCK construct. You cannot branch into or out of the
BLOCK construct.

This directive provides a shortcut for specifying a TARGET construct immediately followed by a TEAMS
construct.

See Also
OpenMP Fortran Compiler Directives
Syntax Rules for Compiler Directives
TARGET Directive
TEAMS

TARGET TEAMS DISTRIBUTE
OpenMP* Fortran Compiler Directive: Creates a
device data environment and executes the construct
on the same device. It also specifies that loop
iterations will be distributed among the primary
threads of all thread teams in a league created by a
TEAMS construct.

Syntax

!$OMP TARGET TEAMS DISTRIBUTE [clause[[,] clause]...]
 do-loop
[!$OMP END TARGET TEAMS DISTRIBUTE]

clause Can be any of the clauses accepted by the TARGET or TEAMS
DISTRIBUTE directives with identical meanings and restrictions.

do-loop Is one or more DO iterations (DO loops). The DO iteration cannot be a
DO WHILE or a DO loop without loop control. The DO loop iteration
variable must be of type integer.

All loops associated with the construct must be structured and
perfectly nested; that is, there must be no intervening code and no
other OpenMP* Fortran directives between any two loops.

The iterations of the DO loop are distributed across the existing team
of threads. The values of the loop control parameters of the DO loop
associated with a DO directive must be the same for all the threads in
the team.

This directive provides a shortcut for specifying a TARGET construct followed immediately by a TEAMS
DISTRIBUTE construct.

If the END TARGET TEAMS DISTRIBUTE directive is not specified, an END TARGET TEAMS DISTRIBUTE
directive is assumed at the end of do-loop.

See Also
OpenMP Fortran Compiler Directives
Syntax Rules for Compiler Directives
TARGET Directive
TEAMS DISTRIBUTE

Intel® Fortran Compiler Classic and Intel® Fortran Compiler Developer Guide and Reference 1

1929

TARGET TEAMS DISTRIBUTE PARALLEL DO
OpenMP* Fortran Compiler Directive: Creates a
device data environment and then executes the
construct on that device. It also specifies a loop that
can be executed in parallel by multiple threads that
are members of multiple teams created by a TEAMS
construct.

Syntax

!$OMP TARGET TEAMS DISTRIBUTE PARALLEL DO [clause[[,] clause]...]
 do-loop
[!$OMP END TARGET TEAMS DISTRIBUTE PARALLEL DO]

clause Can be any of the clauses accepted by the TARGET or TEAMS
DISTRIBUTE PARALLEL DO directives with identical meanings and
restrictions.

do-loop Is one or more DO iterations (DO loops). The DO iteration cannot be a
DO WHILE or a DO loop without loop control. The DO loop iteration
variable must be of type integer.

All loops associated with the construct must be structured and
perfectly nested; that is, there must be no intervening code and no
other OpenMP* Fortran directives between any two loops.

The iterations of the DO loop are distributed across the existing team
of threads. The values of the loop control parameters of the DO loop
associated with a DO directive must be the same for all the threads in
the team.

This directive provides a shortcut for specifying a TARGET construct followed immediately by a TEAMS
DISTRIBUTE PARALLEL DO construct.

If the END TARGET TEAMS DISTRIBUTE PARALLEL DO directive is not specified, an END TARGET TEAMS
DISTRIBUTE PARALLEL DO directive is assumed at the end of do-loop.

See Also
OpenMP Fortran Compiler Directives
Syntax Rules for Compiler Directives
TARGET Directive
TEAMS DISTRIBUTE PARALLEL DO

TARGET TEAMS DISTRIBUTE PARALLEL DO SIMD
OpenMP* Fortran Compiler Directive: Creates a
device data environment and then executes the
construct on that device. It also specifies a loop that
can be executed in parallel by multiple threads that
are members of multiple teams created by a TEAMS
construct. The loop will be distributed across the
teams, which will be executed concurrently using
SIMD instructions.

Syntax

!$OMP TARGET TEAMS DISTRIBUTE PARALLEL DO SIMD [clause[[,] clause]...]
 do-loop
[!$OMP END TARGET TEAMS DISTRIBUTE PARALLEL DO SIMD]

 1 Intel® Fortran Compiler Classic and Intel® Fortran Compiler Developer Guide and Reference

1930

clause Can be any of the clauses accepted by the TARGET or TEAMS
DISTRIBUTE PARALLEL DO SIMD directives with identical meanings
and restrictions.

do-loop Is one or more DO iterations (DO loops). The DO iteration cannot be a
DO WHILE or a DO loop without loop control. The DO loop iteration
variable must be of type integer.

All loops associated with the construct must be structured and
perfectly nested; that is, there must be no intervening code and no
other OpenMP* Fortran directives between any two loops.

The iterations of the DO loop are distributed across the existing team
of threads. The values of the loop control parameters of the DO loop
associated with a DO directive must be the same for all the threads in
the team.

This directive provides a shortcut for specifying a TARGET construct followed immediately by a TEAMS
DISTRIBUTE PARALLEL DO SIMD construct.

If the END TARGET TEAMS DISTRIBUTE PARALLEL DO SIMD directive is not specified, an END TARGET TEAMS
DISTRIBUTE PARALLEL DO SIMD directive is assumed at the end of do-loop.

See Also
OpenMP Fortran Compiler Directives
Syntax Rules for Compiler Directives
TARGET Directive
TEAMS DISTRIBUTE PARALLEL DO SIMD

TARGET TEAMS DISTRIBUTE SIMD
OpenMP* Fortran Compiler Directive: Creates a
device data environment and executes the construct
on the same device. It also specifies that loop
iterations will be distributed among the primary
threads of all thread teams in a league created by a
TEAMS construct. It will be executed concurrently
using SIMD instructions.

Syntax

!$OMP TARGET TEAMS DISTRIBUTE SIMD [clause[[,] clause]...]
 do-loop
[!$OMP END TARGET TEAMS DISTRIBUTE SIMD]

clause Can be any of the clauses accepted by the TARGET or TEAMS
DISTRIBUTE SIMD directives with identical meanings and restrictions.

do-loop Is one or more DO iterations (DO loops). The DO iteration cannot be a
DO WHILE or a DO loop without loop control. The DO loop iteration
variable must be of type integer.

All loops associated with the construct must be structured and
perfectly nested; that is, there must be no intervening code and no
other OpenMP* Fortran directives between any two loops.

Intel® Fortran Compiler Classic and Intel® Fortran Compiler Developer Guide and Reference 1

1931

The iterations of the DO loop are distributed across the existing team
of threads. The values of the loop control parameters of the DO loop
associated with a DO directive must be the same for all the threads in
the team.

This directive provides a shortcut for specifying a TARGET construct containing a TEAMS DISTRIBUTE SIMD
construct.

If the END TARGET TEAMS DISTRIBUTE SIMD directive is not specified, an END TARGET TEAMS DISTRIBUTE
SIMD directive is assumed at the end of do-loop.

See Also
OpenMP Fortran Compiler Directives
Syntax Rules for Compiler Directives
TARGET Directive
TEAMS DISTRIBUTE SIMD

TARGET TEAMS LOOP
OpenMP* Fortran Compiler Directive: Specifies a
shortcut for specifying a TEAMS LOOP construct inside
a TEAMS construct that contains no other statements.
This feature is only available for ifx.

Syntax

!$OMP TARGET TEAMS LOOP [clause[[,] clause]...]
 do-loop
[!$OMP END TARGET TEAMS LOOP]

clause Can be any of the clauses accepted by the TARGET or TEAMS LOOP
directives with identical meanings and restrictions.

do-loop Is a DO loop that may contain other nested DO loops. The DO loops
must all be in canonical form. The DO loop iteration variable must be
of type integer.

The loop can be a DO CONCURRENT loop, subject to the rules
specified for variables referenced in a DO CONCURRENT loop
associated with LOOP and TEAMS constructs.

This combined directive is semantically equivalent to a TEAMS LOOP construct that immediately follows a
TARGET directive. All restrictions for TARGET and TEAMS LOOP constructs apply to this combined construct.

If used, the END TARGET TEAMS LOOP directive must appear immediately after the end of the loop. If you do
not specify an END TARGET TEAMS LOOP directive, an END TARGET TEAMS LOOP directive is assumed at the
end of the do-loop.

If do-loop is a DO CONCURRENT loop, a variable that has SHARED locality in the DO CONCURRENT loop is
treated as if it appears in a MAP clause with map-type TOFROM.

See Also
OpenMP Fortran Compiler Directives
Syntax Rules for Compiler Directives
TARGET directive
TEAMS LOOP directive

 1 Intel® Fortran Compiler Classic and Intel® Fortran Compiler Developer Guide and Reference

1932

TARGET UPDATE
OpenMP* Fortran Compiler Directive: Makes the
list items in the device data environment consistent
with their corresponding original list items. This
feature is only available for ifx.

Syntax

!$OMP TARGET UPDATE motion-clause [, clause[[,] clause]...]

motion-clause Is one of the following:

• FROM ([MAPPER (map-identifier) :] list)
• TO ([MAPPER (map-identifier) :] list)

The map-identifier must be an accessible map-identifier that is given a
user-defined mapper in a DECLARE MAPPER directive. If MAPPER is
not present, it is as if MAPPER (DEFAULT) was specified. An accessible
user-defined mapper with the same map-identifier that is specified in
the MAPPER motion-clause modifies the mapping of a list item with
the same type as the user-defined mapper.

If the motion-clause is TO, each list item is replaced with the list items
that the specified mapper indicates are to be mapped with a TO or
TOFROM map type. Similarly, if the motion-clause is FROM, each list
item is replaced with list items that the specified mapper indicates are
to be mapped with a FROM or TOFROM map type.

The list is the name of one or more variables or common blocks that
are accessible to the scoping unit. Subobjects cannot be specified.
Each name must be separated by a comma, and a common block
name must appear between slashes (/ /). A list item can be a strided
array section.

For each list item in a TO or FROM clause, there is a corresponding list
item and an original list item; for more information, see the MAP
clause. Note that if the corresponding list item is not present in the
device data environment, the behavior is unspecified.

For each list item in a TO clause, the value of the original list item is
assigned to the corresponding list item.

For each list item in a FROM clause, the value of the corresponding list
item is assigned to the original list item.

A list item or subobject of a list item that has the ALLOCATABLE
attribute is updated only if it is allocated. A list item that has the
POINTER attribute whose association status is associated, the update
is performed with respect to the pointer target

A list item can only appear in a TO or FROM clause, but not both.

clause Is one of the following:

• DEPEND (dependence-type : list)
• DEVICE (integer-expression)

At most one DEVICE clause can be specified.
• IF ([TARGET UPDATE:] scalar-logical-expression)
• NOWAIT
• SUBDEVICE ([integer-constant ,] integer-expression [: integer-

expression [: integer-expression]])

Intel® Fortran Compiler Classic and Intel® Fortran Compiler Developer Guide and Reference 1

1933

The binding task for a TARGET UPDATE construct is the encountering task. The TARGET UPDATE directive is a
stand-alone directive.

A TARGET UPDATE construct must not appear inside of a target region.

See Also
OpenMP Fortran Compiler Directives
Syntax Rules for Compiler Directives
DECLARE MAPPER Directive
TARGET Directive
TARGET DATA
Parallel Processing Model for information about Binding Sets

TASK
OpenMP* Fortran Compiler Directive: Defines a
task region.

Syntax

!$OMP TASK [clause[[,] clause] ...]
 block
[!$OMP END TASK]

clause Is one of the following:

• ALLOCATE ([allocator :] list)
• DEFAULT (PRIVATE | FIRSTPRIVATE | SHARED | NONE)
• DEPEND (dependence-type : list)
• FINAL (scalar-logical-expression)
• FIRSTPRIVATE (list)
• IF ([TASK:] scalar-logical-expression)
• IN_REDUCTION (reduction-identifier : list)
• MERGEABLE
• PRIORITY (priority-value)
• PRIVATE (list)
• SHARED (list)
• UNTIED

block Is a structured block (section) of statements or constructs. You cannot
branch into or out of the block (the parallel region).

The binding thread set of a TASK construct is the current team. A task region binds to the innermost
enclosing parallel region.

The TASK and END TASK directive pair must appear in the same routine in the executable section of the
code.

The END TASK directive denotes the end of the task.

When a thread encounters a task construct, a task is generated from the code for the associated structured
block. The encountering thread may immediately execute the task, or defer its execution. In the latter case,
any thread in the team may be assigned the task.

A thread that encounters a task scheduling point within the task region may temporarily suspend the task
region. By default, a task is then tied and its suspended task region can only be resumed by the thread that
started its execution. However, if the untied clause is specified in a TASK construct, any thread in the team
can resume the task region after a suspension. The untied clause is ignored in these cases:

 1 Intel® Fortran Compiler Classic and Intel® Fortran Compiler Developer Guide and Reference

1934

• If a final clause has been specified in the same TASK construct and the final clause expression evaluates
to .TRUE..

• If a task is an included task.

A TASK construct may be nested inside an outer task, but the task region of the inner task is not a part of
the task region of the outer task.

The TASK construct includes a task scheduling point in the task region of its generating task, immediately
following the generation of the explicit task. Each explicit task region includes a task scheduling point at its
point of completion. An implementation may add task scheduling points anywhere in untied task regions.

Note that when storage is shared by an explicit task region, you must add proper synchronization to ensure
that the storage does not reach the end of its lifetime before the explicit task region completes its execution.

A program must not depend on any ordering of the evaluations of the clauses of the TASK directive and it
must not depend on any side effects of the evaluations of the clauses. A program that branches into or out of
a task region is non-conforming.

Unsynchronized use of Fortran I/O statements by multiple tasks on the same unit has unspecified behavior.

NOTE
This construct is not supported within a TARGET or a DECLARE TARGET region if the target hardware is
spir64.

Examples

The following example calculates a Fibonacci number. The Fibonacci sequence is 1,1,2,3,5,8,13, etc., where
the current number is the sum of the previous two numbers. If a call to function fib is encountered by a
single thread in a parallel region, a nested task region will be spawned to carry out the computation in
parallel.

RECURSIVE INTEGER FUNCTION fib(n)
INTEGER n, i, j
IF (n .LT. 2) THEN
 fib = n
ELSE
 !$OMP TASK SHARED(i)
 i = fib(n-1)
 !$OMP END TASK
 !$OMP TASK SHARED(j)
 j = fib(n-2)
 !$OMP END TASK
 !$OMP TASKWAIT ! wait for the sub-tasks to
 ! complete before summing
 fib = i+j
END IF
END FUNCTION

The following example generates a large number of tasks in one thread and executes them with the threads
in the parallel team. While generating these tasks, if the implementation reaches the limit generating
unassigned tasks, the generating loop may be suspended and the thread used to execute unassigned tasks.
When the number of unassigned tasks is sufficiently low, the thread resumes execution of the task
generating loop.

real*8 item(10000000)
integer i
!$omp parallel
!$omp single ! loop iteration variable i is private
 do i=1,10000000

Intel® Fortran Compiler Classic and Intel® Fortran Compiler Developer Guide and Reference 1

1935

!$omp task
! i is firstprivate, item is shared
 call process(item(i))
!$omp end task
 end do
!$omp end single
!$omp end parallel
end

The following example modifies the previous one to use an untied task to generate the unassigned tasks. If
the implementation reaches the limit generating unassigned tasks and the generating loop is suspended, any
other thread that becomes available can resume the task generation loop.

real*8 item(10000000)
!$omp parallel
!$omp single!
$omp task untied
! loop iteration variable i is private
 do i=1,10000000
!$omp task ! i is firstprivate, item is shared
 call process(item(i))
!$omp end task
 end do
!$omp end task
!$omp end single
!$omp end parallel

The following example demonstrates four tasks with dependences:

integer :: a

!$omp task depend(out:a)
!$omp end task

!$omp task depend(in:a)
!$omp end task

!$omp task depend(in:a)
!$omp end task

!$omp task depend(out:a)
!$omp end task

In the above example, the first task does not depend on any previous one. The second and third tasks
depend on the first task but not on each other. The last task depends on the second and third tasks. The
following shows the dependency graph:

 1 Intel® Fortran Compiler Classic and Intel® Fortran Compiler Developer Guide and Reference

1936

The following example shows a set of sibling tasks that have dependences between them:

INTEGER :: A(0:N*B-1)

DO I=0,N-1
!$OMP TASK DEPEND(OUT:A(I*B:(I+1)*B-1))
 CALL FILL(A(I*B:(I+1)*B-1))
!$OMP END TASK
END DO

DO I=1,N-1
 IB = (I-1)*B+1
 BB = I*B+1
!$OMP TASK DEPEND(INOUT:A(I*B:(I+1)*B-1)) DEPEND(IN:A((I+1)*B:(I+2)*B-1))
 CALL PROCESS(A(I*B:(I+1)*B-1), A((I+1)*B:(I+2)*B-1))
!$OMP END TASK
END DO

DO I=1,N
 IB = (I-1)*B+1
!$OMP TASK DEPEND(IN:A(I*B:(I+1)*B-1))
 CALL OUTPUT(A(I*B:(I+1)*B-1))
!$OMP END TASK
END DO

Intel® Fortran Compiler Classic and Intel® Fortran Compiler Developer Guide and Reference 1

1937

In the above example, the tasks of the first loop will be independent of any other tasks since there is no
previous task that expresses a dependence on the same list items. Tasks of the second loop will depend on
two tasks from the first loop. Also, because dependences are constructed in a sequential order, the IN
dependences force the tasks of the second loop to be dependent on the task from the previous iteration to be
processed. Finally, tasks of the third loop can be executed when the corresponding Process task from the
second loop has been executed. For example, if N was 4, the following shows the dependency graph:

See Also
OpenMP Fortran Compiler Directives
Syntax Rules for Compiler Directives
OpenMP* Runtime Library Routines for Fortran
PARALLEL DO
TASKWAIT
TASKYIELD
SHARED Clause
Parallel Processing Model for information about Binding Sets

 1 Intel® Fortran Compiler Classic and Intel® Fortran Compiler Developer Guide and Reference

1938

TASK_REDUCTION
Specifies a reduction among tasks. The
TASK_REDUCTION clause is a reduction scoping
clause.

Syntax
TASK_REDUCTION (reduction-identifier : list)
Arguments reduction-identifier and list are defined in REDUCTION clause. All the common restrictions for the
REDUCTION clause apply to this clause.

See Also
IN_REDUCTION
DECLARE REDUCTION
REDUCTION
TASKGROUP

TASKGROUP
OpenMP* Fortran Compiler Directive: Specifies a
wait for the completion of all child tasks of the current
task and all of their descendant tasks.

Syntax

!$OMP TASKGROUP [clause[[,] clause] ...]
 loosely-structured-block
!$OMP END TASKGROUP
-or-

!$OMP TASKGROUP [clause[[,] clause] ...]
 strictly-structured-block
[!$OMP END TASKGROUP]

clause Is one of the following:

• ALLOCATE ([allocator :] list)
• TASK_REDUCTION (reduction-identifier : list)

loosely-structured-block Is a structured block (section) of statements or constructs. You cannot
branch into or out of the block.

strictly-structured-block Is a Fortran BLOCK construct. You cannot branch into or out of the
BLOCK construct.

A TASKGROUP construct binds to the current task region. The binding thread set of the taskgroup region is
the current team.

When a thread encounters a TASKGROUP construct, it starts executing the region. There is an implicit task
scheduling point at the end of the TASKGROUP region. The current task is suspended at the task scheduling
point until all child tasks that it generated in the TASKGROUP region and all of their descendant tasks
complete execution.

Any number of reduction clauses can be specified in the TASKGROUP directive, but a list item can appear
only once in reduction clauses for that directive.

Intel® Fortran Compiler Classic and Intel® Fortran Compiler Developer Guide and Reference 1

1939

See Also
OpenMP Fortran Compiler Directives
Syntax Rules for Compiler Directives
TASK
TASKWAIT
TASKYIELD
Parallel Processing Model for information about Binding Sets

TASKLOOP
OpenMP* Fortran Compiler Directive: Specifies
that the iterations of one or more associated DO loops
should be executed in parallel using OpenMP* tasks.
The iterations are distributed across tasks that are
created by the construct and scheduled to be
executed.

Syntax

!$OMP TASKLOOP [clause[[,] clause]...]
 do-loop
[!$OMP END TASKLOOP]

clause Is one of the following:

• ALLOCATE ([allocator :] list)
• COLLAPSE (n)
• DEFAULT (PRIVATE | FIRSTPRIVATE | SHARED | NONE)
• FINAL (scalar-logical-expression)
• FIRSTPRIVATE (list)
• GRAINSIZE ([STRICT:] grain-size)

Specifies that the number of logical loop iterations assigned to each
created task is greater than or equal to the minimum of the value
of the grain-size positive integer expression and the number of
logical loop iterations, but less than two times the value of the
grain-size expression.

STRICT is only permitted for ifx.

If STRICT is specified, each generated task is exactly grain-size,
except for the task that contains the sequentially last iterations,
which may have fewer iterations.

At most one GRAINSIZE clause can appear in a TASKLOOP
directive.

• IF ([TASKLOOP:] scalar-logical-expression)

If the scalar-logical-expression evaluates to false, undeferred tasks
are generated. If a variable appears in the IF clause expression, it
causes an implicit reference to the variable in all enclosing
constructs.

At most one IF clause can appear in a TASKLOOP directive.
• IN_REDUCTION (reduction-identifier : list)
• LASTPRIVATE ([CONDITIONAL:] list)
• MERGEABLE
• NOGROUP

 1 Intel® Fortran Compiler Classic and Intel® Fortran Compiler Developer Guide and Reference

1940

Specifies that no implicit taskgroup region is created.
• NUM_TASKS ([STRICT:] num-tasks)

Causes the TASKLOOP construct to create as many tasks as the
minimum of the num-tasks positive scalar integer expression and
the number of logical loop iterations. Each task must have at least
one logical loop iteration.

STRICT is only permitted for ifx.

If STRICT is specified, a loop with N iterations is partitioned such
that each task is assigned N / num-tasks iterations. If num-tasks
does not divide N evenly, the last task is assigned a partition of
size MOD (num-tasks, N).

• PRIORITY (priority-value)
• PRIVATE (list)
• REDUCTION ([DEFAULT,] reduction-identifier : list)

If you specify this clause, you cannot specify the NOGROUP clause.
• SHARED (list)
• UNTIED

do-loop Is one or more DO iterations (DO loops). The DO iteration cannot be a
DO WHILE or a DO loop without loop control. The DO loop iteration
variable must be of type integer.

If an END TASKLOOP directive follows a DO construct in which several
loop statements share a DO termination statement, then the directive
can only be specified for the outermost of these DO statements. The
TASKLOOP construct inherits the restrictions of the loop construct.

If any of the loop iteration variables would otherwise be shared, they
are implicitly made private for the loop-iteration tasks created by the
TASKLOOP construct. Unless the loop iteration variables are specified
in a LASTPRIVATE clause on the TASKLOOP construct, their values
after the loop are unspecified.

You cannot branch out of a DO loop associated with a TASKLOOP
directive.

If you do not specify GRAINSIZE or NUM_TASKS, the number of loop tasks created and the number of logical
loop iterations assigned to these tasks is implementation defined. The GRAINSIZE clause and NUM_TASKS
clauses are mutually exclusive; they cannot appear in the same TASKLOOP directive.

The binding thread set of the TASKLOOP region is the current team. A TASKLOOP region binds to the
innermost enclosing parallel region.

When a thread encounters a TASKLOOP construct, the construct partitions the associated loops into tasks for
parallel execution of the loop iterations. The data environment of the created tasks is created according to
the clauses specified in the TASKLOOP construct, any data environment ICVs, and any defaults that apply.
The order of the creation of the loop tasks is unspecified. Programs that rely on any execution order of the
logical loop iterations are non-conforming.

If used, the END TASKLOOP directive must appear immediately after the end of the loop. If you do not
specify an END TASKLOOP directive, an END TASKLOOP directive is assumed at the end of the do-loop.

By default, the TASKLOOP construct executes as if it was enclosed in a TASKGROUP construct with no
statements or directives outside of the TASKLOOP construct. Therefore, the TASKLOOP construct creates an
implicit TASKGROUP region.

Intel® Fortran Compiler Classic and Intel® Fortran Compiler Developer Guide and Reference 1

1941

When a REDUCTION clause appears in a TASKLOOP construct, it behaves as if a TASK_REDUCTION clause
was applied to the implicit TASKGROUP construct enclosing the TASKLOOP construct. For each task that is
generated by the TASKLOOP construct, an IN_REDUCTION clause with the same reduction-identifier and the
same list items that appear in the REDUCTION clause is applied to the task. Each generated task participates
in the reduction defined by the IN_REDUCTION clause applied to the implicit TASKGROUP construct.

When an IN_REDUCTION clause appears in a TASKLOOP construct, an IN_REDUCTION clause with the same
reduction-identifier and the same list items of the IN_REDUCTION clause is applied to the generated tasks.
The behavior is the same as if each generated task was defined by a TASK construct that contains an
IN_REDUCTION clause with the same reduction-identifier and list items. The generated tasks participate in a
reduction defined by a previous reduction scoping clause.

A list item must not appear in both a REDUCTION and IN_REDUCTION clause in the same TASKLOOP
directive.

The following restrictions also apply:

• A program that branches into or out of a TASKLOOP region is non-conforming.
• All loops associated with the TASKLOOP construct must be perfectly nested. There must be no intervening

code nor any other OpenMP* directive between any two loops.

NOTE
This construct is not supported within a TARGET or a DECLARE TARGET region if the target hardware is
spir64.

See Also
OpenMP Fortran Compiler Directives
Syntax Rules for Compiler Directives
TASK_REDUCTION

TASKLOOP SIMD
OpenMP* Fortran Compiler Directive: Specifies a
loop that can be executed concurrently using SIMD
instructions and that those iterations will also be
executed in parallel using OpenMP* tasks.

Syntax

!$OMP TASKLOOP SIMD [clause[[,] clause]...]
 do-loop
[!$OMP END TASKLOOP SIMD]

clause Can be almost all of the clauses accepted by the TASKLOOP or SIMD
directives with identical meanings and restrictions.

do-loop Is one or more DO iterations (DO loops). The DO iteration cannot be a
DO WHILE or a DO loop without loop control. The DO loop iteration
variable must be of type integer.

All loops associated with the construct must be structured and
perfectly nested; that is, there must be no intervening code and no
other OpenMP* Fortran directives between any two loops.

 1 Intel® Fortran Compiler Classic and Intel® Fortran Compiler Developer Guide and Reference

1942

The iterations of the DO loop are distributed across the existing team
of threads. The values of the loop control parameters of the DO loop
associated with a DO directive must be the same for all the threads in
the team. You cannot branch out of a DO loop associated with a
TASKLOOP directive.

If the END TASKLOOP SIMD directive is not specified, an END TASKLOOP SIMD directive is assumed at the
end of do-loop.

The binding thread set of the TASKLOOP SIMD region is the current team. A TASKLOOP SIMD region binds to
the innermost enclosing parallel region.

The TASKLOOP SIMD construct first distributes the iterations of the associated loops across tasks in a
manner consistent with any clauses that apply to the TASKLOOP construct. The resulting tasks are then
converted to SIMD loops in a manner consistent with any clauses that apply to the SIMD construct.

The effect of any clause that applies to both constructs is as if it were applied to both constructs separately,
except for the COLLAPSE clause. For the purpose of converting each task to a SIMD loop, the COLLAPSE
directive is ignored, and an IN_REDUCTION clause behaves as if a REDUCTION clause, with the same
reduction-identifier and list items, is applied to the SIMD construct.

This directive specifies a composite construct.

See Also
OpenMP Fortran Compiler Directives
Syntax Rules for Compiler Directives

TASKWAIT
OpenMP* Fortran Compiler Directive: Specifies a
wait on the completion of child tasks generated since
the beginning of the current task.

Syntax
!$OMP TASKWAIT [clause[[,] clause]...]

clause Is only allowed for ifx. It is one or more of the following:

• DEPEND (dependence-type : list)

The dependence-type MUTEXINOUTSET cannot be specified in a
TASKWAIT directive. If dependence-type is DEPOBJ, the
dependence object list items cannot have values that represent the
MUTEXINOUTSET dependence type.

• NOWAIT

This clause can only be specified if at least one DEPEND clause is
also specified.

Only one NOWAIT clause can be specified in a TASKWAIT directive.

A TASKWAIT construct binds to the current task region. The binding thread set of the taskwait region is the
current team.

When the DEPEND clause is not specified, the current task region is suspended at an implicit scheduling point
in the construct until the child tasks that the current task generated prior to the TASKWAIT have completed
execution.

A TASKWAIT construct with one or more DEPEND clauses and a NOWAIT clause behaves as if the clauses
were applied to a TASK construct with an empty structured block that generates a task whose execution is
deferred until all preceding tasks of the current task complete execution before subsequently generated tasks
that depend on this task begin execution.

Intel® Fortran Compiler Classic and Intel® Fortran Compiler Developer Guide and Reference 1

1943

A TASKWAIT construct with one or more DEPEND clauses and no NOWAIT clause behaves as if the DEPEND
clauses were applied to a TASK construct with an empty structured block that generates an included and
mergeable task. The current task is suspended until the preceding tasks of the current task complete
execution.

See Also
OpenMP Fortran Compiler Directives
Syntax Rules for Compiler Directives
TASK directive
TASKYIELD directive
Parallel Processing Model for information about Binding Sets

TASKYIELD
OpenMP* Fortran Compiler Directive: Specifies
that the current task can be suspended at this point in
favor of execution of a different task.

Syntax
!$OMP TASKYIELD
A taskyield region binds to the current task region. The binding thread set of the taskyield region is the
current team.

Because the TASKYIELD construct is a stand-alone directive, there are some restrictions on its placement
within a program:

• The TASKYIELD directive can only be placed at a point where a Fortran executable statement is allowed.
• The TASKYIELD directive cannot be used as the action statement in an IF statement or as the executable

statement following a label if the label is referenced in the program.

The TASKYIELD construct includes an explicit task scheduling point in the current task region.

Example

The following example shows use of the TASKYIELD directive. It is non-conforming, because the FLUSH,
BARRIER, TASKWAIT, and TASKYIELD directives are stand-alone directives and cannot be the action
statement of an IF statement or a labeled branch target.

SUBROUTINE NONCONFORMING_STANDALONE()
 INTEGER A
 A = 1
 ! the FLUSH directive must not be the action statement in an IF statement
 !
 IF (A .NE. 0) !$OMP FLUSH(A)

 ! the BARRIER directive must not be the action statement in an IF statement
 !
 IF (A .NE. 0) !$OMP BARRIER

 ! the TASKWAIT directive must not be the action statement in an IF statement
 !
 IF (A .NE. 0) !$OMP TASKWAIT

 ! the TASKYIELD directive must not be the action statement in an IF statement
 !
 IF (A .NE. 0) !$OMP TASKYIELD

 GOTO 100

 1 Intel® Fortran Compiler Classic and Intel® Fortran Compiler Developer Guide and Reference

1944

 ! the FLUSH directive must not be a labeled branch target statement
 !
 100 !$OMP FLUSH(A)
 GOTO 200

 ! the BARRIER directive must not be a labeled branch target statement
 !
 200 !$OMP BARRIER
 GOTO 300

 ! the TASKWAIT directive must not be a labeled branch target statement
 !
 300 !$OMP TASKWAIT
 GOTO 400

 ! the TASKYIELD directive must not be a labeled branch target statement
 !
 400 !$OMP TASKYIELD
END SUBROUTINE

The following version of the above example is conforming because the FLUSH, BARRIER, TASKWAIT, and
TASKYIELD directives are enclosed in a compound statement.

SUBROUTINE CONFORMING_STANDALONE ()
 INTEGER N
 N = 1
 IF (N .NE. 0) THEN
 !$OMP FLUSH(N)
 ENDIF
 IF (N .NE. 0) THEN
 !$OMP BARRIER
 ENDIF
 IF (N .NE. 0) THEN
 !$OMP TASKWAIT
 ENDIF
 IF (N .NE. 0) THEN
 !$OMP TASKYIELD
 ENDIF
 GOTO 100
 100 CONTINUE
 !$OMP FLUSH(N)
 GOTO 200
 200 CONTINUE
 !$OMP BARRIER
 GOTO 300
 300 CONTINUE
 !$OMP TASKWAIT
 GOTO 400
 400 CONTINUE
 !$OMP TASKYIELD
END SUBROUTINE

See Also
OpenMP Fortran Compiler Directives
Syntax Rules for Compiler Directives
TASK directive
TASKWAIT directive
Parallel Processing Model for information about Binding Sets

Intel® Fortran Compiler Classic and Intel® Fortran Compiler Developer Guide and Reference 1

1945

TEAM_NUMBER
Transformational Intrinsic Function (Generic):
Returns the team number of the specified team.

Syntax

result = TEAM_NUMBER ([team])

team (Optional, Input) Must be of type TEAM_TYPE defined in the intrinsic
module ISO_FORTRAN_ENV, with a value that describes the current
team or an ancestor team. If team is not specified, the team is the
current team.

Results

The result is an integer scalar whose value is -1 if the specified team is the initial team; otherwise, it is the
positive integer value that identifies the team of the executing image in the set of teams described by the
team.

Example

Consider the following program:

 PROGRAM main
 USE, INTRINSIC :: ISO_FORTRAN_ENV
 TYPE (TEAM_TYPE) :: original, odd_even
 original = GET_TEAM (CURRENT_TEAM)
 FORM TEAM (2-MOD(THIS_IMAGE(), 2), odd_even)
 CHANGE TEAM (odd_even)
 . . .
 IF((THIS_IMAGE()==1).AND. (TEAM_NUMBER()==2) THEN
 PRINT *, TEAM_NUMBER(original)
 PRINT *, TEAM_NUMBER()
 END IF
 . . .
 END TEAM
 END PROGRAM

 The output of the print statements will be
 -1
 2

The above output assumes there are at least two images in the initial team.

See Also
CHANGE TEAM

TEAMS
OpenMP* Fortran Compiler Directive: Creates a
league of thread teams to execute a structured block
in the primary thread of each team. This feature is
only available for ifx.

Syntax

!$OMP TEAMS [clause[[,] clause]...]
 loosely-structured-block
!$OMP END TEAMS
-or-

 1 Intel® Fortran Compiler Classic and Intel® Fortran Compiler Developer Guide and Reference

1946

!$OMP TEAMS [clause[[,] clause]...]
 strictly-structured-block
[!$OMP END TEAMS]

clause Is one of the following:

• ALLOCATE ([allocator :] list)
• DEFAULT (PRIVATE | FIRSTPRIVATE | SHARED | NONE)
• FIRSTPRIVATE (list)
• NUM_TEAMS (scalar-integer-expression)

Specifies the number of teams to be used in a parallel region. The
scalar-integer-expression must evaluate to a positive scalar integer
value.

Only a single NUM_TEAMS clause can appear in the directive.
• PRIVATE (list)
• REDUCTION ([DEFAULT,] reduction-identifier : list)
• SHARED (list)
• THREAD_LIMIT (scalar-integer-expression)

loosely-structured-block Is a structured block (section) of statements or constructs. You cannot
branch into or out of the block.

strictly-structured-block Is a Fortran BLOCK construct. You cannot branch into or out of the
BLOCK construct.

The binding thread set for a TEAMS construct is the encountering thread.

If a TEAMS construct appears within a TARGET construct, the enclosing TARGET construct must contain no
other statements or directives outside of the TEAMS construct. The following are the only OpenMP*
constructs that can be nested in the team's region:

• DISTRIBUTE
• PARALLEL
• PARALLEL SECTIONS
• PARALLEL WORKSHARE
• PARALLEL DO
• PARALLEL DO SIMD

The thread that encounters this directive constructs a league of thread teams that execute the block in the
primary thread of each team. After the teams are created, the number of teams remains constant for the
duration of the team's parallel region.

The region following the TEAMS construct is executed by the primary thread of each team. Other threads do
not begin execution until the primary thread encounters a parallel region. After the teams complete
execution of the TEAMS construct region, the encountering thread resumes execution of the enclosing target
region.

If NUM_TEAMS is not specified, the default number of teams is one. If THREAD_LIMIT is not specified, the
default number of threads is the-number-of-available-hardware-threads / NUM_TEAMS.

A program must not depend on any side effects or any ordering of the evaluation of clauses in the TEAMS
directive.

Each team has a unique team number. You can use the OpenMP* runtime library routine
OMP_GET_TEAM_NUM to get the team number of the calling thread.

Each thread within the team has a unique thread identifier returned by the OpenMP runtime library routine
OMP_GET_THREAD_NUM. As in any thread team, the thread identifier starts at zero for the primary thread
up to THREAD_LIMIT - 1 for the remaining threads.

Intel® Fortran Compiler Classic and Intel® Fortran Compiler Developer Guide and Reference 1

1947

Immediately after this directive, only the primary threads in each team are executing, the other team
members will only start to execute at the next (nested) parallel region. Therefore, there are only
NUM_TEAMS threads executing, and each of them has OMP_GET_THREAD_NUM() == 0.

A variable with LOCAL_INIT or SHARED locality in a DO CONCURRENT statement associated with a LOOP
directive that binds to the teams region of this construct cannot appear in a PRIVATE or FIRST_PRIVATE
clause in the TEAMS directive.

See Also
OpenMP Fortran Compiler Directives
Syntax Rules for Compiler Directives
Parallel Processing Model for information about Binding Sets

TEAMS DISTRIBUTE
OpenMP* Fortran Compiler Directive: Creates a
league of thread teams to execute a structured block
in the primary thread of each team. It also specifies
that loop iterations will be distributed among the
primary threads of all thread teams in a league
created by a TEAMS construct.

Syntax

!$OMP TEAMS DISTRIBUTE [clause[[,] clause]...]
 do-loop
[!$OMP END TEAMS DISTRIBUTE]

clause Can be any of the clauses accepted by the TEAMS or DISTRIBUTE
directives with identical meanings and restrictions.

do-loop Is one or more DO iterations (DO loops). The DO iteration cannot be a
DO WHILE or a DO loop without loop control. The DO loop iteration
variable must be of type integer.

All loops associated with the construct must be structured and
perfectly nested; that is, there must be no intervening code and no
other OpenMP* Fortran directives between any two loops.

The iterations of the DO loop are distributed across the existing team
of threads. The values of the loop control parameters of the DO loop
associated with a DO directive must be the same for all the threads in
the team.

This directive provides a shortcut for specifying a TEAMS construct containing a DISTRIBUTE construct.

If the END TEAMS DISTRIBUTE directive is not specified, an END TEAMS DISTRIBUTE directive is assumed at
the end of do-loop.

See Also
OpenMP Fortran Compiler Directives
Syntax Rules for Compiler Directives

TEAMS DISTRIBUTE PARALLEL DO
OpenMP* Fortran Compiler Directive: Creates a
league of thread teams to execute a structured block
in the primary thread of each team. It also specifies a
loop that can be executed in parallel by multiple
threads that are members of multiple teams.

 1 Intel® Fortran Compiler Classic and Intel® Fortran Compiler Developer Guide and Reference

1948

Syntax

!$OMP TEAMS DISTRIBUTE PARALLEL DO [clause[[,] clause]...]
 do-loop
[!$OMP END TEAMS DISTRIBUTE PARALLEL DO]

clause Can be any of the clauses accepted by the TEAMS or DISTRIBUTE
PARALLEL DO directives with identical meanings and restrictions.

do-loop Is one or more DO iterations (DO loops). The DO iteration cannot be a
DO WHILE or a DO loop without loop control. The DO loop iteration
variable must be of type integer.

All loops associated with the construct must be structured and
perfectly nested; that is, there must be no intervening code and no
other OpenMP* Fortran directives between any two loops.

The iterations of the DO loop are distributed across the existing team
of threads. The values of the loop control parameters of the DO loop
associated with a DO directive must be the same for all the threads in
the team.

This directive provides a shortcut for specifying a TEAMS construct immediately followed by a DISTRIBUTE
PARALLEL DO construct. Some clauses are permitted on both constructs.

If the END TEAMS DISTRIBUTE PARALLEL DO directive is not specified, an END TEAMS DISTRIBUTE
PARALLEL DO directive is assumed at the end of do-loop.

See Also
OpenMP Fortran Compiler Directives
Syntax Rules for Compiler Directives

TEAMS DISTRIBUTE PARALLEL DO SIMD
OpenMP* Fortran Compiler Directive: Creates a
league of thread teams to execute a structured block
in the primary thread of each team. It also specifies a
loop that can be executed in parallel by multiple
threads that are members of multiple teams. The loop
will be distributed across the primary threads of the
teams region, which will be executed concurrently
using SIMD instructions.

Syntax

!$OMP TEAMS DISTRIBUTE PARALLEL DO SIMD [clause[[,] clause]...]
 do-loop
[!$OMP END TEAMS DISTRIBUTE PARALLEL DO SIMD]

clause Can be any of the clauses accepted by the TEAMS or DISTRIBUTE
PARALLEL DO SIMD directives with identical meanings and
restrictions.

do-loop Is one or more DO iterations (DO loops). The DO iteration cannot be a
DO WHILE or a DO loop without loop control. The DO loop iteration
variable must be of type integer.

Intel® Fortran Compiler Classic and Intel® Fortran Compiler Developer Guide and Reference 1

1949

All loops associated with the construct must be structured and
perfectly nested; that is, there must be no intervening code and no
other OpenMP* Fortran directives between any two loops.

The iterations of the DO loop are distributed across the existing team
of threads. The values of the loop control parameters of the DO loop
associated with a DO directive must be the same for all the threads in
the team.

This directive provides a shortcut for specifying a TEAMS construct immediately followed by a DISTRIBUTE
PARALLEL DO SIMD construct. The effect of any clause that applies to both constructs is as if it were applied
to both constructs separately.

If the END TEAMS DISTRIBUTE PARALLEL DO SIMD directive is not specified, an END TEAMS DISTRIBUTE
PARALLEL DO SIMD directive is assumed at the end of do-loop.

See Also
OpenMP Fortran Compiler Directives
Syntax Rules for Compiler Directives

TEAMS DISTRIBUTE SIMD
OpenMP* Fortran Compiler Directive: Creates a
league of thread teams to execute the structured
block in the primary thread of each team. It also
specifies a loop that will be distributed across the
primary threads of the teams region. The loop will be
executed concurrently using SIMD instructions.

Syntax

!$OMP TEAMS DISTRIBUTE SIMD [clause[[,] clause]...]
 do-loop
[!$OMP END TEAMS DISTRIBUTE SIMD]

clause Can be any of the clauses accepted by the TEAMS or DISTRIBUTE
SIMD directives with identical meanings and restrictions.

do-loop Is one or more DO iterations (DO loops). The DO iteration cannot be a
DO WHILE or a DO loop without loop control. The DO loop iteration
variable must be of type integer.

All loops associated with the construct must be structured and
perfectly nested; that is, there must be no intervening code and no
other OpenMP* Fortran directives between any two loops.

The iterations of the DO loop are distributed across the existing team
of threads. The values of the loop control parameters of the DO loop
associated with a DO directive must be the same for all the threads in
the team.

This directive provides a shortcut for specifying a TEAMS construct immediately followed by a DISTRIBUTE
SIMD construct. The effect of any clause that applies to both constructs is as if it were applied to both
constructs separately.

If the END TEAMS DISTRIBUTE SIMD directive is not specified, an END TEAMS DISTRIBUTE SIMD directive is
assumed at the end of do-loop.

See Also
OpenMP Fortran Compiler Directives

 1 Intel® Fortran Compiler Classic and Intel® Fortran Compiler Developer Guide and Reference

1950

Syntax Rules for Compiler Directives

TEAMS LOOP
OpenMP* Fortran Compiler Directive: Specifies a
shortcut for specifying a LOOP construct inside a
TEAMS construct. This feature is only available for ifx.

Syntax

!$OMP TEAMS LOOP [clause[[,] clause]...]
 do-loop
[!$OMP END TEAMS LOOP]

clause Can be any of the clauses accepted by the TEAMS or LOOP directives
with identical meanings and restrictions.

do-loop Is a DO loop that may contain other nested DO loops. The DO loops
must all be in canonical form. The DO loop iteration variable must be
of type integer.

The loop can be a DO CONCURRENT loop, subject to the rules
specified for variables referenced in a DO CONCURRENT loop
associated with LOOP and TEAMS constructs.

This combined directive is semantically equivalent to a LOOP construct that immediately follows a TEAMS
directive. All restrictions for TEAMS and LOOP constructs apply to this combined construct.

If used, the END TEAMS LOOP directive must appear immediately after the end of the loop. If you do not
specify an END TEAMS LOOP directive, an END TEAMS LOOP directive is assumed at the end of the do-loop.

See Also
OpenMP Fortran Compiler Directives
Syntax Rules for Compiler Directives
TEAMS directive
LOOP directive

THIS_IMAGE
Transformational Intrinsic Function (Generic):
Returns the image index of the invoking image on the
current or specified team, or the cosubscripts for the
executing image on the current or specified team.

Syntax
result = THIS_IMAGE ([team])
result = THIS_IMAGE (coarray [, team])
result = THIS_IMAGE (coarray, dim [, team])

team (Input; optional) Must be a scalar of type TEAM_TYPE defined in the
intrinsic module ISO_FORTRAN_ENV whose value describes the
current team or an ancestor team. If team is not specified, the team is
the current team.

coarray (Input; optional) Must be a coarray; it can be of any type. If it is
allocatable, it must be allocated. If team is specified, coarray must be
established on that team.

Intel® Fortran Compiler Classic and Intel® Fortran Compiler Developer Guide and Reference 1

1951

dim (Input; optional) Must be a scalar of type integer. coarray must be
specified if dim is present. Its value must be in the range 1 <= dim
<= n, where n is the corank of coarray. If the corresponding actual
argument is an optional dummy argument, it must be present.

Results

The result type is default integer. It is scalar if coarray is not specified or dim is specified; otherwise, the
result has rank one and its size is equal to the corank of coarray.

The result depends on which arguments are specified:

• If no argument is specified, as in THIS_IMAGE (), the result is a scalar with a value equal to the index of
the invoking image on the current team.

• If only the team argument is specified, the result is a scalar with a value equal to the index of the
invoking image on the specified team.

• If coarray is specified and dim is not, the result is the sequence of cosubscript values for coarray that
would specify the invoking image on the specified team, or the current team if team is not specified.

• If coarray and dim are specified, the result is the value of cosubscript dim in the sequence of cosubscript
values for coarray that would specify the invoking image on the specified team, or the current team if
team is not specified.

Examples

Consider that coarray C is declared by the following statement:

REAL C(5, 10) [10, 0:9, 0:*]
On image 5 of the current team, THIS_IMAGE () has the value 5 and THIS IMAGE (C) has the value [5, 0,
0]. For the same coarray on image 213, THIS_IMAGE (C) has the value [3, 1, 2].

In the following example, image 1 on the current team is used to read data. The other images then copy the
data:

IF (THIS_IMAGE()==1) READ (*,*) P
SYNC ALL
P = P[1]

Consider the following program:

 PROGRAM main
 USE, INTRINSIC :: ISO_FORTRAN_ENV
 TYPE (TEAM_TYPE) :: initial, odd_even
 INTEGER coarray1[0:9, 10, *], coarray2 [10, 10, *]
 initial = GET_TEAM (CURRENT_TEAM)
 FORM TEAM (2-MOD(THIS_IMAGE(), 2), odd_even)
 PRINT *, THIS_IMAGE()
 PRINT *, THIS_IMAGE (coarray1)
 PRINT *, THIS_IMAGE (coarray2, 2)
 CHANGE TEAM (odd_even)
 . . .
 PRINT *, THIS_IMAGE(), THIS_IMAGE(initial)
 PRINT *, THIS_IMAGE(coarray1)
 PRINT *, THIS_IMAGE(coarry2,TEAM = initial)
 PRINT *, THIS_IMAGE(coarray2, 2)
 PRINT *, THIS_IMAGE(coarray2, 2, initial)
 . . .
 END TEAM
 . . .
 END PROGRAM

 1 Intel® Fortran Compiler Classic and Intel® Fortran Compiler Developer Guide and Reference

1952

If there are 1024 images on the initial team, on image 8 of the initial team, the first print statement will print
8, the second print statement will print the value of the array [7, 1, 1], and the third print statement will
print 1. On that same image, the first print statement inside the CHANGE TEAM construct prints 4, 8, the
second prints the value of the array [7, 1, 1], the third prints the value of the array [8, 1, 1], and the fourth
and fifth both print 1.

On image 512 of the original team, the first print statement will print 512, the second print statement will
print the value of the array [1, 2, 6], and the third will print 2. On the same image inside the CHANGE team
construct, the first print statement will print 256 and 512, the second prints the value of the array [1,2,6],
the third prints the value of the array [2,2,6], and the fourth and fifth both print 2.

THREAD_LIMIT
Parallel Directive Clause: Specifies the maximum
number of threads that can participate in a construct.
This feature is only available for ifx.

Syntax

THREAD_LIMIT (scalar-integer-expression)

scalar-integer-expression Is an integer expression. It must evaluate to a positive scalar integer
value.

At most one THREAD_LIMIT clause can appear in a directive that allows the clause.

If THREAD_LIMIT is not specified, the default thread limit is determined by the internal control variable (ICV)
named thread_limit.

THREADPRIVATE
OpenMP* Fortran Compiler Directive: Specifies
named common blocks and certain variables to be
private (local) to each thread; they are global within
the thread.

Syntax
!$OMP THREADPRIVATE (list)

list Is a comma-separated list of named common blocks, module
variables, or variables that have the SAVE attribute. These objects are
made private to a thread.

Note that common blocks must appear between slashes (/).

A blank common block cannot appear in a THREADPRIVATE directive.

A variable that appears in a THREADPRIVATE directive must be
declared in the scope of a module or have the SAVE attribute, either
explicitly or implicitly.

Each thread gets its own copy of the common block or variable, so data written to this object by one thread
is not directly visible to other threads.

During serial portions and MASKED sections of the program, accesses are to the primary thread copy of the
common block or variable. On entry to the first parallel region, data in the THREADPRIVATE common blocks
or variables should be assumed to be undefined unless a COPYIN clause is specified in the PARALLEL
directive.

Intel® Fortran Compiler Classic and Intel® Fortran Compiler Developer Guide and Reference 1

1953

The THREADPRIVATE directive must appear in the section of a scoping unit in which the common block or
variable is declared. Although variables in common blocks can be accessed by use association or host
association, common block names cannot. This means that a common block name specified in a
THREADPRIVATE directive must be declared to be a common block in the same scoping unit in which the
THREADPRIVATE directive appears.

When a common block (which is initialized using DATA statements) appears in a THREADPRIVATE directive,
each thread copy is initialized once prior to its first use. For subsequent parallel regions, data in
THREADPRIVATE common blocks are guaranteed to persist only if the dynamic threads mechanism has been
disabled and if the number of threads are the same for all the parallel regions.

A THREADPRIVATE common block or its constituent variables can appear only in a COPYIN clause. They are
not permitted in a PRIVATE, FIRSTPRIVATE, LASTPRIVATE, SHARED, or REDUCTION clause. They are not
affected by the DEFAULT clause.

If a THREADPRIVATE directive specifying a common block name appears in one program unit, then the
directive must also appear in every other program unit that contains a COMMON statement specifying the
same common block name. It must appear after the last COMMON statement in the program unit.

If a THREADPRIVATE variable or a THREADPRIVATE common block is declared with the BIND attribute, the
corresponding C entities must also be specified in a threadprivate directive in the C program.

The following are other restrictions for a THREADPRIVATE variable:

• The variable must not appear in any clause except the COPYIN, COPYPRIVATE, SCHEDULE,
NUM_THREADS, THREAD_LIMIT, and IF clauses.

• It is affected by a COPYIN clause if the variable appears in the COPYIN clause or it is in a common block
that appears in the COPYIN clause.

• It must not be an element of a common block or appear in an EQUIVALENCE statement.
• If it is part of another variable (as an array or structure element), it cannot appear in a THREADPRIVATE

directive clause.
• Referencing a THREADPRIVATE variable in a DO CONCURRENT loop has undefined behavior.

NOTE
On Windows* systems, if you specify option /Qopenmp-threadprivate:compat, the compiler does
not generate threadsafe code for common blocks in an !$OMP THREADPRIVATE directive unless at
least one element in the common block is explicitly initialized.

Example

In the following example, the common blocks BLK1 and FIELDS are specified as thread private:

 COMMON /BLK/ SCRATCH
 COMMON /FIELDS/ XFIELD, YFIELD, ZFIELD
 !$OMP THREADPRIVATE(/BLK/,/FIELDS/)
 !$OMP PARALLEL DEFAULT(PRIVATE) COPYIN(/BLK1/,ZFIELD)

See Also
OpenMP Fortran Compiler Directives
Syntax Rules for Compiler Directives

TILE
OpenMP* Fortran Compiler Directive: Tiles (or
blocks) one or more loops of a loop nest. This feature
is only available for ifx.

Syntax

!$OMP TILE clause

 1 Intel® Fortran Compiler Classic and Intel® Fortran Compiler Developer Guide and Reference

1954

 loop-nest
[!$OMP END TILE]

clause Is SIZES (size-list)

The clause is required, and it can appear only once.

The size-list is a list of positive integer expressions (s1, … sn), where
n is less than or equal to the number of loops in the loop-nest.

When n is the number of integer expressions in size-list, the depth of
the loop nest must be at least n. The TILE construct replaces the outer
n loops with 2n perfectly nested loops.

The outer n loops are called the floor loops, f1, … fn, from outermost
to innermost floor loop.

The inner n loops, nested within floor loop fn, are the tile loops, t1, …
tn, from outermost to innermost tile loop. The resulting tile loops do
not have canonical form.

The value of the expression si specifies the maximum iteration value
for the tile loop ti.

A tile loop that contains sk iterations, where sk is the kth expression in
size-list, is a complete tile; otherwise, it is a partial tile loop.

loop-nest Is a nest of DO loops in canonical form.

Description

TILE is a pure directive, so it can appear in a Fortran PURE procedure.

Loop tiling, also known as loop blocking, is a loop transformation performed on loops within loop nests. The
transformation splits the processing of data into smaller segments called tiles (or blocks), which allows the
data in the tiles (or blocks) to be accessed in parallel.

The loops associated with the construct must be perfectly nested. Each loop associated with the construct
must be rectangular, that is, the loop control expressions of an inner loop cannot depend on the loop control
variable of an outer loop.

Tiled loops perform best when a loop's iteration count is a multiple of the tile size for that loop. When the
iteration count is not a multiple of the tile size, the loop nest may be transformed in a number of different
ways. This allows partial tiles to execute in a manner that is optimal for the target hardware. The specified
order of iterations must be preserved in the complete tile loops.

TILE constructs can be nested. If two TILE constructs are nested, the result is as if the outer TILE construct
is applied to the resulting transformed loop nest created by the inner TILE construct.

Examples

In the following example, the loop iteration counts are each a multiple of their corresponding tile size, so
there are no resulting partial tile loops. The PARALLEL DO construct is applied to the transformed loop nest.

The inner loop iterates through the rows, and the outer loop iterates through the columns, of a 64 x 20
matrix. The size expressions 8 and 4 specified in the SIZES clause of the TILE construct indicate a 8 x 4
blocking applied to the outer and inner loops:

 INTEGER,DIMENSION (64,20) :: arr
 INTEGER :: i, j
 !$OMP PARALLEL DO
 !$OMP TILE SIZES(8,4)
 DO i = 1, 64

Intel® Fortran Compiler Classic and Intel® Fortran Compiler Developer Guide and Reference 1

1955

 DO j = 1, 20
 arr(i,j) = arr(i,j)*10
 END DO
 END DO

The transformed tiled loops are the following:

INTEGER,DIMENSION (64,20) :: arr
INTEGER :: i_inner, i_outer, j_inner, j_outer
!$OMP PARALLEL DO
DO i_outer = 1, 64, 8
 DO j_outer = 1, 20, 4
 DO i_inner = i_outer, i_outer+(8-1)
 DO j_inner = j_outer, j_outer+(4–1)
 arr(i_inner,j_inner) = arr(i_inner,j_inner)*10
 END DO
 END DO
 END DO
END DO

In the following example, the inner loop iteration count 20 is not a multiple of the corresponding tile size 7.
To handle the remaining iterations, there may be a partial tile loop depending on how the loop is
transformed:

 INTEGER,DIMENSION (64,20) :: arr
 INTEGER :: i, j
 !$OMP TILE SIZES(8,7)
 DO i = 1, 64
 DO j = 1, 20
 arr(i,j) = arr(i,j) * 10
 END DO
 END DO

In this case, various transformations are possible. The compiler is free to pick a transformation that is
optimal for the target hardware. The order of execution of one tile with respect to other tiles can be changed,
but within a given tile, the order of iteration execution must be preserved.

One possible transformation for the above loop nest is the following:

INTEGER,DIMENSION (64,20) :: arr
INTEGER :: i_inner, i_outer, j_inner, j_outer, j
! Complete tiles
DO i_outer = 1, 64, 8
 DO j_outer = 1, 14, 7
 DO i_inner = i_outer, i_outer + (8–1)
 DO j_inner = j_outer, j_outer + (7–1)
 arr(i_inner,j_inner) = arr(i_inner,j_inner)*10
 END DO
 END DO
 END DO
END DO

! Partial tiles
DO i_outer = 1, 64, 8
 DO i_inner = i_outer, i_outer + (8–1)
 DO j = 15, 20
 arr(i_inner,j) = arr(i_inner,j) * 10
 END DO
 END DO
END DO

 1 Intel® Fortran Compiler Classic and Intel® Fortran Compiler Developer Guide and Reference

1956

An equivalent transformation for the tiled loop nest is the following:

INTEGER,DIMENSION (64,20) :: arr
INTEGER :: i_inner, i_outer, j_inner, j_outer
DO i_outer = 1, 64, 8
 DO j_outer = 1, 20, 7
 DO i_inner = i_outer, i_outer + (8–1)
 DO j_inner = j_outer, MIN(j_outer+(7–1),20)
 arr(i_inner,j_inner) = arr(i_inner,j_inner) * 10
 END DO
 END DO
 END DO
END DO

See Also
OpenMP Fortran Compiler Directives
Syntax Rules for Compiler Directives
UNROLL directive (OpenMP*)
To learn more about canonical form loops, see the OpenMP* specification.

TIME Intrinsic Procedure
Intrinsic Subroutine (Generic): Returns the current
time as set within the system. TIME can be used as an
intrinsic subroutine or as a portability routine. It is an
intrinsic procedure unless you specify USE IFPORT.
Intrinsic subroutines cannot be passed as actual
arguments.

Syntax
CALL TIME (buf)

buf (Output) Is a variable, array, or array element of any data type, or a
character substring. It must contain at least eight bytes of storage.

The date is returned as a 8-byte ASCII character string taking the form hh:mm:ss, where:

hh is the 2-digit hour

mm is the 2-digit minute

ss is the 2-digit second

If buf is of numeric type and smaller than 8 bytes, data corruption can occur.

If buf is of character type, its associated length is passed to the subroutine. If buf is smaller than 8 bytes,
the subroutine truncates the date to fit in the specified length. If an array of type character is passed, the
subroutine stores the date in the first array element, using the element length, not the length of the entire
array.

Example

CHARACTER*1 HOUR(8)
...
CALL TIME (HOUR)

The length of the first array element in CHARACTER array HOUR is passed to the TIME subroutine. The
subroutine then truncates the time to fit into the 1-character element, producing an incorrect result.

See Also
DATE_AND_TIME

Intel® Fortran Compiler Classic and Intel® Fortran Compiler Developer Guide and Reference 1

1957

https://www.openmp.org/specifications/

TIME portability routine

TIME Portability Routine
Portability Function or Subroutine: The function
returns the system time, in seconds, since 00:00:00
Greenwich mean time, January 1, 1970. TIME can be
used as a portability function or subroutine, or as an
intrinsic procedure. It is an intrinsic procedure unless
you specify USE IFPORT.

Module

USE IFPORT

Syntax
Function Syntax:

result = TIME()
Subroutine Syntax:

CALL TIME (timestr)

timestr (Output) Character*(*). Is the current time, based on a 24-hour
clock, in the form hh:mm:ss, where hh, mm, and ss are two-digit
representations of the current hour, minutes past the hour, and
seconds past the minute, respectively.

Results

The result type is INTEGER(4). The result value is the number of seconds that have elapsed since 00:00:00
Greenwich mean time, January 1, 1970.

The subroutine fills a parameter with the current time as a string in the format hh:mm:ss.

The value returned by this routine can be used as input to other portability date and time functions.

Example

 USE IFPORT
 INTEGER(4) int_time
 character*8 char_time
 int_time = TIME()
 call TIME(char_time)
 print *, 'Integer: ', int_time, 'time: ', char_time
 END

See Also
DATE_AND_TIME

TIME intrinsic procedure

TIMEF
Portability Function: Returns the number of seconds
since the first time it is called, or zero.

Module

USE IFPORT

 1 Intel® Fortran Compiler Classic and Intel® Fortran Compiler Developer Guide and Reference

1958

Syntax
result = TIMEF()

Results

The result type is REAL(8). The result value is the number of seconds that have elapsed since the first time
TIMEF was called.

The first time it is called, TIMEF returns 0.

Example

 USE IFPORT
 INTEGER i, j
 REAL(8) elapsed_time
 elapsed_time = TIMEF()
 DO i = 1, 100000
 j = j + 1
 END DO
 elapsed_time = TIMEF()
 PRINT *, elapsed_time
 END

See Also
Date and Time Procedures

TINY
Inquiry Intrinsic Function (Generic): Returns the
smallest number in the model representing the same
type and kind parameters as the argument.

Syntax
result = TINY (x)

x (Input) Must be of type real; it can be scalar or array valued.

Results

The result is a scalar with the same type and kind parameters as x. The result has the value b emin - 1.
Parameters b and emin are defined in Model for Real Data.

Example

If X is of type REAL(4), TINY (X) has the value 2 -126.

The following shows another example:

 REAL(8) r, result
 r = 487923.3D0
 result = TINY(r) ! returns 2.225073858507201E-308

See Also
HUGE
Data Representation Models

Intel® Fortran Compiler Classic and Intel® Fortran Compiler Developer Guide and Reference 1

1959

TRACEBACKQQ
Runtime Subroutine: Provides traceback
information. Uses the Intel® Fortran runtime library
traceback facility to generate a stack trace showing
the program call stack as it appeared at the time of
the call to TRACEBACKQQ().

Module

USE IFCORE

Syntax
CALL TRACEBACKQQ ([string] [,user_exit_code] [,status] [,eptr])

string (Input; optional) CHARACTER*(*). A message string to precede the
traceback output. It is recommended that the string be no more than
80 characters (one line) since that length appears better on output.
However, this limit is not a restriction and it is not enforced. The string
is output exactly as specified; no formatting or interpretation is done.

If this argument is omitted, no header message string is produced.

user_exit_code (Input; optional) INTEGER(4). An exit code. Two values are
predefined:

• A value of -1 causes the runtime system to return execution to the
caller after producing traceback.

• A value of zero (the default) causes the application to abort
execution.

Any other specified value causes the application to abort execution
and return the specified value to the operating system.

status (Input; optional) INTEGER(4). A status value. If specified, the runtime
system returns the status value to the caller indicating that the
traceback process was successful. The default is not to return status.

Note that a returned status value is only an indication that the
"attempt" to trace the call stack was completed successfully, not that
it produced a useful result.

You can include the file iosdef.forin your program to obtain
symbolic definitions for the possible return values. A return value of
FOR$IOS_SUCCESS (0) indicates success.

eptr (Input; optional) Integer pointer. It is required if calling from a user-
specified exception filter. If omitted, the default in null.

To trace the stack after an exception has occurred, the runtime
support needs access to the exception information supplied to the
filter by the operating system.

The eptr argument is a pointer to a T_EXCEPTION_POINTERS
structure, which is defined in ifcore.f90. This argument is optional
and is usually omitted. On Windows* systems,
T_EXCEPTION_POINTERS is returned by the Windows* API
GetExceptionInformation(), which is usually passed to a C try/except
filter function.

 1 Intel® Fortran Compiler Classic and Intel® Fortran Compiler Developer Guide and Reference

1960

The TRACEBACKQQ routine provides a standard way for an application to initiate a stack trace. It can be
used to report application detected errors, debugging, and so forth. It uses the stack trace support in the
Intel Fortran runtime library, and produces the same output that the runtime library produces for unhandled
errors and exceptions.

The error message string normally included by the runtime system is replaced with the user-supplied
message text, or omitted if no string is specified. Traceback output is directed to the target destination
appropriate for the application type, just as it is when traceback is initiated internally by the runtime system.

Example

In the most simple case, you can generate a stack trace by coding the call to TRACEBACKQQ with no
arguments:

CALL TRACEBACKQQ()
This call causes the runtime library to generate a traceback report with no leading header message, from
wherever the call site is, and terminate execution.

The following example generates a traceback report with no leading header message, from wherever the call
site is, and aborts execution:

 USE IFCORE
 CALL TRACEBACKQQ()

The following example generates a traceback report with the user-supplied string as the header, and aborts
execution:

 USE IFCORE
 CALL TRACEBACKQQ("My application message string")

The following example generates a traceback report with the user-supplied string as the header, and aborts
execution, returning a status code of 123 to the operating system:

 USE IFCORE
 CALL TRACEBACKQQ(STRING="Bad value for TEMP",USER_EXIT_CODE=123)

Consider the following:

 ...
 USE IFCORE
 INTEGER(4) RTN_STS
 INCLUDE 'IOSDEF.FOR'
 ...
 CALL TRACEBACKQQ(USER_EXIT_CODE=-1,STATUS=RTN_STS)
 IF (RTN_STS .EQ. FOR$IOS_SUCCESS) THEN
 PRINT *,'TRACEBACK WAS SUCCESSFUL'
 END IF
 ...

This example generates a traceback report with no header string, and returns to the caller to continue
execution of the application. If the traceback process succeeds, a status will be returned in variable
RTN_STS.

You can specify arguments that generate a stack trace with the user-supplied string as the header and
instead of terminating execution, return control to the caller to continue execution of the application. For
example:

CALL TRACEBACKQQ(STRING="Done with pass 1",USER_EXIT_CODE=-1)
By specifying a user exit code of -1, control returns to the calling program. Specifying a user exit code with a
positive value requests that specified value be returned to the operating system. The default value is 0,
which causes the application to abort execution.

Intel® Fortran Compiler Classic and Intel® Fortran Compiler Developer Guide and Reference 1

1961

Windows* Example:

The following example demonstrates the use of the EPTR argument when calling from a user-defined
exception filter function. The premise of the example is a Fortran DLL containing entry points protected by a
C try/except construct, such as:

__declspec(dllexport) void FPE_TEST_WRAPPER ()
{
__try {
 /*
 ** call the Fortran code...
 */
 FPE_TEST() ;
 }
__except (CHECK_EXCEPTION_INFO (GetExceptionInformation()))
 {
 /*
 ** noncontinuable exception handling here, if any.
 */
 }

The C function shown above is guarding against a floating-point divide-by-zero exception. This function calls
the user-supplied FPE_TEST (not shown). The Fortran function CHECK_EXCEPTION_INFO shown below
(called in the __except filter expression above) can use TRACEBACKQQ to get a stack trace as follows:

 INTEGER*4 FUNCTION CHECK_EXCEPTION_INFO (ExceptionInfo)
 !DIR$ ATTRIBUTES DLLEXPORT::CHECK_EXCEPTION_INFO
 USE IFWINTY
 !DIR$ ATTRIBUTES REFERENCE :: ExceptionInfo
 TYPE(T_EXCEPTION_POINTERS) ExceptionInfo
 TYPE(T_EXCEPTION_RECORD) erecptr
 TYPE(T_CONTEXT) ctxptr
 POINTER(eptr,erecptr)
 POINTER(ctxp,ctxptr)
 INTEGER(4) EXIT_CODE,STS
 CHARACTER(LEN=70) MYSTR
! Init the arguments to TRACEBACKQQ appropriately for your needs...
 EXIT_CODE=-1
 eptr = ExceptionInfo.ExceptionRecord
 ctxp = ExceptionInfo.ContextRecord
 IF (erecptr.ExceptionCode .EQ. STATUS_FLOAT_DIVIDE_BY_ZERO) THEN
 PRINT *, 'Saw floating divide by zero.'
 PRINT '(1x,a,z8.8)', 'ContextRecord.FloatSave.StatusWord = ', &
 ctxptr.FloatSave.StatusWord
 MYSTR = "FLTDIV EXCEPTION IN MY APPLICATION"
 CALL TRACEBACKQQ(MYSTR,EXIT_CODE,STS, %LOC(ExceptionInfo))
 END IF
 .
 .
 .
 CHECK_EXCEPTION_INFO = 1
 END

To return a pointer to C runtime exception information pointers within a user-defined handler that was
established with SIGNALQQ (or directly with the C signal function), you can call the GETEXCEPTIONPTRSQQ
routine.

See Also
GETEXCEPTIONPTRSQQ

 1 Intel® Fortran Compiler Classic and Intel® Fortran Compiler Developer Guide and Reference

1962

TRAILZ
Elemental Intrinsic Function (Specific): Returns
the number of trailing zero bits in an integer.

Syntax
result = TRAILZ (i)

i (Input) Must be of type integer or logical.

Results

The result type is default integer. The result value is the number of trailing zeros in the binary representation
of the integer i.

The model for the interpretation of an integer value as a sequence of bits is shown in Model for Bit Data.

Example

Consider the following:

 INTEGER*8 J, TWO
 PARAMETER (TWO=2)
 DO J= -1, 40
 TYPE *, TRAILZ(TWO**J) ! Prints 64, then 0 up to
 ENDDO ! 40 (trailing zeros)
 END

TRANSFER
Transformational Intrinsic Function (Generic):
Converts the bit pattern of the first argument
according to the type and kind parameters of the
second argument.

Syntax
result = TRANSFER (source,mold[,size])

source (Input) Must be a scalar or array (of any data type).

mold (Input) Must be a scalar or array (of any data type). It provides the
type characteristics (not a value) for the result.

size (Input; optional) Must be scalar and of type integer. It provides the
number of elements for the output result.

Results

The result has the same type and type parameters as mold.

If mold is a scalar and size is omitted, the result is a scalar.

If mold is an array and size is omitted, the result is a rank-one array. Its size is the smallest that is possible
to hold all of source.

If size is present, the result is a rank-one array of size size.

When the size of source is greater than zero, mold must not be an array with elements of size zero.

Intel® Fortran Compiler Classic and Intel® Fortran Compiler Developer Guide and Reference 1

1963

If the internal representation of the result occupies m bits, and the internal representation of source occupies
n bits, then if m > n, the right-most src bits of result contain the bit pattern contained in source, and the m
minus n left-most bits of result are undefined. If m < n, then result contains the bit pattern of the right-most
m bits of source, and the left-most n minus m bits of source are ignored. Otherwise, the result contains the bit
pattern contained in source.

Example

TRANSFER (1082130432, 0.0) has the value 4.0 (on processors that represent the values 4.0 and
1082130432 as the string of binary digits 0100 0000 1000 0000 0000 0000 0000 0000).

TRANSFER ((/2.2, 3.3, 4.4/), ((0.0, 0.0))) results in a scalar whose value is (2.2, 3.3).

TRANSFER ((/2.2, 3.3, 4.4/), (/(0.0, 0.0)/)) results in a complex rank-one array of length 2. Its first element
is (2.2,3.3) and its second element has a real part with the value 4.4 and an undefined imaginary part.

TRANSFER ((/2.2, 3.3, 4.4/), (/(0.0, 0.0)/), 1) results in a complex rank-one array having one element with
the value (2.2, 3.3).

The following shows another example:

 COMPLEX CVECTOR(2), CX(1)
 ! The next statement sets CVECTOR to
 ! [1.1 + 2.2i, 3.3 + 0.0i]
 CVECTOR = TRANSFER((/1.1, 2.2, 3.3, 0.0/), &
 (/(0.0, 0.0)/))
 ! The next statement sets CX to [1.1 + 2.2i]
 CX = TRANSFER((/1.1, 2.2, 3.3/) , (/(0.0, 0.0)/), &
 SIZE= 1)
 WRITE(*,*) CVECTOR
 WRITE(*,*) CX
 END

The following example shows an error because the source size is greater than zero but mold is an array
whose elements have zero size:

CHARACTER(0),PARAMETER :: nothing1(100) = ''
PRINT *,SIZE(TRANSFER(111014,nothing1)) ! error
...

TRANSPOSE
Transformational Intrinsic Function (Generic):
Transposes an array of rank two.

Syntax
result = TRANSPOSE (matrix)

matrix (Input) Must be a rank-two array. It may be of any data type.

Results

The result is a rank-two array with the same type and kind parameters as matrix. Its shape is (n, m), where
(m, n) is the shape of matrix. For example, if the shape of matrix is (4,6), the shape of the result is (6,4).

Element (i, j) of the result has the value matrix(j, i), where i is in the range 1 to n, and j is in the range 1 to
m.

 1 Intel® Fortran Compiler Classic and Intel® Fortran Compiler Developer Guide and Reference

1964

Example

B is the array

 [2 3 4]
 [5 6 7]
 [8 9 1].

TRANSPOSE (B) has the value

 [2 5 8]
 [3 6 9]
 [4 7 1].

The following shows another example:

 INTEGER array(2, 3), result(3, 2)
 array = RESHAPE((/1, 2, 3, 4, 5, 6/), (/2, 3/))
 ! array is 1 3 5
 ! 2 4 6
 result = TRANSPOSE(array)
 ! result is 1 2
 ! 3 4
 ! 5 6
 END

See Also
RESHAPE
PRODUCT

TRIM
Transformational Intrinsic Function (Generic):
Returns the argument with trailing blanks removed.

Syntax
result = TRIM (string)

string (Input) Must be a scalar of type character.

Results

The result is of type character with the same kind parameter as string. Its length is the length of string
minus the number of trailing blanks in string.

The value of the result is the same as string, except any trailing blanks are removed. If string contains only
blank characters, the result has zero length.

Example

TRIM (' NAME ') has the value ' NAME'.

TRIM (' C D ') has the value ' C D'.

The following shows another example:

 ! next line prints 30
 WRITE(*, *) LEN("I have blanks behind me ")
 ! the next line prints 23
 WRITE(*,*) LEN(TRIM("I have blanks behind me "))
 END

Intel® Fortran Compiler Classic and Intel® Fortran Compiler Developer Guide and Reference 1

1965

See Also
LEN_TRIM

TTYNAM
Portability Subroutine: Specifies a terminal device
name.

Module

USE IFPORT

Syntax
CALL TTYNAM (string,lunit)

string (Output) Character*(*). Name of the terminal device. If the Fortran
logical unit is not connected to a terminal, it returns a string filled with
blanks.

lunit (Input) INTEGER(4). A Fortran logical unit number.

Type Declarations
Statement: Explicitly specifies the properties of data
objects or functions.

Syntax
A type declaration has the general form:

type-spec[[, att] ... ::] v[/c-list/][, v[/c-list/]] ...

type-spec Is one of the following:

intrin-type

TYPE (intrin-type)

TYPE (derived-type-name)

For information about parameterized derived types, see
Parameterized Derived-Type Declarations.

TYPE (*)
This defines the entity as an assumed-type object.

CLASS (derived-type-name)

CLASS (*)

intrin-type Is one of the following data type specifiers:

BYTE

INTEGER[([KIND=]k)]

REAL[([KIND=]k)]

DOUBLE PRECISION

COMPLEX[([KIND=]k)]

DOUBLE COMPLEX

CHARACTER[([KIND=]k)]

LOGICAL[([KIND=]k)]

 1 Intel® Fortran Compiler Classic and Intel® Fortran Compiler Developer Guide and Reference

1966

In the optional kind selector "([KIND=]k)", k is the kind parameter. It
must be an acceptable kind parameter for that data type. If the kind
selector is not present, entities declared are of default type.

When type-spec is intrin-type, kind parameters for intrinsic
numeric and logical data types can also be specified using the *n
format, where n is the length (in bytes) of the entity; for example,
INTEGER*4. The *n format cannot be used when type-spec is TYPE
(intrin-type).

See each data type for further information on that type.

att Is one of the following attribute specifiers:

ALLOCATABLE EXTERNAL PROTECTED

ASYNCHRONOUS INTENT PUBLIC1

AUTOMATIC INTRINSIC SAVE

BIND OPTIONAL STATIC

CODIMENSION PARAMETER TARGET

CONTIGUOUS POINTER VALUE

DIMENSION PRIVATE1 VOLATILE

1These are access specifiers.

You can also declare any attribute separately as a statement.

v Is the name of a data object or function. It can optionally be followed
by:

• An array specification, if the object is an array.

In a function declaration, an array must be a deferred-shape array
if it has the POINTER or ALLOCATABLE attribute; otherwise, it must
be an explicit-shape array.

• A coarray specification, if the object is a coarray
• A character length, if the object is of type character.
• A constant expression preceded by = or by one of the following for

pointer objects:

• => NULL()
• => target (pointer initialization)

• A codimension

A function name must be the name of an intrinsic function, external
function, function dummy procedure, or statement function.

c-list Is a list of constants, as in a DATA statement. If v has the PARAMETER
attribute, the c-list cannot be present.

The c-list cannot specify more than one value unless it initializes an
array. When initializing an array, the c-list must contain a value for
every element in the array.

Intel® Fortran Compiler Classic and Intel® Fortran Compiler Developer Guide and Reference 1

1967

Description

Type declaration statements must precede all executable statements.

In most cases, a type declaration statement overrides (or confirms) the implicit type of an entity. However, a
variable that appears in a DATA statement and is typed implicitly can appear in a subsequent type declaration
only if that declaration confirms the implicit typing.

The double colon separator (::) is required only if the declaration contains an attribute specifier or
initialization; otherwise it is optional.

If att or a double colon (::) appears, c-list cannot be specified; for example:

 INTEGER I /2/ ! Valid
 INTEGER, SAVE :: I /2/ ! Invalid
 INTEGER, SAVE :: I = 2 ! Valid

The same attribute must not appear more than once in a given type declaration statement, and an entity
cannot be given the same attribute more than once in a scoping unit.

If CLASS is specified, the entity must be a dummy argument or have the ALLOCATABLE or POINTER attribute.

If the PARAMETER attribute is specified, the declaration must contain an constant expression. The
PARAMETER attribute must not be specified for a dummy argument, a pointer, an allocatable entity, a
function, or an object in a common block.

If => NULL() is specified for a pointer, its initial association status is disassociated.

If => target is specified for a pointer, the following rules apply:

• The pointer must be type compatible with the target.
• The pointer and target must have the same rank.
• All nondeferred type parameters of the pointer must have the same values as the corresponding type

parameters of the target.
• If the pointer has the CONTIGUOUS attribute, the target must be contiguous.

A variable (or variable subobject) can only be initialized once in an executable program. If the variable is an
array, it must have its shape specified in either the type declaration statement or a previous attribute
specification statement in the same scoping unit.

The INTENT, VALUE, and OPTIONAL attributes can be specified only for dummy arguments.

The INTENT attribute must not be specified for a dummy procedure without the POINTER attribute.

If the VALUE attribute is specified, the length type parameter values must be omitted or specified by
constant expressions. The VALUE attribute must not be specified for a dummy procedure.

An entity must not have both the EXTERNAL attribute and the INTRINSIC attribute. It can only have one of
these attributes if it is a function.

The BIND attribute and the PROTECTED attribute can appear only in the specification part of a module.

A function result can be declared to have the POINTER or ALLOCATABLE attribute.

An automatic object cannot appear in a SAVE or DATA statement and it cannot be declared with a SAVE
attribute nor be initially defined by an initialization.

The SAVE attribute must not be specified for:

• An object that is in a common block
• A procedure
• A dummy argument
• An automatic data object
• A function result
• An object with the PARAMETER attribute

 1 Intel® Fortran Compiler Classic and Intel® Fortran Compiler Developer Guide and Reference

1968

The PROTECTED attribute is only allowed for a procedure pointer or named variable that is not in a common
block. A pointer object that has the PROTECTED attribute and is accessed by use association must not appear
as:

• A pointer object in a NULLIFY statement
• A data pointer object or procedure pointer object in a pointer assignment statement
• An allocate object in an ALLOCATE statement or DEALLOCATE statement
• An actual argument in a reference to a procedure if the associated dummy argument is a pointer with the

INTENT(OUT) or INTENT(INOUT) attribute.

The following objects cannot be initialized in a type declaration:

• A dummy argument
• A function result
• An object in a named common block (unless the type declaration is in a block data program unit)
• An object in blank common
• An allocatable variable
• An external name
• An intrinsic name
• An automatic object
• An object that has the AUTOMATIC attribute

If a declaration contains a constant expression, but no PARAMETER attribute is specified, the object is a
variable whose value is initially defined. The object becomes defined with the value determined from the
constant expression according to the rules of intrinsic assignment.

When type-spec is intrin-type, the interpretation is exactly the same as it would have been without the
keyword type and the parentheses. The following declarations for integers K and L and complexes A and B
have identical results:

TYPE (INTEGER) :: K, L INTEGER :: K, L

TYPE (COMPLEX (KIND (0.0D0))) :: A, B COMPLEX (KIND (0.0D0)) :: A, B

A derived-type-name cannot be the same as the name of any standard intrinsic type. The type names BYTE
and DOUBLECOMPLEX are not standard type names; they are Intel Fortran extensions. If BYTE or
DOUBLECOMPLEX is declared to be a derived-type-name, it overrides the intrinsic name BYTE or
DOUBLECOMPLEX. For example:

TYPE (DOUBLECOMPLEX) :: X ! if DOUBLEXCOMPLEX is a defined-type
 ! name, X is of that defined type
BYTE :: Y ! if BYTE is not a defined-type name,
 ! Y is of intrinsic type BYTE, which
 ! is the same as INTEGER(KIND=1)

The presence of initialization gives the object the SAVE attribute, except for objects in named common blocks
or objects with the PARAMETER attribute.

When the entity is an assumed-type object, the following rules apply:

• The entity has no declared type and its dynamic type and type parameters are assumed from its effective
argument. An assumed-type object is unlimited polymorphic.

• An assumed-type object must be a dummy variable that does not have the ALLOCATABLE,
CODIMENSION, INTENT(OUT), POINTER, or VALUE attribute and is not an explicit-shape array.

• An assumed-type object that is not assumed-shape and not assumed-rank is intended to be passed as the
C address of the object. A TYPE(*) explicit-shape array is not permitted because there is insufficient
information passed for an assumed-type explicit-shape array that is an actual argument corresponding to
an assumed-shape dummy argument to compute element offsets.

Intel® Fortran Compiler Classic and Intel® Fortran Compiler Developer Guide and Reference 1

1969

• An assumed-type variable name must not appear in a designator or expression except as an actual
argument corresponding to a dummy argument that is assumed-type, or as the first argument to any of
the following intrinsic or intrinsic module functions: IS_CONTIGUOUS, LBOUND, PRESENT, RANK, SHAPE,
SIZE, UBOUND, and C_LOC.

• An assumed-type actual argument that corresponds to an assumed-rank dummy argument must be
assumed-shape or assumed-rank.

An object can have more than one attribute. The following table lists the compatible attributes:

Compatible Attributes

Attribute Compatible with:

ALLOCATABLE AUTOMATIC, ASYNCHRONOUS, CODIMENSION,
DIMENSION 1, PRIVATE, PROTECTED, PUBLIC,
SAVE, STATIC, TARGET, VOLATILE

ASYNCHRONOUS ALLOCATABLE, AUTOMATIC, BIND, DIMENSION,
INTENT, OPTIONAL, POINTER, PROTECTED, PUBLIC,
SAVE, STATIC, TARGET, VALUE, VOLATILE

AUTOMATIC ALLOCATABLE, ASYNCHRONOUS, BIND,
DIMENSION, POINTER, PROTECTED, TARGET,
VOLATILE

BIND ASYNCHRONOUS, AUTOMATIC, DIMENSION,
EXTERNAL, PRIVATE, PROTECTED, PUBLIC, SAVE,
STATIC, TARGET, VOLATILE

CODIMENSION ALLOCATABLE, DIMENSION, INTENT, OPTIONAL,
PRIVATE, PROTECTED, PUBLIC, SAVE, TARGET

CONTIGUOUS DIMENSION, INTENT, OPTIONAL, POINTER,
PRIVATE, PROTECTED, PUBLIC, TARGET

DIMENSION ALLOCATABLE, ASYNCHRONOUS, AUTOMATIC,
BIND, CODIMENSION, CONTIGUOUS, INTENT,
OPTIONAL, PARAMETER, POINTER, PRIVATE,
PROTECTED, PUBLIC, SAVE, STATIC, TARGET,
VOLATILE

EXTERNAL BIND, OPTIONAL, PRIVATE, PUBLIC

INTENT ASYNCHRONOUS, CODIMENSION, CONTIGUOUS,
DIMENSION, OPTIONAL, TARGET, VOLATILE

INTRINSIC PRIVATE, PUBLIC

OPTIONAL ASYNCHRONOUS, CODIMENSION, CONTIGUOUS,
DIMENSION, EXTERNAL, INTENT, POINTER,
TARGET, VALUE, VOLATILE

PARAMETER DIMENSION, PRIVATE, PUBLIC

POINTER ASYNCHRONOUS, AUTOMATIC, CONTIGUOUS,
DIMENSION 1, OPTIONAL, PRIVATE, PROTECTED,
PUBLIC, SAVE, STATIC, VOLATILE

 1 Intel® Fortran Compiler Classic and Intel® Fortran Compiler Developer Guide and Reference

1970

Attribute Compatible with:

PRIVATE ASYNCHRONOUS, ALLOCATABLE, BIND,
CODIMENSION, CONTIGUOUS, DIMENSION,
EXTERNAL, INTRINSIC, PARAMETER, POINTER,
PROTECTED, SAVE, STATIC, TARGET, VOLATILE

PROTECTED ALLOCATABLE, ASYNCHRONOUS, BIND,
CODIMENSION, CONTIGUOUS, DIMENSION,
POINTER, PRIVATE, PUBLIC, SAVE, TARGET,
VOLATILE

PUBLIC ASYNCHRONOUS, ALLOCATABLE, BIND,
CODIMENSION, CONTIGUOUS, DIMENSION,
EXTERNAL, INTRINSIC, PARAMETER, POINTER,
PROTECTED, SAVE, STATIC, TARGET, VOLATILE

SAVE ALLOCATABLE, ASYNCHRONOUS, BIND,
CODIMENSION, DIMENSION, POINTER, PRIVATE,
PROTECTED, PUBLIC, STATIC, TARGET, VOLATILE

STATIC ALLOCATABLE, ASYNCHRONOUS, BIND,
DIMENSION, POINTER, PRIVATE, PROTECTED,
PUBLIC, SAVE, TARGET, VOLATILE

TARGET ALLOCATABLE, ASYNCHRONOUS, AUTOMATIC,
BIND, CODIMENSION, CONTIGUOUS, DIMENSION,
INTENT, OPTIONAL, PRIVATE, PROTECTED, PUBLIC,
SAVE, STATIC,VALUE, VOLATILE

VALUE ASYNCHRONOUS, INTENT (IN only), OPTIONAL,
TARGET

VOLATILE ALLOCATABLE, ASYNCHRONOUS, AUTOMATIC,
BIND, DIMENSION, INTENT, OPTIONAL, POINTER,
PRIVATE, PROTECTED, PUBLIC, SAVE, STATIC,
TARGET

1With deferred shape

Example

The following show valid type declaration statements:

DOUBLE PRECISION B(6)
INTEGER(KIND=2) I
REAL(KIND=4) X, Y
REAL(4) X, Y
LOGICAL, DIMENSION(10,10) :: ARRAY_A, ARRAY_B
INTEGER, PARAMETER :: SMALLEST = SELECTED_REAL_KIND(6, 70)
REAL(KIND (0.0)) M
COMPLEX(KIND=8) :: D
TYPE(EMPLOYEE) :: MANAGER
REAL, INTRINSIC :: COS
CHARACTER(15) PROMPT
CHARACTER*12, SAVE :: HELLO_MSG
INTEGER COUNT, MATRIX(4,4), SUM
LOGICAL*2 SWITCH

Intel® Fortran Compiler Classic and Intel® Fortran Compiler Developer Guide and Reference 1

1971

REAL :: X = 2.0

TYPE (NUM), POINTER :: FIRST => NULL()
The following shows more examples:

 REAL a (10)
 LOGICAL, DIMENSION (5, 5) :: mask1, mask2
 TYPE (COMPLEX) :: cube_root = (-0.5, 0.867)
 INTEGER, PARAMETER :: short = SELECTED_INT_KIND (4)
 REAL (KIND (0.0D0)) a1
 TYPE (REAL (KIND = 4)) b
 COMPLEX (KIND = KIND (0.0D0)) :: c
 INTEGER (short) k ! Range at least -9999 to 9999
 TYPE (member) :: george

The following shows an example of pointer initialization:

integer, target :: v (5) = [1, 2, 3, 4, 5]
type entry
 integer, pointer :: p (5) => v ! pointer component default initialization
end type entry

type (entry), target :: bottom
type (entry), pointer :: top => bottom ! pointer initialization

See Also
TYPE Declaration for Derived Types
CLASS Declaration
CHARACTER
COMPLEX
Default Initialization
DOUBLE COMPLEX
DOUBLE PRECISION
INTEGER
LOGICAL
REAL
IMPLICIT
RECORD
STRUCTURE

TYPE Statement for Derived Types
Statement: Declares a variable to be of derived type.
It specifies the name of the user-defined type and the
types of its components.

Syntax
TYPE [[,attr-list] ::] name [(type-param-name-list)]
 [type-param-def-stmts]
 [PRIVATE statement or SEQUENCE statement]. . .
 [component-definition]. . .
 [type-bound-procedure-part]
END TYPE [name]

 1 Intel® Fortran Compiler Classic and Intel® Fortran Compiler Developer Guide and Reference

1972

attr-list Is one of the following:

• access-spec

Is the PUBLIC or PRIVATE attribute. The attribute can only be
specified if the derived-type definition is in the specification part of
a module.

• BIND(C)
• EXTENDS (parent-type-name)

where parent-type-name is the name of a previously defined
extensible type.

• ABSTRACT

The same attr must not appear more than once in any given derived-
type statement.

If the type definition contains or inherits a deferred binding,
ABSTRACT must appear.

The EXTENDS and ABSTRACT attributes apply to type extension and
extended types. If ABSTRACT is specified, the type is an abstract type
and it must be extensible.

A derived type that does not have the SEQUENCE or BIND(C) attribute
is extensible. Conversely, a derived type that has the SEQUENCE or
BIND(C) attribute is not extensible.

name Is the name of the derived data type. It must not be the same as the
name of any intrinsic type, or the same as the name of a derived type
that can be accessed from a module.

type-param-name-list Is a list of type parameter names separated by commas. For more
information, see Parameterized Derived-Type Declarations.

type-param-def-stmts Is one or more INTEGER declarations of the type parameters named in
the type-param-name-list. For more information, see Parameterized
Derived-Type Declarations.

component-definition Is one or more type declaration statements or procedure pointer
statements defining the component of derived type.

The first component definition can be preceded by an optional
PRIVATE or SEQUENCE statement. (Only one PRIVATE and only one
SEQUENCE statement can appear in a given derived-type definition.)

If SEQUENCE is present, all derived types specified in component
definitions must be sequence types.

Procedure pointer component definitions are described in Procedure
Pointers as Derived-Type Components.

The syntax for a type declaration component definition is described
below.

type-bound-procedure-part Is a CONTAINS statement, optionally followed by a PRIVATE
statement, and one or more procedure binding statements (specific,
generic, or final). For more information, see Type-Bound Procedures.

A type declaration component definition takes the following form:

type[[, attr] ::] component[(a-spec)] [[coarray-spec]] [*char-len] [init-ex]

Intel® Fortran Compiler Classic and Intel® Fortran Compiler Developer Guide and Reference 1

1973

type Is a type specifier. It can be an intrinsic type or a previously defined
derived type.

If the POINTER or the ALLOCATABLE attribute follows this specifier, the
type can also be the type being defined or any accessible derived
type, whether previously defined or not.

attr Is at most one of the following:

• An optional POINTER attribute for a pointer component
• An optional ALLOCATABLE attribute for a scalar component
• An optional DIMENSION or ALLOCATABLE attribute for an array

component

You cannot specify both the ALLOCATABLE and POINTER attribute.
• An optional access specifier, PUBLIC or PRIVATE
• An optional CODIMENSION [coarray-spec] to specify a coarray
• An optional CONTIGUOUS attribute if the object is contiguous

Each attribute can only appear once in a given component definition.

If neither the POINTER nor the ALLOCATABLE attribute is specified,
type must specify an intrinsic type or a previously defined derived
type.

If neither the POINTER nor the ALLOCATABLE attribute is specified,
each a-spec must be an explicit-shape specification.

If the POINTER or ALLOCATABLE attribute is specified, each
component array specification a-spec must be a deferred shape
specification (d-spec).

If a coarray-spec appears, it must be a deferred specification list
consisting of one or more colons (:), the component must have the
ALLOCATABLE attribute, and the component must not be of type
C_PTR or C_FUNPTR from the intrinsic module ISO_C_BINDING or of
type TEAM_TYPE from the intrinsic module ISO_FORTRAN_ENV.

A data component whose type has a coarray ultimate component must
be a nonpointer nonallocatable scalar and must not be a coarray.

If the CONTIGUOUS attribute is specified, the component must be an
array with the POINTER attribute.

component Is the name of the component being defined.

a-spec Is an optional array specification, enclosed in parentheses. If POINTER
or ALLOCATABLE is specified, the array is deferred shape; otherwise, it
is explicit shape. In an explicit-shape specification, each bound must
be a constant scalar integer expression.

If component is an array and the array bounds are not specified here,
they must be specified following the DIMENSION attribute.

coarray-spec Is a deferred-coshape specification. The left bracket and right bracket
are required.

char-len Is an optional scalar integer literal constant; it must be preceded by
an asterisk (*). This parameter can only be specified if the component
is of type CHARACTER.

init-ex Is one of the following:

 1 Intel® Fortran Compiler Classic and Intel® Fortran Compiler Developer Guide and Reference

1974

• = constant expression for nonpointer components
• => NULL() for pointer components

If init-ex is specified, a double colon must appear in the component
definition. The equals assignment symbol (=) can only be specified for
nonpointer components.

The constant expression is evaluated in the scoping unit of the type
definition.

Description

If a name is specified following the END TYPE statement, it must be the same name that follows TYPE in the
derived type statement.

A derived type can be defined only once in a scoping unit. If the same derived-type name appears in a
derived-type definition in another scoping unit, it is treated independently.

A component name has the scope of the derived-type definition only. Therefore, the same name can be used
in another derived-type definition in the same scoping unit.

The default accessibility attribute for a module is PUBLIC unless it has been changed by a PRIVATE statement
with no entity-list.

A PUBLIC or PRIVATE keyword can only appear on the TYPE statement of a derived-type definition, or on a
component or type-bound procedure declaration of the type if the derived-type definition is in the
specification part of a module.

The PRIVATE statement can only be specified in the component-definition or type-bound-procedure-part if
the derived-type definition is in the specification part of a module. A PRIVATE statement inside a component-
definition part specifies that the default accessibility of all components of the derived type are PRIVATE.
Similarly, a PRIVATE statement inside a type-bound-procedure-part specifies that the default accessibility of
the type bound procedures of the derived type are PRIVATE. If the default accessibility of components or
type-bound procedures is PRIVATE, individual components or type-bound procedures can be declared
PUBLIC, overriding the default accessibility attribute.

If a type definition is PRIVATE, the type name and the structure constructor for the type are accessible only
within the module containing the definition and in the descendants of that module.

Two data entities have the same type if they are both declared to be of the same derived type; the derived-
type definition can be accessed from a module or a host scoping unit.

If EXTENDS appears and the type being defined has a coarray ultimate component, its parent type must
have a coarray ultimate component.

Data entities in different scoping units also have the same type if the following is true:

• They are declared with reference to different derived-type definitions that specify the same type name.
• All have the SEQUENCE property.
• All have the BIND attribute.
• They have no components with PRIVATE accessibility.
• They have type parameters and components that agree in order, name, and attributes.

Otherwise, they are of different derived types.

A data component is a coarray if the component declaration contains a coarray specification. If the
component declaration contains a coarray specification, it specifies the corank.

If BIND (C) is specified, the following rules apply:

• The derived type cannot be a SEQUENCE type.
• The derived type must not have type parameters.
• The derived type must not have the EXTENDS attribute.

Intel® Fortran Compiler Classic and Intel® Fortran Compiler Developer Guide and Reference 1

1975

• The derived type must not have a type-bound-procedure-part.
• Each component of the derived type must be a nonpointer, nonallocatable data component with

interoperable type and type parameters.

Example

 ! DERIVED.F90
 ! Define a derived-type structure,
 ! type variables, and assign values

 TYPE member
 INTEGER age
 CHARACTER (LEN = 20) name
 END TYPE member

 TYPE (member) :: george
 TYPE (member) :: ernie

 george = member(33, 'George Brown')
 ernie%age = 56
 ernie%name = 'Ernie Brown'

 WRITE (*,*) george
 WRITE (*,*) ernie
 END

The following shows another example of a derived type:

TYPE mem_name
 SEQUENCE
 CHARACTER (LEN = 20) lastn
 CHARACTER (LEN = 20) firstn
 CHARACTER (len = 3) cos ! this works because COS is a component name
END TYPE mem_name
TYPE member
 SEQUENCE
 TYPE (mem_name) :: name
 INTEGER age
 CHARACTER (LEN = 20) specialty
END TYPE member

In the following example, a and b are both variable arrays of derived type pair:

 USE, INTRINSIC :: ISO_C_BINDING
 TYPE, BIND(C) :: pair
 INTEGER(C_INT) :: i, j
 END TYPE
 TYPE (pair) :: a, b(3)

The following example shows how you can use derived-type objects as components of other derived-type
objects:

 TYPE employee_name
 CHARACTER(25) last_name
 CHARACTER(15) first_name
 END TYPE
 TYPE employee_addr
 CHARACTER(20) street_name
 INTEGER(2) street_number
 INTEGER(2) apt_number
 CHARACTER(20) city

 1 Intel® Fortran Compiler Classic and Intel® Fortran Compiler Developer Guide and Reference

1976

 CHARACTER(2) state
 INTEGER(4) zip
 END TYPE

Objects of these derived types can then be used within a third derived-type specification, such as:

 TYPE employee_data
 TYPE (employee_name) :: name
 TYPE (employee_addr) :: addr
 INTEGER(4) telephone
 INTEGER(2) date_of_birth
 INTEGER(2) date_of_hire
 INTEGER(2) social_security(3)
 LOGICAL(2) married
 INTEGER(2) dependents
 END TYPE

The following program shows how you initialize components of a derived-type object:

TYPE list_node
 CHARACTER(20) :: street_name = " "
 INTEGER(2) :: street_number = 0
 INTEGER(2) :: apt_number = -1
 CHARACTER(20) :: city = " "
 CHARACTER(2) :: state = "NH"
 INTEGER(4) :: zip = 0
 TYPE (list_node), POINTER :: next => NULL()
END TYPE

TYPE (list_node) :: x = list_node (zip = 03054)
PRINT *, x%state, x%zip
END

The above prints the following:

 NH 3054
Coarrays were introduced as a Fortran 2008 feature. The following example shows a derived-type definition
with a coarray component:

TYPE NEW_TYPE
 REAL,ALLOCATABLE,CODIMENSION[:,:,:] :: NEW(:,:,:)
END TYPE NEW_TYPE

An object of type NEW_TYPE must be a scalar and it cannot be a pointer, allocatable, or a coarray.

The following example shows a derived-type definition containing a coarray-spec:

type t
 integer :: k
 real, allocatable :: x (:,:)[:,:]
end type t

In the following example, when the assignment to DEST occurs, DEST%TA is unallocated: it is first allocated
with the size of SOURCE%TA and then the value of SOURCE%TA is assigned into DEST%TA:

TYPE T
 INTEGER I
END TYPE T
TYPE T2
 TYPE (T), ALLOCATABLE :: TA
END TYPE T2

Intel® Fortran Compiler Classic and Intel® Fortran Compiler Developer Guide and Reference 1

1977

TYPE (T2) SOURCE, DEST

ALLOCATE(SOURCE%TA)
DEST = SOURCE

The use of allocatable components of recursive type can involve direct recursion, in which the type has a
component that is the same type as its parent. The following example creates a five-element linked list using
allocatable components of recursive type:

TYPE T
INTEGER I
TYPE(T), ALLOCATABLE :: NEXT
END TYPE

TYPE (T), ALLOCATABLE, TARGET :: ORIG, COPY
TYPE (T), POINTER :: TA

ALLOCATE(ORIG)
TA => ORIG

DO I=1,5
 TA%I = I
 ALLOCATE(TA%NEXT)
 TA => TA%NEXT
END DO

By using allocatable components rather than pointer components, there is no need to explicitly nullify
component NEXT - it is set to an unallocated state automatically by the compiler. Because the semantics of
ALLOCATE(SOURCE=) require the allocation and copying of all allocated allocatable components from ORIG
into COPY, we can create a complete, unique copy of the entire linked list in one easy statement:

ALLOCATE(COPY, SOURCE=ORIG)
In addition to direct recursion, indirect recursion or forward referencing can also be used. In the following
example, component A of type T is of type T2, a forward reference to a type not yet defined, while
component B of type T2 is of type T:

TYPE T
TYPE(T2), ALLOCATABLE :: A
END TYPE

TYPE T2
TYPE(T), ALLOCATABLE :: B
END TYPE

TYPE(T2) TY
See Also
Type Declarations
Procedure Pointers
Type-Bound Procedures
Passed-Object Dummy Arguments
Type Extension
Procedure Pointers as Derived-Type Components
DIMENSION
PRIVATE
PUBLIC
RECORD

 1 Intel® Fortran Compiler Classic and Intel® Fortran Compiler Developer Guide and Reference

1978

SEQUENCE
STRUCTURE...END STRUCTURE
Derived Data Types
Default Initialization
Structure Components
Structure Constructors

UBOUND
Inquiry Intrinsic Function (Generic): Returns the
upper bounds for all dimensions of an array, or the
upper bound for a specified dimension.

Syntax
result = UBOUND (array [, dim] [, kind])

array (Input) Must be an array; it can be assumed-rank. It may be of any
data type. It must not be an allocatable array that is not allocated, or
a disassociated pointer. It can be an assumed-size array if dim is
present with a value less than the rank of array.

dim (Input; optional) Must be a scalar integer with a value in the range 1
to n, where n is the rank of array.

kind (Input; optional) Must be a scalar integer constant expression.

Results

The result type is integer. If kind is present, the kind parameter of the result is that specified by kind;
otherwise, the kind parameter of the result is that of default integer. If the processor cannot represent the
result value in the kind of the result, the result is undefined.

The following rule applies if array is not assumed-rank:

• If dim is present, the result is a scalar. Otherwise, the result is a rank-one array with one element for each
dimension of array. Each element in the result corresponds to a dimension of array.

The following rules apply if array is assumed-rank:

• If dim is present and array is assumed-rank, the value of the result is as if array were a whole array, with
the extent of the final dimension of array when array is associated with an assumed-size array being
considered to be −1.

• If UBOUND is invoked for an assumed-rank object that is associated with a scalar and dim is absent, the
result is a zero-sized array. UBOUND cannot be invoked for an assumed-rank object that is associated
with a scalar if dim is present because the rank of a scalar is zero and dim must be >= 1.

If array is an array section or an array expression that is not a whole array or array structure component,
UBOUND(array, dim) has a value equal to the number of elements in the given dimension.

If array is a whole array or array structure component, UBOUND(array, dim) has a value equal to the upper
bound for subscript dim of array (if dim is nonzero). If dim has size zero, the corresponding element of the
result has the value zero.

The setting of compiler options specifying integer size can affect this function.

Example

Consider the following:

 REAL ARRAY_A (1:3, 5:8)
 REAL ARRAY_B (2:8, -3:20)

Intel® Fortran Compiler Classic and Intel® Fortran Compiler Developer Guide and Reference 1

1979

UBOUND (ARRAY_A) is (3, 8). UBOUND (ARRAY_A, DIM=2) is 8.

UBOUND (ARRAY_B) is (8, 20). UBOUND (ARRAY_B (5:8, :)) is (4,24) because the number of elements is
significant for array section arguments.

The following shows another example:

 REAL ar1(2:3, 4:5, -1:14), vec1(35)
 INTEGER res1(3), res2, res3(1)
 res1 = UBOUND (ar1) ! returns [3, 5, 14]
 res2 = UBOUND (ar1, DIM= 3) ! returns 14
 res3 = UBOUND (vec1) ! returns [35]
 END

See Also
LBOUND

UCOBOUND
Inquiry Intrinsic Function (Generic): Returns the
upper cobounds of a coarray.

Syntax
result = UCOBOUND (coarray [,dim [, kind])

coarray (Input) Must be a coarray; it can be of any type. It can be a scalar or
an array. If it is allocatable, it must be allocated.

dim (Input; optional) Must be an integer scalar with a value in the range 1
<= dim <= n, where n is the corank of coarray. The corresponding
actual argument must not be an optional dummy argument.

kind (Input; optional) Must be a scalar integer constant expression.

Results

The result type is integer. If kind is present, the kind parameter is that specified by kind; otherwise, the kind
parameter is that of default integer type. The result is scalar if dim is present; otherwise, the result is an
array of rank one and size n, wheren is the corank of coarray.

The final upper cobound is the final cosubscript in the cosubscript list for the coarray that selects the image
whose index is equal to the number of images in the current team. The result depends on whether dim is
specified:

• If dim is specified, UCOBOUND (COARRAY, DIM) has a value equal to the upper cobound for cosubscript
dim of coarray.

• If dim is not specified, UCOBOUND (COARRAY) has a value whose ith element is equal to UCOBOUND
(COARRAY, i), for i = 1, 2,. . . , n, where n is the corank of coarray.

Examples

If A is allocated by the statement ALLOCATE (A [2:3, 7:*]), then LCOBOUND (A) is [2, 7] and LCOBOUND (A,
DIM=2) is 7.

If NUM_IMAGES() has the value 30, and coarray B is allocated by the statement ALLOCATE (B[2:3, 0:7, *]),
then UCOBOUND (B) is [3, 7, 2] and UCOBOUND (B, DIM=2) is 7. Note that the cosubscripts [3, 7, 2] do not
correspond to an actual image.

UNDEFINE
Statement: Removes a defined symbol.

 1 Intel® Fortran Compiler Classic and Intel® Fortran Compiler Developer Guide and Reference

1980

See Also
See DEFINE and UNDEFINE.

UNION and END UNION
Statements: Define a data area that can be shared
intermittently during program execution by one or
more fields or groups of fields. A union declaration
must be within a structure declaration.

Syntax
Each unique field or group of fields is defined by a separate map declaration.

UNION
 map-declaration
 map-declaration
 [map-declaration]
 . . .
 [map-declaration]
END UNION

map-declaration Takes the following form:

MAP
 field-declaration
 [field-declaration]
 . . .
 [field-declaration]
END MAP

field-declaration Is a structure declaration or RECORD
statement contained within a union
declaration, a union declaration contained
within a union declaration, or the declaration
of a data field (having a data type) within a
union. It can be of any intrinsic or derived
type.

As with normal Fortran type declarations, data can be initialized in field declaration statements in union
declarations. However, if fields within multiple map declarations in a single union are initialized, the data
declarations are initialized in the order in which the statements appear. As a result, only the final initialization
takes effect and all of the preceding initializations are overwritten.

The size of the shared area established for a union declaration is the size of the largest map defined for that
union. The size of a map is the sum of the sizes of the fields declared within it.

Manipulating data by using union declarations is similar to using EQUIVALENCE statements. The difference is
that data entities specified within EQUIVALENCE statements are concurrently associated with a common
storage location and the data residing there; with union declarations you can use one discrete storage
location to alternately contain a variety of fields (arrays or variables).

Intel® Fortran Compiler Classic and Intel® Fortran Compiler Developer Guide and Reference 1

1981

With union declarations, only one map declaration within a union declaration can be associated at any point
in time with the storage location that they share. Whenever a field within another map declaration in the
same union declaration is referenced in your program, the fields in the prior map declaration become
undefined and are succeeded by the fields in the map declaration containing the newly referenced field.

Example

In the following example, the structure WORDS_LONG is defined. This structure contains a union declaration
defining two map fields. The first map field consists of three INTEGER*2 variables (WORD_0, WORD_1, and
WORD_2), and the second, an INTEGER*4 variable, LONG:

 STRUCTURE /WORDS_LONG/
 UNION
 MAP
 INTEGER*2 WORD_0, WORD_1, WORD_2
 END MAP
 MAP
 INTEGER*4 LONG
 END MAP
 END UNION
 END STRUCTURE

The length of any record with the structure WORDS_LONG is 6 bytes. The following figure shows the memory
mapping of any record with the structure WORDS_LONG:

Memory Map of Structure WORDS_LONG

In the following example, note how the first 40 characters in the string2 array are overlayed on 4-byte
integers, while the remaining 20 are overlayed on 2-byte integers:

 UNION
 MAP
 CHARACTER*20 string1, CHARACTER*10 string2(6)
 END MAP
 MAP
 INTEGER*2 number(10), INTEGER*4 var(10), INTEGER*2
 + datum(10)
 END MAP
 END UNION

See Also
STRUCTURE and END STRUCTURE
Record Structures

UNLINK
Portability Function: Deletes the file given by path.

 1 Intel® Fortran Compiler Classic and Intel® Fortran Compiler Developer Guide and Reference

1982

Module

USE IFPORT

Syntax
result = UNLINK (name)

name (Input) Character*(*). Path of the file to delete. The path can use
forward (/) or backward (\) slashes as path separators and can
contain drive letters.

Results

The result type is INTEGER(4). The result is zero if successful; otherwise, an error code. Errors can be one of
the following:

• ENOENT: The specified file could not be found.
• EACCES: The specified file is read-only.

You must have adequate permission to delete the specified file.

On Windows systems, you will get the EACCES error if the file has been opened by any process.

Example

 USE IFPORT
 INTEGER(4) ISTATUS
 CHARACTER*20 dirname
 READ *, dirname
 ISTATUS = UNLINK (dirname)
 IF (ISTATUS) then
 print *, 'Error ', ISTATUS
 END IF
 END

See Also
SYSTEM
DELDIRQQ

UNPACK
Transformational Intrinsic Function (Generic):
Takes elements from a rank-one array and unpacks
them into another (possibly larger) array under the
control of a mask.

Syntax
result = UNPACK (vector,mask,field)

vector (Input) Must be a rank-one array. It may be of any data type. Its size
must be at least t, where t is the number of true elements in mask.

mask (Input) Must be a logical array. It determines where elements of
vector are placed when they are unpacked.

field (Input) Must be of the same type and type parameters as vector and
conformable with mask. Elements in field are inserted into the result
array when the corresponding mask element has the value false.

Intel® Fortran Compiler Classic and Intel® Fortran Compiler Developer Guide and Reference 1

1983

Results

The result is an array with the same shape as mask, and the same type and type parameters as vector.

Elements in the result array are filled in array element order. If element i of mask is true, the corresponding
element of the result is filled by the next element in vector. Otherwise, it is filled by field (if field is scalar) or
the ith element of field (if field is an array).

Example

N is the array

 [0 0 1]
 [1 0 1]
 [1 0 0],

P is the array (2, 3, 4, 5), and Q is the array

 [T F F]
 [F T F]
 [T T F].

UNPACK (P, MASK=Q, FIELD=N) produces the result

 [2 0 1]
 [1 4 1]
 [3 5 0].

UNPACK (P, MASK=Q, FIELD=1) produces the result

 [2 1 1]
 [1 4 1]
 [3 5 1].

The following shows another example:

 LOGICAL mask (2, 3)
 INTEGER vector(3) /1, 2, 3/, AR1(2, 3)
 mask = RESHAPE((/.TRUE.,.FALSE.,.FALSE.,.TRUE.,&
 .TRUE.,.FALSE./), (/2, 3/))
 ! vector = [1 2 3] and mask = T F T
 ! F T F
 AR1 = UNPACK(vector, mask, 8) ! returns 1 8 3
 ! 8 2 8
 END

See Also
PACK
RESHAPE
SHAPE

UNPACKTIMEQQ
Portability Subroutine: Unpacks a packed time and
date value into its component parts.

Module

USE IFPORT

Syntax
CALL UNPACKTIMEQQ (timedate,iyr,imon,iday,ihr,imin,isec)

 1 Intel® Fortran Compiler Classic and Intel® Fortran Compiler Developer Guide and Reference

1984

timedate (Input) INTEGER(4). Packed time and date information.

iyr (Output) INTEGER(2). Year (xxxxAD).

imon (Output) INTEGER(2). Month (1 - 12).

iday (Output) INTEGER(2). Day (1 - 31).

ihr (Output) INTEGER(2). Hour (0 - 23).

imin (Output) INTEGER(2). Minute (0 - 59).

isec (Output) INTEGER(2). Second (0 - 59).

GETFILEINFOQQ returns time and date in a packed format. You can use UNPACKTIMEQQ to unpack these
values.

The output values reflect the time zone set on the local computer and the daylight savings rules for that time
zone.

Use PACKTIMEQQ to repack times for passing to SETFILETIMEQQ. Packed times can be compared using
relational operators.

Example

 USE IFPORT
 CHARACTER(80) file
 TYPE (FILE$INFO) info
 INTEGER(4) handle, result
 INTEGER(2) iyr, imon, iday, ihr, imin, isec

 file = 'd:\f90ps\bin\t???.*'
 handle = FILE$FIRST
 result = GETFILEINFOQQ(file, info, handle)
 CALL UNPACKTIMEQQ(info%lastwrite, iyr, imon,&
 iday, ihr, imin, isec)
 WRITE(*,*) iyr, imon, iday
 WRITE(*,*) ihr, imin, isec
 END

See Also
PACKTIMEQQ
GETFILEINFOQQ

UNROLL Directive for OpenMP
OpenMP* Fortran Compiler Directive: Partially or
fully unrolls a DO loop. This feature is only available
for ifx.

Syntax

!$OMP UNROLL [clause]
 loop-nest
[!$OMP END UNROLL]

clause Is FULL or PARTIAL [(count)], where count is a compile-time integer
constant expression.

If FULL is specified, and n is the iteration count of the outermost DO
loop, the outermost loop is replaced by n copies of the loop body.

Intel® Fortran Compiler Classic and Intel® Fortran Compiler Developer Guide and Reference 1

1985

If PARTIAL is specified, the outermost loop is first tiled with a tile size
of count, and then the tiled loop is fully unrolled. If PARTIAL is
specified without count, the compiler determines the count.

If clause is omitted, the compiler determines if and how the loop is
transformed.

loop-nest Is a nest of DO loops in canonical form.

Description

The UNROLL construct applies to the outermost loop of the loop nest. It is a pure directive, so it can appear
in a Fortran PURE procedure.

The transformed loop will be in canonical form only when PARTIAL is specified.

The iteration count of the outermost DO loop must be constant if FULL is specified.

Examples

In the following example, the FULL clause is specified in the UNROLL directive, so the loop iteration count
must be a compile-time constant. In this case, a worksharing loop construct cannot be used because there is
no loop to apply it to after the loop is unrolled.

 INTEGER,DIMENSION (5) :: arr
 INTEGER :: i
 !$OMP UNROLL FULL
 DO i = 1, 5
 arr(i) = 100
 END DO

Unrolling the above DO loops produces the following transformed code:

 INTEGER,DIMENSION (5) :: arr
 INTEGER :: i
 arr(1) = 100
 arr(2) = 100
 arr(3) = 100
 arr(4) = 100
 arr(5) = 100

In the following example, the loop is partially unrolled. The trip count is a multiple of count specified in the
PARTIAL clause:

 INTEGER,DIMENSION (64) :: arr
 INTEGER :: i
 !$OMP PARALLEL DO
 !$OMP UNROLL PARTIAL(4)
 DO i = 1, 64
 arr(i) = arr(i) * 10
 END DO

Unrolling the above DO loops 4 times produces the following result:

 INTEGER,DIMENSION (64) :: arr
 INTEGER :: i
 !$OMP PARALLEL DO
 DO i = 0, 15
 arr(i*4 + 1) = arr(i*4 + 1) * 10
 arr(i*4 + 2) = arr(i*4 + 2) * 10

 1 Intel® Fortran Compiler Classic and Intel® Fortran Compiler Developer Guide and Reference

1986

 arr(i*4 + 3) = arr(i*4 + 3) * 10
 arr(i*4 + 4) = arr(i*4 + 4) * 10
 END DO

The following example shows how a loop with an unknown trip count that is partially unrolled may be
transformed:

 SUBROUTINE FOO (arr, n)
 INTEGER :: i,n
 INTEGER,DIMENSION (n) :: arr
 !$OMP PARALLEL DO
 !$OMP UNROLL PARTIAL(4)
 DO i = 1, n
 arr(i) = arr(i) * 10
 END DO
 END SUBROUTINE

Unrolling the above DO loop 4 times produces code equivalent to the following:

 SUBROUTINE FOO (arr, n)
 INTEGER :: i,n
 INTEGER,DIMENSION (n) :: arr
 !$OMP PARALLEL DO
 DO i = 0, (n+3)/4 - 1
 arr(i*4 + 1) = arr(i*4 + 1) * 10
 if ((i*4 + 2) < n) arr(i*4 + 2) = arr(i*4 + 2) * 10
 if ((i*4 + 3) < n) arr(i*4 + 3) = arr(i*4 + 3) * 10
 if ((i*4 + 4) < n) arr(i*4 + 4) = arr(i*4 + 4) * 10
 END DO
 END SUBROUTINE

See Also
OpenMP Fortran Compiler Directives
Syntax Rules for Compiler Directives
TILE directive
To learn more about canonical form loops, see the OpenMP* specification.

UNROLL and NOUNROLL General Directives
General Compiler Directive: Tells the compiler's
optimizer how many times to unroll a DO loop or
disables the unrolling of a DO loop. These directives
can only be applied to iterative DO loops.

Syntax
!DIR$ UNROLL [(n)] -or- !DIR$ UNROLL [=n]
!DIR$ NOUNROLL

n Is an integer constant. The range of n is 0 through 255.

If n is specified, the optimizer unrolls the loop n times. If n is omitted, or if it is outside the allowed range,
the optimizer picks the number of times to unroll the loop.

The UNROLL directive overrides any setting of loop unrolling from the command line.

To use these directives, compiler option O2 or higher must be in effect.

Intel® Fortran Compiler Classic and Intel® Fortran Compiler Developer Guide and Reference 1

1987

https://www.openmp.org/specifications/

Example

!DIR$ UNROLL
 do i =1, m
 b(i) = a(i) + 1
 d(i) = c(i) + 1
 enddo

The following shows another example:

!DIR$ UNROLL= 4
 do i =1, m
 b(i) = a(c(i)) + 1
 enddo

See Also
General Compiler Directives
Syntax Rules for Compiler Directives
Rules for General Directives that Affect DO Loops
Rules for Loop Directives that Affect Array Assignment Statements
O compiler option

UNROLL_AND_JAM and NOUNROLL_AND_JAM
General Compiler Directive: Hints to the compiler
to enable or disable loop unrolling and jamming.
These directives can only be applied to iterative DO
loops.

Syntax
!DIR$ UNROLL_AND_JAM [(n)] -or- !DIR$ UNROLL_AND_JAM [=n]
!DIR$ NOUNROLL_AND_JAM

n Is an integer constant. The range of n is 0 through 255.

The UNROLL_AND_JAM directive partially unrolls one or more loops higher in the nest than the innermost
loop and fuses (jams) the resulting loops back together. This transformation allows more reuses in the loop.

This directive is not effective on innermost loops. You must ensure that the immediately following loop is not
the innermost loop after compiler-initiated interchanges are completed.

Specifying this directive is a hint to the compiler that the unroll and jam sequence is legal and profitable. The
compiler will enable this transformation whenever possible.

The UNROLL_AND_JAM directive must precede the DO statement for each DO loop it affects. If n is specified,
the optimizer unrolls the loop n times. If n is omitted or if it is outside the allowed range, the optimizer
chooses the number of times to unroll the loop. The compiler generates correct code by comparing n and the
loop count.

This directive is supported only when compiler option O3 is set. The UNROLL_AND_JAM directive overrides
any setting of loop unrolling from the command line.

When unrolling a loop increases register pressure and code size, it may be necessary to prevent unrolling of
a nested or imperfect nested loop. In such cases, use the NOUNROLL_AND_JAM directive, which hints to the
compiler not to unroll a specified loop.

Example

integer a(10,10), b(10,10), c(10,10), d(10,10)
integer i, j, k

 1 Intel® Fortran Compiler Classic and Intel® Fortran Compiler Developer Guide and Reference

1988

!dir$ unroll_and_jam = 6

do i=1,10
 !dir$ unroll_and_jam (6)
 do j=1,10
 do k=1,10
 a (j, i) = a (j, i) + b (k, i) *c (k, j)
 end do ! k
 end do ! j
end do ! i

end

See Also
General Compiler Directives
Syntax Rules for Compiler Directives
Rules for General Directives that Affect DO Loops
Rules for Loop Directives that Affect Array Assignment Statements
O compiler option

UNTIED Clause
Parallel Directive Clause: Specifies that the task is
never tied to the thread that started its execution.

Syntax

UNTIED
Any thread in the team can resume the task region after a suspension. For example, during runtime, the
execution of a given task can start on thread A, break execution, and later resume on thread B.

USE
Statement: Gives a program unit accessibility to
public entities in a module.

Syntax
USE [[, mod-nature] ::] name [, rename-list]
USE [[, mod-nature] ::] name, ONLY : [only-list]

mod-nature Is INTRINSIC or NON_INTRINSIC. If INTRINSIC is used, name must
be the name of an intrinsic module. If NON_INTRINSIC is used, name
must be the name of a non-intrinsic module. If mod-nature is not
specified, name must be the name of an intrinsic or non-intrinsic
module. If both are provided, the non-intrinsic module is used. It is an
error to specify a user module and an intrinsic module of the same
name in the same program unit (see Examples).

name Is the name of the module.

rename-list Is one or more items, separated by commas, having the following
form:

local-name=> mod-name

Intel® Fortran Compiler Classic and Intel® Fortran Compiler Developer Guide and Reference 1

1989

local-name Is the name of the entity in the program unit
using the module or is "OPERATOR (op-
name)", where op-name is the name of a
defined operator in the program unit using
the module.

mod-name Is the name of a public entity in the module
or is "OPERATOR (op-name)", where op-
name is the name of a public entity in the
module.

only-list Is one or more items, separated by commas, where each item is the
name of a public entity in the module or a generic identifier (a generic
name, a defined operator specified as "OPERATOR (op-name)", or
defined assignment).

An entity in the only-list can also take the form:

[local-name =>] mod-name

Description

If the USE statement is specified without the ONLY option, the program unit has access to all public entities
in the named module.

If the USE statement is specified with the ONLY option, the program unit has access to only those entities
following the option.

If more than one USE statement for a given module appears in a scoping unit, the following rules apply:

• If one USE statement does not have the ONLY option, all public entities in the module are accessible, and
any rename-lists and only-lists are interpreted as a single, concatenated rename-list.

• If all the USE statements have ONLY options, all the only-lists are interpreted as a single, concatenated
only-list. Only those entities named in one or more of the only-lists are accessible.

If two or more generic interfaces that are accessible in a scoping unit have the same name, the same
operator, or are both assignments, they are interpreted as a single generic interface. Otherwise, multiple
accessible entities can have the same name only if no reference to the name is made in the scoping unit.

The local names of entities made accessible by a USE statement must not be declared locally other than in a
PUBLIC, PRIVATE, VOLATILE, or ASYNCHRONOUS statement. Within a module, if a use-associated entity is
declared VOLATILE or ASYNCHRONOUS, it has the default accessibility of a locally declared identifier.

The local names of use-associated entities can appear in NAMELIST group lists, but not in a COMMON or
EQUIVALENCE statement.

If the name of every module from which a use-associated entity is accessed appears in an accessibility
statement, the default accessibility of the entity is PRIVATE if every such accessibility statement is PRIVATE,
and PUBLIC if any such accessibility statement is PUBLIC.

The accessibility of a use associated entity within a module can be determined by applying the following rules
in the specified order:

1. It is PUBLIC if the entity is specified in the entity-list of a PUBLIC statement. It is PRIVATE if the entity
is specified in the entity-list of a PRIVATE statement.

2. If the entity is declared locally in an ASYNCHRONOUS or VOLATILE statement, go to 5.
3. It is PUBLIC if any module through which the entity is accessible appears in a PUBLIC statement.
4. It is PRIVATE if every module thru which the entity is accessible appears in a PRIVATE statement.
5. It is PUBLIC if there is a PUBLIC statement with no entity-list specified in the module. It is PRIVATE if

there is a PRIVATE statement with no entity-list specified in the module.
6. It is PUBLIC.

 1 Intel® Fortran Compiler Classic and Intel® Fortran Compiler Developer Guide and Reference

1990

Examples

The following shows examples of the USE statement:

MODULE MOD_A
 INTEGER :: B, C
 REAL E(25,5), D(100)
END MODULE MOD_A
...
SUBROUTINE SUB_Y
 USE MOD_A, DX => D, EX => E ! Array D has been renamed DX and array E
 ... ! has been renamed EX. Scalar variables B
END SUBROUTINE SUB_Y ! and C are also available to this
... ! subroutine (using their module names).
SUBROUTINE SUB_Z
 USE MOD_A, ONLY: B, C ! Only scalar variables B and C are
 ... ! available to this subroutine
END SUBROUTINE SUB_Z
...

You must not specify a user module and an intrinsic module of the same name in the same program unit. For
example, if you specify a user module named ISO_FORTRAN_ENV, then it is illegal to specify the following in
the same program unit:

USE :: ISO_FORTRAN_ENV
USE, INTRINSIC :: ISO_FORTRAN_ENV

The following example shows a module containing common blocks:

MODULE COLORS
 COMMON /BLOCKA/ C, D(15)
 COMMON /BLOCKB/ E, F
 ...
END MODULE COLORS
...
FUNCTION HUE(A, B)
 USE COLORS
 ...
END FUNCTION HUE

The USE statement makes all of the variables in the common blocks in module COLORS available to the
function HUE.

To provide data abstraction, a user-defined data type and operations to be performed on values of this type
can be packaged together in a module. The following example shows such a module:

MODULE CALCULATION
 TYPE ITEM
 REAL :: X, Y
 END TYPE ITEM

 INTERFACE OPERATOR (+)
 MODULE PROCEDURE ITEM_CALC
 END INTERFACE

CONTAINS
 FUNCTION ITEM_CALC (A1, A2)
 TYPE(ITEM) A1, A2, ITEM_CALC
 ...
 END FUNCTION ITEM_CALC
 ...

Intel® Fortran Compiler Classic and Intel® Fortran Compiler Developer Guide and Reference 1

1991

END MODULE CALCULATION

PROGRAM TOTALS
USE CALCULATION
TYPE(ITEM) X, Y, Z
 ...
 X = Y + Z
 ...
END

The USE statement allows program TOTALS access to both the type ITEM and the extended intrinsic operator
+ to perform calculations.

The following shows another example:

 ! Module containing original type declarations
 MODULE geometry
 type square
 real side
 integer border
 end type
 type circle
 real radius
 integer border
 end type
 END MODULE

 ! Program renames module types for local use.
 PROGRAM test
 USE GEOMETRY,LSQUARE=>SQUARE,LCIRCLE=>CIRCLE
 ! Now use these types in declarations
 type (LSQUARE) s1,s2
 type (LCIRCLE) c1,c2,c3

The following shows a defined operator in a USE statement:

 USE mymod, OPERATOR(.localop.) => OPERATOR(.moduleop.)
Entities in modules can be accessed either through their given name, or through aliases declared in the USE
statement of the main program unit. For example:

 USE MODULE_LIB, XTABS => CROSSTABS
This statement accesses the routine called CROSSTABS in MODULE_LIB by the name XTABS. This way, if two
modules have routines called CROSSTABS, one program can use them both simultaneously by assigning a
local name in its USE statement.

When a program or subprogram renames a module entity, the local name (XTABS, in the preceding example)
is accessible throughout the scope of the program unit that names it.

The ONLY option also allows public variables to be renamed. Consider the following:

 USE MODULE_A, ONLY: VARIABLE_A => VAR_A
In this case, the host program accesses only VAR_A from module A, and refers to it by the name
VARIABLE_A.

 1 Intel® Fortran Compiler Classic and Intel® Fortran Compiler Developer Guide and Reference

1992

Consider the following example:

 MODULE FOO
 integer foos_integer
 PRIVATE
 integer foos_my_integer
 END MODULE FOO

PRIVATE, in this case, makes the PRIVATE attribute the default for the entire module FOO. To make
foos_integer accessible to other program units, add the line:

 PUBLIC :: foos_integer
Alternatively, to make only foos_my_integer inaccessible outside the module, rewrite the module as
follows:

 MODULE FOO
 integer foos_integer
 integer, private::foos_my_integer
 END MODULE FOO

Given the following module declarations:

 MODULE mod1
 INTEGER x1
 END MODULE

 MODULE mod2
 USE mod1
 INTEGER x2
 END MODULE

Then in module mod3 below, x1 has default accessibility of PRIVATE:

 MODULE mod3
 USE mod2
 PUBLIC x2 ! x2 is PUBLIC
 PRIVATE ! x1 is PRIVATE
 END MODULE

In mod4 below, even though x1 is declared in mod1, and mod1 is declared PRIVATE in mod4, x1 is PUBLIC
since it is declared VOLATILE and it assumes the default accessibility of PUBLIC of a locally declared identifier
in mod4:

 MODULE mod4
 USE mod1
 PRIVATE mod1
 VOLATILE x1 ! x1 is PUBLIC
 END MODULE

In mod5 below, x1 and x2 are both PRIVATE since all modules from which they are accessed appear in
PRVATE statements:

 MODULE mod5
 USE mod1
 USE mod2
 PRIVATE mod1
 PRIVATE mod2 ! x1 and x2 are PRIVATE
 END MODULE

Intel® Fortran Compiler Classic and Intel® Fortran Compiler Developer Guide and Reference 1

1993

However, in mod6 below, both x1 and x2 are PUBLIC since they are accessible thru the use of mod2 which is
declared PUBLIC:

 MODULE mod6
 USE mod1
 USE mod2
 PRIVATE mod1
 PUBLIC mod2 ! x1 and x2 are PUBLIC
 END MODULE

See Also
Program Units and Procedures

USE_DEVICE_PTR Clause
Parallel Directive Clause: Tells the construct to use
a device pointer currently in the device data
environment.

Syntax

USE_DEVICE_PTR (ptr-list)

ptr-list Is a list of one or more variables of type C_PTR from the intrinsic
module ISO_C_BINDING1. The pointers are converted into device
pointers to the corresponding list item in the device data environment.

1 List items not of type C_PTR have been deprecated in the OpenMP* specification.

The pointers listed in ptr-list become private pointers in the device data environment. The device pointers to
the corresponding list items in the device data environment are assigned to the private pointers.

References in the construct to a ptr-list item that appears in this clause must be to the address of the ptr-list
item.

%VAL
Built-in Function: Changes the form of an actual
argument. Passes the argument as an immediate
value.

Syntax
%VAL (a)

a (Input) An expression, record name, procedure name, array, character
array section, or array element.

Description

The argument is passed as follows:

• On IA-32 architecture, as a 32-bit immediate value. If the argument is integer (or logical) and shorter
than 32 bits, it is sign-extended to a 32-bit value. For complex data types, %VAL passes two 32-bit
arguments.

• On Intel® 64 architecture, as a 64-bit immediate value. If the argument is integer (or logical) and shorter
than 64 bits, it is sign-extended to a 64-bit value. For complex data types, %VAL passes two 64-bit
arguments.

You must specify %VAL in the actual argument list of a CALL statement or function reference. You cannot use
it in any other context.

The following tables list the Intel® Fortran defaults for argument passing, and the allowed uses of %VAL:

 1 Intel® Fortran Compiler Classic and Intel® Fortran Compiler Developer Guide and Reference

1994

Expressions

Actual Argument Data Type Default %VAL

Logical REF Yes1

Integer REF Yes1

REAL(4) REF Yes

REAL(8) REF No

REAL(16) REF No

COMPLEX(4) REF Yes

COMPLEX(8) REF Yes

COMPLEX(16) REF No

Character See table note 2 No

Hollerith REF No

Aggregate3 REF No

Derived REF No

Array Name

Actual Argument Data Type Default %VAL

Numeric REF No

Character See table note 2 No

Aggregate3 REF No

Derived REF No

Procedure Name

Actual Argument Data Type Default %VAL

Numeric REF No

Character See table note 2 No

1 If a logical or integer value occupies less than 64 bits of storage on Intel® 64 architecture, or 32 bits of
storage on IA-32 architecture, it is converted to the correct size by sign extension. Use the ZEXT intrinsic
function if zero extension is desired.
2 A character argument is passed by address and hidden length.
3 In Intel® Fortran record structures

The %VAL and %REF functions override related !DIR$ ATTRIBUTE settings.

Example

 CALL SUB(2, %VAL(2))
Constant 2 is passed by reference. The second constant 2 is passed by immediate value.

See Also
CALL

Intel® Fortran Compiler Classic and Intel® Fortran Compiler Developer Guide and Reference 1

1995

%REF
%LOC

VALUE
Statement and Attribute: Specifies a type of
argument association for a dummy argument.

Syntax
The VALUE attribute can be specified in a type declaration statement or a VALUE statement, and takes one of
the following forms:

Type Declaration Statement:

type, [att-ls,] VALUE [, att-ls] :: arg [, arg] ...
Statement:

VALUE [::] arg [, arg]...

type Is a data type specifier.

att-ls Is an optional list of attribute specifiers.

arg Is the name of a dummy argument.

Description

The VALUE attribute can be used in INTERFACE body or in a procedure. It can only be specified for dummy
arguments. It cannot be specified for a dummy procedure.

An entity with the VALUE attribute must be a dummy data object that is not an assumed-size array or a
coarray, and does not have a coarray ultimate component.

When this attribute is specified for a present dummy argument, the dummy argument becomes associated
with a temporary, definable data object whose initial value is that of the corresponding actual argument. The
actual mechanism by which this happens is determined by the compiler. If the procedure also has the
BIND(C) attribute, the dummy argument is interoperable with the corresponding formal parameter of the C
language prototype, causing the argument to be passed or received by value if C would do so.

When the VALUE attribute is used in a type declaration statement, any length type parameter values must be
omitted or they must be specified by initialization expressions.

If the VALUE attribute is specified, you cannot specify a PARAMETER, EXTERNAL, POINTER, ALLOCATABLE,
VOLATILE, or INTENT (INOUT or OUT) attribute in the same scoping unit. Additionally, you cannot specify
both the OPTIONAL attribute and the VALUE attribute for a dummy argument to a procedure with the BIND
attribute.

You can use option assume nostd_value to tell the compiler to use non-standard semantics for VALUE so that
the value of the actual argument is passed to the called procedure, not the address of the actual argument
nor the address of a copy of the actual argument.

Example

The following example shows how the VALUE attribute can be applied in a type declaration statement.

j = 3
call sub (j)
write (*,*) j ! Writes 3
contains
subroutine sub (i)
integer, value :: I
i = 4

 1 Intel® Fortran Compiler Classic and Intel® Fortran Compiler Developer Guide and Reference

1996

write (*,*) i ! Writes 4
end subroutine sub
end

See Also
Type Declarations

Compatible attributes

assume compiler option

VECREMAINDER Clause
General Directive Clause: Allows the compiler to
vectorize (or not to vectorize) any peel or remainder
loops when the original loop is vectorized.

Syntax

[NO]VECREMAINDER
If !DIR$ VECTOR ALWAYS is specified, the following occurs:

• If VECREMAINDER is specified, the compiler vectorizes peel and remainder loops when the original main
loop is vectorized.

• If NOVECREMAINDER is specified, the compiler does not vectorize peel or remainder loops when the
original main loop is vectorized.

• If neither the VECREMAINDER or NOVECREMAINDER clause is specified, the compiler overrides efficiency
heuristics of the vectorizer and it determines whether the loop can be vectorized.

See Also
VECTOR and NOVECTOR
SIMD Loop Directive

VECTOR and NOVECTOR
General Compiler Directive: Overrides default
heuristics for vectorization of DO loops. It can also
affect certain optimizations.

Syntax

!DIR$ VECTOR [clause[[,] clause]...]
!DIR$ NOVECTOR

clause Is an optional vectorization or optimizer clause. It can be one or more
of the following:

• ALIGNED | UNALIGNED
Specifies that all data is aligned or no data is aligned in a DO loop.
These clauses override efficiency heuristics in the optimizer.

The ALIGNED clause instructs the compiler to assume all array
references are aligned. As a result, misalignment properties
analyzed from the program context, if any, will be discarded. The
UNALIGNED clause is a hint to the compiler to avoid alignment
optimizations; the compiler can still use available alignment

Intel® Fortran Compiler Classic and Intel® Fortran Compiler Developer Guide and Reference 1

1997

information. These clauses disable advanced alignment
optimizations of the compiler, such as dynamic or static loop
peeling to make references aligned.

Be careful when using the ALIGNED clause. The compiler may
choose to use aligned data movement instructions, instructions
with memory operands that require alignment, and/or nontemporal
stores. Such instructions will cause a runtime exception if some of
the access patterns are actually unaligned.

• ALWAYS [ASSERT]

Enables or disables vectorization of a DO loop.

The ALWAYS clause overrides efficiency heuristics of the vectorizer,
but it only works if the loop can actually be vectorized. If the
ASSERT keyword is added, the compiler will generate an error-level
assertion message saying that the compiler efficiency heuristics
indicate that the loop cannot be vectorized. You should use the
IVDEP directive to ignore assumed dependences.

• DYNAMIC_ALIGN [(var)] | NODYNAMIC_ALIGN]

Enables or disables dynamic alignment optimization. Dynamic
alignment is an optimization the compiler attempts to perform by
default. It involves peeling iterations from the vector loop into a
scalar loop before the vector loop so that the vector loop aligns
with a particular memory reference.

If you specify (var) for DYNAMIC_ALIGN, you can indicate a scalar
or array variable name on which to align. Specifying
DYNAMIC_ALIGN, with or without (var) does not guarantee the
optimization is performed; the compiler still uses heuristics to
determine feasibility of the optimization. The NODYNAMIC_ALIGN
clause disables the optimization for the loop.

• MASK_READWRITE | NOMASK READWRITE
Enables or disables the generation of masked load and store
operations within conditional statements.

The MASK_READWRITE clause directs the compiler to disable
memory speculation, causing the generation of masked load and
store operations within conditional statements. The
NOMASK_READWRITE clause directs the compiler to enable
memory speculation, causing the generation of unmasked loads
and stores within conditional statements.

• [NO]MULTIPLE_GATHER_SCATTER_BY_SHUFFLES (can also be
specified as [NO]G2S, which is deprecated)

Enables or disables the optimization for multiple adjacent gathers/
scatters.

The MULTIPLE_GATHER_SCATTER_BY_SHUFFLES clause is an
optimization hint to encourage use of unit-strided loads/stores plus
a set of shuffles instead of multiple gathers/scatters (or
straightforward gather/scatter emulation software sequences). The
NOMULTIPLE_GATHER_SCATTER_BY_SHUFFLES clause tells the
compiler not to try optimizing multiple gathers/scatters into unit-
strided loads/stores plus a set of shuffles.

 1 Intel® Fortran Compiler Classic and Intel® Fortran Compiler Developer Guide and Reference

1998

• TEMPORAL | NONTEMPORAL [(var1 [, var2]...)]

var Is an optional memory reference in the
form of a variable name.

Controls how the "stores" of register contents to memory are
performed (streaming versus non-streaming).

The TEMPORAL clause directs the compiler to use temporal (that is,
non-streaming) stores. The NONTEMPORAL clause directs the
compiler to use non-temporal (that is, streaming) stores.

By default, the compiler automatically determines whether a
streaming store should be used for each variable.

Streaming stores may cause significant performance improvements
over non-streaming stores for large numbers on certain processors.
However, the misuse of streaming stores can significantly degrade
performance.

• [NO]VECREMAINDER
• VECTORLENGTH (n1 [, n2]…)

Tells the vectorizor which vector length/factor to use when
generating the main vector loop. n is an integer power of 2; the
value must be 2, 4, 8, 16, 32, or 64. If more than one value is
specified, the vectorizor will choose one of the specified vector
lengths based on a cost model decision.

The VECTOR and NOVECTOR directives control vectorization of the DO loop that directly follows the directive.

If the MASK_READWRITE clause is specified, the compiler generates masked loads and stores within all
conditional branches in the loop. If the NOMASK_READWRITE clause is specified, the compiler generates
unmasked loads and stores for increased performance.

Caution
The VECTOR directive should be used with care. Overriding the efficiency heuristics of the compiler
should only be done if you are absolutely sure the vectorization will improve performance.

Product and Performance Information

Performance varies by use, configuration and other factors. Learn more at www.Intel.com/
PerformanceIndex.

Notice revision #20201201

Example

The compiler normally does not vectorize DO loops that have a large number of non-unit stride references
(compared to the number of unit stride references).

In the following example, vectorization would be disabled by default, but the directive overrides this
behavior:

!DIR$ VECTOR ALWAYS
 do i = 1, 100, 2
 ! two references with stride 2 follow
 a(i) = b(i)
 enddo

Intel® Fortran Compiler Classic and Intel® Fortran Compiler Developer Guide and Reference 1

1999

https://www.intel.com/PerformanceIndex
https://www.intel.com/PerformanceIndex

There may be cases where you want to explicitly avoid vectorization of a loop; for example, if vectorization
would result in a performance regression rather than an improvement. In these cases, you can use the
NOVECTOR directive to disable vectorization of the loop.

In the following example, vectorization would be performed by default, but the directive overrides this
behavior:

!DIR$ NOVECTOR
 do i = 1, 100
 a(i) = b(i) + c(i)
 enddo

See Also
General Compiler Directives

Syntax Rules for Compiler Directives
IVDEP directive
Rules for General Directives that Affect DO Loops
Rules for Loop Directives that Affect Array Assignment Statements
qopt-multiple-gather-scatter-by-shuffles, Qopt-multiple-gather-scatter-by-shuffles compiler
option

VERIFY
Elemental Intrinsic Function (Generic): Verifies
that a set of characters contains all the characters in a
string by identifying the first character in the string
that is not in the set.

Syntax
result = VERIFY (string, set [, back] [, kind])

string (Input) Must be of type character.

set (Input) Must be of type character with the same kind parameter as
string.

back (Input; optional) Must be of type logical.

kind (Input; optional) Must be a scalar integer constant expression.

Results

The result type is integer. If kind is present, the kind parameter of the result is that specified by kind;
otherwise, the kind parameter of the result is that of default integer. If the processor cannot represent the
result value in the kind of the result, the result is undefined.

If back is omitted (or is present with the value false) and string has at least one character that is not in set,
the value of the result is the position of the leftmost character of string that is not in set.

If back is present with the value true and string has at least one character that is not in set, the value of the
result is the position of the rightmost character of string that is not in set.

If each character of string is in set or the length of string is zero, the value of the result is zero.

The setting of compiler options specifying integer size can affect this function.

Example

VERIFY ('CDDDC', 'C') has the value 2.

VERIFY ('CDDDC', 'C', BACK=.TRUE.) has the value 4.

 1 Intel® Fortran Compiler Classic and Intel® Fortran Compiler Developer Guide and Reference

2000

VERIFY ('CDDDC', 'CD') has the value zero.

The following shows another example:

 INTEGER(4) position

 position = VERIFY ('banana', 'nbc') ! returns 2
 position = VERIFY ('banana', 'nbc', BACK=.TRUE.)
 ! returns 6
 position = VERIFY ('banana', 'nbca') ! returns 0

See Also
SCAN

VIRTUAL
Statement: Has the same form and effect as the
DIMENSION statement. It is included for compatibility
with PDP-11 FORTRAN.

See Also
DIMENSION

VOLATILE
Statement and Attribute: Specifies that the value of
an object is entirely unpredictable, based on
information local to the current program unit. It
prevents objects from being optimized during
compilation.

Syntax
The VOLATILE attribute can be specified in a type declaration statement or a VOLATILE statement, and takes
one of the following forms:
Type Declaration Statement:

type, [att-ls,] VOLATILE [, att-ls] :: object[, object] ...
Statement:

VOLATILE [::] object[, object] ...

type Is a data type specifier.

att-ls Is an optional list of attribute specifiers.

object Is the name of an object, or the name of a common block enclosed in
slashes.

A variable or COMMON block must be declared VOLATILE if it can be read or written in a way that is not
visible to the compiler. For example:

• If an operating system feature is used to place a variable in shared memory (so that it can be accessed by
other programs), the variable must be declared VOLATILE.

• If a variable is accessed or modified by a routine called by the operating system when an asynchronous
event occurs, the variable must be declared VOLATILE.

If an array is declared VOLATILE, each element in the array becomes volatile. If a common block is declared
VOLATILE, each variable in the common block becomes volatile.

If an object of derived type is declared VOLATILE, its components become volatile.

If a pointer is declared VOLATILE, the pointer itself becomes volatile.

A VOLATILE statement cannot specify the following:

Intel® Fortran Compiler Classic and Intel® Fortran Compiler Developer Guide and Reference 1

2001

• A procedure
• A namelist group

The VOLATILE attribute must not be specified for a coarray that is accessed by use or host association. A
noncoarray object that has the VOLATILE attribute can be associated with an object that does not have the
VOLATILE attribute, including by use or host association. A data object with the VOLATILE attribute may not
be declared in a PURE procedure or referenced by a PURE statement function.

Example

The following example shows a type declaration statement specifying the VOLATILE attribute:

 INTEGER, VOLATILE :: D, E
The following example shows a VOLATILE statement:

 PROGRAM TEST
 LOGICAL(KIND=1) IPI(4)
 INTEGER(KIND=4) A, B, C, D, E, ILOOK
 INTEGER(KIND=4) P1, P2, P3, P4
 COMMON /BLK1/A, B, C
 VOLATILE /BLK1/, D, E
 EQUIVALENCE(ILOOK, IPI)
 EQUIVALENCE(A, P1)
 EQUIVALENCE(P1, P4)

The named common block, BLK1, and the variables D and E are volatile. Variables P1 and P4 become volatile
because of the direct equivalence of P1 and the indirect equivalence of P4.

See Also
Type Declarations
Compatible attributes

WAIT
Statement: Performs a wait operation for a specified
pending asynchronous data transfer operation. It
takes one of the following forms:

Syntax

WAIT([UNIT=]io-unit [, END=label] [, EOR=label] [, ERR=label] [, ID=id-var] [, IOMSG=msg-
var] [, IOSTAT=i-var])
WAIT io-unit

io-unit (Input) Is an external unit specifier.

label (Input) Is the label of the branch target statement that receives
control if an error occurs.

id-var (Input) Is a scalar integer variable that is the identifier of a pending
data transfer operation for the specified unit. If it is specified, a wait
operation is performed for that pending operation. If it is omitted, wait
operations are performed for all pending data transfers for the
specified unit.

msg-var (Output) Is a scalar default character variable that is assigned an
explanatory message if an I/O error occurs.

i-var (Output) Is a scalar integer variable that is defined as a positive
integer if an error occurs and zero if no error occurs.

 1 Intel® Fortran Compiler Classic and Intel® Fortran Compiler Developer Guide and Reference

2002

A wait operation completes the processing of a pending data transfer operation. Each wait operation
completes only a single data transfer operation, although a single statement may perform multiple wait
operations.

The WAIT statement specifiers can appear in any order. An I/O unit must be specified, but the UNIT=
keyword is optional if the unit specifier is the first item in the I/O control list.

The EOR= specifier only has effect if the pending data transfer operation is a nonadvancing read. The END=
specifier only has effect if the pending data transfer operation is a READ.

Example

The following example shows how the WAIT statement can be applied.

program test
integer, asynchronous, dimension(100) :: array
open (unit=1,file='asynch.dat',asynchronous='YES',&
 form='unformatted')
write (1) (i,i=1,100)
rewind (1)
read (1,asynchronous='YES') array
wait(1)
write (*,*) array(1:10)
end

WHERE
Statement and Construct: Lets you use masked
array assignment, which performs an array operation
on selected elements. This kind of assignment applies
a logical test to an array on an element-by-element
basis.

Syntax
Statement:

WHERE (mask-expr1) assign-stmt
Construct:

[name:]WHERE (mask-expr1)
 [where-body-stmt] ...
[ELSE WHERE(mask-expr2) [name]
 [where-body-stmt] ...]
[ELSE WHERE[name]
 [where-body-stmt] ...]
END WHERE [name]

mask-expr1, mask-expr2 Are logical array expressions (called mask expressions).

assign-stmt Is an assignment statement of the form: array variable = array
expression.

name Is the name of the WHERE construct.

where-body-stmt Is one of the following:

• An assign-stmt

Intel® Fortran Compiler Classic and Intel® Fortran Compiler Developer Guide and Reference 1

2003

The assignment can be a defined assignment only if the routine
implementing the defined assignment is elemental.

• A WHERE statement or construct

Description

If a construct name is specified in a WHERE statement, the same name must appear in the corresponding
END WHERE statement. The same construct name can optionally appear in any ELSE WHERE statement in
the construct. (ELSE WHERE cannot specify a different name.)

In each assignment statement, the mask expression, the variable being assigned to, and the expression on
the right side, must all be conformable. Also, the assignment statement cannot be a defined assignment.

Only the WHERE statement (or the first line of the WHERE construct) can be labeled as a branch target
statement.

The following shows an example using a WHERE statement:

 INTEGER A, B, C
 DIMENSION A(5), B(5), C(5)
 DATA A /0,1,1,1,0/
 DATA B /10,11,12,13,14/
 C = -1

 WHERE(A .NE. 0) C = B / A
The resulting array C contains: -1,11,12,13, and -1.

The assignment statement is only executed for those elements where the mask is true. Think of the mask
expression as being evaluated first into a logical array that has the value true for those elements where A is
positive. This array of trues and falses is applied to the arrays A, B and C in the assignment statement. The
right side is only evaluated for elements for which the mask is true; assignment on the left side is only
performed for those elements for which the mask is true. The elements for which the mask is false do not get
assigned a value.

In a WHERE construct, the mask expression is evaluated first and only once. Every assignment statement
following the WHERE is executed as if it were a WHERE statement with " mask-expr1" and every assignment
statement following the ELSE WHERE is executed as if it were a WHERE statement with ".NOT. mask-expr1".
If ELSE WHERE specifies "mask-expr2", it is executed as "(.NOT. mask-expr1) .AND. mask-expr2" during the
processing of the ELSE WHERE statement.

You should be careful if the statements have side effects, or modify each other or the mask expression.

The following is an example of the WHERE construct:

 DIMENSION PRESSURE(1000), TEMP(1000), PRECIPITATION(1000)
 WHERE(PRESSURE .GE. 1.0)
 PRESSURE = PRESSURE + 1.0
 TEMP = TEMP - 10.0
 ELSEWHERE
 PRECIPITATION = .TRUE.
 ENDWHERE

The mask is applied to the arguments of functions on the right side of the assignment if they are considered
to be elemental functions. Only elemental intrinsics are considered elemental functions. Transformational
intrinsics, inquiry intrinsics, and functions or operations defined in the subprogram are considered to be
nonelemental functions.

Consider the following example using LOG, an elemental function:

 WHERE(A .GT. 0) B = LOG(A)

 1 Intel® Fortran Compiler Classic and Intel® Fortran Compiler Developer Guide and Reference

2004

The mask is applied to A, and LOG is executed only for the positive values of A. The result of the LOG is
assigned to those elements of B where the mask is true.

Consider the following example using SUM, a nonelemental function:

 REAL A, B
 DIMENSION A(10,10), B(10)
 WHERE(B .GT. 0.0) B = SUM(A, DIM=1)

Since SUM is nonelemental, it is evaluated fully for all of A. Then, the assignment only happens for those
elements for which the mask evaluated to true.

Consider the following example:

 REAL A, B, C
 DIMENSION A(10,10), B(10), C(10)
 WHERE(C .GT. 0.0) B = SUM(LOG(A), DIM=1)/C

Because SUM is nonelemental, all of its arguments are evaluated fully regardless of whether they are
elemental or not. In this example, LOG(A) is fully evaluated for all elements in A even though LOG is
elemental. Notice that the mask is applied to the result of the SUM and to C to determine the right side. One
way of thinking about this is that everything inside the argument list of a nonelemental function does not use
the mask, everything outside does.

Example

 REAL(4) a(20)
 . . .
 WHERE (a > 0.0)
 a = LOG (a)
 !LOG is invoked only for positive elements
 END WHERE

See Also
FORALL
Arrays

WORKSHARE
OpenMP* Fortran Compiler Directive: Divides the
work of executing a block of statements or constructs
into separate units. It also distributes the work of
executing the units to threads of the team so each
unit is only executed once.

Syntax

!$OMP WORKSHARE [NOWAIT]
 loosely-structured-block
!$OMP END WORKSHARE [NOWAIT]
-or-

!$OMP WORKSHARE [NOWAIT]
 strictly-structured-block
[!$OMP END WORKSHARE [NOWAIT]]

loosely-structured-block Is a structured block (section) of statements or constructs. You cannot
branch into or out of the block.

Intel® Fortran Compiler Classic and Intel® Fortran Compiler Developer Guide and Reference 1

2005

strictly-structured-block Is a Fortran BLOCK construct. You cannot branch into or out of the
BLOCK construct.

The loosely-structured-block or strictly-structured-block is executed so that each statement is
completed before the next statement is started and the evaluation of the right hand side of an assignment is
completed before the effects of assigning to the left hand side occur.

The following are additional rules for the block:

• It may contain statements that bind to lexically enclosed PARALLEL constructs. Statements in these
PARALLEL constructs are not restricted.

• It may contain ATOMIC directives and CRITICAL constructs.
• It must only contain array assignment statements, scalar assignment statements, FORALL statements,

FORALL constructs, WHERE statements, or WHERE constructs.
• It must not contain any user-defined function calls unless the function is ELEMENTAL.

The binding thread set for a WORKSHARE construct is the current team. A workshare region binds to the
innermost enclosing parallel region.

If you do not specify the NOWAIT keyword, synchronization is implied following the code. NOWAIT can
appear in either the beginning WORKSHARE directive, or in the END WORKSHARE directive, but not in both
for the same WORKSHARE construct.

Multithreaded code is not always generated for the statements inside the block of an OMP WORKSHARE
construct. Some statements parallelize; others do not parallelize and instead execute sequentially inside an
OMP SINGLE construct to preserve the correct semantics of WORKSHARE. Some specific details follow:

• Simple array assignments such as A = B + C parallelize.
• Simple array assignments with overlap such as A = A + B + C parallelize.
• Array assignments with user-defined function calls parallelize such as A = A + F (B). F must be

ELEMENTAL.
• Array assignments with array slices on the right hand side of the assignment such as A = A + B(1:4) +

C(1:4) parallelize. If the lower bound of the left hand side or the array slice lower bound or the array slice
stride on the right hand side is not 1, then the statement does not parallelize.

• Assigning into array slices does not parallelize.
• Scalar assignments do not parallelize – there is no work that needs to be done in parallel.
• FORALL and WHERE constructs do not parallelize.

See Also
OpenMP Fortran Compiler Directives
Syntax Rules for Compiler Directives
PARALLEL WORKSHARE
Parallel Processing Model for information about Binding Sets

WRITE Statement
Statement: Transfers output data to external
sequential, direct-access, or internal records.

Syntax
Sequential
Formatted:

WRITE (eunit, format [, advance] [, asynchronous] [, decimal] [, id] [, pos] [, round] [,
sign] [, iostat] [, err] [, [iomsg])[io-list]
Formatted - List-Directed:

WRITE (eunit, * [, asynchronous] [, decimal] [, delim] [, id] [, pos] [, round] [, sign]
[, iostat] [, err] [, iomsg])[io-list]

 1 Intel® Fortran Compiler Classic and Intel® Fortran Compiler Developer Guide and Reference

2006

Formatted - Namelist:

WRITE (eunit, nml-group [, asynchronous] [, decimal] [, delim] [, id] [, pos] [, round]
[, sign] [, iostat] [, err] [, iomsg])
Unformatted:

WRITE (eunit [, asynchronous] [, id] [, pos] [, iostat] [, err] [, iomsg])[io-list]
Direct-Access

Formatted:

WRITE (eunit, format, rec [, asynchronous] [, decimal] [, delim] [, id] [, pos] [, round]
[, sign] [, iostat] [, err] [, iomsg])[io-list]
Unformatted:

WRITE (eunit, rec [, asynchronous] [, id] [, pos] [, iostat] [, err] [, iomsg])[io-list]
Internal

WRITE (iunit, format [, nml-group] [, iostat] [, err] [, iomsg])[io-list]
Internal Namelist

WRITE (iunit, nml-group [, iostat] [, err] [, iomsg])[io-list]

eunit Is an external unit specifier, optionally prefaced by UNIT=. UNIT= is
required if eunit is not the first specifier in the list.

format Is a format specifier. It is optionally prefaced by FMT= if format is the
second specifier in the list and the first specifier indicates a logical or
internal unit specifier without the optional keyword UNIT=.

advance Is an advance specifier (ADVANCE=c-expr). If the value of c-expr is
'YES', the statement uses advancing input; if the value is 'NO', the
statement uses nonadvancing input. The default value is 'YES'.

asynchronous Is an asynchronous specifier (ASYNCHRONOUS=i-expr). If the value
of i-expr is 'YES', the statement uses asynchronous input; if the value
is 'NO', the statement uses synchronous input. The default value is
'NO'.

decimal Is a decimal mode specifier (DECIMAL=dmode) that evaluates to
'COMMA' or 'POINT'. The default value is 'POINT'.

delim Is a delimiter specifier (DELIM=del). If the value of del is
'APOSTROPHE', apostrophes delimit character constants. If the value
is 'QUOTE', quotes delimit character constants. If the value of del is
'NONE', character constants have no delimiters.

id Is an id specifier (ID=id-var). If ASYNCHRONOUS='YES' is specified
and the operation completes successfully, the id specifier becomes
defined with an implementation-dependent value that can be specified
in a future WAIT or INQUIRE statement to identify the particular data
transfer operation. If an error occurs, the id specifier variable becomes
undefined.

pos Is a pos specifier (POS=p) that indicates a file position in file storage
units in a stream file (ACCESS='STREAM'). It can only be specified for
a file opened for stream access. If omitted, the stream I/O occurs
starting at the next file position after the current file position.

Intel® Fortran Compiler Classic and Intel® Fortran Compiler Developer Guide and Reference 1

2007

round Is a rounding specifier (ROUND=rmode) that determines the I/O
rounding mode for this WRITE statement. If omitted, the rounding
mode is unchanged. Possible values are UP, DOWN, ZERO, NEAREST,
COMPATIBLE or PROCESSOR_DEFINED.

sign Is a plus sign specifier (SIGN=sn). This controls whether optional plus
characters appear in formatted numeric output.

iostat Is the name of a variable to contain the completion status of the I/O
operation. Optionally prefaced by IOSTAT=.

err Are branch specifiers if an error (ERR=label) condition occurs.

iomsg Is an I/O message specifier (IOMSG=msg-var).

io-list Is an I/O list: the names of the variables, arrays, array elements, or
character substrings from which or to which data will be transferred.
Optionally an implied-DO list.

form Is the nonkeyword form of a format specifier (no FMT=).

* Is the format specifier indicating list-directed formatting. (It can also
be specified as FMT= *.)

nml-group Is the namelist group specification for namelist I/O. Optionally
prefaced by NML=. NML= is required if nml-group is not the second
I/O specifier. For more information, see Namelist Specifier.

rec Is the cell number of a record to be accessed directly. It must be
prefaced by REC=.

iunit Is an internal unit specifier, optionally prefaced by UNIT=. UNIT= is
required if iunit is not the first specifier in the list.

It must be a character variable. It must not be an array section with a
vector subscript.

If an item in io-list is an expression that calls a function, that
function must not execute an I/O statement or the EOF intrinsic
function on the same external unit as eunit.

If you specify DECIMAL=, ROUND=, or SIGN= you must also specify FMT= or NML=.

If you specify ID=, you must also specify ASYNCHRONOUS='YES'.

Example

 ! write to file
 open(1,FILE='test.dat')
 write (1, '(A20)') namedef
 ! write with FORMAT statement
 WRITE (*, 10) (n, SQRT(FLOAT(n)), FLOAT(n)**(1.0/3.0), n = 1, 100)
 10 FORMAT (I5, F8.4, F8.5)

The following shows another example:

WRITE(6,'("Expected ",F12.6)') 2.0

See Also
I/O Lists
I/O Control List

 1 Intel® Fortran Compiler Classic and Intel® Fortran Compiler Developer Guide and Reference

2008

Forms for Sequential WRITE Statements
Forms for Direct-Access WRITE Statements
Forms and Rules for Internal WRITE Statements
READ
PRINT
OPEN
I/O Formatting

XOR
Elemental Intrinsic Function (Generic): An
alternative name for intrinsic function IEOR.

See Also
See IEOR.

ZEXT
Elemental Intrinsic Function (Generic): Extends
an argument with zeros. This function is used
primarily for bit-oriented operations. It cannot be
passed as an actual argument.

Syntax
result = ZEXT (x [,kind])

x (Input) Must be of type logical or integer.

kind (Input; optional) Must be a scalar integer constant expression.

Results

The result type is integer. If kind is present, the kind parameter of the result is that specified by kind;
otherwise, the kind parameter of the result is that of default integer. If the processor cannot represent the
result value in the kind of the result, the result is undefined.

The result value is x extended with zeros and treated as an unsigned value.

The storage requirements for integer constants are never less than two bytes. Integer constants within the
range of constants that can be represented by a single byte still require two bytes of storage.

The setting of compiler options specifying integer size can affect this function.

Specific Name 1 Argument Type Result Type

IZEXT LOGICAL(1) INTEGER(2)

LOGICAL(2) INTEGER(2)

INTEGER(1) INTEGER(2)

INTEGER(2) INTEGER(2)

JZEXT LOGICAL(1) INTEGER(4)

LOGICAL(2) INTEGER(4)

LOGICAL(4) INTEGER(4)

INTEGER(1) INTEGER(4)

Intel® Fortran Compiler Classic and Intel® Fortran Compiler Developer Guide and Reference 1

2009

Specific Name 1 Argument Type Result Type

INTEGER(2) INTEGER(4)

INTEGER(4) INTEGER(4)

KZEXT LOGICAL(1) INTEGER(8)

LOGICAL(2) INTEGER(8)

LOGICAL(4) INTEGER(8)

LOGICAL(8) INTEGER(8)

INTEGER(1) INTEGER(8)

INTEGER(2) INTEGER(8)

INTEGER(4) INTEGER(8)

INTEGER(8) INTEGER(8)

1These specific functions cannot be passed as actual arguments.

Example

Consider the following example:

 INTEGER(2) W_VAR /'FFFF'X/
 INTEGER(4) L_VAR
 L_VAR = ZEXT(W_VAR)

This example stores an INTEGER(2) quantity in the low-order 16 bits of an INTEGER(4) quantity, with the
resulting value of L_VAR being '0000FFFF'X. If the ZEXT function had not been used, the resulting value
would have been 'FFFFFFFF'X, because W_VAR would have been converted to the left-hand operand's data
type by sign extension.

POSIX* Library Routines
This section contains descriptions of the POSIX* library routines. They are listed in alphabetical order.

To access the POSIX library, you must specify a USE IFPOSIX statement in your program.

Certain POSIX* routines are restricted to Linux* systems. If a routine is restricted, it will say that in the
description.

IPXFARGC
POSIX Function: Returns the index of the last
command-line argument.

Module

USE IFPOSIX

Syntax
result = IPXFARGC()

Results

The result type is INTEGER(4). The result value is the number of command-line arguments, excluding the
command name, in the command used to invoke the executing program. A return value of zero indicates
there are no command-line arguments other than the command name itself.

 1 Intel® Fortran Compiler Classic and Intel® Fortran Compiler Developer Guide and Reference

2010

See Also
PXFGETARG

IPXFCONST
POSIX Function: Returns the value associated with a
constant defined in the C POSIX standard.

Module

USE IFPOSIX

Syntax
result = IPXFCONST (constname)

constname (Input) Character. The name of a C POSIX standard constant.

Results

The result type is INTEGER(4). If constname corresponds to a defined constant in the C POSIX standard, the
result value is the integer that is associated with the constant. Otherwise, the result value is -1.

See Also
PXFGETARG
PXFCONST

IPXFLENTRIM
POSIX Function: Returns the index of the last non-
blank character in an input string.

Module

USE IFPOSIX

Syntax
result = IPXFLENTRIM (string)

string (Input) Character. A character string.

Results

The result type is INTEGER(4). The result value is the index of the last non-blank character in the input
argument string, or zero if all characters in string are blank characters.

IPXFWEXITSTATUS
POSIX Function: Returns the exit code of a child
process. This routine is only available for Linux.

Module

USE IFPOSIX

Syntax
result = IPXFWEXITSTATUS (istat)

istat (Input) INTEGER(4). The value of output argument istat from
PXFWAIT or PXFWAITPID.

Intel® Fortran Compiler Classic and Intel® Fortran Compiler Developer Guide and Reference 1

2011

Results

The result type is INTEGER(4). The result is the low-order eight bits of the output argument of PXFWAIT or
PXFWAITPID.

The IPXFWEXITSTATUS function should only be used if PXFWIFEXITED returns TRUE.

Example

program t1
use ifposix
integer(4) ipid, istat, ierror, ipid_ret, istat_ret
 print *," the child process will be born"
 call PXFFORK(IPID, IERROR)
 call PXFGETPID(IPID_RET,IERROR)
 if(IPID.EQ.0) then
 print *," I am a child process"
 print *," My child's pid is", IPID_RET
 call PXFGETPPID(IPID_RET,IERROR)
 print *," The pid of my parent is",IPID_RET
 print *," Now I have exited with code 0xABCD"
 call PXFEXIT(Z'ABCD')
 else
 print *," I am a parent process"
 print *," My parent pid is ", IPID_RET
 print *," I am creating the process with pid", IPID
 print *," Now I am waiting for the end of the child process"
 call PXFWAIT(ISTAT, IPID_RET, IERROR)
 print *," The child with pid ", IPID_RET," has exited"
 if(PXFWIFEXITED(ISTAT)) then
 print *, " The child exited normally"
 istat_ret = IPXFWEXITSTATUS(ISTAT)
 print 10," The low byte of the child exit code is", istat_ret
 end if
 end if
10 FORMAT (A,Z)
end program

See Also
PXFWAIT
PXFWAITPID
PXFWIFEXITED

IPXFWSTOPSIG
POSIX Function: Returns the number of the signal
that caused a child process to stop. This routine is
only available for Linux.

Module

USE IFPOSIX

Syntax
result = IPXFWSTOPSIG (istat)

istat (Input) INTEGER(4). The value of output argument istat from
PXFWAIT or PXFWAITPID.

 1 Intel® Fortran Compiler Classic and Intel® Fortran Compiler Developer Guide and Reference

2012

Results

The result type is INTEGER(4). The result is the number of the signal that caused the child process to stop.

The IPXFWSTOPSIG function should only be used if PXFWIFSTOPPED returns TRUE.

See Also
PXFWAIT
PXFWAITPID
PXFWIFSTOPPED

IPXFWTERMSIG
POSIX Function: Returns the number of the signal
that caused a child process to terminate. This routine
is only available for Linux.

Module

USE IFPOSIX

Syntax
result = IPXFWTERMSIG (istat)

istat (Input) INTEGER(4). The value of output argument istat from
PXFWAIT or PXFWAITPID.

Results

The result type is INTEGER(4). The result is the number of the signal that caused the child process to
terminate.

The IPXFWTERMSIG function should only be used if PXFWIFSIGNALED returns TRUE.

See Also
PXFWAIT
PXFWAITPID
PXFWIFSIGNALED

PXFGET
POSIX Subroutine: Gets the value stored in a
component (or field) of a structure.

Module

USE IFPOSIX

Syntax
CALL PXF(type)GET (jhandle,compname,value,ierror)
CALL PXF(type)GET (jhandle,compname,value,ilen,ierror) ! syntax when (type) is STR

(type) A placeholder for one of the following values:

Value Data Type Routine Name

INT INTEGER(4) PXFINTGET

REAL REAL(4) PXFREALGET

Intel® Fortran Compiler Classic and Intel® Fortran Compiler Developer Guide and Reference 1

2013

Value Data Type Routine Name

LGCL LOGICAL(4) PXFLGCLGET

STR CHARACTER*(*) PXFSTRGET

CHAR CHARACTER(1) PXFCHARGET

DBL REAL(8) PXFDBLGET

INT8 INTEGER(8) PXFINT8GET

jhandle (Input) INTEGER(4). A handle of a structure.

compname (Input) Character. The name of the component (or field) of the
structure to retrieve data from.

value (Output) A variable, whose data type depends on the value of (type).
See the table above for the data types for each value; for example, if
the value for (type) is INT, the data type is INTEGER(4). Stores the
value of the component (or field).

ilen (Output) INTEGER(4). This argument can only be used when (type)
is STR (PXFSTRGET). Stores the length of the returned string.

ierror (Output) INTEGER(4). The error status.

If successful, ierror is set to zero; otherwise, an error code.

The PXF(type)GET subroutines retrieve the value from component (or field) compname of the structure
associated with handle jhandle into variable value.

Example

See the example in PXFTIMES (which shows PXFINTGET and PXFINT8GET)

See Also
PXF(type)SET

PXFSET
POSIX Subroutine: Sets the value of a component
(or field) of a structure.

Module

USE IFPOSIX

Syntax
CALL PXF(type)SET (jhandle,compname,value,ierror)
CALL PXF(type)SET (jhandle,compname,value,ilen,ierror) ! syntax when (type) is STR

(type) A placeholder for one of the following values:

Value Data Type Routine Name

INT INTEGER(4) PXFINTSET

REAL REAL(4) PXFREALSET

 1 Intel® Fortran Compiler Classic and Intel® Fortran Compiler Developer Guide and Reference

2014

Value Data Type Routine Name

LGCL LOGICAL(4) PXFLGCLSET

STR CHARACTER*(*) PXFSTRSET

CHAR CHARACTER(1) PXFCHARSET

DBL REAL(8) PXFDBLSET

INT8 INTEGER(8) PXFINT8SET

jhandle (Input) INTEGER(4). A handle of a structure.

compname (Input) Character. The name of the component (or field) of the
structure to write data to.

value (Input) A variable, whose data type depends on the value of (type).
See the table above for the data types for each value; for example, if
the value for (type) is INT, the data type is INTEGER(4). The value
for the component (or field).

ilen (Input) INTEGER(4). This argument can only be used when (type) is
STR (PXFSTRSET). The length of the string in value.

ierror (Output) INTEGER(4). The error status.

If successful, ierror is set to zero; otherwise, an error code.

Example

See the example in PXFSTRUCTCREATE (which shows PXFSTRSET)

See Also
PXF(type)GET

PXFAGET
POSIX Subroutine: Gets the array values stored in a
component (or field) of a structure.

Module

USE IFPOSIX

Syntax
CALL PXFA(type)GET (jhandle,compname,value,ialen,ierror)
CALL PXFA(type)GET (jhandle,compname,value,ialen,ilen,ierror) ! syntax when (type) is
STR

(type) A placeholder for one of the following values:

Value Data Type Routine Name

INT INTEGER(4) PXFAINTGET

REAL REAL(4) PXFAREALGET

LGCL LOGICAL(4) PXFALGCLGET

Intel® Fortran Compiler Classic and Intel® Fortran Compiler Developer Guide and Reference 1

2015

Value Data Type Routine Name

STR CHARACTER*(*) PXFASTRGET

CHAR CHARACTER(1) PXFACHARGET

DBL REAL(8) PXFADBLGET

INT8 INTEGER(8) PXFAINT8GET

jhandle (Input) INTEGER(4). A handle of a structure.

compname (Input) Character. The name of the component (or field) of the
structure to retrieve data from.

value (Output) An array, whose data type depends on the value of (type).
See the table above for the data types for each value; for example, if
the value for (type) is INT, the data type of the array is INTEGER(4).
Stores the value of the component (or field).

ialen (Input) INTEGER(4). The size of array value.

ilen (Output) INTEGER(4). This argument can only be used when (type)
is STR (PXFASTRGET). An array that stores the lengths of elements of
array value.

ierror (Output) INTEGER(4). The error status.

If successful, ierror is set to zero; otherwise, an error code.

The PXFA(type)GET subroutines are similar to the PXF(type)GET subroutines, but they should be used when
the component (or field) of the structure is an array.

When the PXFA(type)GET subroutines are used, the entire array is accessed (read from the component or
field) as a unit.

See Also
PXFA(type)SET
PXF(type)GET

PXFASET
POSIX Subroutine: Sets the value of an array
component (or field) of a structure.

Module

USE IFPOSIX

Syntax
CALL PXFA(type)SET (jhandle, compname,value,ialen,ierror)
CALL PXFA(type)SET (jhandle,compname,value,ialen,ilen,ierror) ! syntax when (type) is
STR

(type) A placeholder for one of the following values:

Value Data Type Routine Name

INT INTEGER(4) PXFAINTSET

 1 Intel® Fortran Compiler Classic and Intel® Fortran Compiler Developer Guide and Reference

2016

Value Data Type Routine Name

REAL REAL(4) PXFAREALSET

LGCL LOGICAL(4) PXFALGCLSET

STR CHARACTER*(*) PXFASTRSET

CHAR CHARACTER(1) PXFACHARSET

DBL REAL(8) PXFADBLSET

INT8 INTEGER(8) PXFAINT8SET

jhandle (Input) INTEGER(4). A handle of a structure.

compname (Input) Character. The name of the component (or field) of the
structure to write data to.

value (Input) An array, whose data type depends on the value of (type).
See the table above for the data types for each value; for example, if
the value for (type) is INT, the data type of the array is INTEGER(4).
The value for the component (or field).

ialen (Input) INTEGER(4). The size of array value.

ilen (Input) INTEGER(4). This argument can only be used when (type) is
STR (PXFASTRSET). An array that specifies the lengths of elements of
array value.

ierror (Output) INTEGER(4). The error status.

If successful, ierror is set to zero; otherwise, an error code.

The PXFA(type)GET subroutines are similar to the PXF(type)GET subroutines, but they should be used when
the component (or field) of the structure is an array.

When the PXFA(type)GET subroutines are used, the entire array is accessed (read from the component or
field) as a unit.

See Also
PXFA(type)GET
PXF(type)SET

PXFACCESS
POSIX Subroutine: Determines the accessibility of a
file.

Module

USE IFPOSIX

Syntax
CALL PXFACCESS (path,ilen,iamode,ierror)

path (Input) Character. The name of the file.

ilen (Input) INTEGER(4). The length of the path string.

Intel® Fortran Compiler Classic and Intel® Fortran Compiler Developer Guide and Reference 1

2017

iamode (Input) INTEGER(4). One or more of the following:

0 Checks for existence of the file.

11 Checks for execute permission.

2 Checks for write access.

4 Checks for read access.

6 Checks for read/write access.

1Linux* only

ierror (Output) INTEGER(4). The error status.

If access is permitted, the result value is zero; otherwise, an error code. Possible error codes are:

• -1: A bad parameter was passed.
• ENOENT: The named directory does not exist.
• EACCES: Access requested was denied.

On Windows* systems, if the name given is a directory name, the function only checks for existence. All
directories have read/write access on Windows systems.

PXFALARM
POSIX Subroutine: Schedules an alarm.

Module

USE IFPOSIX

Syntax
CALL PXFALARM (iseconds,isecleft,ierror)

iseconds (Input) INTEGER(4). The number of seconds before the alarm signal
should be delivered.

isecleft (Output) INTEGER(4). The number of seconds remaining until any
previously scheduled alarm signal is due to be delivered.

It is set to zero if there was no previously scheduled alarm signal.

ierror (Output) INTEGER(4). The error status.

If successful, ierror is set to zero; otherwise, an error code.

The PXFALARM subroutine arranges for a SIGALRM signal to be delivered to the process in seconds
iseconds.

On Linux* systems, SIGALRM is a reserved defined constant that is equal to 14. You can use any other
routine to install the signal handler. You can get SIGALRM and other signal values by using PXFCONST or
IPXFCONST.

On Windows* systems, the SIGALRM feature is not supported, but the POSIX library has an implementation
you can use. You can provide a signal handler for SIGALRM by using PXFSIGACTION.

See Also
PXFCONST
IPXFCONST
PXFSIGACTION

 1 Intel® Fortran Compiler Classic and Intel® Fortran Compiler Developer Guide and Reference

2018

PXFCALLSUBHANDLE
POSIX Subroutine: Calls the associated subroutine.

Module

USE IFPOSIX

Syntax
CALL PXFCALLSUBHANDLE (jhandle2,ival,ierror)

jhandle2 (Input) INTEGER(4). A handle to the subroutine.

ival (Input) INTEGER(4). The argument to the subroutine.

ierror (Output) INTEGER(4). The error status.

If successful, ierror is set to zero; otherwise, an error code.

The PXFCALLSUBHANDLE subroutine, when given a subroutine handle, calls the associated subroutine.

PXFGETSUBHANDLE should be used to obtain a subroutine handle.

NOTE
The subroutine cannot be a function, an intrinsic, or an entry point, and must be defined with exactly
one integer argument.

See Also
PXFGETSUBHANDLE

PXFCFGETISPEED
POSIX Subroutine: Returns the input baud rate from
a termios structure. This routine is only available for
Linux.

Module

USE IFPOSIX

Syntax
CALL PXFCFGETISPEED (jtermios,iospeed,ierror)

jtermios (Input) INTEGER(4). A handle of structure termios.

iospeed (Output) INTEGER(4). The returned value of the input baud rate from
the structure associated with handle jtermios.

ierror (Output) INTEGER(4). The error status.

If successful, ierror is set to zero; otherwise, an error code.

NOTE
To get a handle for an instance of the termios structure, use PXFSTRUCTCREATE with the string
'termios' for the structure name.

See Also
PXFSTRUCTCREATE

Intel® Fortran Compiler Classic and Intel® Fortran Compiler Developer Guide and Reference 1

2019

PXFCFSETISPEED

PXFCFGETOSPEED
POSIX Subroutine: Returns the output baud rate
from a termios structure. This routine is only available
for Linux.

Module

USE IFPOSIX

Syntax
CALL PXFCFGETOSPEED (jtermios,iospeed,ierror)

jtermios (Input) INTEGER(4). A handle of structure termios.

iospeed (Output) INTEGER(4). The returned value of the output baud rate
from the structure associated with handle jtermios.

ierror (Output) INTEGER(4). The error status.

If successful, ierror is set to zero; otherwise, an error code.

NOTE
To get a handle for an instance of the termios structure, use PXFSTRUCTCREATE with the string
'termios' for the structure name.

See Also
PXFSTRUCTCREATE
PXFCFSETOSPEED

PXFCFSETISPEED
POSIX Subroutine: Sets the input baud rate in a
termios structure. This routine is only available for
Linux.

Module

USE IFPOSIX

Syntax
CALL PXFCFSETISPEED (jtermios,ispeed,ierror)

jtermios (Input) INTEGER(4). A handle of structure termios.

ispeed (Input) INTEGER(4). The value of the input baud rate for the structure
associated with handle jtermios.

ierror (Output) INTEGER(4). The error status.

If successful, ierror is set to zero; otherwise, an error code.

NOTE
To get a handle for an instance of the termios structure, use PXFSTRUCTCREATE with the string
'termios' for the structure name.

 1 Intel® Fortran Compiler Classic and Intel® Fortran Compiler Developer Guide and Reference

2020

See Also
PXFSTRUCTCREATE
PXFCFGETISPEED

PXFCFSETOSPEED
POSIX Subroutine: Sets the output baud rate in a
termios structure. This routine is only available for
Linux.

Module

USE IFPOSIX

Syntax
CALL PXFCFSETOSPEED (jtermios,ispeed,ierror)

jtermios (Input) INTEGER(4). A handle of structure termios.

ispeed (Input) INTEGER(4). The value of the output baud rate for the
structure associated with handle jtermios.

ierror (Output) INTEGER(4). The error status.

If successful, ierror is set to zero; otherwise, an error code.

NOTE
To get a handle for an instance of the termios structure, use PXFSTRUCTCREATE with the string
'termios' for the structure name.

See Also
PXFSTRUCTCREATE
PXFCFGETOSPEED

PXFCHDIR
POSIX Subroutine: Changes the current working
directory.

Module

USE IFPOSIX

Syntax
CALL PXFCHDIR (path,ilen,ierror)

path (Input) Character. The directory to be changed to.

ilen (Input) INTEGER(4). The length of the path string.

ierror (Output) INTEGER(4). The error status.

If successful, ierror is set to zero; otherwise, an error code.

See Also
PXFMKDIR

Intel® Fortran Compiler Classic and Intel® Fortran Compiler Developer Guide and Reference 1

2021

PXFCHMOD
POSIX Subroutine: Changes the ownership mode of
the file.

Module

USE IFPOSIX

Syntax
CALL PXFCHMOD (path,ilen,imode,ierror)

path (Input) Character. The path to the file.

ilen (Input) INTEGER(4). The length of the path string.

imode (Input) INTEGER(4). The ownership mode of the file. On Windows*
systems, see your Microsoft* Visual C++ Installation in the \include
directory under sys\stat.h for the values of imode. On Linux*
systems, use octal file-access mode.

ierror (Output) INTEGER(4). The error status.

If successful, ierror is set to zero; otherwise, an error code.

NOTE
On Linux* systems, you must have sufficient ownership permissions, such as being the owner of the
file or having read/write access of the file.

PXFCHOWN
POSIX Subroutine: Changes the owner and group of
a file. This routine is only available for Linux.

Module

USE IFPOSIX

Syntax
CALL PXFCHOWN (path,ilen,iowner,igroup,ierror)

path (Input) Character. The path to the file.

ilen (Input) INTEGER(4). The length of the path string.

iowner (Input) INTEGER(4). The owner UID.

igroup (Input) INTEGER(4). The group GID.

ierror (Output) INTEGER(4). The error status.

If successful, ierror is set to zero; otherwise, an error code.

PXFCLEARENV
POSIX Subroutine: Clears the process environment.

Module

USE IFPOSIX

 1 Intel® Fortran Compiler Classic and Intel® Fortran Compiler Developer Guide and Reference

2022

Syntax
CALL PXFCLEARENV (ierror)

ierror (Output) INTEGER(4). The error status.

If successful, ierror is set to zero; otherwise, an error code.

After a call to PXFCLEARENV, no environment variables are defined.

PXFCLOSE
POSIX Subroutine: Closes the file associated with
the descriptor.

Module

USE IFPOSIX

Syntax
CALL PXFCLOSE (fd,ierror)

fd (Input) INTEGER(4). A file descriptor.

ierror (Output) INTEGER(4). The error status.

If successful, ierror is set to zero; otherwise, an error code.

See Also
PXFOPEN

PXFCLOSEDIR
POSIX Subroutine: Closes the directory stream.

Module

USE IFPOSIX

Syntax
CALL PXFCLOSEDIR (idirid,ierror)

idirid (Input) INTEGER(4). The directory ID obtained from PXFOPENDIR.

ierror (Output) INTEGER(4). The error status.

If successful, ierror is set to zero; otherwise, an error code.

The PXFCLOSEDIR subroutine closes the directory associated with idirid.

See Also
PXFOPENDIR

PXFCONST
POSIX Subroutine: Returns the value associated
with a constant.

Module

USE IFPOSIX

Intel® Fortran Compiler Classic and Intel® Fortran Compiler Developer Guide and Reference 1

2023

Syntax
CALL PXFCONST (constname,ival,ierror)

constname (Input) Character. The name of one of the following constants:

• STDIN_UNIT
• STDOUT_UNIT
• STDERR_UNIT
• EINVAL
• ENONAME
• ENOHANDLE
• EARRAYLEN
• ENOENT
• ENOTDIR
• EACCES

The constants beginning with E signify various error values for the
system variable errno.

ival (Output) INTEGER(4). The returned value of the constant.

ierror (Output) INTEGER(4). The error status.

If successful, ierror is set to zero; otherwise, it is set to -1.

For more information on these constants, see your Microsoft* Visual C++ documentation (Windows*
systems) or the errno.h file (Linux* systems).

See Also
PXFISCONST

PXFCREAT
POSIX Subroutine: Creates a new file or rewrites an
existing file.

Module

USE IFPOSIX

Syntax
CALL PXFCREAT (path,ilen,imode,ifildes,ierror)

path (Input) Character. The pathname of the file.

ilen (Input) INTEGER(4). The length of path string.

imode (Input) INTEGER(4). The mode of the newly created file. On
Windows* systems, see your Microsoft* Visual C++ documentation for
permitted mode values. On Linux* systems, use octal file-access
mode.

ifildes (Output) INTEGER(4). The returned file descriptor.

ierror (Output) INTEGER(4). The error status.

If successful, ierror is set to zero; otherwise, an error code.

 1 Intel® Fortran Compiler Classic and Intel® Fortran Compiler Developer Guide and Reference

2024

PXFCTERMID
POSIX Subroutine: Generates a terminal pathname.
This routine is only available for Linux.

Module

USE IFPOSIX

Syntax
CALL PXFCTERMID (s,ilen,ierror)

s (Output) Character. The returned pathname of the terminal.

ilen (Output) INTEGER(4). The length of the returned value in the s string.

ierror (Output) INTEGER(4). The error status.

If successful, ierroris set to zero; otherwise, an error code.

This subroutine returns a string that refers to the current controlling terminal for the current process.

PXFDUP, PXFDUP2
POSIX Subroutine: Duplicates an existing file
descriptor.

Module

USE IFPOSIX

Syntax
CALL PXFDUP (ifildes,ifid,ierror)
CALL PXFDUP2 (ifildes,ifildes2,ierror)

ifildes (Input) INTEGER(4). The file descriptor to duplicate.

ifid (Output) INTEGER(4). The returned new duplicated file descriptor.

ifildes2 (Input) INTEGER(4). The number for the new file descriptor.

ierror (Output) INTEGER(4). The error status.

If successful, ierror is set to zero; otherwise, an error code.

The PXFDUP subroutine creates a second file descriptor for an opened file.

The PXFDUP2 subroutine copies the file descriptor associated with ifildes. Integer number ifildes2
becomes associated with this new file descriptor, but the value of ifildes2 is not changed.

PXFEGET
POSIX Subroutine: Gets the value stored in an array
element component (or field) of a structure.

Module

USE IFPOSIX

Syntax
CALL PXFE(type)GET (jhandle, compname,index,value,ierror)

Intel® Fortran Compiler Classic and Intel® Fortran Compiler Developer Guide and Reference 1

2025

CALL PXFE(type)GET (jhandle,compname,index,value,ilen,ierror) ! syntax when (type) is
STR

(type) A placeholder for one of the following values:

Value Data Type Routine Name

INT INTEGER(4) PXFEINTGET

REAL REAL(4) PXFEREALGET

LGCL LOGICAL(4) PXFELGCLGET

STR CHARACTER*(*) PXFESTRGET

CHAR CHARACTER(1) PXFECHARGET

DBL REAL(8) PXFEDBLGET

INT8 INTEGER(8) PXFEINT8GET

jhandle (Input) INTEGER(4). A handle of a structure.

compname (Input) Character. The name of the component (or field) of the
structure to retrieve data from.

index (Input) INTEGER(4). The index of the array element to get data for.

value (Output) A variable, whose data type depends on the value of (type).
See the table above for the data types for each value; for example, if
the value for (type) is INT, the data type is INTEGER(4). Stores the
value of the component (or field).

ilen (Output) INTEGER(4). This argument can only be used when (type)
is STR (PXFESTRGET). Stores the length of the returned string.

ierror (Output) INTEGER(4). The error status.

If successful, ierror is set to zero; otherwise, an error code.

The PXFE(type)GET subroutines are similar to the PXF(type)GET subroutines, but they should be used when
the component (or field) of the structure is an array.

When the PXFE(type)GET subroutines are used, the array element with index index is accessed (read from
the component or field).

See Also
PXFE(type)SET
PXF(type)GET

PXFESET
POSIX Subroutine: Sets the value of an array
element component (or field) of a structure.

Module

USE IFPOSIX

Syntax
CALL PXFE(type)SET (jhandle, compname,index,value,ierror)

 1 Intel® Fortran Compiler Classic and Intel® Fortran Compiler Developer Guide and Reference

2026

CALL PXFE(type)SET (jhandle,compname,index,value,ilen,ierror) ! syntax when (type) is
STR

(type) A placeholder for one of the following values:

Value Data Type Routine Name

INT INTEGER(4) PXFEINTSET

REAL REAL(4) PXFEREALSET

LGCL LOGICAL(4) PXFELGCLSET

STR CHARACTER*(*) PXFESTRSET

CHAR CHARACTER(1) PXFECHARSET

DBL REAL(8) PXFEDBLSET

INT8 INTEGER(8) PXFEINT8SET

jhandle (Input) INTEGER(4). A handle of a structure.

compname (Input) Character. The name of the component (or field) of the
structure to write data to.

index (Input) INTEGER(4). The index of the array element to write data to.

value (Input) A variable, whose data type depends on the value of (type).
See the table above for the data types for each value; for example, if
the value for (type) is INT, the data type is INTEGER(4). The value
for the component (or field).

ilen (Input) INTEGER(4). This argument can only be used when (type) is
STR (PXFESTRSET). The length of the string value.

ierror (Output) INTEGER(4). The error status.

If successful, ierror is set to zero; otherwise, an error code.

The PXFE(type)SET subroutines are similar to the PXF(type)SET subroutines, but they should be used when
the component (or field) of the structure is an array.

When the PXFE(type)SET subroutines are used, the array element with index index is accessed (written to
the component or field).

See Also
PXFE(type)GET
PXF(type)SET

PXFEXECV
POSIX Subroutine: Executes a new process by
passing command-line arguments.

Module

USE IFPOSIX

Syntax
CALL PXFEXECV (path,lenpath,argv,lenargv,iargc,ierror)

Intel® Fortran Compiler Classic and Intel® Fortran Compiler Developer Guide and Reference 1

2027

path (Input) Character. The path to the new executable process.

lenpath (Input) INTEGER(4). The length of path string.

argv (Input) An array of character strings. Contains the command-line
arguments to be passed to the new process.

lenargv (Input) INTEGER(4). An array that contains the lengths for each
corresponding character string in argv.

iargc (Input) INTEGER(4). The number of command-line arguments

ierror (Output) INTEGER(4). The error status.

If successful, ierror is set to zero; otherwise, an error code.

The PXFEXECV subroutine executes a new executable process (file) by passing command-line arguments
specified in the argv array. If execution is successful, no return is made to the calling process.

See Also
PXFEXECVE
PXFEXECVP

PXFEXECVE
POSIX Subroutine: Executes a new process by
passing command-line arguments.

Module

USE IFPOSIX

Syntax
CALL PXFEXECVE (path,lenpath,argv,lenargv,iargc,env,lenenv,ienvc,ierror)

path (Input) Character. The path to the new executable process.

lenpath (Input) INTEGER(4). The length of path string.

argv (Input) An array of character strings. Contains the command-line
arguments to be passed to the new process.

lenargv (Input) INTEGER(4). An array that contains the lengths for each
corresponding character string in argv.

iargc (Input) INTEGER(4). The number of command-line arguments.

env (Input) An array of character strings. Contains the environment
settings for the new process.

lenenv (Input) INTEGER(4). An array that contains the lengths for each
corresponding character string in env.

ienvc (Input) INTEGER(4). The number of environment settings in env.

ierror (Output) INTEGER(4). The error status.

If successful, ierror is set to zero; otherwise, an error code.

The PXFEXECVE subroutine executes a new executable process (file) by passing command-line arguments
specified in the argv array and environment settings specified in the env array.

 1 Intel® Fortran Compiler Classic and Intel® Fortran Compiler Developer Guide and Reference

2028

See Also
PXFEXECV
PXFEXECVP

PXFEXECVP
POSIX Subroutine: Executes a new process by
passing command-line arguments.

Module

USE IFPOSIX

Syntax
CALL PXFEXECVP (file,lenfile,argv,lenargv,iargc,ierror)

file (Input) Character. The filename of the new executable process.

lenfile (Input) INTEGER(4). The length of file string.

argv (Input) An array of character strings. Contains the command-line
arguments to be passed to the new process.

lenargv (Input) INTEGER(4). An array that contains the lengths for each
corresponding character string in argv.

iargc (Input) INTEGER(4). The number of command-line arguments.

ierror (Input) Character. The filename of the new executable process.

If successful, ierror is set to zero; otherwise, an error code.

The PXFEXECVP subroutine executes a new executable process(file) by passing command-line arguments
specified in theargv array. It uses the PATH environment variable to find the file to execute.

See Also
PXFEXECV
PXFEXECVE

PXFEXIT, PXFFASTEXIT
POSIX Subroutine: Exits from a process.

Module

USE IFPOSIX

Syntax
CALL PXFEXIT (istatus)
CALL PXFFASTEXIT (istatus)

istatus (Input) INTEGER(4). The exit value.

The PXFEXIT subroutine terminates the calling process. It calls, in last-in-first-out (LIFO) order, the functions
registered by C runtime functions atexit and onexit, and flushes all file buffers before terminating the
process. The istatus value is typically set to zero to indicate a normal exit and some other value to indicate
an error.

The PXFFASTEXIT subroutine terminates the calling process without processing atexit or onexit, and
without flushing stream buffers.

Intel® Fortran Compiler Classic and Intel® Fortran Compiler Developer Guide and Reference 1

2029

Example

program t1
use ifposix
integer(4) ipid, istat, ierror, ipid_ret, istat_ret
 print *," the child process will be born"
 call PXFFORK(IPID, IERROR)
 call PXFGETPID(IPID_RET,IERROR)
 if(IPID.EQ.0) then
 print *," I am a child process"
 print *," My child's pid is", IPID_RET
 call PXFGETPPID(IPID_RET,IERROR)
 print *," The pid of my parent is",IPID_RET
 print *," Now I have exited with code 0xABCD"
 call PXFEXIT(Z'ABCD')
 else
 print *," I am a parent process"
 print *," My parent pid is ", IPID_RET
 print *," I am creating the process with pid", IPID
 print *," Now I am waiting for the end of the child process"
 call PXFWAIT(ISTAT, IPID_RET, IERROR)
 print *," The child with pid ", IPID_RET," has exited"
 if(PXFWIFEXITED(ISTAT)) then
 print *, " The child exited normally"
 istat_ret = IPXFWEXITSTATUS(ISTAT)
 print 10," The low byte of the child exit code is", istat_ret
 end if
 end if
10 FORMAT (A,Z)
end program

PXFFCNTL
POSIX Subroutine: Manipulates an open file
descriptor. This routine is only available for Linux.

Module

USE IFPOSIX

Syntax
CALL PXFFCNTL (ifildes,icmd,iargin,iargout,ierror)

ifildes (Input) INTEGER(4). A file descriptor.

icmd (Input) INTEGER(4). Defines an action for the file descriptor.

iargin (Input; output) INTEGER(4). Interpretation of this argument depends
on the value of icmd.

iargout (Output) INTEGER(4). Interpretation of this argument depends on the
value of icmd.

ierror (Output) INTEGER(4). The error status.

If successful, ierror is set to zero; otherwise, an error code.

PXFFCNTL is a multi-purpose subroutine that causes an action to be performed on a file descriptor. The
action, defined in icmd, can be obtained by using the values of predefined macros in C header fcntl.h, or by
using PXFCONST or IPXFCONST with one of the following constant names:

 1 Intel® Fortran Compiler Classic and Intel® Fortran Compiler Developer Guide and Reference

2030

Constant Action

F_DUPFD Returns into iargout the lowest available unopened
file descriptor greater than or equal to iargin. The
new file descriptor refers to the same open file as
ifildes and shares any locks. The system flag
FD_CLOEXEC for the new file descriptor is cleared
so the new descriptor will not be closed on a call to
PXFEXEC subroutine.

F_GETFD Returns into iargout the value of system flag
FD_CLOEXEC associated with ifildes. In this case,
iargin is ignored.

F_SETFD Sets or clears the system flag FD_CLOEXEC for file
descriptor ifildes. The PXFEXEC family of functions
will close all file descriptors with the FD_CLOEXEC
flag set. The value for FD_CLOEXEC is obtained
from argument iargin.

F_GETFL Returns the file status flags for file descriptor
ifildes. Unlike F_GETFD, these flags are associated
with the file and shared by all descriptors. A
combination of the following flags, which are
symbolic names for PXFCONST or IPXFCONST, can
be returned:

• O_APPEND - Specifies the file is opened in
append mode.

• O_NONBLOCK - Specifies when the file is
opened, it does not block waiting for data to
become available.

• O_RDONLY - Specifies the file is opened for
reading only.

• O_RDWR - Specifies the file is opened for both
reading and writing.

• O_WRONLY - Specifies the file is opened for
writing only.

F_SETFL Sets the file status flags from iargin for file
descriptor ifildes. Only O_APPEND or O_NONBLOCK
flags can be modified. In this case, iargout is
ignored.

F_GETLK Gets information about a lock. Argument iargin
must be a handle of structure flock. This structure
is taken as the description of a lock for the file. If
there is a lock already in place that would prevent
this lock from being locked, it is returned to the
structure associated with handle iargin. If there are
no locks in place that would prevent the lock from
being locked, field l_type in the structure is set to
the value of the constant with symbolic name
F_UNLCK.

Intel® Fortran Compiler Classic and Intel® Fortran Compiler Developer Guide and Reference 1

2031

Constant Action

F_SETLK Sets or clears a lock. Argument iargin must be a
handle of structure flock. The lock is set or
cleared according to the value of structure field
l_type. If the lock is busy, an error is returned.

F_SETLKW Sets or clears a lock, but causes the process to wait
if the lock is busy. Argument iargin must be a
handle of structure flock. The lock is set or
cleared according to the value of structure field
l_type. If the lock is busy, PXFCNTL waits for an
unlock.

NOTE
To get a handle for an instance of the flock structure, use PXFSTRUCTCREATE with the string 'flock'
for the structure name.

See Also
PXFSTRUCTCREATE
IPXFCONST
PXFCONST

PXFFDOPEN
POSIX Subroutine: Opens an external unit.

Module

USE IFPOSIX

Syntax
CALL PXFFDOPEN (ifildes,iunit,access,ierror)

ifildes (Input) INTEGER(4). The file descriptor of the opened file.

iunit (Input) INTEGER(4). The Fortran logical unit to connect to file
descriptor ifildes.

access (Input) Character. A character string that specifies the attributes for
the Fortran unit. The string must consist of one or more of the
following keyword/value pairs. Keyword/value pairs should be
separated by a comma, and blanks are ignored.

Keyword Possible
Values

Description Default

'NEWLINE' 'YES' or 'NO' I/O type 'YES'

'BLANK' 'NULL' or
'ZERO'

Interpretation
of blanks

'NULL'

'STATUS' 'OLD',
'SCRATCH', or
'UNKNOWN'

File status at
open

'UNKNOWN'

 1 Intel® Fortran Compiler Classic and Intel® Fortran Compiler Developer Guide and Reference

2032

Keyword Possible
Values

Description Default

'FORM' 'FORMATTED'
or
'UNFORMATTE
D'

Format type 'FORMATTED'

Keywords should be separated from their values by the equals ('=')
character; for example:

call PXFDOPEN (IFILDES, IUNIT, 'BLANK=NULL, STATUS=UNKNOWN',
IERROR)

ierror (Output) INTEGER(4). The error status.

The PXFFDOPEN subroutine connects an external unit identified by iunit to a file descriptor ifildes. If unit is
already connected to a file, the file should be closed before using PXFFDOPEN.

NOTE
On Windows* systems, the default value of the POSIX/IO flag is 0, which causes PXFFDOPEN to return
an error.

To prevent this, call subroutine PXFPOSIXIO and set the value of the POSIX/IO flag to 1.

See Also
PXFPOSIXIO

PXFFFLUSH
POSIX Subroutine: Flushes a file directly to disk.

Module

USE IFPOSIX

Syntax
CALL PXFFFLUSH (lunit,ierror)

lunit (Input) INTEGER(4). A Fortran logical unit.

ierror (Output) INTEGER(4). The error status.

If successful, ierror is set to zero; otherwise, an error code.

The PXFFFLUSH subroutine writes any buffered output to the file connected to unit lunit.

PXFFGETC
POSIX Subroutine: Reads a character from a file.

Module

USE IFPOSIX

Syntax
CALL PXFFGETC (lunit,char,ierror)

Intel® Fortran Compiler Classic and Intel® Fortran Compiler Developer Guide and Reference 1

2033

lunit (Input) INTEGER(4). A Fortran logical unit.

char (Input) Character. The character to be read.

ierror (Output) INTEGER(4). The error status.

If successful, ierror is set to zero; otherwise, an error code.

The PXFFGETC subroutine reads a character from a file connected to unit lunit.

See Also
PXFFPUTC

PXFFILENO
POSIX Subroutine: Returns the file descriptor
associated with a specified unit.

Module

USE IFPOSIX

Syntax
CALL PXFFILENO (lunit,fd,ierror)

lunit (Input) INTEGER(4). A Fortran logical unit.

fd (Output) INTEGER(4). The returned file descriptor.

ierror (Output) INTEGER(4). The error status.

If successful, ierror is set to zero; otherwise, an error code. Possible error codes are:

• EINVAL: lunit is not an open unit.
• EBADF: lunit is not connected with a file descriptor.

The PXFFILENO subroutine returns in fd the file descriptor associated with lunit.

NOTE
On Windows* systems, the default value of the POSIX/IO flag is 0, which prevents OPEN from
connecting a unit to a file descriptor and causes PXFFILENO to return an error.

To prevent this, call subroutine PXFPOSIXIO and set the value of the POSIX/IO flag to 1. This setting
allows a connection to a file descriptor.

NOTE
The file-descriptor used by POSIX is not the same as the corresponding file handle used by Windows,
so it does not have the same value.

See Also
PXFPOSIXIO

PXFFORK
POSIX Subroutine: Creates a child process that
differs from the parent process only in its PID. This
routine is only available for Linux.

 1 Intel® Fortran Compiler Classic and Intel® Fortran Compiler Developer Guide and Reference

2034

Module

USE IFPOSIX

Syntax
CALL PXFFORK (ipid,ierror)

ipid (Output) INTEGER(4). The returned PID of the new child process.

ierror (Output) INTEGER(4). The error status.

If successful, ierror is set to zero; otherwise, an error code.

The PXFFORK subroutine creates a child process that differs from the parent process only in its PID. If
successful, the PID of the child process is returned in the parent's thread of execution, and a zero is returned
in the child's thread of execution. Otherwise, a -1 is returned in the parent's context and no child process is
created.

Example

program t1
use ifposix
integer(4) ipid, istat, ierror, ipid_ret, istat_ret
 print *," the child process will be born"
 call PXFFORK(IPID, IERROR)
 call PXFGETPID(IPID_RET,IERROR)
 if(IPID.EQ.0) then
 print *," I am a child process"
 print *," My child's pid is", IPID_RET
 call PXFGETPPID(IPID_RET,IERROR)
 print *," The pid of my parent is",IPID_RET
 print *," Now I have exited with code 0xABCD"
 call PXFEXIT(Z'ABCD')
 else
 print *," I am a parent process"
 print *," My parent pid is ", IPID_RET
 print *," I am creating the process with pid", IPID
 print *," Now I am waiting for the end of the child process"
 call PXFWAIT(ISTAT, IPID_RET, IERROR)
 print *," The child with pid ", IPID_RET," has exited"
 if(PXFWIFEXITED(ISTAT)) then
 print *, " The child exited normally"
 istat_ret = IPXFWEXITSTATUS(ISTAT)
 print 10," The low byte of the child exit code is", istat_ret
 end if
 end if
10 FORMAT (A,Z)
end program

See Also
IPXWEXITSTATUS

PXFFPATHCONF
POSIX Subroutine: Gets the value for a
configuration option of an opened file.

Module

USE IFPOSIX

Intel® Fortran Compiler Classic and Intel® Fortran Compiler Developer Guide and Reference 1

2035

Syntax
CALL PXFFPATHCONF (ifildes,name,ival,ierror)

ifildes (Input) INTEGER(4). The file descriptor of the opened file.

name (Input) INTEGER(4). The configurable option.

ival (Output) INTEGER(4). The value of the configurable option.

ierror (Output) INTEGER(4). The error status.

If successful, ierror is set to zero; otherwise, an error code.

The PXFFPATHCONF subroutine gets a value for the configuration option named for the opened file with
descriptor ifildes.

The configuration option, defined in name, can be obtained by using PXFCONST or IPXFCONST with one of
the following constant names:

Constant Action

_PC_LINK_MAX Returns the maximum number of links to the file. If
ifildes refers to a directory, then the value applies
to the whole directory.

_PC_MAX_CANON1 Returns the maximum length of a formatted input
line; the file descriptor ifildes must refer to a
terminal.

_PC_MAX_INPUT1 Returns the maximum length of an input line; the
file descriptor ifildes must refer to a terminal.

_PC_NAME_MAX Returns the maximum length of a filename in ifildes
that the process is allowed to create.

_PC_PATH_MAX Returns the maximum length of a relative
pathname when ifildes is the current working
directory.

_PC_PIPE_BUF Returns the size of the pipe buffer; the file
descriptor ifildes must refer to a pipe or FIFO.

_PC_CHOWN_RESTRICTED1 Returns nonzero if PXFCHOWN may not be used on
this file. If ifildes refers to a directory, then this
applies to all files in that directory.

_PC_NO_TRUNC1 Returns nonzero if accessing filenames longer than
_POSIX_NAME_MAX will generate an error.

_PC_VDISABLE1 Returns nonzero if special character processing can
be disabled; the file descriptor ifildes must refer to
a terminal.

1Linux

On Linux* systems, the corresponding macros are defined in <unistd.h>. The values for name can be
obtained by using PXFCONST or IPXFCONST when passing the string names of predefined macros in
<unistd.h>. The following table shows the corresponding macro names for the above constants:

 1 Intel® Fortran Compiler Classic and Intel® Fortran Compiler Developer Guide and Reference

2036

Constant Corresponding Macro

_PC_LINK_MAX _POSIX_LINK_MAX

_PC_MAX_CANON _POSIX_MAX_CANON

_PC_MAX_INPUT _POSIX_MAX_INPUT

_PC_NAME_MAX _POSIX_NAME_MAX

_PC_PATH_MAX _POSIX_PATH_MAX

_PC_PIPE_BUF _POSIX_PIPE_BUF

_PC_CHOWN_RESTRICTED _POSIX_CHOWN_RESTRICTED

_PC_NO_TRUNC _POSIX_NO_TRUNC

_PC_VDISABLE _POSIX_VDISABLE

See Also
IPXFCONST
PXFCONST
PXFPATHCONF

PXFFPUTC
POSIX Subroutine: Writes a character to a file.

Module

USE IFPOSIX

Syntax
CALL PXFFPUTC (lunit,char,ierror)

lunit (Input) INTEGER(4). A Fortran logical unit.

char (Input) Character. The character to be written.

ierror (Output) INTEGER(4). The error status.

If successful, ierror is set to zero; otherwise, an error code. A possible error code is EEND if the end of the
file has been reached.

The PXFFPUTC subroutine writes a character to the file connected to unit lunit.

See Also
PXFFGETC

PXFFSEEK
POSIX Subroutine: Modifies a file position.

Module

USE IFPOSIX

Syntax
CALL PXFFSEEK (lunit,ioffset,iwhence,ierror)

Intel® Fortran Compiler Classic and Intel® Fortran Compiler Developer Guide and Reference 1

2037

lunit (Input) INTEGER(4). A Fortran logical unit.

ioffset (Input) INTEGER(4). The number of bytes away from iwhence to place
the pointer.

iwhence (Input) INTEGER(4). The position within the file. The value must be
one of the following constants (defined in stdio.h):

SEEK_SET = 0 Offset from the beginning of the file.

SEEK_CUR = 1 Offset from the current position of the file
pointer.

SEEK_END = 2 Offset from the end of the file.

ierror (Output) INTEGER(4). The error status.

If successful, ierror is set to zero; otherwise, an error code. Possible error codes are:

• EINVAL: No file is connected to lunit, iwhence is not a proper value, or the resulting offset is invalid.
• ESPIPE: lunit is a pipe or FIFO.
• EEND: The end of the file has been reached.

The PXFFSEEK subroutine modifies the position of the file connected to unit lunit.

PXFFSTAT
POSIX Subroutine: Gets a file's status information.

Module

USE IFPOSIX

Syntax
CALL PXFFSTAT (ifildes,jstat,ierror)

ifildes (Input) INTEGER(4). The file descriptor for an opened file.

jstat (Input) INTEGER(4). A handle of structure stat.

ierror (Output) INTEGER(4). The error status.

If successful, ierror is set to zero; otherwise, an error code.

The PXFFSTAT subroutine puts the status information for the file associated with ifildes into the structure
associated with handle jstat.

NOTE
To get a handle for an instance of the stat structure, use PXFSTRUCTCREATE with the string 'stat' for
the structure name.

See Also
PXFSTRUCTCREATE

PXFFTELL
POSIX Subroutine: Returns the relative position in
bytes from the beginning of the file.

 1 Intel® Fortran Compiler Classic and Intel® Fortran Compiler Developer Guide and Reference

2038

Module

USE IFPOSIX

Syntax
CALL PXFFTELL (lunit,ioffset,ierror)

lunit (Input) INTEGER(4). A Fortran logical unit.

ioffset (Output) INTEGER(4). The returned relative position in bytes from the
beginning of the file.

ierror (Output) INTEGER(4). The error status.

If successful, ierror is set to zero; otherwise, an error code.

PXFGETARG
POSIX Subroutine: Gets the specified command-line
argument.

Module

USE IFPOSIX

Syntax
CALL PXFGETARG (argnum,str,istr,ierror)

argnum (Input) INTEGER(4). The number of the command-line argument.

str (Output) Character. The returned string value.

istr (Output) INTEGER(4). The length of the returned string; it is zero if an
error occurs.

ierror (Output) INTEGER(4). The error status.

If successful, ierror is set to zero; otherwise, an error code.

The PXFGETARG subroutine places the command-line argument with number argnum into character string
str. If argnum is equal to zero, the value of the argument returned is the command name of the executable
file.

See Also
IPXFARGC

PXFGETC
POSIX Subroutine: Reads a character from standard
input unit 5.

Module

USE IFPOSIX

Syntax
CALL PXFGETC (nextcar,ierror)

nextcar (Output) Character. The returned character that was read.

Intel® Fortran Compiler Classic and Intel® Fortran Compiler Developer Guide and Reference 1

2039

ierror (Output) INTEGER(4). The error status.

If successful, ierror is set to zero; otherwise, an error code.

See Also
PXFPUTC

PXFGETCWD
POSIX Subroutine: Returns the path of the current
working directory.

Module

USE IFPOSIX

Syntax
CALL PXFGETCWD (buf,ilen,ierror)

buf (Output) Character. The returned pathname of the current working
directory.

ilen (Output) INTEGER(4). The length of the returned pathname.

ierror (Output) INTEGER(4). The error status.

If successful, ierror is set to zero; otherwise, an error code. A possible error code is EINVAL if the size of
buf is insufficient.

PXFGETEGID
POSIX Subroutine: Gets the effective group ID of
the current process. This routine is only available for
Linux.

Module

USE IFPOSIX

Syntax
CALL PXFGETEGID (iegid,ierror)

iegid (Output) INTEGER(4). The returned effective group ID.

ierror (Output) INTEGER(4). The error status.

Description

If successful, ierror is set to zero; otherwise, an error code.

The effective ID corresponds to the set ID bit on the file being executed.

PXFGETENV
POSIX Subroutine: Gets the setting of an
environment variable.

Module

USE IFPOSIX

 1 Intel® Fortran Compiler Classic and Intel® Fortran Compiler Developer Guide and Reference

2040

Syntax
CALL PXFGETENV (name,lenname,value,lenval,ierror)

name (Input) Character. The name of the environment variable.

lenname (Input) INTEGER(4). The length of name.

value (Output) Character. The returned value of the environment variable.

lenval (Output) INTEGER(4). The returned length of value. If an error
occurs, it returns zero.

ierror (Output) INTEGER(4). The error status.

If successful, ierror is set to zero; otherwise, an error code.

See Also
PXFSETENV

PXFGETEUID
POSIX Subroutine: Gets the effective user ID of the
current process. This routine is only available for
Linux.

Module

USE IFPOSIX

Syntax
CALL PXFGETEUID (ieuid,ierror)

ieuid (Output) INTEGER(4). The returned effective user ID.

ierror (Output) INTEGER(4). The error status.

If successful, ierror is set to zero; otherwise, an error code.

The effective ID corresponds to the set ID bit on the file being executed.

PXFGETGID
POSIX Subroutine: Gets the real group ID of the
current process. This routine is only available for
Linux.

Module

USE IFPOSIX

Syntax
CALL PXFGETGID (igid,ierror)

igid (Output) INTEGER(4). The returned real group ID.

ierror (Output) INTEGER(4). The error status.

If successful, ierror is set to zero; otherwise, an error code.

The real ID corresponds to the ID of the calling process.

Intel® Fortran Compiler Classic and Intel® Fortran Compiler Developer Guide and Reference 1

2041

Example

See the example in PXFGETGROUPS

See Also
PXFSETGID

PXFGETGRGID
POSIX Subroutine: Gets group information for the
specified GID. This routine is only available for Linux.

Module

USE IFPOSIX

Syntax
CALL PXFGETGRGID (jgid,jgroup,ierror)

jgid (Input) INTEGER(4). The group ID to retrieve information about.

jgroup (Input) INTEGER(4). A handle of structure group.

ierror (Output) INTEGER(4). The error status.

If successful, ierror is not changed; otherwise, an error code.

The PXFGETGRGID subroutine stores the group information from /etc/group for the entry that matches the
group GID jgid in the structure associated with handle jgroup.

NOTE
To get a handle for an instance of the groupstructure, use PXFSTRUCTCREATE with the string 'group'
for the structure name.

Example

See the example in PXFGETGROUPS

See Also
PXFSTRUCTCREATE

PXFGETGRNAM
POSIX Subroutine: Gets group information for the
named group. This routine is only available for Linux.

Module

USE IFPOSIX

Syntax
CALL PXFGETGRNAM (name,ilen,jgroup,ierror)

name (Input) Character. The name of the group to retrieve information
about.

ilen (Input) INTEGER(4). The length of the name string.

jgroup (Input) INTEGER(4). A handle of structure group.

 1 Intel® Fortran Compiler Classic and Intel® Fortran Compiler Developer Guide and Reference

2042

ierror (Output) INTEGER(4). The error status.

If successful, ierror is not changed; otherwise, an error code.

The PXFGETGRNAM subroutine stores the group information from /etc/group for the entry that matches the
group name name in the structure associated with handle jgroup.

NOTE
To get a handle for an instance of the group structure, use PXFSTRUCTCREATE with the string 'group'
for the structure name.

See Also
PXFSTRUCTCREATE

PXFGETGROUPS
POSIX Subroutine: Gets supplementary group IDs.
This routine is only available for Linux.

Module

USE IFPOSIX

Syntax
CALL PXFGETGROUPS (igidsetsize,igrouplist,ngroups,ierror)

igidsetsize (Input) INTEGER(4). The number of elements in the igrouplist array.

igrouplist (Output) INTEGER(4). The array that has the returned supplementary
group IDs.

ngroups (Output) INTEGER(4). The total number of supplementary group IDs
for the process.

ierror (Output) INTEGER(4). The error status.

If successful, ierror is set to zero; otherwise, an error code.

The PXFGETGROUPS subroutine returns, up to size igidsetsize, the supplementary group IDs in array
igrouplist. It is unspecified whether the effective group ID of the calling process is included in the
returned list. If the size is zero, the list is not modified, but the total number of supplementary group IDs for
the process is returned.

Example

program test5
 use ifposix
 implicit none
 integer(4) number_of_groups, ierror, isize,i, igid
 integer(4),allocatable,dimension(:):: igrouplist
 integer(JHANDLE_SIZE) jgroup

 ! Get total number of groups in system
 ! call PXFGETGROUPS with 0
 call PXFGETGROUPS(0, igrouplist, number_of_groups, ierror)
 if(ierror.NE.0) STOP 'Error: first call of PXFGETGROUPS fails'
 print *," The number of groups in system ", number_of_groups

Intel® Fortran Compiler Classic and Intel® Fortran Compiler Developer Guide and Reference 1

2043

 ! Get Group IDs
 isize = number_of_groups
 ALLOCATE(igrouplist(isize))
 call PXFGETGROUPS(isize, igrouplist, number_of_groups, ierror)
 if(ierror.NE.0) then
 DEALLOCATE(igrouplist)
 STOP 'Error: first call of PXFGETGROUPS fails'
 end if

 print *," Create an instance for structure 'group' "
 call PXFSTRUCTCREATE("group",jgroup, ierror)
 if(ierror.NE.0) then
 DEALLOCATE(igrouplist)
 STOP 'Error: PXFSTRUCTCREATE failed to create an instance of group'
 end if

 do i=1, number_of_groups
 call PXFGETGRGID(igrouplist(i), jgroup, ierror)
 if(ierror.NE.0) then
 DEALLOCATE(igrouplist)
 call PXFSTRUCTFREE(jgroup, ierror)
 print *,'Error: PXFGETGRGID failed for i=',i," gid=", igrouplist(i)
 STOP 'Abnormal termination'
 end if
 call PRINT_GROUP_INFO(jgroup)
 end do

 call PXFGETGID(igid,ierror)
 if(ierror.NE.0) then
 DEALLOCATE(igrouplist)
 call PXFSTRUCTFREE(jgroup, ierror)
 print *,'Error: PXFGETGID failed'
 STOP 'Abnormal termination'
 end if
 call PXFGETGRGID(igid, jgroup, ierror)
 if(ierror.NE.0) then
 DEALLOCATE(igrouplist)
 call PXFSTRUCTFREE(jgroup, ierror)
 print *,"Error: PXFGETGRGID failed for gid=", igid
 STOP 'Abnormal termination'
 end if

 call PRINT_GROUP_INFO(jgroup)
 DEALLOCATE(igrouplist)
 call PXFSTRUCTFREE(jgroup, ierror)
 print *," Program will normal terminated"
 call PXFEXIT(0)
end

PXFGETLOGIN
POSIX Subroutine: Gets the name of the user.

Module

USE IFPOSIX

Syntax
CALL PXFGETLOGIN (s,ilen,ierror)

 1 Intel® Fortran Compiler Classic and Intel® Fortran Compiler Developer Guide and Reference

2044

s (Output) Character. The returned user name.

ilen (Output) INTEGER(4). The length of the string stored in s.

ierror (Output) INTEGER(4). The error status.

If successful, ierror is set to zero; otherwise, an error code.

PXFGETPGRP
POSIX Subroutine: Gets the process group ID of the
calling process. This routine is only available for Linux.

Module

USE IFPOSIX

Syntax
CALL PXFGETPGRP (ipgrp,ierror)

ipgrp (Output) INTEGER(4). The returned process group ID.

ierror (Output) INTEGER(4). The error status.

If successful, ierror is set to zero; otherwise, an error code.

Each process group is a member of a session and each process is a member of the session in which its
process group is a member.

PXFGETPID
POSIX Subroutine: Gets the process ID of the calling
process.

Module

USE IFPOSIX

Syntax
CALL PXFGETPID (ipid,ierror)

ipid (Output) INTEGER(4). The returned process ID.

ierror (Output) INTEGER(4). The error status.

If successful, ierror is set to zero; otherwise, an error code.

Example

program t1
use ifposix
integer(4) ipid, istat, ierror, ipid_ret, istat_ret
 print *," the child process will be born"
 call PXFFORK(IPID, IERROR)
 call PXFGETPID(IPID_RET,IERROR)
 if(IPID.EQ.0) then
 print *," I am a child process"
 print *," My child's pid is", IPID_RET
 call PXFGETPPID(IPID_RET,IERROR)
 print *," The pid of my parent is",IPID_RET
 print *," Now I have exited with code 0xABCD"

Intel® Fortran Compiler Classic and Intel® Fortran Compiler Developer Guide and Reference 1

2045

 call PXFEXIT(Z'ABCD')
 else
 print *," I am a parent process"
 print *," My parent pid is ", IPID_RET
 print *," I am creating the process with pid", IPID
 print *," Now I am waiting for the end of the child process"
 call PXFWAIT(ISTAT, IPID_RET, IERROR)
 print *," The child with pid ", IPID_RET," has exited"
 if(PXFWIFEXITED(ISTAT)) then
 print *, " The child exited normally"
 istat_ret = IPXFWEXITSTATUS(ISTAT)
 print 10," The low byte of the child exit code is", istat_ret
 end if
 end if
10 FORMAT (A,Z)
end program

PXFGETPPID
POSIX Subroutine: Gets the process ID of the
parent of the calling process.

Module

USE IFPOSIX

Syntax
CALL PXFGETPPID (ippid,ierror)

ippid (Output) INTEGER(4). The returned process ID.

ierror (Output) INTEGER(4). The error status.

If successful, ierror is set to zero; otherwise, an error code.

Example

program t1
use ifposix
integer(4) ipid, istat, ierror, ipid_ret, istat_ret
 print *," the child process will be born"
 call PXFFORK(IPID, IERROR)
 call PXFGETPID(IPID_RET,IERROR)
 if(IPID.EQ.0) then
 print *," I am a child process"
 print *," My child's pid is", IPID_RET
 call PXFGETPPID(IPID_RET,IERROR)
 print *," The pid of my parent is",IPID_RET
 print *," Now I have exited with code 0xABCD"
 call PXFEXIT(Z'ABCD')
 else
 print *," I am a parent process"
 print *," My parent pid is ", IPID_RET
 print *," I am creating the process with pid", IPID
 print *," Now I am waiting for the end of the child process"
 call PXFWAIT(ISTAT, IPID_RET, IERROR)
 print *," The child with pid ", IPID_RET," has exited"
 if(PXFWIFEXITED(ISTAT)) then
 print *, " The child exited normally"
 istat_ret = IPXFWEXITSTATUS(ISTAT)

 1 Intel® Fortran Compiler Classic and Intel® Fortran Compiler Developer Guide and Reference

2046

 print 10," The low byte of the child exit code is", istat_ret
 end if
 end if
10 FORMAT (A,Z)
end program

PXFGETPWNAM
POSIX Subroutine: Gets password information for a
specified name. This routine is only available for
Linux.

Module

USE IFPOSIX

Syntax
CALL PXFGETPWNAM (name,ilen,jpasswd,ierror)

name (Input) Character. The login name of the user to retrieve information
about. For example, a login name might be "jsmith", while the actual
name is "John Smith".

ilen (Input) INTEGER(4). The length of the name string.

jpasswd (Input) INTEGER(4). A handle of structure compnam.

ierror (Output) INTEGER(4). The error status.

If successful, ierror is not changed; otherwise, an error code.

The PXFGETPWNAM subroutine stores the user information from /etc/passwd for the entry that matches the
user name name in the structure associated with handle jpasswd.

NOTE
To get a handle for an instance of the compnam structure, use PXFSTRUCTCREATE with the string
'compnam' for the structure name.

See Also
PXFSTRUCTCREATE

PXFGETPWUID
POSIX Subroutine: Gets password information for a
specified UID. This routine is only available for Linux.

Module

USE IFPOSIX

Syntax
CALL PXFGETPWUID (iuid,jpasswd,ierror)

iuid (Input) INTEGER(4). The user ID to retrieve information about.

jpasswd (Output) INTEGER(4). A handle of structure compnam.

Intel® Fortran Compiler Classic and Intel® Fortran Compiler Developer Guide and Reference 1

2047

ierror (Output) INTEGER(4). The error status.

If successful, ierror is set to zero; otherwise, an error code.

The PXFGETPWUID subroutine stores the user information from /etc/passwd for the entry that matches the
user ID iuid in the structure associated with handle jpasswd.

NOTE
To get a handle for an instance of the compnam structure, use PXFSTRUCTCREATE with the string
'compnam' for the structure name.

See Also
PXFSTRUCTCREATE

PXFGETSUBHANDLE
POSIX Subroutine: Returns a handle for a
subroutine.

Module

USE IFPOSIX

Syntax
CALL PXFGETSUBHANDLE (sub,jhandle1,ierror)

sub (Input) The Fortran subroutine to get a handle for.

jhandle1 (Output) INTEGER(4). The returned handle for the subroutine.

ierror (Output) INTEGER(4). The error status.

If successful, ierror is set to zero; otherwise, an error code.

NOTE
The argument sub cannot be a function, an intrinsic, or an entry point, and must be defined with
exactly one integer argument.

PXFGETUID
POSIX Subroutine: Gets the real user ID of the
current process. This routine is only available for
Linux.

Module

USE IFPOSIX

Syntax
CALL PXFGETUID (iuid,ierror)

iuid (Output) INTEGER(4). The returned real user ID.

ierror (Output) INTEGER(4). The error status.

If successful, ierror is set to zero; otherwise, an error code.

 1 Intel® Fortran Compiler Classic and Intel® Fortran Compiler Developer Guide and Reference

2048

The real ID corresponds to the ID of the calling process.

See Also
PXFSETUID

PXFISATTY
POSIX Subroutine: Tests whether a file descriptor is
connected to a terminal. This routine is only available
for Linux.

Module

USE IFPOSIX

Syntax
CALL PXFISATTY (ifildes,isatty,ierror)

ifildes (Input) INTEGER(4). The file descriptor.

isatty (Output) LOGICAL(4). The returned value.

ierror (Output) INTEGER(4). The error status.

If successful, ierror is set to zero; otherwise, an error code.

If file descriptor ifildes is open and connected to a terminal, isatty returns .TRUE.; otherwise, .FALSE..

See Also
PXFOPEN

PXFISBLK
POSIX Function: Tests for a block special file.

Module

USE IFPOSIX

Syntax
result = PXFISBLK (m)

m (Input) INTEGER(4). The value of the st_modecomponent (field) in
the structure stat.

Results

The result type is logical. If the file is a block special file, the result value is .TRUE.; otherwise, .FALSE..

See Also
PXFISCHR

PXFISCHR
POSIX Function: Tests for a character file.

Module

USE IFPOSIX

Syntax
result = PXFISCHR (m)

Intel® Fortran Compiler Classic and Intel® Fortran Compiler Developer Guide and Reference 1

2049

m (Input) INTEGER(4). The value of the st_modecomponent (field) in
the structure stat.

Results

The result type is logical. If the file is a character file, the result value is .TRUE.; otherwise, .FALSE..

See Also
PXFISBLK

PXFISCONST
POSIX Function: Tests whether a string is a valid
constant name.

Module

USE IFPOSIX

Syntax
result = PXFISCONST (s)

s (Input) Character. The name of the constant to test.

Results

The result type is logical. The PXFISCONST function confirms whether the argument is a valid constant name
that can be passed to functions PXFCONST and IPXFCONST. It returns .TRUE. only if IPXFCONST will return a
valid value for name s.

See Also
IPXFCONST
PXFCONST

PXFISDIR
POSIX Function: Tests whether a file is a directory.

Module

USE IFPOSIX

Syntax
result = PXFISDIR (m)

m (Input) INTEGER(4).The value of the st_mode component (field) in
the structure stat.

Results

The result type is logical. If the file is a directory, the result value is .TRUE.; otherwise, .FALSE..

PXFISFIFO
POSIX Function: Tests whether a file is a special
FIFO file.

Module

USE IFPOSIX

 1 Intel® Fortran Compiler Classic and Intel® Fortran Compiler Developer Guide and Reference

2050

Syntax
result = PXFISFIFO (m)

m (Input) INTEGER(4). The value of the st_modecomponent (field) in
the structure stat.

Results

The result type is logical.

The PXFISFIFO function tests whether the file is a special FIFO file created by PXFMKFIFO. If the file is a
special FIFO file, the result value is .TRUE.; otherwise, .FALSE..

See Also
PXFMKFIFO
PXFISREG

PXFISREG
POSIX Function: Tests whether a file is a regular file.

Module

USE IFPOSIX

Syntax
result = PXFISREG (m)

m (Input) INTEGER(4). The value of the st_mode component (field) in
the structure stat.

Results

The result type is logical. If the file is a regular file, the result value is .TRUE.; otherwise, .FALSE..

See Also
PXFMKFIFO
PXFISFIFO

PXFKILL
POSIX Subroutine: Sends a signal to a specified
process.

Module

USE IFPOSIX

Syntax
CALL PXFKILL (ipid,isig,ierror)

ipid (Input) INTEGER(4). The process to kill. It is determined by one of the
following values:

> 0 Kills the specific process.

< 0 Kills all processes in the group.

Intel® Fortran Compiler Classic and Intel® Fortran Compiler Developer Guide and Reference 1

2051

== 0 Kills all processes in the group
except special processes.

== pid_t-1 Kills all processes.

isig (Input) INTEGER(4). The value of the signal to be sent.

ierror (Output) INTEGER(4). The error status.

If successful, ierror is set to zero; otherwise, an error code.

The PXFKILL subroutine sends a signal with value isig to a specified process. On Windows* systems, only
the ipid for the current process can be used.

PXFLINK
POSIX Subroutine: Creates a link to a file or a
directory. This routine is only available for Linux.

Module

USE IFPOSIX

Syntax
CALL PXFLINK (existing,lenexist,new,lennew,ierror)

existing (Input) Character. The path to the file or directory that you want to
link to.

lenexist (Input) INTEGER(4). The length of the existing string.

new (Input) Character. The name of the new link file.

lennew (Input) INTEGER(4). The length of the new string.

ierror (Output) INTEGER(4). The error status.

If successful, ierror is not changed; otherwise, an error code.

The PXFLINK subroutine creates a new link (also known as a hard link) to an existing file or directory.

This new name can be used exactly as the old one for any operation. Both names refer to the same entity (so
they have the same permissions and ownership) and it is impossible to tell which name was the "original".

PXFLOCALTIME
POSIX Subroutine: Converts a given elapsed time in
seconds to local time.

Module

USE IFPOSIX

Syntax
CALL PXFLOCALTIME (isecnds,iatime,ierror)

isecnds (Input) INTEGER(4). The elapsed time in seconds since 00:00:00
Greenwich Mean Time, January 1, 1970.

 1 Intel® Fortran Compiler Classic and Intel® Fortran Compiler Developer Guide and Reference

2052

iatime (Output) INTEGER(4). One-dimensional array with 9 elements
containing numeric time data. The elements of iatime are returned
as follows:

Element Value

iatime(1) Seconds (0-59)

iatime(2) Minutes (0-59)

iatime(3) Hours (0-23)

iatime(4) Day of month (1-31)

iatime(5) Month (1-12)

iatime(6) Gregorian year (for example,
1990)

iatime(7) Day of week (0-6, where 0 is
Sunday)

iatime(8) Day of year (1-366)

iatime(9) Daylight savings flag (1 if
daylight savings time is in
effect; otherwise, 0)

ierror (Output) INTEGER(4). The error status.

If successful, ierror is set to zero; otherwise, an error code.

The PXFLOCALTIME subroutine converts the time (in seconds since epoch) in the isecnds argument to the
local date and time as described by the array iatime above.

PXFLSEEK
POSIX Subroutine: Positions a file a specified
distance in bytes.

Module

USE IFPOSIX

Syntax
CALL PXFLSEEK (ifildes,ioffset,iwhence,iposition,ierror)

ifildes (Input) INTEGER(4). A file descriptor.

ioffset (Input) INTEGER(4). The number of bytes to move.

iwhence (Input) INTEGER(4). The starting position. The value must be one of
the following:

• SEEK_SET = 0

Sets the offset to ioffset bytes.
• SEEK_CUR = 1

Sets the offset to its current location plus ioffset bytes.

Intel® Fortran Compiler Classic and Intel® Fortran Compiler Developer Guide and Reference 1

2053

• SEEK_END = 2

Sets the offset to the size of the file plus ioffset bytes.

iposition (Output) INTEGER(4). The ending position; the resulting offset
location as measured in bytes from the beginning of the file.

ierror (Output) INTEGER(4). The error status.

If successful, ierror is set to zero; otherwise, an error code.

The PXFLSEEK subroutine repositions the offset of file descriptor ifildes to the argument ioffset
according to the value of argument iwhence.

PXFLSEEK allows the file offset to be set beyond the end of the existing end-of-file. If data is later written at
this point, subsequent reads of the data in the gap return bytes of zeros (until data is actually written into
the gap).

PXFMKDIR
POSIX Subroutine: Creates a new directory.

Module

USE IFPOSIX

Syntax
CALL PXFMKDIR (path,ilen,imode,ierror)

path (Input) Character. The path for the new directory.

ilen (Input) INTEGER(4). The length of path string.

imode (Linux only) (Input) INTEGER(4). The mode mask. Octal file-access mode.

ierror (Output) INTEGER(4). The error status.

If successful, ierror is set to zero; otherwise, an error code.

See Also
PXFRMDIR
PXFCHDIR

PXFMKFIFO
POSIX Subroutine: Creates a new FIFO. This routine
is only available for Linux.

Module

USE IFPOSIX

Syntax
CALL PXFMKFIFO (path,ilen,imode,ierror)

path (Input) Character. The path for the new FIFO.

ilen (Input) INTEGER(4). The length of path string.

 1 Intel® Fortran Compiler Classic and Intel® Fortran Compiler Developer Guide and Reference

2054

imode (Input) INTEGER(4). The mode mask; specifies the FIFO's
permissions. Octal file-access mode.

ierror (Output) INTEGER(4). The error status.

If successful, ierror is set to zero; otherwise, an error code.

The PXFMKFIFO subroutine creates a FIFO special file with name path. A FIFO special file is similar to a pipe,
except that it is created in a different way. Once a FIFO special file is created, any process can open it for
reading or writing in the same way as an ordinary file.

However, the FIFO file has to be open at both ends simultaneously before you can proceed to do any input or
output operations on it. Opening a FIFO for reading normally blocks it until some other process opens the
same FIFO for writing, and vice versa.

See Also
PXFISFIFO

PXFOPEN
POSIX Subroutine: Opens or creates a file.

Module

USE IFPOSIX

Syntax
CALL PXFOPEN (path,ilen,iopenflag,imode,ifildes,ierror)

path (Input) Character. The path of the file to be opened or created.

ilen (Input) INTEGER(4). The length of path string.

iopenflag (Input) INTEGER(4). The flags for the file. (For possible constant
names that can be passed to PXFCONST or IPXFCONST, see below.)

imode (Input) INTEGER(4). The permissions for a new file. This argument
should always be specified when iopenflag=O_CREAT; otherwise, it
is ignored. (For possible permissions, see below.)

ifildes (Output) INTEGER(4). The returned file descriptor for the opened or
created file.

ierror (Output) INTEGER(4). The error status.

If successful, ierror is set to zero; otherwise, an error code.

For iopenflag, you should specify one of the following constant values:

• O_RDONLY (read only)
• O_WRONLY (write only)
• O_RDWR (read and write)

In addition, you can also specify one of the following constant values by using a bitwise inclusive OR (IOR):

Value Action

O_CREAT Creates a file if the file does not exist.

O_EXCL When used with O_CREAT, it causes the open to fail
if the file already exists. In this case, a symbolic
link exists, regardless of where it points to.

Intel® Fortran Compiler Classic and Intel® Fortran Compiler Developer Guide and Reference 1

2055

Value Action

O_NOCTTY1 If path refers to a terminal device, it prevents it
from becoming the process's controlling terminal
even if the process does not have one.

O_TRUNC If the file already exists, it is a regular file, and
imode allows writing (its value is O_RDWR or
O_WRONLY), it causes the file to be truncated to
length 0.

O_APPEND Opens the file in append mode. Before each write,
the file pointer is positioned at the end of the file,
as if with PXFLSEEK.

O_NONBLOCK (or O_NDELAY)1 When possible, opens the file in non-blocking mode.
Neither the open nor any subsequent operations on
the file descriptor that is returned will cause the
calling process to wait. This mode need not have
any effect on files other than FIFOs.

O_SYNC Opens the file for synchronous I/O. Any writes on
the resulting file descriptor will block the calling
process until the data has been physically written to
the underlying hardware.

O_NOFOLLOW1 If path is a symbolic link, it causes the open to fail.

O_DIRECTORY1 If path is not a directory, it causes the open to fail.

O_LARGEFILE1 On 32-bit systems that support the Large Files
System, it allows files whose sizes cannot be
represented in 31 bits to be opened.

O_BINARY2 Opens the file in binary (untranslated) mode.

O_SHORT_LIVED2 Creates the file as temporary. If possible, it does
not flush to the disk.

O_TEMPORARY2 Creates the file as temporary. The file is deleted
when last file handle is closed.

O_RANDOM2 Specifies primarily random access from the disk.

O_SEQUENTIAL2 Specifies primarily sequential access from the disk.

O_TEXT2 Opens the file in text (translated) mode. 3

1Linux only
2Windows
3For more information, see "Text and Binary Modes" in the Visual C++* programmer's guide.

Argument imode specifies the permissions to use if a new file is created. The permissions only apply to future
accesses of the newly created file. The value for imode can be any of the following constant values (which
can be obtained by using PXFCONST or IPXFCONST):

 1 Intel® Fortran Compiler Classic and Intel® Fortran Compiler Developer Guide and Reference

2056

Value Description

S_IRWXU 00700 user (file owner) has read, write and execute
permission.

S_IRUSR, S_IREAD 00400 user has read permission.

S_IWUSR, S_IWRITE 00200 user has write permission.

S_IXUSR, S_IEXEC 00100 user has execute permission.

S_IRWXG1 00070 group has read, write and execute
permission.

S_IRGRP1 00040 group has read permission.

S_IWGRP1 00020 group has write permission.

S_IXGRP1 00010 group has execute permission.

S_IRWXO1 00007 others have read, write and execute
permission.

S_IROTH1 00004 others have read permission.

S_IWOTH1 00002 others have write permission.

S_IXOTH1 00001 others have execute permission.

1Linux only

Example

The following call opens a file for writing only and if the file does not exist, it is created:

call PXFOPEN("OPEN.OUT", &
 8, &
 IOR(IPXFCONST(O_WRONLY), IPXFCONST(O_CREAT)), &
 IOR(IPXFCONST(S_IREAD), IPXFCONST(S_IWRITE)))

See Also
PXFCLOSE
IPXFCONST
PXFCONST

PXFOPENDIR
POSIX Subroutine: Opens a directory and associates
a stream with it.

Module

USE IFPOSIX

Syntax
CALL PXFOPENDIR (dirname,lendirname,opendirid,ierror)

dirname (Input) Character. The directory name.

lendirname (Input) INTEGER(4). The length of dirname string.

Intel® Fortran Compiler Classic and Intel® Fortran Compiler Developer Guide and Reference 1

2057

opendirid (Output) INTEGER(4). The returned ID for the directory.

ierror (Output) INTEGER(4). The error status.

If successful, ierror is set to zero; otherwise, an error code.

This subroutine opens a directory pointed to by the dirname argument and returns the ID of the directory
into opendirid. After the call, this ID can be used by functions PXFREADDIR, PXFREWINDDIR,
PXFCLOSEDIR.

See Also
PXFCLOSEDIR
PXFREADDIR
PXFREADDIR

PXFPATHCONF
POSIX Subroutine: Gets the value for a
configuration option of an opened file.

Module

USE IFPOSIX

Syntax
CALL PXFPATHCONF (path,ilen,name,ival,ierror)

path (Input) Character. The path to the opened file.

ilen (Input) INTEGER(4). The length of path.

name (Input) INTEGER(4). The configurable option.

ival (Input) INTEGER(4). The value of the configurable option.

ierror (Output) INTEGER(4). The error status.

If successful, ierror is set to zero; otherwise, an error code.

The PXFPATHCONF subroutine gets a value for the configuration option named for the opened file with path
path.

The configuration option, defined in name, can be obtained by using PXFCONST or IPXFCONST with one of
the following constant names:

Constant Action

_PC_LINK_MAX Returns the maximum number of links to the file. If
path refers to a directory, then the value applies to
the whole directory.

_PC_MAX_CANON1 Returns the maximum length of a formatted input
line; the path must refer to a terminal.

_PC_MAX_INPUT1 Returns the maximum length of an input line; the
path must refer to a terminal.

_PC_NAME_MAX Returns the maximum length of a filename in path
that the process is allowed to create.

 1 Intel® Fortran Compiler Classic and Intel® Fortran Compiler Developer Guide and Reference

2058

Constant Action

_PC_PATH_MAX Returns the maximum length of a relative
pathname when path is the current working
directory.

_PC_PIPE_BUF Returns the size of the pipe buffer; the path must
refer to a FIFO.

_PC_CHOWN_RESTRICTED1 Returns nonzero if PXFCHOWN may not be used on
this file. If path refers to a directory, then this
applies to all files in that directory.

_PC_NO_TRUNC1 Returns nonzero if accessing filenames longer than
_POSIX_NAME_MAX will generate an error.

_PC_VDISABLE1 Returns nonzero if special character processing can
be disabled; the path must refer to a terminal.

1Linux

On Linux* systems, the corresponding macros are defined in <unistd.h>. The values for name can be
obtained by using PXFCONST or IPXFCONST when passing the string names of predefined macros in
<unistd.h>. The following table shows the corresponding macro names for the above constants:

Constant Corresponding Macro

_PC_LINK_MAX _POSIX_LINK_MAX

_PC_MAX_CANON _POSIX_MAX_CANON

_PC_MAX_INPUT _POSIX_MAX_INPUT

_PC_NAME_MAX _POSIX_NAME_MAX

_PC_PATH_MAX _POSIX_PATH_MAX

_PC_PIPE_BUF _POSIX_PIPE_BUF

_PC_CHOWN_RESTRICTED _POSIX_CHOWN_RESTRICTED

_PC_NO_TRUNC _POSIX_NO_TRUN C

_PC_VDISABLE _POSIX_VDISABLE

See Also
IPXFCONST
PXFCONST
PXFFPATHCONF

PXFPAUSE
POSIX Subroutine: Suspends process execution.

Module

USE IFPOSIX

Syntax
CALL PXFPAUSE (ierror)

Intel® Fortran Compiler Classic and Intel® Fortran Compiler Developer Guide and Reference 1

2059

ierror (Output) INTEGER(4). The error status.

If successful, ierror is set to zero; otherwise, an error code.

The PXFPAUSE subroutine causes the invoking process (or thread) to sleep until a signal is received that
either terminates it or causes it to call a signal-catching function.

PXFPIPE
POSIX Subroutine: Creates a communications pipe
between two processes. This routine is only available
for Linux.

Module

USE IFPOSIX

Syntax
CALL PXFPIPE (ireadfd,iwritefd,ierror)

ireadfd (Output) INTEGER(4). The file descriptor for reading.

iwritefd (Output) INTEGER(4). The file descriptor for writing.

ierror (Output) INTEGER(4). The error status.

If successful, ierror is set to zero; otherwise, an error code.

The PXFPIPE subroutine returns a pair of file descriptors, pointing to a pipe inode, and places them into
ireadfd for reading and into iwritefd for writing.

PXFPOSIXIO
POSIX Subroutine: Sets the current value of the
POSIX I/O flag.

Module

USE IFPOSIX

Syntax
CALL PXFPOSIXIO (new,old,ierror)

new (Input) INTEGER(4). The new value for the POSIX I/O flag.

old (Output) INTEGER(4). The previous value of the POSIX I/O flag.

ierror (Output) INTEGER(4). The error status.

If successful, ierror is set to zero; otherwise, an error code.

This subroutine sets the current value of the Fortran POSIX I/O flag and returns the previous value of the
flag. The initial state of the POSIX I/O flag is unspecified.

If a file is opened with a Fortran OPEN statement when the value of the POSIX I/O flag is 1, the unit is
accessed as if the records are newline delimited, even if the file does not contain records that are delimited
by a new line character.

If a file is opened with a Fortran OPEN statement when the value of the POSIX I/O flag is zero, a connection
to a file descriptor is not assumed and the records in the file are not required to be accessed as if they are
newline delimited.

 1 Intel® Fortran Compiler Classic and Intel® Fortran Compiler Developer Guide and Reference

2060

PXFPUTC
POSIX Subroutine: Outputs a character to logical
unit 6 (stdout).

Module

USE IFPOSIX

Syntax
CALL PXFPUTC (ch,ierror)

ch (Input) Character. The character to be written.

ierror (Output) INTEGER(4). The error status.

If successful, ierror is set to zero; otherwise, an error code. A possible error code is EEND if the end of the
file has been reached.

See Also
PXFGETC

PXFREAD
POSIX Subroutine: Reads from a file.

Module

USE IFPOSIX

Syntax
CALL PXFREAD (ifildes,buf,nbyte,nread,ierror)

ifildes (Input) INTEGER(4). The file descriptor of the file to be read from.

buf (Output) Character. The buffer that stores the data read from the file.

nbyte (Input) INTEGER(4). The number of bytes to read.

nread (Output) INTEGER(4). The number of bytes that were read.

ierror (Output) INTEGER(4). The error status.

If successful, ierror is set to zero; otherwise, an error code.

The PXFREAD subroutine reads nbyte bytes from the file specified by ifildes into memory in buf. The
subroutine returns the total number of bytes read into nread. If no error occurs, the value of nread will
equal the value of nbyte.

See Also
PXFWRITE

PXFREADDIR
POSIX Subroutine: Reads the current directory
entry.

Module

USE IFPOSIX

Syntax
CALL PXFREADDIR (idirid,jdirent,ierror)

Intel® Fortran Compiler Classic and Intel® Fortran Compiler Developer Guide and Reference 1

2061

idirid (Input) INTEGER(4). The ID of a directory obtained from
PXFOPENDIR.

jdirent (Output) INTEGER(4). A handle of structure dirent.

ierror (Output) INTEGER(4). The error status.

If successful, ierror is set to zero; otherwise, an error code.

The PXFREADDIR subroutine reads the entry of the directory associated with idirid into the structure
associated with handle jdirent.

NOTE
To get a handle for an instance of the dirent structure, use PXFSTRUCTCREATE with the string 'dirent'
for the structure name.

See Also
PXFOPENDIR
PXFREWINDDIR

PXFRENAME
POSIX Subroutine: Changes the name of a file.

Module

USE IFPOSIX

Syntax
CALL PXFRENAME (old,lenold,new,lennew,ierror)

old (Input) Character. The name of the file to be renamed.

lenold (Input) INTEGER(4). The length of old string.

new (Input) Character. The new file name.

lennew (Input) INTEGER(4). The length of new string.

ierror (Output) INTEGER(4). The error status.

If successful, ierror is set to zero; otherwise, an error code.

PXFREWINDDIR
POSIX Subroutine: Resets the position of the stream
to the beginning of the directory.

Module

USE IFPOSIX

Syntax
CALL PXFREWINDDIR (idirid,ierror)

idirid (Input) INTEGER(4). The ID of a directory obtained from
PXFOPENDIR.

 1 Intel® Fortran Compiler Classic and Intel® Fortran Compiler Developer Guide and Reference

2062

ierror (Output) INTEGER(4). The error status.

If successful, ierror is set to zero; otherwise, an error code.

PXFRMDIR
POSIX Subroutine: Removes a directory.

Module

USE IFPOSIX

Syntax
CALL PXFRMDIR (path,ilen,ierror)

path (Input) Character. The directory to be removed. It must be empty.

ilen (Input) INTEGER(4). The length of path string.

ierror (Output) INTEGER(4). The error status.

If successful, ierror is set to zero; otherwise, an error code.

See Also
PXFMKDIR
PXFCHDIR

PXFSETENV
POSIX Subroutine: Adds a new environment
variable or sets the value of an environment variable.

Module

USE IFPOSIX

Syntax
CALL PXFSETENV (name,lenname,new,lennew,ioverwrite,ierror)

name (Input) Character. The name of the environment variable.

lenname (Input) INTEGER(4). The length of name.

new (Input) Character. The value of the environment variable.

lennew (Input) INTEGER(4). The length of new.

ioverwrite (Input) INTEGER(4). A flag indicating whether to change the value of
the environment variable if it exists.

ierror (Output) INTEGER(4). The error status.

If successful, ierror is set to zero; otherwise, an error code.

If name does not exist, PXFSETENV adds it with valuenew.

If name exists, PXFSETENV sets its value to new ifioverwrite is a nonzero number. If ioverwrite is zero,
the value of name is not changed.

If lennew is equal to zero, PXFSETENV sets the value of the environment variable to a string equal to new
after removing any leading or trailing blanks.

Intel® Fortran Compiler Classic and Intel® Fortran Compiler Developer Guide and Reference 1

2063

Example

program test2
use ifposix
character*10 name, new
integer lenname, lennew, ioverwrite, ierror
name = "FOR_NEW"
lenname = 7
new = "ON"
lennew = 2
ioverwrite = 1

CALL PXFSETENV (name, lenname, new, lennew, ioverwrite, ierror)
print *, "name= ", name
print *, "lenname= ", lenname
print *, "new= ", lenname
print *, "lennew= ", lenname
print *, "ierror= ", ierror
end

See Also
PXFGETENV

PXFSETGID
POSIX Subroutine: Sets the effective group ID of
the current process. This routine is only available for
Linux.

Module

USE IFPOSIX

Syntax
CALL PXFSETGID (igid,ierror)

igid (Input) INTEGER(4). The group ID.

ierror (Output) INTEGER(4). The error status.

If successful, ierror is set to zero; otherwise, an error code.

If the caller is the superuser, the real and saved group ID's are also
set. This feature allows a program other than root to drop all of its
group privileges, do some un-privileged work, and then re-engage the
original effective group ID in a secure manner.

Caution
If the user is root then special care must be taken. PXFSETGID checks the effective gid of the caller. If
it is the superuser, all process-related group ID's are set to gid. After this has occurred, it is impossible
for the program to regain root privileges.

See Also
PXFGETGID

 1 Intel® Fortran Compiler Classic and Intel® Fortran Compiler Developer Guide and Reference

2064

PXFSETPGID
POSIX Subroutine: Sets the process group ID. This
routine is only available for Linux.

Module

USE IFPOSIX

Syntax
CALL PXFSETPGID (ipid,ipgid,ierror)

ipid (Input) INTEGER(4). The process group ID to change.

ipgid (Input) INTEGER(4). The new process group ID.

ierror (Output) INTEGER(4). The error status.

If successful, ierror is set to zero; otherwise, an error code.

The PXFSETPGID subroutine sets the process group ID of the process specified by ipid to ipgid.

If ipid is zero, the process ID of the current process is used. If ipgid is zero, the process ID of the process
specified by ipid is used.

PXFSETPGID can be used to move a process from one process group to another, but both process groups
must be part of the same session. In this case, ipgid specifies an existing process group to be joined and
the session ID of that group must match the session ID of the joining process.

PXFSETSID
POSIX Subroutine: Creates a session and sets the
process group ID. This routine is only available for
Linux.

Module

USE IFPOSIX

Syntax
CALL PXFSETSID (isid,ierror)

isid (Output) INTEGER(4). The session ID.

ierror (Output) INTEGER(4). The error status.

If successful, ierror is set to zero; otherwise, an error code.

The PXFSETSID subroutine creates a new session if the calling process is not a process group leader.

The calling process is the leader of the new session and the process group leader for the new process group.
The calling process has no controlling terminal.

The process group ID and session ID of the calling process are set to the PID of the calling process. The
calling process will be the only process in this new process group and in this new session.

PXFSETUID
POSIX Subroutine: Sets the effective user ID of the
current process. This routine is only available for
Linux.

Intel® Fortran Compiler Classic and Intel® Fortran Compiler Developer Guide and Reference 1

2065

Module

USE IFPOSIX

Syntax
CALL PXFSETUID (iuid,ierror)

iuid (Output) INTEGER(4). The session ID.

ierror (Output) INTEGER(4). The user status.

If successful, ierror is set to zero; otherwise, an error code.

If the effective user ID of the caller is root, the real and saved user ID's are also set. This feature allows a
program other than root to drop all of its user privileges, do some un-privileged work, and then re-engage
the original effective user ID in a secure manner.

Caution
If the user is root then special care must be taken. PXFSETUID checks the effective uid of the caller. If
it is the superuser, all process-related user ID's are set to uid. After this has occurred, it is impossible
for the program to regain root privileges.

See Also
PXFGETUID

PXFSIGACTION
POSIX Subroutine: Changes the action associated
with a specific signal. It can also be used to examine
the action of a signal. This routine is only available for
Linux.

Module

USE IFPOSIX

Syntax
CALL PXFSIGACTION (isig,jsigact,josigact,ierror)

isig (Input) INTEGER(4). The signal number whose action should be
changed.

jsigact (Input) INTEGER(4). A handle of structure sigaction. Specifies the
new action for signal isig.

josigact (Output) INTEGER(4). A handle of structure sigaction.Stores the
previous action for signal isig.

ierror (Output) INTEGER(4). The error status.

If successful, ierror is set to zero; otherwise, an error code.

The signal specified in isig can be any valid signal except SIGKILL and SIGSTOP.

If jsigact is nonzero, the new action for signal isig is installed from the structure associated with handle
jsigact. If josigact is nonzero, the previous action of the specified signal is saved in the structure
associated with handle josigact where it can be examined.

 1 Intel® Fortran Compiler Classic and Intel® Fortran Compiler Developer Guide and Reference

2066

NOTE
To get a handle for an instance of the sigaction structure, use PXFSTRUCTCREATE with the string
'sigaction' for the structure name.

See Also
PXFSTRUCTCREATE

PXFSIGADDSET
POSIX Subroutine: Adds a signal to the signal set.
This routine is only available for Linux.

Module

USE IFPOSIX

Syntax
CALL PXFSIGADDSET (jsigset,isigno,ierror)

jsigset (Input) INTEGER(4). A handle of structure sigset. This is the set to
add the signal to.

isigno (Input) INTEGER(4). The signal number to add to the set.

ierror (Output) INTEGER(4). The error status.

If successful, ierror is set to zero; otherwise, an error code.

The PXFSIGADDSET subroutine adds signal number isigno to the set of signals associated with handle
jsigset. This set of signals is used by PXFSIGACTION as field sa_mask in structure sigaction. It defines
the set of signals that will be blocked during execution of the signal handler function (the field sa_handler in
structure sigaction).

On Windows* systems, PXFSIGACTION ignores the field sa_mask in structure sigaction.

NOTE
To get a handle for an instance of the sigset structure, use PXFSTRUCTCREATE with the string 'sigset'
for the structure name.

See Also
PXFSTRUCTCREATE
PXFSIGDELSET
PXFSIGACTION

PXFSIGDELSET
POSIX Subroutine: Deletes a signal from the signal
set. This routine is only available for Linux.

Module

USE IFPOSIX

Syntax
CALL PXFSIGDELSET (jsigset,isigno,ierror)

Intel® Fortran Compiler Classic and Intel® Fortran Compiler Developer Guide and Reference 1

2067

jsigset (Input) INTEGER(4). A handle of structure sigset. This is the set to
delete the signal from.

isigno (Input) INTEGER(4). The signal number to delete from the set.

ierror (Output) INTEGER(4). The error status.

If successful, ierror is set to zero; otherwise, an error code.

The PXFSIGDELSET subroutine removes signal number isigno from the set of signals associated with handle
jsigset. This set of signals is used by PXFSIGACTION as field sa_mask in structure sigaction. It defines
the set of signals that will be blocked during execution of the signal handler function (the field sa_handler in
structure sigaction).

On Windows* systems, PXFSIGACTION ignores the field sa_mask in structure sigaction.

NOTE
To get a handle for an instance of the sigset structure, use PXFSTRUCTCREATE with the string 'sigset'
for the structure name.

See Also
PXFSTRUCTCREATE
PXFSIGADDSET
PXFSIGACTION

PXFSIGEMPTYSET
POSIX Subroutine: Empties a signal set. This routine
is only available for Linux.

Module

USE IFPOSIX

Syntax
CALL PXFSIGEMPTYSET (jsigset,ierror)

jsigset (Input) INTEGER(4). A handle of structure sigset. This is the set to
empty.

ierror (Output) INTEGER(4). The error status.

If successful, ierror is set to zero; otherwise, nonzero.

The PXFSIGEMPTYSET subroutine initializes the signal set associated with handle jsigset to empty; all
signals are excluded from the set. This set of signals is used by PXFSIGACTION as field sa_mask in structure
sigaction. It defines the set of signals that will be blocked during execution of the signal handler function
(the field sa_handler in structure sigaction).

On Windows* systems, PXFSIGACTION ignores the field sa_mask in structure sigaction.

NOTE
To get a handle for an instance of the sigset structure, use PXFSTRUCTCREATE with the string 'sigset'
for the structure name.

 1 Intel® Fortran Compiler Classic and Intel® Fortran Compiler Developer Guide and Reference

2068

See Also
PXFSTRUCTCREATE
PXFSIGFILLSET
PXFSIGACTION

PXFSIGFILLSET
POSIX Subroutine: Fills a signal set. This routine is
only available for Linux.

Module

USE IFPOSIX

Syntax
CALL PXFSIGFILLSET (jsigset,ierror)

jsigset (Input) INTEGER(4). A handle of structure sigset. This is the set to
fill.

ierror (Output) INTEGER(4). The error status.

If successful, ierror is set to zero; otherwise, an error code.

The PXFSIGFILLSET subroutine initializes the signal set associated with handle jsigset to full; all signals are
included into the set. This set of signals is used by PXFSIGACTION as field sa_mask in structure sigaction.
It defines the set of signals that will be blocked during execution of the signal handler function (the field
sa_handler in structure sigaction).

On Windows* systems, PXFSIGACTION ignores the field sa_mask in structure sigaction.

NOTE
To get a handle for an instance of the sigset structure, use PXFSTRUCTCREATE with the string 'sigset'
for the structure name.

See Also
PXFSTRUCTCREATE
PXFSIGEMPTYSET
PXFSIGACTION

PXFSIGISMEMBER
POSIX Subroutine: Tests whether a signal is a
member of a signal set. This routine is only available
for Linux.

Module

USE IFPOSIX

Syntax
CALL PXFSIGISMEMBER (jsignset,isigno,ismember,ierror)

jsignset (Input) INTEGER(4). A handle of structure sigset. This is the set the
signal will be tested in.

isigno (Input) INTEGER(4). The signal number to test for membership.

Intel® Fortran Compiler Classic and Intel® Fortran Compiler Developer Guide and Reference 1

2069

ismember (Output) Logical. The returned result.

ierror (Output) INTEGER(4). The error status.

If successful, ierror is set to zero; otherwise, an error code.

The PXFSIGISMEMBER subroutine tests whether isigno is a member of the set associated with handle
jsignset. If the signal is a member of the set, ismember is set to .TRUE.; otherwise, .FALSE.. This set of
signals is used by PXFSIGACTION as field sa_mask in structure sigaction. It defines the set of signals that
will be blocked during execution of the signal handler function (the field sa_handler in structure sigaction).

On Windows* systems, PXFSIGACTION ignores the field sa_mask in structure sigaction.

NOTE
To get a handle for an instance of the sigset structure, use PXFSTRUCTCREATE with the string 'sigset'
for the structure name.

See Also
PXFSTRUCTCREATE
PXFSIGACTION

PXFSIGPENDING
POSIX Subroutine: Examines pending signals. This
routine is only available for Linux.

Module

USE IFPOSIX

Syntax
CALL PXFSIGPENDING (jsigset,ierror)

jsigset (Input) INTEGER(4). A handle of structure sigaction. The signals to
examine.

ierror (Output) INTEGER(4). The error status.

If successful, ierror is set to zero; otherwise, an error code.

The PXFSIGPENDING subroutine is used to examine pending signals (ones that have been raised while
blocked). The signal mask of the pending signals is stored in the signal set associated with handle jsigset.

PXFSIGPROCMASK
POSIX Subroutine: Changes the list of currently
blocked signals. This routine is only available for
Linux.

Module

USE IFPOSIX

Syntax
CALL PXFSIGPROCMASK (ihow,jsigset,josigset,ierror)

ihow (Input) INTEGER(4). Defines the action for jsigset.

 1 Intel® Fortran Compiler Classic and Intel® Fortran Compiler Developer Guide and Reference

2070

jsigset (Input) INTEGER(4). A handle of structure sigset. The signals to
examine.

josigset (Input) INTEGER(4). A handle of structure sigset. Stores the
previous mask of blocked signals.

ierror (Output) INTEGER(4). The error status.

If successful, ierror is set to zero; otherwise, an error code.

The argument ihow indicates the way in which the set is to be changed, and consists of one of the following
constant names:

Constant 1 Action

SIG_BLOCK The resulting set of blocked signals will be the
union of the current signal set and the jsigset
signal set.

SIG_UNBLOCK The resulting set of blocked signals will be the
current set of blocked signals with the signals in
jsigset removed. It is legal to attempt to unblock
a signal that is not blocked.

SIG_SETMASK The resulting set of blocked signals will be the
jsigset signal set.

1These names can be used in PXFCONST or IPXFCONST.

If josigset is non-zero, the previous value of the signal mask is stored in the structure associated with
handle josigset.

See Also
IPXFCONST
PXFCONST

PXFSIGSUSPEND
POSIX Subroutine: Suspends the process until a
signal is received. This routine is only available for
Linux.

Module

USE IFPOSIX

Syntax
CALL PXFSIGSUSPEND (jsigset,ierror)

jsigset (Input) INTEGER(4). A handle of structure sigset. Specifies a set of
signals.

ierror (Output) INTEGER(4). The error status.

If successful, ierror is set to zero; otherwise, an error code.

PXFSIGSUSPEND temporarily replaces the signal mask for the process with that given by the structure
associated with the jsigset handle; it then suspends the process until a signal is received.

Intel® Fortran Compiler Classic and Intel® Fortran Compiler Developer Guide and Reference 1

2071

PXFSLEEP
POSIX Subroutine: Forces the process to sleep.

Module

USE IFPOSIX

Syntax
CALL PXFSLEEP (iseconds,isecleft,ierror)

iseconds (Input) INTEGER(4). The number of seconds to sleep.

isecleft (Output) INTEGER(4). The number of seconds left to sleep.

ierror (Output) INTEGER(4). The error status.

If successful, ierror is set to zero; otherwise, an error code.

The PXFSLEEP subroutine forces the current process to sleep until seconds iseconds have elapsed or a
signal arrives that cannot be ignored.

PXFSTAT
POSIX Subroutine: Gets a file's status information.

Module

USE IFPOSIX

Syntax
CALL PXFSTAT (path,ilen,jstat,ierror)

path (Input) Character. The path to the file.

ilen (Input) INTEGER(4). The length of path string.

jstat (Input) INTEGER(4). A handle of structure stat.

ierror (Output) INTEGER(4). The error status.

If successful, ierror is set to zero; otherwise, an error code.

The PXFSTAT subroutine puts the status information for the file specified by path into the structure
associated with handle jstat.

NOTE
To get a handle for an instance of the stat structure, use PXFSTRUCTCREATE with the string 'stat' for
the structure name.

See Also
PXFSTRUCTCREATE

PXFSTRUCTCOPY
POSIX Subroutine: Copies the contents of one
structure to another.

Module

USE IFPOSIX

 1 Intel® Fortran Compiler Classic and Intel® Fortran Compiler Developer Guide and Reference

2072

Syntax
CALL PXFSTRUCTCOPY (structname,jhandle1,jhandle2,ierror)

structname (Input) Character. The name of the structure.

jhandle1 (Input) INTEGER(4). A handle to the structure to be copied.

jhandle2 (Input) INTEGER(4). A handle to the structure that will receive the
copy.

ierror (Output) INTEGER(4). The error status.

If successful, ierror is set to zero; otherwise, an error code.

Example

See the example in PXFSTRUCTCREATE

PXFSTRUCTCREATE
POSIX Subroutine: Creates an instance of the
specified structure.

Module

USE IFPOSIX

Syntax
CALL PXFSTRUCTCREATE (structname,jhandle,ierror)

structname (Input) Character. The name of the structure.

As for any character string, the name must be specified in single or
double quotes; for example, the structure sigaction would be
specified as 'sigaction'. For more information on available structures,
see the table below.

jhandle (Output) INTEGER(4). The handle of the newly-created structure.

ierror (Output) INTEGER(4). The error status.

If successful, ierror is set to zero; otherwise, an error code.

If your application passes information to the system, you should call one of the PXF(type)SET subroutines. If
your application needs to get information from the structure, you should call one of the PXF(type)GET
subroutines.

The following table shows:

• The structures that are available in the Fortran POSIX library
• The fields within each structure
• The subroutines you must use to access the structure fields

Structure Name Field Names Subroutines for Access

sigset 1 Fields are hidden. PXFSIGEMPTYSET 1,
PXFSIGFILLSET 1,
PXFSIGADDSET 1, or
PXFSIGDELSET 1

Intel® Fortran Compiler Classic and Intel® Fortran Compiler Developer Guide and Reference 1

2073

Structure Name Field Names Subroutines for Access

sigaction sa_handler

sa_mask

sa_flags

PXFINTGET/PXFINTSET or
PXFINT8GET/PXFINT8SET

PXFINTGET/PXFINTSET or
PXFINT8GET/PXFINT8SET

PXFINTGET/PXFINTSET or
PXFINT8GET/PXFINT8SET

utsname sysname

nodename

release

version

machine

For all fields:

PXFSTRGET

tms tms_utime

tms_stime

tms_cutime

tms_cstime

For all fields:

PXFINTGET or PXFINT8GET

dirent d_name PXFSTRGET

stat st_mode

st_ino

st_dev

st_nlink

st_uid

st_gid

st_size

st_atime

st_mtime

st_ctime

For all fields:

PXFINTGET or PXFINT8GET

utimbuf actime

modtime

For all fields:

PXFINTGET or PXFINT8GET

flock 1 l_type

l_whence

l_start

l_len

l_pid

For all fields:

PXFINTGET or PXFINT8GET

termios 1 c_iflag

c_oflag

c_cflag

PXFINTGET/PXFINTSET or
PXFINT8GET/PXFINT8SET

PXFINTGET/PXFINTSET or
PXFINT8GET/PXFINT8SET

 1 Intel® Fortran Compiler Classic and Intel® Fortran Compiler Developer Guide and Reference

2074

Structure Name Field Names Subroutines for Access

c_lflag

c_cc

PXFINTGET/PXFINTSET or
PXFINT8GET/PXFINT8SET

PXFINTGET/PXFINTSET or
PXFINT8GET/PXFINT8SET

PXFAINTGET/PXFAINTSET or
PXFAINT8GET/PXFAINT8SET

group 1 gr_name

gr_gid

gr_nmem

gr_mem

PXFSTRGET

PXFINTGET or PXFINT8GET

PXFINTGET or PXFINT8GET

PXFESTRGET

passwd 1 pw_name

pw_uid

pw_gid

pw_dir

pw_shell

PXFSTRGET

PXFINTGET or PXFINT8GET

PXFINTGET or PXFINT8GET

PXFSTRGET

PXFSTRGET

1Linux only

As for any character string, you must use single or double quotes when specifying a field name in a
PXF(type)GET or PXF(type)SET subroutine. For example, field name sysname (in structure utsname) must be
specified as 'sysname'.

Example

program test4
 use ifposix
 implicit none
 integer(jhandle_size) jhandle1,jhandle2
 integer(4) ierror,ilen1

 print *," Create a first instance for structure 'utsname' "
 call PXFSTRUCTCREATE("utsname",jhandle1,ierror)
 if(ierror.NE.0) STOP 'Error: cannot create structure for jhandle1'

 print *," Create a second instance for structure 'utsname' "
 call PXFSTRUCTCREATE("utsname",jhandle2,ierror)
 if(ierror.NE.0) then
 call PXFSTRUCTFREE(jhandle1,ierror)
 STOP 'test failed - cannot create structure for jhandle2'
 end if

 print *,"Fill the structure associated with jhandle1 with arbitrary data"
 call PXFSTRSET(jhandle1,"sysname","00000000000000",14,ierror)
 if(ierror.NE.0) call Error('Error: can't set component sysname for jhandle1')

 call PXFSTRSET(jhandle1,"Nodename","11111111111111",14,ierror)
 if(ierror.NE.0) call Error('Error: can't set component nodename for jhandle1')

 call PXFSTRSET(jhandle1,"RELEASE","22222222222222",14,ierror)

Intel® Fortran Compiler Classic and Intel® Fortran Compiler Developer Guide and Reference 1

2075

 if(ierror.NE.0) call Error('Error: can't set component release for jhandle1')

 call PXFSTRSET(jhandle1,"verSION","33333333333333",14,ierror)
 if(ierror.NE.0) call Error('Error: can't set component version for jhandle1')

 call PXFSTRSET(jhandle1,"machine","44444444444444",14,ierror)
 if(ierror.NE.0) call Error('Error: can't set component machine for jhandle1')

 print *,"Fill the structure associated with jhandle2 with arbitary data"
 call PXFSTRSET(jhandle2,"sysname","aaaaaaaaa",7,ierror)
 if(ierror.NE.0) call Error('Error: can't set component sysname for jhandle2')

 call PXFSTRSET(jhandle2,"Nodename","BBBBBBBBB BBB",14,ierror)
 if(ierror.NE.0) call Error('Error: can't set component nodename for jhandle2')

 call PXFSTRSET(jhandle2,"RELEASE","cCCC cc-cccnc",12,ierror)
 if(ierror.NE.0) call Error('Error: can't set component release for jhandle2')

 call PXFSTRSET(jhandle2,"verSION","ddddd",1,ierror)
 if(ierror.NE.0) call Error('Error: can't set component version for jhandle2')

 call PXFSTRSET(jhandle2,"machine","eeeeeee",6,ierror)
 if(ierror.NE.0) call Error('Error: can't set component machine for jhandle2')

 print *,"Print contents of the structure associated with jhandle1"
 call PRINT_UTSNAME(jhandle1)

 print *,"Print contents of the structure associated with jhandle2"
 call PRINT_UTSNAME(jhandle2)

 print *,"Get operating system info into structure associated with jhandle1"
 call PXFUNAME(jhandle1,ierror)
 if(ierror.NE.0) call Error('Error: call to PXFUNAME has failed')

 print *,"Print contents of the structure associated with jhandle1"
 print*," returned from PXFUNAME"
 call PRINT_UTSNAME(jhandle1)

 print *,"Copy the contents of the structure associated with jhandle1"
 print *," into the structure associated with jhandle2"
 call PXFSTRUCTCOPY("utsname",jhandle1,jhandle2,ierror)
 if(ierror.NE.0) call Error('Error: can't copy jhandle1 contents into jhandle2')

 print *,"Print the contents of the structure associated with jhandle2."
 print *," It should be the same after copying."
 call PRINT_UTSNAME(jhandle2)

 print *,"Free memory for instance of structure associated with jhandle1"
 call PXFSTRUCTFREE(jhandle1,ierror)
 if(ierror.NE.0) STOP 'Error: can't free instance of structure for jhandle1'

 print *,"Free memory for instance of structure associated with jhandle2"
 call PXFSTRUCTFREE(jhandle2,ierror)
 if(ierror.NE.0) STOP 'Error: can't free instance of structure for jhandle2'

 print *,"Program terminated normally"
 call PXFEXIT(0)
end

 1 Intel® Fortran Compiler Classic and Intel® Fortran Compiler Developer Guide and Reference

2076

See Also
PXFSTRUCTFREE
the example in PXFTIMES

PXFSTRUCTFREE
POSIX Subroutine: Deletes the instance of a
structure.

Module

USE IFPOSIX

Syntax
CALL PXFSTRUCTFREE (jhandle,ierror)

jhandle (Input) INTEGER(4). The handle of a structure.

ierror (Output) INTEGER(4). The error status.

If successful, ierror is set to zero; otherwise, an error code.

The PXFSTRUCTFREE subroutine deletes the instance of the structure associated with handle jhandle.

Example

See the example in PXFSTRUCTCREATE, the example in PXFTIMES

PXFSYSCONF
POSIX Subroutine: Gets values for system limits or
options.

Module

USE IFPOSIX

Syntax
CALL PXFSYSCONF (name,ival,ierror)

name (Input) INTEGER(4). The system option you want information about.

ival (Output) INTEGER(4). The returned value.

ierror (Output) INTEGER(4). The error status.

If successful, ierror is set to zero; otherwise, an error code.

PXFSYSCONF lets you determine values for system limits or system options at runtime.

The value for name can be any of the following constants:

Constant Description

_SC_ARG_MAX1 Indicates the maximum length of the arguments to
the PXFEXEC family of routines.

_SC_CHILD_MAX1 Indicates the number of simultaneous processes
per user ID.

_SC_CLK_TCK Indicates the number of clock ticks per second.

Intel® Fortran Compiler Classic and Intel® Fortran Compiler Developer Guide and Reference 1

2077

Constant Description

_SC_STREAM_MAX2 Indicates the maximum number of streams that a
process can have open at any time.

_SC_TZNAME_MAX Indicates the maximum number of bytes in a
timezone name.

_SC_OPEN_MAX Indicates the maximum number of files that a
process can have open at any time.

_SC_JOB_CONTROL1 Indicates whether POSIX-style job control is
supported.

_SC_SAVED_IDS1 Indicates whether a process has a saved set-user-
ID and a saved set-group-ID.

_SC_VERSION1 Indicates the year and month the POSIX.1 standard
was approved in the format YYYYMML; the value
199009L indicates the most recent revision, 1990.

_SC_BC_BASE_MAX1 Indicates the maximum obase value accepted by
the bc(1) utility.

_SC_BC_DIM_MAX1 Indicates the maximum value of elements that
bc(1) permits in an array.

_SC_BC_SCALE_MAX1 Indicates the maximum scale value allowed by
bc(1).

_SC_BC_STRING_MAX1 Indicates the maximum length of a string accepted
by bc(1).

_SC_COLL_WEIGHTS_MAX1 Indicates the maximum numbers of weights that
can be assigned to an entry of the LC_COLLATE
order keyword in the locale definition file.

_SC_EXPR_NEST_MAX1,3 Indicates the maximum number of expressions that
can be nested within parentheses by expr(1).

_SC_LINE_MAX1 Indicates the maximum length of a utility's input
line length, either from standard input or from a
file. This includes the length for a trailing newline.

_SC_RE_DUP_MAX1 Indicates the maximum number of repeated
occurrences of a regular expression when the
interval notation \{m,n\} is used.

_SC_2_VERSION1 Indicates the version of the POSIX.2 standard; it is
in the format YYYYMML.

_SC_2_DEV1 Indicates whether the POSIX.2 C language
development facilities are supported.

_SC_2_FORT_DEV1 Indicates whether the POSIX.2 FORTRAN language
development utilities are supported.

_SC_2_FORT_RUN1 Indicates whether the POSIX.2 FORTRAN runtime
utilities are supported.

 1 Intel® Fortran Compiler Classic and Intel® Fortran Compiler Developer Guide and Reference

2078

Constant Description

_SC_2_LOCALEDEF1 Indicates whether the POSIX.2 creation of locates
via localedef(1) is supported.

_SC_2_SW_DEV1 Indicates whether the POSIX.2 software
development utilities option is supported.

_SC_PAGESIZE (or _SC_PAGE_SIZE) Indicates the size of a page (in bytes).

_SC_PHYS_PAGES4 Indicates the number of pages of physical memory.
Note that it is possible for the product of this value
and the value of _SC_PAGE_SIZE to overflow.

_SC_AVPHYS_PAGES4 Indicates the number of currently available pages of
physical memory.

1Linux
2The corresponding POSIX macro is STREAM_MAX.
3The corresponding POSIX macro is EXPR_NEST_MAX.
4Linux and Windows

The corresponding macros are defined in <bits/confname.h> on Linux* systems. The values for argument
name can be obtained by using PXFCONST or IPXFCONST when passing the string names of predefined
macros in the appropriate .h file.

See Also
IPXFCONST
PXFCONST

PXFTCDRAIN
POSIX Subroutine: Waits until all output written has
been transmitted. This routine is only available for
Linux.

Module

USE IFPOSIX

Syntax
CALL PXFTCDRAIN (ifildes,ierror)

ifildes (Input) INTEGER(4). The file descriptor associated with the terminal.

ierror (Output) INTEGER(4). The error status.

If successful, ierror is set to zero; otherwise, an error code.

PXFTCFLOW
POSIX Subroutine: Suspends the transmission or
reception of data. This routine is only available for
Linux.

Module

USE IFPOSIX

Intel® Fortran Compiler Classic and Intel® Fortran Compiler Developer Guide and Reference 1

2079

Syntax
CALL PXFTCFLOW (ifildes,iaction,ierror)

ifildes (Input) INTEGER(4). The file descriptor associated with the terminal.

iaction (Input) INTEGER(4). The action to perform.

ierror (Output) INTEGER(4). The error status.

If successful, ierror is set to zero; otherwise, an error code.

The PXFTCFLOW subroutine suspends or resumes transmission or reception of data from the terminal
referred to by ifildes. The action performed depends on the value of iaction, which must be one of the
following constant names:

Constant 1 Action

TCOOFF Output is suspended.

TCOON Output is resumed.

TCIOFF A STOP character is transmitted. This should cause
the terminal to stop transmitting data to the
system.

TCION A START character is transmitted. This should cause
the terminal to resume transmitting data to the
system.

1These names can be used in PXFCONST or IPXFCONST.

See Also
IPXFCONST
PXFCONST

PXFTCFLUSH
POSIX Subroutine: Discards terminal input data,
output data, or both. This routine is only available for
Linux.

Module

USE IFPOSIX

Syntax
CALL PXFTCFLUSH (ifildes,iaction,ierror)

ifildes (Input) INTEGER(4). The file descriptor associated with the terminal.

iaction (Input) INTEGER(4). The action to perform.

ierror (Output) INTEGER(4). The error status.

If successful, ierror is set to zero; otherwise, an error code.

The action performed depends on the value of iaction, which must be one of the following constant names:

 1 Intel® Fortran Compiler Classic and Intel® Fortran Compiler Developer Guide and Reference

2080

Constant 1 Action

TCIFLUSH Discards all data that has been received but not
read.

TCOFLUSH Discards all data that has been written but not
transmitted.

TCIOFLUSH Discards both data received but not read and data
written but not transmitted. (Performs TCIFLUSH
and TCOFLUSH actions.)

1These names can be used in PXFCONST or IPXFCONST.

See Also
IPXFCONST
PXFCONST

PXFTCGETATTR
POSIX Subroutine: Reads current terminal settings.
This routine is only available for Linux.

Module

USE IFPOSIX

Syntax
CALL PXFTCGETATTR (ifildes,jtermios,ierror)

ifildes (Input) INTEGER(4). The file descriptor associated with the terminal.

jtermios (Output) INTEGER(4). A handle for structure termios. Stores the
terminal settings.

ierror (Output) INTEGER(4). The error status.

If successful, ierror is set to zero; otherwise, an error code.

NOTE
To get a handle for an instance of the termiosstructure, use PXFSTRUCTCREATE with the string
'termios' for the structure name.

See Also
PXFSTRUCTCREATE
PXFTCSETATTR

PXFTCGETPGRP
POSIX Subroutine: Gets the foreground process
group ID associated with the terminal. This routine is
only available for Linux.

Module

USE IFPOSIX

Intel® Fortran Compiler Classic and Intel® Fortran Compiler Developer Guide and Reference 1

2081

Syntax
CALL PXFTCGETPGRP (ifildes,ipgid,ierror)

ifildes (Input) INTEGER(4). The file descriptor associated with the terminal.

ipgid (Output) INTEGER(4). The returned process group ID.

ierror (Output) INTEGER(4). The error status.

If successful, ierror is set to zero; otherwise, an error code.

See Also
PXFTCSETPGRP

PXFTCSENDBREAK
POSIX Subroutine: Sends a break to the terminal.
This routine is only available for Linux.

Module

USE IFPOSIX

Syntax
CALL PXFTCSENDBREAK (ifildes,iduration,ierror)

ifildes (Input) INTEGER(4). The file descriptor associated with the terminal.

iduration (Input) INTEGER(4). Indicates how long the break should be.

ierror (Output) INTEGER(4). The error status.

If successful, ierror is set to zero; otherwise, an error code.

The PXFTCSENDBREAK subroutine sends a break (a '\0' with a framing error) to the terminal associated with
ifildes.

PXFTCSETATTR
POSIX Subroutine: Writes new terminal settings.
This routine is only available for Linux.

Module

USE IFPOSIX

Syntax
CALL PXFTCSETATTR (ifildes,ioptacts,jtermios,ierror)

ifildes (Input) INTEGER(4). The file descriptor associated with the terminal.

ioptacts (Input) INTEGER(4). Specifies when the terminal changes take effect.

jtermios (Input) INTEGER(4). A handle for structure termios. Contains the
new terminal settings.

ierror (Output) INTEGER(4). The error status.

If successful, ierror is set to zero; otherwise, an error code.

 1 Intel® Fortran Compiler Classic and Intel® Fortran Compiler Developer Guide and Reference

2082

The PXFTCSETATTR subroutine copies all terminal parameters from structure termiosinto the terminal
associated with ifildes. When the terminal settings will change depends on the value of ioptacts, which must
be one of the following constant names:

Constant 1 Action

TCSANOW The changes occur immediately.

TCSADRAIN The changes occur after all output written to ifildes
has been transmitted.

TCSAFLUSH The changes occur after all output written to ifildes
has been transmitted, and all input that had been
received but not read has been discarded.

1These names can be used in PXFCONST or IPXFCONST.

NOTE
To get a handle for an instance of the termiosstructure, use PXFSTRUCTCREATE with the string
'termios' for the structure name.

See Also
PXFSTRUCTCREATE
PXFTCGETATTR

PXFTCSETPGRP
POSIX Subroutine: Sets the foreground process
group ID associated with the terminal. This routine is
only available for Linux.

Module

USE IFPOSIX

Syntax
CALL PXFTCSETPGRP (ifildes,ipgid,ierror)

ifildes (Input) INTEGER(4). The file descriptor associated with the terminal.

ipgid (Input) INTEGER(4). The foreground process group ID for ifildes.

ierror (Output) INTEGER(4). The error status.

If successful, ierror is set to zero; otherwise, an error code.

See Also
PXFTCGETPGRP

PXFTIME
POSIX Subroutine: Returns the current system time.

Module

USE IFPOSIX

Syntax
CALL PXFTIME (itime,ierror)

Intel® Fortran Compiler Classic and Intel® Fortran Compiler Developer Guide and Reference 1

2083

itime (Output) INTEGER(4). The returned system time.

ierror (Output) INTEGER(4). The error status.

If successful, ierror is set to zero; otherwise, an error code.

The PXFTIME subroutine returns the number of seconds since Epoch (00:00:00 UTC, January 1, 1970).

Example

See the example in PXFTIMES.

PXFTIMES
POSIX Subroutine: Returns process times.

Module

USE IFPOSIX

Syntax
CALL PXFTIMES (jtms,itime,ierror)

jtms (Output) INTEGER(4). A handle of structure tms.

itime (Output) INTEGER(4). The returned time since system startup.

ierror (Output) INTEGER(4). The error status.

If successful, ierror is set to zero; otherwise, an error code.

The PXFTIMES subroutine fills the fields of structure tms associated with handle jtms with components of
time that was spent by the current process. The structure fields are:

• tms_utime - User CPU time
• tms_stime - System CPU time
• tms_cutime - User time of child process
• tms_cstime - System time of child process

All members are measured in system clocks. The values can be converted to seconds by dividing by value
ival returned from the following call:

 PXFSYSCONF(IPXFCONST('_SC_CLK_TCK'), ival, ierror)
User time is the time charged for the execution of user instructions of the calling process. System time is the
time charged for execution by the system on behalf of the calling process.

NOTE
To get a handle for an instance of the tms structure, use PXFSTRUCTCREATE with the string 'tms' for
the structure name.

Example

program test_uname
 use ifposix
 implicit none
 integer(jhandle_size) jtms1, jtms2
 integer(4) ierror,i
 integer(4),parameter :: n=10000000

 1 Intel® Fortran Compiler Classic and Intel® Fortran Compiler Developer Guide and Reference

2084

 integer(SIZEOF_CLOCK_T) itime,time1,time2, user_time1,user_time2
 integer(SIZEOF_CLOCK_T) system_time1,system_time2
 integer(4) clocks_per_sec, iname
 real(8) s, PI
 real(8) seconds_user, seconds_system

 print *,"Create a first instance for structure 'tms'"
 call PXFSTRUCTCREATE("tms",jtms1,ierror)
 if(ierror.NE.0) STOP 'Error: cannot create structure for handle jtms1'
 print *,"Create a second instance for structure 'tms'"
 call PXFSTRUCTCREATE("tms",jtms2,ierror)
 if(ierror.NE.0) then
 call PXFSTRUCTFREE(jtms1,ierror)
 STOP 'Error: cannot create structure for handle jtms2'
 end if

 print *, 'Do some calculations'
 call PXFTIMES(jtms1, itime,ierror)
 if(ierror.NE.0) then
 call PXFSTRUCTFREE(jtms1,ierror)
 call PXFSTRUCTFREE(jtms2,ierror)
 STOP 'Error: the first call of PXFTIMES fails'
 end if
 call PXFTIME(time1, ierror)
 if(ierror.NE.0) then
 call PXFSTRUCTFREE(jtms1,ierror)
 call PXFSTRUCTFREE(jtms2,ierror)
 STOP 'Error: the first call of PXFTIME fails'
 end if

 s = 0._8
 PI = atan(1._8)*4
 do i=0, n
 s = s + cos(i*PI/n)*sin(i*PI/n)
 end do
 print *," s=",s

 call PXFTIMES(jtms2, itime,ierror)
 if(ierror.NE.0) then
 call PXFSTRUCTFREE(jtms1,ierror)
 call PXFSTRUCTFREE(jtms2,ierror)
 STOP 'Error: the second call of PXFTIMES fails'
 end if
 call PXFTIME(time2, ierror)
 if(ierror.NE.0) then
 call PXFSTRUCTFREE(jtms1,ierror)
 call PXFSTRUCTFREE(jtms2,ierror)
 STOP 'Error: the second call of PXFTIME fails'
 end if
!DIR$ IF DEFINED(_M_INNN)
 call PXFINT8GET(jtms1,"tms_utime",user_time1,ierror)
 call PXFINT8GET(jtms1,"tms_stime",system_time1,ierror)
 call PXFINT8GET(jtms2,"tms_utime",user_time2,ierror)
 call PXFINT8GET(jtms2,"tms_stime",system_time2,ierror)
!DIR$ ELSE
 call PXFINTGET(jtms1,"tms_utime",user_time1,ierror)
 call PXFINTGET(jtms1,"tms_stime",system_time1,ierror)
 call PXFINTGET(jtms2,"tms_utime",user_time2,ierror)

Intel® Fortran Compiler Classic and Intel® Fortran Compiler Developer Guide and Reference 1

2085

 call PXFINTGET(jtms2,"tms_stime",system_time2,ierror)
!DIR$ ENDIF

 iname = IPXFCONST("_SC_CLK_TCK")
 call PXFSYSCONF(iname,clocks_per_sec, ierror)
 if(ierror.NE.0) then
 call PXFSTRUCTFREE(jtms1,ierror)
 call PXFSTRUCTFREE(jtms2,ierror)
 STOP 'Error: the call of PXFSYSCONF fails'
 end if

 seconds_user = (user_time2 - user_time1)/DBLE(clocks_per_sec)
 seconds_system = (system_time2 - system_time1)/DBLE(clocks_per_sec)
 print *," The processor time of calculations:"
 print *," User code execution(in seconds):", seconds_user
 print *," Kernal code execution(in seconds):", seconds_system
 print *," Total processor time(in seconds):", seconds_user + seconds_system
 print *," Elapsed wall clock time(in seconds):", time2 - time1

 print *,"Free memory for instance of structure associated with jtms"
 call PXFSTRUCTFREE(jtms1,ierror)
 call PXFSTRUCTFREE(jtms2,ierror)
end program

See Also
PXFSTRUCTCREATE

PXFTTYNAME
POSIX Subroutine: Gets the terminal pathname.
This routine is only available for Linux.

Module

USE IFPOSIX

Syntax
CALL PXFTTYNAME (ifildes,s,ilen,ierror)

ifildes (Input) INTEGER(4). The file descriptor associated with the terminal.

s (Output) Character. The returned terminal pathname.

ilen (Output) INTEGER(4). The length of the string stored in s.

ierror (Output) INTEGER(4). The error status.

If successful, ierror is set to zero; otherwise, an error code.

PXFUCOMPARE
POSIX Subroutine: Compares two unsigned
integers.

Module

USE IFPOSIX

Syntax
CALL PXFUCOMPARE (i1,i2,icmpr,idiff)

 1 Intel® Fortran Compiler Classic and Intel® Fortran Compiler Developer Guide and Reference

2086

i1, i2 (Input) INTEGER(4). The two unsigned integers to compare.

icmpr (Output) INTEGER(4). The result of the comparison; one of the
following values:

-1 If i1 < i2

0 If i1 = i2

1 If i1 > i2

idiff (Output) INTEGER(4). The absolute value of the difference.

The PXFUCOMPARE subroutine compares two unsigned integers and returns the absolute value of their
difference into idiff.

PXFUMASK
POSIX Subroutine: Sets a new file creation mask
and gets the previous one.

Module

USE IFPOSIX

Syntax
CALL PXFUMASK (icmask,iprevcmask,ierror)

icmask (Input) INTEGER(4). The new file creation mask.

iprevcmask (Output) INTEGER(4). The previous file creation mask.

ierror (Output) INTEGER(4). The error status.

If successful, ierror is set to zero; otherwise, an error code.

PXFUNAME
POSIX Subroutine: Gets the operation system
name.

Module

USE IFPOSIX

Syntax
CALL PXFUNAME (jutsname,ierror)

jutsname (Input) INTEGER(4). A handle of structure utsname.

ierror (Output) INTEGER(4). The error status.

If successful, ierror is set to zero; otherwise, an error code.

The PXFUNAME subroutine provides information about the operation system. The information is stored in the
structure associated with handle jutsname.

Example

See the example in PXFSTRUCTCREATE

Intel® Fortran Compiler Classic and Intel® Fortran Compiler Developer Guide and Reference 1

2087

PXFUNLINK
POSIX Subroutine: Removes a directory entry.

Module

USE IFPOSIX

Syntax
CALL PXFUNLINK (path,ilen,ierror)

path (Input) Character. The name of the directory entry to remove.

ilen (Input) INTEGER(4). The length of path string.

ierror (Output) INTEGER(4). The error status.

If successful, ierror is set to zero; otherwise, an error code.

PXFUTIME
POSIX Subroutine: Sets file access and modification
times.

Module

USE IFPOSIX

Syntax
CALL PXFUTIME (path,ilen,jutimbuf,ierror)

path (Input) Character. The path to the file.

ilen (Input) INTEGER(4). The length of path string.

jutimbuf (Input) INTEGER(4). A handle of structure utimbuf.

ierror (Output) INTEGER(4). The error status.

If successful, ierror is set to zero; otherwise, an error code.

The PXFUTIME subroutine sets access and modification times for the file pointed to by path. The time values
are retrieved from structure utimbuf.

PXFWAIT
POSIX Subroutine: Waits for a child process. This
routine is only available for Linux.

Module

USE IFPOSIX

Syntax
CALL PXFWAIT (istat,iretpid,ierror)

istat (Output) INTEGER(4). The returned status of the child process.

iretpid (Output) INTEGER(4). The process ID of the stopped child process.

ierror (Output) INTEGER(4). The error status.

If successful, ierror is set to zero; otherwise, an error code.

 1 Intel® Fortran Compiler Classic and Intel® Fortran Compiler Developer Guide and Reference

2088

The PXFWAIT subroutine suspends execution of the current process until a child has exited, or until a signal
is delivered whose action terminates the current process or calls a signal handling routine. If the child has
already exited by the time of the call (a "zombie" process), a return is immediately made. Any system
resources used by the child are freed.

The subroutine returns in iretpid the value of the process ID of the child that exited, or zero if no child was
available. The returned value in istat can be used in subroutines IPXFWEXITSTATUS, IPXFWSTOPSIG,
IPXFWTERMSIG, PXFWIFEXITED, PXFWIFSIGNALLED, and PXFWIFSTOPPED.

Example

program t1
use ifposix
integer(4) ipid, istat, ierror, ipid_ret, istat_ret
 print *," the child process will be born"
 call PXFFORK(IPID, IERROR)
 call PXFGETPID(IPID_RET,IERROR)
 if(IPID.EQ.0) then
 print *," I am a child process"
 print *," My child's pid is", IPID_RET
 call PXFGETPPID(IPID_RET,IERROR)
 print *," The pid of my parent is",IPID_RET
 print *," Now I have exited with code 0xABCD"
 call PXFEXIT(Z'ABCD')
 else
 print *," I am a parent process"
 print *," My parent pid is ", IPID_RET
 print *," I am creating the process with pid", IPID
 print *," Now I am waiting for the end of the child process"
 call PXFWAIT(ISTAT, IPID_RET, IERROR)
 print *," The child with pid ", IPID_RET," has exited"
 if(PXFWIFEXITED(ISTAT)) then
 print *, " The child exited normally"
 istat_ret = IPXFWEXITSTATUS(ISTAT)
 print 10," The low byte of the child exit code is", istat_ret
 end if
 end if
10 FORMAT (A,Z)
end program

See Also
PXFWAITPID
IPXFWEXITSTATUS
IPXFWSTOPSIG
IPXFWTERMSIG
PXFWIFEXITED
PXFWIFSIGNALLED
PXFWIFSTOPPED

PXFWAITPID
POSIX Subroutine: Waits for a specific PID. This
routine is only available for Linux.

Module

USE IFPOSIX

Intel® Fortran Compiler Classic and Intel® Fortran Compiler Developer Guide and Reference 1

2089

Syntax
CALL PXFWAITPID (ipid,istat,ioptions,iretpid,ierror)

ipid (Input) INTEGER(4). The PID to wait for. One of the following values:

Value Action

< -1 Specifies to wait for any child
process whose process group ID
is equal to the absolute value of
ipid.

-1 Specifies to wait for any child
process; this is the same
behavior as PXFWAIT.

0 Specifies to wait for any child
process whose process group ID
is equal to that of the calling
process.

> 0 Specifies to wait for the child
whose process ID is equal to the
value of ipid.

istat (Output) INTEGER(4). The returned status of the child process.

ioptions (Input) INTEGER(4). One or more of the following constant values
(which can be passed to PXFCONST or IPXFCONST):

Value Action

WNOHANG Specifies to return immediately
if no child process has exited.

WUNTRACED Specifies to return for child
processes that have stopped,
and whose status has not been
reported.

iretpid (Output) INTEGER(4). The PID of the stopped child process.

ierror (Output) INTEGER(4). The error status.

If successful, ierror is set to zero; otherwise, an error code.

The PXFWAITPID subroutine suspends execution of the current process until the child specified by ipid has
exited, or until a signal is delivered whose action terminates the current process or calls a signal handling
routine. If the child specified by ipid has already exited by the time of the call (a "zombie" process), a return
is immediately made. Any system resources used by the child are freed.

The returned value in istat can be used in subroutines IPXFWEXITSTATUS, IPXFWSTOPSIG, IPXFWTERMSIG,
PXFWIFEXITED, PXFWIFSIGNALLED, and PXFWIFSTOPPED.

See Also
PXFWAIT
IPXFWEXITSTATUS
IPXFWSTOPSIG

 1 Intel® Fortran Compiler Classic and Intel® Fortran Compiler Developer Guide and Reference

2090

IPXFWTERMSIG
PXFWIFEXITED
PXFWIFSIGNALLED
PXFWIFSTOPPED

PXFWIFEXITED
POSIX Function: Determines if a child process has
exited. This routine is only available for Linux.

Module

USE IFPOSIX

Syntax
result = PXFWIFEXITED (istat)

istat (Output) INTEGER(4). The status of the child process (obtained from
PXFWAIT or PXFWAITPID).

Results

The result type is logical. The result value is .TRUE. if the child process has exited normally;
otherwise, .FALSE..

Example

program t1
use ifposix
integer(4) ipid, istat, ierror, ipid_ret, istat_ret
 print *," the child process will be born"
 call PXFFORK(IPID, IERROR)
 call PXFGETPID(IPID_RET,IERROR)
 if(IPID.EQ.0) then
 print *," I am a child process"
 print *," My child's pid is", IPID_RET
 call PXFGETPPID(IPID_RET,IERROR)
 print *," The pid of my parent is",IPID_RET
 print *," Now I have exited with code 0xABCD"
 call PXFEXIT(Z'ABCD')
 else
 print *," I am a parent process"
 print *," My parent pid is ", IPID_RET
 print *," I am creating the process with pid", IPID
 print *," Now I am waiting for the end of the child process"
 call PXFWAIT(ISTAT, IPID_RET, IERROR)
 print *," The child with pid ", IPID_RET," has exited"
 if(PXFWIFEXITED(ISTAT)) then
 print *, " The child exited normally"
 istat_ret = IPXFWEXITSTATUS(ISTAT)
 print 10," The low byte of the child exit code is", istat_ret
 end if
 end if
10 FORMAT (A,Z)
end program

See Also
PXFWIFSIGNALED
PXFWIFSTOPPED

Intel® Fortran Compiler Classic and Intel® Fortran Compiler Developer Guide and Reference 1

2091

PXFWIFSIGNALED
POSIX Function: Determines if a child process has
exited because of a signal. This routine is only
available for Linux.

Module

USE IFPOSIX

Syntax
result = PXFWIFSIGNALED (istat)

istat (Output) INTEGER(4). The status of the child process (obtained from
PXFWAIT or PXFWAITPID).

Results

The result type is logical. The result value is .TRUE. if the child process has exited because of a signal that
was not caught; otherwise, .FALSE..

See Also
PXFWIFEXITED
PXFWIFSTOPPED

PXFWIFSTOPPED
POSIX Function: Determines if a child process has
stopped. This routine is only available for Linux.

Module

USE IFPOSIX

Syntax
result = PXFWIFSTOPPED (istat)

istat (Output) INTEGER(4). The status of the child process (obtained from
PXFWAIT or PXFWAITPID).

Results

The result type is logical. The result value is .TRUE. if the child process has stopped; otherwise, .FALSE..

See Also
PXFWIFEXITED
PXFWIFSIGNALED

PXFWRITE
POSIX Subroutine: Writes to a file.

Module

USE IFPOSIX

Syntax
CALL PXFWRITE (ifildes,buf,nbyte,nwritten,ierror)

ifildes (Input) INTEGER(4). The file descriptor for the file to be written to.

 1 Intel® Fortran Compiler Classic and Intel® Fortran Compiler Developer Guide and Reference

2092

buf (Input) Character. The buffer that contains the data to write into the
file.

nbyte (Input) INTEGER(4). The number of bytes to write.

nwritten (Output) INTEGER(4). The returned number of bytes written.

ierror (Output) INTEGER(4). The error status.

If successful, ierror is set to zero; otherwise, an error code.

The PXFWRITE subroutine writes nbyte bytes from the storage buf into a file specified by file descriptor
ifildes. The subroutine returns the total number of bytes read into nwritten. If no error occurs, the value
of nwritten will equal the value of nbyte.

See Also
PXFREAD

Automation Server and Component Object Model Library Routines
This section contains descriptions of the Automation Server (AUTO) and Component Object Model (COM)
library routines, which are restricted to Windows* systems. They are listed in alphabetical order.

To access the appropriate library when using AUTO routines, you must specify a USE IFAUTO statement in
your program.

To access the appropriate library when using COM routines, you must specify a USE IFCOM statement in your
program.

Some routines also require the USE IFWINTY module. If a procedure requires USE IFWINTY, it is shown in the
routine description.

NOTE
Routine names are shown in mixed case to make the names easier to understand. When writing your
applications, you can use any case.

AUTOAddArg
AUTO Subroutine: Passes an argument name and
value and adds the argument to the argument list
data structure. This routine is only available for
Windows.

Module

USE IFAUTO

USE IFWINTY

Syntax
CALL AUTOAddArg (invoke_args,name,value[,intent_arg][,type])

invoke_args The argument list data structure. Must be of type
INTEGER(INT_PTR_KIND()).

name The argument's name of type CHARACTER*(*).

Intel® Fortran Compiler Classic and Intel® Fortran Compiler Developer Guide and Reference 1

2093

value The argument's value. Must be of type INTEGER(1), INTEGER(2),
INTEGER(4), REAL(4), REAL(8), LOGICAL(2), CHARACTER*(*), or a
single dimension array of one of these types. Can also be of type
VARIANT, which is defined in the IFWINTY module.

intent_arg Indicates the intended use of the argument by the called method.
Must be one of the following constants defined in the IFAUTO module:

• AUTO_ARG_IN: The argument's value is read by the called method,
but not written. This is the default value if intent_arg is not
specified.

• AUTO_ARG_OUT: The argument's value is written by the called
method, but not read.

• AUTO_ARG_INOUT: The argument's value is read and written by
the called method.

When the value of intent_arg is AUTO_ARG_OUT or
AUTO_ARG_INOUT, the variable used in the value argument should
be declared using the VOLATILE attribute. This is because the value of
the variable will be changed by the subsequent call to AUTOInvoke.
The compiler's global optimizations need to know that the value can
change unexpectedly.

type The variant type of the argument. Must be one of the following
constants defined in the IFWINTY module:

VARIANT Type Value Type

VT_I1 INTEGER(1)

VT_I2 INTEGER(2)

VT_I4 INTEGER(4)

VT_R4 REAL(4)

VT_R8 REAL(8)

VT_CY REAL(8)

VT_DATE REAL(8)

VT_BSTR CHARACTER*(*)

VT_DISPATCH INTEGER(4)

VT_ERROR INTEGER(4)

VT_BOOL LOGICAL(2)

VT_VARIANT TYPE(VARIANT)

VT_UNKNOWN INTEGER(4)

Example

See the example in COMInitialize.

 1 Intel® Fortran Compiler Classic and Intel® Fortran Compiler Developer Guide and Reference

2094

AUTOAllocateInvokeArgs
AUTO Function: Allocates an argument list data
structure that holds the arguments to be passed to
AUTOInvoke. This routine is only available for
Windows.

Module

USE IFAUTO

Syntax
result = AUTOAllocateInvokeArgs()

Results

The value returned is an argument list data structure of type INTEGER(INT_PTR_KIND()).

Example

See the example in COMInitialize.

AUTODeallocateInvokeArgs
AUTO Subroutine: Deallocates an argument list data
structure. This routine is only available for Windows.

Module

USE IFAUTO

Syntax
CALL AUTODeallocateInvokeArgs (invoke_args)

invoke_args The argument list data structure. Must be of type
INTEGER(INT_PTR_KIND()).

Example

See the example in COMInitialize.

AUTOGetExceptInfo
AUTO Subroutine: Retrieves the exception
information when a method has returned an exception
status. This routine is only available for Windows.

Module

USE IFAUTO

Syntax
CALL AUTOGetExceptInfo (invoke_args,code,source,description,h_file,h_context,scode)

invoke_args The argument list data structure. Must be of type
INTEGER(INT_PTR_KIND()).

code An output argument that returns the error code. Must be of type
INTEGER(2).

Intel® Fortran Compiler Classic and Intel® Fortran Compiler Developer Guide and Reference 1

2095

source An output argument that returns a human-readable name of the
source of the exception. Must be of type CHARACTER*(*).

description An output argument that returns a human-readable description of the
error. Must be of type CHARACTER*(*).

h_file An output argument that returns the fully qualified path of a Help file
with more information about the error. Must be of type
CHARACTER*(*).

h_context An output argument that returns the Help context of the topic within
the Help file. Must be of type INTEGER(4).

scode An output argument that returns an SCODE describing the error. Must
be of type INTEGER(4).

AUTOGetProperty
AUTO Function: Passes the name or identifier of the
property and gets the value of the automation object's
property. This routine is only available for Windows.

Module

USE IFAUTO

USE IFWINTY

Syntax
result = AUTOGetProperty (idispatch,id,value[,type])

idispatch The object's IDispatch interface pointer. Must be of type
INTEGER(INT_PTR_KIND()).

id The argument's name of type CHARACTER*(*), or its member ID of
type INTEGER(4).

value An output argument that returns the argument's value. Must be of
type INTEGER(2), INTEGER(4), REAL(4), REAL(8), LOGICAL(2),
LOGICAL(4), CHARACTER*(*), or a single dimension array of one of
these types.

type The variant type of the requested argument. Must be one of the
following constants defined in the IFWINTY module:

VARIANT Type Value Type

VT_I2 INTEGER(2)

VT_I4 INTEGER(4)

VT_R4 REAL(4)

VT_R8 REAL(8)

VT_CY REAL(8)

VT_DATE REAL(8)

VT_BSTR CHARACTER*(*)

 1 Intel® Fortran Compiler Classic and Intel® Fortran Compiler Developer Guide and Reference

2096

VARIANT Type Value Type

VT_DISPATCH INTEGER(4)

VT_ERROR INTEGER(4)

VT_BOOL LOGICAL(2)

VT_UNKNOWN INTEGER(4)

Results

Returns an HRESULT describing the status of the operation. Must be of type INTEGER(4).

AUTOGetPropertyByID
AUTO Function: Passes the member ID of the
property and gets the value of the automation object's
property into the argument list's first argument. This
routine is only available for Windows.

Module

USE IFAUTO

Syntax
result = AUTOGetPropertyByID (idispatch,memid,invoke_args)

idispatch The object's IDispatch interface pointer. Must be of type
INTEGER(INT_PTR_KIND()).

memid Member ID of the property. Must be of type INTEGER(4).

invoke_args The argument list data structure. Must be of type
INTEGER(INT_PTR_KIND()).

Results

Returns an HRESULT describing the status of the operation. Must be of type INTEGER(4).

AUTOGetPropertyInvokeArgs
AUTO Function: Passes an argument list data
structure and gets the value of the automation
object's property specified in the argument list's first
argument. This routine is only available for Windows.

Module

USE IFAUTO

Syntax
result = AUTOGetPropertyInvokeArgs (idispatch,invoke_args)

idispatch The object's IDispatch interface pointer. Must be of type
INTEGER(INT_PTR_KIND()).

invoke_args The argument list data structure. Must be of type
INTEGER(INT_PTR_KIND()).

Intel® Fortran Compiler Classic and Intel® Fortran Compiler Developer Guide and Reference 1

2097

Results

Returns an HRESULT describing the status of the operation. Must be of type INTEGER(INT_PTR_KIND()).

AUTOInvoke
AUTO Function: Passes the name or identifier of an
object's method and an argument list data structure
and invokes the method with the passed arguments.
This routine is only available for Windows.

Module

USE IFAUTO

Syntax
result = AUTOInvoke (idispatch,id,invoke_args)

idispatch The object's IDispatch interface pointer. Must be of type
INTEGER(INT_PTR_KIND()).

id The argument's name of type CHARACTER*(*), or its member ID of
type INTEGER(4).

invoke_args The argument list data structure. Must be of type
INTEGER(INT_PTR_KIND()).

Results

Returns an HRESULT describing the status of the operation. Must be of type INTEGER(4).

Example

See the example in COMInitialize.

AUTOSetProperty
AUTO Function: Passes the name or identifier of the
property and a value, and sets the value of the
automation object's property. This routine is only
available for Windows.

Module

USE IFAUTO

USE IFWINTY

Syntax
result = AUTOSetProperty (idispatch,id,value[,type])

idispatch The object's IDispatch interface pointer. Must be of type
INTEGER(INT_PTR_KIND()).

id The argument's name of type CHARACTER*(*), or its member ID of
type INTEGER(4).

value The argument's value. Must be of type INTEGER(2), INTEGER(4),
REAL(4), REAL(8), LOGICAL(2), LOGICAL(4), CHARACTER*(*), or a
single dimension array of one of these types.

 1 Intel® Fortran Compiler Classic and Intel® Fortran Compiler Developer Guide and Reference

2098

type The variant type of the argument. Must be one of the following
constants defined in the IFWINTY module:

VARIANT Type Value Type

VT_I2 INTEGER(2)

VT_I4 INTEGER(4)

VT_R4 REAL(4)

VT_R8 REAL(8)

VT_CY REAL(8)

VT_DATE REAL(8)

VT_BSTR CHARACTER*(*)

VT_DISPATCH INTEGER(4)

VT_ERROR INTEGER(4)

VT_BOOL LOGICAL(2)

VT_UNKNOWN INTEGER(4)

Results

Returns an HRESULT describing the status of the operation. Must be of type INTEGER(4).

AUTOSetPropertyByID
AUTO Function: Passes the member ID of the
property and sets the value of the automation object's
property into the argument list's first argument. This
routine is only available for Windows.

Module

USE IFAUTO

Syntax
result = AUTOSetPropertyByID (idispatch,memid,invoke_args)

idispatch The object's IDispatch interface pointer. Must be of type
INTEGER(INT_PTR_KIND()).

memid Member ID of the property. Must be of type INTEGER(4).

invoke_args The argument list data structure. Must be of type
INTEGER(INT_PTR_KIND()).

Results

Returns an HRESULT describing the status of the operation. Must be of type INTEGER(4).

Intel® Fortran Compiler Classic and Intel® Fortran Compiler Developer Guide and Reference 1

2099

AUTOSetPropertyInvokeArgs
AUTO Function: Passes an argument list data
structure and sets the value of the automation
object's property specified in the argument list's first
argument. This routine is only available for Windows.

Module

USE IFAUTO

Syntax
result = AUTOSetPropertyInvokeArgs (idispatch,invoke_args)

idispatch The object's IDispatch interface pointer. Must be of type
INTEGER(INT_PTR_KIND()).

invoke_args The argument list data structure. Must be of type
INTEGER(INT_PTR_KIND()).

Results

Returns an HRESULT describing the status of the operation. Must be of type INTEGER(4).

COMAddObjectReference
COM Function: Adds a reference to an object's
interface. This routine is only available for Windows.

Module

USE IFCOM

Syntax
result = COMAddObjectReference (iunknown)

iunknown An IUnKnown interface pointer. Must be of type
INTEGER(INT_PTR_KIND()).

Results

The result type is INTEGER(4). It is the object's current reference count.

See Also
IUnknown::AddRef in the Microsoft* Platform SDK

COMCLSIDFromProgID
COM Subroutine: Passes a programmatic identifier
and returns the corresponding class identifier. This
routine is only available for Windows.

Module

USE IFCOM

USE IFWINTY

Syntax
CALL COMCLSIDFromProgID (prog_id,clsid,status)

 1 Intel® Fortran Compiler Classic and Intel® Fortran Compiler Developer Guide and Reference

2100

prog_id The programmatic identifier of type CHARACTER*(*).

clsid The class identifier corresponding to the programmatic identifier. Must
be of type GUID, which is defined in the IFWINTY module.

status The status of the operation. It can be any status returned by
CLSIDFromProgID. Must be of type INTEGER(4).

See Also
CLSIDFromProgID in the Microsoft* Platform SDK

COMCLSIDFromString
COM Subroutine: Passes a class identifier string and
returns the corresponding class identifier. This routine
is only available for Windows.

Module

USE IFCOM

USE IFWINTY

Syntax
CALL COMCLSIDFromString (string,clsid,status)

string The class identifier string of type CHARACTER*(*).

clsid The class identifier corresponding to the identifier string. Must be of
type GUID, which is defined in the IFWINTY module.

status The status of the operation. It can be any status returned by
CLSIDFromString. Must be of type INTEGER(4).

See Also
CLSIDFromString in the Microsoft* Platform SDK

COMCreateObject
COM Subroutine: A generic routine that executes
either COMCreateObjectByProgID or
COMCreateObjectByGUID. This routine is only
available for Windows.

Module

USE IFCOM

USE IFWINTY

Description

Your application obtains its first pointer to an object’s interface by calling COMCreateObject. It creates a
new instance of an object class and returns a pointer to it.

See Also
COMCreateObjectByGUID
COMCreateObjectByProgID

Intel® Fortran Compiler Classic and Intel® Fortran Compiler Developer Guide and Reference 1

2101

COMCreateObjectByGUID
COM Subroutine: Passes a class identifier, creates
an instance of an object, and returns a pointer to the
object's interface. This routine is only available for
Windows.

Module

USE IFCOM

USE IFWINTY

Syntax
CALL COMCreateObjectByGUID (clsid,clsctx,iid,interface,status)

clsid The class identifier of the class of object to be created. Must be of
type GUID, which is defined in the IFWINTY module.

clsctx Lets you restrict the types of servers used for the object. Must be of
type INTEGER(4). Must be one of the CLSCTX_* constants defined in
the IFWINTY module.

iid The interface identifier of the interface being requested. Must be of
type GUID, which is defined in the IFWINTY module.

interface An output argument that returns the object's interface pointer. Must
be of type INTEGER(INT_PTR_KIND()).

status The status of the operation. It can be any status returned by
CoCreateInstance. Must be of type INTEGER(4).

See Also
CoCreateInstance in the Microsoft* Platform SDK

COMCreateObjectByProgID
COM Subroutine: Passes a programmatic identifier,
creates an instance of an object, and returns a pointer
to the object's IDispatch interface. This routine is only
available for Windows.

Module

USE IFCOM

Syntax
CALL COMCreateObjectByProgID (prog_id,idispatch,status)

prog_id The programmatic identifier of type CHARACTER*(*).

idispatch An output argument that returns the object's IDispatch interface
pointer. Must be of type INTEGER(INT_PTR_KIND()).

status The status of the operation. It can be any status returned by
CLSIDFromProgID or CoCreateInstance. Must be of type INTEGER(4).

See Also
COMCLSIDFromProgID
CoCreateInstance in the OLE section of the Microsoft* Platform SDK

 1 Intel® Fortran Compiler Classic and Intel® Fortran Compiler Developer Guide and Reference

2102

COMGetActiveObjectByGUID
COM Subroutine: Passes a class identifier and
returns a pointer to the interface of a currently active
object. This routine is only available for Windows.

Module

USE IFCOM

USE IFWINTY

Syntax
CALL COMGetActiveObjectByGUID (clsid,iid,interface,status)

clsid The class identifier of the class of object to be found. Must be of type
GUID, which is defined in the IFWINTY module.

iid The interface identifier of the interface being requested. Must be of
type GUID, which is defined in the IFWINTY module.

interface An output argument that returns the object's interface pointer. Must
be of type INTEGER(INT_PTR_KIND()).

status The status of the operation. It can be any status returned by
GetActiveObject. Must be of type INTEGER(4).

See Also
GetActiveObject in the Microsoft* Platform SDK

COMGetActiveObjectByProgID
COM Subroutine: Passes a programmatic identifier
and returns a pointer to the IDispatch interface of a
currently active object. This routine is only available
for Windows.

Module

USE IFCOM

Syntax
CALL COMGetActiveObjectByProgID (prog_id,idispatch,status)

prog_id The programmatic identifier of type CHARACTER*(*).

idispatch An output argument that returns the object's IDispatch interface
pointer. Must be of type INTEGER(INT_PTR_KIND()).

status The status of the operation. It can be any status returned by
CLSIDFromProgID or GetActiveObject. Must be of type INTEGER(4).

Example

See the example in COMInitialize.

See Also
CLSIDFromProgID and GetActiveObject in the Microsoft* Platform SDK

Intel® Fortran Compiler Classic and Intel® Fortran Compiler Developer Guide and Reference 1

2103

COMGetFileObject
COM Subroutine: Passes a file name and returns a
pointer to the IDispatch interface of an automation
object that can manipulate the file. This routine is only
available for Windows.

Module

USE IFCOM

Syntax
CALL COMGetFileObject (filename,idispatch,status)

filename The path of the file of type CHARACTER*(*).

idispatch An output argument that returns the object's IDispatch interface
pointer. Must be of type INTEGER(INT_PTR_KIND()).

status The status of the operation. It can be any status returned by the
CreateBindCtx or MkParseDisplayName routines, or the
IMoniker::BindToObject method. Must be of type INTEGER(4).

See Also
CreateBindCtx, MkParseDisplayName, and IMonker::BindToObject in the Microsoft* Platform SDK

COMInitialize
COM Subroutine: Initializes the COM library. This
routine is only available for Windows.

Module

USE IFCOM

Syntax
CALL COMInitialize (status)

status The status of the operation. It can be any status returned by
OleInitialize. Must be of type INTEGER(4).

You must use this routine to initialize the COM library before calling any other COM or AUTO routine.

Example

Consider the following:

 program COMInitExample

 use ifwin
 use ifcom
 use ifauto

 implicit none

 ! Variables
 integer(4) word_app
 integer(4) status
 integer(INT_PTR_KIND()) invoke_args

 call COMInitialize(status)

 1 Intel® Fortran Compiler Classic and Intel® Fortran Compiler Developer Guide and Reference

2104

 ! Call GetActiveObject to get a reference to a running MS WORD application
 call COMGetActiveObjectByProgID("Word.Application", word_app, status)
 if (status >= 0) then
 ! Print the active document
 invoke_args = AutoAllocateInvokeArgs()
 call AutoAddArg(invoke_args, "Copies", 2)
 status = AutoInvoke(word_app, "PrintOut", invoke_args)
 call AutoDeallocateInvokeArgs(invoke_args)
 ! Release the reference
 status = COMReleaseObject(word_app)
 end if

 call COMUninitialize()

 end program

See Also
OleInitialize in the Microsoft* Platform SDK

COMIsEqualGUID
COM Function: Determines whether two globally
unique identifiers (GUIDs) are the same. This routine
is only available for Windows.

Module

USE IFCOM

USE IFWINTY

Syntax
result = COMIsEqualGUID (guid1,guid2)

guid1 The first GUID. Must be of type GUID, which is defined in the IFWINTY
module. It can be any type of GUID, including a class identifier
(CLSID), or an interface identifier (IID).

guid2 The second GUID, which will be compared to guid1. It must be the
same type of GUID as guid1. For example, if guid1 is a CLSID,
guid2 must also be a CLSID.

Results

The result type is LOGICAL(4). The result is .TRUE. if the two GUIDs are the same; otherwise, .FALSE.

See Also
IsEqualGUID in the Microsoft* Platform SDK

COMQueryInterface
COM Subroutine: Passes an interface identifier and
returns a pointer to an object's interface. This routine
is only available for Windows.

Module

USE IFCOM

USE IFWINTY

Intel® Fortran Compiler Classic and Intel® Fortran Compiler Developer Guide and Reference 1

2105

Syntax
CALL COMQueryInterface (iunknown,iid,interface,status)

iunknown An IUnknown interface pointer. Must be of type INTEGER(4).

iid The interface identifier of the interface being requested. Must be of
type GUID, which is defined in the IFWINTY module.

interface An output argument that returns the object's interface pointer. Must
be of type INTEGER(INT_PTR_KIND()).

status The status of the operation. It can be any status returned by the
IUnknown method QueryInterface. Must be of type INTEGER(4).

See Also
IUnknown::QueryInterface in the Microsoft* Platform SDK

COMReleaseObject
COM Function: Indicates that the program is done
with a reference to an object's interface. This routine
is only available for Windows.

Module

USE IFCOM

Syntax
result = COMReleaseObject (iunknown)

iunknown An IUnknown interface pointer. Must be of type
INTEGER(INT_PTR_KIND()).

Results

The result type is INTEGER(4). It is the object's current reference count.

Example

See the example in COMInitialize.

COMStringFromGUID
COM Subroutine: Passes a globally unique identifier
(GUID) and returns a string of printable characters.
This routine is only available for Windows.

Module

USE IFCOM

USE IFWINTY

Syntax
CALL COMStringFromGUID (guid,string,status)

guid The GUID to be converted. Must be of type GUID, which is defined in
the IFWINTY module. It can be any type of GUID, including a class
identifier (CLSID), or an interface identifier (IID).

 1 Intel® Fortran Compiler Classic and Intel® Fortran Compiler Developer Guide and Reference

2106

string A character variable of type CHARACTER*(*) that receives the string
representation of the GUID. The length of the character variable
should be at least 38.

status The status of the operation. If the string is too small to contain the
string representation of the GUID, the value is zero. Otherwise, the
value is the number of characters in the string representation of the
GUID. Must be of type INTEGER(4).

The string representation of a GUID has a format like that of the following:

[c200e360-38c5-11ce-ae62-08002b2b79ef]

where the successive fields break the GUID into the form DWORD-WORD-WORD-WORD-WORD.DWORD
covering the 128-bit GUID. The string includes enclosing braces, which are an OLE convention.

See Also
StringFromGUID2 in the Microsoft* Platform SDK

COMUninitialize
COM Subroutine: Uninitializes the COM library. This
routine is only available for Windows.

Module

USE IFCOM

Syntax
CALL COMUninitialize()
When using COM routines, this must be the last routine called.

Example

See the example in COMInitialize.

National Language Support Library Routines
This section contains descriptions of the National Language Support (NLS) library routines, which are
restricted to Windows* systems. They are listed in alphabetical order.

To access these library routines, you must specify a USE IFNLS statement in your program.

NOTE
Routine names are shown in mixed case to make the names easier to understand. When writing your
applications, you can use any case.

MBCharLen
NLS Function: Returns the length, in bytes, of the
first character in a multibyte-character string. This
routine is only available for Windows.

Module

USE IFNLS

Syntax
result = MBCharLen (string)

Intel® Fortran Compiler Classic and Intel® Fortran Compiler Developer Guide and Reference 1

2107

string (Input) Character*(*). Is a string containing the character whose
length is to be determined. It can contain multibyte characters.

Results

The result type is INTEGER(4). The result is the number of bytes in the first character contained in string.
The function returns 0 if string has no characters (is length 0).

MBCharLen does not test for multibyte character validity.

See Also
MBCurMax
MBLead
MBLen
MBLen_Trim

MBConvertMBToUnicode
NLS Function: Converts a multibyte-character string
from the current codepage to a Unicode string. This
routine is only available for Windows.

Module

USE IFNLS

Syntax
result = MBConvertMBToUnicode (mbstr,unicodestr[,flags])

mbstr (Input) Character*(*). Is a multibyte codepage string to be converted.

unicodestr (Output) INTEGER(2). Is an array of integers that is the translation of
the input string into Unicode.

flags (Input; optional) INTEGER(4). If specified, modifies the string
conversion. If flags is omitted, the value NLS$Precomposed is used.
Available values (defined in IFNLS.F90) are:

• NLS$Precomposed - Use precomposed characters always. (default)
• NLS$Composite - Use composite wide characters always.
• NLS$UseGlyphChars - Use glyph characters instead of control

characters.
• NLS$ErrorOnInvalidChars - Returns -1 if an invalid input character

is encountered.

The flags NLS$Precomposed and NLS$Composite are mutually
exclusive. You can combine NLS$UseGlyphChars with either NLS
$Precomposed or NLS$Composite using an inclusive OR (IOR or OR).

Results

The result type is INTEGER(4). If no error occurs, the result is the number of bytes written to unicodestr
(bytes are counted, not characters), or the number of bytes required to hold the output string if unicodestr
has zero size.

If the unicodestr array is bigger than needed to hold the translation, the extra elements are set to space
characters. If unicodestr has zero size, the function returns the number of bytes required to hold the
translation and nothing is written to unicodestr.

If an error occurs, one of the following negative values is returned:

 1 Intel® Fortran Compiler Classic and Intel® Fortran Compiler Developer Guide and Reference

2108

• NLS$ErrorInsufficentBuffer - The unicodestr argument is too small, but not zero size so that the needed
number of bytes would be returned.

• NLS$ErrorInvalidFlags - The flags argument has an illegal value.
• NLS$ErrorInvalidCharacter - A character with no Unicode translation was encountered in mbstr. This error

can occur only if the NLS$InvalidCharsError flag was used in flags.

NOTE
By default, or if flags is set to NLS$Precomposed, the function MBConvertMBToUnicode
attempts to translate the multibyte codepage string to a precomposed Unicode string. If a
precomposed form does not exist, the function attempts to translate the codepage string to
a composite form.

See Also
MBConvertUnicodeToMB

MBConvertUnicodeToMB
NLS Function: Converts a Unicode string to a
multibyte-character string from the current codepage.
This routine is only available for Windows.

Module

USE IFNLS

Syntax
result = MBConvertUnicodeToMB (unicodestr,mbstr[,flags])

unicodestr (Input) INTEGER(2). Is an array of integers holding the Unicode string
to be translated.

mbstr (Output) Character*(*). Is a translation of Unicode string into
multibyte character string from the current codepage.

flags (Input; optional) INTEGER(4). If specified, is an argument to modify
the string conversion. If flags is omitted, no extra checking of the
conversion takes place. Available values (defined in IFNLS.F90) are:

• NLS$CompositeCheck - Convert composite characters to
precomposed.

• NLS$SepChars - Generate separate characters.
• NLS$DiscardDns - Discard nonspacing characters.
• NLS$DefaultChars - Replace exceptions with default character.

The last three flags (NLS$SepChars, NLS$DiscardDns, and NLS
$DefaultChars) are mutually exclusive and can be used only if NLS
$CompositeCheck is set, in which case one (and only one) of them is
combined with NLS$CompositeCheck using an inclusive OR (IOR or
OR).

These last three flags determine what translation to make when there
is no precomposed mapping for a base character/nonspace character
combination in the Unicode wide character string. The default
(IOR(NLS$CompositeCheck, NLS$SepChars)) is to generate separate
characters.

Intel® Fortran Compiler Classic and Intel® Fortran Compiler Developer Guide and Reference 1

2109

Results

The result type is INTEGER(4). If no error occurs, it returns the number of bytes written to mbstr (bytes are
counted, not characters), or the number of bytes required to hold the output string if mbstr has zero length.
If mbstr is longer than the translation, it is blank-padded.

If mbstr is zero length, the function returns the number of bytes required to hold the translation and nothing
is written to mbstr.

If an error occurs, one of the following negative values is returned:

• NLS$ErrorInsufficientBuffer - The mbstr argument is too small, but not zero length so the needed number
of bytes is returned.

• NLS$ErrorInvalidFlags - The flags argument has an illegal value.

See Also
MBConvertMBToUnicode

MBCurMax
NLS Function: Returns the longest possible multibyte
character length, in bytes, for the current codepage.
This routine is only available for Windows.

Module

USE IFNLS

Syntax
result = MBCurMax()

Results

The result type is INTEGER(4). The result is the longest possible multibyte character, in bytes, for the current
codepage.

The MBLenMax parameter, defined in the module IFNLS.F90, is the longest length, in bytes, of any character
in any codepage installed on the system.

See Also
MBCharLen

MBINCHARQQ
NLS Function: Performs the same function as
INCHARQQ except that it can read a single multibyte
character at once, and it returns the number of bytes
read as well as the character. This routine is only
available for Windows.

Module

USE IFNLS

Syntax
result = MBINCHARQQ (string)

 1 Intel® Fortran Compiler Classic and Intel® Fortran Compiler Developer Guide and Reference

2110

string (Output) CHARACTER(MBLenMax). Is a string containing the read
characters, padded with blanks up to the length MBLenMax. The
MBLenMax parameter, defined in the module IFNLS.F90, is the
longest length, in bytes, of any character in any codepage installed on
the system.

Results

The result type is INTEGER(4). The result is the number of characters read.

See Also
INCHARQQ
MBCurMax
MBCharLen
MBLead

MBINDEX
NLS Function: Performs the same function as INDEX
except that the strings manipulated can contain
multibyte characters. This routine is only available for
Windows.

Module

USE IFNLS

Syntax
result = MBINDEX (string,substring[,back])

string (Input) CHARACTER*(*). Is a string to be searched for the presence
of substring. Can contain multibyte characters.

substring (Input) CHARACTER*(*). Is a substring whose position within string
is to be determined. Can contain multibyte characters.

back (Input; optional) LOGICAL(4). If specified, determines direction of the
search. If back is .FALSE. or is omitted, the search starts at the
beginning of string and moves toward the end. If back is .TRUE., the
search starts end of string and moves toward the beginning.

Results

The result type is INTEGER(4). If back is omitted or is .FALSE., it returns the leftmost position in string that
contains the start of substring. If back is .TRUE., it returns the rightmost position in string that contains the
start of substring.

If string does not contain substring, it returns 0. If substring occurs more than once, it returns the starting
position of the first occurrence ("first" is determined by the presence and value of back).

The position returned is a byte index, not a character index, because of the confounding case of multibyte
characters. For example, if a substring that is a single multibyte character matches the second multibyte
character in a string consisting of two two-byte multi-byte characters the position is 3, not 2.

See Also
INDEX
MBSCAN
MBVERIFY

Intel® Fortran Compiler Classic and Intel® Fortran Compiler Developer Guide and Reference 1

2111

MBJISToJMS, MBJMSToJIS
NLS Functions: Converts Japan Industry Standard
(JIS) characters to Microsoft Kanji (JMS) characters,
or converts JMS characters to JIS characters. These
routines are only available for Windows.

Module

USE IFNLS

Syntax
result = MBJISToJMS (char)
result = MBJMSToJIS (char)

char (Input) CHARACTER(2). Is a JIS or JMS character to be converted.

A JIS character is converted only if the lead and trail bytes are in the
hexadecimal range 21 through 7E.

A JMS character is converted only if the lead byte is in the
hexadecimal range 81 through 9F or E0 through FC, and the trail byte
is in the hexadecimal range 40 through 7E or 80 through FC.

Results

The result type is character with length 2. MBJISToJMS returns a Microsoft Kanji (Shift JIS or JMS) character.
MBJMSToJIS returns a Japan Industry Standard (JIS) character.

Only computers with Japanese installed as one of the available languages can use the MBJISToJMS and
MBJMSToJIS conversion functions.

See Also
NLSEnumLocales
NLSEnumCodepages
NLSGetLocale
NLSSetLocale

MBLead
NLS Function: Determines whether a given character
is the lead (first) byte of a multibyte character
sequence. This routine is only available for Windows.

Module

USE IFNLS

Syntax
result = MBLead (char)

char (Input) CHARACTER(1). Is a character to be tested for lead status.

Results

The result type is LOGICAL(4). The result is .TRUE. if char is the first character of a multibyte character
sequence; otherwise, .FALSE..

 1 Intel® Fortran Compiler Classic and Intel® Fortran Compiler Developer Guide and Reference

2112

MBLead only works when stepping forward through a whole multibyte character string. For example:

 DO i = 1, LEN(str) ! LEN returns the number of bytes, not the
 ! number of characters in str
 WRITE(*, 100) MBLead (str(i:i))
 END DO
 100 FORMAT (L2, \)

MBLead is passed only one character at a time and must start on a lead byte and step through a string to
establish context for the character. MBLead does not correctly identify a nonlead byte if it is passed only the
second byte of a multibyte character because the status of lead byte or trail byte depends on context.

The function MBStrLead is passed a whole string and can identify any byte within the string as a lead or trail
byte because it performs a context-sensitive test, scanning all the way back to the beginning of a string if
necessary to establish context. So, MBStrLead can be much slower than MBLead (up to n times slower, where
n is the length of the string).

See Also
MBStrLead
MBCharLen

MBLen
NLS Function: Returns the number of characters in a
multibyte-character string, including trailing blanks.
This routine is only available for Windows.

Module

USE IFNLS

Syntax
result = MBLen (string)

string (Input) CHARACTER*(*). Is the string whose characters are to be
counted. It can contain multibyte characters.

Results

The result type is INTEGER(4). The result is the number of characters in string.

MBLen recognizes multibyte-character sequences according to the multibyte codepage currently in use. It
does not test for multibyte-character validity.

See Also
MBLen_Trim
MBStrLead

MBLen_Trim
NLS Function: Returns the number of characters in a
multibyte-character string, not including trailing
blanks. This routine is only available for Windows.

Module

USE IFNLS

Syntax
result = MBLen_Trim (string)

Intel® Fortran Compiler Classic and Intel® Fortran Compiler Developer Guide and Reference 1

2113

string (Input) Character*(*). Is the string whose characters are to be
counted. It can contain multibyte characters.

Results

The result type is INTEGER(4). The result is the number of characters in string minus any trailing blanks
(blanks are bytes containing character 32 (hex 20) in the ASCII collating sequence).

MBLen_Trim recognizes multibyte-character sequences according to the multibyte codepage currently in use.
It does not test for multibyte-character validity.

See Also
MBLen
MBStrLead

MBLGE, MBLGT, MBLLE, MBLLT, MBLEQ, MBLNE
NLS Functions: Perform the same functions as LGE,
LGT, LLE, LLT and the logical operators .EQ. and .NE.
except that the strings being compared can include
multibyte characters, and optional flags can modify
the comparison. These routines are only available for
Windows.

Module

USE IFNLS

Syntax
result = MBLGE (string_a,string_b, [flags])
result = MBLGT (string_a,string_b, [flags])
result = MBLLE (string_a,string_b, [flags])
result = MBLLT (string_a,string_b, [flags])
result = MBLEQ (string_a,string_b, [flags])
result = MBLNE (string_a,string_b, [flags])

string_a, string_b (Input) Character*(*). Are the strings to be compared. It can contain
multibyte characters.

flags (Input; optional) INTEGER(4). If specified, determines which character
traits to use or ignore when comparing strings. You can combine
several flags using an inclusive OR (IOR or OR). There are no illegal
combinations of flags, and the functions may be used without flags, in
which case all flag options are turned off.

The available values (defined in IFNLS.F90) are:

• NLS$MB_IgnoreCase - Ignore case.
• NLS$MB_IgnoreNonspace - Ignore nonspacing characters (this flag

removes Japanese accent characters if they exist).
• NLS$MB_IgnoreSymbols - Ignore symbols.
• NLS$MB_IgnoreKanaType - Do not differentiate between Japanese

Hiragana and Katakana characters (corresponding Hiragana and
Katakana characters will compare as equal).

• NLS$MB_IgnoreWidth - Do not differentiate between a single-byte
character and the same character as a double byte.

 1 Intel® Fortran Compiler Classic and Intel® Fortran Compiler Developer Guide and Reference

2114

• NLS$MB_StringSort - Sort all symbols at the beginning, including
the apostrophe and hyphen (see the NOTE below).

Results

The result type is LOGICAL(4). Comparisons are made using the current locale, not the current codepage.
The codepage used is the default for the language/country combination of the current locale.

The results of these functions are as follows:

• MBLGE returns .TRUE. if the strings are equal or string_a comes last in the collating sequence;
otherwise, .FALSE..

• MBLGT returns .TRUE. if string_a comes last in the collating sequence; otherwise, .FALSE..
• MBLLE returns .TRUE. if the strings are equal or string_a comes first in the collating sequence;

otherwise, .FALSE..
• MBLLT returns .TRUE. if string_a comes first in the collating sequence; otherwise, .FALSE..
• MBLEQ returns .TRUE. if the strings are equal in the collating sequence; otherwise, .FALSE..
• MBLNE returns .TRUE. if the strings are not equal in the collating sequence; otherwise, .FALSE..

If the two strings are of different lengths, they are compared up to the length of the shortest one. If they are
equal to that point, then the return value indicates that the longer string is greater.

If flags is invalid, the functions return .FALSE..

If the strings supplied contain Arabic Kashidas, the Kashidas are ignored during the comparison. Therefore, if
the two strings are identical except for Kashidas within the strings, the functions return a value indicating
they are "equal" in the collation sense, though not necessarily identical.

NOTE
When not using the NLS$MB_StringSort flag, the hyphen and apostrophe are special
symbols and are treated differently than others. This is to ensure that words like coop and
co-op stay together within a list. All symbols, except the hyphen and apostrophe, sort
before any other alphanumeric character. If you specify the NLS$MB_StringSort flag, hyphen
and apostrophe sort at the beginning also.

See Also
LGE
LGT
LLE
LLT

MBNext
NLS Function: Returns the position of the first lead
byte or single-byte character immediately following
the given position in a multibyte-character string. This
routine is only available for Windows.

Module

USE IFNLS

Syntax
result = MBNext (string,position)

Intel® Fortran Compiler Classic and Intel® Fortran Compiler Developer Guide and Reference 1

2115

string (Input) Character*(*). Is the string to be searched for the first lead
byte or single-byte character after the current position. It can contain
multibyte characters.

position (Input) INTEGER(4). Is the position in string to search from. It must
be the position of a lead byte or a single-byte character. Cannot be the
position of a trail (second) byte of a multibyte character.

Results

The result type is INTEGER(4). The result is the position of the first lead byte or single-byte character in
string immediately following the position given in position, or 0 if no following first byte is found in string.

See Also
MBPrev

MBPrev
NLS Function: Returns the position of the first lead
byte or single-byte character immediately preceding
the given string position in a multibyte-character
string. This routine is only available for Windows.

Module

USE IFNLS

Syntax
result = MBPrev (string,position)

string (Input) Character*(*). Is a string to be searched for the first lead byte
or single-byte character before the current position. It can contain
multibyte characters.

position (Input) INTEGER(4). The position in string to search from. It must
be the position of a lead byte or single-byte character. Cannot be the
position of the trail (second) byte of a multibyte character.

Results

The result type is INTEGER(4). The result is the position of the first lead byte or single-byte character in
string immediately preceding the position given in position, or 0 if no preceding first byte is found in string.

See Also
MBNext

MBSCAN
NLS Function: Performs the same function as SCAN
except that the strings manipulated can contain
multibyte characters. This routine is only available for
Windows.

Module

USE IFNLS

Syntax
result = MBSCAN (string,set[,back])

 1 Intel® Fortran Compiler Classic and Intel® Fortran Compiler Developer Guide and Reference

2116

string (Input) Character*(*). Is the string to be searched for the presence of
any character in set.

set (Input) Character*(*). Are the characters to search for.

back (Input; optional) LOGICAL(4). If specified, determines direction of the
search.

If back is .FALSE. or is omitted, the search starts at the beginning of
string and moves toward the end. If back is .TRUE., the search
starts end of string and moves toward the beginning.

Results

The result type is INTEGER(4). If back is .FALSE. or is omitted, it returns the position of the leftmost
character in string that is in set. If back is .TRUE., it returns the rightmost character in string that is in set. If
no characters in string are in set, it returns 0.

See Also
SCAN
MBINDEX
MBVERIFY

MBStrLead
NLS Function: Performs a context-sensitive test to
determine whether a given character byte in a string
is a multibyte-character lead byte. This routine is only
available for Windows.

Module

USE IFNLS

Syntax
result = MBStrLead (string,position)

string (Input) Character*(*). Is a string containing the character byte to be
tested for lead status.

position (Input) INTEGER(4). Is the position in string of the character byte in
the string to be tested.

Results

The result type is LOGICAL(4). The result is .TRUE. if the character byte in position of string is a lead byte;
otherwise, .FALSE..

MBStrLead is passed a whole string and can identify any byte within the string as a lead or trail byte because
it performs a context-sensitive test, scanning all the way back to the beginning of a string if necessary to
establish context.

MBLead is passed only one character at a time and must start on a lead byte and step through a string one
character at a time to establish context for the character. So, MBStrLead can be much slower than MBLead
(up to n times slower, where n is the length of the string).

See Also
MBLead

Intel® Fortran Compiler Classic and Intel® Fortran Compiler Developer Guide and Reference 1

2117

MBVERIFY
NLS Function: Performs the same function as VERIFY
except that the strings manipulated can contain
multibyte characters. This routine is only available for
Windows.

Module

USE IFNLS

Syntax
result = MBVERIFY (string,set[,back])

string (Input) Character*(*). Is the string to be searched for presence of any
character not in set.

set (Input) Character*(*). Is a set of characters tested to verify that it
includes all the characters in string.

back (Input; optional) LOGICAL(4). If specified, determines the direction of
the search. If back is .FALSE. or is omitted, the search starts at the
beginning of string and moves toward the end. If back is .TRUE., the
search starts end of string and moves toward the beginning.

Results

The result type is INTEGER(4). If back is .FALSE. or is omitted, it returns the position of the leftmost
character in string that is not in set. If back is .TRUE., it returns the rightmost character in string that is not
in set. If all the characters in string are in set, it returns 0.

See Also
VERIFY
MBINDEX
MBSCAN

NLSEnumCodepages
NLS Function: Returns an array containing the
codepages supported by the system, with each array
element describing one valid codepage. This routine is
only available for Windows.

Module

USE IFNLS

Syntax
ptr=> NLSEnumCodepages()

Results

The result is a pointer to an array of codepages, with each element describing one supported codepage.

NOTE
After use, the pointer returned by NLSEnumCodepages should be deallocated with the
DEALLOCATE statement.

 1 Intel® Fortran Compiler Classic and Intel® Fortran Compiler Developer Guide and Reference

2118

See Also
NLSEnumLocales
DEALLOCATE

NLSEnumLocales
NLS Function: Returns an array containing the
language and country combinations supported by the
system, in which each array element describes one
valid combination. This routine is only available for
Windows.

Module

USE IFNLS

Syntax
ptr=> NLSEnumLocales()

Results

The result is a pointer to an array of locales, in which each array element describes one supported language
and country combination. Each element has the following structure:

 TYPE NLS$EnumLocale
 CHARACTER*(NLS$MaxLanguageLen) Language
 CHARACTER*(NLS$MaxCountryLen) Country
 INTEGER(4) DefaultWindowsCodepage
 INTEGER(4) DefaultConsoleCodepage
 END TYPE

If the application is a Windows or QuickWin application, NLS$DefaultWindowsCodepage is the codepage used
by default for the given language and country combination. If the application is a console application, NLS
$DefaultConsoleCodepage is the codepage used by default for the given language and country combination.

NOTE
After use, the pointer returned by NLSEnumLocales should be deallocated with the
DEALLOCATE statement.

See Also
NLSEnumCodepages
DEALLOCATE

NLSFormatCurrency
NLS Function: Returns a correctly formatted
currency string for the current locale. This routine is
only available for Windows.

Module

USE IFNLS

Syntax
result = NLSFormatCurrency (outstr,instr[,flags])

Intel® Fortran Compiler Classic and Intel® Fortran Compiler Developer Guide and Reference 1

2119

outstr (Output) Character*(*). Is a string containing the correctly formatted
currency for the current locale. If outstr is longer than the formatted
currency, it is blank-padded.

intstr (Input) Character*(*). Is the number string to be formatted. It can
contain only the characters '0' through '9', one decimal point (a
period) if a floating-point value, and a minus sign in the first position if
negative. All other characters are invalid and cause the function to
return an error.

flags (Input; optional) INTEGER(4). If specified, modifies the currency
conversion. If you omit flags, the flag NLS$Normal is used. Available
values (defined in IFNLS.F90) are:

• NLS$Normal - No special formatting
• NLS$NoUserOverride - Do not use user overrides

Results

The result type is INTEGER(4). The result is the number of characters written to outstr(bytes are counted,
not multibyte characters).

If an error occurs, the result is one of the following negative values:

• NLS$ErrorInsufficentBuffer - outstr buffer is too small
• NLS$ErrorInvalidFlags - flags has an illegal value
• NLS$ErrorInvalidInput - instr has an illegal value

Example

 USE IFNLS
 CHARACTER(40) str
 INTEGER(4) i
 i = NLSFormatCurrency(str, "1.23")
 print *, str ! prints $1.23
 i = NLSFormatCurrency(str, "1000000.99")
 print *, str ! prints $1,000,000.99
 i = NLSSetLocale("Spanish", "Spain")
 i = NLSFormatCurrency(str, "1.23")
 print *, str ! prints 1 Pts
 i = NLSFormatCurrency(str, "1000000.99")
 print *, str ! prints 1.000.001 Pts

See Also
NLSFormatNumber
NLSFormatDate
NLSFormatTime

NLSFormatDate
NLS Function: Returns a correctly formatted string
containing the date for the current locale. This routine
is only available for Windows.

Module

USE IFNLS

Syntax
result = NLSFormatDate (outstr [, intime] [, flags])

 1 Intel® Fortran Compiler Classic and Intel® Fortran Compiler Developer Guide and Reference

2120

outstr (Output) Character*(*). Is a string containing the correctly formatted
date for the current locale. If outstr is longer than the formatted
date, it is blank-padded.

intime (Input; optional) INTEGER(4). If specified, the date to be formatted
for the current locale. It must be an integer date such as the packed
time created with PACKTIMEQQ. If you omit intime, the current
system date is formatted and returned in outstr.

flags (Input; optional) INTEGER(4). If specified, modifies the date
conversion. If you omit flags, the flag NLS$Normal is used. Available
values (defined in IFNLS.F90) are:

• NLS$Normal - No special formatting
• NLS$NoUserOverride - Do not use user overrides
• NLS$UseAltCalendar - Use the locale's alternate calendar
• NLS$LongDate - Use local long date format
• NLS$ShortDate - Use local short date format

Results

The result type is INTEGER(4). The result is the number of characters written to outstr (bytes are counted,
not multibyte characters).

If an error occurs, the result is one of the following negative values:

• NLS$ErrorInsufficentBuffer - outstr buffer is too small
• NLS$ErrorInvalidFlags - flags has an illegal value
• NLS$ErrorInvalidInput - intime has an illegal value

Example

 USE IFNLS
 INTEGER(4) i
 CHARACTER(40) str
 i = NLSFORMATDATE(str, FLAGS=NLS$NORMAL) ! 8/1/10
 i = NLSFORMATDATE(str, FLAGS=NLS$USEALTCALENDAR) ! 8/1/10
 i = NLSFORMATDATE(str, FLAGS=NLS$LONGDATE) ! Sunday, August 1, 2010
 i = NLSFORMATDATE(str, FLAGS=NLS$SHORTDATE) ! 8/1/10
 END

See Also
NLSFormatTime
NLSFormatCurrency
NLSFormatNumber

NLSFormatNumber
NLS Function: Returns a correctly formatted number
string for the current locale. This routine is only
available for Windows.

Module

USE IFNLS

Syntax
result = NLSFormatNumber (outstr, instr [, flags])

Intel® Fortran Compiler Classic and Intel® Fortran Compiler Developer Guide and Reference 1

2121

outstr (Output) Character*(*). Is a string containing the correctly formatted
number for the current locale. If outstr is longer than the formatted
number, it is padded with blanks.

instr (Input) Character*(*). Is a number string to be formatted. It can only
contain the characters '0' through '9', one decimal point (a period) if a
floating-point value, and a minus sign in the first position if negative.
All other characters are invalid and cause the function to return an
error.

flags (Input; optional) INTEGER(4). If specified, modifies the number
conversion. If you omit flags, the flag NLS$Normal is used. Available
values (defined in IFNLS.F90) are:

• NLS$Normal - No special formatting
• NLS$NoUserOverride - Do not use user overrides

Results

The result type is INTEGER(4). The result is the number of characters written to outstr (bytes are counted,
not multibyte characters).

If an error occurs, the result is one of the following negative values:

• NLS$ErrorInsufficentBuffer - outstr buffer is too small
• NLS$ErrorInvalidFlags - flags has an illegal value
• NLS$ErrorInvalidInput - instr has an illegal value

Example

 USE IFNLS
 CHARACTER(40) str
 INTEGER(4) i
 i = NLSFormatNumber(str, "1.23")
 print *, str ! prints 1.23
 i = NLSFormatNumber(str, "1000000.99")
 print *, str ! prints 1,000,000.99
 i = NLSSetLocale("Spanish", "Spain")
 i = NLSFormatNumber(str, "1.23")
 print *, str ! prints 1,23
 i = NLSFormatNumber(str, "1000000.99")
 print *, str ! prints 1.000.000,99
 END

See Also
NLSFormatTime
NLSFormatCurrency
NLSFormatDate

NLSFormatTime
NLS Function: Returns a correctly formatted string
containing the time for the current locale. This routine
is only available for Windows.

Module

USE IFNLS

 1 Intel® Fortran Compiler Classic and Intel® Fortran Compiler Developer Guide and Reference

2122

Syntax
result = NLSFormatTime (outstr [, intime] [, flags])

outstr (Output) Character*(*). Is a string containing the correctly formatted
time for the current locale. If outstr is longer than the formatted
time, it is blank-padded.

intime (Input; optional) INTEGER(4). If specified, the time to be formatted
for the current locale. Must be an integer time such as the packed
time created with PACKTIMEQQ. If you omit intime, the current
system time is formatted and returned in outstr.

flags (Input; optional) INTEGER(4). If specified, modifies the time
conversion. If you omit flags, the flag NLS$Normal is used. Available
values (defined in IFNLS.F90) are:

• NLS$Normal - No special formatting
• NLS$NoUserOverride - Do not use user overrides
• NLS$NoMinutesOrSeconds - Do not return minutes or seconds
• NLS$NoSeconds - Do not return seconds
• NLS$NoTimeMarker - Do not add a time marker string
• NLS$Force24HourFormat - Return string in 24 hour format

Results

The result type is INTEGER(4). The result is the number of characters written to outstr (bytes are counted,
not multibyte characters).

If an error occurs, the result is one of the following negative values:

• NLS$ErrorInsufficentBuffer - outstr buffer is too small
• NLS$ErrorInvalidFlags - flags has an illegal value
• NLS$ErrorInvalidInput - intime has an illegal value

Example

 USE IFNLS
 INTEGER(4) i
 CHARACTER(20) str
 i = NLSFORMATTIME(str, FLAGS=NLS$NORMAL) ! 11:38:28 PM
 i = NLSFORMATTIME(str, FLAGS=NLS$NOMINUTESORSECONDS) ! 11 PM
 i = NLSFORMATTIME(str, FLAGS=NLS$NOTIMEMARKER) ! 11:38:28 PM
 i = NLSFORMATTIME(str, FLAGS=IOR(NLS$FORCE24HOURFORMAT, &
 & NLS$NOSECONDS)) ! 23:38 PM
 END

See Also
NLSFormatCurrency
NLSFormatDate
NLSFormatNumber

NLSGetEnvironmentCodepage
NLS Function: Returns the codepage number for the
system (Window) codepage or the console codepage.
This routine is only available for Windows.

Module

USE IFNLS

Intel® Fortran Compiler Classic and Intel® Fortran Compiler Developer Guide and Reference 1

2123

Syntax
result = NLSGetEnvironmentCodepage (flags)

flags (Input) INTEGER(4). Tells the function which codepage number to
return. Available values (defined in IFNLS.F90) are:

• NLS$ConsoleEnvironmentCodepage - Gets the codepage for the
console.

• NLS$WindowsEnvironmentCodepage - Gets the current Windows
codepage.

Results

The result type is INTEGER(4).

The result is zero if successful; otherwise, it returns one of the following error codes:

• NLS$ErrorInvalidFlags - flags has an illegal value.
• NLS$ErrorNoConsole - There is no console associated with the given application. So, operations with the

console codepage are not possible.

See Also
NLSSetEnvironmentCodepage

NLSGetLocale
NLS Subroutine: Returns the current language,
country, or codepage. This routine is only available for
Windows.

Module

USE IFNLS

Syntax
CALL NLSGetLocale ([language] [,country] [,codepage])

language (Output; optional) Character*(*). Is the current language.

country (Output; optional) Character*(*). Is the current country.

codepage (Output; optional) INTEGER(4). Is the current codepage.

NLSGetLocale returns a valid codepage in codepage.

Example

 USE IFNLS
 CHARACTER(50) cntry, lang
 INTEGER(4) code
 CALL NLSGetLocale (lang, cntry, code) ! get all three
 CALL NLSGetLocale (CODEPAGE = code) ! get the codepage
 CALL NLSGetLocale (COUNTRY = cntry, CODEPAGE =code) ! get country
 ! and codepage

See Also
NLSSetLocale

 1 Intel® Fortran Compiler Classic and Intel® Fortran Compiler Developer Guide and Reference

2124

NLSGetLocaleInfo
NLS Function: Returns information about the current
locale. This routine is only available for Windows.

Module

USE IFNLS

Syntax
result = NLSGetLocaleInfo (type,outstr)

type (Input) INTEGER(4). Is the NLS parameter requested. A list of
parameter names is provided in NLS LocaleInfo Parameters.

outstr (Output) Character*(*). Is the parameter setting for the current
locale. All parameter settings placed in outstr are character strings,
even numbers. If a parameter setting is numeric, the ASCII
representation of the number is used.

If the requested parameter is a date or time string, an explanation of
how to interpret the format in outstr is provided in NLS Date and
Time Format.

Results

The result type is INTEGER(4). The result is the number of characters written to outstr if successful, or if
outstr has 0 length, the number of characters required to hold the requested information.

Otherwise, the result is one of the following error codes (defined in IFNLS.F90):

• NLS$ErrorInvalidInput - type has an illegal value.
• NLS$ErrorInsufficientBuffer - The outstr buffer was too small, but was not 0 (so that the needed size

would be returned).

The NLS$LI parameters are used for the argument type and select the locale information returned by
NLSGetLocaleInfo in outstr. You can perform an inclusive OR with NLS$NoUserOverride and any NLS$LI
parameter. This causes NLSGetLocaleInfo to bypass any user overrides and always return the system default
value.

The following table lists and describes the NLS$LI parameters in alphabetical order.

NLS LocaleInfo Parameters

Parameter Description

NLS$LI_ICALENDARTYPE Specifies which type of calendar is currently being used:

1 - Gregorian (as in United States)

2 - Gregorian (English strings always)

3 - Era: Year of the Emperor (Japan)

4 - Era: Year of the Republic of China

5 - Tangun Era (Korea)

NLS$LI_ICENTURY Specifies whether to use full 4-digit century for the short date
only:

0 - Two-digit year

1 - Full century

Intel® Fortran Compiler Classic and Intel® Fortran Compiler Developer Guide and Reference 1

2125

Parameter Description

NLS$LI_ICOUNTRY Is the country code, based on international phone codes, also
referred to as IBM country codes.

NLS$LI_ICURRDIGITS Is the number of decimal digits for the local monetary format.

NLS$LI_ICURRENCY Determines how positive currency is represented:

0 - Puts currency symbol in front with no separation: $1.1

1 - Puts currency symbol in back with no separation: 1.1$

2 - Puts currency symbol in front with single space after: $ 1.1

3 - Puts currency symbol in back with single space before: 1.1
$

NLS$LI_IDATE Short Date format ordering:

0 - Month-Day-Year

1 - Day-Month-Year

2 - Year-Month-Day

NLS$LI_IDAYLZERO Specifies whether to use leading zeros in day fields for the
short date only:

0 - Use no leading zeros

1 - Use leading zeros

NLS$LI_IDEFAULTANSICODEPAGE Is the ANSI code page associated with this locale.

NLS$LI_IDEFAULTCOUNTRY Is the country code for the principal country in this locale. This
is provided so that partially specified locales can be completed
with default values.

NLS$LI_IDEFAULTLANGUAGE Is the language ID for the principal language spoken in this
locale. This is provided so that partially specified locales can
be completed with default values.

NLS$LI_IDEFAULTOEMCODEPAGE Is the OEM code page associated with the locale.

NLS$LI_IDIGITS Is the number of decimal digits.

NLS$LI_IFIRSTDAYOFWEEK Specifies which day is considered first in a week:

0 - SDAYNAME1

1 - SDAYNAME2

2 - SDAYNAME3

3 - SDAYNAME4

4 - SDAYNAME5

5 - SDAYNAME6

6 - SDAYNAME7

NLS$LI_IFIRSTWEEKOFYEAR Specifies which week of the year is considered first:

0 - Week containing 1/1

 1 Intel® Fortran Compiler Classic and Intel® Fortran Compiler Developer Guide and Reference

2126

Parameter Description

1 - First full week following 1/1

2 - First week containing at least 4 days

NLS$LI_IINTLCURRDIGITS Is the number of decimal digits for the international monetary
format.

NLS$LI_ILANGUAGE Is an ID indicating the language.

NLS$LI_ILDATE Long Date format ordering:

0 - Month-Day-Year

1 - Day-Month-Year

2 - Year-Month-Day

NLS$LI_ILZERO Determines whether to use leading zeros in decimal fields:

0 - Use no leading zeros

1 - Use leading zeros

NLS$LI_IMEASURE This value is 0 if the metric system (S.I.) is used and 1 for the
U.S. system of measurements.

NLS$LI_IMONLZERO Specifies whether to use leading zeros in month fields for the
short date only:

0 - Use no leading zeros

1 - Use leading zeros

NLS$LI_INEGCURR Determines how negative currency is represented:

0 ($1.1)

1 -$1.1

2 $-1.1

3 $1.1-

4 (1.1$)

5 -1.1$

6 1.1-$

7 1.1$-

8 -1.1 $ (space before $)

9 -$ 1.1 (space after $)

10 1.1 $- (space before $)

11 $ 1.1- (space after $)

12 $ -1.1 (space after $)

13 1.1- $ (space before $)

14 ($ 1.1) (space after $)

15 (1.1 $) (space before $)

NLS$LI_INEGNUMBER Determines how negative numbers are represented:

Intel® Fortran Compiler Classic and Intel® Fortran Compiler Developer Guide and Reference 1

2127

Parameter Description

0 - Puts negative numbers in parentheses: (1.1)

1 - Puts a minus sign in front: -1.1

2 - Puts a minus sign followed by a space in front: - 1.1

3 - Puts a minus sign after: 1.1-

4 - Puts a space then a minus sign after: 1.1 -

NLS$LI_INEGSEPBYSPACE 1 if the monetary symbol is separated by a space from a
negative amount; otherwise, 0.

NLS$LI_INEGSIGNPOSN Determines the formatting index for negative values. Same
values as for NLS$LI_IPOSSIGNPOSN.

NLS$LI_INEGSYMPRECEDES 1 if the monetary symbol precedes, 0 if it follows a negative
amount.

NLS$LI_IOPTIONALCALENDAR Specifies which additional calendar types are valid and
available for this locale. This can be a null separated list of all
valid optional calendars:

0 - No additional types valid

1 - Gregorian (localized)

2 - Gregorian (English strings always)

3 - Era: Year of the Emperor (Japan)

4 - Era: Year of the Republic of China

5 - Tangun Era (Korea)

NLS$LI_IPOSSEPBYSPACE 1 if the monetary symbol is separated by a space from a
positive amount; otherwise, 0.

NLS$LI_IPOSSIGNPOSN Determines the formatting index for positive values:

0 - Parenthesis surround the amount and the monetary
symbol

1 - The sign string precedes the amount and the monetary
symbol

2 - The sign string follows the amount and the monetary
symbol

3 - The sign string immediately precedes the monetary symbol

4 - The sign string immediately follows the monetary symbol

NLS$LI_IPOSSYMPRECEDES 1 if the monetary symbol precedes, 0 if it follows a positive
amount.

NLS$LI_ITIME Time format:

0 - Use 12-hour format

1 - Use 24-hour format

NLS$LI_ITLZERO Determines whether to use leading zeros in time fields:

0 - Use no leading zeros

 1 Intel® Fortran Compiler Classic and Intel® Fortran Compiler Developer Guide and Reference

2128

Parameter Description

1 - Use leading zeros for hours

NLS$LI_S1159 Is the string for the AM designator.

NLS$LI_S2359 Is the string for the PM designator.

NLS$LI_SABBREVCTRYNAME Is the abbreviated name of the country as per ISO Standard
3166.

NLS$LI_SABBREVDAYNAME1 -
NLS$LI_SABBREVDAYNAME7

Is the native abbreviated name for each day of the week. 1 =
Mon, 2 = Tue, etc.

NLS$LI_SABBREVLANGNAME Is the abbreviated name of the language, created by taking
the 2-letter language abbreviation as found in ISO Standard
639 and adding a third letter as appropriate to indicate the
sublanguage.

NLS$LI_SABBREVMONTHNAME1 -
NLS$LI_SABBREVMONTHNAME13

Is the native abbreviated name for each month. 1 = Jan, 2 =
Feb, etc. 13 = the 13th month, if it exists in the locale.

NLS$LI_SCOUNTRY Is the full localized name of the country.

NLS$LI_SCURRENCY Is the string used as the local monetary symbol. Cannot be set
to digits 0-9.

NLS$LI_SDATE Is the character(s) for the date separator. Cannot be set to
digits 0-9.

NLS$LI_SDAYNAME1 -
NLS$LI_SDAYNAME7

Is the native name for each day of the week. 1 = Monday, 2 =
Tuesday, etc.

NLS$LI_SDECIMAL Is the character(s) used as decimal separator. This is restricted
such that it cannot be set to digits 0 - 9.

NLS$LI_SENGCOUNTRY Is the full English name of the country. This will always be
restricted to characters that map into the ASCII 127 character
subset.

NLS$LI_SENGLANGUAGE Is the full English name of the language from the ISO
Standard 639. This will always be restricted to characters that
map into the ASCII 127 character subset.

NLS$LI_SGROUPING Are the sizes for each group of digits to the left of the decimal.
An explicit size is needed for each group; sizes are separated
by semicolons. If the last value is 0 the preceding value is
repeated. To group thousands, specify "3;0".

NLS$LI_SINTLSYMBOL Three characters of the International monetary symbol
specified in ISO 4217 "Codes for the Representation of
Currencies and Funds", followed by the character separating
this string from the amount.

NLS$LI_SLANGUAGE Is the full localized name of the language.

NLS$LI_SLIST Is the character(s) used to separate list items, for example,
comma in many locales.

Intel® Fortran Compiler Classic and Intel® Fortran Compiler Developer Guide and Reference 1

2129

Parameter Description

NLS$LI_SLONGDATE Long Date formatting string for this locale. The string returned
may contain a string within single quotes (' '). Any characters
within single quotes should be left as is. The d, M and y should
have the day, month, and year substituted, respectively.

NLS$LI_SMONDECIMALSEP Is the character(s) used as monetary decimal separator. This
is restricted such that it cannot be set to digits 0-9.

NLS$LI_SMONGROUPING Are the sizes for each group of monetary digits to the left of
the decimal. If the last value is 0, the preceding value is
repeated. To group thousands, specify "3;0".

NLS$LI_SMONTHNAME1 -
NLS$LI_SMONTHNAME13

Is the native name for each month. 1 = January, 2 = February,
etc. 13 = the 13th month, if it exists in the locale.

NLS$LI_SMONTHOUSANDSEP Is the character(s) used as monetary separator between
groups of digits left of the decimal. Cannot be set to digits 0-9.

NLS$LI_SNATIVECTRYNAME Is the native name of the country.

NLS$LI_SNATIVEDIGITS The ten characters that are the native equivalent to the ASCII
0-9.

NLS$LI_SNATIVELANGNAME Is the native name of the language.

NLS$LI_SNEGATIVESIGN String value for the negative sign. Cannot be set to digits 0-9.

NLS$LI_SPOSITIVESIGN String value for the positive sign. Cannot be set to digits 0-9.

NLS$LI_SSHORTDATE Short Date formatting string for this locale. The d, M and y
should have the day, month, and year substituted,
respectively. See NLS Date and Time Format for explanations
of the valid strings.

NLS$LI_STHOUSAND Is the character(s) used as separator between groups of digits
left of the decimal. This is restricted such that it cannot be set
to digits 0 - 9.

NLS$LI_STIME Character(s) for the time separator. Cannot be set to digits
0-9.

NLS$LI_STIMEFORMAT Time formatting string. See NLS Date and Time Format for
explanations of the valid strings.

When NLSGetLocaleInfo (type, outstr) returns information about the date and time formats of the current
locale, the value returned in outstr can be interpreted according to the following tables.

Any text returned within a date and time string that is enclosed within single quotes should be left in the
string in its exact form; that is, do not change the text or the location within the string.

Day

The day can be displayed in one of four formats using the letter "d". The following table shows the four
variations:

d Day of the month as digits without leading zeros for single-digit days

dd Day of the month as digits with leading zeros for single-digit days

 1 Intel® Fortran Compiler Classic and Intel® Fortran Compiler Developer Guide and Reference

2130

ddd Day of the week as a three-letter abbreviation (SABBREVDAYNAME)

dddd Day of the week as its full name (SDAYNAME)

Month

The month can be displayed in one of four formats using the letter "M". The uppercase "M" distinguishes
months from minutes. The following table shows the four variations:

M Month as digits without leading zeros for single-digit months

MM Month as digits with leading zeros for single-digit months

MMM Month as a three-letter abbreviation (SABBREVMONTHNAME)

MMMM Month as its full name (SMONTHNAME)

Year

The year can be displayed in one of three formats using the letter "y". The following table shows the three
variations:

y Year represented by only the last digit

yy Year represented by only the last two digits

yyyy Year represented by the full 4 digits

Period/Era

The period/era string is displayed in a single format using the letters "gg".

gg Period/Era string

Time

The time can be displayed in one of many formats using the letter "h" or "H" to denote hours, the letter "m"
to denote minutes, the letter "s" to denote seconds and the letter "t" to denote the time marker.

The following table shows the numerous variations of the time format. Lowercase "h" denotes the 12 hour
clock and uppercase "H" denotes the 24 hour clock. The lowercase "m" distinguishes minutes from months.

h Hours without leading zeros for single-digit hours (12 hour clock)

hh Hours with leading zeros for single-digit hours (12 hour clock)

H Hours without leading zeros for single-digit hours (24 hour clock)

HH Hours with leading zeros for single-digit hours (24 hour clock)

m Minutes without leading zeros for single-digit minutes

mm Minutes with leading zeros for single-digit minutes

s Seconds without leading zeros for single-digit seconds

ss Seconds with leading zeros for single-digit seconds

t One-character time marker string

tt Multicharacter time marker string

Intel® Fortran Compiler Classic and Intel® Fortran Compiler Developer Guide and Reference 1

2131

Example

 USE IFNLS
 INTEGER(4) strlen
 CHARACTER(40) str
 strlen = NLSGetLocaleInfo(NLS$LI_SDAYNAME1, str)
 print *, str ! prints Monday if language is English
 strlen = NLSGetLocaleInfo(NLS$LI_SDAYNAME2, str)
 print *, str ! prints Tuesday if language is English

See Also
NLSGetLocale
NLSFormatDate
NLSFormatTime
NLSSetLocale

NLSSetEnvironmentCodepage
NLS Function: Sets the codepage for the current
console. The specified codepage affects the current
console program and any other programs launched
from the same console. It does not affect other open
consoles or any consoles opened later. This routine is
only available for Windows.

Module

USE IFNLS

Syntax
result = NLSSetEnvironmentCodepage (codepage,flags)

codepage (Input) INTEGER(4). Is the number of the codepage to set as the
console codepage.

flags (Input) INTEGER(4). Must be set to NLS
$ConsoleEnvironmentCodepage.

Results

The result type is INTEGER(4). The result is zero if successful.

Otherwise, it returns one of the following error codes defined in IFNLS.F90:

• NLS$ErrorInvalidCodepage - codepage is invalid or not installed on the system
• NLS$ErrorInvalidFlags - flags is not valid
• NLS$ErrorNoConsole - There is no console associated with the given applicatio. So operations, with the

console codepage are not possible

The flags argument must be a NLS$ConsoleEnvironmentCodepage. It cannot be a NLS
$WindowsEnvironmentCodepage. NLSSetEnvironmentCodepage does not affect the Windows* codepage.

See Also
NLSGetEnvironmentCodepage

NLSSetLocale
NLS Function: Sets the current language, country, or
codepage. This routine is only available for Windows.

 1 Intel® Fortran Compiler Classic and Intel® Fortran Compiler Developer Guide and Reference

2132

Module

USE IFNLS

Syntax
result = NLSSetLocale (language[,country] [,codepage])

language (Input) Character*(*). Is one of the languages installed on the current
system. It can be the English name of the language (for example,
"German") or the native name of the language (for example,
"Deutsch"), or the abbreviated language-country code (for example,
"de-DE" or "en-US"). If the language-country code is specified, the
country argument should be omitted.

country (Input; optional) Character*(*). If specified, is the name of a country.
It can be the English name (for example, "Germany") or the native
name (for example, "Deutschland"). If it is the native name, it must
have any special characters in that name. The native country name
may be used with the English language name and vice-versa. If
omitted, the first installed locale with the specified language name will
be selected.

codepage (Input; optional) INTEGER(4). This argument is ignored.

Results

The result type is INTEGER(4). The result is zero if successful.

Otherwise, one of the following error codes (defined in IFNLS.F90) may be returned:

• NLS$ErrorInvalidLanguage - language is invalid or not supported
• NLS$ErrorInvalidCountry - country is invalid or is not valid with the language specified

NOTE
NLSSetLocale works on installed locales only. Many locales are supported, but they must be
installed through the system Control Panel/International menu.

Calling NLSSetLocale has no effect on the locale used by C programs. The locale set with C's setlocale()
routine is independent of NLSSetLocale.

See Also
NLSGetLocale

QuickWin Library Routines

This section contains descriptions of the Quickwin library routines, which are restricted to Windows* systems.
They are listed in alphabetical order.

To access these library routines, you must specify a USE IFQWIN statement in your program.

ABOUTBOXQQ
QuickWin Function: Specifies the information
displayed in the message box that appears when the
user selects the About command from a QuickWin
application's Help menu. This routine is only available
for Windows.

Intel® Fortran Compiler Classic and Intel® Fortran Compiler Developer Guide and Reference 1

2133

Module

USE IFQWIN

Syntax
result=ABOUTBOXQQ(cstring)

cstring (Input; output) Character*(*). Null-terminated C string.

Results

The value of the result is INTEGER(4). It is zero if successful; otherwise, nonzero.

If your program does not call ABOUTBOXQQ, the QuickWin runtime library supplies a default string.

Example

 USE IFQWIN
 INTEGER(4) dummy
! Set the About box message
 dummy = ABOUTBOXQQ ('Matrix Multiplier\r Version 1.0'C)

APPENDMENUQQ
QuickWin Function: Appends a menu item to the
end of a menu and registers its callback subroutine.
This routine is only available for Windows.

Module

USE IFQWIN

Syntax
result = APPENDMENUQQ (menuID, flags, text,routine)

menuID (Input) INTEGER(4). Identifies the menu to which the item is
appended, starting with 1 as the leftmost menu.

flags (Input) INTEGER(4). Constant indicating the menu state. Flags can be
combined with an inclusive OR (see the Results section below). The
following constants are available:

• $MENUGRAYED - Disables and grays out the menu item.
• $MENUDISABLED - Disables but does not gray out the menu item.
• $MENUENABLED - Enables the menu item.
• $MENUSEPARATOR - Draws a separator bar.
• $MENUCHECKED - Puts a check by the menu item.
• $MENUUNCHECKED - Removes the check by the menu item.

text (Input) Character*(*). Menu item name. Must be a null-terminated C
string, for example, 'WORDS OF TEXT'C.

routine (Input) EXTERNAL. Callback subroutine that is called if the menu item
is selected. All routines take a single LOGICAL parameter that
indicates whether the menu item is checked or not. You can assign the
following predefined routines to menus:

• WINPRINT - Prints the program.
• WINSAVE - Saves the program.
• WINEXIT - Terminates the program.

 1 Intel® Fortran Compiler Classic and Intel® Fortran Compiler Developer Guide and Reference

2134

• WINSELECTTEXT - Selects text from the current window.
• WINSELECTGRAPHICS - Selects graphics from the current window.
• WINSELECTALL - Selects the entire contents of the current window.
• WININPUT - Brings to the top the child window requesting input

and makes it the current window.
• WINCOPY - Copies the selected text and/or graphics from the

current window to the Clipboard.
• WINPASTE - Allows the user to paste Clipboard contents (text only)

to the current text window of the active window during a READ.
• WINCLEARPASTE - Clears the paste buffer.
• WINSIZETOFIT - Sizes output to fit window.
• WINFULLSCREEN - Displays output in full screen.
• WINSTATE - Toggles between pause and resume states of text

output.
• WINCASCADE - Cascades active windows.
• WINTILE - Tiles active windows.
• WINARRANGE - Arranges icons.
• WINSTATUS - Enables a status bar.
• WININDEX - Displays the index for QuickWin help.
• WINUSING - Displays information on how to use Help.
• WINABOUT - Displays information about the current QuickWin

application.
• NUL - No callback routine.

Results

The result type is logical. It is .TRUE. if successful; otherwise, .FALSE..

You do not need to specify a menu item number, because APPENDMENUQQ always adds the new item to the
bottom of the menu list. If there is no item yet for a menu, your appended item is treated as the top-level
menu item (shown on the menu bar), and text becomes the menu title. APPENDMENUQQ ignores the
callback routine for a top-level menu item if there are any other menu items in the menu. In this case, you
can set routine to NUL.

If you want to insert a menu item into a menu rather than append to the bottom of the menu list, use
INSERTMENUQQ.

The constants available for flags can be combined with an inclusive OR where reasonable, for example
$MENUCHECKED .OR. $MENUENABLED. Some combinations do not make sense, such as $MENUENABLED
and $MENUDISABLED, and lead to undefined behavior.

You can create quick-access keys in the text strings you pass to APPENDMENUQQ as text by placing an
ampersand (&) before the letter you want underlined. For example, to add a Print menu item with the r
underlined, text should be "P&rint". Quick-access keys allow users of your program to activate that menu
item with the key combination ALT+QUICK-ACCESS-KEY (ALT+R in the example) as an alternative to
selecting the item with the mouse.

Example

 USE IFQWIN
 LOGICAL(4) result
 CHARACTER(25) str
 ...
! Append two items to the bottom of the first (FILE) menu
 str = '&Add to File Menu'C ! 'A' is a quick-access key
 result = APPENDMENUQQ(1, $MENUENABLED, str, WINSTATUS)
 str = 'Menu Item &2b'C ! '2' is a quick-access key
 result = APPENDMENUQQ(1, $MENUENABLED, str, WINCASCADE)

Intel® Fortran Compiler Classic and Intel® Fortran Compiler Developer Guide and Reference 1

2135

! Append an item to the bottom of the second (EDIT) menu
 str = 'Add to Second &Menu'C ! 'M' is a quick-access key
 result = APPENDMENUQQ(2, $MENUENABLED, str, WINTILE)

See Also
INSERTMENUQQ
DELETEMENUQQ
MODIFYMENUFLAGSQQ
MODIFYMENUROUTINEQQ
MODIFYMENUSTRINGQQ

CLICKMENUQQ
QuickWin Function: Simulates the effect of clicking
or selecting a menu command. The QuickWin
application responds as though the user had clicked or
selected the command. This routine is only available
for Windows.

Module

USE IFQWIN

Syntax
result = CLICKMENUQQ (item)

item (Input) INTEGER(4). Constant that represents the command selected
from the Window menu. Must be one of the following symbolic
constants (defined in IFQWIN.F90):

• QWIN$STATUS - Status command
• QWIN$TILE - Tile command
• QWIN$CASCADE - Cascade command
• QWIN$ARRANGE - Arrange Icons command

Results

The result type is INTEGER(4). The result is zero if successful; otherwise, nonzero.

See Also
REGISTERMOUSEEVENT
UNREGISTERMOUSEEVENT
WAITONMOUSEEVENT

DELETEMENUQQ
QuickWin Function: Deletes a menu item from a
QuickWin menu. This routine is only available for
Windows.

Module

USE IFQWIN

Syntax
result = DELETEMENUQQ (menuID, itemID)

 1 Intel® Fortran Compiler Classic and Intel® Fortran Compiler Developer Guide and Reference

2136

menuID (Input) INTEGER(4). Identifies the menu that contains the menu item
to be deleted, starting with 1 as the leftmost menu.

itemID (Input) INTEGER(4). Identifies the menu item to be deleted, starting
with 0 as the top menu item.

Results

The result type is LOGICAL(4). The result is .TRUE. if successful; otherwise, .FALSE..

Example

USE IFQWIN
LOGICAL(4) result
CHARACTER(25) str
str = 'Add to EDIT Menu'C ! Append to 2nd menu
result = APPENDMENUQQ(2, $MENUENABLED, str, WINSTATUS)
! Delete third item (EXIT) from menu 1 (FILE)
result = DELETEMENUQQ(1, 3)
! Delete entire fifth menu (WINDOW)
result = DELETEMENUQQ(5,0)
END

See Also
APPENDMENUQQ
INSERTMENUQQ
MODIFYMENUFLAGSQQ
MODIFYMENUROUTINEQQ
MODIFYMENUSTRINGQQ

FOCUSQQ
QuickWin Function: Sets focus to the window with
the specified unit number. This routine is only
available for Windows.

Module

USE IFQWIN

Syntax
result = FOCUSQQ (iunit)

iunit (Input) INTEGER(4). Unit number of the window to which the focus is
set. Unit numbers 0, 5, and 6 refer to the default startup window.

Results

The result type is INTEGER(4). The result is zero if successful; otherwise, nonzero.

Units 0, 5, and 6 refer to the default window only if the program does not specifically open them. If these
units have been opened and connected to windows, they are automatically reconnected to the console once
they are closed.

Unlike SETACTIVEQQ, FOCUSQQ brings the specified unit to the foreground. Note that the window with the
focus is not necessarily the active window (the one that receives graphical output). A window can be made
active without getting the focus by calling SETACTIVEQQ.

Intel® Fortran Compiler Classic and Intel® Fortran Compiler Developer Guide and Reference 1

2137

A window has focus when it is given the focus by FOCUSQQ, when it is selected by a mouse click, or when an
I/O operation other than a graphics operation is performed on it, unless the window was opened with
IOFOCUS=.FALSE.. The IOFOCUS specifier determines whether a window receives focus when on I/O
statement is executed on that unit. For example:

 OPEN (UNIT = 10, FILE = 'USER', IOFOCUS = .TRUE.)
By default IOFOCUS=.TRUE., except for child windows opened with as unit *. If IOFOCUS=.TRUE., the child
window receives focus prior to each READ, WRITE, PRINT, or OUTTEXT. Calls to graphics functions (such as
OUTGTEXT and ARC) do not cause the focus to shift.

See Also
SETACTIVEQQ
INQFOCUSQQ

GETACTIVEQQ
QuickWin Function: Returns the unit number of the
currently active child window. This routine is only
available for Windows.

Module

USE IFQWIN

Syntax
result = GETACTIVEQQ()

Results

The result type is INTEGER(4). The result is the unit number of the currently active window. If no child
window is active, it returns the parameter QWIN$NOACTIVEWINDOW (defined in IFQWIN.F90).

See Also
SETACTIVEQQ
GETHWNDQQ

GETEXITQQ
QuickWin Function: Returns the setting for a
QuickWin application's exit behavior. This routine is
only available for Windows.

Module

USE IFQWIN

Syntax
result = GETEXITQQ()

Results

The result type is INTEGER(4). The result is exit mode with one of the following constants (defined in
IFQWIN.F90):

• QWIN$EXITPROMPT - Displays a message box that reads "Program exited with exit status n. Exit
Window?", where n is the exit status from the program.

If you choose Yes, the application closes the window and terminates. If you choose No, the dialog box
disappears and you can manipulate the window as usual. You must then close the window manually.

• QWIN$EXITNOPERSIST - Terminates the application without displaying a message box.

 1 Intel® Fortran Compiler Classic and Intel® Fortran Compiler Developer Guide and Reference

2138

• QWIN$EXITPERSIST - Leaves the application open without displaying a message box.

The default for both QuickWin and Console Graphics applications is QWIN$EXITPROMPT.

Example

! Program to demonstrate GETEXITQQ
 USE IFQWIN
 INTEGER i
 i = GETEXITQQ()
 SELECT CASE (i)
 CASE (QWIN$EXITPROMPT)
 WRITE(*, *) "Prompt on exit."
 CASE (QWIN$EXITNOPERSIST)
 WRITE(*,*) "Exit and close."
 CASE (QWIN$EXITPERSIST)
 WRITE(*,*) "Exit and leave open."
 END SELECT
 END

See Also
SETEXITQQ

GETHWNDQQ
QuickWin Function: Converts a window unit number
into a Windows* handle. This routine is only available
for Windows.

Module

USE IFQWIN

Syntax
result = GETHWNDQQ (unit)

unit (Input) INTEGER(4). The window unit number. If unit is set to QWIN
$FRAMEWINDOW (defined in IFQWIN.F90), the handle of the frame
window is returned.

Results

The result type is INTEGER(4) on IA-32 architecture; INTEGER(8) on Intel® 64 architecture. The result is a
true Windows handle to the window. If unit is not open, it returns -1 .

See Also
GETACTIVEQQ
GETUNITQQ
SETACTIVEQQ

GETUNITQQ
QuickWin Function: Returns the unit number
corresponding to the specified Windows* handle. This
routine is only available for Windows.

Module

USE IFQWIN

Intel® Fortran Compiler Classic and Intel® Fortran Compiler Developer Guide and Reference 1

2139

Syntax
result = GETUNITQQ (whandle)

whandle (Input) INTEGER(4) on IA-32 architecture; INTEGER(8) on Intel® 64
architecture. The Windows handle to the window; this is a unique ID.

Results

The result type is INTEGER(4). The result is the unit number corresponding to the specified Windows handle.
If whandle does not exist, it returns -1 .

This routine is the inverse of GETHWNDQQ.

See Also
GETHWNDQQ

GETWINDOWCONFIG
QuickWin Function: Returns the properties of the
current window. This routine is only available for
Windows.

Module

USE IFQWIN

Syntax
result = GETWINDOWCONFIG (wc)

wc (Output) Derived type windowconfig. Contains window properties.
The windowconfig derived type is defined in IFQWIN.F90 as follows:

TYPE windowconfig
 INTEGER(2) numxpixels ! Number of pixels on x-
axis
 INTEGER(2) numypixels ! Number of pixels on y-
axis
 INTEGER(2) numtextcols ! Number of text columns
available
 INTEGER(2) numtextrows ! Number of text rows
available
 INTEGER(2) numcolors ! Number of color indexes
 INTEGER(4) fontsize ! Size of default font. Set to
 ! QWIN$EXTENDFONT when
specifying
 ! extended attributes, in
which
 ! case extendfontsize sets
the
 ! font size
 CHARACTER(80) title ! The window title
 INTEGER(2) bitsperpixel ! The number of bits per
pixel
 INTEGER(2) numvideopages ! Unused
 INTEGER(2) mode ! Controls scrolling mode
 INTEGER(2) adapter ! Unused
 INTEGER(2) monitor ! Unused
 INTEGER(2) memory ! Unused
 INTEGER(2) environment ! Unused

 1 Intel® Fortran Compiler Classic and Intel® Fortran Compiler Developer Guide and Reference

2140

!
! The next three parameters provide extended font attributes.
!
 CHARACTER(32) extendfontname ! The name of the desired
font
 INTEGER(4) extendfontsize ! Takes the same values
as fontsize,
 ! when fontsize is set
to
 ! QWIN$EXTENDFONT
 INTEGER(4) extendfontattributes ! Font attributes such as
bold
 ! and italic
END TYPE windowconfig

Results

The result type is LOGICAL(4). The result is .TRUE. if successful; otherwise, .FALSE. (for example, if there is
no active child window).

GETWINDOWCONFIG returns information about the active child window. If you have not set the window
properties with SETWINDOWCONFIG, GETWINDOWCONFIG returns default window values.

A typical set of values would be 1024 x pixels, 768 y pixels, 128 text columns, 48 text rows, and a font size
of 8x16 pixels. The resolution of the display and the assumed font size of 8x16 pixels generates the number
of text rows and text columns. The resolution (in this case, 1024 x pixels by 768 y pixels) is the size of the
virtual window.

To get the size of the physical window visible on the screen, use GETWSIZEQQ. In this case, GETWSIZEQQ
returned the following values: (0,0) for the x and y position of the physical window, 25 for the height or
number of rows, and 71 for the width or number of columns.

The number of colors returned depends on the video drive. The window title defaults to "Graphic1" for the
default window. All of these values can be changed with SETWINDOWCONFIG.

Note that the bitsperpixel field in the windowconfig derived type is an output field only, while the other
fields return output values to GETWINDOWCONFIG and accept input values from SETWINDOWCONFIG.

Example

!Build as QuickWin or Standard Graphics App.
USE IFQWIN
LOGICAL(4) status
TYPE (windowconfig) wc
status = GETWINDOWCONFIG(wc)
IF(wc%numtextrows .LT. 10) THEN
 wc%numtextrows = 10
 status = SETWINDOWCONFIG(wc)
 IF(.NOT. status) THEN ! if setwindowconfig error
 status = SETWINDOWCONFIG(wc) ! reset
 ! setwindowconfig with corrected values
 status = GETWINDOWCONFIG(wc)
 IF(wc%numtextrows .NE. 10) THEN
 WRITE(*,*) 'Error: Cannot increase text rows to 10'
 END IF
 END IF
END IF
END

Intel® Fortran Compiler Classic and Intel® Fortran Compiler Developer Guide and Reference 1

2141

See Also
GETWSIZEQQ
SETWINDOWCONFIG
SETACTIVEQQ

GETWSIZEQQ
QuickWin Function: Returns the size and position of
a window. This routine is only available for Windows.

Module

USE IFQWIN

Syntax
result = GETWSIZEQQ (unit, ireq, winfo)

unit (Input) INTEGER(4). Specifies the window unit. Unit numbers 0, 5 and
6 refer to the default startup window only if you have not explicitly
opened them with the OPEN statement. To access information about
the frame window (as opposed to a child window), set unit to the
symbolic constant QWIN$FRAMEWINDOW, defined in IFQWIN.F90.

ireq (Input) INTEGER(4). Specifies what information is obtained. The
following symbolic constants, defined in IFQWIN.F90, are available:

• QWIN$SIZEMAX - Gets information about the maximum window
size.

• QWIN$SIZECURR - Gets information about the current window
size.

winfo (Output) Derived type qwinfo. Physical coordinates of the window's
upper-left corner, and the current or maximum height and width of the
window's client area (the area within the frame). The derived type
qwinfois defined in IFQWIN.F90 as follows:

TYPE QWINFO
 INTEGER(2) TYPE ! request type (controls
 ! SETWSIZEQQ)
 INTEGER(2) X ! x coordinate for upper left
 INTEGER(2) Y ! y coordinate for upper left
 INTEGER(2) H ! window height
 INTEGER(2) W ! window width
END TYPE QWINFO

Results

The result type is INTEGER(4). The result is zero if successful; otherwise, nonzero.

The position and dimensions of child windows are expressed in units of character height and width. The
position and dimensions of the frame window are expressed in screen pixels.

The height and width returned for a frame window reflects the size in pixels of the client area excluding any
borders, menus, and status bar at the bottom of the frame window. You should adjust the values used in
SETWSIZEQQ to take this into account.

The client area is the area actually available to place child windows.

See Also
GETWINDOWCONFIG

 1 Intel® Fortran Compiler Classic and Intel® Fortran Compiler Developer Guide and Reference

2142

SETWSIZEQQ

INCHARQQ
QuickWin Function: Reads a single character input
from the keyboard and returns the ASCII value of that
character without any buffering. This routine is only
available for Windows.

Module

USE IFQWIN

Syntax
result = INCHARQQ()

Results

The result type is INTEGER(2). The result is the ASCII key code.

The keystroke is read from the child window that currently has the focus. You must call INCHARQQ before
the keystroke is made (INCHARQQ does not read the keyboard buffer). This function does not echo its input.
For function keys, INCHARQQ returns 0xE0 as the upper 8 bits, and the ASCII code as the lower 8 bits.

For direction keys, INCHARQQ returns 0xF0 as the upper 8 bits, and the ASCII code as the lower 8 bits. To
allow direction keys to be read, you must use the PASSDIRKEYSQQ function. The escape characters (the
upper 8 bits) are different from those of GETCHARQQ. Note that console applications do not need, and
cannot use PASSDIRKEYSQQ.

Example

use IFQWIN
integer*4 res
integer*2 exchar
character*1 ch, ch1

Print *,"Type X to exit, S to scroll, D to pass Direction keys"

123 continue
exchar = incharqq()
! check for escapes
! 0xE0 0x?? is a function key
! 0xF0 0x?? is a direction key

ch = char(rshift(exchar,8) .and. Z'00FF')
ch1= char(exchar .and. Z'00FF')

if (ichar(ch) .eq. 224) then
 print *,"function key = ",ichar(ch), " ",ichar(ch1)," ",ch1
 goto 123
endif

if (ichar(ch) .eq. 240) then
 print *,"direction key = ",ichar(ch), " ",ichar(ch1)," ",ch1
 goto 123
endif

print *,"other key = ",ichar(ch)," ",ichar(ch1)," ",ch1

if(ch1 .eq. 'S') then
 res = passdirkeysqq(.false.)

Intel® Fortran Compiler Classic and Intel® Fortran Compiler Developer Guide and Reference 1

2143

 print *, "Entering Scroll mode"
endif

if(ch1 .eq. 'D') then
 res = passdirkeysqq(.true.)
 print *, "Entering Direction keys mode"
endif

if(ch1 .ne. 'X') go to 123
end

See Also
GETCHARQQ
READ
MBINCHARQQ
GETC
PASSDIRKEYSQQ

INITIALSETTINGS
QuickWin Function: Initializes QuickWin. This
routine is only available for Windows.

Module

USE IFQWIN

Syntax
result = INITIALSETTINGS()

Results

The result type is LOGICAL(4). The result is .TRUE. if successful; otherwise, .FALSE..

You can change the initial appearance of an application's default frame window and menus by defining an
INITIALSETTINGS function. Do not use INITIALSETTINGS to open or change the properties of child windows.

If no user-defined INITIALSETTINGS function is supplied, QuickWin calls a predefined INITIALSETTINGS
routine to control the default frame window and menu appearance. You do not need to call INITIALSETTINGS
if you define it, since it will be called automatically during initialization.

See Also
APPENDMENUQQ
INSERTMENUQQ
DELETEMENUQQ
SETWSIZEQQ

INQFOCUSQQ
QuickWin Function: Determines which window has
the focus. This routine is only available for Windows.

Module

USE IFQWIN

Syntax
result = INQFOCUSQQ (unit)

 1 Intel® Fortran Compiler Classic and Intel® Fortran Compiler Developer Guide and Reference

2144

unit (Output) INTEGER(4). Unit number of the window that has the I/O
focus.

Results

The result type is INTEGER(4). The result is zero if successful; otherwise, nonzero. The function fails if the
window with the focus is associated with a closed unit.

Unit numbers 0, 5, and 6 refer to the default window only if the program has not specifically opened them. If
these units have been opened and connected to windows, they are automatically reconnected to the console
once they are closed.

The window with focus is always in the foreground. Note that the window with the focus is not necessarily the
active window (the one that receives graphical output). A window can be made active without getting the
focus by calling SETACTIVEQQ.

A window has focus when it is given the focus by FOCUSQQ, when it is selected by a mouse click, or when an
I/O operation other than a graphics operation is performed on it, unless the window was opened with
IOFOCUS=.FALSE.. The IOFOCUS specifier determines whether a window receives focus when an I/O
statement is executed on that unit. For example:

 OPEN (UNIT = 10, FILE = 'USER', IOFOCUS = .TRUE.)
By default IOFOCUS=.TRUE., except for child windows opened with as unit *. If IOFOCUS=.TRUE., the child
window receives focus prior to each READ, WRITE, PRINT, or OUTTEXT. Calls to graphics functions (such as
OUTGTEXT and ARC) do not cause the focus to shift.

See Also
FOCUSQQ

INSERTMENUQQ
QuickWin Function: Inserts a menu item into a
QuickWin menu and registers its callback routine. This
routine is only available for Windows.

Module

USE IFQWIN

Syntax
result = INSERTMENUQQ (menuID,itemID,flag,text,routine)

menuID (Input) INTEGER(4). Identifies the menu in which the item is inserted,
starting with 1 as the leftmost menu.

itemID (Input) INTEGER(4). Identifies the position in the menu where the
item is inserted, starting with 0 as the top menu item.

flag (Input) INTEGER(4). Constant indicating the menu state. Flags can be
combined with an inclusive OR (see Results section below). The
following constants are available:

• $MENUGRAYED - Disables and grays out the menu item.
• $MENUDISABLED - Disables but does not gray out the menu item.
• $MENUENABLED - Enables the menu item.
• $MENUSEPARATOR - Draws a separator bar.
• $MENUCHECKED - Puts a check by the menu item.
• $MENUUNCHECKED - Removes the check by the menu item.

Intel® Fortran Compiler Classic and Intel® Fortran Compiler Developer Guide and Reference 1

2145

text (Input) Character*(*). Menu item name. Must be a null-terminated C
string, for example, words of text'C.

routine (Input) EXERNAL. Callback subroutine that is called if the menu item
is selected. You can assign the following predefined routines to
menus:

• WINPRINT - Prints the program.
• WINSAVE - Saves the program.
• WINEXIT - Terminates the program.
• WINSELECTTEXT - Selects text from the current window.
• WINSELECTGRAPHICS - Selects graphics from the current window.
• WINSELECTALL - Selects the entire contents of the current window.
• WININPUT - Brings to the top the child window requesting input

and makes it the current window.
• WINCOPY - Copies the selected text and/or graphics from current

window to the Clipboard.
• WINPASTE - Allows the user to paste Clipboard contents (text only)

to the current text window of the active window during a READ.
• WINCLEARPASTE - Clears the paste buffer.
• WINSIZETOFIT - Sizes output to fit window.
• WINFULLSCREEN - Displays output in full screen.
• WINSTATE - Toggles between pause and resume states of text

output.
• WINCASCADE - Cascades active windows.
• WINTILE - Tiles active windows.
• WINARRANGE - Arranges icons.
• WINSTATUS - Enables a status bar.
• WININDEX - Displays the index for QuickWin help.
• WINUSING - Displays information on how to use Help.
• WINABOUT - Displays information about the current QuickWin

application.
• NUL - No callback routine.

Results

The result type is LOGICAL(4). The result is .TRUE. if successful; otherwise, .FALSE.

Menus and menu items must be defined in order from left to right and top to bottom. For example,
INSERTMENUQQ fails if you try to insert menu item 7 when 5 and 6 are not defined yet. For a top-level menu
item, the callback routine is ignored if there are subitems under it.

The constants available for flags can be combined with an inclusive OR where reasonable, for example
$MENUCHECKED .OR. $MENUENABLED. Some combinations do not make sense, such as $MENUENABLED
and $MENUDISABLED, and lead to undefined behavior.

You can create quick-access keys in the text strings you pass to INSERTMENUQQ as text by placing an
ampersand (&) before the letter you want underlined. For example, to add a Print menu item with the r
underlined, text should be "P&rint". Quick-access keys allow users of your program to activate that menu
item with the key combination ALT+QUICK-ACCESS-KEY(ALT+Rin the example) as an alternative to selecting
the item with the mouse.

Example

USE IFQWIN
LOGICAL(4) :: status
CHARACTER (80) :: text_input

 1 Intel® Fortran Compiler Classic and Intel® Fortran Compiler Developer Guide and Reference

2146

! insert new item into Menu 5 (Window)
status= INSERTMENUQQ(5, 5, $MENUCHECKED, 'New Item:Status 5_5'C, WINSTATUS)
! insert new menu in position 2
status= INSERTMENUQQ(2, 0, $MENUENABLED, 'New Menu:2_0'C, NUL)
! insert new menu in position 3, and mark it disabled & grayed
status= INSERTMENUQQ(3, 0, IOR($MENUGRAYED,$MENUDISABLED), 'New Disabled Menu:3_0'C, NUL)
! insert new item under the new menu 2 in position 1
status= INSERTMENUQQ(2, 1, $MENUENABLED, 'New Item:Print'C, WINPRINT)
! insert separator bar under the new menu 2 in position 2
status= INSERTMENUQQ(2, 2, $MENUSEPARATOR, 'New Separator'C, NUL)
! insert new item under the new menu 2 in position 3
status= INSERTMENUQQ(2, 3, IOR($MENUCHECKED,$MENUENABLED), 'New Item:Select Text'C, &
 WINSELECTTEXT)
! insert new item under the new menu 2 in position 5
status= INSERTMENUQQ(2, 4, $MENUENABLED, 'New Item:Copy Selected Text'C, WINCOPY)
! insert new item under the new menu 2 in position 6
status= INSERTMENUQQ(2, 5, $MENUENABLED, 'New Item:Paste Selected Text'C, WINPASTE)

write(*,'("Enter (or cut and paste) a text value: ")',advance='no')
read (*,"(A)") text_input
write(*,'("You just entered: ", A1, A, A1)') "'",trim(text_input),"'"

END

See Also
APPENDMENUQQ
DELETEMENUQQ
MODIFYMENUFLAGSQQ
MODIFYMENUROUTINEQQ
MODIFYMENUSTRINGQQ

INTEGERTORGB
QuickWin Subroutine: Converts an RGB color value
into its red, green, and blue components. This routine
is only available for Windows.

Module

USE IFQWIN

Syntax
CALL INTEGERTORGB (rgb,red,green,blue)

rgb (Input) INTEGER(4). RGB color value whose red, green, and blue
components are to be returned.

red (Output) INTEGER(4). Intensity of the red component of the RGB color
value.

green (Output) INTEGER(4). Intensity of the green component of the RGB
color value.

blue (Output) INTEGER(4). Intensity of the blue component of the RGB
color value.

INTEGERTORGB separates the four-byte RGB color value into the three components as follows:

Intel® Fortran Compiler Classic and Intel® Fortran Compiler Developer Guide and Reference 1

2147

Example

! build as a QuickWin App.
USE IFQWIN
INTEGER(4) r, g, b
CALL INTEGERTORGB(2456, r, g, b)
write(*,*) r, g, b
END

See Also
RGBTOINTEGER
GETCOLORRGB
GETBKCOLORRGB
GETPIXELRRGB
GETPIXELSRGB
GETTEXTCOLORRGB

MESSAGEBOXQQ
QuickWin Function: Displays a message box in a
QuickWin window. This routine is only available for
Windows.

Module

USE IFQWIN

Syntax
result = MESSAGEBOXQQ (msg,caption,mtype)

msg (Input) Character*(*). Null-terminated C string. Message the box
displays.

caption (Input) Character*(*). Null-terminated C string. Caption that appears
in the title bar.

mtype (Input) INTEGER(4). Symbolic constant that determines the objects
(buttons and icons) and properties of the message box. You can
combine several constants (defined in IFQWIN.F90) using an inclusive
OR (IOR or OR). The symbolic constants and their associated objects
or properties are as follows:

• MB$ABORTRETRYIGNORE - The Abort, Retry, and Ignore buttons.
• MB$DEFBUTTON1 - The first button is the default.
• MB$DEFBUTTON2 - The second button is the default.
• MB$DEFBUTTON3 - The third button is the default.
• MB$ICONASTERISK, MB$ICONINFORMATION - Lowercase i in blue

circle icon.
• MB$ICONEXCLAMATION - The exclamation-mark icon.
• MB$ICONHAND, MB$ICONSTOP - The stop-sign icon.
• MB$ICONQUESTION - The question-mark icon.
• MB$OK - The OK button.
• MB$OKCANCEL - The OK and Cancel buttons.

 1 Intel® Fortran Compiler Classic and Intel® Fortran Compiler Developer Guide and Reference

2148

• MB$RETRYCANCEL - The Retry and Cancel buttons.
• MB$SYSTEMMODAL - Box is system-modal: all applications are

suspended until the user responds.
• MB$YESNO - The Yes and No buttons.
• MB$YESNOCANCEL - The Yes, No, and Cancel buttons.

Results

The result type is INTEGER(4). The result is zero if memory is not sufficient for displaying the message box.
Otherwise, the result is one of the following values, indicating the user's response to the message box:

• MB$IDABORT - The Abort button was pressed.
• MB$IDCANCEL - The Cancel button was pressed.
• MB$IDIGNORE - The Ignore button was pressed.
• MB$IDNO - The No button was pressed.
• MB$IDOK - The OK button was pressed.
• MB$IDRETRY - The Retry button was pressed.
• MB$IDYES - The Yes button was pressed.

Example

 ! Build as QuickWin app
 USE IFQWIN
 message = MESSAGEBOXQQ('Do you want to continue?'C, &
 'Matrix'C, &
 MB$ICONQUESTION.OR.MB$YESNO.OR.MB$DEFBUTTON1)
 END

See Also
ABOUTBOXQQ
SETMESSAGEQQ

MODIFYMENUFLAGSQQ
QuickWin Function: Modifies a menu item's state.
This routine is only available for Windows.

Module

USE IFQWIN

Syntax
result = MODIFYMENUFLAGSQQ (menuID,itemID,flag)

menuID (Input) INTEGER(4). Identifies the menu containing the item whose
state is to be modified, starting with 1 as the leftmost menu.

itemID (Input) INTEGER(4). Identifies the menu item whose state is to be
modified, starting with 0 as the top item.

flags (Input) INTEGER(4). Constant indicating the menu state. Flags can be
combined with an inclusive OR (see the Results section below). The
following constants are available:

• $MENUGRAYED - Disables and grays out the menu item.
• $MENUDISABLED - Disables but does not gray out the menu item.
• $MENUENABLED - Enables the menu item.
• $MENUSEPARATOR - Draws a separator bar.

Intel® Fortran Compiler Classic and Intel® Fortran Compiler Developer Guide and Reference 1

2149

• $MENUCHECKED - Puts a check by the menu item.
• $MENUUNCHECKED - Removes the check by the menu item.

Results

The result type is LOGICAL(4). The result is .TRUE. if successful; otherwise, .FALSE..

The constants available for flags can be combined with an inclusive OR where reasonable, for example
$MENUCHECKED .OR. $MENUENABLED. Some combinations do not make sense, such as $MENUENABLED
and $MENUDISABLED, and lead to undefined behavior.

Example

 USE IFQWIN
 LOGICAL(4) result
 CHARACTER(20) str
 ! Append item to the bottom of the first (FILE) menu
 str = '&Add to File Menu'C
 result = APPENDMENUQQ(1, $MENUENABLED, str, WINSTATUS)
 ! Gray out and disable the first two menu items in the
 ! first (FILE) menu
 result = MODIFYMENUFLAGSQQ (1, 1, $MENUGRAYED)
 result = MODIFYMENUFLAGSQQ (1, 2, $MENUGRAYED)
 END

See Also
APPENDMENUQQ
DELETEMENUQQ
INSERTMENUQQ
MODIFYMENUROUTINEQQ
MODIFYMENUSTRINGQQ

MODIFYMENUROUTINEQQ
QuickWin Function: Changes a menu item's callback
routine. This routine is only available for Windows.

Module

USE IFQWIN

Syntax
result = MODIFYMENUROUTINEQQ (menuIdD,itemID,routine)

menuID (Input) INTEGER(4). Identifies the menu that contains the item whose
callback routine is be changed, starting with 1 as the leftmost menu.

itemID (Input) INTEGER(4). Identifies the menu item whose callback routine
is to be changed, starting with 0 as the top item.

routine (Input) EXTERNAL. Callback subroutine called if the menu item is
selected. All routines take a single LOGICAL parameter that indicates
whether the menu item is checked or not. You can assign the following
predefined routines to menus:

• WINPRINT - Prints the program.
• WINSAVE - Saves the program.
• WINEXIT - Terminates the program.

 1 Intel® Fortran Compiler Classic and Intel® Fortran Compiler Developer Guide and Reference

2150

• WINSELECTTEXT - Selects text from the current window.
• WINSELECTGRAPHICS - Selects graphics from the current window.
• WINSELECTALL - Selects the entire contents of the current window.
• WININPUT - Brings to the top the child window requesting input

and makes it the current window.
• WINCOPY - Copies the selected text and/or graphics from the

current window to the Clipboard.
• WINPASTE - Allows the user to paste Clipboard contents (text only)

to the current text window of the active window during a READ.
• WINCLEARPASTE - Clears the paste buffer.
• WINSIZETOFIT - Sizes output to fit window.
• WINFULLSCREEN - Displays output in full screen.
• WINSTATE - Toggles between pause and resume states of text

output.
• WINCASCADE - Cascades active windows.
• WINTILE - Tiles active windows.
• WINARRANGE - Arranges icons.
• WINSTATUS - Enables a status bar.
• WININDEX - Displays the index for QuickWin help.
• WINUSING - Displays information on how to use Help.
• WINABOUT - Displays information about the current QuickWin

application.
• NUL - No callback routine.

Results

The result type is LOGICAL(4). The result is .TRUE. if successful; otherwise, .FALSE..

See Also
APPENDMENUQQ
DELETEMENUQQ
INSERTMENUQQ
MODIFYMENUFLAGSQQ
MODIFYMENUSTRINGQQ

MODIFYMENUSTRINGQQ
QuickWin Function: Changes a menu item's text
string. This routine is only available for Windows.

Module

USE IFQWIN

Syntax
result = MODIFYMENUSTRINGQQ (menuID,itemID,text)

menuID (Input) INTEGER(4). Identifies the menu containing the item whose
text string is to be changed, starting with 1 as the leftmost item.

itemID (Input) INTEGER(4). Identifies the menu item whose text string is to
be changed, starting with 0 as the top menu item.

text (Input) Character*(*). Menu item name. Must be a null-terminated C
string. For example, words of text'C.

Intel® Fortran Compiler Classic and Intel® Fortran Compiler Developer Guide and Reference 1

2151

Results

The result type is LOGICAL(4). The result is .TRUE. if successful; otherwise, .FALSE..

You can add access keys in your text strings by placing an ampersand (&) before the letter you want
underlined. For example, to add a Print menu item with the r underlined, use "P&rint"C as text.

Example

 USE IFQWIN
 LOGICAL(4) result
 CHARACTER(25) str
 ! Append item to the bottom of the first (FILE) menu
 str = '&Add to File Menu'C
 result = APPENDMENUQQ(1, $MENUENABLED, str, WINSTATUS)
 ! Change the name of the first item in the first menu
 str ='&Browse'C
 result = MODIFYMENUSTRINGQQ (1, 1, str)
 END

See Also
APPENDMENUQQ
DELETEMENUQQ
INSERTMENUQQ
SETMESSAGEQQ
MODIFYMENUFLAGSQQ
MODIFYMENUROUTINEQQ

PASSDIRKEYSQQ
QuickWin Function: Determines the behavior of
direction and page keys in a QuickWin application.
This routine is only available for Windows.

Module

USE IFQWIN

Syntax
result = PASSDIRKEYSQQ (val)

val (Input) INTEGER(4) or LOGICAL(4).

A value of .TRUE. causes direction and page keys to be input as
normal characters (the PassDirKeys flag is turned on). A value
of .FALSE. causes direction and page keys to be used for scrolling.

The following constants, defined in IFQWIN.F90, can be used as
integer arguments:

• PASS_DIR_FALSE - Turns off any special handling of direction keys.
They are not passed to the program by GETCHARQQ.

• PASS_DIR_TRUE - Turns on special handling of direction keys. That
is, they are passed to the program by GETCHARQQ.

• PASS_DIR_INSDEL - INSERT and DELETE are also passed to the
program by GETCHARQQ

• PASS_DIR_CNTRLC - Only needed for a QuickWin application, but
harmless if used with a Standard Graphics application that already
passes CTRL+C.

 1 Intel® Fortran Compiler Classic and Intel® Fortran Compiler Developer Guide and Reference

2152

This value allows CTRL+C to be passed to a QuickWin program by
GETCHARQQ if the following is true: the program must have
removed the File menu EXIT item by using DELETEMENUQQ.

This value also passes direction keys and INSERT and DELETE.

Results

The return value indicates the previous setting of the PassDirKeys flag.

The return data type is the same as the data type of val; that is, either INTEGER(4) or LOGICAL(4).

When the PassDirKeys flag is turned on, the mouse must be used for scrolling since the direction and page
keys are treated as normal input characters.

The PASSDIRKEYSQQ function is meant to be used primarily with the GETCHARQQ and INCHARQQ functions.
Do not use normal input statements (such as READ) with the PassDirKeys flag turned on, unless your
program is prepared to interpret direction and page keys.

Example

use IFQWIN

logical*4 res
character*1 ch, ch1

Print *,"Type X to exit, S to scroll, D to pass Direction keys"

123 continue
ch = getcharqq()
! check for escapes
! 0x00 0x?? is a function key
! 0xE0 0x?? is a direction key
if (ichar(ch) .eq. 0) then
 ch1 = getcharqq()
 print *,"function key follows escape = ",ichar(ch), " ",ichar(ch1)," ",ch1
 goto 123
else if (ichar(ch) .eq. 224) then
 ch1 = getcharqq()
 print *,"direction key follows escape = ",ichar(ch)," ",ichar(ch1)," ",ch1
 goto 123
else
 print *,ichar(ch)," ",ch

 if(ch .eq. 'S') then
 res = passdirkeysqq(.false.)
 print *, "Entering Scroll mode ",res
 endif

 if(ch .eq. 'D') then
 res = passdirkeysqq(.true.)
 print *, "Entering Direction keys mode ",res
 endif

 if(ch .ne. 'X') go to 123

endif
end

Intel® Fortran Compiler Classic and Intel® Fortran Compiler Developer Guide and Reference 1

2153

The following example uses an integer constant as an argument to PASSDIRKEYSQQ:

c===
c
c dirkeys4.for
c
c===
c
c Compile/Load Input Line for Standard Graphics Full Screen Window
c
c ifx /libs:qwins dirkeys4.for
c
c Compile/Load Input Line for QuickWin Graphics
c
c ifx /libs:qwin dirkeys4.for
c
c Program to illustrate how to get almost every character
c from the keyboard in QuickWin or Standard Graphics mode.
c Comment out the deletemenu line for Standard Graphics mode.
c
c If you are doing a standard graphics application,
c control C will come in as a Z'03' without furtherc effort.
c
c In a QuickWin application, The File menu Exit item must
c be deleted, and PassDirKeysQQ called with PASS_DIR_CNTRLC
c to get control C.
c
c===
 use IFQWIN

 integer(4) status

 character*1 key1,key2,ch1

 write(*,*) 'Initializing'

c-----don't do this for a Standard Grapics application
c remove File menu Exit item.
 status = deletemenuqq(1,3) ! stop QuickWin from getting control C

c-----set up to pass all keys to window including control c.
 status = passdirkeysqq(PASS_DIR_CNTRLC)
c===
c
c read and print characters
c
c===

 10 key1 = getcharqq()

c-----first check for control+c
 if(ichar(key1) .eq. 3) then
 write(*,*) 'Control C Received'
 write(*,*) "Really want to quit?"
 write(*,*) "Type Y <cr> to exit, or any other char <cr> to continue."
 read(*,*) ch1
 if(ch1.eq."y" .or. ch1.eq."Y") goto 30
 goto 10

 1 Intel® Fortran Compiler Classic and Intel® Fortran Compiler Developer Guide and Reference

2154

 endif

 if(ichar(key1).eq.0) then ! function key?
 key2 = getcharqq()
 write(*,15) ichar(key1),ichar(key2),key2
 15 format(1x,2i12,1x,a1,' function key')
 else
 if(ichar(key1).eq.224) then ! direction key?
 key2 = getcharqq()
 write(*,16) ichar(key1),ichar(key2),key2
 16 format(1x,2i12,1x,a1,' direction key')
 else
 write(*,20) key1,ichar(key1) ! normal key
 20 format(1x,a1,i11)
 endif
 endif
 go to 10
 30 stop
 end

See Also
GETCHARQQ
INCHARQQ

REGISTERMOUSEEVENT
QuickWin Function: Registers the application-
supplied callback routine to be called when a specified
mouse event occurs in a specified window. This
routine is only available for Windows.

Module

USE IFQWIN

Syntax
result = REGISTERMOUSEEVENT (unit,mouseevents,callbackroutine)

unit (Input) INTEGER(4). Unit number of the window whose callback
routine on mouse events is to be registered.

mouseevents (Input) INTEGER(4). One or more mouse events to be handled by the
callback routine to be registered. Symbolic constants (defined in
IFQWIN.F90) for the possible mouse events are:

• MOUSE$LBUTTONDOWN - Left mouse button down
• MOUSE$LBUTTONUP - Left mouse button up
• MOUSE$LBUTTONDBLCLK - Left mouse button double-click
• MOUSE$RBUTTONDOWN - Right mouse button down
• MOUSE$RBUTTONUP - Right mouse button up
• MOUSE$RBUTTONDBLCLK - Right mouse button double-click
• MOUSE$MOVE - Mouse moved

callbackroutine (Input) Routine to be called on the specified mouse event in the
specified window. It must be declared EXTERNAL.

Intel® Fortran Compiler Classic and Intel® Fortran Compiler Developer Guide and Reference 1

2155

Results

The result type is INTEGER(4). The result is zero or a positive integer if successful; otherwise, a negative
integer that can be one of the following:

• MOUSE$BADUNIT - The unit specified is not open, or is not associated with a QuickWin window.
• MOUSE$BADEVENT - The event specified is not supported.

For every BUTTONDOWN or BUTTONDBLCLK event there is an associated BUTTONUP event. When the user
double clicks, four events happen: BUTTONDOWN and BUTTONUP for the first click, and BUTTONDBLCLK and
BUTTONUP for the second click. The difference between getting BUTTONDBLCLK and BUTTONDOWN for the
second click depends on whether the second click occurs in the double click interval, set in the system's
CONTROL PANEL/MOUSE.

Example

The following example registers the routine CALCULATE, to be called when the user double-clicks the left
mouse button while the mouse cursor is in the child window opened as unit 4:

 USE IFQWIN
 INTEGER(4) result
 OPEN (4, FILE= 'USER')
 ...
 result = REGISTERMOUSEEVENT (4, MOUSE$LBUTTONDBLCLK, CALCULATE)

See Also
UNREGISTERMOUSEEVENT
WAITONMOUSEEVENT

RGBTOINTEGER
QuickWin Function: Converts three integers
specifying red, green, and blue color intensities into a
four-byte RGB integer for use with RGB functions and
subroutines. This routine is only available for
Windows.

Module

USE IFQWIN

Syntax
result = RGBTOINTEGER (red, green, blue)

red (Input) INTEGER(4). Intensity of the red component of the RGB color
value. Only the lower 8 bits of red are used.

green (Input) INTEGER(4). Intensity of the green component of the RGB
color value. Only the lower 8 bits of green are used.

blue (Input) INTEGER(4). Intensity of the blue component of the RGB color
value. Only the lower 8 bits of blue are used.

Results

The result type is INTEGER(4). The result is the combined RGB color value.

In each RGB color value, each of the three colors, red, green, and blue, is represented by an eight-bit value
(2 hex digits). In the value returned with RGBTOINTEGER, red is the rightmost byte, followed by green and
blue. The RGB value's internal structure is as follows:

 1 Intel® Fortran Compiler Classic and Intel® Fortran Compiler Developer Guide and Reference

2156

Larger numbers correspond to stronger color intensity with binary 1111111 (hex Z'FF') the maximum for
each of the three components. For example, Z'0000FF' yields full-intensity red, Z'00FF00' full-intensity green,
Z'FF0000' full-intensity blue, and Z'FFFFFF' full-intensity for all three, resulting in bright white.

Example

 ! Build as a QuickWin App.
 USE IFQWIN
 INTEGER r, g, b, rgb, result
 INTEGER(2) status
 r = Z'F0'
 g = Z'F0'
 b = 0
 rgb = RGBTOINTEGER(r, g, b)
 result = SETCOLORRGB(rgb)
 status = ELLIPSE($GFILLINTERIOR,INT2(40), INT2(55), &
 INT2(90), INT2(85))
 END

See Also
INTEGERTORGB
SETCOLORRGB
SETBKCOLORRGB
SETPIXELRGB
SETPIXELSRGB
SETTEXTCOLORRGB

SETACTIVEQQ
QuickWin Function: Makes a child window active,
but does not give it focus. This routine is only
available for Windows.

Module

USE IFQWIN

Syntax
result = SETACTIVEQQ (unit)

unit (Input) INTEGER(4). Unit number of the child window to be made
active.

Results

The result type is INTEGER(4). The result is 1 if successful; otherwise, 0.

When a window is made active, it receives graphics output (from ARC, LINETO and OUTGTEXT, for example)
but is not brought to the foreground and does not have the focus. If a window needs to be brought to the
foreground, it must be given the focus. A window is given focus with FOCUSQQ, by clicking it with the
mouse, or by performing I/O other than graphics on it, unless the window was opened with
IOFOCUS='.FALSE.'. By default, IOFOCUS='.TRUE.', except for child windows opened as unit '*'.

The window that has the focus is always on top, and all other windows have their title bars grayed out. A
window can have the focus and yet not be active and not have graphics output directed to it. Graphical
output is independent of focus.

Intel® Fortran Compiler Classic and Intel® Fortran Compiler Developer Guide and Reference 1

2157

If IOFOCUS='.TRUE.', the child window receives focus prior to each READ, WRITE, PRINT, or OUTTEXT. Calls
to graphics functions (such as OUTGTEXT and ARC) do not cause the focus to shift.

See Also
GETACTIVEQQ
FOCUSQQ
INQFOCUSQQ

SETEXITQQ
QuickWin Function: Sets a QuickWin application's
exit behavior. This routine is only available for
Windows.

Module

USE IFQWIN

Syntax
result = SETEXITQQ (exitmode)

exitmode (Input) INTEGER(4). Determines the program exit behavior. The
following exit parameters are defined in IFQWIN.F90:

• QWIN$EXITPROMPT - Displays the following message box:

"Program exited with exit status X. Exit Window?"
where X is the exit status from the program.

If Yes is entered, the application closes the window and terminates.
If No is entered, the dialog box disappears and you can manipulate
the windows as usual. You must then close the window manually.

• QWIN$EXITNOPERSIST - Terminates the application without
displaying a message box.

• QWIN$EXITPERSIST - Leaves the application open without
displaying a message box.

Results

The result type is INTEGER(4). The result is zero if successful; otherwise, a negative value.

The default for both QuickWin and Standard Graphics applications is QWIN$EXITPROMPT.

Example

 ! Build as QuickWin Ap
 USE IFQWIN
 INTEGER(4) exmode, result

 WRITE(*,'(1X,A,/)') 'Please enter the exit mode 1, 2 &
 or 3 '
 READ(*,*) exmode
 SELECT CASE (exmode)
 CASE (1)
 result = SETEXITQQ(QWIN$EXITPROMPT)
 CASE (2)
 result = SETEXITQQ(QWIN$EXITNOPERSIST)
 CASE (3)
 result = SETEXITQQ(QWIN$EXITPERSIST)
 CASE DEFAULT
 WRITE(*,*) 'Invalid option - checking for bad &

 1 Intel® Fortran Compiler Classic and Intel® Fortran Compiler Developer Guide and Reference

2158

 return'
 IF(SETEXITQQ(exmode) .NE. -1) THEN
 WRITE(*,*) 'Error not returned'
 ELSE
 WRITE(*,*) 'Error code returned'
 ENDIF
 END SELECT
 END

See Also
GETEXITQQ

SETMESSAGEQQ
QuickWin Subroutine: Changes QuickWin status
messages, state messages, and dialog box messages.
This routine is only available for Windows.

Module

USE IFQWIN

Syntax
CALL SETMESSAGEQQ (msg,id)

msg (Input) Character*(*). Message to be displayed. Must be a regular
Fortran string, not a C string. Can include multibyte characters.

id (Input) INTEGER(4). Identifier of the message to be changed. The
following table shows the messages that can be changed and their
identifiers:

Id Message

QWIN$MSG_TERM "Program terminated with exit
code"

QWIN$MSG_EXITQ "Exit Window"

QWIN$MSG_FINISHED "Finished"

QWIN$MSG_PAUSED "Paused"

QWIN$MSG_RUNNING "Running"

QWIN$MSG_FILEOPENDLG "Text Files(*.txt), *.txt; Data
Files(*.dat), *.dat; All Files(*.*),
.;"

QWIN$MSG_BMPSAVEDLG "Bitmap Files(*.bmp), *.bmp;
All Files(*.*), *.*;"

QWIN$MSG_INPUTPEND "Input pending in"

QWIN$MSG_PASTEINPUTPEND "Paste input pending"

QWIN$MSG_MOUSEINPUTPEND "Mouse input pending in"

QWIN$MSG_SELECTTEXT "Select Text in"

Intel® Fortran Compiler Classic and Intel® Fortran Compiler Developer Guide and Reference 1

2159

Id Message

QWIN$MSG_SELECTGRAPHICS "Select Graphics in"

QWIN$MSG_PRINTABORT "Error! Printing Aborted."

QWIN$MSG_PRINTLOAD "Error loading printer driver"

QWIN$MSG_PRINTNODEFAULT "No Default Printer."

QWIN$MSG_PRINTDRIVER "No Printer Driver."

QWIN$MSG_PRINTINGERROR "Print: Printing Error."

QWIN$MSG_PRINTING "Printing"

QWIN$MSG_PRINTCANCEL "Cancel"

QWIN$MSG_PRINTINPROGRESS "Printing in progress..."

QWIN$MSG_HELPNOTAVAIL "Help Not Available for Menu
Item"

QWIN$MSG_TITLETEXT "Graphic"

QWIN$MSG_FILEOPENDLG and QWIN$MSG_BMPSAVEDLG control the text in file choosing dialog boxes and
have the following syntax:

"file description, file designation"

You can change any string produced by QuickWin by calling SETMESSAGEQQ with the appropriate id. This
includes status messages displayed at the bottom of a QuickWin application, state messages (such as
"Paused"), and dialog box messages. These messages can include multibyte characters. To change menu
messages, use MODIFYMENUSTRINGQQ.

Example

 USE IFQWIN
 print*, "Hello"
 CALL SETMESSAGEQQ('Changed exit text', QWIN$MSG_EXITQ)

See Also
MODIFYMENUSTRINGQQ

SETMOUSECURSOR
Quickwin Function: Sets the shape of the mouse
cursor for the window in focus. This routine is only
available for Windows.

Module

USE IFQWIN

USE IFWIN

Syntax
oldcursor = SETMOUSECURSOR (newcursor)

 1 Intel® Fortran Compiler Classic and Intel® Fortran Compiler Developer Guide and Reference

2160

newcursor (Input) INTEGER(4). A Windows HCURSOR value. For many
predefined shapes, LoadCursor(0, shape) is a convenient way to get a
legitimate value. See the list of predefined shapes below.

A value of zero prevents the cursor from being displayed.

Results

The result type is INTEGER(4). This is also an HCURSOR Value. The result is the previous cursor value.

The window in focus at the time SETMOUSECURSOR is called has its cursor changed to the specified value.
Once changed, the cursor retains its shape until another call to SETMOUSECURSOR.

In Standard Graphics applications, units 5 and 6 (the default screen input and output units) are always
considered to be in focus.

The following predefined values for cursor shapes are available:

Predefined Value Cursor Shape

IDC_APPSTARTING Standard arrow and small hourglass

IDC_ARROW Standard arrow

IDC_CROSS Crosshair

IDC_IBEAM Text I-beam

IDC_ICON Obsolete value

IDC_NO Slashed circle

IDC_SIZE Obsolete value; use IDC_SIZEALL

IDC_SIZEALL Four-pointed arrow

IDC_SIZENESW Double-pointed arrow pointing northeast and
southwest

IDC_SIZENS Double-pointed arrow pointing north and south

IDC_SIZENWSE Double-pointed arrow pointing northwest and
southeast

IDC_SIZEWE Double-pointed arrow pointing west and east

IDC_UPARROW Vertical arrow

IDC_WAIT Hour glass

A LoadCursor must be done on these values before they can be used by SETMOUSECURSOR.

Example

! Build as Standard Graphics or QuickWin
 use ifqwin
 use ifwin

 integer*4 cursor, oldcursor
 write(6,*) 'The cursor will now be changed to an hour glass shape'
 write(6,*) 'Hit <return> to see the next change'
 cursor = LoadCursor(0, IDC_WAIT)
 oldcursor = SetMouseCursor(cursor)

Intel® Fortran Compiler Classic and Intel® Fortran Compiler Developer Guide and Reference 1

2161

 read(5,*)

 write(6,*) 'The cursor will now be changed to a cross-hair shape'
 write(6,*) 'Hit <return> to see the next change'
 cursor = LoadCursor(0, IDC_CROSS)
 oldcursor = SetMouseCursor(cursor)
 read(5,*)

 write(6,*) 'The cursor will now be turned off'
 write(6,*) 'Hit <return> to see the next change'
 oldcursor = SetMouseCursor(0)
 read(5,*)

 write(6,*) 'The cursor will now be turned on'
 write(6,*) 'Hit <return> to see the next change'
 oldcursor = SetMouseCursor(oldcursor)
 read(5,*)

 stop
 end

SETWINDOWCONFIG
QuickWin Function: Sets the properties of a child
window. This routine is only available for Windows.

Module

USE IFQWIN

Syntax
result = SETWINDOWCONFIG (wc)

wc (Input) Derived type windowconfig. Contains window properties. The
windowconfig derived type is defined in IFQWIN.F90 as follows:

TYPE windowconfig
 INTEGER(2) numxpixels ! Number of pixels on x-axis.
 INTEGER(2) numypixels ! Number of pixels on y-axis.
 INTEGER(2) numtextcols ! Number of text columns
available.
 INTEGER(2) numtextrows ! Number of text rows
available.
 INTEGER(2) numcolors ! Number of color indexes.
 INTEGER(4) fontsize ! Size of default font. Set to
 ! QWIN$EXTENDFONT when
specifying
 ! extended attributes, in
which
 ! case extendfontsize sets
the
 ! font size.
 CHARACTER(80) title ! The window title.
 INTEGER(2) bitsperpixel ! The number of bits per
pixel.
 INTEGER(2) numvideopages ! Unused.
 INTEGER(2) mode ! Controls scrolling mode.
 INTEGER(2) adapter ! Unused.

 1 Intel® Fortran Compiler Classic and Intel® Fortran Compiler Developer Guide and Reference

2162

 INTEGER(2) monitor ! Unused.
 INTEGER(2) memory ! Unused.
 INTEGER(2) environment ! Unused.
! The next three parameters provide extended font
! attributes.
 CHARACTER(32) extendfontname ! The name of the desired
font.
 INTEGER(4) extendfontsize ! Takes the same values as
fontsize,
 ! when fontsize is set to
 ! QWIN$EXTENDFONT.
 INTEGER(4) extendfontattributes ! Font attributes such as
bold
 ! and italic.
END TYPE windowconfig

Results

The result type is LOGICAL(4). The result is .TRUE. if successful; otherwise, .FALSE..

The following value can be used to configure a QuickWin window so that it will show the last line written and
the text cursor (if it is on):

 wc%mode = QWIN$SCROLLDOWN
Note that if you scroll the window to another position, you will have to scroll back to the last line to see your
input.

The following values can be used with SETWINDOWCONFIG extended fonts:

Style:

QWIN$EXTENDFONT_NORMAL No underline, no italic, and a font weight of 400 out
of 1000.

QWIN$EXTENDFONT_UNDERLINE Underlined characters.

QWIN$EXTENDFONT_BOLD A font weight of 700 out of 1000.

QWIN$EXTENDFONT_ITALIC Italic characters.

Pitch:

QWIN$EXTENDFONT_FIXED_PITCH QuickWin default. Equal character widths.

QWIN$EXTENDFONT_VARIABLE_PITCH Variable character widths.

Font Families:

QWIN$EXTENDFONT_FF_ROMAN Variable stroke width, serifed. Times Roman,
Century Schoolbook, etc.

QWIN$EXTENDFONT_FF_SWISS Variable stroke width, sans-serifed. Helvetica,
Swiss, etc.

QWIN$EXTENDFONT_FF_MODERN QuickWin default. Constant stroke width, serifed or
sans-serifed. Pica, Elite, Courier, etc.

QWIN$EXTENDFONT_FF_SCRIPT Cursive, etc.

QWIN$EXTENDFONT_FF_DECORATIVE Old English, etc.

Intel® Fortran Compiler Classic and Intel® Fortran Compiler Developer Guide and Reference 1

2163

Character Sets:

QWIN$EXTENDFONT_ANSI_CHARSET QuickWin default.

QWIN$EXTENDFONT_OEM_CHARSET Use this to get Microsoft* LineDraw.

Using QWIN$EXTENDFONT_OEM_CHARSET with the font name 'MS LineDraw'C will get the old DOS-style
character set with symbols that can be used to draw lines and boxes. The pitch and font family items can be
specified to help guide the font matching algorithms used by CreateFontIndirect, the Windows* API used by
SETWINDOWCONFIG.

If you use SETWINDOWCONFIG to set the variables in windowconfig to -1, the function sets the highest
resolution possible for your system, given the other fields you specify, if any. You can set the actual size of
the window by specifying parameters that influence the window size: the number of x and y pixels, the
number of rows and columns, and the font size. If you do not call SETWINDOWCONFIG, the window defaults
to the best possible resolution and a font size of 8x16. The number of colors available depends on the video
driver used.

If you use SETWINDOWCONFIG, you should specify a value for each field (-1 or your own value for the
numeric fields and a C string for the title, for example, "words of text"C). Using SETWINDOWCONFIG with
only some fields specified can result in useless values for the unspecified fields.

If you request a configuration that cannot be set, SETWINDOWCONFIG returns .FALSE. and calculates
parameter values that will work and are as close as possible to the requested configuration. A second call to
SETWINDOWCONFIG establishes the adjusted values; for example:

status = SETWINDOWCONFIG(wc)
if (.NOT.status) status = SETWINDOWCONFIG(wc)

If you specify values for all four of the size parameters, numxpixels, numypixel, numtextcols, and
numtextrows, the font size is calculated by dividing these values.The default font is Courier New and the
default font size is 8x16. There is no restriction on font size, except that the window must be large enough to
hold it.

Under Standard Graphics, the application attempts to start in Full Screen mode with no window decoration
(window decoration includes scroll bars, menu bar, title bar, and message bar) so that the maximum
resolution can be fully used. Otherwise, the application starts in a window. You can use ALT+ENTER at any
time to toggle between the two modes.

If you are in Full Screen mode and the resolution of the window does not match the resolution of the video
driver, graphics output will be slow compared to drawing in a window.

NOTE
You must call DISPLAYCURSOR($GCURSORON) to make the cursor visible after calling
SETWINDOWCONFIG.

Example

 USE IFQWIN
 TYPE (windowconfig) wc
 LOGICAL status /.FALSE./
 ! Set the x & y pixels to 800X600 and font size to 8x12
 wc%numxpixels = 800
 wc%numypixels = 600
 wc%numtextcols = -1
 wc%numtextrows = -1
 wc%numcolors = -1
 wc%title= "This is a test"C
 wc%fontsize = Z'0008000C'

 1 Intel® Fortran Compiler Classic and Intel® Fortran Compiler Developer Guide and Reference

2164

 status = SETWINDOWCONFIG(wc) ! attempt to set configuration with above values
 ! if attempt fails, set with system estimated values
 if (.NOT.status) status = SETWINDOWCONFIG(wc)

See Also
DISPLAYCURSOR
GETWINDOWCONFIG

SETWINDOWMENUQQ
QuickWin Function: Sets a top-level menu as the
menu to which a list of current child window names is
appended. This routine is only available for Windows.

Module

USE IFQWIN

Syntax
result = SETWINDOWMENUQQ (menuID)

menuID (Input) INTEGER(4). Identifies the menu to hold the child window
names, starting with 1 as the leftmost menu.

Results

The result type is LOGICAL(4). The result is .TRUE. if successful; otherwise, .FALSE..

The list of current child window names can appear in only one menu at a time. If the list of windows is
currently in a menu, it is removed from that menu. By default, the list of child windows appears at the end of
the Window menu.

Example

 USE IFQWIN
 TYPE (windowconfig) wc
 LOGICAL(4) result, status /.FALSE./
 ! Set title for child window
 wc%numxpixels = -1
 wc%numypixels = -1
 wc%numtextcols = -1
 wc%numtextrows = -1
 wc%numcolors = -1
 wc%fontsize = -1
 wc%title= "I am child window name"C
 if (.NOT.status) status = SETWINDOWCONFIG(wc)

 ! put child window list under menu 3 (View)
 result = SETWINDOWMENUQQ(3)
 END

See Also
APPENDMENUQQ

SETWSIZEQQ
QuickWin Function: Sets the size and position of a
window. This routine is only available for Windows.

Intel® Fortran Compiler Classic and Intel® Fortran Compiler Developer Guide and Reference 1

2165

Module

USE IFQWIN

Syntax
result = SETWSIZEQQ (unit, winfo)

unit (Input) INTEGER(4). Specifies the window unit. Unit numbers 0, 5,
and 6 refer to the default startup window only if the program does not
explicitly open them with the OPEN statement. To set the size of the
frame window (as opposed to a child window), set unit to the
symbolic constant QWIN$FRAMEWINDOW (defined in IFQWIN.F90).

When called from INITIALSETTINGS, SETWSIZEQQ behaves slightly
differently than when called from a user routine after initialization.
See below under Results.

winfo (Input) Derived type qwinfo. Physical coordinates of the window's
upper-left corner, and the current or maximum height and width of the
window's client area (the area within the frame). The derived type
qwinfois defined in IFQWIN.F90 as follows:

 TYPE QWINFO
 INTEGER(2) TYPE ! request type
 INTEGER(2) X ! x coordinate for upper left
 INTEGER(2) Y ! y coordinate for upper left
 INTEGER(2) H ! window height
 INTEGER(2) W ! window width
 END TYPE QWINFO

This function's behavior depends on the value of QWINFO%TYPE, which
can be any of the following:

• QWIN$MIN - Minimizes the window.
• QWIN$MAX - Maximizes the window.
• QWIN$RESTORE - Restores the minimized window to its previous

size.
• QWIN$SET - Sets the window's position and size according to the

other values in qwinfo.

Results

The result type is INTEGER(4). The result is zero if successful; otherwise, nonzero (unless called from
INITIALSETTINGS). If called from INITIALSETTINGS, the following occurs:

• SETWSIZEQQ always returns -1.
• Only QWIN$SET will work.

The position and dimensions of child windows are expressed in units of character height and width. The
position and dimensions of the frame window are expressed in screen pixels.

The height and width specified for a frame window reflects the actual size in pixels of the frame window
including any borders, menus, and status bar at the bottom.

Example

 USE IFQWIN
 INTEGER(4) result
 INTEGER(2) numfonts, fontnum
 TYPE (qwinfo) winfo

 1 Intel® Fortran Compiler Classic and Intel® Fortran Compiler Developer Guide and Reference

2166

 TYPE (xycoord) pos
 ! Maximize frame window
 winfo%TYPE = QWIN$MAX
 result = SETWSIZEQQ(QWIN$FRAMEWINDOW, winfo)
 ! Maximize child window
 result = SETWSIZEQQ(0, winfo)
 numfonts = INITIALIZEFONTS()
 fontnum = SETFONT ('t''Arial''h50w34i')
 CALL MOVETO (INT2(10), INT2(30), pos)
 CALL OUTGTEXT("BIG Window")
 END

See Also
GETWSIZEQQ
INITIALSETTINGS

UNREGISTERMOUSEEVENT
QuickWin Function: Removes the callback routine
registered for a specified window by an earlier call to
REGISTERMOUSEEVENT. This routine is only available
for Windows.

Module

USE IFQWIN

Syntax
result = UNREGISTERMOUSEEVENT (unit,mouseevents)

unit (Input) INTEGER(4) on IA-32 architecture; INTEGER(8) on Intel® 64
architecture. Unit number of the window whose callback routine on
mouse events is to be unregistered.

mouseevents (Input) INTEGER(4). One or more mouse events handled by the
callback routine to be unregistered. Symbolic constants (defined in
IFQWIN.F90) for the possible mouse events are:

• MOUSE$LBUTTONDOWN - Left mouse button down
• MOUSE$LBUTTONUP - Left mouse button up
• MOUSE$LBUTTONDBLCLK - Left mouse button double-click
• MOUSE$RBUTTONDOWN - Right mouse button down
• MOUSE$RBUTTONUP - Right mouse button up
• MOUSE$RBUTTONDBLCLK - Right mouse button double-click
• MOUSE$MOVE - Mouse moved

Results

The result type is INTEGER(4). The result is zero or a positive integer if successful; otherwise, a negative
integer that can be one of the following:

• MOUSE$BADUNIT - The unit specified is not open, or is not associated with a QuickWin window.
• MOUSE$BADEVENT - The event specified is not supported.

Once you call UNREGISTERMOUSEEVENT, QuickWin no longer calls the callback routine specified earlier for
the window when mouse events occur. Calling UNREGISTERMOUSEEVENT when no callback routine is
registered for the window has no effect.

Intel® Fortran Compiler Classic and Intel® Fortran Compiler Developer Guide and Reference 1

2167

See Also
REGISTERMOUSEEVENT
WAITONMOUSEEVENT

WAITONMOUSEEVENT
QuickWin Function: Waits for the specified mouse
input from the user. This routine is only available for
Windows.

Module

USE IFQWIN

Syntax
result = WAITONMOUSEEVENT (mouseevents,keystate,x,y)

mouseevents (Input) INTEGER(4). One or more mouse events that must occur
before the function returns. Symbolic constants for the possible mouse
events are:

• MOUSE$LBUTTONDOWN - Left mouse button down
• MOUSE$LBUTTONUP - Left mouse button up
• MOUSE$LBUTTONDBLCLK - Left mouse button double-click
• MOUSE$RBUTTONDOWN - Right mouse button down
• MOUSE$RBUTTONUP - Right mouse button up
• MOUSE$RBUTTONDBLCLK - Right mouse button double-click
• MOUSE$MOVE - Mouse moved

keystate (Output) INTEGER(4). Bitwise inclusive OR of the state of the mouse
during the event. The value returned in keystate can be any or all of
the following symbolic constants:

• MOUSE$KS_LBUTTON - Left mouse button down during event
• MOUSE$KS_RBUTTON - Right mouse button down during event
• MOUSE$KS_SHIFT - SHIFTkey held down during event
• MOUSE$KS_CONTROL - CTRLkey held down during event

x (Output) INTEGER(4). X position of the mouse when the event
occurred.

y (Output) INTEGER(4). Y position of the mouse when the event
occurred.

Results

The result type is INTEGER(4). The result is the symbolic constant associated with the mouse event that
occurred if successful. If the function fails, it returns the constant MOUSE$BADEVENT, meaning the event
specified is not supported.

WAITONMOUSEEVENT does not return until the specified mouse input is received from the user. While
waiting for a mouse event to occur, the status bar changes to read "Mouse input pending in XXX", where XXX
is the name of the window. When a mouse event occurs, the status bar returns to its previous value.

A mouse event must happen in the window that had focus when WAITONMOUSEEVENT was initially called.
Mouse events in other windows will not end the wait. Mouse events in other windows cause callbacks to be
called for the other windows, if callbacks were previously registered for those windows.

 1 Intel® Fortran Compiler Classic and Intel® Fortran Compiler Developer Guide and Reference

2168

For every BUTTONDOWN or BUTTONDBLCLK event there is an associated BUTTONUP event. When the user
double clicks, four events happen: BUTTONDOWN and BUTTONUP for the first click, and BUTTONDBLCLK and
BUTTONUP for the second click. The difference between getting BUTTONDBLCLK and BUTTONDOWN for the
second click depends on whether the second click occurs in the double click interval, set in the system's
CONTROL PANEL/MOUSE.

Example

 USE IFQWIN
 INTEGER(4) mouseevent, keystate, x, y, result
 ...
 mouseevent = IOR(MOUSE$RBUTTONDOWN,MOUSE$LBUTTONDOWN)
 result = WAITONMOUSEEVENT (mouseevent, keystate, x , y)
 !
 ! Wait until right or left mouse button is clicked, then check the keystate
 ! with the following:
 !
 if (IAND(MOUSE$KS_SHIFT,keystate) == MOUSE$KS_SHIFT) &
 & write (*,*) 'Shift key was down'
 if (IAND(MOUSE$KS_CONTROL,keystate) == MOUSE$KS_CONTROL) &
 & write (*,*) 'Ctrl key was down'

Graphics Library Routines
This section contains descriptions of the Graphics library routines, which are restricted to Windows* systems.
They are listed in alphabetical order.

To access these library routines, you must specify a USE IFQWIN statement in your program.

ARC, ARC_W
Graphics Functions: Draw elliptical arcs using the
current graphics color. These routines are only
available for Windows.

Module

USE IFQWIN

Syntax
result = ARC (x1,y1,x2,y2,x3,y3,x4,y4)
result = ARC_W (wx1,wy1,wx2,wy2,wx3,wy3,wx4,wy4)

x1, y1 (Input) INTEGER(2). Viewport coordinates for upper-left corner of
bounding rectangle.

x2, y2 (Input) INTEGER(2). Viewport coordinates for lower-right corner of
bounding rectangle.

x3, y3 (Input) INTEGER(2). Viewport coordinates of start vector.

x4, y4 (Input) INTEGER(2). Viewport coordinates of end vector.

wx1,wy1 (Input) REAL(8). Window coordinates for upper-left corner of
bounding rectangle.

wx2, wy2 (Input) REAL(8). Window coordinates for lower-right corner of
bounding rectangle.

Intel® Fortran Compiler Classic and Intel® Fortran Compiler Developer Guide and Reference 1

2169

wx3, wy3 (Input) REAL(8). Window coordinates of start vector.

wx4, wy4 (Input) REAL(8). Window coordinates of end vector.

Results

The result type is INTEGER(2). It is nonzero if successful; otherwise, 0. If the arc is clipped or partially out of
bounds, the arc is considered successfully drawn and the return is 1. If the arc is drawn completely out of
bounds, the return is 0.

The center of the arc is the center of the bounding rectangle defined by the points (x1, y1) and (x2, y2) for
ARC and (wx1, wy1) and (wx2, wy2) for ARC_W.

The arc starts where it intersects an imaginary line extending from the center of the arc through (x3, y3) for
ARC and (wx3, wy3) for ARC_W. It is drawn counterclockwise about the center of the arc, ending where it
intersects an imaginary line extending from the center of the arc through (x4, y4) for ARC and (wx4, wy4)
for ARC_W.

ARC uses the view-coordinate system. ARC_W uses the window-coordinate system. In each case, the arc is
drawn using the current color.

NOTE
The ARC routine described here is a QuickWin graphics routine. If you are trying to use the
Microsoft* Platform SDK version of the Arc routine by including the IFWIN module, you need
to specify the routine name as MSFWIN$Arc.

Example

This program draws the arc shown below.

 USE IFQWIN
 INTEGER(2) status, x1, y1, x2, y2, x3, y3, x4, y4

 x1 = 80; y1 = 50
 x2 = 240; y2 = 150
 x3 = 120; y3 = 75
 x4 = 90; y4 = 180
 status = ARC(x1, y1, x2, y2, x3, y3, x4, y4)
 END

CLEARSCREEN
Graphics Subroutine: Erases the target area and fills
it with the current background color. This routine is
only available for Windows.

Module

USE IFQWIN

 1 Intel® Fortran Compiler Classic and Intel® Fortran Compiler Developer Guide and Reference

2170

Syntax
CALL CLEARSCREEN (area)

area (Input) INTEGER(4). Identifies the target area. Must be one of the
following symbolic constants (defined in IFQWIN.F90):

• $GCLEARSCREEN - Clears the entire screen.
• $GVIEWPORT - Clears only the current viewport.
• $GWINDOW - Clears only the current text window (set with

SETTEXTWINDOW).

All pixels in the target area are set to the color specified with SETBKCOLORRGB. The default color is black.

Example

USE IFQWIN
CALL CLEARSCREEN($GCLEARSCREEN)

See Also
GETBKCOLORRGB
SETBKCOLORRGB
SETTEXTWINDOW
SETVIEWPORT

DISPLAYCURSOR
Graphics Function: Controls cursor visibility. This
routine is only available for Windows.

Module

USE IFQWIN

Syntax
result = DISPLAYCURSOR (toggle)

toggle (Input) INTEGER(2). Constant that defines the cursor state. Has two
possible values:

• $GCURSOROFF - Makes the cursor invisible regardless of its current
shape and mode.

• $GCURSORON - Makes the cursor always visible in graphics mode.

Results

The result type is INTEGER(2). The result is the previous value of toggle.

Cursor settings hold only for the currently active child window. You need to call DISPLAYCURSOR for each
window in which you want the cursor to be visible.

A call to SETWINDOWCONFIG turns off the cursor.

See Also
SETTEXTCURSOR
SETWINDOWCONFIG

Intel® Fortran Compiler Classic and Intel® Fortran Compiler Developer Guide and Reference 1

2171

ELLIPSE, ELLIPSE_W
Graphics Functions: Draw a circle or an ellipse using
the current graphics color. These routines are only
available for Windows.

Module

USE IFQWIN

Syntax
result = ELLIPSE (control,x1,y1,x2,y2)
result = ELLIPSE_W (control,wx1,wy1,wx2,wy2)

control (Input) INTEGER(2). Fill flag. Can be one of the following symbolic
constants:

• $GFILLINTERIOR - Fills the figure using the current color and fill
mask.

• $GBORDER - Does not fill the figure.

x1, y1 (Input) INTEGER(2). Viewport coordinates for upper-left corner of
bounding rectangle.

x2, y2 (Input) INTEGER(2). Viewport coordinates for lower-right corner of
bounding rectangle.

wx1, wy1 (Input) REAL(8). Window coordinates for upper-left corner of
bounding rectangle.

wx2, wy2 (Input) REAL(8). Window coordinates for lower-right corner of
bounding rectangle.

Results

The result type is INTEGER(2). The result is nonzero if successful; otherwise, 0. If the ellipse is clipped or
partially out of bounds, the ellipse is considered successfully drawn, and the return is 1. If the ellipse is
drawn completely out of bounds, the return is 0.

The border is drawn in the current color and line style.

When you use ELLIPSE, the center of the ellipse is the center of the bounding rectangle defined by the
viewport-coordinate points (x1, y1) and (x2, y2). When you use ELLIPSE_W, the center of the ellipse is the
center of the bounding rectangle defined by the window-coordinate points (wx1, wy1) and (wx2, wy2). If
the bounding-rectangle arguments define a point or a vertical or horizontal line, no figure is drawn.

The control option given by $GFILLINTERIOR is equivalent to a subsequent call to the FLOODFILLRGB
function using the center of the ellipse as the start point and the current color (set by SETCOLORRGB) as the
boundary color.

NOTE
The ELLIPSE routine described here is a QuickWin routine. If you are trying to use the
Microsoft* Platform SDK version of the Ellipse routine by including the IFWIN module, you
need to specify the routine name as MSFWIN$Ellipse.

 1 Intel® Fortran Compiler Classic and Intel® Fortran Compiler Developer Guide and Reference

2172

Example

The following program draws the shape shown below.

! compile as QuickWin or Standard Graphics application
 USE IFQWIN
 INTEGER(2) dummy, x1, y1, x2, y2
 x1 = 80; y1 = 50
 x2 = 240; y2 = 150
 dummy = ELLIPSE($GFILLINTERIOR, x1, y1, x2, y2)
 END

See Also
ARC
FLOODFILLRGB
GRSTATUS
LINETO
PIE
POLYGON
RECTANGLE
SETCOLORRGB
SETFILLMASK

FLOODFILL, FLOODFILL_W
Graphics Functions: Fill an area using the current
color index and fill mask. These routines are only
available for Windows.

Module

USE IFQWIN

Syntax
result = FLOODFILL (x,y,bcolor)
result = FLOODFILL_W (wx,wy,bcolor)

x, y (Input) INTEGER(2). Viewport coordinates for fill starting point.

bcolor (Input) INTEGER(2). Color index of the boundary color.

wx, wy (Input) REAL(8). Window coordinates for fill starting point.

Results

The result type is INTEGER(2). The result is a nonzero value if successful; otherwise, 0 (occurs if the fill could
not be completed, or if the starting point lies on a pixel with the boundary color bcolor, or if the starting point
lies outside the clipping region).

Intel® Fortran Compiler Classic and Intel® Fortran Compiler Developer Guide and Reference 1

2173

FLOODFILL begins filling at the viewport-coordinate point (x, y). FLOODFILL_W begins filling at the window-
coordinate point (wx, wy). The fill color used by FLOODFILL and FLOODFILL_W is set by SETCOLOR. You can
obtain the current fill color index by calling GETCOLOR. These functions allow access only to the colors in the
palette (256 or less). To access all available colors on a VGA (262,144 colors) or a true color system, use the
RGB functions FLOODFILLRGB and FLOODFILLRGB_W.

If the starting point lies inside a figure, the interior is filled; if it lies outside a figure, the background is filled.
In both cases, the fill color is the current graphics color index set by SETCOLOR. The starting point must be
inside or outside the figure, not on the figure boundary itself. Filling occurs in all directions, stopping at pixels
of the boundary color bcolor.

NOTE
The FLOODFILL routine described here is a QuickWin routine. If you are trying to use the
Microsoft* Platform SDK version of the FloodFill routine by including the IFWIN module, you
need to specify the routine name as MSFWIN$FloodFill.

Example

USE IFQWIN
INTEGER(2) status, bcolor, red, blue
INTEGER(2) x1, y1, x2, y2, xinterior, yinterior
x1 = 80; y1 = 50
x2 = 240; y2 = 150
red = 4
blue = 1
status = SETCOLOR(red)
status = RECTANGLE($GBORDER, x1, y1, x2, y2)
bcolor = GETCOLOR()
status = SETCOLOR (blue)
xinterior = 160; yinterior = 100
status = FLOODFILL (xinterior, yinterior, bcolor)
END

See Also
FLOODFILLRGB, FLOODFILLRGB_W
ELLIPSE
GETCOLOR
GETFILLMASK
GRSTATUS
PIE
SETCLIPRGN
SETCOLOR
SETFILLMASK

FLOODFILLRGB, FLOODFILLRGB_W
Graphics Functions: Fill an area using the current
Red-Green-Blue (RGB) color and fill mask. These
routines are only available for Windows.

Module

USE IFQWIN

Syntax
result = FLOODFILLRGB (x,y,color)

 1 Intel® Fortran Compiler Classic and Intel® Fortran Compiler Developer Guide and Reference

2174

result = FLOODFILLRGB_W (wx,wy,color)

x, y (Input) INTEGER(2). Viewport coordinates for fill starting point.

color (Input) INTEGER(4). RGB value of the boundary color.

wx, wy (Input) REAL(8). Window coordinates for fill starting point.

Results

The result type is INTEGER(4). The result is a nonzero value if successful; otherwise, 0 (occurs if the fill could
not be completed, or if the starting point lies on a pixel with the boundary color color, or if the starting point
lies outside the clipping region).

FLOODFILLRGB begins filling at the viewport-coordinate point (x, y). FLOODFILLRGB_W begins filling at the
window-coordinate point (wx, wy). The fill color used by FLOODFILLRGB and FLOODFILLRGB_W is set by
SETCOLORRGB. You can obtain the current fill color by calling GETCOLORRGB.

If the starting point lies inside a figure, the interior is filled; if it lies outside a figure, the background is filled.
In both cases, the fill color is the current color set by SETCOLORRGB. The starting point must be inside or
outside the figure, not on the figure boundary itself. Filling occurs in all directions, stopping at pixels of the
boundary color color.

Example

! Build as a QuickWin or Standard Graphics App.
USE IFQWIN
INTEGER(2) status
INTEGER(4) result, bcolor
INTEGER(2) x1, y1, x2, y2, xinterior, yinterior
x1 = 80; y1 = 50
x2 = 240; y2 = 150
result = SETCOLORRGB(Z'008080') ! red
status = RECTANGLE($GBORDER, x1, y1, x2, y2)
bcolor = GETCOLORRGB()
result = SETCOLORRGB (Z'FF0000') ! blue
xinterior = 160; yinterior = 100
result = FLOODFILLRGB (xinterior, yinterior, bcolor)
END

See Also
ELLIPSE
FLOODFILL
GETCOLORRGB
GETFILLMASK
GRSTATUS
PIE
SETCLIPRGN
SETCOLORRGB
SETFILLMASK

GETARCINFO
Graphics Function: Determines the endpoints (in
viewport coordinates) of the most recently drawn arc
or pie. This routine is only available for Windows.

Module

USE IFQWIN

Intel® Fortran Compiler Classic and Intel® Fortran Compiler Developer Guide and Reference 1

2175

Syntax
result = GETARCINFO (lpstart, lpend, lppaint)

lpstart (Output) Derived type xycoord. Viewport coordinates of the starting
point of the arc.

lpend (Output) Derived type xycoord. Viewport coordinates of the end point
of the arc.

lppaint (Output) Derived type xycoord. Viewport coordinates of the point at
which the fill begins.

Results

The result type is INTEGER(2). The result is nonzero if successful. The result is zero if neither the ARC nor
the PIE function has been successfully called since the last time CLEARSCREEN or SETWINDOWCONFIG was
successfully called, or since a new viewport was selected.

GETARCINFO updates the lpstart and lpendxycoord derived types to contain the endpoints (in viewport
coordinates) of the arc drawn by the most recent call to the ARC or PIE functions. The xycoord derived type,
defined in IFQWIN.F90, is:

TYPE xycoord
 INTEGER(2) xcoord
 INTEGER(2) ycoord
END TYPE xycoord

The returned value in lppaint specifies a point from which a pie can be filled. You can use this to fill a pie in a
color different from the border color. After a call to GETARCINFO, change colors using SETCOLORRGB. Use
the new color, along with the coordinates in lppaint, as arguments for the FLOODFILLRGB function.

Example

USE IFQWIN
INTEGER(2) status, x1, y1, x2, y2, x3, y3, x4, y4
TYPE (xycoord) xystart, xyend, xyfillpt
x1 = 80; y1 = 50
x2 = 240; y2 = 150
x3 = 120; y3 = 80
x4 = 90; y4 = 180
status = ARC(x1, y1, x2, y2, x3, y3, x4, y4)
status = GETARCINFO(xystart, xyend, xyfillpt)
END

See Also
ARC
FLOODFILLRGB
GETCOLORRGB
GRSTATUS
PIE
SETCOLORRGB

GETBKCOLOR
Graphics Function: Returns the current background
color index for both text and graphics output. This
routine is only available for Windows.

 1 Intel® Fortran Compiler Classic and Intel® Fortran Compiler Developer Guide and Reference

2176

Module

USE IFQWIN

Syntax
result = GETBKCOLOR()

Results

The result type is INTEGER(4). The result is the current background color index.

GETBKCOLOR returns the current background color index for both text and graphics, as set with
SETBKCOLOR. The color index of text over the background color is set with SETTEXTCOLOR and returned
with GETTEXTCOLOR. The color index of graphics over the background color is set with SETCOLOR and
returned with GETCOLOR. These non-RGB color functions use color indexes, not true color values, and limit
the user to colors in the palette, at most 256. For access to all system colors, use SETBKCOLORRGB,
SETCOLORRGB, and SETTEXTCOLORRGB.

Generally, INTEGER(4) color arguments refer to color values and INTEGER(2) color arguments refer to color
indexes. The two exceptions are GETBKCOLOR and SETBKCOLOR. The default background index is 0, which
is associated with black unless the user remaps the palette with REMAPPALETTERGB.

NOTE
The GETBKCOLOR routine described here is a QuickWin routine. If you are trying to use the
Microsoft* Platform SDK version of the GetBkColor routine by including the IFWIN module,
you need to specify the routine name as MSFWIN$GetBkColor.

Example

USE IFQWIN
INTEGER(4) bcindex
bcindex = GETBKCOLOR()

See Also
GETBKCOLORRGB
SETBKCOLOR
GETCOLOR
GETTEXTCOLOR
REMAPALLPALETTERGB, REMAPPALETTERGB

GETBKCOLORRGB
Graphics Function: Returns the current background
Red-Green-Blue (RGB) color value for both text and
graphics. This routine is only available for Windows.

Module

USE IFQWIN

Syntax
result = GETBKCOLORRGB()

Results

The result type is INTEGER(4). The result is the RGB value of the current background color for both text and
graphics.

Intel® Fortran Compiler Classic and Intel® Fortran Compiler Developer Guide and Reference 1

2177

In each RGB color value, each of the three colors, red, green, and blue, is represented by an eight-bit value
(2 hex digits). In the value you retrieve with GETBKCOLORRGB, red is the rightmost byte, followed by green
and blue. The RGB value's internal structure is as follows:

Larger numbers correspond to stronger color intensity with binary 1111111 (hex FF) the maximum for each
of the three components. For example, Z'0000FF' yields full-intensity red, Z'00FF00' full-intensity green,
Z'FF0000' full-intensity blue, and Z'FFFFFF' full-intensity for all three, resulting in bright white.

GETBKCOLORRGB returns the RGB color value of the current background for both text and graphics, set with
SETBKCOLORRGB. The RGB color value of text over the background color (used by text functions such as
OUTTEXT, WRITE, and PRINT) is set with SETTEXTCOLORRGB and returned with GETTEXTCOLORRGB. The
RGB color value of graphics over the background color (used by graphics functions such as ARC, OUTGTEXT,
and FLOODFILLRGB) is set with SETCOLORRGB and returned with GETCOLORRGB.

SETBKCOLORRGB (and the other RGB color selection functions SETCOLORRGB and SETTEXTCOLORRGB) sets
the color to a value chosen from the entire available range. The non-RGB color functions (SETBKCOLOR,
SETCOLOR, and SETTEXTCOLOR) use color indexes rather than true color values. If you use color indexes,
you are restricted to the colors available in the palette, at most 256. Some display adapters (SVGA and true
color) are capable of creating 262,144 (256K) colors or more. To access any available color, you need to
specify an explicit RGB value with an RGB color function, rather than a palette index with a non-RGB color
function.

Example

! Build as a QuickWin or Standard Graphics App.
USE IFQWIN
INTEGER(4) back, fore, oldcolor
INTEGER(2) status, x1, y1, x2, y2
x1 = 80; y1 = 50
x2 = 240; y2 = 150
oldcolor = SETCOLORRGB(Z'FF') ! red
! reverse the screen
back = GETBKCOLORRGB()
fore = GETCOLORRGB()
oldcolor = SETBKCOLORRGB(fore)
oldcolor = SETCOLORRGB(back)
CALL CLEARSCREEN ($GCLEARSCREEN)
status = ELLIPSE($GBORDER, x1, y1, x2, y2)
END

See Also
GETCOLORRGB
GETTEXTCOLORRGB
SETBKCOLORRGB
GETBKCOLOR

GETCOLOR
Graphics Function: Returns the current graphics
color index. This routine is only available for Windows.

Module

USE IFQWIN

 1 Intel® Fortran Compiler Classic and Intel® Fortran Compiler Developer Guide and Reference

2178

Syntax
result = GETCOLOR()

Results

The result type is INTEGER(2). The result is the current color index, if successful; otherwise, -1.

GETCOLOR returns the current color index used for graphics over the background color as set with
SETCOLOR. The background color index is set with SETBKCOLOR and returned with GETBKCOLOR. The color
index of text over the background color is set with SETTEXTCOLOR and returned with GETTEXTCOLOR. These
non-RGB color functions use color indexes, not true color values, and limit the user to colors in the palette, at
most 256. For access to all system colors, use SETCOLORRGB, SETBKCOLORRGB, and SETTEXTCOLORRGB.

Example

! Program to demonstrate GETCOLOR
 PROGRAM COLORS
 USE IFQWIN
 INTEGER(2) loop, loop1, status, color
 LOGICAL(4) winstat
 REAL rnd1, rnd2, xnum, ynum
 type (windowconfig) wc
 status = SETCOLOR(INT2(0))
! Color random pixels with 15 different colors
 DO loop1 = 1, 15
 color = INT2(MOD(GETCOLOR() +1, 16))
 status = SETCOLOR (color) ! Set to next color
 DO loop = 1, 75
! Set color of random spot, normalized to be on screen
 CALL RANDOM(rnd1)
 CALL RANDOM(rnd2)
 winstat = GETWINDOWCONFIG(wc)
 xnum = wc%numxpixels
 ynum = wc%numypixels
 status = &
 SETPIXEL(INT2(rnd1*xnum+1),INT2(rnd2*ynum))
 status = &
 SETPIXEL(INT2(rnd1*xnum),INT2(rnd2*ynum+1))
 status = &
 SETPIXEL(INT2(rnd1*xnum-1),INT2(rnd2*ynum))
 status = &
 SETPIXEL(INT2(rnd1*xnum),INT2(rnd2*ynum-1))
 END DO
 END DO
 END

See Also
GETCOLORRGB
GETBKCOLOR
GETTEXTCOLOR
SETCOLOR

GETCOLORRGB
Graphics Function: Returns the current graphics
color Red-Green-Blue (RGB) value (used by graphics
functions such as ARC, ELLIPSE, and FLOODFILLRGB).
This routine is only available for Windows.

Intel® Fortran Compiler Classic and Intel® Fortran Compiler Developer Guide and Reference 1

2179

Module

USE IFQWIN

Syntax
result = GETCOLORRGB()

Results

The result type is INTEGER(4). The result is the RGB value of the current graphics color.

In each RGB color value, each of the three colors, red, green, and blue, is represented by an eight-bit value
(2 hex digits). In the value you retrieve with GETCOLORRGB, red is the rightmost byte, followed by green
and blue. The RGB value's internal structure is as follows:

Larger numbers correspond to stronger color intensity with binary 1111111 (hex FF) the maximum for each
of the three components. For example, Z'0000FF' yields full-intensity red, Z'00FF00' full-intensity green,
Z'FF0000' full-intensity blue, and Z'FFFFFF' full-intensity for all three, resulting in bright white.

GETCOLORRGB returns the RGB color value of graphics over the background color (used by graphics
functions such as ARC, ELLIPSE, and FLOODFILLRGB), set with SETCOLORRGB. GETBKCOLORRGB returns
the RGB color value of the current background for both text and graphics, set with SETBKCOLORRGB.
GETTEXTCOLORRGB returns the RGB color value of text over the background color (used by text functions
such as OUTTEXT, WRITE, and PRINT), set with SETTEXTCOLORRGB.

SETCOLORRGB (and the other RGB color selection functions SETBKCOLORRGB and SETTEXTCOLORRGB) sets
the color to a value chosen from the entire available range. The non-RGB color functions (SETCOLOR,
SETBKCOLOR, and SETTEXTCOLOR) use color indexes rather than true color values. If you use color indexes,
you are restricted to the colors available in the palette, at most 256. Some display adapters (SVGA and true
color) are capable of creating 262,144 (256K) colors or more. To access any available color, you need to
specify an explicit RGB value with an RGB color function, rather than a palette index with a non-RGB color
function.

Example

! Build as a QuickWin or Standard Graphics App.
USE IFQWIN
INTEGER(2) numfonts
INTEGER(4) fore, oldcolor
numfonts = INITIALIZEFONTS ()
oldcolor = SETCOLORRGB(Z'FF') ! set graphics
 ! color to red
fore = GETCOLORRGB()
oldcolor = SETBKCOLORRGB(fore) ! set background
 ! to graphics color
CALL CLEARSCREEN($GCLEARSCREEN)
oldcolor = SETCOLORRGB (Z'FF0000') ! set graphics
 ! color to blue
CALL OUTGTEXT("hello, world")
END

See Also
GETBKCOLORRGB
GETTEXTCOLORRGB
SETCOLORRGB

 1 Intel® Fortran Compiler Classic and Intel® Fortran Compiler Developer Guide and Reference

2180

GETCOLOR

GETCURRENTPOSITION, GETCURRENTPOSITION_W
Graphics Subroutines: Return the coordinates of the
current graphics position. These routines are only
available for Windows.

Module

USE IFQWIN

Syntax
CALL GETCURRENTPOSITION (s)
CALL GETCURRENTPOSITION_W (s)

s (Output) Derived type xycoord. Viewport coordinates of current
graphics position. The derived type xycoord is defined in IFQWIN.F90
as follows:

TYPE xycoord
 INTEGER(2) xcoord ! x-coordinate
 INTEGER(2) ycoord ! y-coordinate
END TYPE xycoord

LINETO, MOVETO, and OUTGTEXT all change the current graphics position. It is in the center of the screen
when a window is created.

Graphics output starts at the current graphics position returned by GETCURRENTPOSITION or
GETCURRENTPOSITION_W. This position is not related to normal text output (from OUTTEXT or WRITE, for
example), which begins at the current text position (see SETTEXTPOSITION). It does, however, affect
graphics text output from OUTGTEXT.

Example

! Program to demonstrate GETCURRENTPOSITION
USE IFQWIN
TYPE (xycoord) position
INTEGER(2) result
result = LINETO(INT2(300), INT2(200))
CALL GETCURRENTPOSITION(position)
IF (position%xcoord .GT. 50) THEN
 CALL MOVETO(INT2(50), position%ycoord, position)
 WRITE(*,*) "Text unaffected by graphics position"
END IF
result = LINETO(INT2(300), INT2(200))
END

See Also
LINETO
MOVETO
OUTGTEXT
SETTEXTPOSITION
GETTEXTPOSITION

Intel® Fortran Compiler Classic and Intel® Fortran Compiler Developer Guide and Reference 1

2181

GETFILLMASK
Graphics Subroutine: Returns the current pattern
used to fill shapes. This routine is only available for
Windows.

Module

USE IFQWIN

Syntax
CALL GETFILLMASK (mask)

mask (Output) INTEGER(1). One-dimensional array of length 8.

There are 8 bytes in mask, and each of the 8 bits in each byte represents a pixel, creating an 8x8 pattern.
The first element (byte) of mask becomes the top 8 bits of the pattern, and the eighth element (byte) of
mask becomes the bottom 8 bits.

During a fill operation, pixels with a bit value of 1 are set to the current graphics color, while pixels with a bit
value of 0 are unchanged. The current graphics color is set with SETCOLORRGB or SETCOLOR. The 8-byte
mask is replicated over the entire fill area. If no fill mask is set (with SETFILLMASK), or if the mask is all
ones, solid current color is used in fill operations.

The fill mask controls the fill pattern for graphics routines (FLOODFILLRGB, PIE, ELLIPSE, POLYGON, and
RECTANGLE).

Example

! Build as QuickWin or Standard Graphics
USE IFQWIN
INTEGER(1) style(8). array(8)
INTEGER(2) i
style = 0
style(1) = Z'F'
style(3) = Z'F'
style(5) = Z'F'
style(7) = Z'F'
CALL SETFILLMASK (style)
...
CALL GETFILLMASK (array)
WRITE (*, *) 'Fill mask in bits: '
DO i = 1, 8
 WRITE (*, '(B8)') array(i)
END DO
END

See Also
ELLIPSE
FLOODFILLRGB
PIE
POLYGON
RECTANGLE
SETFILLMASK

GETFONTINFO
Graphics Function: Returns the current font
characteristics. This routine is only available for
Windows.

 1 Intel® Fortran Compiler Classic and Intel® Fortran Compiler Developer Guide and Reference

2182

Module

USE IFQWIN

Syntax
result = GETFONTINFO (font)

font (Output) Derived type FONTINFO. Set of characteristics of the current
font. The FONTINFO derived type is defined in IFQWIN.F90 as follows:

TYPE FONTINFO
 INTEGER(4) type ! 1 = truetype, 0 = bit map
 INTEGER(4) ascent ! Pixel distance from top to
 ! baseline
 INTEGER(4) pixwidth ! Character width in pixels,
 ! 0=proportional
 INTEGER(4) pixheight ! Character height in pixels
 INTEGER(4) avgwidth ! Average character width in
 ! pixels
 CHARACTER(81) filename ! File name including path
 CHARACTER(32) facename ! Font name
 LOGICAL(1) italic ! .TRUE. if current font
 ! formatted italic
 LOGICAL(1) emphasized ! .TRUE. if current font
 ! formatted bold
 LOGICAL(1) underline ! .TRUE. if current font
 ! formatted underlined
END TYPE FONTINFO

Results

The result type is INTEGER(2). The result is zero if successful; otherwise, -1.

You must initialize fonts with INITIALIZEFONTS before calling any font-related function, including
GETFONTINFO.

Example

! Build as QuickWin or Standard Graphics
USE IFQWIN
TYPE (FONTINFO) info
INTEGER(2) numfonts, return, line_spacing
numfonts = INITIALIZEFONTS ()
return = GETFONTINFO(info)
line_spacing = info%pixheight + 2
END

See Also
GETGTEXTEXTENT
GETGTEXTROTATION
GRSTATUS
OUTGTEXT
INITIALIZEFONTS
SETFONT

Intel® Fortran Compiler Classic and Intel® Fortran Compiler Developer Guide and Reference 1

2183

GETGTEXTEXTENT
Graphics Function: Returns the width in pixels that
would be required to print a given string of text
(including any trailing blanks) with OUTGTEXT using
the current font. This routine is only available for
Windows.

Module

USE IFQWIN

Syntax
result = GETGTEXTEXTENT (text)

text (Input) Character*(*). Text to be analyzed.

Results

The result type is INTEGER(2). The result is the width of text in pixels if successful; otherwise, -1 (for
example, if fonts have not been initialized with INITIALIZEFONTS).

This function is useful for determining the size of text that uses proportionally spaced fonts. You must
initialize fonts with INITIALIZEFONTS before calling any font-related function, including GETGTEXTEXTENT.

Example

! Build as QuickWin or Standard Graphics
USE IFQWIN
INTEGER(2) status, pwidth
CHARACTER(80) text
status= INITIALIZEFONTS()
status= SETFONT('t''Arial''h22w10')
pwidth= GETGTEXTEXTENT('How many pixels wide is this?')
WRITE(*,*) pwidth
END

See Also
GETFONTINFO
OUTGTEXT
SETFONT
INITIALIZEFONTS
GETGTEXTROTATION

GETGTEXTROTATION
Graphics Function: Returns the current orientation
of the font text output by OUTGTEXT. This routine is
only available for Windows.

Module

USE IFQWIN

Syntax
result = GETGTEXTROTATION()

 1 Intel® Fortran Compiler Classic and Intel® Fortran Compiler Developer Guide and Reference

2184

Results

The result type is INTEGER(4). It is the current orientation of the font text output in tenths of degrees.
Horizontal is 0°, and angles increase counterclockwise so that 900 tenths of degrees (90°) is straight up,
1800 tenths of degrees (180°) is upside-down and left, 2700 tenths of degrees (270°) is straight down, and
so forth.

The orientation for text output with OUTGTEXT is set with SETGTEXTROTATION.

Example

! Build as QuickWin or Standard Graphics
USE IFQWIN
INTEGER ang
REAL rang
ang = GETGTEXTROTATION()
rang = FLOAT(ang)/10.0
WRITE(*,*) "Text tilt in degrees is: ", rang
END

See Also
OUTGTEXT
SETFONT
SETGTEXTROTATION

GETIMAGE, GETIMAGE_W
Graphics Subroutines: Store the screen image
defined by a specified bounding rectangle. These
routines are only available for Windows.

Module

USE IFQWIN

Syntax
CALL GETIMAGE (x1,y1,x2,y2,image)
CALL GETIMAGE_W (wx1,wy1,wx2,wy2,image)

x1, y1 (Input) INTEGER(2). Viewport coordinates for upper-left corner of
bounding rectangle.

x2, y2 (Input) INTEGER(2). Viewport coordinates for lower-right corner of
bounding rectangle.

wx1, wy1 (Input) REAL(8). Window coordinates for upper-left corner of
bounding rectangle.

wx2, wy2 (Input) REAL(8). Window coordinates for lower-right corner of
bounding rectangle.

image (Output) INTEGER(1). Array of single-byte integers. Stored image
buffer.

GETIMAGE defines the bounding rectangle in viewport-coordinate points (x1, y1) and (x2, y2).
GETIMAGE_W defines the bounding rectangle in window-coordinate points (wx1, wy1) and (wx2, wy2).

The buffer used to store the image must be large enough to hold it. You can determine the image size by
calling IMAGESIZE at runtime, or by using the formula described under IMAGESIZE. After you have
determined the image size, you can dimension the buffer accordingly.

Intel® Fortran Compiler Classic and Intel® Fortran Compiler Developer Guide and Reference 1

2185

Example

! Build as QuickWin or Standard Graphics
USE IFQWIN
INTEGER(1), ALLOCATABLE:: buffer (:)
INTEGER(2) status, x, y, error
INTEGER(4) imsize
x = 50
y = 30
status = ELLIPSE ($GFILLINTERIOR, INT2(x-15), &
 INT2(y-15), INT2(x+15), INT2(y+15))
imsize = IMAGESIZE (INT2(x-16), INT2(y-16), &
 INT2(x+16), INT2(y+16))
ALLOCATE(buffer (imsize), STAT = error)
IF (error .NE. 0) THEN
 STOP 'ERROR: Insufficient memory'
END IF
CALL GETIMAGE (INT2(x-16), INT2(y-16), &
 INT2(x+16), INT2(y+16), buffer)
END

See Also
IMAGESIZE
PUTIMAGE

GETLINESTYLE
Graphics Function: Returns the current graphics line
style. This routine is only available for Windows.

Module

USE IFQWIN

Syntax
result = GETLINESTYLE()

Results

The result type is INTEGER(2). The result is the current line style.

GETLINESTYLE retrieves the mask (line style) used for line drawing. The mask is a 16-bit number, where
each bit represents a pixel in the line being drawn.

If a bit is 1, the corresponding pixel is colored according to the current graphics color and logical write mode;
if a bit is 0, the corresponding pixel is left unchanged. The mask is repeated for the entire length of the line.
The default mask is Z'FFFF' (a solid line). A dashed line can be represented by Z'FF00' (long dashes) or
Z'F0F0' (short dashes).

The line style is set with SETLINESTYLE. The current graphics color is set with SETCOLORRGB or SETCOLOR.
SETWRITEMODE affects how the line is displayed.

The line style retrieved by GETLINESTYLE affects the drawing of straight lines as in LINETO, POLYGON and
RECTANGLE, but not the drawing of curved lines as in ARC, ELLIPSE or PIE.

Example

! Build as Graphics
 USE IFQWIN
 INTEGER(2) lstyle
 lstyle = GETLINESTYLE()

 1 Intel® Fortran Compiler Classic and Intel® Fortran Compiler Developer Guide and Reference

2186

 WRITE (*, 100) lstyle, lstyle
100 FORMAT (1X, 'Line mask in Hex ', Z4, ' and binary ', B16)
 END

See Also
LINETO
POLYGON
RECTANGLE
SETCOLORRGB
SETFILLMASK
SETLINESTYLE
SETWRITEMODE

GETLINEWIDTHQQ
Graphics Function: Gets the current line width or the
line width set by the last call to SETLINEWIDTHQQ.
This routine is only available for Windows.

Module

USE IFQWIN

Syntax
result = GETLINEWIDTHQQ()

Results

The result is of type INTEGER(4). It contains the current width of the line in pixels.

If there is no call to SETLINEWIDTHQQ in the program (or on that particular graphics window), it returns 1.
(The default width of a line drawn by any graphics routine is 1 pixel.)

See Also
SETLINEWIDTHQQ

GETPHYSCOORD
Graphics Subroutine: Translates viewport
coordinates to physical coordinates. This routine is
only available for Windows.

Module

USE IFQWIN

Syntax
CALL GETPHYSCOORD (x,y,s)

x,y (Input) INTEGER(2). Viewport coordinates to be translated to physical
coordinates.

Intel® Fortran Compiler Classic and Intel® Fortran Compiler Developer Guide and Reference 1

2187

s (Output) Derived type xycoord. Physical coordinates of the input
viewport position. The xycoord derived type is defined in IFQWIN.F90
as follows:

TYPE xycoord
 INTEGER(2) xcoord ! x-coordinate
 INTEGER(2) ycoord ! y-coordinate
END TYPE xycoord

Physical coordinates refer to the physical screen. Viewport coordinates refer to an area of the screen defined
as the viewport with SETVIEWPORT. Both take integer coordinate values. Window coordinates refer to a
window sized with SETWINDOW or SETWSIZEQQ. Window coordinates are floating-point values and allow
easy scaling of data to the window area.

Example

! Program to demonstrate GETPHYSCOORD, GETVIEWCOORD,
! and GETWINDOWCOORD. Build as QuickWin or Standard
! Graphics
USE IFQWIN
TYPE (xycoord) viewxy, physxy
TYPE (wxycoord) windxy
CALL SETVIEWPORT(INT2(80), INT2(50), &
 INT2(240), INT2(150))

! Get viewport equivalent of point (100, 90)
CALL GETVIEWCOORD (INT2(100), INT2(90), viewxy)

! Get physical equivalent of viewport coordinates
CALL GETPHYSCOORD (viewxy%xcoord, viewxy%ycoord, &
 physxy)

! Get physical equivalent of viewport coordinates
CALL GETWINDOWCOORD (viewxy%xcoord, viewxy%ycoord, &
 windxy)

! Write viewport coordinates
WRITE (*,*) viewxy%xcoord, viewxy%ycoord
! Write physical coordinates
WRITE (*,*) physxy%xcoord, physxy%ycoord
! Write window coordinates
WRITE (*,*) windxy%wx, windxy%wy
END

See Also
GETVIEWCOORD
GETWINDOWCOORD
SETCLIPRGN
SETVIEWPORT

GETPIXEL, GETPIXEL_W
Graphics Functions: Return the color index of the
pixel at a specified location. These routines are only
available for Windows.

Module

USE IFQWIN

 1 Intel® Fortran Compiler Classic and Intel® Fortran Compiler Developer Guide and Reference

2188

Syntax
result = GETPIXEL (x, y)
result = GETPIXEL_W (wx, wy)

x, y (Input) INTEGER(2). Viewport coordinates for pixel position.

wx, wy (Input) REAL(8). Window coordinates for pixel position.

Results

The result type is INTEGER(2). The result is the pixel color index if successful; otherwise, -1 (if the pixel lies
outside the clipping region, for example).

Color routines without the RGB suffix, such as GETPIXEL, use color indexes, not true color values, and limit
you to colors in the palette, at most 256. To access all system colors, use SETPIXELRGB to specify an explicit
Red-Green-Blue value and retrieve the value with GETPIXELRGB.

NOTE
The GETPIXEL routine described here is a QuickWin routine. If you are trying to use the
Microsoft* Platform SDK version of the GetPixel routine by including the IFWIN module, you
need to specify the routine name as MSFWIN$GetPixel.

See Also
GETPIXELRGB
GRSTATUS
REMAPALLPALETTERGB, REMAPPALETTERGB
SETCOLOR
GETPIXELS
SETPIXEL

GETPIXELRGB, GETPIXELRGB_W
Graphics Functions: Return the Red-Green-Blue
(RGB) color value of the pixel at a specified location.
These routines are only available for Windows.

Module

USE IFQWIN

Syntax
result = GETPIXELRGB (x,y)
result = GETPIXELRGB_W (wx,wy)

x, y (Input) INTEGER(2). Viewport coordinates for pixel position.

wx, wy (Input) REAL(8). Window coordinates for pixel position.

Results

The result type is INTEGER(4). The result is the pixel's current RGB color value.

In each RGB color value, each of the three colors, red, green, and blue, is represented by an eight-bit value
(2 hex digits). In the value you retrieve with GETPIXELRGB, red is the rightmost byte, followed by green and
blue. The RGB value's internal structure is as follows:

Intel® Fortran Compiler Classic and Intel® Fortran Compiler Developer Guide and Reference 1

2189

Larger numbers correspond to stronger color intensity with binary 1111111 (hex Z'FF') the maximum for
each of the three components. For example, Z'0000FF' yields full-intensity red, Z'00FF00' full-intensity green,
Z'FF0000' full-intensity blue, and Z'FFFFFF' full-intensity for all three, resulting in bright white.

GETPIXELRGB returns the true color value of the pixel, set with SETPIXELRGB, SETCOLORRGB,
SETBKCOLORRGB, or SETTEXTCOLORRGB, depending on the pixel's position and the current configuration of
the screen.

SETPIXELRGB (and the other RGB color selection functions SETCOLORRGB, SETBKCOLORRGB, and
SETTEXTCOLORRGB) sets colors to a color value chosen from the entire available range. The non-RGB color
functions (SETPIXELS, SETCOLOR, SETBKCOLOR, and SETTEXTCOLOR) use color indexes rather than true
color values. If you use color indexes, you are restricted to the colors available in the palette, at most 256.
Some display adapters (SVGA and true color) are capable of creating 262,144 (256K) colors or more. To
access any available color, you need to specify an explicit Red-Green-Blue (RGB) value with an RGB color
function, rather than a palette index with a non-RGB color function.

Example

! Build as QuickWin or Standard Graphics
USE IFQWIN
INTEGER(4) pixcolor, rseed
INTEGER(2) status
REAL rnd1, rnd2
LOGICAL(4) winstat
TYPE (windowconfig) wc
CALL GETTIM (status, status, status, INT2(rseed))
CALL SEED (rseed)
CALL RANDOM (rnd1)
CALL RANDOM (rnd2)
! Get the color index of a random pixel, normalized to
! be in the window. Then set current color to that
! pixel color.
winstat = GETWINDOWCONFIG(wc)
xnum = wc%numxpixels
ynum = wc%numypixels
pixcolor = GETPIXELRGB(INT2(rnd1*xnum), INT2(rnd2*ynum))
status = SETCOLORRGB (pixcolor)
END

See Also
SETPIXELRGB
GETPIXELSRGB
SETPIXELSRGB
GETPIXEL, GETPIXEL_W

GETPIXELS
Graphics Subroutine: Returns the color indexes of
multiple pixels. This routine is only available for
Windows.

Module

USE IFQWIN

 1 Intel® Fortran Compiler Classic and Intel® Fortran Compiler Developer Guide and Reference

2190

Syntax
CALL GETPIXELS (n,x,y,color)

n (Input) INTEGER(4). Number of pixels to get. Sets the number of
elements in the other arguments.

x, y (Input) INTEGER(2). Parallel arrays containing viewport coordinates of
pixels to get.

color (Output) INTEGER(2). Array to be filled with the color indexes of the
pixels at x and y.

GETPIXELS fills in the array color with color indexes of the pixels specified by the two input arrays x and y.
These arrays are parallel: the first element in each of the three arrays refers to a single pixel, the second
element refers to the next pixel, and so on.

If the pixel is outside the clipping region, the value placed in the color array is undefined. Calls to
GETPIXELS with n less than 1 are ignored. GETPIXELS is a much faster way to acquire multiple pixel color
indexes than individual calls to GETPIXEL.

The range of possible pixel color index values is determined by the current video mode and palette, at most
256 colors. To access all system colors you need to specify an explicit Red-Green-Blue (RGB) value with an
RGB color function such as SETPIXELSRGB and retrieve the value with GETPIXELSRGB, rather than a palette
index with a non-RGB color function.

See Also
GETPIXELSRGB
SETPIXELSRGB
GETPIXEL
SETPIXELS

GETPIXELSRGB
Graphics Subroutine: Returns the Red-Green-Blue
(RGB) color values of multiple pixels. This routine is
only available for Windows.

Module

USE IFQWIN

Syntax
CALL GETPIXELSRGB (n,x,y,color)

n (Input) INTEGER(4). Number of pixels to get. Sets the number of
elements in the other argument arrays.

x, y (Input) INTEGER(2). Parallel arrays containing viewport coordinates of
pixels.

color (Output) INTEGER(4). Array to be filled with RGB color values of the
pixels at x and y.

GETPIXELS fills in the array color with the RGB color values of the pixels specified by the two input arrays x
and y. These arrays are parallel: the first element in each of the three arrays refers to a single pixel, the
second element refers to the next pixel, and so on.

In each RGB color value, each of the three colors, red, green, and blue, is represented by an eight-bit value
(2 hex digits). In the values you retrieve with GETPIXELSRGB, red is the rightmost byte, followed by green
and blue. The RGB value's internal structure is as follows:

Intel® Fortran Compiler Classic and Intel® Fortran Compiler Developer Guide and Reference 1

2191

Larger numbers correspond to stronger color intensity with binary 11111111 (hex Z'FF') the maximum for
each of the three components. For example, Z'0000FF' yields full-intensity red, Z'00FF00' full-intensity green,
Z'FF0000' full-intensity blue, and Z'FFFFFF' full-intensity for all three, resulting in bright white.

GETPIXELSRGB is a much faster way to acquire multiple pixel RGB colors than individual calls to
GETPIXELRGB. GETPIXELSRGB returns an array of true color values of multiple pixels, set with
SETPIXELSRGB, SETCOLORRGB, SETBKCOLORRGB, or SETTEXTCOLORRGB, depending on the pixels'
positions and the current configuration of the screen.

SETPIXELSRGB (and the other RGB color selection functions SETCOLORRGB, SETBKCOLORRGB, and
SETTEXTCOLORRGB) sets colors to a color value chosen from the entire available range. The non-RGB color
functions (SETPIXELS, SETCOLOR, SETBKCOLOR, and SETTEXTCOLOR) use color indexes rather than true
color values. If you use color indexes, you are restricted to the colors available in the palette, at most 256.
Some display adapters (SVGA and true color) are capable of creating 262,144 (256K) colors or more. To
access any available color, you need to specify an explicit RGB value with an RGB color function, rather than
a palette index with a non-RGB color function.

Example

! Build as QuickWin or Standard Graphics
USE IFQWIN
INTEGER(4) color(50), result
INTEGER(2) x(50), y(50), status
TYPE (xycoord) pos
result = SETCOLORRGB(Z'FF')
CALL MOVETO(INT2(0), INT2(0), pos)
status = LINETO(INT2(100), INT2(200))
! Get 50 pixels at line 30 in viewport
DO i = 1, 50
 x(i) = i-1
 y(i) = 30
END DO
CALL GETPIXELSRGB(300, x, y, color)
! Move down 30 pixels and redisplay pixels
DO i = 1, 50
 y(i) = y(i) + 30
END DO
CALL SETPIXELSRGB (50, x, y, color)
END

See Also
SETPIXELSRGB
GETPIXELRGB, GETPIXELRGB_W
GETPIXELS
SETPIXELS

GETTEXTCOLOR
Graphics Function: Returns the current text color
index. This routine is only available for Windows.

Module

USE IFQWIN

 1 Intel® Fortran Compiler Classic and Intel® Fortran Compiler Developer Guide and Reference

2192

Syntax
result = GETTEXTCOLOR()

Results

The result type is INTEGER(2). It is the current text color index.

GETTEXTCOLOR returns the text color index set by SETTEXTCOLOR. SETTEXTCOLOR affects text output with
OUTTEXT, WRITE, and PRINT. The background color index is set with SETBKCOLOR and returned with
GETBKCOLOR. The color index of graphics over the background color is set with SETCOLOR and returned with
GETCOLOR. These non-RGB color functions use color indexes, not true color values, and limit the user to
colors in the palette, at most 256. To access all system colors, use SETTEXTCOLORRGB, SETBKCOLORRGB,
and SETCOLORRGB.

The default text color index is 15, which is associated with white unless the user remaps the palette.

NOTE
The GETTEXTCOLOR routine described here is a QuickWin routine. If you are trying to use
the Microsoft* Platform SDK version of the GetTextColor routine by including the IFWIN
module, you need to specify the routine name as MSFWIN$GetTextColor.

See Also
OUTTEXT
REMAPPALETTERGB
SETCOLOR
SETTEXTCOLOR

GETTEXTCOLORRGB
Graphics Function: Returns the Red-Green-Blue
(RGB) value of the current text color (used with
OUTTEXT, WRITE and PRINT). This routine is only
available for Windows.

Module

USE IFQWIN

Syntax
result = GETTEXTCOLORRGB()

Results

The result type is INTEGER(4). It is the RGB value of the current text color.

In each RGB color calue, each of the three colors, red, green, and blue, is represented by an eight-bit value
(2 hex digits). In the value you retrieve with GETTEXTCOLORRGB, red is the rightmost byte, followed by
green and blue. The RGB value's internal structure is as follows:

Larger numbers correspond to stronger color intensity with binary (hex Z'FF') the maximum for each of the
three components. For example, Z'0000FF' yields full-intensity red, Z'00FF00' full-intensity green, Z'FF0000'
full-intensity blue, and Z'FFFFFF' full-intensity for all three, resulting in bright white.

Intel® Fortran Compiler Classic and Intel® Fortran Compiler Developer Guide and Reference 1

2193

GETTEXTCOLORRGB returns the RGB color value of text over the background color (used by text functions
such as OUTTEXT, WRITE, and PRINT), set with SETTEXTCOLORRGB. The RGB color value used for graphics is
set and returned with SETCOLORRGB and GETCOLORRGB. SETCOLORRGB controls the color used by the
graphics function OUTGTEXT, while SETTEXTCOLORRGB controls the color used by all other text output
functions. The RGB background color value for both text and graphics is set and returned with
SETBKCOLORRGB and GETBKCOLORRGB.

SETTEXTCOLORRGB (and the other RGB color selection functions SETBKCOLORRGB, and SETCOLORRGB) sets
the color to a color value chosen from the entire available range. The non-RGB color functions
(SETTEXTCOLOR, SETBKCOLOR, and SETCOLOR) use color indexes rather than true color values. If you use
color indexes, you are restricted to the colors available in the palette, at most 256. Some display adapters
(SVGA and true color) are capable of creating 262,144 (256K) colors or more. To access any available color,
you need to specify an explicit RGB value with an RGB color function, rather than a palette index with a non-
RGB color function.

Example

! Build as QuickWin or Standard Graphics
USE IFQWIN
INTEGER(4) oldtextc, oldbackc, temp
TYPE (rccoord) curpos
! Save color settings
oldtextc = GETTEXTCOLORRGB()
oldbackc = GETBKCOLORRGB()
CALL CLEARSCREEN($GCLEARSCREEN)
! Reset colors
temp = SETTEXTCOLORRGB(Z'00FFFF') ! full red + full green
 ! = full yellow text
temp = SETBKCOLORRGB(Z'FF0000') ! blue background
CALL SETTEXTPOSITION(INT2(4), INT2(15), curpos)
CALL OUTTEXT('Hello, world')
! Restore colors
temp = SETTEXTCOLORRGB(oldtextc)
temp = SETBKCOLORRGB(oldbackc)
END

See Also
SETTEXTCOLORRGB
GETBKCOLORRGB
GETCOLORRGB
GETTEXTCOLOR

GETTEXTPOSITION
Graphics Subroutine: Returns the current text
position. This routine is only available for Windows.

Module

USE IFQWIN

Syntax
CALL GETTEXTPOSITION (s)

 1 Intel® Fortran Compiler Classic and Intel® Fortran Compiler Developer Guide and Reference

2194

s (Output) Derived type rccord. Current text position. The derived type
rccoord is defined in IFQWIN.F90 as follows:

TYPE rccoord
 INTEGER(2) row ! Row coordinate
 INTEGER(2) col ! Column coordinate
END TYPE rccoord

The text position given by coordinates (1, 1) is defined as the upper-left corner of the text window. Text
output from the OUTTEXT function (and WRITE and PRINT statements) begins at the current text position.
Font text is not affected by the current text position. Graphics output, including OUTGTEXT output, begins at
the current graphics output position, which is a separate position returned by GETCURRENTPOSITION.

Example

! Build as QuickWin or Standard Graphics
 USE IFQWIN
 TYPE (rccoord) textpos
 CALL GETTEXTPOSITION (textpos)
 END

See Also
SETTEXTPOSITION
GETCURRENTPOSITION
OUTTEXT
WRITE
SETTEXTWINDOW

GETTEXTWINDOW
Graphics Subroutine: Finds the boundaries of the
current text window. This routine is only available for
Windows.

Module

USE IFQWIN

Syntax
CALL GETTEXTWINDOW (r1,c1,r2,c2)

r1, c1 (Output) INTEGER(2). Row and column coordinates for upper-left
corner of the text window.

r2, c2 (Output) INTEGER(2). Row and column coordinates for lower-right
corner of the text window.

Output from OUTTEXT and WRITE is limited to the text window. By default, this is the entire window, unless
the text window is redefined by SETTEXTWINDOW.

The window defined by SETTEXTWINDOW has no effect on output from OUTGTEXT.

Example

! Build as QuickWin or Standard Graphics
USE IFQWIN
INTEGER(2) top, left, bottom, right
DO i = 1, 10
 WRITE(*,*) "Hello, world"
END DO

Intel® Fortran Compiler Classic and Intel® Fortran Compiler Developer Guide and Reference 1

2195

! Save text window position
 CALL GETTEXTWINDOW (top, left, bottom, right)
! Scroll text window down seven lines
 CALL SCROLLTEXTWINDOW (INT2(-7))
! Restore text window
 CALL SETTEXTWINDOW (top, left, bottom, right)
 WRITE(*,*) "At beginning again"
 END

See Also
GETTEXTPOSITION
OUTTEXT
WRITE
SCROLLTEXTWINDOW
SETTEXTPOSITION
SETTEXTWINDOW
WRAPON

GETVIEWCOORD, GETVIEWCOORD_W
Graphics Subroutines: Translate physical
coordinates or window coordinates to viewport
coordinates. These routines are only available for
Windows.

Module

USE IFQWIN

Syntax
CALL GETVIEWCOORD (x, y, s)
CALL GETVIEWCOORD_W (wx, wy, s)

x, y (Input) INTEGER(2). Physical coordinates to be converted to viewport
coordinates.

wx, wy (Input) REAL(8). Window coordinates to be converted to viewport
coordinates.

s (Output) Derived type xycoord. Viewport coordinates. The xycoord
derived type is defined in IFQWIN.F90 as follows:

TYPE xycoord
 INTEGER(2) xcoord ! x-coordinate
 INTEGER(2) ycoord ! y-coordinate
END TYPE xycoord

Viewport coordinates refer to an area of the screen defined as the viewport with SETVIEWPORT. Physical
coordinates refer to the whole screen. Both take integer coordinate values. Window coordinates refer to a
window sized with SETWINDOW or SETWSIZEQQ. Window coordinates are floating-point values and allow
easy scaling of data to the window area.

Example

See the example program in GETPHYSCOORD.

See Also
GETPHYSCOORD

 1 Intel® Fortran Compiler Classic and Intel® Fortran Compiler Developer Guide and Reference

2196

GETWINDOWCOORD

GETWINDOWCOORD
Graphics Subroutine: Converts viewport coordinates
to window coordinates. This routine is only available
for Windows.

Module

USE IFQWIN

Syntax
CALL GETWINDOWCOORD (x,y,s)

x,y (Input) INTEGER(2). Viewport coordinates to be converted to window
coordinates.

s (Output) Derived type wxycoord. Window coordinates. The wxycoord
derived type is defined in IFQWIN.F90 as follows:

TYPE wxycoord
 REAL(8) wx ! x-coordinate
 REAL(8) wy ! y-coordinate
END TYPE wxycoord

Physical coordinates refer to the physical screen. Viewport coordinates refer to an area of the screen defined
as the viewport with SETVIEWPORT. Both take integer coordinate values. Window coordinates refer to a
window sized with SETWINDOW or SETWSIZEQQ. Window coordinates are floating-point values and allow
easy scaling of data to the window area.

Example

See the example program in GETPHYSCOORD.

See Also
GETCURRENTPOSITION
GETPHYSCOORD
GETVIEWCOORD
MOVETO
SETVIEWPORT
SETWINDOW

GETWRITEMODE
Graphics Function: Returns the current logical write
mode, which is used when drawing lines with the
LINETO, POLYGON, and RECTANGLE functions. This
routine is only available for Windows.

Module

USE IFQWIN

Syntax
result = GETWRITEMODE()

Results

The result type is INTEGER(2). The result is the current write mode. Possible return values are:

Intel® Fortran Compiler Classic and Intel® Fortran Compiler Developer Guide and Reference 1

2197

• $GPSET - Causes lines to be drawn in the current graphics color. (default)
• $GAND - Causes lines to be drawn in the color that is the logical AND of the current graphics color and the

current background color.
• $GOR - Causes lines to be drawn in the color that is the logical OR of the current graphics color and the

current background color.
• $GPRESET - Causes lines to be drawn in the color that is the logical NOT of the current graphics color.
• $GXOR - Causes lines to be drawn in the color that is the logical exclusive OR (XOR) of the current

graphics color and the current background color.

The default value is $GPSET. These constants are defined in IFQWIN.F90.

The write mode is set with SETWRITEMODE.

Example

! Build as QuickWin or Standard Graphics App.
 USE IFQWIN
 INTEGER(2) mode
 mode = GETWRITEMODE()
 END

See Also
SETWRITEMODE
SETLINESTYLE
LINETO
POLYGON
PUTIMAGE
RECTANGLE
SETCOLORRGB
SETFILLMASK
GRSTATUS

GRSTATUS
Graphics Function: Returns the status of the most
recently used graphics routine. This routine is only
available for Windows.

Module

USE IFQWIN

Syntax
result = GRSTATUS()

Results

The result type is INTEGER(2). The result is the status of the most recently used graphics function.

Use GRSTATUS immediately following a call to a graphics routine to determine if errors or warnings were
generated. Return values less than 0 are errors, and values greater than 0 are warnings.

The following symbolic constants are defined in the IFQWIN.F90 module file for use with GRSTATUS:

Constant Meaning

$GRFILEWRITEERROR Error writing bitmap file

$GRFILEOPENERROR Error opening bitmap file

 1 Intel® Fortran Compiler Classic and Intel® Fortran Compiler Developer Guide and Reference

2198

Constant Meaning

$GRIMAGEREADERROR Error reading image

$GRBITMAPDISPLAYERROR Error displaying bitmap

$GRBITMAPTOOLARGE Bitmap too large

$GRIMPROPERBITMAPFORMAT Improper format for bitmap file

$GRFILEREADERROR Error reading file

$GRNOBITMAPFILE No bitmap file

$GRINVALIDIMAGEBUFFER Image buffer data inconsistent

$GRINSUFFICIENTMEMORY Not enough memory to allocate buffer or to
complete a fill operation

$GRINVALIDPARAMETER One or more parameters invalid

$GRMODENOTSUPPORTED Requested video mode not supported

$GRERROR Graphics error

$GROK Success

$GRNOOUTPUT No action taken

$GRCLIPPED Output was clipped to viewport

$GRPARAMETERALTERED One or more input parameters was altered to be
within range, or pairs of parameters were
interchanged to be in the proper order

After a graphics call, compare the return value of GRSTATUS to $GROK. to determine if an error has
occurred. For example:

 IF (GRSTATUS .LT. $GROK) THEN
 ! Code to handle graphics error goes here
 ENDIF

The following routines cannot give errors, and they all set GRSTATUS to $GROK:

DISPLAYCURSOR GETCOLORRGB GETTEXTWINDOW

GETBKCOLOR GETTEXTCOLOR OUTTEXT

GETBKCOLORRGB GETTEXTCOLORRGB WRAPON

GETCOLOR GETTEXTPOSITION

The following table lists some other routines with the error or warning messages they produce for
GRSTATUS:

Function Possible GRSTATUS error
codes

Possible GRSTATUS warning
codes

ARC, ARC_W $GRINVALIDPARAMETER $GRNOOUTPUT

CLEARSCREEN $GRINVALIDPARAMETER

Intel® Fortran Compiler Classic and Intel® Fortran Compiler Developer Guide and Reference 1

2199

Function Possible GRSTATUS error
codes

Possible GRSTATUS warning
codes

ELLIPSE, ELLIPSE_W $GRINVALIDPARAMETER,
$GRINSUFFICIENTMEMORY

$GRNOOUTPUT

FLOODFILLRGB $GRINVALIDPARAMETER,
$GRINSUFFICIENTMEMORY

$GRNOOUTPUT

GETARCINFO $GRERROR

GETFILLMASK $GRERROR,
$GRINVALIDPARAMETER

GETFONTINFO $GRERROR

GETGTEXTEXTENT $GRERROR

GETIMAGE $GRINSUFFICIENTMEMORY $GRPARAMETERALTERED

GETPIXEL $GRBITMAPTOOLARGE

GETPIXELRGB $GRBITMAPTOOLARGE

LINETO, LINETO_W $GRNOOUTPUT, $GRCLIPPED

LOADIMAGE $GRFILEOPENERROR,
$GRNOBITMAPFILE,
$GRALEREADERROR,
$GRIMPROPERBITMAPFORMAT,
$GRBITMAPTOOLARGE,
$GRIMAGEREADERROR

OUTGTEXT $GRNOOUTPUT, $GRCLIPPED

PIE, PIE_W $GRINVALIDPARAMETER,
$GRINSUFFICIENTMEMORY

$GRNOOUTPUT

POLYGON, POLYGON_W $GRINVALIDPARAMETER,
$GRINSUFFICIENTMEMORY

$GRNOOUTPUT, $GRCLIPPED

PUTIMAGE, PUTIMAGE_W $GRERROR,
$GRINVALIDPARAMETER,
$GRINVALIDIMAGEBUFFER
$GRBITMAPDISPLAYERROR

$GRPARAMETERALTERED,
$GRNOOUTPUT

RECTANGLE, RECTANGLE_W $GRINVALIDPARAMETER,
$GRINSUFFICIENTMEMORY

$GRNOOUTPUT, $GRCLIPPED

REMAPPALETTERGB $GRERROR,
$GRINVALIDPARAMETER

REMAPALLPALETTERGB $GRERROR,
$GRINVALIDPARAMETER

SAVEIMAGE $GRFILEOPENERROR

SCROLLTEXTWINDOW $GRNOOUTPUT

SETBKCOLOR $GRINVALIDPARAMETER $GRPARAMETERALTERED

 1 Intel® Fortran Compiler Classic and Intel® Fortran Compiler Developer Guide and Reference

2200

Function Possible GRSTATUS error
codes

Possible GRSTATUS warning
codes

SETBKCOLORRGB $GRINVALIDPARAMETER $GRPARAMETERALTERED

SETCLIPRGN $GRPARAMETERALTERED

SETCOLOR $GRPARAMETERALTERED

SETFONT $GRERROR,
$GRINSUFFICIENTMEMORY

$GRPARAMETERALTERED

SETPIXEL, SETPIXEL_W $GRNOOUTPUT

SETPIXELRGB, SETPIXELRGB_W $GRNOOUTPUT

SETTEXTCOLOR $GRPARAMETERALTERED

SETTEXTCOLORRGB $GRPARAMETERALTERED

SETTEXTPOSITION $GRPARAMETERALTERED

SETTEXTWINDOW $GRPARAMETERALTERED

SETVIEWPORT $GRPARAMETERALTERED

SETWINDOW $GRINVALIDPARAMETER $GRPARAMETERALTERED

SETWRITEMODE $GRINVALIDPARAMETER

See Also
ARC
ELLIPSE
FLOODFILLRGB
LINETO
PIE
POLYGON
REMAPALLPALETTERGB
SETBKCOLORRGB
SETCOLORRGB
SETPIXELRGB
SETTEXTCOLORRGB
SETWINDOW
SETWRITEMODE

IMAGESIZE, IMAGESIZE_W
Graphics Functions: Return the number of bytes
needed to store the image inside the specified
bounding rectangle. IMAGESIZE is useful for
determining how much memory is needed for a call to
GETIMAGE. These routines are only available for
Windows.

Module

USE IFQWIN

Intel® Fortran Compiler Classic and Intel® Fortran Compiler Developer Guide and Reference 1

2201

Syntax
result = IMAGESIZE (x1,y1,x2,y2)
result = IMAGESIZE_W (wx1,wy1,wx2,wy2)

x1, y1 (Input) INTEGER(2). Viewport coordinates for upper-left corner of
image.

x2, y2 (Input) INTEGER(2). Viewport coordinates for lower-right corner of
image.

wx1, wy1 (Input) REAL(8). Window coordinates for upper-left corner of image.

wx2, wy2 (Input) REAL(8). Window coordinates for lower-right corner of image.

Results

The result type is INTEGER(4). The result is the storage size of an image in bytes.

IMAGESIZE defines the bounding rectangle in viewport-coordinate points (x1, y1) and (x2, y2).
IMAGESIZE_W defines the bounding rectangle in window-coordinate points (wx1, wy1) and (wx2, wy2).

IMAGESIZE_W defines the bounding rectangle in terms of window-coordinate points (wx1, wy1) and (wx2,
wy2).

Example

See the example in GETIMAGE.

See Also
GETIMAGE
GRSTATUS
PUTIMAGE

INITIALIZEFONTS
Graphics Function: Initializes Windows* fonts. This
routine is only available for Windows.

Module

USE IFQWIN

Syntax
result = INITIALIZEFONTS()

Results

The result type is INTEGER(2). The result is the number of fonts initialized.

All fonts on Windows systems become available after a call to INITIALIZEFONTS. Fonts must be initialized
with INITIALIZEFONTS before any other font-related library function (such as GETFONTINFO,
GETGTEXTEXTENT, SETFONT, OUTGTEXT) can be used.

The font functions affect the output of OUTGTEXT only. They do not affect other Fortran I/O functions (such
as WRITE) or graphics output functions (such as OUTTEXT).

For each window you open, you must call INITIALIZEFONTS before calling SETFONT. INITIALIZEFONTS needs
to be executed after each new child window is opened in order for a subsequent SETFONT call to be
successful.

 1 Intel® Fortran Compiler Classic and Intel® Fortran Compiler Developer Guide and Reference

2202

Example

! build as a QuickWin or Standard Graphics App.
USE IFQWIN
INTEGER(2) numfonts
numfonts = INITIALIZEFONTS()
WRITE (*,*) numfonts
END

See Also
SETFONT
OUTGTEXT

LINETO, LINETO_W
Graphics Function: Draws a line from the current
graphics position up to and including the end point.
These routines are only available for Windows.

Module

USE IFQWIN

Syntax
result = LINETO (x,y)
result = LINETO_W (wx, wy)

x, y (Input) INTEGER(2). Viewport coordinates of end point.

wx, wy (Input) REAL(8). Window coordinates of end point.

Results

The result type is INTEGER(2). The result is a nonzero value if successful; otherwise, 0.

The line is drawn using the current graphics color, logical write mode, and line style. The graphics color is set
with SETCOLORRGB, the write mode with SETWRITEMODE, and the line style with SETLINESTYLE.

If no error occurs, LINETO sets the current graphics position to the viewport point (x, y), and LINETO_W sets
the current graphics position to the window point (wx, wy).

If you use FLOODFILLRGB to fill in a closed figure drawn with LINETO, the figure must be drawn with a solid
line style. Line style is solid by default and can be changed with SETLINESTYLE.

NOTE
The LINETO routine described here is a QuickWin routine. If you are trying to use the
Microsoft* Platform SDK version of the LineTo routine by including the IFWIN module, you
need to specify the routine name as MSFWIN$LineTo.

Example

This program draws the figure shown below.

! Build as QuickWin or Standard Graphics
USE IFQWIN
INTEGER(2) status
TYPE (xycoord) xy

CALL MOVETO(INT2(80), INT2(50), xy)

Intel® Fortran Compiler Classic and Intel® Fortran Compiler Developer Guide and Reference 1

2203

status = LINETO(INT2(240), INT2(150))
status = LINETO(INT2(240), INT2(50))
END

See Also
GETCURRENTPOSITION
GETLINESTYLE
GRSTATUS
MOVETO
POLYGON
POLYLINEQQ
SETLINESTYLE
SETWRITEMODE

LINETOAR
Graphics Function: Draws a line between each x,y
point in the from-array to each corresponding x,y
point in the to-array. This routine is only available for
Windows.

Module

USE IFQWIN

Syntax
result = LINETOAR (loc(fx), loc(fy), loc(tx) loc(ty), cnt)

fx (Input) INTEGER(2). From x viewport coordinate array.

fy (Input) INTEGER(2). From y viewport coordinate array.

tx (Input) INTEGER(2). To x viewport coordinate array.

ty (Input) INTEGER(2). To y viewport coordinate array.

cnt (Input) INTEGER(4). Length of each coordinate array; all should be
the same size.

Results

The result type is INTEGER(2). The result is a nonzero value if successful; otherwise, zero.

The lines are drawn using the current graphics color, logical write mode, and line style. The graphics color is
set with SETCOLORRGB, the write mode with SETWRITEMODE, and the line style with SETLINESTYLE.

Example

 ! Build for QuickWin or Standard Graphics
 USE IFQWIN
 integer(2) fx(3),fy(3),tx(3),ty(3),result
 integer(4) cnt, i

 1 Intel® Fortran Compiler Classic and Intel® Fortran Compiler Developer Guide and Reference

2204

 ! load the points
 do i = 1,3
 !from here
 fx(i) =20*i
 fy(i) =10
 !to there
 tx(i) =20*i
 ty(i) =60
 end do
 ! draw the lines all at once
 ! 3 white vertical lines in upper left corner
 result = LINETOAR(loc(fx),loc(fy),loc(tx),loc(ty), 3)
 end

See Also
LINETO
LINETOAREX
LOC
SETCOLORRGB
SETLINESTYLE
SETWRITEMODE

LINETOAREX
Graphics Function: Draws a line between each x,y
point in the from-array to each corresponding x,y
point in the to-array. Each line is drawn with the
specified graphics color and line style. This routine is
only available for Windows.

Module

USE IFQWIN

Syntax
result = LINETOAREX (loc(fx), loc(fy), loc(tx) loc(ty), loc(C), loc(S), cnt)

fx (Input) INTEGER(2). From x viewport coordinate array.

fy (Input) INTEGER(2). From y viewport coordinate array.

tx (Input) INTEGER(2). To x viewport coordinate array.

ty (Input) INTEGER(2). To y viewport coordinate array.

C (Input) INTEGER(4). Color array.

S (Input) INTEGER(4). Style array.

cnt (Input) INTEGER(4). Length of each coordinate array; also the length
of the color array and style array. All of the arrays should be the same
size.

Results

The result type is INTEGER(2). The result is a nonzero value if successful; otherwise, zero.

The lines are drawn using the specified graphics colors and line styles, and with the current write mode. The
current write mode is set with SETWRITEMODE.

Intel® Fortran Compiler Classic and Intel® Fortran Compiler Developer Guide and Reference 1

2205

If the color has the Z'80000000' bit set, the color is an RGB color; otherwise, the color is a palette color.

The styles are as follows from wingdi.h:

 SOLID 0
 DASH 1 /* ------- */
 DOT 2 /* */
 DASHDOT 3 /* _._._._ */
 DASHDOTDOT 4 /* _.._.._ */
 NULL 5

Example

 ! Build for QuickWin or Standard Graphics
 USE IFQWIN
 integer(2) fx(3),fy(3),tx(3),ty(3),result
 integer(4) C(3),S(3),cnt,i,color

 color = #000000FF

 ! load the points
 do i = 1,3
 S(i) = 0 ! all lines solid
 C(i) = IOR(Z'80000000',color)
 color = color*256 ! pick another of RGB
 if(IAND(color,Z'00FFFFFF').eq.0) color = Z'000000FF'
 !from here
 fx(i) =20*i
 fy(i) =10
 !to there
 tx(i) =20*i
 ty(i) =60
 end do
 ! draw the lines all at once
 ! 3 vertical lines in upper left corner, Red, Green, and Blue
 result = LINETOAREX(loc(fx),loc(fy),loc(tx),loc(ty),loc(C),loc(S),3)
 end

See Also
LINETO
LINETOAR
LOC
POLYLINEQQ
SETWRITEMODE

LOADIMAGE, LOADIMAGE_W
Graphics Functions: Read an image from a Windows
bitmap file and display it at a specified location. These
routines are only available for Windows.

Module

USE IFQWIN

Syntax
result = LOADIMAGE (filename,xcoord,ycoord)
result = LOADIMAGE_W (filename,wxcoord,wycoord)

 1 Intel® Fortran Compiler Classic and Intel® Fortran Compiler Developer Guide and Reference

2206

filename (Input) Character*(*). Path of the bitmap file.

xcoord, ycoord (Input) INTEGER(4). Viewport coordinates for upper-left corner of
image display.

wxcoord, wycoord (Input) REAL(8). Window coordinates for upper-left corner of image
display.

Results

The result type is INTEGER(4). The result is zero if successful; otherwise, a negative value.

The image is displayed with the colors in the bitmap file. If the color palette in the bitmap file is different
from the current system palette, the current palette is discarded and the bitmap's palette is loaded.

LOADIMAGE specifies the screen placement of the image in viewport coordinates. LOADIMAGE_W specifies
the screen placement of the image in window coordinates.

See Also
SAVEIMAGE, SAVEIMAGE_W

MOVETO, MOVETO_W
Graphics Subroutines: Move the current graphics
position to a specified point. No drawing occurs. These
routines are only available for Windows.

Module

USE IFQWIN

Syntax
CALL MOVETO (x,y,s)
CALL MOVETO_W (wx,wy,ws)

x, y (Input) INTEGER(2). Viewport coordinates of the new graphics
position.

s (Output) Derived type xycoord. Viewport coordinates of the previous
graphics position. The derived type xycoordis defined in IFQWIN.F90
as follows:

 TYPE xycoord
 INTEGER(2) xcoord ! x coordinate
 INTEGER(2) ycoord ! y coordinate
 END TYPE xycoord

wx, wy (Input) REAL(8). Window coordinates of the new graphics position.

ws (Output) Derived type wxycoord. Viewport coordinates of the previous
graphics position. The derived type wxycoordis defined in
IFQWIN.F90 as follows:

 TYPE wxycoord
 DOUBLE PRECISION WX,WY
 STRUCTURE/WXYCOORD/
 DOUBLE PRECISION WX
 DOUBLE PRECISION WY
 END STRUCTURE
 END TYPE wxycoord

Intel® Fortran Compiler Classic and Intel® Fortran Compiler Developer Guide and Reference 1

2207

MOVETO sets the current graphics position to the viewport coordinate (x, y). MOVETO_W sets the current
graphics position to the window coordinate (wx, wy).

MOVETO and MOVETO_W assign the coordinates of the previous position to s.

Example

 ! Build as QuickWin or Standard Graphics ap.
 USE IFQWIN
 INTEGER(2) status, x, y
 INTEGER(4) result
 TYPE (xycoord) xy
 RESULT = SETCOLORRGB(Z'FF0000') ! blue
 x = 60
 ! Draw a series of lines DO y = 50, 92, 3
 CALL MOVETO(x, y, xy)
 status = LINETO(INT2(x + 20), y)
 END DO
 END

See Also
GETCURRENTPOSITION
LINETO
OUTGTEXT

OUTGTEXT
Graphics Subroutine: In graphics mode, sends a
string of text to the screen, including any trailing
blanks. This routine is only available for Windows.

Module

USE IFQWIN

Syntax
CALL OUTGTEXT (text)

text (Input) Character*(*). String to be displayed.

Text output begins at the current graphics position, using the current font set with SETFONT and the current
color set with SETCOLORRGB or SETCOLOR. No formatting is provided. After it outputs the text, OUTGTEXT
updates the current graphics position.

Before you call OUTGTEXT, you must call the INITIALIZEFONTS function.

Because OUTGTEXT is a graphics function, the color of text is affected by the SETCOLORRGB function, not by
SETTEXTCOLORRGB.

Example

 ! build as a QuickWin App.
 USE IFQWIN
 INTEGER(2) result
 INTEGER(4) i
 TYPE (xycoord) xys

 result = INITIALIZEFONTS()
 result = SETFONT('t''Arial''h18w10pvib')
 do i=1,6
 CALL MOVETO(INT2(0),INT2(30*(i-1)),xys)

 1 Intel® Fortran Compiler Classic and Intel® Fortran Compiler Developer Guide and Reference

2208

 grstat=SETCOLOR(INT2(i))
 CALL OUTGTEXT('This should be ')
 SELECT CASE (i)
 CASE (1)
 CALL OUTGTEXT('Blue')
 CASE (2)
 CALL OUTGTEXT('Green')
 CASE (3)
 CALL OUTGTEXT('Cyan')
 CASE (4)
 CALL OUTGTEXT('Red')
 CASE (5)
 CALL OUTGTEXT('Magenta')
 CASE (6)
 CALL OUTGTEXT('Orange')
 END SELECT
 end do
 END

See Also
GETFONTINFO
GETGTEXTEXTENT
INITIALIZEFONTS
MOVETO
SETCOLORRGB
SETFONT
SETGTEXTROTATION

OUTTEXT
Graphics Subroutine: In text or graphics mode,
sends a string of text to the screen, including any
trailing blanks. This routine is only available for
Windows.

Module

USE IFQWIN

Syntax
CALL OUTTEXT (text)

text (Input) Character*(*). String to be displayed.

Text output begins at the current text position in the color set with SETTEXTCOLORRGB or SETTEXTCOLOR.
No formatting is provided. After it outputs the text, OUTTEXT updates the current text position.

To output text using special fonts, you must use the OUTGTEXT subroutine.

Example

 USE IFQWIN
 INTEGER(2) oldcolor
 TYPE (rccoord) rc

 CALL CLEARSCREEN($GCLEARSCREEN)
 CALL SETTEXTPOSITION (INT2(1), INT2(5), rc)

Intel® Fortran Compiler Classic and Intel® Fortran Compiler Developer Guide and Reference 1

2209

 oldcolor = SETTEXTCOLOR(INT2(4))
 CALL OUTTEXT ('Hello, everyone')
 END

See Also
OUTGTEXT
SETTEXTPOSITION
SETTEXTCOLORRGB
WRITE
WRAPON

PIE, PIE_W
Graphics Functions: Draw a pie-shaped wedge in
the current graphics color. These routines are only
available for Windows.

Module

USE IFQWIN

Syntax
result = PIE (i,x1,y1,x2,y2,x3,y3,x4,y4)
result = PIE_W (i, wx1, wy1, wx2, wy2, wx3, y3,wx4, wy4)

i (Input) INTEGER(2). Fill flag. One of the following symbolic constants
defined in IFQWIN.F90:

• $GFILLINTERIOR - Fills the figure using the current color and fill
mask.

• $GBORDER - Does not fill the figure.

x1, y1 (Input) INTEGER(2). Viewport coordinates for upper-left corner of
bounding rectangle.

x2, y2 (Input) INTEGER(2). Viewport coordinates for lower-right corner of
bounding rectangle.

x3, y3 (Input) INTEGER(2). Viewport coordinates of start vector.

x4, y4 (Input) INTEGER(2). Viewport coordinates of end vector.

wx1, wy1 (Input) REAL(8). Window coordinates for upper-left corner of
bounding rectangle.

wx2, wy2 (Input) REAL(8). Window coordinates for lower-right corner of
bounding rectangle.

wx3, wy3 (Input) REAL(8). Window coordinates of start vector.

wx4, wy4 (Input) REAL(8). Window coordinates of end vector.

Results

The result type is INTEGER(2). The result is nonzero if successful; otherwise, 0. If the pie is clipped or
partially out of bounds, the pie is considered successfully drawn and the return is 1. If the pie is drawn
completely out of bounds, the return is 0.

The border of the pie wedge is drawn in the current color set by SETCOLORRGB.

 1 Intel® Fortran Compiler Classic and Intel® Fortran Compiler Developer Guide and Reference

2210

The PIE function uses the viewport-coordinate system. The center of the arc is the center of the bounding
rectangle, which is specified by the viewport-coordinate points (x1, y1) and (x2, y2). The arc starts where it
intersects an imaginary line extending from the center of the arc through (x3, y3). It is drawn
counterclockwise about the center of the arc, ending where it intersects an imaginary line extending from the
center of the arc through (x4, y4).

The PIE_W function uses the window-coordinate system. The center of the arc is the center of the bounding
rectangle specified by the window-coordinate points (wx1, wy1) and (wx2, wy2). The arc starts where it
intersects an imaginary line extending from the center of the arc through (wx3, wy3). It is drawn
counterclockwise about the center of the arc, ending where it intersects an imaginary line extending from the
center of the arc through (wx4, wy4).

The fill flag option $GFILLINTERIOR is equivalent to a subsequent call to FLOODFILLRGB using the center of
the pie as the starting point and the current graphics color (set by SETCOLORRGB) as the fill color. If you
want a fill color different from the boundary color, you cannot use the $GFILLINTERIOR option. Instead, after
you have drawn the pie wedge, change the current color with SETCOLORRGB and then call FLOODFILLRGB.
You must supply FLOODFILLRGB with an interior point in the figure you want to fill. You can get this point for
the last drawn pie or arc by calling GETARCINFO.

If you fill the pie with FLOODFILLRGB, the pie must be bordered by a solid line style. Line style is solid by
default and can be changed with SETLINESTYLE.

NOTE
The PIE routine described here is a QuickWin routine. If you are trying to use the Microsoft*
Platform SDK version of the Pie routine by including the IFWIN module, you need to specify
the routine name as MSFWIN$Pie.

Example

 ! build as Graphics App.
 USE IFQWIN
 INTEGER(2) status, dummy
 INTEGER(2) x1, y1, x2, y2, x3, y3, x4, y4
 x1 = 80; y1 = 50
 x2 = 180; y2 = 150
 x3 = 110; y3 = 80
 x4 = 90; y4 = 180

 status = SETCOLOR(INT2(4))
 dummy = PIE($GFILLINTERIOR, x1, y1, x2, y2, &
 x3, y3, x4, y4)
 END

This figure shows the coordinates used to define PIE and PIE_W:

See Also
SETCOLORRGB
SETFILLMASK
SETLINESTYLE

Intel® Fortran Compiler Classic and Intel® Fortran Compiler Developer Guide and Reference 1

2211

FLOODFILLRGB
GETARCINFO
ARC
ELLIPSE
GRSTATUS
LINETO
POLYGON
RECTANGLE

POLYBEZIER, POLYBEZIER_W
Graphics Functions: Draw one or more Bezier
curves. These routines are only available for Windows.

Module

USE IFQWIN

Syntax
result = POLYBEZIER (lppoints,cpoints)
result = POLYBEZIER_W (lppoints,cpoints)

lppoints (Input) Derived type xycoord. Array of derived types defining the
endpoints and the control points for each Bezier curve. The derived
type xycoord is defined in IFQWIN.F90 as follows:

 TYPE xycoord
 INTEGER(2) xcoord
 INTEGER(2) ycoord
 END TYPE xycoord

cpoints (Input) INTEGER(2). Number of points in lppoints.

Results

The result type is INTEGER(2). The result is nonzero if anything is drawn; otherwise, 0.

A Bezier curve is based on fitting a cubic curve to four points. The first point is the starting point, the next
two points are control points, and last point is the ending point. The starting point must be given for the first
curve; subsequent curves use the ending point of the previous curve as their starting point. So, cpoints
should contain 4 for one curve, 7 for 2 curves, 10 for 3 curves, and so forth.

POLYBEZIER does not use or change the current graphics position.

Example

Program Bezier
use IFQWIN
! Shows how to use POLYBEZIER, POLYBEZIER_W,
! POLYBEZIERTO, and POLYBEZIERTO_W,
TYPE(xycoord) lppoints(31)
TYPE(wxycoord) wlppoints(31)
TYPE(xycoord) xy
TYPE(wxycoord) wxy
integer(4) i
integer(2) istat, orgx, orgy
real(8) worgx, worgy
i = setcolorrgb(Z'00FFFFFF') ! graphic to black
i = settextcolorrgb(Z'00FFFFFF') ! text to black

 1 Intel® Fortran Compiler Classic and Intel® Fortran Compiler Developer Guide and Reference

2212

i = setbkcolorrgb(Z'00000000') ! background to white
call clearscreen($GCLEARSCREEN)
orgx = 20
orgy = 20
lppoints(1)%xcoord = 1+orgx
lppoints(1)%ycoord = 1+orgy
lppoints(2)%xcoord = 30+orgx
lppoints(2)%ycoord = 120+orgy
lppoints(3)%xcoord = 150+orgx
lppoints(3)%ycoord = 60+orgy
lppoints(4)%xcoord = 180+orgx
lppoints(4)%ycoord = 180+orgy
istat = PolyBezier(lppoints, 4)
! Show tangent lines
! A bezier curve is tangent to the line
! from the begin point to the first control
! point. It is also tangent to the line from
! the second control point to the end point.
do i = 1,4,2
call moveto(lppoints(i)%xcoord,lppoints(i)%ycoord,xy)
istat = lineto(lppoints(i+1)%xcoord,lppoints(i+1)%ycoord)
end do
read(*,*)
worgx = 50.0
worgy = 50.0
wlppoints(1)%wx = 1.0+worgx
wlppoints(1)%wy = 1.0+worgy
wlppoints(2)%wx = 30.0+worgx
wlppoints(2)%wy = 120.0+worgy
wlppoints(3)%wx = 150.0+worgx
wlppoints(3)%wy = 60.0+worgy
wlppoints(4)%wx = 180.0+worgx
wlppoints(4)%wy = 180.0+worgy
i = setcolorrgb(Z'000000FF') ! graphic to red
istat = PolyBezier_W(wlppoints, 4)
! Show tangent lines
! A bezier curve is tangent to the line
! from the begin point to the first control
! point. It is also tangent to the line from
! the second control point to the end point.
do i = 1,4,2
call moveto_w(wlppoints(i)%wx,wlppoints(i)%wy,wxy)
istat = lineto_w(wlppoints(i+1)%wx,wlppoints(i+1)%wy)
end do
read(*,*)
orgx = 80
orgy = 80
! POLYBEZIERTO uses the current graphics position
! as its initial starting point so we start the
! array with the first first control point.
! lppoints(1)%xcoord = 1+orgx ! need to move to this
! lppoints(1)%ycoord = 1+orgy
lppoints(1)%xcoord = 30+orgx
lppoints(1)%ycoord = 120+orgy
lppoints(2)%xcoord = 150+orgx
lppoints(2)%ycoord = 60+orgy
lppoints(3)%xcoord = 180+orgx
lppoints(3)%ycoord = 180+orgy

Intel® Fortran Compiler Classic and Intel® Fortran Compiler Developer Guide and Reference 1

2213

i = setcolorrgb(Z'0000FF00') ! graphic to green
call moveto(1+orgx,1+orgy,xy)
istat = PolyBezierTo(lppoints, 3)
! Show tangent lines
! A bezier curve is tangent to the line
! from the begin point to the first control
! point. It is also tangent to the line from
! the second control point to the end point.
call moveto(1+orgx,1+orgy,xy)
istat = lineto(lppoints(1)%xcoord,lppoints(1)%ycoord)
call moveto(lppoints(2)%xcoord,lppoints(2)%ycoord,xy)
istat = lineto(lppoints(3)%xcoord,lppoints(3)%ycoord)
read(*,*)
worgx = 110.0
worgy = 110.0
!wlppoints(1)%wx = 1.0+worgx
!wlppoints(1)%wy = 1.0+worgy
wlppoints(1)%wx = 30.0+worgx
wlppoints(1)%wy = 120.0+worgy
wlppoints(2)%wx = 150.0+worgx
wlppoints(2)%wy = 60.0+worgy
wlppoints(3)%wx = 180.0+worgx
wlppoints(3)%wy = 180.0+worgy
call moveto_w(1.0+worgx,1.0+worgy,wxy)
i = setcolorrgb(Z'00FF0000') ! graphic to blue
istat = PolyBezierTo_W(wlppoints, 3)
! Show tangent lines
! A bezier curve is tangent to the line
! from the begin point to the first control
! point. It is also tangent to the line from
! the second control point to the end point.
call moveto_w(1.0+worgx,1.0+worgy,wxy)
istat = lineto_w(wlppoints(1)%wx,wlppoints(1)%wy)
call moveto_w(wlppoints(2)%wx,wlppoints(2)%wy,wxy)
istat = lineto_w(wlppoints(3)%wx,wlppoints(3)%wy)
read(*,*)
END PROGRAM Bezier

See Also
POLYBEZIERTO, POLYBEZIERTO_W

POLYBEZIERTO, POLYBEZIERTO_W
Graphics Functions: Draw one or more Bezier
curves. These routines are only available for Windows.

Module

USE IFQWIN

Syntax
result = POLYBEZIERTO (lppoints,cpoints)
result = POLYBEZIERTO_W (lppoints,cpoints)

 1 Intel® Fortran Compiler Classic and Intel® Fortran Compiler Developer Guide and Reference

2214

lppoints (Input) Derived type xycoord. Array of derived types defining the
endpoints and the control points for each Bezier curve. The derived
type xycoord is defined in IFQWIN.F90 as follows:

 TYPE xycoord
 INTEGER(2) xcoord
 INTEGER(2) ycoord
 END TYPE xycoord

cpoints (Input) INTEGER(2). Number of points in ppoints or lppoints.

Results

The result type is INTEGER(2). The result is nonzero if anything is drawn; otherwise, 0.

A Bezier curve is based on fitting a cubic curve to four points. The first point is the starting point, the next
two points are control points, and last point is the ending point. The starting point is the current graphics
position as set by MOVETO for the first curve; subsequent curves use the ending point of the previous curve
as their starting point. So, cpoints should contain 3 for one curve, 6 for 2 curves, 9 for 3 curves, and so
forth.

POLYBEZIERTO moves the current graphics position to the ending point of the last curve drawn.

Example

See the example in POLYBEZIER, POLYBEZIER_W.

See Also
POLYBEZIER, POLYBEZIER_W
MOVETO, MOVETO_W

POLYGON, POLYGON_W
Graphics Functions: Draw a polygon using the
current graphics color, logical write mode, and line
style. These routines are only available for Windows.

Module

USE IFQWIN

Syntax
result = POLYGON (control,lppoints,cpoints)
result = POLYGON_W (control,lppoints,cpoints)

control (Input) INTEGER(2). Fill flag. One of the following symbolic constants
defined in IFQWIN.F90:

• $GFILLINTERIOR - Draws a solid polygon using the current color
and fill mask.

• $GBORDER - Draws the border of a polygon using the current color
and line style.

Intel® Fortran Compiler Classic and Intel® Fortran Compiler Developer Guide and Reference 1

2215

lppoints (Input) Derived type xycoord. Array of derived types defining the
polygon vertices in viewport coordinates. The derived type xycoord is
defined in IFQWIN.F90 as follows:

 TYPE xycoord
 INTEGER(2) xcoord
 INTEGER(2) ycoord
 END TYPE xycoord

cpoints (Input) INTEGER(2). Number of polygon vertices.

Results

The result type is INTEGER(2). The result is nonzero if anything is drawn; otherwise, 0.

The border of the polygon is drawn in the current graphics color, logical write mode, and line style, set with
SETCOLORRGB, SETWRITEMODE, and SETLINESTYLE, respectively. The POLYGON routine uses the viewport-
coordinate system (expressed in xycoord derived types), and the POLYGON_W routine uses real-valued
window coordinates (expressed in xycoord types).

The argument lppoints is an array whose elements are xycoord derived types. Each element specifies one of
the polygon's vertices. The argument cpoints is the number of elements (the number of vertices) in the
lppoints array.

Note that POLYGON draws between the vertices in their order in the array. Therefore, when drawing outlines,
skeletal figures, or any other figure that is not filled, you need to be careful about the order of the vertices. If
you don't want lines between some vertices, you may need to repeat vertices to make the drawing backtrack
and go to another vertex to avoid drawing across your figure. Also, POLYGON draws a line from the last
specified vertex back to the first vertex.

If you fill the polygon using FLOODFILLRGB, the polygon must be bordered by a solid line style. Line style is
solid by default and can be changed with SETLINESTYLE.

NOTE
The POLYGON routine described here is a QuickWin routine. If you are trying to use the
Microsoft* Platform SDK version of the Polygon routine by including the IFWIN module, you
need to specify the routine name as MSFWIN$Polygon.

Example

 ! Build as a Graphics App.

 ! Draw a skeletal box
 USE IFQWIN
 INTEGER(2) status
 TYPE (xycoord) poly(12)

 ! Set up box vertices in order they will be drawn, &
 ! repeating some to avoid unwanted lines across box

 poly(1)%xcoord = 50
 poly(1)%ycoord = 80
 poly(2)%xcoord = 85
 poly(2)%ycoord = 35
 poly(3)%xcoord = 185
 poly(3)%ycoord = 35
 poly(4)%xcoord = 150

 1 Intel® Fortran Compiler Classic and Intel® Fortran Compiler Developer Guide and Reference

2216

 poly(4)%ycoord = 80
 poly(5)%xcoord = 50
 poly(5)%ycoord = 80
 poly(6)%xcoord = 50
 poly(6)%ycoord = 180
 poly(7)%xcoord = 150
 poly(7)%ycoord = 180
 poly(8)%xcoord = 185
 poly(8)%ycoord = 135
 poly(9)%xcoord = 185
 poly(9)%ycoord = 35
 poly(10)%xcoord = 150
 poly(10)%ycoord = 80
 poly(11)%xcoord = 150
 poly(11)%ycoord = 180
 poly(12)%xcoord = 150
 poly(12)%ycoord = 80

 status = SETCOLORRGB(Z'0000FF')
 status = POLYGON($GBORDER, poly, INT2(12))
 END

See Also
SETCOLORRGB
SETFILLMASK
SETLINESTYLE
FLOODFILLRGB
GRSTATUS
LINETO
RECTANGLE
SETWRITEMODE

POLYLINEQQ
Graphics Function: Draws a line between each
successive x, y point in a given array. This routine is
only available for Windows.

Module

USE IFQWIN

Syntax
result = POLYLINEQQ (points,cnt)

points (Input) An array of DF_POINT objects. The derived type DF_POINT is
defined in IFQWIN.F90 as:

type DF_POINT
 sequence
 integer(4) x
 integer(4) y
end type DF_POINT

cnt (Input) INTEGER(4). Number of elements in the points array.

Intel® Fortran Compiler Classic and Intel® Fortran Compiler Developer Guide and Reference 1

2217

Results

The result type is INTEGER(4). The result is a nonzero value if successful; otherwise, zero.

POLYLINEQQ uses the viewport-coordinate system.

The lines are drawn using the current graphics color, logical write mode, and line style. The graphics color is
set with SETCOLORRGB, the write mode with SETWRITEMODE, and the line style with SETLINESTYLE.

The current graphics position is not used or changed as it is in the LINETO function.

Example

 ! Build for QuickWin or Standard Graphics
 USE IFQWIN
 TYPE(DF_POINT) points(12)
 integer(4) result
 integer(4) cnt, i

 ! load the points
 do i = 1,12,2
 points(i).x =20*i
 points(i).y =10
 points(i+1).x =20*i
 points(i+1).y =60
 end do

 ! A sawtooth pattern will appear in the upper left corner
 result = POLYLINEQQ(points, 12)
 end

See Also
LINETO
LINETOAREX
SETCOLORRGB
SETLINESTYLE
SETWRITEMODE

PUTIMAGE, PUTIMAGE_W
Graphics Subroutines: Transfer the image stored in
memory to the screen. These routines are only
available for Windows.

Module

USE IFQWIN

Syntax
CALL PUTIMAGE (x,y,image,action)
CALL PUTIMAGE_W (wx,wy,image,action)

x, y (Input) INTEGER(2). Viewport coordinates for upper-left corner of the
image when placed on the screen.

wx, wy (Input) REAL(8). Window coordinates for upper-left corner of the
image when placed on the screen.

 1 Intel® Fortran Compiler Classic and Intel® Fortran Compiler Developer Guide and Reference

2218

image (Input) INTEGER(1). Array of single-byte integers. Stored image
buffer.

action (Input) INTEGER(2). Interaction of the stored image with the existing
screen image. One of the following symbolic constants defined in
IFQWIN.F90:

• $GAND - Forms a new screen display as the logical AND of the
stored image and the existing screen display. Points that have the
same color in both the existing screen image and the stored image
remain the same color, while points that have different colors are
joined by a logical AND.

• $GOR - Superimposes the stored image onto the existing screen
display. The resulting image is the logical OR of the image.

• $GPRESET - Transfers the data point-by-point onto the screen.
Each point has the inverse of the color attribute it had when it was
taken from the screen by GETIMAGE, producing a negative image.

• $GPSET - Transfers the data point-by-point onto the screen. Each
point has the exact color attribute it had when it was taken from
the screen by GETIMAGE.

• $GXOR - Causes points in the existing screen image to be inverted
wherever a point exists in the stored image. This behavior is like
that of a cursor. If you perform an exclusive OR of an image with
the background twice, the background is restored unchanged. This
allows you to move an object around without erasing the
background. The $GXOR constant is a special mode often used for
animation.

• In addition, the following ternary raster operation constants can be
used (described in the online documentation for the Windows* API
BitBlt):

• $GSRCCOPY (same as $GPSET)
• $GSRCPAINT (same as $GOR)
• $GSRCAND (same as $GAND)
• $GSRCINVERT (same as $GXOR)
• $GSRCERASE
• $GNOTSRCCOPY (same as $GPRESET)
• $GNOTSRCERASE
• $GMERGECOPY
• $GMERGEPAINT
• $GPATCOPY
• $GPATPAINT
• $GPATINVERT
• $GDSTINVERT
• $GBLACKNESS
• $GWHITENESS

PUTIMAGE places the upper-left corner of the image at the viewport coordinates (x, y). PUTIMAGE_W places
the upper-left corner of the image at the window coordinates (wx, wy).

Example

 ! Build as a Graphics App.
 USE IFQWIN
 INTEGER(1), ALLOCATABLE :: buffer(:)
 INTEGER(2) status, x

Intel® Fortran Compiler Classic and Intel® Fortran Compiler Developer Guide and Reference 1

2219

 INTEGER(4) imsize

 status = SETCOLOR(INT2(4))

 ! draw a circle
 status = ELLIPSE($GFILLINTERIOR,INT2(40),INT2(55), &
 INT2(70),INT2(85))
 imsize = IMAGESIZE (INT2(39),INT2(54),INT2(71), &
 INT2(86))
 ALLOCATE (buffer(imsize))
 CALL GETIMAGE(INT2(39),INT2(54),INT2(71),INT2(86), &
 buffer)

 ! copy a row of circles beneath it
 DO x = 5 , 395, 35
 CALL PUTIMAGE(x, INT2(90), buffer, $GPSET)
 END DO
 DEALLOCATE(buffer)
 END

See Also
GETIMAGE
GRSTATUS
IMAGESIZE

RECTANGLE, RECTANGLE_W
Graphics Functions: Draw a rectangle using the
current graphics color, logical write mode, and line
style. These routines are only available for Windows.

Module

USE IFQWIN

Syntax
result = RECTANGLE (control, x1, y1, x2, y2)
result = RECTANGLE_W (control, wx1, wy1, wx2, wy2)

control (Input) INTEGER(2). Fill flag. One of the following symbolic constants
defined in IFQWIN.F90:

• $GFILLINTERIOR - Draws a solid figure using the current color and
fill mask.

• $GBORDER - Draws the border of a rectangle using the current
color and line style.

x1, y1 (Input) INTEGER(2). Viewport coordinates for upper-left corner of
rectangle.

x2, y2 (Input) INTEGER(2). Viewport coordinates for lower-right corner of
rectangle.

wx1, wy1 (Input) REAL(8). Window coordinates for upper-left corner of
rectangle.

wx2, wy2 (Input) REAL(8). Window coordinates for lower-right corner of
rectangle.

 1 Intel® Fortran Compiler Classic and Intel® Fortran Compiler Developer Guide and Reference

2220

Results

The result type is INTEGER(2). The result is nonzero if successful; otherwise, 0.

The RECTANGLE function uses the viewport-coordinate system. The viewport coordinates (x1, y1) and (x2,
y2) are the diagonally opposed corners of the rectangle.

The RECTANGLE_W function uses the window-coordinate system. The window coordinates (wx1, wy1) and
(wx2, wy2) are the diagonally opposed corners of the rectangle.

SETCOLORRGB sets the current graphics color. SETFILLMASK sets the current fill mask. By default, filled
graphic shapes are filled solid with the current color.

If you fill the rectangle using FLOODFILLRGB, the rectangle must be bordered by a solid line style. Line style
is solid by default and can be changed with SETLINESTYLE.

NOTE
The RECTANGLE routine described here is a QuickWin routine. If you are trying to use the
Microsoft* Platform SDK version of the Rectangle routine by including the IFWIN module,
you need to specify the routine name as MSFWIN$Rectangle.

Example

This program draws the rectangle shown below.

 ! Build as a QuickWin or Standard Graphics App.
 USE IFQWIN
 INTEGER(2) dummy, x1, y1, x2, y2
 x1 = 80; y1 = 50
 x2 = 240; y2 = 150
 dummy = RECTANGLE($GBORDER, x1, y1, x2, y2)
 END

See Also
SETFILLMASK
GRSTATUS
LINETO
POLYGON
FLOODFILLRGB
SETLINESTYLE
SETCOLOR
SETWRITEMODE

REMAPALLPALETTERGB, REMAPPALETTERGB
Graphics Functions: REMAPALLPALETTERGB remaps
a set of Red-Green-Blue (RGB) color values to indexes
recognized by the video hardware.

Intel® Fortran Compiler Classic and Intel® Fortran Compiler Developer Guide and Reference 1

2221

REMAPPALETTERGB remaps one color index to an RGB
color value. These routines are only available for
Windows.

Module

USE IFQWIN

Syntax
result = REMAPALLPALETTERGB (colors)
result = REMAPPALETTERGB (index, colors)

colors (Input) INTEGER(4). Ordered array of RGB color values to be mapped
in order to indexes. Must hold 0-255 elements.

index (Input) INTEGER(4). Color index to be reassigned an RGB color.

color (Input) INTEGER(4). RGB color value to assign to a color index.

Results

The result type is INTEGER(4). REMAPALLPALETTERGB returns 0 if successful; otherwise, -1.
REMAPPALETTERGB returns the previous color assigned to the index.

The REMAPALLPALETTERGB function remaps all of the available color indexes simultaneously (up to 236; 20
indexes are reserved by the operating system). The colors argument points to an array of RGB color values.
The default mapping between the first 16 indexes and color values is shown in the following table. The 16
default colors are provided with symbolic constants in IFQWIN.F90.

Index Color Index Color

0 $BLACK 8 $GRAY

1 $BLUE 9 $LIGHTBLUE

2 $GREEN 10 $LIGHTGREEN

3 $CYAN 11 $LIGHTCYAN

4 $RED 12 $LIGHTRED

5 $MAGENTA 13 $LIGHTMAGENTA

6 $BROWN 14 $YELLOW

7 $WHITE 15 $BRIGHTWHITE

The number of colors mapped can be fewer than 236 if the number of colors supported by the current video
mode is fewer, but at most 236 colors can be mapped by REMAPALLPALETTERGB. Most Windows* graphics
drivers support a palette of 256K colors or more, of which only a few can be mapped into the 236 palette
indexes at a time. To access and use all colors on the system, bypass the palette and use direct RGB color
functions such as such as SETCOLORRGB and SETPIXELSRGB.

Any RGB colors can be mapped into the 236 palette indexes. Thus, you could specify a palette with 236
shades of red.

In each RGB color value, each of the three colors, red, green and blue, is represented by an eight-bit value
(2 hex digits). In the values you specify with REMAPALLPALETTERGB or REMAPPALETTERGB, red is the
rightmost byte, followed by green and blue. The RGB value's internal structure is as follows:

 1 Intel® Fortran Compiler Classic and Intel® Fortran Compiler Developer Guide and Reference

2222

Larger numbers correspond to stronger color intensity with binary 11111111 (hex FF) the maximum for each
of the three components. For example, Z'008080' yields full-intensity red, Z'00FF00' full-intensity green,
Z'FF0000' full-intensity blue, and Z'FFFFFF' full-intensity for all three, resulting in bright white.

Example

 ! Build as QuickWin or Standard Graphics App.

 USE IFQWIN
 INTEGER(4) colors(3)
 INTEGER(2) status
 colors(1) = Z'00FFFF' ! yellow
 colors(2) = Z'FFFFFF' ! bright white
 colors(3) = 0 ! black

 status = REMAPALLPALETTERGB(colors)
 status = REMAPPALETTERGB(INT2(47), Z'45A315')
 END

See Also
SETBKCOLORRGB
SETCOLORRGB
SETBKCOLOR
SETCOLOR

SAVEIMAGE, SAVEIMAGE_W
Graphics Functions: Save an image from a specified
portion of the screen into a Windows bitmap file.
These routines are only available for Windows.

Module

USE IFQWIN

Syntax
result = SAVEIMAGE (filename,ulxcoord,ulycoord, lrxcoord,lrycoord)
result = SAVEIMAGE_W (filename,ulwxcoord,ulwycoord, lrwxcoord,lrwycoord)

filename (Input) Character*(*). Path of the bitmap file.

ulxcoord, ulycoord (Input) INTEGER(4). Viewport coordinates for upper-left corner of the
screen image to be captured.

lrxcoord, lrycoord (Input) INTEGER(4). Viewport coordinates for lower-right corner of the
screen image to be captured.

ulwxcoord, ulwycoord (Input) REAL(8). Window coordinates for upper-left corner of the
screen image to be captured.

lrwxcoord, lrwycoord (Input) REAL(8). Window coordinates for lower-right corner of the
screen image to be captured.

Results

The result type is INTEGER(4). The result is zero if successful; otherwise, a negative value.

Intel® Fortran Compiler Classic and Intel® Fortran Compiler Developer Guide and Reference 1

2223

The SAVEIMAGE function captures the screen image within a rectangle defined by the upper-left and lower-
right screen coordinates and stores the image as a Windows bitmap file specified by filename. The image is
stored with a palette containing the colors displayed on the screen.

SAVEIMAGE defines the bounding rectangle in viewport coordinates. SAVEIMAGE_W defines the bounding
rectangle in window coordinates.

See Also
GETIMAGE, GETIMAGE_W
IMAGESIZE, IMAGESIZE_W
LOADIMAGE, LOADIMAGE_W
PUTIMAGE, PUTIMAGE_W

SCROLLTEXTWINDOW
Graphics Subroutine: Scrolls the contents of a text
window. This routine is only available for Windows.

Module

USE IFQWIN

Syntax
CALL SCROLLTEXTWINDOW (rows)

rows (Input) INTEGER(2). Number of rows to scroll.

The SCROLLTEXTWINDOW subroutine scrolls the text in a text window (previously defined by
SETTEXTWINDOW). The default text window is the entire window.

The rows argument specifies the number of lines to scroll. A positive value for rows scrolls the window up
(the usual direction); a negative value scrolls the window down. Specifying a number larger than the height
of the current text window is equivalent to calling CLEARSCREEN ($GWINDOW). A value of 0 for rows has no
effect.

Example

! Build as QuickWin or Standard Graphics app.
 USE IFQWIN INTEGER(2) row, istat
 CHARACTER(18) string
 TYPE (rccoord) oldpos

 CALL SETTEXTWINDOW (INT2(1), INT2(0), &
 INT2(25), INT2(80))
 CALL CLEARSCREEN ($GCLEARSCREEN)
 CALL SETTEXTPOSITION (INT2(1), INT2(1), oldpos)
 DO row = 1, 6
 string = 'Hello, World # '
 CALL SETTEXTPOSITION(row, INT2(1), oldpos)
 WRITE(string(15:16), '(I2)') row
 CALL OUTTEXT(string)
 END DO
 istat = displaycursor($GCURSORON)
 WRITE(*,'(1x,A\)') 'Hit ENTER'
 READ (*,*)
 ! wait for ENTER
 ! Scroll window down 4 lines

 CALL SCROLLTEXTWINDOW(INT2(-4))
 CALL SETTEXTPOSITION (INT2(10), INT2(18), oldpos)

 1 Intel® Fortran Compiler Classic and Intel® Fortran Compiler Developer Guide and Reference

2224

 WRITE(*,'(2X,A\)') "Hit ENTER"
 READ(*,*) ! wait for ENTER
 ! Scroll window up 5 lines
 CALL SCROLLTEXTWINDOW(INT2(5))
 END

See Also
CLEARSCREEN
GETTEXTPOSITION
GETTEXTWINDOW
GRSTATUS
OUTTEXT
SETTEXTPOSITION
SETTEXTWINDOW
WRAPON

SETBKCOLOR
Graphics Function: Sets the current background
color index for both text and graphics. This routine is
only available for Windows.

Module

USE IFQWIN

Syntax
result = SETBKCOLOR (color)

color (Input) INTEGER(4). Color index to set the background color to.

Results

The result type is INTEGER(4). The result is the previous background color index.

SETBKCOLOR changes the background color index for both text and graphics. The color index of text over the
background color is set with SETTEXTCOLOR. The color index of graphics over the background color (used by
drawing functions such as FLOODFILL and ELLIPSE) is set with SETCOLOR. These non-RGB color functions
use color indexes, not true color values, and limit the user to colors in the palette, at most 256. For access to
all system colors, use SETBKCOLORRGB, SETCOLORRGB, and SETTEXTCOLORRGB.

Changing the background color index does not change the screen immediately. The change becomes effective
when CLEARSCREEN is executed or when doing text input or output, such as with READ, WRITE, or OUTTEXT.
The graphics output function OUTGTEXT does not affect the color of the background.

Generally, INTEGER(4) color arguments refer to color values and INTEGER(2) color arguments refer to color
indexes. The two exceptions are GETBKCOLOR and SETBKCOLOR. The default background color index is 0,
which is associated with black unless the user remaps the palette with REMAPPALETTERGB.

NOTE
The SETBKCOLOR routine described here is a QuickWin routine. If you are trying to use the
Microsoft* Platform SDK version of the SetBkColor routine by including the IFWIN module,
you need to specify the routine name as MSFWIN$SetBkColor.

Intel® Fortran Compiler Classic and Intel® Fortran Compiler Developer Guide and Reference 1

2225

Example

 USE IFQWIN
 INTEGER(4) i
 i = SETBKCOLOR(14)

See Also
SETBKCOLORRGB
GETBKCOLOR
REMAPALLPALETTERGB, REMAPPALETTERGB
SETCOLOR
SETTEXTCOLOR

SETBKCOLORRGB
Graphics Function: Sets the current background
color to the given Red-Green-Blue (RGB) value. This
routine is only available for Windows.

Module

USE IFQWIN

Syntax
result = SETBKCOLORRGB (color)

color (Input) INTEGER(4). RGB color value to set the background color to.
Range and result depend on the system's display adapter.

Results

The result type is INTEGER(4). The result is the previous background RGB color value.

In each RGB color value, each of the three colors, red, green, and blue, is represented by an eight-bit value
(2 hex digits). In the value you specify with SETBKCOLORRGB, red is the rightmost byte, followed by green
and blue. The RGB value's internal structure is as follows:

Larger numbers correspond to stronger color intensity with binary 1111111 (hex Z'FF') the maximum for
each of the three components. For example, Z'0000FF' yields full-intensity red, Z'00FF00' full-intensity green,
Z'FF0000' full-intensity blue, and Z'FFFFFF' full-intensity for all three, resulting in bright white.

The default background color is value 0, which is black. Changing the background color value does not
change the screen immediately, but becomes effective when CLEARSCREEN is executed or when doing text
input or output such as READ, WRITE, or OUTTEXT. The graphics output function OUTGTEXT does not affect
the color of the background.

SETBKCOLORRGB sets the RGB color value of the current background for both text and graphics. The RGB
color value of text over the background color (used by text functions such as OUTTEXT, WRITE, and PRINT) is
set with SETTEXTCOLORRGB. The RGB color value of graphics over the background color (used by graphics
functions such as ARC, OUTGTEXT, and FLOODFILLRGB) is set with SETCOLORRGB.

SETBKCOLORRGB (and the other RGB color selection functions SETCOLORRGB, and SETTEXTCOLORRGB) sets
the color to a value chosen from the entire available range. The non-RGB color functions (SETCOLOR,
SETBKCOLOR, and SETTEXTCOLOR) use color indexes rather than true color values. If you use color indexes,
you are restricted to the colors available in the palette, at most 256. Some display adapters (SVGA and true

 1 Intel® Fortran Compiler Classic and Intel® Fortran Compiler Developer Guide and Reference

2226

color) are capable of creating 262,144 (256K) colors or more. To access any available color, you need to
specify an explicit RGB value with an RGB color function, rather than a palette index with a non-RGB color
function.

Example

 ! Build as a QuickWin or Standard Graphics App.
 USE IFQWIN
 INTEGER(4) oldcolor
 INTEGER(2) status, x1, y1, x2, y2
 x1 = 80; y1 = 50
 x2 = 240; y2 = 150
 oldcolor = SETBKCOLORRGB(Z'FF0000') !blue
 oldcolor = SETCOLORRGB(Z'FF') ! red
 CALL CLEARSCREEN ($GCLEARSCREEN)
 status = ELLIPSE($GBORDER, x1, y1, x2, y2)
 END

See Also
GETBKCOLORRGB
SETCOLORRGB
SETTEXTCOLORRGB
SETPIXELRGB
SETPIXELSRGB
SETBKCOLOR

SETCLIPRGN
Graphics Subroutine: Limits graphics output to part
of the screen. This routine is only available for
Windows.

Module

USE IFQWIN

Syntax
CALL SETCLIPRGN (x1,y1,x2,y2)

x1, y1 (Input) INTEGER(2). Physical coordinates for upper-left corner of
clipping region.

x2, y2 (Input) INTEGER(2). Physical coordinates for lower-right corner of
clipping region.

The SETCLIPRGN function limits the display of subsequent graphics output and font text output to that which
fits within a designated area of the screen (the "clipping region"). The physical coordinates (x1, y1) and (x2,
y2) are the upper-left and lower-right corners of the rectangle that defines the clipping region. The
SETCLIPRGN function does not change the viewport-coordinate system; it merely masks graphics output to
the screen.

SETCLIPRGN affects graphics and font text output only, such as OUTGTEXT. To mask the screen for text
output using OUTTEXT, use SETTEXTWINDOW.

Intel® Fortran Compiler Classic and Intel® Fortran Compiler Developer Guide and Reference 1

2227

Example

This program draws an ellipse lying partly within a clipping region, as shown below.

 ! Build as QuickWin or Standard Graphics ap.
 USE IFQWIN
 INTEGER(2) status, x1, y1, x2, y2
 INTEGER(4) oldcolor
 x1 = 10; y1 = 50
 x2 = 170; y2 = 150
 ! Draw full ellipse in white
 status = ELLIPSE($GBORDER, x1, y1, x2, y2)
 oldcolor = SETCOLORRGB(Z'FF0000') !blue
 WRITE(*,*) "Hit enter"
 READ(*,*)
 CALL CLEARSCREEN($GCLEARSCREEN) ! clear screen
 CALL SETCLIPRGN(INT2(0), INT2(0), &
 INT2(150), INT2(125))
 ! only part of ellipse inside clip region drawn now
 status = ELLIPSE($GBORDER, x1, y1, x2, y2)
 END

The following shows the output of this program.

See Also
GETPHYSCOORD
GRSTATUS
SETTEXTWINDOW
SETVIEWORG
SETVIEWPORT
SETWINDOW

SETCOLOR
Graphics Function: Sets the current graphics color
index. This routine is only available for Windows.

Module

USE IFQWIN

Syntax
result = SETCOLOR (color)

color (Input) INTEGER(2). Color index to set the current graphics color to.

Results

The result type is INTEGER(2). The result is the previous color index if successful; otherwise, -1.

 1 Intel® Fortran Compiler Classic and Intel® Fortran Compiler Developer Guide and Reference

2228

The SETCOLOR function sets the current graphics color index, which is used by graphics functions such as
ELLIPSE. The background color index is set with SETBKCOLOR. The color index of text over the background
color is set with SETTEXTCOLOR. These non-RGB color functions use color indexes, not true color values, and
limit the user to colors in the palette, at most 256. For access to all system colors, use SETCOLORRGB,
SETBKCOLORRGB, and SETTEXTCOLORRGB.

Example

 USE IFQWIN
 INTEGER(2) color, oldcolor
 LOGICAL status
 TYPE (windowconfig) wc

 status = GETWINDOWCONFIG(wc)
 color = wc%numcolors - 1
 oldcolor = SETCOLOR(color)
 END

See Also
SETCOLORRGB
GETCOLOR
REMAPPALETTERGB
SETBKCOLOR
SETTEXTCOLOR
SETPIXEL
SETPIXELS

SETCOLORRGB
Graphics Function: Sets the current graphics color
to the specified Red-Green-Blue (RGB) value. This
routine is only available for Windows.

Module

USE IFQWIN

Syntax
result = SETCOLORRGB (color)

color (Input) INTEGER(4). RGB color value to set the current graphics color
to. Range and result depend on the system's display adapter.

Results

The result type is INTEGER(4). The result is the previous RGB color value.

In each RGB color value, each of the three colors, red, green, and blue, is represented by an eight-bit value
(2 hex digits). In the value you specify with SETCOLORRGB, red is the rightmost byte, followed by green and
blue. The RGB value's internal structure is as follows:

Larger numbers correspond to stronger color intensity with binary 1111111 (hex Z'FF') the maximum for
each of the three components. For example, Z'0000FF' yields full-intensity red, Z'00FF00' full-intensity green,
Z'FF0000' full-intensity blue, and Z'FFFFFF' full-intensity for all three, resulting in bright white.

Intel® Fortran Compiler Classic and Intel® Fortran Compiler Developer Guide and Reference 1

2229

SETCOLORRGB sets the RGB color value of graphics over the background color, used by the following
graphics functions: ARC, ELLIPSE, FLOODFILL, LINETO, OUTGTEXT, PIE, POLYGON, RECTANGLE, and
SETPIXEL. SETBKCOLORRGB sets the RGB color value of the current background for both text and graphics.
SETTEXTCOLORRGB sets the RGB color value of text over the background color (used by text functions such
as OUTTEXT, WRITE, and PRINT).

SETCOLORRGB (and the other RGB color selection functions SETBKCOLORRGB, and SETTEXTCOLORRGB) sets
the color to a value chosen from the entire available range. The non-RGB color functions (SETCOLOR,
SETBKCOLOR, and SETTEXTCOLOR) use color indexes rather than true color values. If you use color indexes,
you are restricted to the colors available in the palette, at most 256. Some display adapters (SVGA and true
color) are capable of creating 262,144 (256K) colors or more. To access any available color, you need to
specify an explicit RGB value with an RGB color function, rather than a palette index with a non-RGB color
function.

Example

 ! Build as a QuickWin or Standard Graphics App.
 USE IFQWIN
 INTEGER(2) numfonts
 INTEGER(4) oldcolor
 TYPE (xycoord) xy
 numfonts = INITIALIZEFONTS()
 oldcolor = SETCOLORRGB(Z'0000FF') ! red
 oldcolor = SETBKCOLORRGB(Z'00FF00') ! green
 CALL MOVETO(INT2(200), INT2(100), xy)
 CALL OUTGTEXT("hello, world")
 END

See Also
SETBKCOLORRGB
SETTEXTCOLORRGB
GETCOLORRGB
ARC
ELLIPSE
FLOODFILLRGB
SETCOLOR
LINETO
OUTGTEXT
PIE
POLYGON
RECTANGLE
REMAPPALETTERGB
SETPIXELRGB
SETPIXELSRGB

SETFILLMASK
Graphics Subroutine: Sets the current fill mask to a
new pattern. This routine is only available for
Windows.

Module

USE IFQWIN

 1 Intel® Fortran Compiler Classic and Intel® Fortran Compiler Developer Guide and Reference

2230

Syntax
CALL SETFILLMASK (mask)

mask (Input) INTEGER(1). One-dimensional array of length 8.

There are 8 bytes in mask, and each of the 8 bits in each byte represents a pixel, creating an 8x8 pattern.
The first element (byte) of mask becomes the top 8 bits of the pattern, and the eighth element (byte) of
mask becomes the bottom 8 bits.

During a fill operation, pixels with a bit value of 1 are set to the current graphics color, while pixels with a bit
value of zero are set to the current background color. The current graphics color is set with SETCOLORRGB or
SETCOLOR. The 8-byte mask is replicated over the entire fill area. If no fill mask is set (with SETFILLMASK),
or if the mask is all ones, solid current color is used in fill operations.

The fill mask controls the fill pattern for graphics routines (FLOODFILLRGB, PIE, ELLIPSE, POLYGON, and
RECTANGLE).

To change the current fill mask, determine the array of bytes that corresponds to the desired bit pattern and
set the pattern with SETFILLMASK, as in the following example.

Example

This program draws six rectangles, each with a different fill mask, as shown below.

 ! Build as QuickWin or Standard Graphics Ap.
 USE IFQWIN

 INTEGER(1), TARGET :: style1(8) &
 /Z'18',Z'18',Z'18',Z'18',Z'18',Z'18',Z'18',Z'18'/
 INTEGER(1), TARGET :: style2(8) &
 /Z'08',Z'08',Z'08',Z'08',Z'08',Z'08',Z'08',Z'08'/
 INTEGER(1), TARGET :: style3(8) &
 /Z'18',Z'00',Z'18',Z'18',Z'18',Z'00',Z'18',Z'18'/
 INTEGER(1), TARGET :: style4(8) &
 /Z'00',Z'08',Z'00',Z'08',Z'08',Z'08',Z'08',Z'08'/
 INTEGER(1), TARGET :: style5(8) &
 /Z'18',Z'18',Z'00',Z'18',Z'18',Z'00',Z'18',Z'18'/
 INTEGER(1), TARGET :: style6(8) &
 /Z'08',Z'00',Z'08',Z'00',Z'08',Z'00',Z'08',Z'00'/
 INTEGER(1) oldstyle(8) ! Placeholder for old style
 INTEGER loop
 INTEGER(1), POINTER :: ptr(:)

 CALL GETFILLMASK(oldstyle)

Intel® Fortran Compiler Classic and Intel® Fortran Compiler Developer Guide and Reference 1

2231

 ! Make 6 rectangles, each with a different fill
 DO loop = 1, 6
 SELECT CASE (loop)
 CASE (1)
 ptr => style1
 CASE (2)
 ptr => style2
 CASE (3)
 ptr => style3
 CASE (4)
 ptr => style4
 CASE (5)
 ptr => style5
 CASE (6)
 ptr => style6
 END SELECT
 CALL SETFILLMASK(ptr)
 status = RECTANGLE($GFILLINTERIOR,INT2(loop*40+5), &
 INT2(90),INT2((loop+1)*40), INT2(110))
 END DO

 CALL SETFILLMASK(oldstyle) ! Restore old style
 READ (*,*) ! Wait for ENTER to be
 ! pressed
 END

The following shows the output of this program.

See Also
ELLIPSE
FLOODFILLRGB
GETFILLMASK
PIE
POLYGON
RECTANGLE

SETFONT
Graphics Function: Finds a single font that matches
a specified set of characteristics and makes it the
current font used by the OUTGTEXT function. This
routine is only available for Windows.

Module

USE IFQWIN

Syntax
result = SETFONT (options)

options (Input) Character*(*). String describing font characteristics (see
below for details).

 1 Intel® Fortran Compiler Classic and Intel® Fortran Compiler Developer Guide and Reference

2232

Results

The result type is INTEGER(2). The result is the index number (x as used in the nx option) of the font if
successful; otherwise, -1.

The SETFONT function searches the list of available fonts for a font matching the characteristics specified in
options. If a font matching the characteristics is found, it becomes the current font. The current font is used
in all subsequent calls to the OUTGTEXT function. There can be only one current font.

The options argument consists of letter codes, as follows, that describe the desired font. The argument is
neither case sensitive nor position sensitive.

t' fontname' Name of the desired typeface. It can be any
installed font.

hy Character height, where y is the number of pixels.

wx Select character width, where x is the number of
pixels.

f Select only a fixed-space font (do not use with the
p characteristic).

p Select only a proportional-space font (do not use
with the f characteristic).

v Select only a vector-mapped font (do not use with
the r characteristic). Roman, Modern, and Script
are examples of vector-mapped fonts, also called
plotter fonts. True Type fonts (for example, Arial,
Symbol, and Times New Roman) are not vector-
mapped.

r Select only a raster-mapped (bitmapped) font (do
not use with the v characteristic). Courier,
Helvetica, and Palatino are examples of raster-
mapped fonts, also called screen fonts. True Type
fonts are not raster-mapped.

e Select the bold text format. This parameter is
ignored if the font does not allow the bold format.

u Select the underline text format. This parameter is
ignored if the font does not allow underlining.

i Select the italic text format. This parameter is
ignored if the font does not allow italics.

b Select the font that best fits the other parameters
specified.

nx Select font number x, where x is less than or equal
to the value returned by the INTIALIZEFONTS
function.

You can specify as many options as you want, except with nx, which should be used alone. If you specify
options that are mutually exclusive (such as the pairs f/p or r/v), the SETFONT function ignores them.
There is no error detection for incompatible parameters used with nx.

Intel® Fortran Compiler Classic and Intel® Fortran Compiler Developer Guide and Reference 1

2233

If the b option is specified and at least one font is initialized, SETFONT sets a font and returns 0 to indicate
success.

In selecting a font, the SETFONT routine uses the following criteria, rated from highest precedence to lowest:

1. Pixel height
2. Typeface
3. Pixel width
4. Fixed or proportional font

You can also specify a pixel width and height for fonts. If you choose a nonexistent value for either and
specify the b option, SETFONT chooses the closest match.

A smaller font size has precedence over a larger size. If you request Arial 12 with best fit, and only Arial 10
and Arial 14 are available, SETFONT selects Arial 10.

If you choose a nonexistent value for pixel height and width, the SETFONT function applies a magnification
factor to a vector-mapped font to obtain a suitable font size. This automatic magnification does not apply if
you specify the roption (raster-mapped font), or if you request a specific typeface and do not specify the b
option (best-fit).

If you specify the nx parameter, SETFONT ignores any other specified options and supplies only the font
number corresponding to x.

If a height is given, but not a width, SETFONT computes the width to preserve the correct font proportions.

If a width is given, but not a height, SETFONT uses a default height, which may vary from font type to font
type. This may lead to characters that appear distorted, particularly when a very wide width is specified. This
behavior is the same as that of the Windows* API CreateFontIndirect. A sample program is provided below
showing you how to calculate the correct height for a given width.

The font functions affect only OUTGTEXT and the current graphics position; no other Fortran Graphics Library
output functions are affected by font usage.

For each window you open, you must call INITIALIZEFONTS before calling SETFONT. INITIALIZEFONTS needs
to be executed after each new child window is opened in order for a subsequent SETFONT call to be
successful.

Example

 ! Build as a Graphics ap.
 USE IFQWIN
 INTEGER(2) fontnum, numfonts
 TYPE (xycoord) pos
 numfonts = INITIALIZEFONTS ()
 ! Set typeface to Arial, character height to 18,
 ! character width to 10, and italic
 fontnum = SETFONT ('t''Arial''h18w10i')
 CALL MOVETO (INT2(10), INT2(30), pos)
 CALL OUTGTEXT('Demo text')
 END

Another example follows:

 ! The following program shows you how to compute
 ! an appropriate font height for a given font width
 !
 ! Build as a Graphics ap.
 USE IFQWIN
 INTEGER(2) fontnum, numfonts
 TYPE (xycoord) pos

 1 Intel® Fortran Compiler Classic and Intel® Fortran Compiler Developer Guide and Reference

2234

 TYPE (rccoord) rcc
 TYPE (FONTINFO) info
 CHARACTER*11 str, str1
 CHARACTER*22 str2
 real rh
 integer h, inw
 str = "t'Arial'bih"
 str1= " "
 numfonts = INITIALIZEFONTS ()
 ! Default both height and width. This seems to work
 ! properly. From this setting get the ratio between
 ! height and width.
 fontnum = SETFONT ("t'Arial'")
 ireturn = GETFONTINFO(info)
 rh = real(info%pixheight)/real(info%avgwidth)

 ! Now calculate the height for a width of 40
 write(*,*) 'Input desired width:'
 read(*,*) inw
 h =int(inw*rh)
 write(str1,'(I3.3)') h
 str2 = str//str1
 print *,str2
 fontnum = SETFONT (str2)
 CALL MOVETO (INT2(10), INT2(50), pos)
 CALL OUTGTEXT('ABCDEFGabcdefg12345!@#$%')
 CALL MOVETO (INT2(10), INT2(50+10+h), pos)
 CALL OUTGTEXT('123456789012345678901234')
 ireturn = GETFONTINFO(info)
 call settextposition(4,1, rcc)
 print *, info%avgwidth, info%pixheight
 END

See Also
GETFONTINFO
GETGTEXTEXTENT
GRSTATUS
OUTGTEXT
INITIALIZEFONTS
SETGTEXTROTATION

SETGTEXTROTATION
Graphics Subroutine: Sets the orientation angle of
the font text output in degrees. The current
orientation is used in calls to OUTGTEXT. This routine
is only available for Windows.

Module

USE IFQWIN

Syntax
CALL SETGTEXTROTATION (degree-tenths)

degree-tenths (Input) INTEGER(4). Angle of orientation, in tenths of degrees, of the
font text output.

Intel® Fortran Compiler Classic and Intel® Fortran Compiler Developer Guide and Reference 1

2235

The orientation of the font text output is set in tenths of degrees. Horizontal is 0°, and angles increase
counterclockwise so that 900 (90°) is straight up, 1800 (180°) is upside down and left, 2700 (270°) is
straight down, and so forth. If the user specifies a value greater than 3600 (360°), the subroutine takes a
value equal to:

 MODULO (user-specified tenths of degrees, 3600)
Although SETGTEXTROTATION accepts arguments in tenths of degrees, only increments of one full degree
differ visually from each other on the screen.

Bitmap fonts cannot be rotated; TruType fonts should be used instead.

Example

 ! Build as a Graphics ap.
 USE IFQWIN
 INTEGER(2) fontnum, numfonts
 INTEGER(4) oldcolor, deg
 TYPE (xycoord) pos
 numfonts = INITIALIZEFONTS ()
 fontnum = SETFONT ('t''Arial''h18w10i')
 CALL MOVETO (INT2(10), INT2(30), pos)
 CALL OUTGTEXT('Straight text')
 deg = -1370
 CALL SETGTEXTROTATION(deg)
 oldcolor = SETCOLORRGB(Z'008080')
 CALL OUTGTEXT('Slanted text')
 END

See Also
GETGTEXTROTATION

SETLINESTYLE
Graphics Subroutine: Sets the current line style to a
new line style. This routine is only available for
Windows.

Module

USE IFQWIN

Syntax
CALL SETLINESTYLE (mask)

mask (Input) INTEGER(2). Desired Quickwin line-style mask. (See the table
below.)

The mask is mapped to the style that most closely equivalences the percentage of the bits in the mask that
are set. The style produces lines that cover a certain percentage of the pixels in that line.

SETLINESTYLE sets the style used in drawing a line. You can choose from the following styles:

QuickWin Mask Internal Windows*
Style

Selection Criteria Appearance

0xFFFF PS_SOLID 16 bits on ____________

0xEEEE PS_DASH 11 to 15 bits on ----------------

0xECEC PS_DASHDOT 10 bits on -.-.-.-.-.-.-.-.-.-.

 1 Intel® Fortran Compiler Classic and Intel® Fortran Compiler Developer Guide and Reference

2236

QuickWin Mask Internal Windows*
Style

Selection Criteria Appearance

0xECCC PS_DASHDOTDOT 9 bits on -..-..-..-..-..-..-..

0xAAAA PS_DOT 1 to 8 bits on

0x0000 PS_NULL 0 bits on

SETLINESTYLE affects the drawing of straight lines as in LINETO, POLYGON, and RECTANGLE, but not the
drawing of curved lines as in ARC, ELLIPSE, or PIE.

The current graphics color is set with SETCOLORRGB or SETCOLOR. SETWRITEMODE affects how the line is
displayed.

Example

! Build as a Graphics ap.
 USE IFQWIN
 INTEGER(2) status, style
 TYPE (xycoord) xy

 style = Z'FFFF'
 CALL SETLINESTYLE(style)
 CALL MOVETO(INT2(50), INT2(50), xy)
 status = LINETO(INT2(300), INT2(300))
 END

See Also
GETLINESTYLE
GRSTATUS
LINETO
POLYGON
RECTANGLE
SETCOLOR
SETWRITEMODE

SETLINEWIDTHQQ
Graphics Subroutine: Sets the width of a solid line
drawn using any of the supported graphics functions.
This routine is only available for Windows.

Module

USE IFQWIN

Syntax
CALL SETLINEWIDTHQQ (x)

x (Input) INTEGER(4). It can be any non-negative integer.

This subroutine sets the line width in pixels using the value that is passed as the argument.

SETLINEWIDTHQQ affects the drawing of straight lines using functions such as LINETO, POLYGON,
LINETOAR, LINETOAREX, RECTANGLE, and it affects the drawing of curved lines using functions such as ARC,
ELLIPSE, or PIE.

Intel® Fortran Compiler Classic and Intel® Fortran Compiler Developer Guide and Reference 1

2237

NOTE
The nWidth argument in the Windows* API CreatePen() is the width used to draw the lines or borders
of a closed shape. A cosmetic pen can only have a width of 1 pixel. If you specify a higher width, it is
ignored. A geometric pen can have a width of 1 or more pixels, but the line can only be solid or null.

This means that if you specify the style as PS_DASH, PS_DOT, PS_DASHDOT, or PS_DASHDOTDOT, but
set a width higher than 1 pixel, the line is drawn as PS_SOLID.

See Also
GETLINEWIDTHQQ

Windows* API CreatePen in the Microsoft* MSDN documentation

SETPIXEL, SETPIXEL_W
Graphics Functions: Set a pixel at a specified
location to the current graphics color index. These
routines are only available for Windows.

Module

USE IFQWIN

Syntax
result = SETPIXEL (x,y)
result = SETPIXEL_W (wx, wy)

x, y (Input) INTEGER(2). Viewport coordinates for target pixel.

wx, wy (Input) REAL(8). Window coordinates for target pixel.

Results

The result type is INTEGER(2). The result is the previous color index of the target pixel if successful;
otherwise, -1 (for example, if the pixel lies outside the clipping region).

SETPIXEL sets the specified pixel to the current graphics color index. The current graphics color index is set
with SETCOLOR and retrieved with GETCOLOR. The non-RGB color functions (such as SETCOLOR and
SETPIXELS) use color indexes rather than true color values.

If you use color indexes, you are restricted to the colors available in the palette, at most 256. Some display
adapters (SVGA and true color) are capable of creating 262,144 (256K) colors or more. To access any
available color, you need to specify an explicit Red-Green-Blue (RGB) value with an RGB color function, rather
than a palette index with a non-RGB color function. SETPIXELRGB and SETPIXELRGB_W give access to the
full color capacity of the system by using direct color values rather than indexes to a palette.

NOTE
The SETPIXEL routine described here is a QuickWin routine. If you are trying to use the
Microsoft* Platform SDK version of the SetPixel routine by including the IFWIN module, you
need to specify the routine name as MSFWIN$SetPixel.

Example

 ! Build as a Graphics ap.
 USE IFQWIN
 INTEGER(2) status, x, y

 1 Intel® Fortran Compiler Classic and Intel® Fortran Compiler Developer Guide and Reference

2238

 status = SETCOLOR(INT2(2))
 x = 10
 ! Draw pixels.
 DO y = 50, 389, 3
 status = SETPIXEL(x, y)
 x = x + 2
 END DO
 READ (*,*) ! Wait for ENTER to be pressed
 END

See Also
SETPIXELRGB
GETPIXEL
SETPIXELS
GETPIXELS
GETCOLOR
SETCOLOR

SETPIXELRGB, SETPIXELRGB_W
Graphics Functions: Set a pixel at a specified
location to the specified Red-Green-Blue (RGB) color
value. These routines are only available for Windows.

Module

USE IFQWIN

Syntax
result = SETPIXELRGB (x,y,color)
result = SETPIXELRGB_W (x,y,color)

x, y (Input) INTEGER(2). Viewport coordinates for target pixel.

wx, wy (Input) REAL(8). Window coordinates for target pixel.

color (Input) INTEGER(4). RGB color value to set the pixel to. Range and
result depend on the system's display adapter.

Results

The result type is INTEGER(4). The result is the previous RGB color value of the pixel.

In each RGB color value, each of the three colors, red, green, and blue, is represented by an eight-bit value
(2 hex digits). In the value you specify with SETPIXELRGB or SETPIXELRGB_W, red is the rightmost byte,
followed by green and blue. The RGB value's internal structure is as follows:

Larger numbers correspond to stronger color intensity with binary 1111111 (hex Z'FF') the maximum for
each of the three components. For example, Z'0000FF' yields full-intensity red, Z'00FF00' full-intensity green,
Z'FF0000' full-intensity blue, and Z'FFFFFF' full-intensity for all three, resulting in bright white.

If any of the pixels are outside the clipping region, those pixels are ignored.

SETPIXELRGB (and the other RGB color selection functions such as SETPIXELSRGB, SETCOLORRGB) sets the
color to a value chosen from the entire available range. The non-RGB color functions (such as SETPIXELS and
SETCOLOR) use color indexes rather than true color values.

Intel® Fortran Compiler Classic and Intel® Fortran Compiler Developer Guide and Reference 1

2239

If you use color indexes, you are restricted to the colors available in the palette, at most 256. Some display
adapters (SVGA and true color) are capable of creating 262,144 (256K) colors or more. To access any
available color, you need to specify an explicit RGB value with an RGB color function, rather than a palette
index with a non-RGB color function.

Example

 ! Build as a Graphics ap.
 USE IFQWIN
 INTEGER(2) x, y
 INTEGER(4) color
 DO i = 10, 30, 10
 SELECT CASE (i)
 CASE(10)
 color = Z'0000FF'
 CASE(20)
 color = Z'00FF00'
 CASE (30)
 color = Z'FF0000'
 END SELECT
 ! Draw pixels.
 DO y = 50, 180, 2
 status = SETPIXELRGB(x, y, color)
 x = x + 2
 END DO
 END DO
 READ (*,*) ! Wait for ENTER to be pressed
 END

See Also
GETPIXELRGB
GETPIXELSRGB
SETCOLORRGB
SETPIXELSRGB

SETPIXELS
Graphics Subroutine: Sets the color indexes of
multiple pixels. This routine is only available for
Windows.

Module

USE IFQWIN

Syntax
CALL SETPIXELS (n, x, y, color)

n (Input) INTEGER(4). Number of pixels to set. Sets the number of
elements in the other arguments.

x, y (Input) INTEGER(2). Parallel arrays containing viewport coordinates of
pixels to set.

color (Input) INTEGER(2). Array containing color indexes to set the pixels
to.

SETPIXELS sets the pixels specified in the arrays x and y to the color indexes in color. These arrays are
parallel: the first element in each of the three arrays refers to a single pixel, the second element refers to the
next pixel, and so on.

 1 Intel® Fortran Compiler Classic and Intel® Fortran Compiler Developer Guide and Reference

2240

If any of the pixels are outside the clipping region, those pixels are ignored. Calls to SETPIXELS with n less
than 1 are also ignored. SETPIXELS is a much faster way to set multiple pixel color indexes than individual
calls to SETPIXEL.

Unlike SETPIXELS, SETPIXELSRGB gives access to the full color capacity of the system by using direct color
values rather than indexes to a palette. The non-RGB color functions (such as SETPIXELS and SETCOLOR)
use color indexes rather than true color values.

If you use color indexes, you are restricted to the colors available in the palette, at most 256. Some display
adapters (SVGA and true color) are capable of creating 262,144 (256K) colors or more. To access any
available color, you need to specify an explicit RGB value with an RGB color function, rather than a palette
index with a non-RGB color function.

Example

 ! Build as a Graphics ap.
 USE IFQWIN
 INTEGER(2) color(9)
 INTEGER(2) x(9), y(9), i
 DO i = 1, 9
 x(i) = 20 * i
 y(i) = 10 * i
 color(i) = INT2(i)
 END DO
 CALL SETPIXELS(9, x, y, color)
 END

See Also
GETPIXELS
SETPIXEL
SETPIXELSRGB

SETPIXELSRGB
Graphics Subroutine: Sets multiple pixels to the
given Red-Green-Blue (RGB) color. This routine is only
available for Windows.

Module

USE IFQWIN

Syntax
CALL SETPIXELSRGB (n,x,y,color)

n (Input) INTEGER(4). Number of pixels to be changed. Determines the
number of elements in arrays x and y.

x, y (Input) INTEGER(2). Parallel arrays containing viewport coordinates of
the pixels to set.

color (Input) INTEGER(4). Array containing the RGB color values to set the
pixels to. Range and result depend on the system's display adapter.

SETPIXELSRGB sets the pixels specified in the arrays x and y to the RGB color values in color. These arrays
are parallel: the first element in each of the three arrays refers to a single pixel, the second element refers to
the next pixel, and so on.

In each RGB color value, each of the three color values, red, green, and blue, is represented by an eight-bit
value (2 hex digits). In the value you set with SETPIXELSRGB, red is the rightmost byte, followed by green
and blue. The RGB value's internal structure is as follows:

Intel® Fortran Compiler Classic and Intel® Fortran Compiler Developer Guide and Reference 1

2241

Larger numbers correspond to stronger color intensity with binary 1111111 (hex Z'FF') the maximum for
each of the three components. For example, Z'0000FF' yields full-intensity red, Z'00FF00' full-intensity green,
Z'FF0000' full-intensity blue, and Z'FFFFFF' full-intensity for all three, resulting in bright white.

A good use for SETPIXELSRGB is as a buffering form of SETPIXELRGB, which can improve performance
substantially. The example code shows how to do this.

If any of the pixels are outside the clipping region, those pixels are ignored. Calls to SETPIXELSRGB with n
less than 1 are also ignored.

SETPIXELSRGB (and the other RGB color selection functions such as SETPIXELRGB and SETCOLORRGB) sets
colors to values chosen from the entire available range. The non-RGB color functions (such as SETPIXELS
and SETCOLOR) use color indexes rather than true color values.

If you use color indexes, you are restricted to the colors available in the palette, at most 256. Some display
adapters (SVGA and true color) are capable of creating 262,144 (256K) colors or more. To access any
available color, you need to specify an explicit RGB value with an RGB color function, rather than a palette
index with a non-RGB color function.

Example

 ! Buffering replacement for SetPixelRGB and
 ! SetPixelRGB_W. This can improve performance by
 ! doing batches of pixels together.

 USE IFQWIN
 PARAMETER (I$SIZE = 200)
 INTEGER(4) bn, bc(I$SIZE), status
 INTEGER(2) bx(I$SIZE),by(I$SIZE)

 bn = 0
 DO i = 1, I$SIZE
 bn = bn + 1
 bx(bn) = i
 by(bn) = i
 bc(bn) = GETCOLORRGB()
 status = SETCOLORRGB(bc(bn)+1)
 END DO
 CALL SETPIXELSRGB(bn,bx,by,bc)
 END

See Also
GETPIXELSRGB
SETPIXELRGB
GETPIXELRGB
SETPIXELS

SETTEXTCOLOR
Graphics Function: Sets the current text color index.
This routine is only available for Windows.

Module

USE IFQWIN

 1 Intel® Fortran Compiler Classic and Intel® Fortran Compiler Developer Guide and Reference

2242

Syntax
result = SETTEXTCOLOR (index)

index (Input) INTEGER(2). Color index to set the text color to.

Results

The result type is INTEGER(2). The result is the previous text color index.

SETTEXTCOLOR sets the current text color index. The default value is 15, which is associated with white
unless the user remaps the palette. GETTEXTCOLOR returns the text color index set by SETTEXTCOLOR.
SETTEXTCOLOR affects text output with OUTTEXT, WRITE, and PRINT.

The background color index is set with SETBKCOLOR and returned with GETBKCOLOR. The color index of
graphics over the background color is set with SETCOLOR and returned with GETCOLOR. These non-RGB
color functions use color indexes, not true color values, and limit the user to colors in the palette, at most
256. To access all system colors, use SETTEXTCOLORRGB, SETBKCOLORRGB, and SETCOLORRGB.

NOTE
The SETTEXTCOLOR routine described here is a QuickWin routine. If you are trying to use
the Microsoft* Platform SDK version of the SetTextColor routine by including the IFWIN
module, you need to specify the routine name as MSFWIN$SetTextColor.

Example

 ! Build as a Graphics ap.
 USE IFQWIN
 INTEGER(2) oldtc
 oldtc = SETTEXTCOLOR(INT2(2)) ! green
 WRITE(*,*) "hello, world"
 END

See Also
GETTEXTCOLOR
REMAPPALETTERGB
SETCOLOR
SETTEXTCOLORRGB

SETTEXTCOLORRGB
Graphics Function: Sets the current text color to the
specified Red-Green-Blue (RGB) value. This routine is
only available for Windows.

Module

USE IFQWIN

Syntax
result = SETTEXTCOLORRGB (color)

color (Input) INTEGER(4). RGB color value to set the text color to. Range
and result depend on the system's display adapter.

Results

The result type is INTEGER(4). The result is the previous text RGB color value.

Intel® Fortran Compiler Classic and Intel® Fortran Compiler Developer Guide and Reference 1

2243

In each RGB color value, each of the three colors, red, green, and blue, is represented by an eight-bit value
(2 hex digits). In the value you specify with SETTEXTCOLORRGB, red is the rightmost byte, followed by green
and blue. The RGB value's internal structure is as follows:

Larger numbers correspond to stronger color intensity with binary 1111111 (hex Z'FF') the maximum for
each of the three components. For example, Z'0000FF' yields full-intensity red, Z'00FF00' full-intensity green,
Z'FF0000' full-intensity blue, and Z'FFFFFF' full-intensity for all three, resulting in bright white.

SETTEXTCOLORRGB sets the current text RGB color. The default value is Z'00FFFFFF', which is full-intensity
white. SETTEXTCOLORRGB sets the color used by OUTTEXT, WRITE, and PRINT. It does not affect the color of
text output with the OUTGTEXT font routine. Use SETCOLORRGB to change the color of font output.

SETBKCOLORRGB sets the RGB color value of the current background for both text and graphics.
SETCOLORRGB sets the RGB color value of graphics over the background color, used by the graphics
functions such as ARC, FLOODFILLRGB, and OUTGTEXT.

SETTEXTCOLORRGB (and the other RGB color selection functions SETBKCOLORRGB and SETCOLORRGB) sets
the color to a value chosen from the entire available range. The non-RGB color functions (SETTEXTCOLOR,
SETBKCOLOR, and SETCOLOR) use color indexes rather than true color values.

If you use color indexes, you are restricted to the colors available in the palette, at most 256. Some display
adapters (SVGA and true color) are capable of creating 262,144 (256K) colors or more. To access any
available color, you need to specify an explicit RGB value with an RGB color function, rather than a palette
index with a non-RGB color function.

Example

 ! Build as a Graphics ap.
 USE IFQWIN
 INTEGER(4) oldtc

 oldtc = SETTEXTCOLORRGB(Z'000000FF')
 WRITE(*,*) 'I am red'
 oldtc = SETTEXTCOLORRGB(Z'0000FF00')
 CALL OUTTEXT ('I am green'//CHAR(13)//CHAR(10))
 oldtc = SETTEXTCOLORRGB(Z'00FF0000')
 PRINT *, 'I am blue'
 END

See Also
SETBKCOLORRGB
SETCOLORRGB
GETTEXTCOLORRGB
GETWINDOWCONFIG
OUTTEXT

SETTEXTCURSOR
Graphics Function: Sets the height and width of the
text cursor (the caret) for the window in focus. This
routine is only available for Windows.

Module

USE IFQWIN

 1 Intel® Fortran Compiler Classic and Intel® Fortran Compiler Developer Guide and Reference

2244

Syntax
result = SETTEXTCURSOR (newcursor)

newcursor (Input) INTEGER(2). The leftmost 8 bits specify the width of the
cursor, and the rightmost 8 bits specify the height of the cursor. These
dimensions can range from 1 to 8, and represent a fraction of the
current character cell size. For example:

• Z'0808' - Specifies the full character cell; this is the default size.
• Z'0108' - Specifies 1/8th of the character cell width, and 8/8th (or

all) of the character cell height.

If either of these dimensions is outside the range 1 to 8, it is forced to
8.

Results

The result type is INTEGER(2); it is the previous text cursor value in the same format as newcursor.

NOTE
After calling SETTEXTCURSOR, you must call DISPLAYCURSOR($GCURSORON) to actually
see the cursor.

Example

use IFQWIN
integer(2) oldcur
integer(2) istat
type(rccoord) rc
open(10,file='user')
istat = displaycursor($GCURSORON)
write(10,*) 'Text cursor is now character cell size, the default.'
read(10,*)
write(10,*) 'Setting text cursor to wide and low.'
oldcur = settextcursor(Z'0801')
istat = displaycursor($GCURSORON)
read(10,*)
write(10,*) 'Setting text cursor to high and narrow.'
oldcur = settextcursor(Z'0108')
istat = displaycursor($GCURSORON)
read(10,*)
write(10,*) 'Setting text cursor to a dot.'
oldcur = settextcursor(Z'0101')
istat = displaycursor($GCURSORON)
read(10,*)
end

See Also
DISPLAYCURSOR

SETTEXTPOSITION
Graphics Subroutine: Sets the current text position
to a specified position relative to the current text
window. This routine is only available for Windows.

Module

USE IFQWIN

Intel® Fortran Compiler Classic and Intel® Fortran Compiler Developer Guide and Reference 1

2245

Syntax
CALL SETTEXTPOSITION (row,column,t)

row (Input) INTEGER(2). New text row position.

column (Input) INTEGER(2). New text column position.

t (Output) Derived type rccoord. Previous text position. The derived
type rccoordis defined in IFQWIN.F90 as follows:

 TYPE rccoord
 INTEGER(2) row ! Row coordinate
 INTEGER(2) col ! Column coordinate
 END TYPE rccoord

Subsequent text output with the OUTTEXT function (as well as standard console I/O statements, such as
PRINT and WRITE) begins at the point (row, column).

Example

 USE IFQWIN
 TYPE (rccoord) curpos

 WRITE(*,*) "Original text position"
 CALL SETTEXTPOSITION (INT2(6), INT2(5), curpos)
 WRITE (*,*) 'New text position'
 END

See Also
CLEARSCREEN
GETTEXTPOSITION
OUTTEXT
SCROLLTEXTWINDOW
SETTEXTWINDOW
WRAPON

SETTEXTWINDOW
Graphics Subroutine: Sets the current text window.
This routine is only available for Windows.

Module

USE IFQWIN

Syntax
CALL SETTEXTWINDOW (r1,c1,r2,c2)

r1, c1 (Input) INTEGER(2). Row and column coordinates for upper-left
corner of the text window.

r2, c2 (Input) INTEGER(2). Row and column coordinates for lower-right
corner of the text window.

SETTEXTWINDOW specifies a window in row and column coordinates where text output to the screen using
OUTTEXT, WRITE, or PRINT will be displayed. You set the text location within this window with
SETTEXTPOSITION.

Text is output from the top of the window down. When the window is full, successive lines overwrite the last
line.

 1 Intel® Fortran Compiler Classic and Intel® Fortran Compiler Developer Guide and Reference

2246

SETTEXTWINDOW does not affect the output of the graphics text routine OUTGTEXT. Use the SETVIEWPORT
function to control the display area for graphics output.

Example

 USE IFQWIN
 TYPE (rccoord) curpos

 CALL SETTEXTWINDOW(INT2(5), INT2(1), INT2(7), &
 INT2(40))
 CALL SETTEXTPOSITION (INT2(5), INT2(5), curpos)
 WRITE(*,*) "Only two lines in this text window"
 WRITE(*,*) "so this line will be overwritten"
 WRITE(*,*) "by this line"
 END

See Also
GETTEXTPOSITION
GETTEXTWINDOW
GRSTATUS
OUTTEXT
SCROLLTEXTWINDOW
SETTEXTPOSITION
SETVIEWPORT
WRAPON

SETVIEWORG
Graphics Subroutine: Moves the viewport-
coordinate origin (0, 0) to the specified physical point.
This routine is only available for Windows.

Module

USE IFQWIN

Syntax
CALL SETVIEWORG (x,y,s)

x, y (Input) INTEGER(2). Physical coordinates of new viewport origin.

s (Output) Derived type xycoord. Physical coordinates of the previous
viewport origin. The derived type xycoordis defined in IFQWIN.F90 as
follows:

 TYPE xycoord
 INTEGER(2) xcoord ! x-coordinate
 INTEGER(2) ycoord ! y-coordinate
 END TYPE xycoord

The xycoordtype variable s, defined in IFQWIN.F90, returns the
physical coordinates of the previous viewport origin.

Example

 USE IFQWIN
 TYPE (xycoord) xy

 CALL SETVIEWORG(INT2(30), INT2(30), xy)

Intel® Fortran Compiler Classic and Intel® Fortran Compiler Developer Guide and Reference 1

2247

See Also
GETCURRENTPOSITION
GETPHYSCOORD
GETVIEWCOORD
GETWINDOWCOORD
GRSTATUS
SETCLIPRGN
SETVIEWPORT

SETVIEWPORT
Graphics Subroutine: Redefines the graphics
viewport by defining a clipping region in the same
manner as SETCLIPRGN and then setting the
viewport-coordinate origin to the upper-left corner of
the region. This routine is only available for Windows.

Module

USE IFQWIN

Syntax
CALL SETVIEWPORT (x1,y1,x2,y2)

x1, y1 (Input) INTEGER(2). Physical coordinates for upper-left corner of
viewport.

x2, y2 (Input) INTEGER(2). Physical coordinates for lower-right corner of
viewport.

The physical coordinates (x1, y1) and (x2, y2) are the upper-left and lower-right corners of the rectangular
clipping region. Any window transformation done with the SETWINDOW function is relative to the viewport,
not the entire screen.

Example

 USE IFQWIN
 INTEGER(2) upx, upy
 INTEGER(2) downx, downy

 upx = 0
 upy = 30
 downx= 250
 downy = 100
 CALL SETVIEWPORT(upx, upy, downx, downy)

See Also
GETVIEWCOORD
GETPHYSCOORD
GRSTATUS
SETCLIPRGN
SETVIEWORG
SETWINDOW

 1 Intel® Fortran Compiler Classic and Intel® Fortran Compiler Developer Guide and Reference

2248

SETWINDOW
Graphics Function: Defines a window bound by the
specified coordinates. This routine is only available for
Windows.

Module

USE IFQWIN

Syntax
result = SETWINDOW (finvert,wx1,wy1,wx2,wy2)

finvert (Input) LOGICAL(2). Direction of increase of the y-axis. If finvert
is .TRUE., the y-axis increases from the window bottom to the window
top (as Cartesian coordinates). If finvert is .FALSE., the y-axis
increases from the window top to the window bottom (as pixel
coordinates).

wx1, wy1 (Input) REAL(8). Window coordinates for upper-left corner of window.

wx2, wy2 (Input) REAL(8). Window coordinates for lower-right corner of
window.

Results

The result type is INTEGER(2). The result is nonzero if successful; otherwise, 0 (for example, if the program
that calls SETWINDOW is not in a graphics mode).

The SETWINDOW function determines the coordinate system used by all window-relative graphics routines.
Any graphics routines that end in _W (such as ARC_W, RECTANGLE_W, and LINETO_W) use the coordinate
system set by SETWINDOW.

Any window transformation done with the SETWINDOW function is relative to the viewport, not the entire
screen.

An arc drawn using inverted window coordinates is not an upside-down version of an arc drawn with the
same parameters in a noninverted window. The arc is still drawn counterclockwise, but the points that define
where the arc begins and ends are inverted.

If wx1 equals wx2 or wy1 equals wy2, SETWINDOW fails.

Example

 USE IFQWIN
 INTEGER(2) status
 LOGICAL(2) invert /.TRUE./
 REAL(8) upx /0.0/, upy /0.0/
 REAL(8) downx /1000.0/, downy /1000.0/
 status = SETWINDOW(invert, upx, upy, downx, downy)

See Also
GETWINDOWCOORD
SETCLIPRGN
SETVIEWORG
SETVIEWPORT
GRSTATUS
ARC_W
LINETO_W
MOVETO_W

Intel® Fortran Compiler Classic and Intel® Fortran Compiler Developer Guide and Reference 1

2249

PIE_W
POLYGON_W
RECTANGLE_W

SETWRITEMODE
Graphics Function: Sets the current logical write
mode, which is used when drawing lines with the
LINETO, POLYGON, and RECTANGLE functions. This
routine is only available for Windows.

Module

USE IFQWIN

Syntax
result = SETWRITEMODE (wmode)

wmode (Input) INTEGER(2). Write mode to be set. One of the following
symbolic constants (defined in IFQWIN.F90):

• $GPSET - Causes lines to be drawn in the current graphics color.
(Default)

• $GAND - Causes lines to be drawn in the color that is the logical
AND of the current graphics color and the current background
color.

• $GOR - Causes lines to be drawn in the color that is the logical OR
of the current graphics color and the current background color.

• $GPRESET - Causes lines to be drawn in the color that is the logical
NOT of the current graphics color.

• $GXOR - Causes lines to be drawn in the color that is the logical
exclusive OR (XOR) of the current graphics color and the current
background color.

In addition, one of the following binary raster operation constants can
be used (described in the online documentation for the Windows* API
SetROP2):

• $GR2_BLACK
• $GR2_NOTMERGEPEN
• $GR2_MASKNOTPEN
• $GR2_NOTCOPYPEN (same as $GPRESET)
• $GR2_MASKPENNOT
• $GR2_NOT
• $GR2_XORPEN (same as $GXOR)
• $GR2_NOTMASKPEN
• $GR2_MASKPEN (same as $GAND)
• $GR2_NOTXORPEN
• $GR2_NOP
• $GR2_MERGENOTPEN
• $GR2_COPYPEN (same as $GPSET)
• $GR2_MERGEPENNOT
• $GR2_MERGEPEN (same as $GOR)
• $GR2_WHITE

Results

The result type is INTEGER(2). The result is the previous write mode if successful; otherwise, -1.

 1 Intel® Fortran Compiler Classic and Intel® Fortran Compiler Developer Guide and Reference

2250

The current graphics color is set with SETCOLORRGB (or SETCOLOR) and the current background color is set
with SETBKCOLORRGB (or SETBKCOLOR). As an example, suppose you set the background color to yellow
(Z'00FFFF') and the graphics color to purple (Z'FF00FF') with the following commands:

 oldcolor = SETBKCOLORRGB(Z'00FFFF')
 CALL CLEARSCREEN($GCLEARSCREEN)
 oldcolor = SETCOLORRGB(Z'FF00FF')

If you then set the write mode with the $GAND option, lines are drawn in red (Z'0000FF'); with the $GOR
option, lines are drawn in white (Z'FFFFFF'); with the $GXOR option, lines are drawn in turquoise (Z'FFFF00');
and with the $GPRESET option, lines are drawn in green (Z'00FF00'). Setting the write mode to $GPSET
causes lines to be drawn in the graphics color.

Example

 ! Build as a Graphics ap.
 USE IFQWIN
 INTEGER(2) result, oldmode
 INTEGER(4) oldcolor
 TYPE (xycoord) xy

 oldcolor = SETBKCOLORRGB(Z'00FFFF')
 CALL CLEARSCREEN ($GCLEARSCREEN)
 oldcolor = SETCOLORRGB(Z'FF00FF')
 CALL MOVETO(INT2(0), INT2(0), xy)
 result = LINETO(INT2(200), INT2(200)) ! purple

 oldmode = SETWRITEMODE($GAND)
 CALL MOVETO(INT2(50), INT2(0), xy)
 result = LINETO(INT2(250), INT2(200)) ! red
 END

See Also
GETWRITEMODE
GRSTATUS
LINETO
POLYGON
PUTIMAGE
RECTANGLE
SETCOLOR
SETLINESTYLE

WRAPON
Graphics Function: Controls whether text output is
wrapped. This routine is only available for Windows.

Module

USE IFQWIN

Syntax
result = WRAPON (option)

option (Input) INTEGER(2). Wrap mode. One of the following symbolic
constants:

• $GWRAPOFF - Truncates lines at right edge of window border.

Intel® Fortran Compiler Classic and Intel® Fortran Compiler Developer Guide and Reference 1

2251

• $GWRAPON - Wraps lines at window border, scrolling if necessary.

Results

The result type is INTEGER(2). The result is the previous value of option.

WRAPON controls whether text output with the OUTTEXT function wraps to a new line or is truncated when
the text output reaches the edge of the defined text window.

WRAPON does not affect font routines such as OUTGTEXT.

Example

 USE IFQWIN
 INTEGER(2) row, status2
 INTEGER(4) status4
 TYPE (rccoord) curpos
 TYPE (windowconfig) wc
 LOGICAL status

 status = GETWINDOWCONFIG(wc)
 wc%numtextcols = 80
 wc%numxpixels = -1
 wc%numypixels = -1
 wc%numtextrows = -1
 wc%numcolors = -1
 wc%fontsize = -1
 wc%title = "This is a test"C
 wc%bitsperpixel = -1
 status = SETWINDOWCONFIG(wc)
 status4= SETBKCOLORRGB(#FF0000)
 CALL CLEARSCREEN($GCLEARSCREEN)

 ! Display wrapped and unwrapped text in text windows.
 CALL SETTEXTWINDOW(INT2(1),INT2(1),INT2(5),INT2(25))
 CALL SETTEXTPOSITION(INT2(1),INT2(1), curpos)
 status2 = WRAPON($GWRAPON)
 status4 = SETTEXTCOLORRGB(#00FF00)
 DO i = 1, 5
 CALL OUTTEXT('Here text does wrap. ')
 END DO
 CALL SETTEXTWINDOW(INT2(7),INT2(10),INT2(11),INT2(40))
 CALL SETTEXTPOSITION(INT2(1),INT2(1),curpos)
 status2 = WRAPON($GWRAPOFF)
 status4 = SETTEXTCOLORRGB(#008080)
 DO row = 1, 5
 CALL SETTEXTPOSITION(INT2(row), INT2(1), curpos)
 CALL OUTTEXT('Here text does not wrap. ')
 CALL OUTTEXT('Here text does not wrap.')
 END DO
 READ (*,*) ! Wait for ENTER to be pressed
 END

See Also
OUTTEXT
SCROLLTEXTWINDOW
SETTEXTPOSITION
SETTEXTWINDOW

 1 Intel® Fortran Compiler Classic and Intel® Fortran Compiler Developer Guide and Reference

2252

Serial Port I/O Library Routines
This section contains descriptions of the Serial Port I/O library routines, which are restricted to Windows*
systems. They are listed in alphabetical order.

To access these library routines, you must specify a USE IFPORT statement in your program.

You may also need to add a USE IFWINTY statement to your program because some Windows* constants
may be required that are typically defined in the IFWINTY module.

SPORT_CANCEL_IO
Serial Port I/O Function: Cancels any I/O in
progress to the specified port. This routine is only
available for Windows.

Module

USE IFPORT

Syntax
result = SPORT_CANCEL_IO (port)

port (Input) Integer. The port number.

Results

The result type is INTEGER(4). The result is zero if successful; otherwise, a Windows* error value.

NOTE
This call also kills the thread that keeps an outstanding read operation to the serial port.
This call must be done before any of the port characteristics are modified.

Example

USE IFPORT
INTEGER(4) iresult
iresult = SPORT_CANCEL_IO(2)
END

See Also
Communications and Communications Functions in the Microsoft* Platform SDK

SPORT_CONNECT
Serial Port I/O Function: Establishes the connection
to a serial port and defines certain usage parameters.
This routine is only available for Windows.

Module

USE IFPORT

Syntax
result = SPORT_CONNECT (port [,options])

port (Input) Integer. The port number of connection. The routine will open
COM n, where n is the port number specified.

Intel® Fortran Compiler Classic and Intel® Fortran Compiler Developer Guide and Reference 1

2253

options (Input; optional) Integer. Defines the connection options. These
options define how the nnn_LINE routines will work and also effect the
data that is passed to the user. If more than one option is specified,
the operator .OR. should be used between each option. Options are as
follows:

Option Description

DL_TOSS_CR Removes carriage return (CR)
characters on input.

DL_TOSS_LF Removes linefeed (LF)
characters on input.

DL_OUT_CR Causes SPORT_WRITE_LINE to
add a CR to each record written.

DL_OUT_LF Causes SPORT_WRITE_LINE to
add a LF to each record written.

DL_TERM_CR Causes SPORT_READ_LINE to
terminate READ when a CR is
encountered.

DL_TERM_LF Causes SPORT_READ_LINE to
terminate READ when a LF is
encountered.

DL_TERM_CRLF Causes SPORT_READ_LINE to
terminate READ when CR+LF is
encountered.

If options is not specified, the following occurs by default:

(DL_OUT_CR .OR. DL_TERM_CR .OR. DL_TOSS_CR .OR. DL_TOSS_LF)
This specifies to remove carriage returns and linefeeds on input, to follow output lines with a carriage return,
and to return input lines when a carriage return is encountered.

Results

The result type is INTEGER(4). The result is zero if successful; otherwise, a Windows* error value.

Example

USE IFPORT
INTEGER(4) iresult
iresult = SPORT_CONNECT(2)
END

See Also
SPORT_RELEASE
Communications and Communications Functions in the Microsoft* Platform SDK

SPORT_CONNECT_EX
Serial Port I/O Function: Establishes the connection
to a serial port, defines certain usage parameters, and
defines the size of the internal buffer for data
reception. This routine is only available for Windows.

 1 Intel® Fortran Compiler Classic and Intel® Fortran Compiler Developer Guide and Reference

2254

Module

USE IFPORT

Syntax
result = SPORT_CONNECT_EX (port [,options] [,BufferSize])

port (Input) Integer. The port number of connection. The routine will open
COM n, where n is the port number specified.

options (Input; optional) Integer. Defines the connection options. These
options define how the nnn_LINE routines will work and also effect the
data that is passed to the user. If more than one option is specified,
the operator .OR. should be used between each option. Options are as
follows:

Option Description

DL_TOSS_CR Removes carriage return (CR)
characters on input.

DL_TOSS_LF Removes linefeed (LF)
characters on input.

DL_OUT_CR Causes SPORT_WRITE_LINE to
add a CR to each record written.

DL_OUT_LF Causes SPORT_WRITE_LINE to
add a LF to each record written.

DL_TERM_CR Causes SPORT_READ_LINE to
terminate READ when a CR is
encountered.

DL_TERM_LF Causes SPORT_READ_LINE to
terminate READ when a LF is
encountered.

DL_TERM_CRLF Causes SPORT_READ_LINE to
terminate READ when CR+LF is
encountered.

If options is not specified, the following occurs by default:

(DL_OUT_CR .OR. DL_TERM_CR .OR. DL_TOSS_CR .OR. DL_TOSS_LF)
This specifies to remove carriage returns and linefeeds on input, to
follow output lines with a carriage return, and to return input lines
when a carriage return is encountered.

BufferSize (Input; optional) Integer. Size of the internal buffer for data reception.
If BufferSize is not specified, the size of the buffer is 16384 bytes
(the default).

The size of the buffer must be 4096 bytes or larger. If you try to specify a size smaller than 4096 bytes, your
specification will be ignored and the buffer size will be set to 4096 bytes.

Results

The result type is INTEGER(4). The result is zero if successful; otherwise, a Windows* error value.

Intel® Fortran Compiler Classic and Intel® Fortran Compiler Developer Guide and Reference 1

2255

Example

USE IFPORT
INTEGER(4) iresult
iresult = SPORT_CONNECT_EX(2, BufferSize = 8196)
END

See Also
SPORT_CONNECT
SPORT_RELEASE
Communications and Communications Functions in the Microsoft* Platform SDK

SPORT_GET_HANDLE
Serial Port I/O Function: Returns the Windows*
handle associated with the communications port. This
is the handle that was returned by the Windows API
CreateFile. This routine is only available for Windows.

Module

USE IFPORT

Syntax
result = SPORT_GET_HANDLE (port,handle)

port (Input) Integer. The port number.

handle (Output) INTEGER(4) on IA-32 architecture; INTEGER(8) on Intel® 64
architecture. This is the Windows handle that was returned from
CreatFile() on the serial port.

Results

The result type is INTEGER(4). The result is zero if successful; otherwise, a Windows error value.

Example

USE IFPORT
INTEGER(4) iresult
INTEGER(KIND=INT_PTR_KIND()) handle
iresult = SPORT_GET_HANDLE(2, handle)
END

See Also
Communications and Communications Functions in the Microsoft* Platform SDK

SPORT_GET_STATE
Serial Port I/O Function: Returns the baud rate,
parity, data bits setting, and stop bits setting of the
communications port. This routine is only available for
Windows.

Module

USE IFPORT

Syntax
result = SPORT_GET_STATE (port [,baud] [,parity] [,dbits] [,sbits])

 1 Intel® Fortran Compiler Classic and Intel® Fortran Compiler Developer Guide and Reference

2256

port (Input) Integer. The port number.

baud (Output; optional) Integer. The baud rate of the port.

parity (Output; optional) Integer. The parity setting of the port (0-4 = no,
odd, even, mark, space).

dbits (Output; optional) Integer. The data bits for the port.

sbits (Output; optional) Integer. The stop bits for the port (0, 1, 2 = 1, 1.5,
2).

Results

The result type is INTEGER(4). The result is zero if successful; otherwise, a Windows* error value.

Example

USE IFPORT
INTEGER(4) iresult
INTEGER baud
INTEGER parity
INTEGER dbits
INTEGER sbits

iresult = SPORT_GET_STATE(2, baud, parity, dbits, sbits)
END

See Also
SPORT_SET_STATE
Communications and Communications Functions in the Microsoft* Platform SDK

SPORT_GET_STATE_EX
Serial Port I/O Function: Returns the baud rate,
parity, data bits setting, stop bits, and other settings
of the communications port. This routine is only
available for Windows.

Module

USE IFPORT

Syntax
result = SPORT_GET_STATE_EX (port[,baud] [,parity] [,dbits] [,sbits] [,Binmode]
[,DTRcntrl]
 [,RTScntrl] [,OutCTSFlow] [,OutDSRFlow] [,DSRSense] [,OutXonOff] [,InXonOff] [,XonLim]
 [,XoffLim] [,TXContOnXoff] [,ErrAbort] [,ErrCharEnbl] [,NullStrip] [,XonChar]
[,XoffChar]
 [,ErrChar] [,EofChar] [,EvtChar])

port (Input) Integer. The port number.

baud (Input; optional) Integer. The baud rate of the port.

parity (Output; optional) Integer. The parity setting of the port (0-4 = no,
odd, even, mark, space).

Intel® Fortran Compiler Classic and Intel® Fortran Compiler Developer Guide and Reference 1

2257

dbits (Output; optional) Integer. The data bits for the port.

sbits (Output; optional) Integer. The stop bits for the port (0, 1, 2 = 1, 1.5,
2).

Binmode (Output; optional) Integer. 1 if binary mode is enabled; otherwise, 0.
Currently, the value of this parameter is always 1.

DTRcntrl (Output; optional) Integer. 1 if DTR (data-terminal-ready) flow control
is used; otherwise, 0.

RTScntrl (Output; optional) Integer. 1 if RTS (request-to-send) flow control is
used; otherwise, 0.

OutCTSFlow (Output; optional) Integer. 1 if the CTS (clear-to-send) signal is
monitored for output flow control; otherwise, 0.

OutDSRFlow (Output; optional) Integer. 1 if the DSR (data-set-ready) signal is
monitored for output flow control; otherwise, 0.

DSRSense (Output; optional) Integer. 1 if the communications driver is sensitive
to the state of the DSR signal; otherwise, 0.

OutXonOff (Output; optional) Integer. 1 if XON/XOFF flow control is used during
transmission; otherwise, 0.

InXonOff (Output; optional) Integer. 1 if XON/XOFF flow control is used during
reception; otherwise, 0.

XonLim (Output; optional) Integer. The minimum number of bytes accepted in
the input buffer before the XON character is set.

XoffLim (Output; optional) Integer. The maximum number of bytes accepted in
the input buffer before the XOFF character is set.

TXContOnXoff (Output; optional) Integer. 1 if transmission stops when the input
buffer is full and the driver has transmitted the XoffChar character;
otherwise, 0.

ErrAbort (Output; optional) Integer. 1 if read and write operations are
terminated when an error occurs; otherwise, 0.

ErrCharEnbl (Output; optional) Integer. 1 if bytes received with parity errors are
replaced with the ErrChar character; otherwise, 0.

NullStrip (Output; optional) Integer. 1 if null bytes are discarded; otherwise, 0.

XonChar (Output; optional) Character. The value of the XON character that is
used for both transmission and reception.

XoffChar (Output; optional) Character. The value of the XOFF character that is
used for both transmission and reception.

ErrChar (Output; optional) Character. The value of the character that is used
to replace bytes received with parity errors.

EofChar (Output; optional) Character. The value of the character that is used
to signal the end of data.

 1 Intel® Fortran Compiler Classic and Intel® Fortran Compiler Developer Guide and Reference

2258

EvtChar Output; optional) Character. The value of the character that is used to
signal an event.

Results

The result type is INTEGER(4). The result is zero if successful; otherwise, a Windows* error value.

Example

USE IFPORT
INTEGER(4) iresult
INTEGER(4) port, baud, parity, dbits, sbits
INTEGER(4) OutXonOff, InXonOff, OutDSRFlow
INTEGER(4) OutCTSFlow, DTRcntrl, RTScntrl
INTEGER(4) DSRSense, XonLim, XoffLim
CHARACTER(1) XonChar, XoffChar
iresult = SPORT_GET_STATE_EX(port, baud, parity, dbits, sbits, &
 OutXonOff=OutXonOff, InXonOff=InXonOff, OutDSRFlow=OutDSRFlow, &
 OutCTSFlow=OutCTSFlow, DTRcntrl=DTRcntrl, RTScntrl=RTScntrl, &
 DSRSense = DSRSense, XonChar = XonChar, XoffChar = XoffChar, &
 XonLim=XonLim, XoffLim=XoffLim)
END

See Also
SPORT_GET_STATE
SPORT_SET_STATE_EX
Communications, Communications Functions, and SetCommState in the Microsoft* Platform SDK

SPORT_GET_TIMEOUTS
Serial Port I/O Function: Returns the user
selectable timeouts for the serial port. This routine is
only available for Windows.

Module

USE IFPORT

Syntax
result = SPORT_GET_TIMEOUTS (port [,rx_int] [,tx_tot_mult] [,tx_tot_const])

port (Input) Integer. The port number.

rx_int (Output; optional) INTEGER(4). The receive interval timeout value.

tx_tot_mult (Output; optional) INTEGER(4). The transmit multiplier part of the
timeout value.

tx_tot_const (Output; optional) INTEGER(4). The transmit constant part of the
timeout value.

Results

The result type is INTEGER(4). The result is zero if successful; otherwise, a Windows* error value.

Example

USE IFPORT
INTEGER(4) iresult
INTEGER*4 rx_int

Intel® Fortran Compiler Classic and Intel® Fortran Compiler Developer Guide and Reference 1

2259

INTEGER*4 tx_tot_mult
INTEGER*4 tx_tot_const

iresult = SPORT_GET_TIMEOUTS(2, rx_int, tx_tot_mult, tx_tot_const)
END

See Also
SPORT_SET_TIMEOUTS
Communications and Communications Functions in the Microsoft* Platform SDK

SPORT_PEEK_DATA
Serial Port I/O Function: Returns information about
the availability of input data. This routine is only
available for Windows.

Module

USE IFPORT

Syntax
result = SPORT_PEEK_DATA (port [,present] [,count])

port (Input) Integer. The port number.

present (Output; optional) Integer. 1 if data is present, 0 if no data has been
read.

count (Output; optional) Integer. The count of characters that will be
returned by SPORT_READ_DATA.

Results

The result type is INTEGER(4). The result is zero if successful; otherwise, a Windows* error value.

NOTE
CR and LF characters may not be returned depending on the mode specified in the
SPORT_CONNECT() call.

Example

USE IFPORT
INTEGER(4) iresult
INTEGER present
INTEGER count

iresult = SPORT_PEEK_DATA(2, present, count)
END

See Also
SPORT_CONNECT
SPORT_READ_DATA
SPORT_PEEK_LINE
Communications and Communications Functions in the Microsoft* Platform SDK

 1 Intel® Fortran Compiler Classic and Intel® Fortran Compiler Developer Guide and Reference

2260

SPORT_PEEK_LINE
Serial Port I/O Function: Returns information about
the availability of input records. This routine is only
available for Windows.

Module

USE IFPORT

Syntax
result = SPORT_PEEK_LINE (port [,present] [,count])

port (Input) Integer. The port number.

present (Output; optional) Integer. 1 if data is present, 0 if no data has been
read.

count (Output; optional) Integer. The count of characters that will be
returned by SPORT_READ_DATA.

Results

The result type is INTEGER(4). The result is zero if successful; otherwise, a Windows* error value.

This routine will only return when a line terminator has been seen - as defined by the mode specified in the
SPORT_CONNECT() call.

NOTE
CR and LF characters may not be returned depending on the mode specified in the
SPORT_CONNECT() call.

Example

USE IFPORT
INTEGER(4) iresult
INTEGER present
INTEGER count

iresult = SPORT_PEEK_LINE(2, present, count)
END

See Also
SPORT_CONNECT
SPORT_READ_DATA
SPORT_PEEK_DATA
Communications and Communications Functions in the Microsoft* Platform SDK

SPORT_PURGE
Serial Port I/O Function: Executes the Windows*
API communications function PurgeComm on the
specified port. This routine is only available for
Windows.

Module

USE IFPORT

Intel® Fortran Compiler Classic and Intel® Fortran Compiler Developer Guide and Reference 1

2261

Syntax
result = SPORT_PURGE (port,function)

port (Input) Integer. The port number.

function (Input) INTEGER(4). The function for PurgeComm (see the Windows*
documentation).

Results

The result type is INTEGER(4). The result is zero if successful; otherwise, a Windows error value.

Example

USE IFWINTY
USE IFPORT
INTEGER(4) iresult
iresult = SPORT_PURGE(2, (PURGE_TXABORT .or. PURGE_RXABORT))
END

See Also
Communications and Communications Functions in the Microsoft* Platform SDK

SPORT_READ_DATA
Serial Port I/O Function: Reads available data from
the specified port. This routine stalls until at least one
character has been read. This routine is only available
for Windows.

Module

USE IFPORT

Syntax
result = SPORT_READ_DATA (port,buffer[,count])

port (Input) Integer. The port number.

buffer (Output) Character*(*). The data that was read.

count (Output; optional) Integer. The count of bytes read.

Results

The result type is INTEGER(4). The result is zero if successful; otherwise, a Windows* error value.

NOTE
CR and LF characters may not be returned depending on the mode specified in the
SPORT_CONNECT() call.

Example

USE IFPORT
INTEGER(4) iresult
INTEGER count
CHARACTER*1024 rbuff

 1 Intel® Fortran Compiler Classic and Intel® Fortran Compiler Developer Guide and Reference

2262

iresult = SPORT_READ_DATA(2, rbuff, count)
END

See Also
SPORT_CONNECT
SPORT_PEEK_DATA
SPORT_READ_LINE
SPORT_WRITE_DATA
Communications and Communications Functions in the Microsoft* Platform SDK

SPORT_READ_LINE
Serial Port I/O Function: Reads a record from the
specified port. This routine stalls until at least one
record has been read. This routine is only available for
Windows.

Module

USE IFPORT

Syntax
result = SPORT_READ_LINE (port,buffer[, count])

port (Input) Integer. The port number.

buffer (Output) Character*(*). The data that was read.

count (Output; optional) Integer. The count of bytes read.

Results

The result type is INTEGER(4). The result is zero if successful; otherwise, a Windows* error value.

This routine will only return when a line terminator has been seen - as defined by the mode specified in the
SPORT_CONNECT() call.

NOTE
CR and LF characters may not be returned depending on the mode specified in the
SPORT_CONNECT() call.

Example

USE IFPORT
INTEGER(4) iresult
INTEGER count
CHARACTER*1024 rbuff

iresult = SPORT_READ_LINE(2, rbuff, count)
END

See Also
SPORT_CONNECT
SPORT_PEEK_LINE
SPORT_READ_DATA

Intel® Fortran Compiler Classic and Intel® Fortran Compiler Developer Guide and Reference 1

2263

SPORT_WRITE_LINE
Communications and Communications Functions in the Microsoft* Platform SDK

SPORT_RELEASE
Serial Port I/O Function: Releases a serial port that
was previously connected when SPORT_CONNECT was
specified. This routine is only available for Windows.

Module

USE IFPORT

Syntax
result = SPORT_RELEASE (port)

port (Input) Integer. The port number.

Results

The result type is INTEGER(4). The result is zero if successful; otherwise, a Windows* error value.

Example

USE IFPORT
INTEGER(4) iresult
iresult = SPORT_RELEASE(2)
END

See Also
SPORT_CONNECT
Communications and Communications Functions in the Microsoft* Platform SDK

SPORT_SET_STATE
Serial Port I/O Function: Sets the baud rate, parity,
data bits setting, and stop bits setting of the
communications port. This routine is only available for
Windows.

Module

USE IFPORT

Syntax
result = SPORT_SET_STATE (port [,baud] [,parity] [,dbits] [,sbits])

port (Input) Integer. The port number.

baud (Input; optional) Integer. The baud rate of the port.

parity (Input; optional) Integer. The parity setting of the port (0-4 = no,
odd, even, mark, space).

dbits (Input; optional) Integer. The data bits for the port.

sbits (Input; optional) Integer. The stop bits for the port (0, 1, 2 = 1, 1.5,
2).

Results

The result type is INTEGER(4). The result is zero if successful; otherwise, a Windows* error value.

 1 Intel® Fortran Compiler Classic and Intel® Fortran Compiler Developer Guide and Reference

2264

The following restrictions apply:

• The number of data bits must be 5 to 8 bits.
• The use of 5 data bits with 2 stop bits is an invalid combination, as is 6, 7, or 8 data bits with 1.5 stop

bits.

NOTE
This routine must not be used when any I/O is pending. Since a read operation is always
pending after any I/O has been started, you must first call SPORT_CANCEL_IO before port
parameters can be changed.

Example

USE IFPORT
INTEGER(4) iresult
iresult = SPORT_SET_STATE(2, 9600, 0, 7, 0)
END

See Also
SPORT_CANCEL_IO
SPORT_GET_STATE
Communications, Communications Functions, and SetCommState in the Microsoft* Platform SDK

SPORT_SET_STATE_EX
Serial Port I/O Function: Sets the baud rate, parity,
data bits setting, stop bits, and other settings of the
communications port. This routine is only available for
Windows.

Module

USE IFPORT

Syntax
result = SPORT_SET_STATE_EX (port [,baud] [,parity] [,dbits] [,sbits] [,Binmode]
[,DTRcntrl]
 [,RTScntrl] [,OutCTSFlow] [,OutDSRFlow] [,DSRSense] [,OutXonOff] [,InXonOff] [,XonLim]
 [,XoffLim] [,TXContOnXoff] [,ErrAbort] [,ErrCharEnbl] [,NullStrip] [,XonChar]
[,XoffChar]
 [,ErrChar] [,EofChar] [,EvtChar] [,fZeroDCB])

port (Input) Integer. The port number.

baud (Input; optional) Integer. The baud rate of the port.

parity (Input; optional) Integer. The parity setting of the port (0-4 = no,
odd, even, mark, space).

dbits (Input; optional) Integer. The data bits for the port.

sbits (Input; optional) Integer. The stop bits for the port (0, 1, 2 = 1, 1.5,
2).

Intel® Fortran Compiler Classic and Intel® Fortran Compiler Developer Guide and Reference 1

2265

Binmode (Input; optional) Integer. 1 if binary mode should be enabled;
otherwise, 0. Currently, if this parameter is used, the value must be 1.

DTRcntrl (Input; optional) Integer. 1 if DTR (data-terminal-ready) flow control
should be used; otherwise, 0.

RTScntrl (Input; optional) Integer. 1 if RTS (request-to-send) flow control
should be used; otherwise, 0.

OutCTSFlow (Input; optional) Integer. 1 if the CTS (clear-to-send) signal should be
monitored for output flow control; otherwise, 0.

OutDSRFlow (Input; optional) Integer. 1 if the DSR (data-set-ready) signal should
be monitored for output flow control; otherwise, 0.

DSRSense (Input; optional) Integer. 1 if the communications driver should be
sensitive to the state of the DSR signal; otherwise, 0.

OutXonOff (Input; optional) Integer. 1 if XON/XOFF flow control should be used
during transmission; otherwise, 0.

InXonOff (Input; optional) Integer. 1 if XON/XOFF flow control should be used
during reception; otherwise, 0.

XonLim (Input; optional) Integer. The minimum number of bytes that should
be accepted in the input buffer before the XON character is set.

XoffLim (Input; optional) Integer. The maximum number of bytes that should
be accepted in the input buffer before the XOFF character is set.

TXContOnXoff (Input; optional) Integer. 1 if transmission should be stopped when
the input buffer is full and the driver has transmitted the XoffChar
character; otherwise, 0.

ErrAbort (Input; optional) Integer. 1 if read and write operations should be
terminated when an error occurs; otherwise, 0.

ErrCharEnbl (Input; optional) Integer. 1 if bytes received with parity errors should
be replaced with the ErrChar character; otherwise, 0.

NullStrip (Input; optional) Integer. 1 if null bytes should be discarded;
otherwise, 0.

XonChar (Input; optional) Character. The value of the XON character that
should be used for both transmission and reception.

XoffChar (Input; optional) Character. The value of the XOFF character that
should be used for both transmission and reception.

ErrChar (Input; optional) Character. The value of the character that should be
used to replace bytes received with parity errors.

EofChar (Input; optional) Character. The value of the character that should be
used to signal the end of data.

EvtChar (Input; optional) Character. The value of the character that should be
used to signal an event.

fZeroDCB (Input; optional) Integer. 1 if all settings of the communications port
should be set to zero before parameters are set; otherwise, 0.

 1 Intel® Fortran Compiler Classic and Intel® Fortran Compiler Developer Guide and Reference

2266

Results

The result type is INTEGER(4). The result is zero if successful; otherwise, a Windows* error value.

The following restrictions apply:

• The number of data bits must be 5 to 8 bits.
• The use of 5 data bits with 2 stop bits is an invalid combination, as is 6, 7, or 8 data bits with 1.5 stop

bits.

NOTE
This routine must not be used when any I/O is pending. Since a read operation is always
pending after any I/O has been started, you must first call SPORT_CANCEL_IO before port
parameters can be changed.

Example

USE IFPORT
INTEGER(4) iresult
iresult = SPORT_SET_STATE_EX(2, 9600, 0, 7, 1, OutXonOff=1, InXonOff=1, &
 XonLim=1024, XoffLim=512, XonChar=CHAR(17), XoffChar=CHAR(19), &
 fZeroDCB=1))
END

See Also
SPORT_CANCEL_IO
SPORT_GET_STATE
SPORT_SET_STATE
Communications, Communications Functions, and SetCommState in the Microsoft* Platform SDK

SPORT_SET_TIMEOUTS
Serial Port I/O Function: Sets the user selectable
timeouts for the serial port. This routine is only
available for Windows.

Module

USE IFPORT

Syntax
result = SPORT_SET_TIMEOUTS (port [,rx_int] [,tx_tot_mult] [,tx_tot_const])

port (Input) Integer. The port number.

rx_int (Input; optional) INTEGER(4). The receive interval timeout value.

tx_tot_mult (Input; optional) INTEGER(4). The transmit multiplier part of the
timeout value.

tx_tot_const (Input; optional) INTEGER(4). The transmit constant part of the
timeout value.

Results

The result type is INTEGER(4). The result is zero if successful; otherwise, a Windows* error value.

Intel® Fortran Compiler Classic and Intel® Fortran Compiler Developer Guide and Reference 1

2267

NOTE
This routine must not be used when any I/O is pending. Since a read operation is always
pending after any I/O has been started, you must first call SPORT_CANCEL_IO before port
parameters can be changed.

Example

USE IFPORT
INTEGER(4) iresult
iresult = SPORT_SET_TIMEOUTS(2, 100, 0, 1000)
END

See Also
SPORT_CANCEL_IO
SPORT_GET_TIMEOUTS
Communications and Communications Functions in the Microsoft* Platform SDK

SPORT_SHOW_STATE
Serial Port I/O Function: Displays the state of a
port to standard output. This routine is only available
for Windows.

Module

USE IFPORT

Syntax
result = SPORT_SHOW_STATE (port,level)

port (Input) Integer. The port number.

level (Input) Integer. Controls the level of detail displayed as follows:

0 Basic one line display

1 Basic information

2 Add modem signal control flow information

3 Add XON/XOFF information

4 Add event character information

11 Add timeout information

901 Add debug information

Results

The result type is INTEGER(4). The result is zero if successful; otherwise, a Windows* error value.

NOTE
This routine must not be used when any I/O is pending. Since a read operation is always
pending after any I/O has been started, you must first call SPORT_CANCEL_IO before port
parameters can be changed.

 1 Intel® Fortran Compiler Classic and Intel® Fortran Compiler Developer Guide and Reference

2268

Example

USE IFPORT
INTEGER(4) iresult
iresult = SPORT_SHOW_STATE(2, 0)
END

See Also
SPORT_CANCEL_IO
Communications and Communications Functions in the Microsoft* Platform SDK

SPORT_SPECIAL_FUNC
Serial Port I/O Function: Executes the Windows*
API communications function EscapeCommFunction on
the specified port. This routine is only available for
Windows.

Module

USE IFPORT

Syntax
result = SPORT_SPECIAL_FUNC (port,function)

port (Input) Integer. The port number.

function (Input) INTEGER(4). The function to perform.

Results

The result type is INTEGER(4). The result is zero if successful; otherwise, the result is a Windows* error
value.

Example

USE IFPORT
INTEGER(4) iresult
iresult = SPORT_SPECIAL_FUNC(2, ?)
END

See Also
Communications and Communications Functions in the Microsoft* Platform SDK

SPORT_WRITE_DATA
Serial Port I/O Function: Outputs data to the
specified port. This routine is only available for
Windows.

Module

USE IFPORT

Syntax
result = SPORT_WRITE_DATA (port,data[,count])

port (Input) Integer. The port number.

data (Input) Character*(*). The data to be output.

Intel® Fortran Compiler Classic and Intel® Fortran Compiler Developer Guide and Reference 1

2269

count (Input; optional) Integer. The count of bytes to write. If the value is
zero, this number is computed by scanning the data backwards
looking for a non-blank character.

Results

The result type is INTEGER(4). The result is zero if successful; otherwise, a Windows* error value.

NOTE
When hardware (DTR, RTS, etc.) or software (XON/XOFF) flow controls are used, the
functions SPORT_WRITE_DATA and SPORT_WRITE_LINE can write less bytes than required.
When this occurs, the functions return the code ERROR_IO_INCOMPLETE, and the return
value of parameter count contains the number of bytes that were really written.

Example

USE IFPORT
INTEGER(4) iresult
iresult = SPORT_WRITE_DATA(2, 'ATZ'//CHAR(13), 0)
END

See Also
SPORT_WRITE_LINE
SPORT_READ_DATA
Communications and Communications Functions in the Microsoft* Platform SDK

SPORT_WRITE_LINE
Serial Port I/O Function: Outputs data, followed by
a record terminator, to the specified port. This routine
is only available for Windows.

Module

USE IFPORT

Syntax
result = SPORT_WRITE_LINE (port,data[,count])

port (Input) Integer. The port number.

data (Input) Character*(*). The data to be output.

count (Input; optional) Integer. The count of bytes to write. If the value is
zero, this number is computed by scanning the data backwards
looking for a non-blank character.

Results

The result type is INTEGER(4). The result is zero if successful; otherwise, a Windows* error value.

After the data is output, a line terminator character is added based on the mode used during the
SPORT_CONNECT() call.

 1 Intel® Fortran Compiler Classic and Intel® Fortran Compiler Developer Guide and Reference

2270

NOTE
When hardware (DTR, RTS, etc.) or software (XON/XOFF) flow controls are used, the
functions SPORT_WRITE_DATA and SPORT_WRITE_LINE can write less bytes than required.
When this occurs, the functions return the code ERROR_IO_INCOMPLETE, and the return
value of parameter count contains the number of bytes that were really written.

Example

USE IFPORT
INTEGER(4) iresult
iresult = SPORT_WRITE_LINE(2, 'ATZ', 0)
END

See Also
SPORT_CONNECT
SPORT_WRITE_DATA
SPORT_READ_DATA
Communications and Communications Functions in the Microsoft* Platform SDK

Dialog Library Routines
This section contains descriptions of the Dialog library routines, which are restricted to Windows* systems.
They are listed in alphabetical order.

To access these library routines, you must specify a USE IFLOGM statement in your program.

DLGEXIT
Dialog Subroutine: Closes an open dialog box. This
routine is only available for Windows.

Module

USE IFLOGM

Syntax
CALL DLGEXIT (dlg)

dlg (Input) Derived type dialog. Contains dialog box parameters. The
components of the type dialog are defined with the PRIVATE
attribute, and cannot be changed or individually accessed by the user.

If you want to exit a dialog box on a condition other than the user selecting the OK or Cancel button, you
need to include a call to DLGEXIT from within your callback routine. DLGEXIT saves the data associated with
the dialog box controls and then closes the dialog box. The dialog box is exited after DLGEXIT has returned
control back to the dialog manager, not immediately after the call to DLGEXIT.

Example

SUBROUTINE EXITSUB (dlg, exit_button_id, callbacktype)
USE IFLOGM
TYPE (DIALOG) dlg
INTEGER exit_button_id, callbacktype
...
 CALL DLGEXIT (dlg)

Intel® Fortran Compiler Classic and Intel® Fortran Compiler Developer Guide and Reference 1

2271

See Also
DLGSETRETURN
DLGINIT
DLGMODAL
DLGMODELESS

DLGFLUSH
Dialog Subroutine: Updates the display of a dialog
box. This routine is only available for Windows.

Module

USE IFLOGM

Syntax
CALL DLGFLUSH (dlg[,flushall])

dlg (Input) Derived type dialog. Contains dialog box parameters. The
components of the type dialog are defined with the PRIVATE
attribute, and cannot be changed or individually accessed by the user.

flushall (Input; optional) Logical. If .FALSE. (the default), then only the
controls that the dialog routines have marked as changed are
updated. If .TRUE., all controls are updated with the state of the
controls as known by the dialog routines. Normally, you would not set
flushall to .TRUE..

When your application calls DLGSET to change a property of a control in a dialog box, the change is not
immediately reflected in the displayed dialog box. Changes are applied when the dialog box is first displayed,
and then after every dialog callback to the user's code.

This design expects that, after a call to DLGMODAL or DLGMODELESS, every call to DLGSET will be made
from within a callback routine, and that the callback routine finishes quickly. This is true most of the time.

However, there may be cases where you want to change a control outside of a dialog callback, or from within
a loop in a dialog callback.

In these cases, DLGFLUSH is required, but is not always sufficient, to update the dialog display. DLGFLUSH
sends pending Windows* system messages to the dialog box and the controls that it contains. However,
many display changes do not appear until after the program reads and processes these messages. A loop
that processes the pending messages may be required; for example:

use IFWINTY
use USER32
use IFLOGM
logical lNotQuit, lret
integer iret
TYPE (T_MSG) mesg
lNotQuit = .TRUE.
do while (lNotQuit .AND. (PeekMessage(mesg, 0, 0, 0, PM_NOREMOVE) <> 0))
 lNotQuit = GetMessage(mesg, NULL, 0, 0)
 if (lNotQuit) then
 if (DLGISDLGMESSAGE(mesg) .EQV. .FALSE) then
 lret = TranslateMessage(mesg)
 iret = DispatchMessage(mesg)
 end if
 end if
end do

 1 Intel® Fortran Compiler Classic and Intel® Fortran Compiler Developer Guide and Reference

2272

See Also
DLGINIT
DLGMODAL
DLGMODELESS
DLGSET
DLGSETSUB

DLGGET, DLGGETINT, DLGGETLOG, DLGGETCHAR
Dialog Functions: Return the state of the dialog
control variable. These routines are only available for
Windows.

Module

USE IFLOGM

Syntax
result = DLGGET (dlg,controlid,value[,index])
result = DLGGETINT (dlg,controlid,value[,index])
result = DLGGETLOG (dlg,controlid,value[,index])
result = DLGGETCHAR (dlg,controlid,value[,index])

dlg (Input) Derived type dialog. Contains dialog box parameters. The
components of the type dialog are defined with the PRIVATE
attribute, and cannot be changed or individually accessed by the user.

controlid (Input) Integer. Specifies the identifier of a control within the dialog
box. Can be either the symbolic name for the control or the identifier
number, both listed in the Include file (with extension .FD).

value (Output) Integer, logical, or character. The value of the control's
variable.

index (Input; optional) Integer. Specifies the control variable whose value is
retrieved. Necessary if the control has more than one variable of the
same data type and you do not want to get the value of the default for
that type.

Results

The result type is LOGICAL(4). The result is .TRUE. if successful; otherwise, the result is .FALSE..

Use the DLGGET functions to retrieve the values of variables associated with your dialog box controls. Each
control has at least one of the integer, logical, or character variable associated with it, but not necessarily all.
For information about the location of a document that contains lists of index variables for each control type,
see Additional Documentation: Creating Fortran Applications that Use Windows* Features.

You can use DLGGET to retrieve the value of any variable. You can also use DLGGETINT to retrieve an integer
value, or DLGGETLOG and DLGGETCHAR to retrieve logical and character values, respectively. If you use
DLGGET, you do not have to worry about matching the function to the variable type. If you use the wrong
function type for a variable or try to retrieve a variable type that is not available, the DLGGET functions
return .FALSE..

If two or more controls have the same controlid, you cannot use these controls in a DLGGET operation. In
this case the function returns .FALSE..

The dialog box does not need to be open to access its control variables.

Intel® Fortran Compiler Classic and Intel® Fortran Compiler Developer Guide and Reference 1

2273

Example

USE IFLOGM
INCLUDE "THISDLG.FD"
TYPE (DIALOG) dlg
INTEGER val
LOGICAL retlog, is_checked
CHARACTER(256) text
...
retlog = DLGGET (dlg, IDC_CHECKBOX1, is_checked, dlg_status)
retlog = DLGGET (dlg, IDC_SCROLLBAR2, val, dlg_range)
retlog = DLGGET (dlg, IDC_STATIC_TEXT1, text, dlg_title)
...

See Also
DLGSET
DLGSETSUB
DLGINIT
DLGMODAL
DLGMODELESS

DLGINIT, DLGINITWITHRESOURCEHANDLE
Dialog Functions: Initialize a dialog box. These
routines are only available for Windows.

Module

USE IFLOGM

Syntax
result = DLGINIT (id,dlg)
result = DLGINITWITHRESOURCEHANDLE (id,hinst,dlg)

id (Input) INTEGER(4). Dialog identifier. Can be either the symbolic
name for the dialog or the identifier number, both listed in the Include
file (with extension .FD).

dlg (Output) Derived type dialog. Contains dialog box parameters.

hinst (Input) INTEGER(HANDLE). Handle of the module instance in which
the dialog resource can be found. INTEGER(HANDLE) is INTEGER(4)
on IA-32 architecture and INTEGER(8) on Intel® 64 architecture.

Results

The result type is LOGICAL(4). The result is .TRUE. if successful; otherwise, the result is .FALSE..

DLGINIT must be called to initialize a dialog box before it can be used with DLGMODAL, DLGMODELESS, or
any other dialog function.

DLGINIT will only search for the dialog box resource in the main application. For example, it will not find a
dialog box resource that has been built into a dynamic link library.

DLGINITWITHRESOURCEHANDLE can be used when the dialog resource is not in the main application. If the
dialog resource is in a dynamic link library (DLL), hinst must be the value passed as the first argument to the
DLLMAIN procedure.

Dialogs can be used from any application, including console, QuickWin, and Windows* applications.

 1 Intel® Fortran Compiler Classic and Intel® Fortran Compiler Developer Guide and Reference

2274

Example

USE IFLOGM
INCLUDE 'DLG1.FD'
LOGICAL retlog
TYPE (DIALOG) thisdlg
...
retlog = DLGINIT (IDD_DLG3, thisdlg)
IF (.not. retlog) THEN
 WRITE (*,*) 'ERROR: dialog not found'
ELSE
...

See Also
DLGEXIT
DLGMODAL
DLGMODELESS
DLGUNINIT

DLGISDLGMESSAGE, DLGISDLGMESSAGEWITHDLG
Dialog Functions: Determine whether the specified
message is intended for one of the currently displayed
modeless dialog boxes, or a specific dialog box. These
routines are only available for Windows.

Module

USE IFLOGM

Syntax
result = DLGISDLGMESSAGE (mesg)
result = DLGISDLGMESSAGEWITHDLG (mesg, dlg)

mesg (Input) Derived type T_MSG. Contains a Windows message.

dlg (Input) Derived type dialog. Contains dialog box parameters. The
components of the type dialog are defined with the PRIVATE
attribute, and cannot be changed or individually accessed by the user.

Results

The result type is LOGICAL(4). The result is .TRUE. if the message is processed by the dialog box. Otherwise,
the result is .FALSE. and the message should be further processed.

DLGISDLGMESSAGE must be called in the message loop of Windows applications that display a modeless
dialog box using DLGMODELESS. DLGISDGMESSAGE determines whether the message is intended for one of
the currently displayed modeless dialog boxes. If it is, it passes the message to the dialog box to be
processed.

DLGISDLGMESSAGEWITHDLG specifies a particular dialog box to check. Use DLGISDLGMESSAGEWITHDLG
when the message loop is in a main application and the currently active modeless dialog box was created by
a DLL.

Example

 use IFLOGM
 include 'resource.fd'
 type (DIALOG) dlg
 type (T_MSG) mesg

Intel® Fortran Compiler Classic and Intel® Fortran Compiler Developer Guide and Reference 1

2275

 integer*4 ret
 logical*4 lret
 ...
 ! Create the main dialog box and set up the controls and callbacks
 lret = DlgInit(IDD_THERM_DIALOG, dlg)
 lret = DlgSetSub(dlg, IDD_THERM_DIALOG, ThermSub)
 ...
 lret = DlgModeless(dlg, nCmdShow)
 ...
 ! Read and process messsages
 do while(GetMessage (mesg, NULL, 0, 0) /= 0)
 ! Note that DlgIsDlgMessage must be called in order to give
 ! the dialog box first chance at the message.
 if (DlgIsDlgMessage(mesg) .EQV. .FALSE.) then
 lret = TranslateMessage(mesg)
 ret = DispatchMessage(mesg)
 end if
 end do
 ! Cleanup dialog box memory and exit the application
 call DlgUninit(dlg)
 WinMain = mesg%wParam
 return

See Also
DLGMODELESS

DLGMODAL, DLGMODALWITHPARENT
Dialog Functions: Display a dialog box and process
user control selections made within the box. This
routine is only available for Windows.

Module

USE IFLOGM

Syntax
result = DLGMODAL (dlg)
result = DLGMODAL (dlg, hwndParent)

dlg (Input) Derived type dialog. Contains dialog box parameters. The
components of the type dialog are defined with the PRIVATE
attribute, and cannot be changed or individually accessed by the user.

hwndParent (Input) Integer. Specifies the parent window for the dialog box. If
omitted, the value is determined in this order:

1. If DLGMODAL is called from the callback of a modal or modeless
dialog box, then that dialog box is the parent window.

2. If it is a QuickWin or Standard Graphics application, then the
frame window is the parent window.

3. The Windows* desktop window is the parent window.

Results

The result type is INTEGER(4). By default, if successful, it returns the identifier of the control that caused the
dialog to exit; otherwise, it returns -1. The return value can be changed with the DLGSETRETURN subroutine.

 1 Intel® Fortran Compiler Classic and Intel® Fortran Compiler Developer Guide and Reference

2276

During execution, DLGMODAL displays a dialog box and then waits for user control selections. When a control
selection is made, the callback routine, if any, of the selected control (set with DLGSETSUB) is called.

The dialog remains active until an exit control is executed: either the default exit associated with the OK and
Cancel buttons, or DLGEXIT within your own control callbacks. DLGMODAL does not return a value until the
dialog box is exited.

The default return value for DLGMODAL is the identifier of the control that caused it to exit (for example,
IDOK for the OK button and IDCANCEL for the Cancel button). You can specify your own return value with
DLGSETRETURN from within one of your dialog control callback routines. You should not specify -1 as your
return value, because this is the error value DLGMODAL returns if it cannot open the dialog.

Use DLGMODALWITHPARENT when you want the parent window to be other than the default value (see
argument hwndParent above). In particular, in an SDI or MDI Windows application, you may want the parent
window to be the main application window. The parent window is disabled for user input while the modal
dialog box is displayed.

Example

USE IFLOGM
INCLUDE "MYDLG.FD"
INTEGER return
TYPE (DIALOG) mydialog
...
return = DLGMODAL (mydialog)
...

See Also
DLGSETRETURN
DLGSETSUB
DLGINIT
DLGEXIT

DLGMODELESS
Dialog Function: Displays a modeless dialog box.
This routine is only available for Windows.

Module

USE IFLOGM

Syntax
result = DLGMODELESS (dlg[,nCmdShow,hwndParent])

dlg (Input) Derived type dialog. Contains dialog box parameters. The
components of the type dialog are defined with the PRIVATE
attribute, and cannot be changed or individually accessed by the user.
The variable passed to this function must remain in memory for the
duration of the dialog box, that is from the DLGINIT call through the
DLGUNINIT call.

The variable can be declared as global data in a module, as a variable
with the STATIC attribute, or in a calling procedure that is active for
the duration of the dialog box. It must not be an AUTOMATIC variable
in the procedure that calls DLGMODELESS.

nCmdShow (Input) Integer. Specifies how the dialog box is to be shown. It must
be one of the following values:

Intel® Fortran Compiler Classic and Intel® Fortran Compiler Developer Guide and Reference 1

2277

Value Description

SW_HIDE Hides the dialog box.

SW_MINIMIZE Minimizes the dialog box.

SW_RESTORE Activates and displays the dialog
box. If the dialog box is
minimized or maximized, the
Windows system restores it to
its original size and position.

SW_SHOW Activates the dialog box and
displays it in its current size and
position.

SW_SHOWMAXIMIZED Activates the dialog box and
displays it as a maximized
window.

SW_SHOWMINIMIZED Activates the dialog box and
displays it as an icon.

SW_SHOWMINNOACTIVE Displays the dialog box as an
icon. The window that is
currently active remains active.

SW_SHOWNA Displays the dialog box in its
current state. The window that
is currently active remains
active.

SW_SHOWNOACTIVATE Displays the dialog box in its
most recent size and position.
The window that is currently
active remains active.

SW_SHOWNORMAL Activates and displays the dialog
box. If the dialog box is
minimized or maximized, the
Windows* system restores it to
its original size and position.

The default value is SW_SHOWNORMAL.

hwndParent (Input) Integer. Specifies the parent window for the dialog box. The
default value is determined in this order:

1. If DLGMODELESS is called from a callback of a modeless dialog
box, then that dialog box is the parent window.

2. The Windows desktop window is the parent window.

Results

The result type is LOGICAL(4). The value is .TRUE. if the function successfully displays the dialog box.
Otherwise the result is .FALSE..

 1 Intel® Fortran Compiler Classic and Intel® Fortran Compiler Developer Guide and Reference

2278

During execution, DLGMODELESS displays a modeless dialog box and returns control to the calling
application. The dialog box remains active until DLGEXIT is called, either explicitly or as the result of the
invocation of a default button callback.

DLGMODELESS is typically used in a Windows application. The application must contain a message loop that
processes Windows messages. The message loop must call DLGISDLGMESSAGE for each message. See the
example below in the Example section. Multiple modeless dialog boxes can be displayed at the same time. A
modal dialog box can be displayed from a modeless dialog box by calling DLGMODAL from a modeless dialog
callback. However, DLGMODELESS cannot be called from a modal dialog box callback.

DLGMODELESS also can be used in a Console, DLL, or LIB project. However, the requirements remain that
the application must contain a message loop and must call DLGISDLGMESSAGE for each message. For an
example of calling DLGMODELESS in a DLL project, see the Dllprgrs sample in the ...\SAMPLES
\DIALOGfolder.

Use the DLG_INIT callback with DLGSETSUB to perform processing immediately after the dialog box is
created and before it is displayed, and to perform processing immediately before the dialog box is destroyed.

Example

 use IFLOGM
 include 'resource.fd'
 type (DIALOG) dlg
 type (T_MSG) mesg
 integer*4 ret
 logical*4 lret
 ...
 ! Create the main dialog box and set up the controls and callbacks
 lret = DlgInit(IDD_THERM_DIALOG, dlg)
 lret = DlgSetSub(dlg, IDD_THERM_DIALOG, ThermSub)
 ...
 lret = DlgModeless(dlg, nCmdShow)
 ...
 ! Read and process messsages
 do while(GetMessage (mesg, NULL, 0, 0))
 ! Note that DlgIsDlgMessage must be called in order to give
 ! the dialog box first chance at the message.
 if (DlgIsDlgMessage(mesg) .EQV. .FALSE.) then
 lret = TranslateMessage(mesg)
 ret = DispatchMessage(mesg)
 end if
 end do
 ! Cleanup dialog box memory and exit the application
 call DlgUninit(dlg)
 WinMain = mesg%wParam
 return

See Also
DLGSETSUB
DLGINIT
DLGEXIT
DLGISDLGMESSAGE

DLGSENDCTRLMESSAGE
Dialog Function: Sends a Windows message to a
dialog box control. This routine is only available for
Windows.

Intel® Fortran Compiler Classic and Intel® Fortran Compiler Developer Guide and Reference 1

2279

Module

USE IFLOGM

Syntax
result = DLGSENDCTRLMESSAGE (dlg,controlid,msg,wparam,lparam)

dlg (Input) Derived type dialog. Contains dialog box parameters. The
components of the type dialog are defined with the PRIVATE
attribute, and cannot be changed or individually accessed by the user.

controlid (Input) Integer. Specifies the identifier of the control within the dialog
box. Can be either the symbolic name for the control or the identifier
number, both listed in the Include file (with extension .FD).

msg (Input) Integer. Derived type T_MSG. Specifies the message to be
sent.

wparam (Input) Integer. Specifies additional message specific information.

lparam (Input) Integer. Specifies additional message specific information.

Results

The result type is INTEGER(4). The value specifies the result of the message processing and depends upon
the message sent.

The dialog box must be currently active by a call to DLGMODAL or DLGMODELESS. This function does not
return until the message has been processed by the control.

Example

use IFLOGM
include 'resource.fd'
type (dialog) dlg
integer callbacktype
integer cref
integer iret

if (callbacktype == dlg_init) then
 ! Change the color of the Progress bar to red
 ! NOTE: The following message succeeds only if Internet Explorer 4.0
 ! or higher is installed
 cref = Z'FF' ! Red
 iret = DlgSendCtrlMessage(dlg, IDC_PROGRESS1, PBM_SETBARCOLOR, 0, cref)
endif

See Also
DLGINIT
DLGSETSUB
DLGMODAL
DLGMODELESS

DLGSET, DLGSETINT, DLGSETLOG, DLGSETCHAR
Dialog Functions: Set the values of dialog control
variables. These routines are only available for
Windows.

 1 Intel® Fortran Compiler Classic and Intel® Fortran Compiler Developer Guide and Reference

2280

Module

USE IFLOGM

Syntax
result = DLGSET (dlg,controlid,value[,index])
result = DLGSETINT (dlg,controlid,value[,index])
result = DLGSETLOG (dlg,controlid,value[,index])
result = DLGSETCHAR (dlg,controlid,value[,index])

dlg (Input) Derived type dialog. Contains dialog box parameters. The
components of the type dialog are defined with the PRIVATE
attribute, and cannot be changed or individually accessed by the user.

controlid (Input) Integer. Specifies the identifier of a control within the dialog
box. Can be either the symbolic name for the control or the identifier
number, both listed in the Include file (with extension .FD).

value (Input) Integer, logical, or character. The value of the control's
variable.

index (Input; optional) Integer. Specifies the control variable whose value is
set. Necessary if the control has more than one variable of the same
data type and you do not want to set the value of the default for that
type.

Results

The result type is LOGICAL(4). The result is .TRUE. if successful; otherwise, the result is .FALSE..

Use the DLGSET functions to set the values of variables associated with your dialog box controls. Each
control has at least one of the integer, logical, or character variables associated with it, but not necessarily
all. For information about the location of a document that contains lists of index variables for each control
type, see Additional Documentation: Creating Fortran Applications that Use Windows* OS Features.

You can use DLGSET to set any control variable. You can also use DLGSETINT to set an integer variable, or
DLGSETLOG and DLGSETCHAR to set logical and character values, respectively. If you use DLGSET, you do
not have to worry about matching the function to the variable type. If you use the wrong function type for a
variable or try to set a variable type that is not available, the DLGSET functions return .FALSE..

Calling DLGSET does not cause a callback routine to be called for the changing value of a control. In
particular, when inside a callback, performing a DLGSET on a control does not cause the associated callback
for that control to be called. Callbacks are invoked automatically only by user action on the controls in the
dialog box. If the callback routine needs to be called, you can call it manually after the DLGSET is executed.

If two or more controls have the same controlid, you cannot use these controls in a DLGSET operation. In
this case the function returns .FALSE..

Example

USE IFLOGM
INCLUDE "DLGRADAR.FD"
TYPE (DIALOG) dlg
LOGICAL retlog
...
retlog = DLGSET (dlg, IDC_SCROLLBAR1, 400, dlg_range)

Intel® Fortran Compiler Classic and Intel® Fortran Compiler Developer Guide and Reference 1

2281

retlog = DLGSET (dlg, IDC_CHECKBOX1, .FALSE., dlg_status)
retlog = DLGSET (dlg, IDC_RADIOBUTTON1, "Hot Button", dlg_title)
...

See Also
DLGSETSUB
DLGGET

DLGSETCTRLEVENTHANDLER
Dialog Subroutine: Lets you assign your own event
handlers to ActiveX controls in a dialog box. This
routine is only available for Windows.

Module

Dialog Function: Assigns user-written event handlers to ActiveX controls in a dialog box.

USE IFLOGM

Syntax
result = DLGSETCTRLEVENTHANDLER (dlg,controlid,handler,dispid[,iid])

dlg (Input) Derived type dialog. Contains dialog box parameters. The
components of the type dialog are defined with the PRIVATE
attribute, and cannot be changed or individually accessed by the user.

controlid (Input) Integer. Specifies the identifier of a control within the dialog
box. Can be the symbolic name for the control or the identifier
number, both listed in the include (with extension .FD) file.

handler (Input) Name of the routine to be called when the event occurs. It
must be declared EXTERNAL.

dispid (Input) Integer. Specifies the member id of the method in the event
interface that identifies the event.

iid (Input; optional) Derived type GUID, which is defined in the IFWINTY
module. Specifies the interface identifier of the source (event)
interface. If omitted, the default source interface of the ActiveX
control is used.

Results

The result type is INTEGER(4). The result is an HRESULT describing the status of the operation.

When the ActiveX control event occurs, the handler associated with the event is called. You call
DLGSETCTRLEVENTHANDLER to specify the handler to be called.

The events supported by an ActiveX control and the interfaces of the handlers are determined by the ActiveX
control.

You can find this information in one of the following ways:

• By reading the documentation of the ActiveX control.
• By using a tool that lets you examine the type information of the ActiveX control;, such as the OLE-COM

Object Viewer.
• By using the Fortran Module Wizard to generate a module that contains Fortran interfaces to the ActiveX

control, and examining the generated module.

 1 Intel® Fortran Compiler Classic and Intel® Fortran Compiler Developer Guide and Reference

2282

The handler that you define in your application must have the interface that the ActiveX control expects,
including calling convention and parameter passing mechanisms. Otherwise, your application will likely crash
in unexpected ways because of the application's stack getting corrupted.

Note that an object is always the first parameter in an event handler. This object value is a pointer to the
control's source (event) interface, not the IDispatch pointer of the control. You can use DLGGET with the
DLG_IDISPATCH index to retrieve the control's IDispatch pointer.

Example

USE IFLOGM
ret = DlgSetCtrlEventHandler(&
 dlg, &
 IDC_ACTIVEMOVIECONTROL1, & ! Identifies the control
 ReadyStateChange, & ! Name of the event handling routine
 -609, & ! Member id of the ActiveMovie's
 & ! control ReadyStateChange event.
 IID_DActiveMovieEvents2) ! Identifer of the source (event)
 ! interface.

See Also
DLGINIT
DLGGET
DLGMODAL
DLGMODELESS
DLGSETSUB

DLGSETRETURN
Dialog Subroutine: Sets the return value for the
DLGMODAL function from within a callback subroutine.
This routine is only available for Windows.

Module

USE IFLOGM

Syntax
CALL DLGSETRETURN (dlg,retval)

dlg (Input) Derived type dialog. Contains dialog box parameters. The
components of the type dialog are defined with the PRIVATE
attribute, and cannot be changed or individually accessed by the user.

retval (Input) Integer. Specifies the return value for DLGMODAL upon
exiting.

DLGSETRETURN overrides the default return value with retval. You can set your own value as a means of
determining the condition under which the dialog box was closed. The default return value for an error
condition is -1, so you should not use -1 as your return value.

DLGSETRETURN should be called from within a callback routine, and is generally used with DLGEXIT, which
causes the dialog box to be exited from a control callback rather than the user selecting the OK or Cancel
button.

Example

SUBROUTINE SETRETSUB (dlg, button_id, callbacktype)
USE IFLOGM
INCLUDE "MYDLG.FD"

Intel® Fortran Compiler Classic and Intel® Fortran Compiler Developer Guide and Reference 1

2283

TYPE (DIALOG) dlg
LOGICAL is_checked, retlog
INTEGER return, button_id, callbacktype
...
retlog = DLGGET(dlg, IDC_CHECKBOX4, is_checked, dlg_state)
IF (is_checked) THEN
 return = 999
ELSE
 return = -999
END IF
CALL DLGSETRETURN (dlg, return)
CALL DLGEXIT (dlg)
END SUBROUTINE SETRETSUB

See Also
DLGEXIT
DLGMODAL

DLGSETSUB
Dialog Function: Assigns your own callback
subroutines to dialog controls and to the dialog box.
This routine is only available for Windows.

Module

USE IFLOGM

Syntax
result = DLGSETSUB (dlg,controlid,value[,index])

dlg (Input) Derived type dialog. Contains dialog box parameters. The
components of the type dialog are defined with the PRIVATE
attribute, and cannot be changed or individually accessed by the user.

controlid (Input) Integer. Specifies the identifier of a control within the dialog
box. Can be the symbolic name for the control or the identifier
number, both listed in the include (with extension .FD) file, or it can
be the identifier of the dialog box.

value (Input) EXTERNAL. Name of the routine to be called when the callback
event occurs.

index (Input; optional) Integer. Specifies which callback routine is executed
when the callback event occurs. Necessary if the control has more
than one callback routine.

Results

The result type is LOGICAL(4). The result is .TRUE. if successful; otherwise, .FALSE..

When a callback event occurs (for example, when you select a check box), the callback routine associated
with that callback event is called. You use DLGSETSUB to specify the subroutine to be called. All callback
routines should have the following interface:

SUBROUTINE callbackname(dlg, control_id, callbacktype)

!DIR$ ATTRIBUTES DEFAULT :: callbackname

callbackname Is the name of the callback routine.

 1 Intel® Fortran Compiler Classic and Intel® Fortran Compiler Developer Guide and Reference

2284

dlg Refers to the dialog box and allows the callback to change values of
the dialog controls.

control_id Is the name of the control that caused the callback.

callbacktype (Input; optional) Integer. Specifies which callback routine is executed
when the callback event occurs. Necessary if the control has more
than one callback routine.

The control_id and callbacktype parameters let you write a single subroutine that can be used with multiple
callbacks from more than one control. Typically, you do this for controls comprising a logical group. You can
also associate more than one callback routine with the same control, but you must use then use index
parameter to indicate which callback routine to use.

The control_id can also be the identifier of the dialog box. The dialog box supports two callbacktypes,
DLG_INIT and DLG_SIZECHANGE. The DLG_INIT callback is executed immediately after the dialog box is
created with callbacktype DLG_INIT, and immediately before the dialog box is destroyed with callbacktype
DLG_DESTROY. DLG_SIZECHANGE is called when the size of a dialog is changed.

Callback routines for a control are called after the value of the control has been updated based on the user's
action.

If two or more controls have the same controlid, you cannot use these controls in a DLGSETSUB operation.
In this case, the function returns .FALSE..

Example

USE IFLOGM
INCLUDE "MYDLG.FD"
TYPE (dialog) mydialog
LOGICAL retlog
INTEGER return
EXTERNAL RADIOSUB
retlog = DLGINIT(IDD_mydlg, mydialog)
retlog = DLGSETSUB (mydialog, IDC_RADIO_BUTTON1, RADIOSUB)
retlog = DLGSETSUB (mydialog, IDC_RADIO_BUTTON2, RADIOSUB)
return = DLGMODAL(mydialog)
END
SUBROUTINE RADIOSUB(dlg, id, callbacktype)
!DIR$ ATTRIBUTES DEFAULT :: radiosub
 USE IFLOGM
 TYPE (dialog) dlg
 INTEGER id, callbacktype
 INCLUDE 'MYDLG.FD'
 CHARACTER(256) text
 LOGICAL retlog
 SELECT CASE (id)
 CASE (IDC_RADIO_BUTTON1)
 ! Radio button 1 selected by user so
 ! change text accordingly
 text = 'Statistics Package A'
 retlog = DLGSET(dlg, IDC_STATICTEXT1, text)
 CASE (IDC_RADIO_BUTTON2)
 ! Radio button 2 selected by user so
 ! change text accordingly
 text = 'Statistics Package B'
 retlog = DLGSET(dlg, IDC_STATICTEXT1, text)
 END SELECT
END SUBROUTINE RADIOSUB

Intel® Fortran Compiler Classic and Intel® Fortran Compiler Developer Guide and Reference 1

2285

See Also
DLGSET
DLGGET

DLGSETTITLE
Dialog Subroutine: Sets the title of a dialog box.
This routine is only available for Windows.

Module

USE IFLOGM

Syntax
CALL DLGSETTITLE (dlg,title)

dlg (Input) Derived type dialog. Contains dialog box parameters. The
components of the type dialog are defined with the PRIVATE
attribute, and cannot be changed or individually accessed by the user.

title (Input) Character*(*). Specifies text to be the title of the dialog box.

Use this routine when you want to specify the title for a dialog box.

Example

USE IFLOGM
INCLUDE "MYDLG.FD"
TYPE (DIALOG) mydialog
LOGICAL retlog
...
retlog = DLGINIT(IDD_mydlg, mydialog)
...
CALL DLGSETTITLE(mydialog, "New Title")
...

See Also
DLGINIT
DLGMODAL
DLGMODELESS

DLGUNINIT
Dialog Subroutine: Deallocates memory associated
with an initialized dialog. This routine is only available
for Windows.

Module

USE IFLOGM

Syntax
CALL DLGUNINIT (dlg)

dlg (Input) Derived type dialog. Contains dialog box parameters. The
components of the type dialog are defined with the PRIVATE
attribute, and cannot be changed or individually accessed by the user.

 1 Intel® Fortran Compiler Classic and Intel® Fortran Compiler Developer Guide and Reference

2286

You should call DLGUNINIT when a dialog that was successfully initialized by DLGINIT is no longer needed.
DLGUNINIT should only be called on a dialog initialized with DLGINIT. If it is called on an uninitialized dialog
or one that has already been deallocated with DLGUNINIT, the result is undefined.

Example

USE IFLOGM
INCLUDE "MYDLG.FD"
TYPE (DIALOG) mydialog
LOGICAL retlog
...
retlog = DLGINIT(IDD_mydlg, mydialog)
...
CALL DLGUNINIT (mydialog)
END

See Also
DLGINIT
DLGMODAL
DLGMODELESS
DLGEXIT

Glossary
This section contains abbreviated definitions of some commonly used terms in this manual.

Glossary A

absolute pathname A directory path specified in fixed relationship to the root directory. On
Windows* systems, the first character is a backslash (\). On Linux*
systems, the first character is a slash (/).

abstract interface A named set of procedure characteristics that can be referenced in
PROCEDURE declarations.

abstract type A derived type, declared with the ABSTRACT keyword, which can be
extended to declare an object. An abstract type cannot be used
directly to declare an object.

active image An image that is not a failed image and has neither initiated normal or
error termination.

active screen buffer The screen buffer that is currently displayed in a console's window.

active team A team that becomes the current team by execution of a CHANGE
TEAM statement is active until the execution of the corresponding END
TEAM statement. The current team, and all ancestor teams are active
teams. The initial team is always an active team until the program
terminates.

active window A top-level window of the application with which the user is working.
The Windows system identifies the active window by highlighting its
title bar and border.

actual argument A value (a variable, expression, or procedure) passed from a calling
program unit to a subprogram (function or subroutine). See also
dummy argument.

Intel® Fortran Compiler Classic and Intel® Fortran Compiler Developer Guide and Reference 1

2287

adjustable array An explicit-shape array that is a dummy argument to a subprogram.
The term is from FORTRAN 77. See also explicit-shape array.

aggregate reference A reference to a record structure field.

allocatable array A named array that has the ALLOCATABLE attribute. The array's rank
is specified at compile time, but its bounds are determined at runtime.
When space has been allocated for this type of array, the array has a
shape and can be defined (and redefined) or referenced. It is an error
to allocate an allocatable array that is currently allocated.

allocation status Indicates whether an allocatable array or pointer is allocated. An
allocation status is one of: allocated, deallocated, or undefined. An
undefined allocation status means an array can no longer be
referenced, defined, allocated, or deallocated. See also association
status.

alphanumeric Pertaining to letters and digits.

alternate return A subroutine argument that permits control to branch immediately to
some position other than the statement following the call. The actual
argument in an alternate return is the statement label to which
control should be transferred. (An alternate return is an obsolescent
feature in Standard Fortran.)

ancestor team A team that is the parent team of the current team, or the parent
team of the parent team of the current team, etc. The initial team is
always an ancestor of the current team if the current team is not the
initial team.

ANSI The American National Standards Institute. An organization through
which accredited organizations create and maintain voluntary industry
standards.

argument Can be either of the following:

• An actual argument--A variable, expression, or procedure passed
from a calling program unit to a subprogram. See also actual
argument.

• A dummy argument--A variable whose name appears in the
parenthesized list followuing the procedure name in a FUNCTION
statement, a SUBROUTINE statement, an ENTRY statement, or a
statement function statement. See also dummy argument.

argument association The relationship (or "matching up") between an actual argument and
dummy argument during the execution of a procedure reference.

argument keyword The name of a dummy (formal) argument. The name is used in a
subprogram definition. Argument keywords can be used when the
subprogram is invoked to associate dummy arguments with actual
arguments, so that the subprogram arguments can appear in any
order.

Argument keywords are supplied for many of the intrinsic procedures.

array A set of scalar data that all have the same type and kind type
parameters. An array can be referenced by element (using a
subscript), by section (using a section subscript list), or as a whole.
An array has a rank (up to 31), bounds, size, and a shape.

An individual array element is a scalar object. An array section, which
is itself an array, is a subset of the entire array. Contrast with scalar.
See also bounds, conformable, shape, size, whole array, and zero-
sized array.

 1 Intel® Fortran Compiler Classic and Intel® Fortran Compiler Developer Guide and Reference

2288

array constructor A mechanism used to specify a sequence of scalar values that produce
a rank-one array.

To construct an array of rank greater than one, you must apply the
RESHAPE intrinsic function to the array constructor.

array element A scalar (individual) item in an array. An array element is identified by
the array name followed by one or more subscripts in parentheses,
indicating the element's position in the array. For example, B(3) or
A(2,5).

array pointer A pointer to an array. See also array and pointer.

array section A subobject (or portion) of an array. It consists of the set of array
elements or substrings of this set. The set (or section subscript list) is
specified by subscripts, subscript triplets, or vector subscripts. If the
set does not contain at least one subscript triplet or vector subscript,
the reference indicates an array element, not an array.

array specification A program statement specifying an array name and the number of
dimensions the array contains (its rank). An array specification can
appear in a DIMENSION or COMMON statement, or in a type
declaration statement.

ASCII The American Standard Code for Information Interchange. A 7-bit
character encoding scheme associating an integer from 0 through 127
with 128 characters.

assignment statement Usually, a statement that assigns (stores) the value of an expression
on the right of an equal sign to the storage location of the variable to
the left of the equal sign. In the case of Fortran pointers, the storage
location is assigned, not the pointer itself.

associate name The name of a construct entity associated with a selector of an
ASSOCIATE or SELECT TYPE construct.

association The relationship that allows an entity to be referenced by different
names in one scoping unit or by the same or different names in more
than one scoping unit. The principal kinds of association are
argument, host, pointer, storage, and use association. See also
argument association, host association, pointer association, storage
association, and use association.

association status Indicates whether or not a pointer is associated with a target. An
association status is one of: undefined, associated, or disassociated.
An undefined association status means a pointer can no longer be
referenced, defined, or deallocated. An undefined pointer can,
however, be allocated, nullified, or pointer assigned to a new target.
See also allocation status.

assumed-length character argument A dummy argument that assumes the length attribute of the
corresponding actual argument. An asterisk (*) specifies the length of
the dummy character argument.

assumed-shape array A dummy argument array that assumes the shape of its associated
actual argument array. The rank of the array is the number of colons
(:) specified in parentheses.

assumed-size array A dummy array whose size (only) is assumed from its associated
actual argument. The upper bound of its last dimension is specified by
an asterisk (*). All other extents (if any) must be specified.

atomic subroutine An intrinsic subroutine that performs an action on a variable (its ATOM
argument) indivisibly.

Intel® Fortran Compiler Classic and Intel® Fortran Compiler Developer Guide and Reference 1

2289

attribute A property of a data object that can be specified in a type declaration
statement. These properties determine how the data object can be
used in a program.

Most attributes can be alternatively specified in statements. For
example, the DIMENSION statement has the same meaning as the
DIMENSION attribute appearing in a type declaration statement.

automatic array An explicit-shape array that is a local variable in a subprogram. It is
not a dummy argument, and has bounds that are nonconstant
specification expressions. The bounds (and shape) are determined at
entry to the procedure by evaluating the bounds expressions. See also
automatic object.

automatic object A local data object that is created upon entry to a subprogram and
disappears when the execution of the subprogram is completed. There
are two kinds of automatic objects: arrays (of any data type) and
objects of type CHARACTER. Automatic objects cannot be saved or
initialized.

An automatic object is not a dummy argument, but is declared with a
specification expression that is not a constant expression. The
specification expression can be the bounds of the array or the length
of the character object.

Glossary B

background process On Linux* systems, a process for which the command interpreter is
not waiting. Its process group differs from that of its controlling
terminal, so it is blocked from most terminal access. Contrast with
foreground process.

background window Any window created by a thread other than the foreground thread.

big endian A method of data storage in which the least significant bit of a
numeric value spanning multiple bytes is in the highest addressed
byte. Contrast with little endian.

binary constant A constant that is a string of binary (base 2) digits (0 or 1) enclosed
by apostrophes or quotation marks and preceded by the letter B.

binary operator An operator that acts on a pair of operands. The exponentiation,
multiplication, division, and concatenation operators are binary
operators.

bit constant A constant that is a binary, octal, or hexadecimal number.

bit field A contiguous group of bits within a binary pattern; they are specified
by a starting bit position and length. Some intrinsic functions (for
example, IBSET and BTEST) and the intrinsic subroutine MVBITS
operate on bit fields.

bitmap An array of bits that contains data that describes the colors found in a
rectangular region on the screen (or the rectangular region found on a
page of printer paper).

blank common A common block (one or more contiguous areas of storage) without a
name. Common blocks are defined by a COMMON statement.

block In general, a group of related items treated as a physical unit. For
example, a block can be a group of constructs or statements that
perform a task; the task can be executed once, repeatedly, or not at
all.

 1 Intel® Fortran Compiler Classic and Intel® Fortran Compiler Developer Guide and Reference

2290

block data program unit A program unit, containing a BLOCK DATA statement and its
associated specification statements, that establishes common blocks
and assigns initial values to the variables in named common blocks. In
FORTRAN 77, this was called a block data subprogram.

bounds The range of subscript values for elements of an array. The lower
bound is the smallest subscript value in a dimension, and the upper
bound is the largest subscript value in that dimension. Array bounds
can be positive, zero, or negative. These bounds are specified in an
array specification. See also array specification.

breakpoint A critical point in a program, at which execution is stopped so that you
can see if the program variables contain the correct values.
Breakpoints are often used to debug programs.

brush A bitmap that is used to fill the interior of closed shapes, polygons,
ellipses, and paths.

brush origin A coordinate that specifies the location of one of the pixels in a
brush's bitmap. The Windows system maps this pixel to the upper left
corner of the window that contains the object to be painted. See also
bitmap.

built-in procedure See intrinsic procedure.

byte A group of 8 contiguous bits (binary digits) starting on an addressable
boundary.

byte-order mark A special Unicode character (0xFEFF) that is placed at the beginning of
Unicode text files to indicate that the text is in Unicode format.

Glossary C

carriage-control character A character in the first position of a printed record that determines the
vertical spacing of the output line.

character constant A constant that is a string of printable ASCII characters enclosed by
apostrophes (') or quotation marks (").

character expression A character constant, variable, function value, or another constant
expression, separated by a concatenation operator (//); for example,
DAY// ' FIRST'.

character storage unit The unit of storage for holding a scalar value of default character type
(and character length one) that is not a pointer. One character storage
unit corresponds to one byte of memory.

character string A sequence of contiguous characters; a character data value. See also
character constant, which appears above.

character substring One or more contiguous characters in a character string.

child process A process initiated by another process (the parent). The child process
can operate independently from the parent process. Also, the parent
process can suspend or terminate without affecting the child process.
See also parent process.

child team A team created by the execution of a FORM TEAM statement is a child
of the team that executes the FORM TEAM statement.

child window A window that has the WS_CHILD style. A child window always
appears within the client area of its parent window. See also parent
window.

Intel® Fortran Compiler Classic and Intel® Fortran Compiler Developer Guide and Reference 1

2291

column-major order See order of subscript progression.

coarray A data entity that has nonzero corank. A Fortran program containing
coarrays is interpreted as if it were replicated a fixed number of times
and all copies were executed asynchronously. Its corank, cobounds,
and coextents are given by the data in square brackets in its
declaration or allocation.

cobound A bound (limit) of a codimension. The values of each lower cobound
and upper cobound determine the cobounds of the coarray along a
particular codimension.

codimension A dimension of the pattern formed by a set of corresponding coarrays.

comment Text that documents or explains a program. In free source form, a
comment begins with an exclamation point (!), unless it appears in a
Hollerith or character constant.

In fixed and tab source form, a comment begins with a letter C or an
asterisk (*) in column 1. A comment can also begin with an
exclamation point anywhere in a source line (except in a Hollerith or
character constant) or in column 6 of a fixed-format line. The
comment extends from the exclamation point to the end of the line.

The compiler does not process comments, but shows them in program
listings. See also the definition for compiler directive, which appears
below.

common block A physical storage area shared by one or more program units. This
storage area is defined by a COMMON statement. If the common block
is given a name, it is a named common block; if it is not given a
name, it is a blank common. See also blank common and named
common block.

compilation unit The source or files that are compiled together to form a single object
file, possibly using interprocedural optimization across source files.

compiler directive A structured comment that tells the compiler to perform certain tasks
when it compiles a source program unit. Compiler directives are
usually compiler-specific. (Some Fortran compilers call these
directives "metacommands".)

compiler option An option (or flag) that can be used on the compiler command line to
override the default behavior of the Intel® Fortran Compiler.

complex constant A constant that is a pair of real or integer constants representing a
complex number; the pair is separated by a comma and enclosed in
parentheses. The first constant represents the real part of the
number; the second constant represents the imaginary part. The
following types of complex constants are available on all systems:
COMPLEX(KIND=4), COMPLEX(KIND=8), and COMPLEX(KIND=16).

complex type A data type that represents the values of complex numbers. The value
is expressed as a complex constant. See also data type.

component Part of a derived-type definition. There must be at least one
component (intrinsic or derived type) in every derived-type definition.

component order The ordering of the components of a derived type that is used for
intrinsic formatted input/output and for structure constructors.

 1 Intel® Fortran Compiler Classic and Intel® Fortran Compiler Developer Guide and Reference

2292

concatenate The combination of two items into one by placing one of the items
after the other. In Standard Fortran, the concatenation operator (//) is
used to combine character items. See also character expression,
which appears above.

conformable Pertains to dimensionality. Two arrays are conformable if they have
the same shape. A scalar is conformable with any array.

conformance See shape conformance.

conservative automatic inlining The inline expansion of small procedures, with conservative heuristics
to limit extra code.

console An interface that provides input and output to character-mode
applications.

constant A data object whose value does not change during the execution of a
program; the value is defined at the time of compilation. A constant
can be named (using the PARAMETER attribute or statement) or
unnamed. An unnamed constant is called a literal constant. The value
of a constant can be numeric or logical, or it can be a character string.
Contrast with variable.

constant expression An expression that you can use as a kind type parameter, a named
constant, or to specify an initial value for an entity. It is evaluated
when a program is compiled.

construct A series of statements starting with a statement denoting the kind of
construct, such as DO, SELECT CASE, IF, FORALL, or WHERE, and
ending with the appropriate termination statement.

construct association The association between a selector and an associate name in an
ASSOCIATE or SELECT TYPE construct.

contiguous Pertaining to entities that are adjacent (next to one another) without
intervening blanks (spaces); for example, contiguous characters or
contiguous areas of storage.

control edit descriptor A format descriptor that directly displays text or affects the
conversions performed by subsequent data edit descriptors. Except for
the slash descriptor, control edit descriptors are nonrepeatable.

control statement A statement that alters the normal order of execution by transferring
control to another part of a program unit or a subprogram. A control
statement can be conditional (such as the IF construct or computed
GO TO statement) or unconditional (such as the STOP or GO TO
statement).

corank The number of codimensions of a coarray.

critical section An object used to synchronize the threads of a single process. Only
one thread at a time can own a critical-section object.

current team The current team is the initial team at program startup. The team
described by the team variable specified in a CHANGE TEAM
statement becomes the current team during execution of a change
team construct. The team that was current immediately before the
CHANGE TEAM statement becomes the current team when the
corresponding END TEAM statement is executed.

Intel® Fortran Compiler Classic and Intel® Fortran Compiler Developer Guide and Reference 1

2293

Glossary D

data abstraction A style of programming in which you define types to represent objects
in your program, define a set of operations for objects of each type,
and restrict the operations to only this set, making the types abstract.
The Standard Fortran modules, derived types, and defined operators,
support this programming paradigm.

data edit descriptor A repeatable format descriptor that causes the transfer or conversion
of data to or from its internal representation. In FORTRAN 77, this
term was called a field descriptor.

data entity A data object that has a data type. It is the result of the evaluation of
an expression, or the result of the execution of a function reference
(the function result).

data item A unit of data (or value) to be processed. Includes constants,
variables, arrays, character substrings, or records.

data object A constant, variable, or subobject (part) of a constant or variable. Its
type may be specified implicitly or explicitly.

data type The properties and internal representation that characterize data and
functions. Each intrinsic and user-defined data type has a name, a set
of operators, a set of values, and a way to show these values in a
program. The basic intrinsic data types are integer, real, complex,
logical, and character. The data value of an intrinsic data type depends
on the value of the type parameter. See also type parameter.

data type declaration See type declaration statement.

data type length specifier The form *n appended to Intel® Fortran-specific data type names. For
example, in REAL*4, the *4 is the data type length specifier.

deadlock A bug where the execution of thread A is blocked indefinitely waiting
for thread B to perform some action, while thread B is blocked waiting
for thread A. For example, two threads on opposite ends of a named
pipe can become deadlocked if each thread waits to read data written
by the other thread. A single thread can also deadlock itself. See also
thread.

declaration See specification statement.

declared type The type that a data entity is declared to have. For polymorphic data
entities, it may differ from the type during execution (the dynamic
type) .

decorated name An internal representation of a procedure name or variable name that
contains information about where it is declared; for procedures, the
information includes how it is called. Decorated names are mainly of
interest in mixed-language programming, when calling Fortran
routines from other languages.

default character The kind for character constants if no kind type parameter is specified.
Currently, the only kind type parameter for character constants is
CHARACTER(1), the default character kind.

default complex The kind for complex constants if no kind type parameter is specified.
The default complex kind is affected by compiler options specifying
double size. If no compiler option is specified, default complex is
COMPLEX(4) (COMPLEX*8). See also default real.

 1 Intel® Fortran Compiler Classic and Intel® Fortran Compiler Developer Guide and Reference

2294

default integer The kind for integer constants if no kind type parameter is specified.
The default integer kind is affected by the INTEGER directive, the
OPTIONS statement, and by compiler options specifying integer size.
If none of these are specified, default integer is INTEGER(4)
(INTEGER*4).

If a command line option affecting integer size has been specified, the
integer has the kind specified, unless it is outside the range of the
kind specified by the option. In this case, the kind type of the integer
is the smallest integer kind which can hold the integer.

default logical The kind for logical constants if no kind type parameter is specified.
The default logical kind is affected by the INTEGER directive, the
OPTIONS statement, and by compiler options specifying integer size.
If none of these are specified, default logical is LOGICAL(4)
(LOGICAL*4). See also default integer.

default real The kind for real constants if no kind type parameter is specified. The
default real kind is affected by compiler options specifying real size
and by the REAL directive. If neither of these is specified, default real
is REAL(4) (REAL*4).

If a real constant is encountered that is outside the range for the
default, an error occurs.

deferred-shape array An array pointer (an array with the POINTER attribute) or an
allocatable array (an array with the ALLOCATABLE attribute). The size
in each dimension is determined by pointer assignment or when the
array is allocated.

The array specification contains a colon (:) for each dimension of the
array. No bounds are specified.

definable A property of variables. A variable is definable if its value can be
changed by the appearance of its name or designator on the left of an
assignment statement. An example of a variable that is not definable
is an allocatable array that has not been allocated.

defined For a data object, the property of having or being given a valid value.

defined assignment An assignment statement that is not intrinsic, but is defined by a
subroutine and an ASSIGNMENT(=) interface block. See also derived
type and interface block.

defined operation An operation that is not intrinsic, but is defined by a function
subprogram containing a generic interface block with the specifier
OPERATOR. See also derived type and interface block.

denormalized number A computational floating-point result smaller than the lowest value in
the normal range of a data type (the smallest representable
normalized number). You cannot write a constant for a subnormal
number. Older floating-point standard documents used the term
denormal; newer standards call such numbers subnormal.

dependent task A task that cannot be executed until its preceding task completes; this
is due to a task dependence. See also preceding task and task
dependence .

derived type A data type that is user-defined and not intrinsic. It requires a type
definition to name the type and specify its components (which can be
intrinsic or user-defined types). A structure constructor can be used to
specify a value of derived type. A component of a structure is
referenced using a percent sign (%).

Intel® Fortran Compiler Classic and Intel® Fortran Compiler Developer Guide and Reference 1

2295

Operations on objects of derived types (structures) must be defined
by a function with an OPERATOR interface. Assignment for derived
types can be defined intrinsically, or be redefined by a subroutine with
an ASSIGNMENT(=) interface. Structures can be used as procedure
arguments and function results, and can appear in input and output
lists. Also called a user-defined type. See also record, the first
definition.

designator A name that references a subobject (part of a data object) that can be
defined and referenced separately from other parts of the data object.
A designator is the name of the object followed by a selector that
selects the subobject. For example, B(3) is a designator for an array
element. Also called a subobject designator. See also selector and
subobject.

dimension A range of values for one subscript or index of an array. An array can
have from 1 to 7 dimensions. The number of dimensions is the rank of
the array.

dimension bounds See bounds.

direct access A method for retrieving or storing data in which the data (record) is
identified by the record number, or the position of the record in the
file. The record is accessed directly (nonsequentially); therefore, all
information is equally accessible. Also called random access. Contrast
with sequential access.

DLL See Dynamic Link Library.

double-byte character set (DBCS) A mapping of characters to their identifying numeric values, in which
each value is 2 bytes wide. Double-byte character sets are sometimes
used for languages that have more than 256 characters.

double-precision constant A processor approximation to the value of a real number that occupies
8 bytes of memory and can assume a positive, negative, or zero
value. The precision is greater than a constant of real (single-
precision) type. For the precise ranges of the double-precision
constants, see Data Representation Overview in the Compiler
Reference. See also denormalized number.

driver program A program that is the user interface to the language compiler. It
accepts command line options and file names and causes one or more
language utilities or system programs to process each file.

dummy aliasing The sharing of memory locations between dummy (formal) arguments
and other dummy arguments or COMMON variables that are assigned.

dummy argument A variable whose name appears in the parenthesized list following the
procedure name in a FUNCTION statement, a SUBROUTINE
statement, an ENTRY statement, or a statement function statement. A
dummy argument takes the value of the corresponding actual
argument in the calling program unit (through argument association).
Also called a formal argument.

dummy array A dummy argument that is an array.

dummy pointer A dummy argument that is a pointer.

dummy procedure A dummy argument that is specified as a procedure or appears in a
procedure reference. The corresponding actual argument must be a
procedure.

 1 Intel® Fortran Compiler Classic and Intel® Fortran Compiler Developer Guide and Reference

2296

Dynamic Link Library (DLL) A separate source module compiled and linked independently of the
applications that use it. Applications access the DLL through procedure
calls. The code for a DLL is not included in the user's executable
image, but the compiler automatically modifies the executable image
to point to DLL procedures at runtime.

dynamic type The type of a data entity during execution of a program. The dynamic
type of a data entity that is not polymorphic is the same as its
declared type.

Glossary E

edit descriptor A descriptor in a format specification. It can be a data edit descriptor,
control edit descriptor, or string edit descriptor. See also control edit
descriptor, data edit descriptor, and string edit descriptor.

element See array element.

elemental Pertains to an intrinsic operation, intrinsic procedure, or assignment
statement that is independently applied to either of the following:

• The elements of an array
• Corresponding elements of a set of conformable arrays and scalars

end-of-file The condition that exists when all records in a file open for sequential
access have been read.

entity A general term referring to any Standard Fortran concept; for
example, a constant, a variable, a program unit, a statement label, a
common block, a construct, an I/O unit and so forth.

environment variable A symbolic variable that represents some element of the operating
system, such as a path, a filename, or other literal data.

error number An integer value denoting an I/O error condition, obtained by using
the IOSTAT keyword in an I/O statement.

error termination When error termination is initiated on an image, all images terminate
execution. If an error condition occurs, error termination is initiated
unless the error occurs in one of the following ways:

• During the execution of a statement that specifies a STAT=
specifier

• During the execution of an I/O statement that specifies a STAT= or
ERR= specifier

• During the execution of an intrinsic procedure with a present STAT
argument.

In these cases, the STAT argument of the intrinsic procedure, or the
stat-variable of the STAT= specifier becomes defined with a positive
integer value and the program execution continues. See also normal
termination.

established coarray An established coarray is a coarray that is accessible using an image
selector.

exceptional values For floating-point numbers, values outside the range of normalized
numbers, including subnormal numbers, infinity, Not-a-Number (NaN)
values, zero, and other architecture-defined numbers.

executable construct A CASE, DO, IF, WHERE, or FORALL construct.

executable program A set of program units that include only one main program.

Intel® Fortran Compiler Classic and Intel® Fortran Compiler Developer Guide and Reference 1

2297

executable statement A statement that specifies an action to be performed or controls one
or more computational instructions.

explicit interface A procedure interface whose properties are known within the scope of
the calling program, and do not have to be assumed. These properties
are the names of the procedure and its dummy arguments, the
attributes of a procedure (if it is a function), and the attributes and
order of the dummy arguments.

The following have explicit interfaces:

• Internal and module procedures (explicit by definition)
• Intrinsic procedures
• External procedures that have an interface block
• External procedures that are defined by the scoping unit and are

recursive
• Dummy procedures that have an interface block

explicit-shape array An array whose rank and bounds are specified when the array is
declared.

expression A data reference or a computation formed from operators, operands,
and parentheses. The result of an expression is either a scalar value
or an array of scalar values.

extended type An extensible type that is an extension of another type. A type that is
declared with the EXTENDS attribute.

extensible type A type from which new types may be derived using the EXTENDS
attribute. A nonsequence type that does not have the BIND attribute.

extent The size of (number of elements in) one dimension of an array.

external file A sequence of records that exists in a medium external to the
executing program.

external procedure A procedure that is contained in an external subprogram. External
procedures can be used to share information (such as source files,
common blocks, and public data in modules) and can be used
independently of other procedures and program units. Also called an
external routine.

external subprogram A subroutine or function that is not contained in a main program,
module, or another subprogram. A module is not a subprogram.

Glossary F

failed image An image that has not initiated normal or error termination but has
stopped participating in program execution due to having executed a
FAIL IMAGE statement or for some other reason.

field Can be either of the following:

• A set of contiguous characters, considered as a single item, in a
record or line.

• A substructure of a STRUCTURE declaration.

field descriptor See data edit descriptor.

field separator The comma (,) or slash (/) that separates edit descriptors in a format
specification.

field width The total number of characters in the field. See also field, the first
definition.

 1 Intel® Fortran Compiler Classic and Intel® Fortran Compiler Developer Guide and Reference

2298

file A collection of logically related records. If the file is in internal
storage, it is an internal file; if the file is on an input/output device, it
is an external file.

file access The way records are accessed (and stored) in a file. The standard
Fortran file access modes are sequential and direct.

file handle A unique identifier that the system assigns to a file when the file is
opened or created. A file handle is valid until the file is closed.

file organization The way records in a file are physically arranged on a storage device.
Standard Fortran files can have sequential or relative organization.

final subroutine A subroutine whose name appears in a FINAL statement in a type
definition. It can be automatically invoked by the processor when an
object of that type is finalized.

final task A task that forces all of its descendant tasks to become included
tasks.

fixed-length record type A file format in which all the records are the same length.

floating-point environment A collection of registers that control the behavior of floating-point (FP)
machine instructions and indicate the current FP status. The floating-
point environment may include rounding mode controls, exception
masks, flush-to-zero controls, exception status flags, and other
floating-point related features.

focus window The window to which keyboard input is directed.

foreground process On Linux* systems, a process for which the command interpreter is
waiting. Its process group is the same as that of its controlling
terminal, so the process is allowed to read from or write to the
terminal. Contrast with background process.

foreground window The window the user is currently working with. The system assigns a
slightly higher priority to the thread that created the foreground
window than it does to other threads.

foreign file An unformatted file that contains data from a foreign platform, such
as data from a CRAY*, IBM*, or big endian IEEE* machine.

format A specific arrangement of data. A FORMAT statement specifies how
data is to be read or written.

format specification The part of a FORMAT statement that specifies explicit data
arrangement. It is a list within parentheses that can include edit
descriptors and field separators. A character expression can also
specify format; the expression must evaluate to a valid format
specification.

formatted data Data written to a file by using formatted I/O statements. Such data
contains ASCII representations of binary values.

formatted I/O statement An I/O statement specifying a format for data transfer. The format
specified can be explicit (specified in a format specification) or implicit
(specified using list-directed or namelist formatting). Contrast with
unformatted I/O statement. See also list-directed I/O statement and
namelist I/O statement.

frame window The outermost parent window in QuickWin.

Intel® Fortran Compiler Classic and Intel® Fortran Compiler Developer Guide and Reference 1

2299

function A series of statements that perform some operation and return a
single value (through the function or result name) to the calling
program unit. A function is invoked by a function reference in a main
program unit or a subprogram unit.

In Standard Fortran, a function can be used to define a new operator
or extend the meaning of an intrinsic operator symbol. The function is
invoked by the appearance of the new or extended operator in the
expression (along with the appropriate operands). For example, the
symbol * can be defined for logical operands, extending its intrinsic
definition for numeric operands. See also function subprogram,
statement function, and subroutine.

function reference Used in an expression to invoke a function, it consists of the function
name and its actual arguments. A function reference returns a value
(through the function or result name) that is used to evaluate the
calling expression.

function result The result value associated with a particular execution or call to a
function. This result can be of any data type (including derived type)
and can be array-valued. In a FUNCTION statement, the RESULT
option can be used to give the result a name different from the
function name. This option is required for a recursive function that
directly calls itself.

function subprogram A sequence of statements beginning with a FUNCTION (or optional
OPTIONS) statement that is not in an interface block and ending with
the corresponding END statement. See also function.

Glossary G

generic identifier A generic name, operator, or assignment specified in an INTERFACE
statement that is associated with all of the procedures within the
interface block. Also called a generic specification.

global entity An entity (a program unit, common block, or external procedure) that
can be used with the same meaning throughout the executable
program. A global entity has global scope; it is accessible throughout
an executable program. See also local entity.

global section A data structure (for example, global COMMON) or shareable image
section potentially available to all processes in the system.

Glossary H

handle A value (often, but not always, a 32-bit integer) that identifies some
operating system resource, for example, a window or a process. The
handle value is returned from an operating system call when the
resource is created; your program then passes that value as an
argument to subsequent operating system routines to identify which
resource is being accessed.

Your program should consider the handle value a "private" type and
not try to interpret it as having any specific meaning (for example, an
address).

hexadecimal constant A constant that is a string of hexadecimal (base 16) digits (range 0 to
9, or an uppercase or lowercase letter in the range A to F) enclosed by
apostrophes or quotation marks and preceded by the letter Z.

 1 Intel® Fortran Compiler Classic and Intel® Fortran Compiler Developer Guide and Reference

2300

Hollerith constant A constant that is a string of printable ASCII characters preceded by
nH, where n is the number of characters in the string (including
blanks and tabs).

host Either the main program or subprogram that contains an internal
procedure, or the module that contains a module procedure. The data
environment of the host is available to the (internal or module)
procedure.

host association The process by which a module procedure, internal procedure, or
derived-type definition accesses the entities of its host.

Glossary I

image An instance of a Fortran program.

image index An integer value that identifies an image.

image control statement A statement that affects the execution ordering between images.

implicit interface A procedure interface whose properties (the collection of names,
attributes, and arguments of the procedure) are not known within the
scope of the calling program, and have to be assumed. The
information is assumed by the calling program from the properties of
the procedure name and actual arguments in the procedure call.

implicit typing The mechanism by which the data type for a variable is determined by
the beginning letter of the variable name.

import library A .LIB file that contains information about one or more dynamic-link
libraries (DLLs), but does not contain the DLL's executable code. To
provide the information needed to resolve the external references to
DLL functions, the linker uses an import library when building an
executable module of a process.

included task A task for which execution is sequentially included in the generating
task region; that is, the task is undeferred and executed immediately
by the encountering thread.

index Can be either of the following:

• The variable used as a loop counter in a DO statement.
• An intrinsic function specifying the starting position of a substring

inside a string.

indirect device invocation A call made to a non-host device version of a procedure through a
procedure pointer whose value points to the host version of the
procedure.

inheritance association The relationship between the inherited components and the parent
component in an extended type.

initial team The team existing when the program begins execution, consisting of
all images. It is the only team that has no parent team, and that has a
negative team number (-1).

initialize The assignment of an initial value to a variable.

inlining An optimization that replaces a subprogram reference (CALL
statement or function invocation) with the replicated code of the
subprogram.

Intel® Fortran Compiler Classic and Intel® Fortran Compiler Developer Guide and Reference 1

2301

input/output (I/O) The data that a program reads or writes. Also, devices to read and
write data.

inquiry function An intrinsic function whose result depends on properties of the
principal argument, not the value of the argument.

integer constant A constant that is a whole number with no decimal point. It can have
a leading sign and is interpreted as a decimal number.

intent An attribute of a dummy argument that is not a procedure or a
pointer. It indicates whether the argument is used to transfer data into
the procedure, out of the procedure, or both.

interactive process A process that must periodically get user input to do its work.
Contrast with background process.

interface See procedure interface.

interface block The sequence of statements starting with an INTERFACE statement
and ending with the corresponding END INTERFACE statement.

interface body The sequence of statements in an interface block starting with a
FUNCTION or SUBROUTINE statement and ending with the
corresponding END statement. Also called a procedure interface body.

internal file The designated internal storage space (or variable buffer) that is
manipulated during input and output. An internal file can be a
character variable, character array, character array element, or
character substring. In general, an internal file contains one record.
However, an internal file that is a character array has one record for
each array element.

internal procedure A procedure (other than a statement function) that is contained within
an internal subprogram. The program unit containing an internal
procedure is called the host of the internal procedure. The internal
procedure (which appears between a CONTAINS and END statement)
is local to its host and inherits the host's environment through host
association.

internal subprogram A subprogram contained in a main program or another subprogram.

intrinsic Describes entities defined by the Fortran language (such as data types
and procedures). Intrinsic entities can be used freely in any scoping
unit.

intrinsic procedure A subprogram supplied as part of the Fortran library that performs
array, mathematical, numeric, character, bit manipulation, and other
miscellaneous functions. Intrinsic procedures are automatically
available to any Fortran program unit (unless specifically overridden
by an EXTERNAL statement or a procedure interface block). Also
called a built-in or library procedure.

invoke To call upon; used especially with reference to subprograms. For
example, to invoke a function is to execute the function.

iteration count The number of executions of the DO range, which is determined as
follows:

[(terminal value - initial value + increment value) / increment value]

Glossary K

keyword See argument keyword and statement keyword.

 1 Intel® Fortran Compiler Classic and Intel® Fortran Compiler Developer Guide and Reference

2302

kind type parameter Indicates the range of an intrinsic data type; for example:
INTEGER(KIND=2). For real and complex types, it also indicates
precision. If a specific kind parameter is not specified, the kind is the
default for that type (for example, default integer). See also default
character, default complex, default integer, default logical, and default
real.

Glossary L

label An integer, from 1 to 5 digits long, that precedes a statement and
identifies it. For example, labels can be used to refer to a FORMAT
statement or branch target statement.

language extension An Intel® Fortran language element or interpretation that is not part of
the Fortran 2018 standard.

lexical token A sequence of one or more characters that have an indivisible
interpretation. A lexical token is the smallest meaningful unit (a basic
language element) of a Fortran statement; for example, constants,
and statement keywords.

library routines Files that contain functions, subroutines, and data that can be used by
Fortran programs.

For example: one library contains routines that handle the various
differences between Fortran and C in argument passing and data
types; another contains runtime functions and subroutines for
Windows* graphics and QuickWin* applications.

Some library routines are intrinsic (automatically available) to Fortran;
others may require a specific USE statement to access the module
defining the routines. See also intrinsic procedure.

line A source form record consisting of 0 or more characters. A standard
Fortran line is limited to a maximum of 132 characters.

linker A system program that creates an executable program from one or
more object files produced by a language compiler or assembler. The
linker resolves external references, acquires referenced library
routines, and performs other processing required to create Linux* and
Windows* executable files.

list-directed I/O statement An implicit, formatted I/O statement that uses an asterisk (*) specifier
rather than an explicit format specification. See also formatted I/O
statement and namelist I/O statement.

listing A printed copy of a program.

literal constant A constant without a name; its value is directly specified in a program.
See also named constant.

little endian A method of data storage in which the least significant bit of a
numeric value spanning multiple bytes is in the lowest addressed
byte. This is the method used on Intel® systems. Contrast with big
endian.

local entity An entity that can be used only within the context of a subprogram
(its scoping unit); for example, a statement label. A local entity has
local scope. See also global entity.

local optimization A level of optimization enabling optimizations within the source
program unit and recognition of common expressions. See also
optimization.

Intel® Fortran Compiler Classic and Intel® Fortran Compiler Developer Guide and Reference 1

2303

local symbol A name defined in a program unit that is not accessible outside of that
program unit.

logical constant A constant that specifies the value .TRUE. or .FALSE..

logical expression An integer or logical constant, variable, function value, or another
constant expression, joined by a relational or logical operator. The
logical expression is evaluated to a value of either true or false. For
example, .NOT. 6.5 + (B .GT. D).

logical operator A symbol that represents an operation on logical expressions. The
logical operators are .AND., .OR., .NEQV., .XOR., .EQV., and .NOT..

logical unit A channel in memory through which data transfer occurs between the
program and the device or file. See also unit identifier.

longword Four contiguous bytes (32 bits) starting on any addressable byte
boundary. Bits are numbered 0 to 31. The address of the longword is
the address of the byte containing bit 0. When the longword is
interpreted as a signed integer, bit 31 is the sign bit. The value of
signed integers is in the range -2**31 to 2**31-1. The value of
unsigned integers is in the range 0 to 2**32-1.

loop A group of statements that are executed repeatedly until an ending
condition is reached.

loosely structured block A group of Fortran statements that do not begin with a Fortran BLOCK
statement. See also strictly structured block.

lower bounds See bounds.

Glossary M

main program The first program unit to receive control when a program is run; it
exercises control over subprograms. The main program usually
contains a PROGRAM statement (or does not contain a SUBROUTINE,
FUNCTION, or BLOCK DATA statement). Contrast with subprogram.

makefile On Linux* systems, an argument to the make command containing a
sequence of entries that specify dependencies. On Windows* systems,
a file passed to the NMAKE utility containing a sequence of entries
that specify dependencies. The contents of a makefile override the
system built-in rules for maintaining, updating, and regenerating
groups of programs.

For more information on makefiles on Linux* systems, see make(1).
For more information on using makefiles, see Using Makefiles to
Compile Your Application in Compiler Setup.

many-one array section An array section with a vector subscript having two or more elements
with the same value.

master thread This is a deprecated term. In an OpenMP* Fortran program, the
thread that creates a team of threads when a parallel region
(PARALLEL construct) is encountered. The statements in the parallel
region are then executed in parallel by each thread in the team. At the
end of the parallel region, the team threads synchronize and only the
master thread continues execution. See also thread and primary
thread.

 1 Intel® Fortran Compiler Classic and Intel® Fortran Compiler Developer Guide and Reference

2304

merged task A task whose data environment, inclusive of internal control variables,
is the same as the data environment of its generating task region.
Internal control variables (ICVs) are discussed in the latest OpenMP*
specifications.

message file A Linux* catalog that contains the diagnostic message text of errors
that can occur during program execution (runtime).

metacommand See compiler directive.

misaligned data Data not aligned on a natural boundary. See also natural boundary.

module A program unit that contains specifications and definitions that other
program units can access (unless the module entities are declared
PRIVATE). Modules are referenced in USE statements.

module procedure A subroutine or function that is not an internal procedure and is
contained in a module. The module procedure appears between a
CONTAINS and END statement in its host module, and inherits the
host module's environment through host association. A module
procedure can be declared PRIVATE to the module; it is public by
default.

multibyte character set A character set in which each character is identified by using more
than one byte. Although Unicode characters are 2 bytes wide, the
Unicode character set is not referred to by this term.

multitasking The ability of an operating system to execute several programs
(tasks) at once.

multithreading The ability of an operating system to execute different parts of a
program, called threads, simultaneously. If the system supports
parallel processing, multiple processors may be used to execute the
threads.

Glossary N

name Identifies an entity within a Fortran program unit (such as a variable,
function result, common block, named constant, procedure, program
unit, namelist group, or dummy argument).

A name can contain letters, digits, underscores (_), and the dollar
sign ($) special character. The first character must be a letter or a
dollar sign. In earlier versions of Fortran, this term was called a
symbolic name.

name association Pertains to argument, host, or use association. See also argument
association, host association, and use association.

named common block A common block (one or more contiguous areas of storage) with a
name. Common blocks are defined by a COMMON statement.

named constant A constant that has a name. In earlier versions of Fortran, this term
was called a symbolic constant.

namelist I/O statement An implicit, formatted I/O statement that uses a namelist group
specifier rather than an explicit format specifier. See also formatted
I/O statement and list-directed I/O statement.

NaN Not-a-Number. The condition that results from a floating-point
operation that has no mathematical meaning; for example, zero
divided by zero.

Intel® Fortran Compiler Classic and Intel® Fortran Compiler Developer Guide and Reference 1

2305

natural boundary The virtual address of a data item that is the multiple of the size of its
data type. For example, a REAL(8) (REAL*8) data item aligned on
natural boundaries has an address that is a multiple of eight.

naturally aligned record A record that is aligned on a hardware-specific natural boundary; each
field is naturally aligned. Contrast with packed record.

nesting The placing of one entity (such as a construct, subprogram, format
specification, or loop) inside another entity of the same kind. For
example, nesting a loop within another loop (a nested loop), or
nesting a subroutine within another subroutine (a nested subroutine).

nonexecutable statement A Fortran statement that describes program attributes, but does not
cause any action to be taken when the program is executed.

nonsignaled The state of an object used for synchronization in one of the wait
functions is either signaled or nonsignaled. A nonsignaled state can
prevent the wait function from returning. See also wait function.

normal termination Normal termination of an image is initiated when the image executes
a STOP statement or an END [PROGRAM] statement. The image
becomes a stopped image. Its coarrays remain accessible to other
active images and may be defined or referenced by them.

When the last active image initiates normal termination, all images
terminate execution. See also error termination.

numeric expression A numeric constant, variable, or function value, or combination of
these, joined by numeric operators and parentheses, so that the
entire expression can be evaluated to produce a single numeric value.
For example, -L or X+(Y-4.5*Z).

numeric operator A symbol designating an arithmetic operation. In Standard Fortran,
the symbols +, -, *, /, and ** are used to designate addition,
subtraction, multiplication, division, and exponentiation, respectively.

numeric storage unit The unit of storage for holding a non-pointer scalar value of type
default real, default integer, or default logical. One numeric storage
unit corresponds to 4 bytes of memory.

numeric type Integer, real, or complex type.

Glossary O

object See data object.

object file The binary output of a language processor (such as an assembler or
compiler), which can either be executed or used as input to the linker.

obsolescent feature A feature of earlier versions of Fortran that is considered to be
redundant in Fortran 2018. These features are still in frequent use.

octal constant A constant that is a string of octal (base 8) digits (range of 0 to 7)
enclosed by apostrophes or quotation marks and preceded by the
letter O.

operand The passive element in an expression on which an operation is
performed. Every expression must have at least one operand. For
example, in I .NE. J, I and J are operands. Contrast with operator.

operation A computation involving one or two operands.

 1 Intel® Fortran Compiler Classic and Intel® Fortran Compiler Developer Guide and Reference

2306

operator The active element in an expression that performs an operation. An
expression can have zero or more operators. Intrinsic operators are
arithmetic (+, -, *, /, and **) or logical (.AND., .NOT., and so on). For
example, in I .NE. J, .NE. is the operator.

Executable programs can define operators which are not intrinsic.

optimization The process of producing efficient object or executing code that takes
advantage of the hardware architecture to produce more efficient
execution.

optional argument A dummy argument that has the OPTIONAL attribute (or is included in
an OPTIONAL statement in the procedure definition). This kind of
argument does not have to be associated with an actual argument
when its procedure is invoked.

order of subscript progression A characteristic of a multidimensional array in which the leftmost
subscripts vary most rapidly. Also called column-major order.

overflow An error condition occurring when an arithmetic operation yields a
result that is larger than the maximum value in the range of a data
type.

Glossary P

packed record A record that starts on an arbitrary byte boundary; each field starts in
the next unused byte. Contrast with naturally aligned record.

pad The filling of unused positions in a field or character string with
dummy data (such as zeros or blanks).

parallel processing The simultaneous use of more than one processor (CPU) to execute a
program.

parameter Can be either of the following:

• In general, any quantity of interest in a given situation; often used
in place of the term "argument".

• A Fortran named constant.

parent component The component of an entity of extended type that corresponds to its
inherited portion.

parent process A process that initiates and controls another process (child). The
parent process defines the environment for the child process. Also,
the parent process can suspend or terminate without affecting the
child process. See also child process.

parent team The team that executes a FORM TEAM statement is the parent team of
the teams formed by execution of the FORM TEAM statement.

parent window A window that has one or more child windows. See also child window.

parent type The extensible type from which an extended type is derived.

passed-object dummy argument The dummy argument of a type-bound procedure or procedure pointer
component that becomes associated with the object through which
the procedure was invoked.

pathname The path from the root directory to a subdirectory or file. See also
root.

pipe A connection that allows one program to get its input directly from the
output of another program.

Intel® Fortran Compiler Classic and Intel® Fortran Compiler Developer Guide and Reference 1

2307

platform A combination of operating system and hardware that provides a
distinct environment in which to use a software product (for example,
Microsoft* Windows* on processors using Intel® 64 architecture).

pointer A pointer is either a data pointer or a procedure pointer. A data
pointer is a data entity that has the POINTER attribute. A procedure
pointer is a procedure entity that has the POINTER attribute.

A pointer is associated with a target by pointer assignment. A data
pointer can also be associated with a target by allocation. A pointer
that is not associated must not be referenced or defined.

A disassociated pointer is not associated with a target. A pointer is
disassociated following one of these events:

• Execution of a NULLIFY statement
• Pointer assignment with a disassociated pointer
• Default initialization
• Explicit initialization

A data pointer can also be disassociated by execution of a
DEALLOCATE statement.

If a data pointer is an array, the rank is declared, but the extents are
determined when the pointer is associated with a target.

A data pointer is one of the following:

• A Fortran pointer

A data object that has the POINTER attribute. To be referenced or
defined, it must be "pointer-associated" with a target (have
storage space associated with it). If the pointer is an array, it must
be pointer-associated to have a shape. See also pointer
association.

• An integer pointer

A data object that contains the address of its paired variable. This
is also called a Cray* pointer.

pointer assignment The association of a pointer with a target by the execution of a pointer
assignment statement or the execution of an assignment statement
for a data object of derived type having the pointer as a subobject.

pointer association The association of storage space to a Fortran pointer by means of a
target. A pointer is associated with a target after pointer assignment
or the valid execution of an ALLOCATE statement.

polymorphic object An object that can have different types during program execution. An
object declared with the CLASS keyword is polymorphic.

potential subobject component For a derived type or a structure, a nonpointer component or a
potential subobject component of a nonpointer component.

preceding task A task that must complete execution prior to execution of its
dependent task(s). See also dependent task and task dependence.

precision The number of significant digits in a real number. See also double-
precision constant, kind type parameter, and single-precision
constant.

primary The simplest form of an expression. A primary can be any of the
following data objects:

• A constant
• A constant subobject (parent is a constant)

 1 Intel® Fortran Compiler Classic and Intel® Fortran Compiler Developer Guide and Reference

2308

• A variable (scalar, structure, array, or pointer; an array cannot be
assumed size)

• An array constructor
• A structure constructor
• A function reference
• An expression in parentheses

primary thread In an OpenMP* Fortran program, the thread that creates a team of
threads when a parallel region (PARALLEL construct) is encountered.
The statements in the parallel region are then executed in parallel by
each thread in the team. At the end of the parallel region, the team
threads synchronize and only the primary thread continues execution.
See also thread.

procedure A computation that can be invoked during program execution. It can
be a subroutine or function, an internal, external, dummy or module
procedure, or a statement function. A subprogram can define more
than one procedure if it contains an ENTRY statement. See also
subprogram.

procedure interface The statements that specify the name and characteristics of a
procedure, the name and characteristics of each dummy argument,
and the generic identifier (if any) by which the procedure can be
referenced. The characteristics of a procedure are fixed, but the
remainder of the interface can change in different scoping units.

If these properties are all known within the scope of the calling
program, the procedure interface is explicit; otherwise it is implicit
(deduced from its reference and declaration).

process object A virtual address space, security profile, a set of threads that execute
in the address space of the process, and a set of resources visible to
all threads executing in the process. Several thread objects can be
associated with a single process.

program A set of instructions that can be compiled and executed by itself.
Program blocks contain a declaration and an executable section.

program section A particular common block or local data area for a particular routine
containing equivalence groups.

program unit The fundamental component of an executable program. A sequence of
statements and comment lines. It can be a main program, a module,
an external subprogram, or a block data program unit.

Glossary Q

quadword Four contiguous words (64 bits) starting on any addressable byte
boundary. Bits are numbered 0 to 63. (Bit 63 is used as the sign bit.)
A quadword is identified by the address of the word containing the
low-order bit (bit 0). The value of a signed quadword integer is in the
range -2**63 to 2**63-1.

Glossary R

random access See direct access.

rank The number of dimensions of an array. A scalar has a rank of zero.

Intel® Fortran Compiler Classic and Intel® Fortran Compiler Developer Guide and Reference 1

2309

rank-one object A data structure comprising scalar elements with the same data type
and organized as a simple linear sequence. See also scalar.

real constant A constant that is a number written with a decimal point, exponent, or
both. It can have single precision (REAL(KIND=4)), double precision
(REAL(KIND=8)), or quad precision (REAL(KIND=16)).

record Can be either of the following:

• A set of logically related data items (in a file) that is treated as a
unit; such a record contains one or more fields. This definition
applies to I/O records and items that are declared in a record
structure.

• One or more data items that are grouped in a structure declaration
and specified in a RECORD statement.

record access The method used to store and retrieve records in a file.

record structure declaration A block of statements that define the fields in a record. The block
begins with a STRUCTURE statement and ends with END STRUCTURE.
The name of the structure must be specified in a RECORD statement.

record type The property that determines whether records in a file are all the
same length, of varying length, or use other conventions to define
where one record ends and another begins.

recursion Pertains to a subroutine or function that directly or indirectly
references itself.

reduction scoping clause OpenMP* directive clauses that define the region in which a reduction
is computed by tasks or Single Instruction Multiple Data (SIMD)
instructions.

reference Can be any of the following:

• For a data object, the appearance of its name, designator, or
associated pointer where the value of the object is required. When
an object is referenced, it must be defined.

• For a procedure, the appearance of its name, operator symbol, or
assignment symbol that causes the procedure to be executed.
Procedure reference is also called "calling" or "invoking" a
procedure.

• For a module, the appearance of its name in a USE statement.

relational expression An expression containing one relational operator and two operands of
numeric or character type. The result is a value that is true or false.
For example, A-C .GE. B+2 or DAY .EQ. 'MONDAY'.

relational operator The symbols used to express a relational condition or expression. The
relational operators are (.EQ., .NE., .LT., .LE., .GT., and .GE.).

relative file organization A file organization that consists of a series of component positions,
called cells, numbered consecutively from 1 to n. Intel Fortran uses
these numbered, fixed-length cells to calculate the component's
physical position in the file.

relative pathname A directory path expressed in relation to any directory other than the
root directory. Contrast with absolute pathname.

root On Windows* systems, the top-level directory on a disk drive; it is
represented by a backslash (\). For example, C:\ is the root directory
for drive C.

On Linux* systems, the top-level directory in the file system; it is
represented by a slash (/).

 1 Intel® Fortran Compiler Classic and Intel® Fortran Compiler Developer Guide and Reference

2310

routine A subprogram; a function or procedure. See also function, subroutine,
and procedure.

runtime The time during which a computer executes the statements of a
program.

Glossary S

saved object A variable that retains its association status, allocation status,
definition status, and value after execution of a RETURN or END
statement in the scoping unit containing the declaration.

scalar Pertaining to data items with a rank of zero. A single data object of
any intrinsic or derived data type. Contrast with array. See also rank-
one object.

scalar memory reference A reference to a scalar variable, scalar record field, or array element
that resolves into a single data item (having a data type) and can be
assigned a value with an assignment statement. It is similar to a
scalar reference, but it excludes constants, character substrings, and
expressions.

scalar reference A reference to a scalar variable, scalar record field, derived-type
component, array element, constant, character substring, or
expression that resolves into a single data item having a data type.

scalar variable A variable name specifying one storage location.

scale factor A number indicating the location of the decimal point in a real number
and, if there is no exponent, the size of the number on input.

scope The portion of a program in which a declaration or a particular name
has meaning. Scope can be global (throughout an executable
program), scoping unit (local to the scoping unit), or statement
(within a statement, or part of a statement).

scoping unit The part of the program in which a name has meaning. It is one of the
following:

• A program unit or subprogram
• A derived-type definition
• A procedure interface body

Scoping units cannot overlap, though one scoping unit can contain
another scoping unit. The outer scoping unit is called the host scoping
unit.

screen coordinates Coordinates relative to the upper left corner of the screen.

section subscript A subscript list (enclosed in parentheses and appended to the array
name) indicating a portion (section) of an array. At least one of the
subscripts in the list must be a subscript triplet or vector subscript.
The number of section subscripts is the rank of the array. See also
array section, vector subscript, and subscript and subscript triplet,
which appear below.

seed A value (which can be assigned to a variable) that is required in order
to properly determine the result of a calculation; for example, the
argument k in the random number generator (RAN) function syntax:

y = RAN (k)

selector A mechanism for designating the following:

Intel® Fortran Compiler Classic and Intel® Fortran Compiler Developer Guide and Reference 1

2311

• Part of a data object (an array element or section, a substring, a
derived type, or a structure component)

• The set of values for which a CASE block is executed

sequence A set ordered by a one-to-one correspondence with the numbers 1
through n, where n is the total number of elements in the sequence. A
sequence can be empty (contain no elements).

sequential access A method for retrieving or storing data in which the data (record) is
read from, written to, or removed from a file based on the logical
order (sequence) of the record in the file. (The record cannot be
accessed directly.) Contrast with direct access.

sequential file organization A file organization in which records are stored one after the other, in
the order in which they were written to the file.

shape The rank and extents of an array. Shape can be represented by a
rank-one array (vector) whose elements are the extents in each
dimension.

shape conformance Pertains to the rule concerning operands of binary intrinsic operations
in expressions: to be in shape conformance, the two operands must
both be arrays of the same shape, or one or both of the operands
must be scalars.

short field termination The use of a comma (,) to terminate the field of a numeric data edit
descriptor. This technique overrides the field width (w) specification in
the data edit descriptor and therefore avoids padding of the input
field. The comma can only terminate fields less than w characters
long. See also data edit descriptor.

sibling team Two teams are sibling teams if they were created by execution of the
same FORM TEAM statement.

signal The software mechanism used to indicate that an exception condition
(abnormal event) has been detected. For example, a signal can be
generated by a program or hardware error, or by request of another
program.

single-precision constant A processor approximation of the value of a real number that occupies
4 bytes of memory and can assume a positive, negative, or zero
value. The precision is less than a constant of double-precision type.
For the precise ranges of the single-precision constants, see Data
Representation Overview in the Compiler Reference. See also
subnormal number, which appears below.

size The total number of elements in an array (the product of the extents).

source file A program or portion of a program library, such as an object file, or
image file.

specification expression A restricted expression that is of type integer and has a scalar value.
This type of expression appears only in the declaration of array
bounds and character lengths.

specification statement A nonexecutable statement that provides information about the data
used in the source program. Such a statement can be used to allocate
and initialize variables, arrays, records, and structures, and define
other characteristics of names used in a program.

 1 Intel® Fortran Compiler Classic and Intel® Fortran Compiler Developer Guide and Reference

2312

statement An instruction in a programming language that represents a step in a
sequence of actions or a set of declarations. In Standard Fortran, an
ampersand can be used to continue a statement from one line to
another, and a semicolon can be used to separate several statements
on one line.

There are two main classes of statements: executable and
nonexecutable.

statement function A computing procedure defined by a single statement in the same
program unit in which the procedure is referenced.

statement function definition A statement that defines a statement function. Its form is the
statement function name (followed by its optional dummy arguments
in parentheses), followed by an equal sign (=), followed by a numeric,
logical, or character expression.

A statement function definition must precede all executable
statements and follow all specification statements.

statement keyword A word that begins the syntax of a statement. All program statements
(except assignment statements and statement function definitions)
begin with a statement keyword. Examples are INTEGER, DO, IF, and
WRITE.

statement label See label.

static variable A variable whose storage is allocated for the entire execution of a
program.

stopped image An image that has begun normal termination, either by execution of a
STOP statement, or by execution of an END statement or END
PROGRAM statement terminating the main program.

storage association The relationship between two storage sequences when the storage
unit of one is the same as the storage unit of the other. Storage
association is provided by the COMMON and EQUIVALENCE
statements. For modules, pointers, allocatable arrays, and automatic
data objects, the SEQUENCE statement defines a storage order for
structures.

storage location An addressable unit of main memory.

storage sequence A sequence of any number of consecutive storage units. The size of a
storage sequence is the number of storage units in the storage
sequence. A sequence of storage sequences forms a composite
storage sequence. See also storage association and storage unit.

storage unit In a storage sequence, the number of storage units needed to
represent one real, integer, logical, or character value. See also
character storage unit, numeric storage unit, and storage sequence.

strictly structured block A Fortran BLOCK construct. See also loosely structured block.

stride The increment between subscript values that can optionally be
specified in a subscript triplet. If it is omitted, it is assumed to be one.

string edit descriptor A format descriptor that transfers characters to an output record.

structure Can be either of the following:

• A scalar data object of derived (user-defined) type.
• An aggregate entity containing one or more fields or components.

structure component Can be either of the following:

Intel® Fortran Compiler Classic and Intel® Fortran Compiler Developer Guide and Reference 1

2313

• One of the components of a structure.
• An array whose elements are components of the elements of an

array of derived type.

structure constructor A mechanism that is used to specify a scalar value of a derived type.
A structure constructor is the name of the type followed by a
parenthesized list of values for the components of the type.

subnormal number A computational floating-point result smaller than the lowest value in
the normal range of a data type (the smallest representable
normalized number). You cannot write a constant for a subnormal
number. Older floating-point standard documents used the term
denormal; newer standards call such numbers subnormal.

subobject Part of a data object (parent object) that can be referenced and
defined separately from other parts of the data object. A subobject
can be an array element, an array section, a substring, a derived
type, or a structure component. Subobjects are referenced by
designators and can be considered to be data objects themselves. See
also designator.

subobject designator See designator.

subprogram A function or subroutine subprogram that can be invoked from
another program unit to perform a specific task. A subprogram can
define more than one procedure if it contains an ENTRY statement.
Contrast with main program. See also procedure.

subroutine A procedure that can return many values, a single value, or no value
to the calling program unit (through arguments). A subroutine is
invoked by a CALL statement in another program unit.

In recent versions of Fortran, a subroutine can also be used to specify
a defined assignment. Such assignments are invoked with an
ASSIGNMENT(=) interface block rather than the CALL statement. See
also function, statement function, and subroutine subprogram.

subroutine subprogram A sequence of statements starting with a SUBROUTINE (or optional
OPTIONS) statement and ending with the corresponding END
statement. See also subroutine.

subscript A scalar integer expression (enclosed in parentheses and appended to
the array name) indicating the position of an array element. The
number of subscripts is the rank of the array. See also array element.

subscript triplet An item in a section subscript list specifying a range of values for the
array section. A subscript triplet contains at least one colon and has
three optional parts: a lower bound, an upper bound, and a stride.
Contrast with vector subscript. See also array section and section
subscript.

substring A contiguous portion of a scalar character string. Do not confuse this
with the substring selector in an array section, where the result is
another array section, not a substring.

symbolic name See name.

syntax The formal structure of a statement or command string.

 1 Intel® Fortran Compiler Classic and Intel® Fortran Compiler Developer Guide and Reference

2314

Glossary T

target The named data object associated with a pointer (in the form pointer-
object => target). A target is declared in a type declaration statement
that contains the TARGET attribute. See also pointer and pointer
association.

task dependence An ordering between two sibling tasks; one is the dependent task and
the other is the preceding task. The dependence is satisfied upon
completion of the preceding task. See also dependent task and
preceding task.

team An ordered set of images, either the initial team, or created by
execution of a FORM TEAM statement.

team number A positive integer value that identifies a team created by a FORM
TEAM statement. It is assigned to the team during the execution of a
FORM TEAM statement. Only the initial team has a team number
which is negative (-1).

team variable Is a scalar variable of type TEAM_TYPE defined in the intrinsic module
ISO_FORTRAN_ENV. The values of the team variables on all images of
the team fully describe the team. Each image on the team has a
unique copy of the team variable. A team variable for an active team
may not be defined or become undefined during the execution of the
CHANGE TEAM construct that made that team an active team.

thread Part of a program that can run at the same time as other parts,
usually with some form of communication and/or synchronization
among the threads. See also multithreading.

transformational function An intrinsic function that is not an elemental or inquiry function. A
transformational function usually changes an array actual argument
into a scalar result or another array, rather than applying the
argument element by element.

truncation Can be either of the following:

• A technique that approximates a numeric value by dropping its
fractional value and using only the integer portion.

• The process of removing one or more characters from the left or
right of a number or string.

type declaration statement A nonexecutable statement specifying the data type of one or more
variables: an INTEGER, REAL, DOUBLE PRECISION, COMPLEX,
DOUBLE COMPLEX, CHARACTER, LOGICAL, or TYPE statement. A type
declaration statement may also specify attributes for the variables.
Also called a type declaration or type specification.

type parameter Defines an intrinsic data type. The type parameters are kind and
length. The kind type parameter (KIND=) specifies the range for the
integer data type, the precision and range for real and complex data
types, and the machine representation method for the character and
logical data types. The length type parameter (LEN=) specifies the
length of a character string. See also kind type parameter.

type-bound procedure A procedure that is bound to a derived type and referenced by means
of an object of that type.

Intel® Fortran Compiler Classic and Intel® Fortran Compiler Developer Guide and Reference 1

2315

Glossary U

ultimate component For a derived type or a structure, a component that is of intrinsic type
or has the ALLOCATABLE or POINTER attribute, or an ultimate
component of a component that is a derived type and does not have
the ALLOCATABLE or POINTER attribute.

unary operator An operator that operates on one operand. For example, the minus
sign in -A and the .NOT. operator in .NOT. (J .GT. K).

undeferred task A task for which execution is not deferred with respect to its
generating task region; that is, its generating task region is
suspended until execution of the undeferred task has finished.

undefined For a data object, the property of not having a determinate value.

underflow An error condition occurring when the result of an arithmetic operation
yields a result that is smaller than the minimum value in the range of
a data type. For example, in unsigned arithmetic, underflow occurs
when a result is negative. See also subnormal number.

unformatted data Data written to a file by using unformatted I/O statements; for
example, binary numbers.

unformatted I/O statement An I/O statement that does not contain format specifiers and
therefore does not translate the data being transferred. Contrast with
formatted I/O statement.

unformatted record A record that is transmitted in internal format between internal and
external storage.

unit identifier The identifier that specifies an external unit or internal file. The
identifier can be any one of the following:

• An integer expression whose value must be zero or positive
• An asterisk (*) that corresponds to the default (or implicit) I/O unit
• The name of a character scalar memory reference or character

array name reference for an internal file

Also called a device code, or logical unit number.

unspecified storage unit A unit of storage for holding a pointer or a scalar that is not a pointer
and is of type other than default integer, default character, or default
real.

upper bounds See bounds.

use association The process by which the entities in a module are made accessible to
other scoping units (through a USE statement in the scoping unit).

user-defined assignment See defined assignment.

user-defined operator See defined operation.

user-defined type See derived type.

Glossary V

variable A data object (stored in a memory location) whose value can change
during program execution. A variable can be a named data object, an
array element, an array section, a structure component, or a
substring. In FORTRAN 77, a variable was always scalar and named.
Contrast with constant.

 1 Intel® Fortran Compiler Classic and Intel® Fortran Compiler Developer Guide and Reference

2316

variable format expression A numeric expression enclosed in angle brackets (<>) that can be
used in a FORMAT statement. If necessary, it is converted to integer
type before use.

variable-length record type A file format in which records may be of different lengths.

vector subscript A rank-one array of integer values used as a section subscript to
select elements from a parent array. Unlike a subscript triplet, a
vector subscript specifies values (within the declared bounds for the
dimension) in an arbitrary order. Contrast with subscript triplet. See
also array section and section subscript.

Glossary W

wait function A function that blocks the execution of a calling thread until a
specified set of conditions has been satisfied.

whole array An array reference (for example, in a type declaration statement) that
consists of the array name alone, without subscript notation. Whole
array operations affect every element in the array. See also array.

Glossary Z

zero-sized array An array with at least one dimension that has at least one extent of
zero. A zero-sized array has a size of zero and contains no elements.
See also array.

Compilation
This section contains information about features that can affect compilation, such as environment variables,
and using configuration files.

Supported Environment Variables
You can customize your system environment by specifying paths where the compiler searches for certain files
such as libraries, include files, configuration files, and certain settings.

Compiler Compile-Time Environment Variables
The following table shows the compile-time environment variables that affect the compiler:

Compile-Time
Environment
Variable

Description

IFORTCFG Specifies an ifort configuration file that the compiler should use instead of the
default configuration file.

By default, the compiler uses the default configuration file (ifort.cfg) from the
same directory where the compiler executable resides.

NOTE On Windows, this environment variable cannot be set from Visual Studio*.

Intel® Fortran Compiler Classic and Intel® Fortran Compiler Developer Guide and Reference 1

2317

Compile-Time
Environment
Variable

Description

IFXCFG Specifies an ifx configuration file that the compiler should use instead of the default
configuration file.

By default, the compiler uses the default configuration file (ifx.cfg) from the same
directory where the compiler executable resides.

NOTE On Windows, this environment variable cannot be set from Visual Studio.

INTEL_LICENSE_F
ILE

Specifies the location for the Intel license file.

NOTE On Windows, this environment variable cannot be set from Visual Studio.

__INTEL_PRE_FFL
AGS
__INTEL_POST_FF
LAGS

Specifies a set of compiler options to add to the compile line.

This is an extension to the facility already provided in the compiler configuration file
ifort.cfg (ifort) and ifx.cfg (ifx).

NOTE By default, a configuration file named ifort.cfg (ifort) or ifx.cfg (ifx) is
used. This file is in the same directory as the compiler executable. To use another
configuration file in another location, you can use the IFORTCFG (ifort) or IFXCFG (ifx)
environment variable to assign the directory and file name for the configuration file.

You can insert command line options in the prefix position using
__INTEL_PRE_FFLAGS , or in the suffix position using __INTEL_POST_FFLAGS. The
command line is built as follows:

ifort Syntax: ifort <PRE flags> <flags from configuration file> <flags
from the compiler invocation> <POST flags>

ifx Syntax: ifx <PRE flags> <flags from configuration file> <flags
from the compiler invocation> <POST flags>

NOTE The driver issues a warning that the compiler is overriding an option
because of an environment variable, but only when you include the option /W5
(Windows) or -w3 (Linux).

INTEL_TARGET_AR
CH_IA32 (Linux
and Windows)

Set this environment variable to target 32-bit compilations for all associated tools
(this includes the compiler and Intel-specific linker tools). Without this environment
variable, you will be required to use the explicit command line options, /Qm32 on
Windows and -m32 on Linux, for each compiler invocation.

PATH Specifies the directories the system searches for binary executable files.

 1 Intel® Fortran Compiler Classic and Intel® Fortran Compiler Developer Guide and Reference

2318

Compile-Time
Environment
Variable

Description

NOTE On Windows, this also affects the search for Dynamic Link Libraries
(DLLs).

TMP
TMPDIR
TEMP

Specifies the location for temporary files. If none of these are specified, or writeable,
or found, the compiler stores temporary files in /tmp (Linux) or the current directory
(Windows).

The compiler searches for these variables in the following order: TMP, TMPDIR, and
TEMP.

NOTE
On Windows, these environment variables cannot be set from Visual Studio.

LD_LIBRARY_PATH
(Linux)

Specifies the location for shared objects (.so files).

DYLD_LIBRARY_PA
TH

Specifies the path for dynamic libraries.

INCLUDE
(Windows)

Specifies the directory path for the include files (files included by INCLUDE
statements, #include files, RC INCLUDE files1, and module files referenced by USE
statements).
1 Files from the Resource Compiler, used to create dialog boxes and other Windows-
GUI interfaces.

LIB (Windows) Specifies the directories for all libraries used by the compiler and linker.

GNU Environment Variables and Extensions

CPATH (Linux) Specifies the path for include and module files.

LIBRARY_PATH
(Linux)

Specifies the path for libraries to be used during the link phase.

NOTE INTEL_ROOT is an environment variable that is reserved for the Intel® Fortran Compiler. Its use
is not supported. Use of this variable may result in unexpected compiler behavior.

Compiler Runtime Environment Variables
The Intel® Fortran Compiler runtime system recognizes a number of environment variables. These variables
can be used to customize runtime diagnostic error reporting, allow program continuation under certain
conditions, disable the display of certain dialog boxes under certain conditions, and allow just-in-time
debugging.

Environment variables relating to file I/O are interpreted when the file is opened. Other variables are read
when the program starts.

The order of precedence for runtime environment variables is:

Intel® Fortran Compiler Classic and Intel® Fortran Compiler Developer Guide and Reference 1

2319

1. OPEN keyword
2. Environment variable(s)
3. Command line option

For Fortran runtime environment variables that are boolean (either enabled or disabled), the following tables
describe values you can use to enable or disable them. These rules do not apply to environment variables for
OpenMP* (OMP_) and their extensions (KMP_), or PGO.

Setting a Runtime Environment Variable to ON
or OFF

Examples

An integer composed entirely of digits other than 0
enables the environment variable.

1

4938493848

A string starting with t or T, y or Y, enables the
environment variable.

Because you cannot include quotes, or spaces
preceding the string, " T" and ' YES' do not work,
because both spaces and quotation marks are
considered letters.

T

t

TRUE

TFALSE

Y

y

yes

yeti

Anything that doesn't enable the environment
variable disables it.

0

-1

+1

<no value set>

The following table summarizes compiler environment variables that are recognized at runtime.

Runtime Environment Variable Description

F_UFMTENDIAN This variable specifies the numbers of the units to
be used for little-endian-to-big-endian conversion
purposes. See Environment Variable
F_UFMTENDIAN Method.

The variable is retrieved once when the first unit is
opened, and then checked for every open.

FOR_COARRAY_CONFIG_FILE (Windows and Linux) This variable specifies the coarray configuration file
and path to be used at execution time. The variable
overrides the value specified by the
[Q]coarray-config-file=value qualifier at
runtime.

FOR_COARRAY_DEBUG_STARTUP (Windows and
Linux)

Boolean.
When set to TRUE, this variable tells the Fortran runtime
library to display the Message Passing Interface (MPI)
launcher command that begins the underlying parallel
support for coarrays.

FOR_COARRAY_MPI_VERBOSE (Windows and Linux) Boolean.

 1 Intel® Fortran Compiler Classic and Intel® Fortran Compiler Developer Guide and Reference

2320

Runtime Environment Variable Description

When set to TRUE, this variable tells the Fortran runtime
library to pass the '-verbose' qualifier to the MPI support
underlying the coarray implementation so that MPI will
issue status and activity messages.

FOR_COARRAY_NUM_IMAGES (Windows and Linux) This variable specifies the number of images
created for coarrays. The value overrides the value
specified by the [Q]coarray-num-images=value
qualifier at runtime. If neither is specified, the
number of logical processors is used.

FOR_DUMP_CORE_FILE Boolean.

When set to TRUE, if an Intel® Fortran runtime
error occurs the program will attempt to exit in a
way that causes the system to generate a core
dump file. The system must be configured to
generate core dumps for this flag to have an effect.
The location of the core dump file is system-
dependent.

decfort_dump_flag is an alternate spelling for
FOR_DUMP_CORE_FILE.

Default: FALSE

FOR_FASTMEM_NORETRY (Windows and Linux) Boolean.

When set to TRUE, this variable specifies that if an
allocation from FASTMEM fails because either the
libmemkind library is not linked into the executable
or HBW memory is not available on the node then
the runtime will report the failure to the user via
STAT= or ERRMSG= or aborting the program with
the appropriate error message.

The variable is retrieved once at program
initialization, and checked for each FASTMEM
memory allocation.

Default: TRUE

FOR_FASTMEM_RETRY (Windows and Linux) Boolean.

When set to TRUE, this variable specifies that if an
allocation from FASTMEM fails because either the
libmemkind library is not linked into the executable
or HBW memory is not available on the node then
memory will be allocated from the default memory
allocator for that platform.

The variable is retrieved once at program
initialization, and checked for each FASTMEM
memory allocation.

Default: FALSE

FOR_FASTMEM_RETRY_WARN (Windows and Linux) Boolean.

Intel® Fortran Compiler Classic and Intel® Fortran Compiler Developer Guide and Reference 1

2321

Runtime Environment Variable Description

When set to TRUE, this variable specifies that if an
allocation from FASTMEM fails because either the
libmemkind library is not linked into the executable
or HBW memory is not available on the node then a
warning message will be issued to stdout and
memory will be allocated from the default memory
allocator for that platform.

The variable is retrieved once at program
initialization, and checked for each FASTMEM
memory allocation.

Default: FALSE

FOR_FMT_TERMINATOR This variable specifies the numbers of the units to
have a specific record terminator. See Record
Types.

The variable is retrieved once when the first unit is
opened, and then checked for every open.

FORT_FMT_NO_WRAP_MARGIN Boolean.

When set to TRUE, disables column wrapping in
Fortran list-directed output when the record being
written is longer than 80 characters.

NOTE
There is no environment variable to set a value for the
right margin, this only disables wrapping. The RECL=
open specifier can be used to set the right margin
when the unit is opened.

Default: FALSE (Wrap margin)

FOR_ACCEPT The ACCEPT statement does not include an explicit
logical unit number. Instead, it uses an implicit
internal logical unit number and the FOR_ACCEPT
environment variable. If FOR_ACCEPT is not
defined, the code ACCEPT f,iolist reads from
standard input. If FOR_ACCEPT is defined (as a file
name optionally containing a path), the specified
file would be read.

FOR_DEBUGGER_IS_PRESENT Boolean.

When set to TRUE, this variable tells the Fortran
runtime library that your program is executing
under a debugger, and generates debug exceptions
whenever severe or continuable errors are
detected.

Under normal conditions, this variable can be
extracted from the operating system for Windows.

 1 Intel® Fortran Compiler Classic and Intel® Fortran Compiler Developer Guide and Reference

2322

Runtime Environment Variable Description

User-convenience feature
If the user sets this environment variable to a TRUE
value (such as 1) on Windows and the user's program
executes an ERROR STOP statement, the Windows
system function __debugbreak will be called and
will bring up the Windows debugger (if it is really
present).

The user can use the debugger to look at the
state of the application, and any step or
continue command will continue the ERROR
STOP process and terminate the application.

On Linux, this variable must be set for debug
exceptions. Setting this variable to TRUE when a
program is not executing under a debugger causes
unpredictable behavior.

Default: FALSE

FOR_DEFAULT_PRINT_DEVICE (Windows) This variable lets you specify the print device other
than the default print device PRN (LPT1) for files
closed (CLOSE statement) with the
DISPOSE='PRINT' specifier. To specify a different
print device for the file associated with the CLOSE
statement DISPOSE='PRINT' specifier, set
FOR_DEFAULT_PRINT_DEVICE to any legal spooled
print device before executing the program.

It can also be used for the PRINT settings in the
OPEN: DISPOSE specifier.

FOR_DIAGNOSTIC_LOG_FILE If this variable is set to the name of a file,
diagnostic output is written to the specified file.

The Fortran runtime system attempts to open that
file (append output) and write the error information
(ASCII text) to the file.

Because the setting of FOR_DIAGNOSTIC_LOG_FILE
is independent of
FOR_DISABLE_DIAGNOSTIC_DISPLAY, you can
disable the screen display of information but still
capture the error information in a file. Because the
text string you assign for the file name is used
literally, you must specify the full name. If the file
open fails, no error is reported and the runtime
system continues diagnostic processing.

See also Locating Runtime Errors and Traceback.

FOR_DISABLE_DIAGNOSTIC_DISPLAY Boolean.

Intel® Fortran Compiler Classic and Intel® Fortran Compiler Developer Guide and Reference 1

2323

Runtime Environment Variable Description

When set to TRUE, this variable disables the display
of all error information. This variable is helpful if
you just want to test the error status of your
program and do not want the Fortran runtime
system to display any information about an
abnormal program termination.

See also Traceback.

FOR_DISABLE_KMP_MALLOC Boolean.

When set to TRUE, this variable forces Fortran
allocate statements to resolve to glibc malloc.

Default: FALSE

FOR_FORCE_STACK_TRACE Boolean.

When set to TRUE, this variable forces a traceback
to follow any runtime diagnostic message.

If FOR_DISABLE_STACK_TRACE is also set,
FOR_FORCE_STACK_TRACE takes precedence over
FOR_DISABLE_STACK_TRACE .

Default: FALSE

FOR_DISABLE_STACK_TRACE Boolean.

When set to TRUE, this variable disables the call
stack trace information that typically follows the
displayed severe error message text.

The Fortran runtime error message is displayed
regardless of whether FOR_DISABLE_STACK_TRACE
is set to TRUE. If the program is executing under a
debugger, the automatic output of the stack trace
information by the Fortran library will be disabled
to reduce noise. Use the debugger's stack trace
facility to view the stack trace.

Default: FALSE

See also Locating Runtime Errors and Traceback.

FOR_IGNORE_EXCEPTIONS Boolean.

When set to TRUE, this variable disables default
runtime exception handling to allow, for example,
just-in-time debugging. The runtime system
exception handler returns
EXCEPTION_CONTINUE_SEARCH to the operating
system, which looks for other handlers to service
the exception.

Default: FALSE

FOR_NOERROR_DIALOGS Boolean.

 1 Intel® Fortran Compiler Classic and Intel® Fortran Compiler Developer Guide and Reference

2324

Runtime Environment Variable Description

When set to TRUE, this variable disables the display
of dialog boxes when certain exceptions or errors
occur. This is useful when running many test
programs in batch mode to prevent a failure from
stopping execution of the entire test stream.

Default: FALSE

FOR_PRINT Neither the PRINT statement nor a WRITE
statement with an asterisk (*) in place of a unit
number includes an explicit logical unit number.
Instead, both use an implicit internal logical unit
number and the FOR_PRINT environment variable.
If FOR_PRINT is not defined, the code PRINT
f,iolist or WRITE (*,f) iolist writes to
standard output. If FOR_PRINT is defined (as a file
name optionally containing a path), the specified
file would be written to.

FOR_READ A READ statement that uses an asterisk (*) in
place of a unit number does not include an explicit
logical unit number. Instead, it uses an implicit
internal logical unit number and the FOR_READ
environment variable. If FOR_READ is not defined,
the code READ (*,f) iolist or READ f,iolist
reads from standard input. If FOR_READ is defined
(as a file name optionally containing a path), the
specified file would be read.

FOR_TYPE The TYPE statement does not include an explicit
logical unit number. Instead, it uses an implicit
internal logical unit number and the FOR_TYPE
environment variable. If FOR_TYPE is not defined,
the code TYPE f,iolist writes to standard
output. If FOR_TYPE is defined (as a file name
optionally containing a path), the specified file
would be written to.

FORT_BLOCKSIZE Specifies the default BLOCKSIZE value to be used
when BLOCKSIZE= is omitted on the OPEN
statement. Valid values are 0 to 2147467264. Sizes
are rounded up to the next 512-byte boundary.

This variable applies to all Fortran I/O units except
stderr, which is never buffered.

The variable is retrieved once at program
initialization, and checked for each unit open.

FORT_BUFFERCOUNT Specifies the default BUFFERCOUNT value to be
used when BUFFERCOUNT= is omitted on the OPEN
statement. Valid values are 0 to 127. If set to 0,
the default value of 1 is used.

Intel® Fortran Compiler Classic and Intel® Fortran Compiler Developer Guide and Reference 1

2325

Runtime Environment Variable Description

This variable applies to all Fortran I/O units except
stdout (units * and 6) and stderr.

The variable is retrieved once at program
initialization, and checked for each unit open.

FORT_BUFFERED Boolean.

When set to TRUE, this variable specifies that
buffered I/O should be used at runtime for input
and output on all Fortran I/O units, except stdout
(units * and 6). Output to stderr is never buffered.

Default: FALSE

FORT_BUFFERING_THRESHOLD=n Specifies dynamic buffering for unformatted
sequential READ operations:

• I/O list items with a size <=n are buffered and
are moved one at a time from the buffer to the
I/O list item.

• I/O list items with a size >n are not buffered
and are moved one at a time from the file to the
I/O list item.

FORT_CONVERTn Specifies the data format for an unformatted file
associated with a particular unit number (n), as
described in Specify the Data Format.

FORT_CONVERT.ext and FORT_CONVERT_ext Specifies the data format for unformatted files with
a particular file extension suffix (.ext), as
described in Specify the Data Format.

FORT_FMT_RECL Specifies the default record length (normally 132
bytes) for formatted files.

The variable is retrieved once at program
initialization, and checked for each unit open.

FORT_UFMT_RECL Specifies the default record length (normally 2040
bytes) for unformatted files.

The variable is retrieved once at program
initialization, and checked for each unit open.

FORTn Specifies the file name for a particular unit number
n, when a file name is not specified in the OPEN
statement or an implicit OPEN is used, and the
compiler option fpscomp with option keyword
filesfromcmd was not specified. Preconnected
files attached to units 0, 5, and 6 are associated
with system standard I/O files by default.

INTEL_CHKP_REPORT_MODE (Linux) Changes the pointer checker reporting mode at
runtime.

 1 Intel® Fortran Compiler Classic and Intel® Fortran Compiler Developer Guide and Reference

2326

Runtime Environment Variable Description

INTEL_ISA_DISABLE Causes named features (in a comma-separated
list) not to be visible on the host even if the CPUID
reports that it has them onboard.

NLSPATH (Linux) Specifies the path for the Intel® Fortran runtime
error message catalog.

TBK_ENABLE_VERBOSE_STACK_TRACE Boolean.

When set to TRUE, traceback output displays more
detailed call stack information in the event of an
error.

The default brief output is usually sufficient to
determine where an error occurred. Brief output
includes up to twenty stack frames, reported one
line per stack frame. For each frame, the image
name containing the PC, routine name, line
number, and source file are given.

The verbose output, if selected, will provide the
exception context record (in addition to the
information in brief output) if the error was a
machine exception (machine register dump), and
for each frame, the return address, frame pointer
and stack pointer and possible parameters to the
routine. This output can be quite long (limited to
16K bytes) and use of the environment variable
FOR_DIAGNOSTIC_LOG_FILE is recommended if
you want to capture the output accurately. Most
situations should not require the use of verbose
output.

Default: FALSE

See also Locating Runtime Errors and Traceback.

TBK_FULL_SRC_FILE_SPEC Boolean.

When set to TRUE, traceback output displays
complete file name information including the path.
By default, the traceback output displays only the
file name and extension in the source file field.

Default: FALSE

See also Locating Runtime Errors and Traceback.

FORT_TMPDIR
TMP
TMPDIR
TEMP

Specifies an alternate working directory where
scratch files are created.

GNU extensions (recognized by the Intel OpenMP* compatibility library)

Intel® Fortran Compiler Classic and Intel® Fortran Compiler Developer Guide and Reference 1

2327

Runtime Environment Variable Description

GOMP_CPU_AFFINITY (Linux) GNU extension recognized by the Intel OpenMP
compatibility library. Specifies a list of OS processor
IDs.

You must set this environment variable before the
first parallel region or before certain API calls
including omp_get_max_threads(),
omp_get_num_procs() and any affinity API calls.
For detailed information on this environment
variable, see Thread Affinity Interface.

Default: Affinity is disabled

GOMP_STACKSIZE (Linux) GNU extension recognized by the Intel OpenMP
compatibility library. Same as
OMP_STACKSIZE.KMP_STACKSIZE overrides
GOMP_STACKSIZE, which overrides
OMP_STACKSIZE.
Default: See the description for OMP_STACKSIZE.

OpenMP Environment Variables (OMP_) and Extensions (KMP_)

OMP_CANCELLATION Activates cancellation of the innermost enclosing
region of the type specified. If set to TRUE, the
effects of the cancel construct and of cancellation
points are enabled and cancellation is activated. If
set to FALSE, cancellation is disabled and the
cancel construct and cancellation points are
effectively ignored.

NOTE
Internal barrier code will work differently depending
on whether the cancellation is enabled. Barrier code
should repeatedly check the global flag to figure out if
the cancellation had been triggered. If a thread
observes the cancellation it should leave the barrier
prematurely with the return value 1 (may wake up
other threads). Otherwise, it should leave the barrier
with the return value 0.

Enables (TRUE) or disables (FALSE) cancellation of
the innermost enclosing region of the type
specified.

Default: FALSE

Example: OMP_CANCELLATION=TRUE

OMP_DISPLAY_ENV Enables (TRUE) or disables (FALSE) the printing to
stderr of the OpenMP version number and the
values associated with the OpenMP environment
variable.

Possible values are: TRUE, FALSE, or VERBOSE.

 1 Intel® Fortran Compiler Classic and Intel® Fortran Compiler Developer Guide and Reference

2328

Runtime Environment Variable Description

Default: FALSE

Example: OMP_DISPLAY_ENV=TRUE

OMP_DEFAULT_DEVICE Sets the device that will be used in a target region.
The OpenMP routine omp_set_default_device or
a device clause in a target directive can override
this variable.

If no device with the specified device number
exists, the code is executed on the host. If this
environment variable is not set, device number 0 is
used.

OMP_DYNAMIC Enables (TRUE) or disables (FALSE) the dynamic
adjustment of the number of threads.

Default:

• TRUE: When the environment variable
TCM_ENABLE=1 and the Thread Composability
Manager library is available.

• FALSE: In all other cases.

Example: OMP_DYNAMIC=TRUE

OMP_MAX_ACTIVE_LEVELS The maximum number of levels of parallel nesting
for the program.

Possible values: Non-negative integer.

Default: 1

OMP_NESTED Deprecated; use OMP_MAX_ACTIVE_LEVELS
instead.

OMP_NUM_THREADS Sets the maximum number of threads to use for
OpenMP parallel regions if no other value is
specified in the application.

The value can be a single integer, in which case it
specifies the number of threads for all parallel
regions. The value can also be a comma-separated
list of integers, in which case each integer specifies
the number of threads for a parallel region at a
nesting level.

The first position in the list represents the outer-
most parallel nesting level, the second position
represents the next-inner parallel nesting level, and
so on. At any level, the integer can be left out of
the list. If any level of nesting does not have a
value, it should be comma separated. If the first
integer in a list is left out, it implies the normal
default value for threads is used at the outer-most
level. If the integer is left out of any other level,
the number of threads for that level is inherited
from the previous level.

Intel® Fortran Compiler Classic and Intel® Fortran Compiler Developer Guide and Reference 1

2329

Runtime Environment Variable Description

This environment variable applies to the options
[q or Q]openmp and [Q]parallel.

Default: The number of processors visible to the
operating system on which the program is
executed.

Syntax: OMP_NUM_THREADS=value[,value]*

OMP_PLACES Specifies an explicit ordered list of places, either as
an abstract name describing a set of places or as
an explicit list of places described by nonnegative
numbers. An exclusion operator “!” can also be
used to exclude the number or place immediately
following the operator.

For explicit lists, the meaning of the numbers and
how the numbering is done for a list of nonnegative
numbers are implementation defined. Generally,
the numbers represent the smallest unit of
execution exposed by the execution environment,
typically a hardware thread.

Intervals can be specified using the <lower-
bound> : <length> : <stride> notation to
represent the following list of numbers:

"<lower-bound>, <lower-bound> +
<stride>, ...,
<lower-bound> +(<length>-1)*<stride>."
When <stride> is omitted, a unit stride is
assumed. Intervals can specify numbers within a
place as well as sequences of places.

EXPLICIT LIST EXAMPLE
setenv OMP_PLACES "{0,1,2,3},{4,5,6,7},
{8,9,10,11},{12,13,14,15}"
setenv OMP_PLACES "{0:4},{4:4},{8:4},{12:4}"
setenv OMP_PLACES "{0:4}:4:4"
The abstract names listed below should be
understood by the execution and runtime
environment:

• threads: Each place corresponds to a single
hardware thread on the target machine.

• cores: Each place corresponds to a single core
(having one or more hardware threads) on the
target machine.

• ll_caches: Each place corresponds to a set of
cores that share the last level cache on the
device.

 1 Intel® Fortran Compiler Classic and Intel® Fortran Compiler Developer Guide and Reference

2330

Runtime Environment Variable Description

• numa_domains: Each place corresponds to a set
of cores for which their closest memory on the
device is the same memory and at a similar
distance from the cores.

• sockets: Each place corresponds to a single
socket (consisting of one or more cores) on the
target machine.

Depending on the runtime environment and
machine topology, certain topology layers may also
be available from the following abstract names:

• dice: Each place corresponds to a single die
(consisting of one or more cores) on the target
machine.

• modules: Each place corresponds to a single
module (consisting of one or more cores) on the
target machine.

• tiles: Each place corresponds to a single tile
(consisting of one or more cores) on the target
machine.

• l1_caches: Each place corresponds to a single
L1 cache (consisting of one or more cores) on
the target machine.

• l2_caches: Each place corresponds to a single
L2 cache (consisting of one or more cores) on
the target machine.

• l3_caches:Each place corresponds to a single
L3 cache (consisting of one or more cores) on
the target machine.

If Intel® Hybrid Technology is available in the
machine topology, certain topology layers with
attributes may also be available from the following
abstract names:

• cores:<attribute>: Where <attribute> can
be one of the following:

• Core type: Either intel_atom or
intel_core

• Core efficiency: Specified as effnum where
num is a number from 0 to the number of
core efficiencies detected in the machine
topology minus one. Examples:

• OMP_PLACES=cores:intel_core
• OMP_PLACES=cores:eff1

When requesting fewer places or more resources
than available on the system, the determination of
which resources of type abstract_name are to be
included in the place list is implementation-defined.
The precise definitions of the abstract names are
implementation defined.

Intel® Fortran Compiler Classic and Intel® Fortran Compiler Developer Guide and Reference 1

2331

Runtime Environment Variable Description

An implementation may also add abstract names as
appropriate for the target platform. The abstract
name may be appended by a positive number in
parentheses to denote the length of the place list
to be created, that is abstract_name(num-
places).

ABSTRACT NAMES EXAMPLE
 setenv OMP_PLACES threads
 setenv OMP_PLACES threads(4)

NOTE
If any numerical values cannot be mapped to a
processor on the target platform the behavior is
implementation-defined. The behavior is also
implementation-defined when the OMP_PLACES
environment variable is defined using an abstract
name.

OMP_PROC_BIND (Windows, Linux) Sets the thread affinity policy to be used for
parallel regions at the corresponding nested level.
Enables (TRUE) or disables (FALSE) the binding of
threads to processor contexts. If enabled, this is
the same as specifying KMP_AFFINITY=scatter. If
disabled, this is the same as specifying
KMP_AFFINITY=none.

Acceptable values: TRUE, FALSE, or a comma
separated list, each element of which is one of the
following values: PRIMARY, MASTER (deprecated),
CLOSE, SPREAD.

Default: FALSE
If set to FALSE, the execution environment may
move OpenMP threads between OpenMP places,
thread affinity is disabled, and proc_bind clauses
on parallel constructs are ignored. Otherwise, the
execution environment should not move OpenMP
threads between OpenMP places, thread affinity is
enabled, and the initial thread is bound to the first
place in the OpenMP place list.

If set to PRIMARY, all threads are bound to the
same place as the primary thread. If set to CLOSE,
threads are bound to successive places, close to
where the primary thread is bound. If set to
SPREAD, the primary thread's partition is
subdivided and threads are bound to single place
successive sub-partitions.

 1 Intel® Fortran Compiler Classic and Intel® Fortran Compiler Developer Guide and Reference

2332

Runtime Environment Variable Description

NOTE
KMP_AFFINITY takes precedence over
GOMP_CPU_AFFINITY and OMP_PROC_BIND.
GOMP_CPU_AFFINITY takes precedence over
OMP_PROC_BIND.

OMP_SCHEDULE Sets the runtime schedule type and an optional
chunk size.

Default: static, no chunk size specified

Example syntax:
OMP_SCHEDULE="[modifier:]kind[,chunk_size
]" where

• modifier is one of monotonic or
nonmonotonic

• kind is one of static, dynamic, guided, or
auto

• chunk_size is a positive integer

OMP_STACKSIZE Sets the number of bytes to allocate for each
OpenMP thread to use as the private stack for the
thread. Recommended size is 16M.

Use the optional suffixes to specify byte units: B
(bytes), K (Kilobytes), M (Megabytes), G
(Gigabytes), or T (Terabytes) to specify the units.
If you specify a value without a suffix, the byte unit
is assumed to be K (Kilobytes).

This variable does not affect the native operating
system threads created by the user program, or
the thread executing the sequential part of an
OpenMP program or parallel programs created
using option [Q]parallel.

The kmp_{set,get}_stacksize_s() routines set/
retrieve the value. The kmp_set_stacksize_s()
routine must be called from sequential part, before
first parallel region is created. Otherwise, calling
kmp_set_stacksize_s() has no effect.

Default (IA-32 architecture): 2M

Default (Intel® 64 architecture): 4M

Related environment variables:
KMP_STACKSIZE (overrides OMP_STACKSIZE).

Syntax: OMP_STACKSIZE=value

OMP_THREAD_LIMIT Limits the number of simultaneously-executing
threads in an OpenMP program.

Intel® Fortran Compiler Classic and Intel® Fortran Compiler Developer Guide and Reference 1

2333

Runtime Environment Variable Description

If this limit is reached and another native operating
system thread encounters OpenMP API calls or
constructs, the program can abort with an error
message. If this limit is reached when an OpenMP
parallel region begins, a one-time warning message
might be generated indicating that the number of
threads in the team was reduced, but the program
will continue.

This environment variable is only used for
programs compiled with the following options:
[q or Q]openmp and [Q]parallel.

The omp_get_thread_limit() routine returns the
value of the limit.

Default: No enforced limit

Related environment variable:
KMP_ALL_THREADS (overrides
OMP_THREAD_LIMIT).

Example syntax: OMP_THREAD_LIMIT=value

OMP_WAIT_POLICY Decides whether threads spin (active) or yield
(passive) while they are waiting.

OMP_WAIT_POLICY=ACTIVE is an alias for
KMP_LIBRARY=turnaround, and
OMP_WAIT_POLICY=PASSIVE is an alias for
KMP_LIBRARY=throughput.

Default: Passive

Syntax: OMP_WAIT_POLICY=value

OMP_DISPLAY_AFFINITY Instructs the runtime to display formatted affinity
information for all OpenMP threads in the parallel
region upon entering the first parallel region and
when any change occurs in the information
accessible by the format specifiers listed in the
OMP_AFFINITY_FORMAT entry.

Possible values: TRUE or FALSE
Default: FALSE

OMP_AFFINITY_FORMAT Defines the format when displaying OpenMP thread
affinity information. Possible values are any string
with the following format field available:

• %t or %{team_num}: Value returned by
omp_get_team_num()

• %T or %{num_teams}: Value returned by
omp_get_num_teams()

• %L or %{nesting_level}: Value returned by
omp_get_level()

 1 Intel® Fortran Compiler Classic and Intel® Fortran Compiler Developer Guide and Reference

2334

Runtime Environment Variable Description

• %n or %{thread_num}: Value returned by
omp_get_thread_num()

• %a or %{ancestor_tnum}: Value returned by
omp_get_ancestor_thread_num(omp_get_le
vel() – 1)

• %H or %{host}: Name of host device
• %P or %{process_id}: Process ID
• %i or %{native_thread_id}: Native thread ID

on the platform
• %A or %{thread_affinity}: List of processor

ID on which a thread may execute

Default: 'OMP: pid %P tid %i thread %n
bound to OS proc set {%A}'

OMP_MAX_TASK_PRIORITY Controls the use of task priorities by setting the
initial value.

Possible values: Non-negative integer.

Default: 0

OMP_TOOL Controls whether the OpenMP runtime will try to
register a first party tool that uses OMPT interface.

Possible values: ENABLED or DISABLED.

Default: ENABLED

NOTE Only the host OpenMP runtime is supported.

OMP_TOOL_LIBRARIES Sets a list of first-party tool locations that use the
OMPT interface. The list enumerates names of
dynamically-loadable libraries with OS-specific path
separator.

Default: Empty

NOTE Only the host OpenMP runtime is supported.

OMP_TOOL_VERBOSE_INIT Controls whether the OpenMP runtime will
verbosely log the registration of a tool that uses
the OMPT interface.

Possible values:

• DISABLED: Do not log the registration.
• STDOUT: Log the registration to stdout.
• STDERR: Log the registration to stderr.
• File_Name: Log the registration to the location

specified by File_Name.

Default: DISABLED

Intel® Fortran Compiler Classic and Intel® Fortran Compiler Developer Guide and Reference 1

2335

Runtime Environment Variable Description

NOTE Only the host OpenMP runtime is supported.

OMP_DEBUG Controls whether the OpenMP runtime collects
information that an OMPD library may need to
support a tool.

Possible values: ENABLED or DISABLED.

Default: DISABLED

NOTE Only the host OpenMP runtime is supported.

OMP_ALLOCATOR Specifies the default allocator for allocation calls,
directives, and clauses that do not specify an
allocator.

Default: omp_default_mem_alloc
Syntax: <PredefinedMemAllocator> |
<PredefinedMemSpace> |
<PredefinedMemSpace>:<Traits>
Currently supported values for
<PredefinedMemAllocator> and
<PredefinedMemSpace> :

• omp_default_mem_alloc and
omp_default_mem_space

Additional values are supported if libmemkind is
available and there is system support for it:

• omp_high_bw_mem_alloc and
omp_high_bw_mem_space

• omp_large_cap_mem_alloc and
omp_large_cap_mem_space

Refer to the OpenMP specification for more
information.

OMP_NUM_TEAMS Sets the maximum number of teams created by a
teams construct by setting nteams-var ICV.

Possible values: Positive integer.

Default: 1

OMP_TEAMS_THREAD_LIMIT Sets the maximum number of OpenMP threads to
use in each team created by a teams construct.

Possible values: Positive integer.

Default: <NumberOfProcessors> / <nteams-var
ICV>

 1 Intel® Fortran Compiler Classic and Intel® Fortran Compiler Developer Guide and Reference

2336

https://www.openmp.org/spec-html/5.1/openmp.html

Runtime Environment Variable Description

KMP_AFFINITY (Linux, Windows) Enables runtime library to bind threads to physical
processing units.

You must set this environment variable before the
first parallel region, or certain API calls including
omp_get_max_threads(), omp_get_num_procs()
and any affinity API calls. For detailed information
on this environment variable, see Thread Affinity
Interface.

Default:
noverbose,warnings,noreset,respect,granularity=co
re,none

Default (Windows with multiple processor groups):
noverbose,warnings,noreset,norespect,granularity=
group,compact,0,0

NOTE On Windows with multiple processor groups,
the norespect affinity modifier is assumed when the
process affinity mask equals a single processor group
(which is default on Windows). Otherwise, the respect
affinity modifier is used.

KMP_HIDDEN_HELPER_AFFINITY (Linux only) Enables runtime library to bind hidden helper
threads to physical processing units.

You must set this environment variable before the
first hidden helper task, parallel region, or certain
API calls including omp_get_max_threads() ,
omp_get_num_procs() and any affinity API calls.
For detailed information on this environment
variable, see Thread Affinity Interface.

The syntax of this environment variable is
equivalent to KMP_AFFINITY except that reset/
noreset and respect/norespect modifiers are not
available for this environment variable.

Default:
noverbose,warnings,granularity=core,none

KMP_ALL_THREADS Limits the number of simultaneously-executing
threads in an OpenMP program. If this limit is
reached and another native operating system
thread encounters OpenMP API calls or constructs,
then the program may abort with an error
message. If this limit is reached at the time an
OpenMP parallel region begins, a one-time warning
message may be generated indicating that the
number of threads in the team was reduced, but
the program will continue execution.

Intel® Fortran Compiler Classic and Intel® Fortran Compiler Developer Guide and Reference 1

2337

Runtime Environment Variable Description

This environment variable is only used for
programs compiled with the [q or Q]openmp
compiler option.

Default: No enforced limit.

KMP_BLOCKTIME Sets the time that a thread should busy-wait after
completing execution of a parallel region before
going to sleep.

Use the optional character suffixes: us
(microseconds) or ms (milliseconds) to specify the
units.

When no character suffix is specified, milliseconds
are assumed.

Specify infinite for an unlimited wait time.

Default:

• When Intel® Hybrid Technology is detected, 0
milliseconds

• In all other cases, 200 milliseconds

Related Environment Variable: KMP_LIBRARY
environment variable.

KMP_CPUINFO_FILE Specifies an alternate file name for a file containing
the machine topology description. The file must be
in the same format as /proc/cpuinfo.

Default: None

KMP_DETERMINISTIC_REDUCTION Enables (TRUE) or disables (FALSE) the use of a
specific ordering of the reduction operations for
implementing the reduction clause for an OpenMP
parallel region. This has the effect that, for a given
number of threads, in a given parallel region, for a
given data set and reduction operation, a floating
point reduction done for an OpenMP reduction
clause has a consistent floating point result from
run to run, since round-off errors are identical.

NOTE When compiling, you must set the following
flag to ensure correct behavior:

• -fp-model precise (Linux)
• -fp:precise (Windows)

Default: FALSE

KMP_DYNAMIC_MODE Selects the method used to determine the number
of threads to use for a parallel region when
OMP_DYNAMIC=TRUE. Possible values:

 1 Intel® Fortran Compiler Classic and Intel® Fortran Compiler Developer Guide and Reference

2338

Runtime Environment Variable Description

• tcm: Requests threads from the Thread
Composability Manager.

• load_balance: Tries to avoid using more
threads than available execution units on the
machine.

• thread_limit: Tries to avoid using more
threads than total execution units on the
machine.

Default (IA-32 architecture): load_balance
(on all supported OSes)

Default (Intel® 64 architecture):

• When the Thread Composability Manager library
is available, use tcm.

• In all other cases, use thread_limit.

KMP_HOT_TEAMS_MAX_LEVEL Sets the maximum nested level to which teams of
threads will be hot.

NOTE
A hot team is a team of threads optimized for faster
reuse by subsequent parallel regions. In a hot team,
threads are kept ready for execution of the next
parallel region, in contrast to the cold team, which is
freed after each parallel region, with its threads going
into a common pool of threads.

For values of 2 and above, nested parallelism
should be enabled.

Default: 1

KMP_HOT_TEAMS_MODE Specifies the runtime behavior when the number of
threads in a hot team is reduced.

Possible values:

• 0: Extra threads are freed and put into a
common pool of threads.

• 1: Extra threads are kept in the team in
reserve, for faster reuse in subsequent parallel
regions.

Default: 0

KMP_HW_SUBSET Specifies the subset of available hardware
resources for the hardware topology hierarchy.

The subset is specified in terms of number of units
per upper layer unit starting from top layer
downwards. For example, it can specify the number
of sockets (top layer units), cores per socket, and
the threads per core, to use with an OpenMP

Intel® Fortran Compiler Classic and Intel® Fortran Compiler Developer Guide and Reference 1

2339

Runtime Environment Variable Description

application. It is a convenient alternative to writing
complicated explicit affinity settings or a limiting
process affinity mask.

You can also specify an offset value to set which
resources to use. When available, you can specify
attributes to select different subsets of resources.

An extended syntax is available when
KMP_TOPOLOGY_METHOD=hwloc. Depending on
what resources are detected, you may be able to
specify additional resources, such as NUMA nodes
and groups of hardware resources that share
certain cache levels.

Basic syntax:

[:][num_units]ID[@offset][:attribute] [,
[num_units]ID[@offset][:attribute]...]
where

• An optional colon (:) can be specified at the
beginning of the syntax to specify an explicit
hardware subset. The default is an implicit
hardware subset.

• num_units is either a positive integer, which
requests an exact number of resources, or an
asterisk (*), which means using all available
resources at that layer (for example, using all
cores per socket). If num_units is not specified,
the asterisk (*) semantics are assumed.

• ID is a supported ID:

S - socket num_units specifies the
requested number of sockets.

D - die num_units specifies the
requested number of dies per
socket.

C - core num_units specifies the
requested number of cores per
die - if any - otherwise, per
socket.

T - thread num_units specifies the
requested number of HW
threads per core.

Supported unit IDs are not case-sensitive.
• offset is the number of units to skip

(optional).
• attribute is an attribute differentiating

resources at a particular layer (optional).

 1 Intel® Fortran Compiler Classic and Intel® Fortran Compiler Developer Guide and Reference

2340

Runtime Environment Variable Description

This is only available for the core layer on
machines with Intel® Hybrid Technology. The
attributes available to users are:

• Core type: Either intel_atom or intel_core
• Core efficiency: Specified as effnum where

num is a number from 0 to the number of
core efficiencies detected in the machine
topology minus one. For example: eff0. The
greater the efficiency number, the more
performant the core. There may be more
core efficiencies than core types, which can
be viewed by setting
KMP_AFFINITY=verbose.

NOTE The hardware cache can be specified as a unit,
for example L2 for L2 cache, or LL for last level cache.

Extended syntax when
KMP_TOPOLOGY_METHOD=hwloc:

Additional IDs can be specified if detected. For
example:

N - numa num_units specifies the requested
number of NUMA nodes per upper
layer unit, e.g. per socket.

TI - tile num_units specifies the requested
number of tiles to use per upper layer
unit, e.g. per NUMA node.

When any numa or tile units are specified in
KMP_HW_SUBSET, the KMP_TOPOLOGY_METHOD will
be automatically set to hwloc, so there is no need
to set it explicitly.

For an explicit hardware subset, if one or more
topology layers detected by the runtime are
omitted from the subset, then those topology
layers are ignored. Only explicitly specified
topology layers are used in the subset.

For an implicit hardware subset, it is implied
that the socket, core, and thread topology types
should be included in the subset. Other topology
layers are not implicitly included and are ignored if
they are not specified in the subset. Because the
socket, core and thread topology types are always
included in implicit hardware subsets, when they
are omitted, it is assumed that all available
resources of that type should be used. Implicit
hardware subsets are the default.

Intel® Fortran Compiler Classic and Intel® Fortran Compiler Developer Guide and Reference 1

2341

Runtime Environment Variable Description

The runtime library prints a warning, and the
setting of KMP_HW_SUBSET is ignored if:

• A resource is specified, but detection of that
resource is not supported by the chosen
topology detection method and/or

• A resource is specified twice. An exception to
this condition is if attributes differentiate the
resource.

• Attributes are used when unavailable, not
detected in the machine topology, or conflict
with each other.

This variable does not work if the OpenMP affinity
is set to disabled.

Default: If omitted, the default value is to use all
the available hardware resources.

Implicit Hardware Subset Examples:

• 2s,4c,2t: Use the first 2 sockets (s0 and s1),
the first 4 cores on each socket (c0 - c3), and
the first 2 threads per core.

• 2s@2,4c@8,2t: Skip the first 2 sockets (s0 and
s1) and use the next 2 sockets (s2-s3), skip the
first 8 cores (c0-c7) and use the next 4 cores on
each socket (c8-c11), and use the first 2
threads per core.

• 5C@1,3T: Use all available sockets, skip the first
core and use the next 5 cores, and use the first
3 threads per core.

• 1T: Use all cores on all sockets, 1 thread per
core.

• 1s, 1d, 1n, 1c, 1t: Use 1 socket, 1 die per
socket, 1 NUMA node per die, 1 core per NUMA
mode, 1 thread per core - use a single hardware
thread as a result.

• 4c:intel_atom,5c:intel_core: Use all
available sockets and use the first 4 Intel Atom®
processor cores and the first 5 Intel® Core™
processor cores per socket.

• 2c:eff0,3c:eff1: Use all available sockets
and use the first 2 cores with efficiency 0 and
the first 3 cores with efficiency 1 per socket.

Explicit Hardware Subset Examples:

• :2s,6t Use exactly the first two sockets and 6
threads per socket.

• :1t@7 Skip the first 7 threads (t0-t6) and use
exactly one thread (t7).

• :5c,1t Use exactly the first 5 cores (c0-c4) and
the first thread on each core.

 1 Intel® Fortran Compiler Classic and Intel® Fortran Compiler Developer Guide and Reference

2342

Runtime Environment Variable Description

To see the result of the setting, you can specify the
verbose modifier in the KMP_AFFINITY
environment variable.

The OpenMP runtime library will output to stderr
stream the information about discovered HW
topology before and after the KMP_HW_SUBSET
setting was applied.

KMP_HW_SUBSET=1N,1L2,1L1,1T outputs various
verbose information to stderr, including the
following lines about discovered HW topology
before and after KMP_HW_SUBSET was applied:

• Info #191: KMP_AFFINITY: 1 socket x 4 NUMA
domains/socket x 8 tiles/NUMA domain x 2
cores/tile x 4 threads/core. (64 total cores)

• Info #191: KMP_HW_SUBSET 1 socket x 1 NUMA
domain/socket x 1 tile/NUMA domain x 1 core/
tile x 1 thread/core (1 total cores)

KMP_INHERIT_FP_CONTROL Enables (TRUE) or disables (FALSE) the copying of
the floating-point control settings of the primary
thread to the floating-point control settings of the
OpenMP worker threads at the start of each parallel
region.

Default: TRUE

KMP_LIBRARY Selects the OpenMP runtime library execution
mode. The values for this variable are serial,
turnaround, or throughput.

Default: throughput

KMP_PLACE_THREADS Deprecated; use KMP_HW_SUBSET instead.

KMP_SETTINGS Enables (TRUE) or disables (FALSE) the printing of
OpenMP runtime library environment variables
during program execution. Two lists of variables are
printed: user-defined environment variables
settings and effective values of variables used by
OpenMP runtime library.

Default: FALSE

KMP_STACKSIZE Sets the number of bytes to allocate for each
OpenMP thread to use as its private stack.

Recommended size is 16m.

Use the optional suffixes to specify byte units: B
(bytes), K (Kilobytes), M (Megabytes), G
(Gigabytes), or T (Terabytes) to specify the units.
If you specify a value without a suffix, the byte unit
is assumed to be K (Kilobytes).

Intel® Fortran Compiler Classic and Intel® Fortran Compiler Developer Guide and Reference 1

2343

Runtime Environment Variable Description

This variable does not affect the native operating
system threads created by the user program nor
the thread executing the sequential part of an
OpenMP program or parallel programs created
using the option [Q]parallel.

KMP_STACKSIZE overrides GOMP_STACKSIZE,
which overrides OMP_STACKSIZE.
Default (IA-32 architecture): 2m

Default (Intel® 64 architecture): 4m

KMP_TOPOLOGY_METHOD Forces OpenMP to use a particular machine
topology modeling method.

Possible values are:

• all: Lets OpenMP choose which topology
method is most appropriate based on the
platform and possibly other environment
variable settings.

• cpuid_leaf31: Decodes the APIC identifiers as
specified by leaf 31 of the cpuid instruction.

• cpuid_leaf11: Decodes the APIC identifiers as
specified by leaf 11 of the cpuid instruction.

• cpuid_leaf4: Decodes the APIC identifiers as
specified in leaf 4 of the cpuid instruction.

• cpuinfo: If KMP_CPUINFO_FILE is not
specified, forces OpenMP to parse /proc/
cpuinfo to determine the topology (Linux
only). If KMP_CPUINFO_FILE is specified as
described above, OpenMP uses it.

• group (Windows only): Models the machine as
a 2-level map, with level 0 specifying the
different processors in a group, and level 1
specifying the different groups.

NOTE
Support for group is now deprecated and will be
removed in a future release. Use all instead.

• flat: Models the machine as a flat (linear) list
of processors.

• hwloc: Models the machine as the Portable
Hardware Locality* (hwloc) library does. This
model is the most detailed and includes, but is
not limited to: numa nodes, packages, cores,
hardware threads, caches, and Windows
processor groups.

Default: all

 1 Intel® Fortran Compiler Classic and Intel® Fortran Compiler Developer Guide and Reference

2344

Runtime Environment Variable Description

KMP_USER_LEVEL_MWAIT Enables (TRUE) or disables (FALSE) the use of
user-level mwait as alternative to putting waiting
threads to sleep, if available, either from ring3 or
WAITPKG.

Default: FALSE

KMP_VERSION Enables (TRUE) or disables (FALSE) the printing of
OpenMP runtime library version information during
program execution.

Default: FALSE

KMP_WARNINGS Enables (TRUE) or disables (FALSE) displaying
warnings from the OpenMP runtime library during
program execution.

Default: TRUE
OpenMP Offload Environment Variables (OMP_, LIBOMPTARGET)

This feature is only available for ifx.

OMP_TARGET_OFFLOAD Controls the program behavior when offloading a
target region.

Possible values:

• MANDATORY: Program execution is terminated if
a device construct or device memory routine is
encountered and the device is not available or is
not supported.

• DISABLED: Disables target offloading to devices
and execution occurs on the host.

• DEFAULT: Target offloading is enabled if the
device is available and supported.

Default: DEFAULT

LIBOMPTARGET_DEBUG Controls whether debugging information will be
displayed from the offload runtime.

Possible values:

• 0: Disabled.
• 1: Displays basic debug information from the

plugin actions such as device detection, kernel
compilation, memory copy operations, kernel
invocations, and other plugin-dependent
actions.

• 2: Displays which GPU runtime API functions are
invoked with which arguments and parameters
in addition to the information displayed with
value 1.

Default: 0

LIBOMPTARGET_INFO Controls whether basic offloading information will
be displayed from the offload runtime.

Intel® Fortran Compiler Classic and Intel® Fortran Compiler Developer Guide and Reference 1

2345

Runtime Environment Variable Description

Possible values:

• 0: Disabled.
• 1: Prints all data arguments upon entering an

OpenMP device kernel.
• 2: Indicates when a mapped address already

exists in the device mapping table.
• 4: Dump the contents of the device pointer map

if target offloading fails.
• 8: Indicates when an entry is changed in the

device mapping table.
• 32: Indicates when data is copied to and from

the device.

Default: 0

LIBOMPTARGET_PLUGIN Specifies which offload plugin is used when
offloading a target region.

Possible values:

• LEVEL_ZERO | LEVEL0 | level_zero | level0:
Uses Intel® oneAPI Level Zero (Level Zero)
offload plugin.

• OPENCL | opencl: Uses OpenCL offload plugin.
• X86_64 | x86_64: Uses X86_64 plugin.

Default: LEVEL_ZERO

LIBOMPTARGET_DEVICETYPE Selects device type to which a target region is
offloaded.

Possible values:

• GPU | gpu: GPU device is used.
• CPU | cpu: CPU device is used.

Offload plugin support for device type:

• Level Zero offload plugin only supports GPU
type.

• OpenCL offload plugin supports both GPU and
CPU types.

• X86_64 offload plugin ignores this variable.

Default: GPU

LIBOMPTARGET_PLUGIN_PROFILE Enables basic plugin profiling and displays the
result when program finishes.

Default: Disabled
Syntax:

<Value>[,usec], where <Value>=1 | T | t
The unit of reported time is microsecond if “,usec”
is appended; otherwise, millisecond.

 1 Intel® Fortran Compiler Classic and Intel® Fortran Compiler Developer Guide and Reference

2346

Runtime Environment Variable Description

LIBOMPTARGET_DYNAMIC_MEMORY_SIZE Sets the size of preallocated memory in MB to
service in-kernel malloc calls on the device.

Possible values: Non-negative integer.

Default: 1
OpenMP Offload Environment Variables for Level Zero Offload Plugin

This feature is only available for ifx.

LIBOMPTARGET_LEVEL_ZERO_COMPILATION_OPTIO
NS

Passes extra build options when building native
target program binaries.

Possible values: Valid Level Zero build options.

LIBOMPTARGET_LEVEL0_COMPILATION_OPTIONS Deprecated. Use
LIBOMPTARGET_LEVEL_ZERO_COMPILATION_OPTIO
NS instead.

LIBOMPTARGET_DEVICES Controls how subdevices or sub-subdevices are
exposed to users if device supports subdevices.

Possible values:

• DEVICE | device: Only top-level devices are
reported as OpenMP devices and subdevice
clause is supported.

• SUBDEVICE | subdevice: Only first-level
subdevices are reported as OpenMP devices and
the program aborts when the subdevice clause
is used.

• SUBSUBDEVICE | subsubdevice: Only second-
level subdevices are reported as OpenMP
devices and the program aborts when the
subdevice clause is used.

Default: DEVICE

LIBOMPTARGET_LEVEL_ZERO_MEMORY_POOL Controls memory pool configuration.

Possible values:

0: Disables using memory pool.

-or-

<PoolInfoList>=<PoolInfo>[,<PoolInfoList>
]
<PoolInfo>=<MemType>[,<AllocMax>[,<Capaci
ty>[,<PoolSize>]]]
where:

<MemType>=all | device | host | shared
<AllocMax> is a positive integer or empty

<Capacity> is a positive integer or empty

<PoolSize> is a positive integer or empty

Intel® Fortran Compiler Classic and Intel® Fortran Compiler Developer Guide and Reference 1

2347

https://spec.oneapi.io/level-zero/latest/core/api.html#_CPPv416ze_module_desc_t

Runtime Environment Variable Description

<PoolInfoList> controls how reusable memory
pool is configured. Pool is a list of memory blocks
that can serve at least <Capacity> allocations of
up to <AllocMax> size from a single block, with
total size not exceeding <PoolSize>.

When <PoolInfoList> only contains a subset of
{device, host, shared} configurations, the default
configurations are used for the unspecified memory
types, and memory pool for a specific memory type
can be disabled by specifying 0 for <AllocMax> of
the memory type.

Examples:

• all,2,8,1024: Enables memory pool for all
memory types which can allocate up to eight
2MB blocks from a single block allocated from
Level Zero with 1GB total pool size allowed.

• device,1,4,512: Enables memory pool for
device memory type which can allocate up to
four 1MB blocks from a single block allocated
from Level Zero with 512MB total pool size
allowed. The default configuration controls
allocation from other memory types.

Default: Equivalent to
device,1,4,256,host,1,4,256,shared,8,4,25
6

LIBOMPTARGET_LEVEL0_MEMORY_POOL Deprecated.

Use LIBOMPTARGET_LEVEL_ZERO_MEMORY_POOL
instead.

LIBOMPTARGET_LEVEL_ZERO_USE_COPY_ENGINE Controls how to use copy engines for data transfer
if the device supports them.

Possible values:

• 0 | F | f: Disables use of copy engines.
• main: Enables only main copy engines if the

device supports it.
• link: Enables only link copy engines if the

device supports it.
• all: Enables all copy engines if the device

supports it.

Default: all

LIBOMPTARGET_LEVEL0_USE_COPY_ENGINE Deprecated. Use
LIBOMPTARGET_LEVEL_ZERO_USE_COPY_ENGINE
instead.

LIBOMPTARGET_LEVEL_ZERO_DEFAULT_TARGET_ME
M

Selects memory type returned by the
omp_target_alloc routine.

 1 Intel® Fortran Compiler Classic and Intel® Fortran Compiler Developer Guide and Reference

2348

Runtime Environment Variable Description

Possible values:

• DEVICE | device: Returned memory type is
device type. Device owns the memory and
data movement is explicit.

• SHARED | shared: Returned memory type is
shared type. Ownership of the memory is
shared between host and device, and data
movement is implicit.

• HOST | host: Returned memory type is host
type. Host owns the memory and data
movement is implicit.

Default: DEVICE

LIBOMPTARGET_LEVEL0_DEFAULT_TARGET_MEM Deprecated. Use
LIBOMPTARGET_LEVEL_ZERO_DEFAULT_TARGET_ME
M instead.

LIBOMPTARGET_LEVEL_ZERO_STAGING_BUFFER_SI
ZE

Sets the staging buffer size in KB. Staging buffer is
used in copy operations between host and device
as a temporary storage for a two-step copy
operation. The buffer is only used for discrete
devices.

Possible values: Non-negative integers where 0
disables use of staging buffer.

Default: 16

LIBOMPTARGET_LEVEL0_STAGING_BUFFER_SIZE Deprecated.

Use
LIBOMPTARGET_LEVEL_ZERO_STAGING_BUFFER_SI
ZE instead.

LIBOMPTARGET_LEVEL_ZERO_USE_IMMEDIATE_COM
MAND_LIST

Enables or disables using immediate command list
for computation and/or memory copy operations.

Possible values:

• 0 | F | f: Disable.
• compute: Enable only for computation.
• copy: Enable only for copy operation.
• all: Enable for computation and copy

operation.

Default: all for XeHPC devices; otherwise, 0

LIBOMPTARGET_LEVEL_ZERO_COMMAND_MODE Determines how each command in a target region
is executed when immediate command lists are
fully enabled by setting
LIBOMPTARGET_LEVEL_ZERO_USE_IMMEDIATE_COM
MAND_LIST=all.

This variable has no effect on integrated devices.

Possible values:

Intel® Fortran Compiler Classic and Intel® Fortran Compiler Developer Guide and Reference 1

2349

Runtime Environment Variable Description

• sync: Host waits for completion of the current
submitted command.

• async: Host does not wait for completion of the
command and synchronization occurs later
when it is required.

• async_ordered: Same as async, but command
execution is ordered.

Default: async
OpenMP Offload Environment Variables for OpenCL Offload Plugin

This feature is only available for ifx.

LIBOMPTARGET_OPENCL_COMPILATION_OPTIONS Passes extra compilation options when compiling
target programs from SPIRV target images.

Possible values: Valid OpenCL compilation options.

LIBOMPTARGET_OPENCL_LINKING_OPTIONS Passes extra linking options when linking target
programs.

Possible values: Valid OpenCL linking options.

OpenMP Runtime Variables

ONEAPI_DEVICE_SELECTOR See ONEAPI_DEVICE_SELECTOR

This device selection environment variable can be
used to limit the choice of devices available when
the SYCL-using application is run. Useful for
limiting devices to a certain type (like GPUs or
accelerators) or backends (like Level Zero or
OpenCL). This device selection mechanism is
replacing SYCL_DEVICE_FILTER. The
ONEAPI_DEVICE_SELECTOR syntax is shared with
OpenMP and also allows sub-devices to be chosen.

OpenCL ICD Loader Environment Variables for OpenCL Backend

OCL_ICD_ENABLE_TRACE Enables (TRUE) or disables (FALSE) the trace
mechanism in the OpenCL Installable Client Driver
(ICD) loader. The possible values are:

• OCL_ICD_ENABLE_TRACE=T
• OCL_ICD_ENABLE_TRACE=1
• OCL_ICD_ENABLE_TRACE=True

Default: FALSE

Profile Guided Optimization (PGO_) Environment Variables

INTEL_PROF_DUMP_CUMULATIVE When using interval profile dumping (initiated by
INTEL_PROF_DUMP_INTERVAL or the function
_PGOPTI_Set_Interval_Prof_Dump) during the
execution of an instrumented user application,
allows creation of a single .dyn file to contain
profiling information instead of multiple .dyn files.

 1 Intel® Fortran Compiler Classic and Intel® Fortran Compiler Developer Guide and Reference

2350

https://www.khronos.org/registry/OpenCL/specs/3.0-unified/html/OpenCL_API.html#compiler-options
https://www.khronos.org/registry/OpenCL/specs/3.0-unified/html/OpenCL_API.html#program-linking-options
https://github.com/intel/llvm/blob/sycl/sycl/doc/EnvironmentVariables.md#oneapi_device_selector

Runtime Environment Variable Description

If not set, executing an instrumented user
application creates a new .dyn file for each
interval.

Setting this environment variable is useful for
applications that do not terminate or those that
terminate abnormally (bypass the normal exit
code).

INTEL_PROF_DUMP_INTERVAL Initiates interval profile dumping in an
instrumented user application. This environment
variable may be used to initiate Interval Profile
Dumping in an instrumented application.

INTEL_PROF_DYN_PREFIX Specifies the prefix to be used for the .dyn
filename to distinguish it from the other .dyn files
dumped by other PGO runs. Executing the
instrumented application generates a .dyn filename
as follows: <prefix>_<timestamp>_<pid>.dyn,
where <prefix> is the identifier that you have
specified.

NOTE
The value specified in this environment variable must
not contain < > : " / \ | ? * characters. The default
naming scheme is used if an invalid prefix is specified.

PROF_DIR Specifies the directory where profiling files (files
with extensions .dyn, .dpi, .spi and so on) are
stored. The default is to store the .dyn files in the
source directory of the file containing the first
executed instrumented routine in the binary
compiled with [Q]prof-gen option.

This variable applies to all three phases of the
profiling process:

• Instrumentation compilation and linking
• Instrumented execution
• Feedback compilation

PROF_DPI Name for the .dpi file.

Default: pgopti.dpi

PROF_DUMP_INTERVAL Deprecated.

Use INTEL_PROF_DUMP_INTERVAL instead.

PROF_NO_CLOBBER Alters the feedback compilation phase slightly. By
default, during the feedback compilation phase, the
compiler merges data from all dynamic information
files and creates a new pgopti.dpi file if the .dyn
files are newer than an existing pgopti.dpi file.

Intel® Fortran Compiler Classic and Intel® Fortran Compiler Developer Guide and Reference 1

2351

Runtime Environment Variable Description

When this variable is set, the compiler does not
overwrite the existing pgopti.dpi file. Instead,
the compiler issues a warning. You must remove
the pgopti.dpi file if you want to use additional
dynamic information files.

The following table summarizes CPU environment variables that are recognized at runtime.

Runtime Configuration Default Value Description

CL_CONFIG_CPU_FORCE_PRIVAT
E_MEM_SIZE

32KB Forces
CL_DEVICE_PRIVATE_MEM_SIZE
for the CPU device to be the
given value. The value must
include the unit; for example:
8MB, 8192KB, 8388608B.

NOTE You must compile your host
application with sufficient stack
size.

CL_CONFIG_CPU_FORCE_LOCAL_
MEM_SIZE

32KB Forces
CL_DEVICE_LOCAL_MEM_SIZE
for CPU device to be the given
value. The value needs to be set
with size including units,
examples: 8MB, 8192KB,
8388608B.

NOTE You must compile your host
application with sufficient stack
size. Our recommendation is to set
the stack size equal to twice the
local memory size to cover possible
application and OpenCL Runtime
overheads.

CL_CONFIG_CPU_EXPENSIVE_ME
M_OPT

0 A bitmap indicating enabled
expensive memory optimizations.
These optimizations may lead to
more JIT compilation time, but
give some performance benefit.

NOTE Currently, only the least
significant bit is available.

Available bits:

 1 Intel® Fortran Compiler Classic and Intel® Fortran Compiler Developer Guide and Reference

2352

Runtime Configuration Default Value Description

• 0: OpenCL address space alias
analysis

CL_CONFIG_CPU_STREAMING_AL
WAYS

False Controls whether non-temporal
instructions are used.

NOTE
Some environment variables are available for both Intel® microprocessors and non-Intel
microprocessors, but may perform additional optimizations for Intel® microprocessors than for non-
Intel microprocessors.

See Also
qopenmp, Qopenmp compiler option
parallel, Qparallel compiler option (ifort only)
parallel, Qparallel compiler option (ifx only)
prof-gen, Qprof-gen compiler option
Thread Affinity Interface

See Also
Temporary Files Created by the Compiler or Linker
Traceback
Specify the Data Format
Locating Runtime Errors
Understanding Runtime Errors
Record Types

Use Other Methods to Set Environment Variables

All Operating Systems
From within a program: Call the SETENVQQ routine to set environment variables. For example:

USE IFPORT
LOGICAL success
success = SETENVQQ("FORT9=C:\mydir\test.dat")

Depending on your operating system, there are additional ways to set environment variables.

Linux*
Within the Bourne*/Bourne* Again shell (sh/bash), or the Korn shell (ksh), use the export command and
assignment command to set an environment variable:

export FORT9
FORT9=/usr/users/smith/test.dat

To remove the association of an environment variable and its value within the Bourne*, Korn shell, or bash
shells, use the unset command:

unset FORT9

Intel® Fortran Compiler Classic and Intel® Fortran Compiler Developer Guide and Reference 1

2353

Within the C shell (csh), use the setenv command to set an environment variable:

setenv FORT9 /usr/users/smith/test.dat
To remove the association of an environment variable and its value within the C shell, use the unsetenv
command.

unsetenv FORT9

Windows*
Environment variables in a command prompt session can be set using the SET command. Changes here will
affect programs run from that command prompt only. For example:

set FORT9=C:\mydir\test.dat
To remove an environment variable, omit the value. For example:

set FORT9=
To display the current value, use the ECHO command and enclose the environment variable name in the
percent signs as shown below:

echo %FORT9%
To display the values of all variables whose names begin with a string, use SET and omit the equal sign as
shown below:

set FORT
In Microsoft Visual Studio you can specify environment variables that will be set when a program is run. In
the project properties, edit the Configuration Properties > Debugging > Environment property and set the
field to a series of name=value pairs separated by semicolons. For example:

FORT9=C:\mydir\test.dat;FOR_FORCE_STACK_TRACE=TRUE
A default set of environment variables is established per user and at the system level. These can be specified
through Control Panel > System > Advanced System Settings > Environment Variables.

NOTE
Changing system-wide environment variables affects command line builds (those done without IDE
involvement), but not builds done through the IDE. IDE builds are managed in the IDE using Tools >
Options. An exception to this is an IDE build (devenv) done from the command line that specifies the
useenv option. In this case, the IDE uses the PATH, INCLUDE, and LIB environment variables defined
for that command line.

See Also
Specifying Path Library and Include Directories
Supported Environment Variables

Files Associated with Intel® Fortran Applications
There are a number of file extensions associated with Intel® Fortran Compiler applications.

The following table shows the most common file extensions on Windows* and Linux* that are used in Intel®
Fortran applications. It also shows what type of files they are and their description.

 1 Intel® Fortran Compiler Classic and Intel® Fortran Compiler Developer Guide and Reference

2354

Windows
Extension

Linux Extension Type Description

.asm .s Intermediate Assembly file, passed to the assembler

.exe

.dll

.lib

none

.so

.a

Output Executable, dynamic- link library, or library
files

.fi

.fd
.h Source Header files

.for

.f

.ftn

.i

.for

.f

.ftn

.i

Source Fortran source files (fixed format); these do
not automatically invoke fpp for
preprocessing

.fpp .fpp
.FPP
.F
.FOR
.FTN

Source Fixed source files (fixed format); these
automatically invoke fpp for preprocessing.

.f90

.i90
.f90
.i90

Source Fortran source file (free format); these do
not automatically invoke fpp for
preprocessing

none .F90 Source Fortran source file (free format); this
automatically invokes fpp for preprocessing

.def none Source Linker

.idl none Source Microsoft IDL (non-Fortran)

.ilk none Intermediate Incremental link file

.map none Output Map file; output from the linker

.mod .mod Intermediate Module file; created if a source file defines a
Fortran module

.obj .o Intermediate Object file; passed to the linker

.pdb none Output
(Debug)

Program debug database file

.tbl none Output (MIDL) Type library; passed to Resource

.rc none Resource Resource file (non-Fortran)

.res none Intermediate Resource file; passed to the linker

.sln

.suo
none Solution Visual Studio* solution file and solution

options file

Intel® Fortran Compiler Classic and Intel® Fortran Compiler Developer Guide and Reference 1

2355

Windows
Extension

Linux Extension Type Description

.vfproj

.vcproj
none Project Intel® Fortran, Intel® C++, and Microsoft

Visual C++* project files

.bc .bc Intermediate Bit code file produced when using flto (link
time optimization) or offloading options.

On Windows, you can specify additional Fortran file extensions to be recognized by Visual Studio*. For more
information, see Specify Fortran File Extensions.

Compile and Link Multithreaded Programs
When building a multithreaded application, be sure to link against the thread-safe version of the Fortran
runtime libraries and to enable thread safety. This is specified by the threads and reentrancy:threaded
compiler options.The Visual Studio* integrated development environment (IDE), described later in this topic,
can also be used on Windows*.

You must also link with the correct library files. Some libraries, such as those for OpenMP* or coarrays, are
always linked dynamically.

Linux
To create statically-linked, multithreaded programs, link with the static library named libifcoremt.a.

To use shared libraries, link your application with libifcoremt.so (Linux).

To compile and link your multithreaded program from the command line:

Compile and link the program with the -threads option. For example:

ifx -threads mythread.f90

NOTE
To ensure that a threadsafe and/or reentrant runtime library is linked and correctly initialized, option
threads should also be used for the link step and for the compilation of the main routine.

Windows
To create statically linked multithreaded programs, link with the re-entrant support library
LIBIFCOREMT.LIB.

To use shared libraries, use the shared LIBIFCOREMD.DLL library, which is also re-entrant, and is referenced
by linking your application with the LIBIFCOREMD.LIB import library.

Programs built with LIBIFCOREMT.LIB do not share Fortran runtime library code or data with any dynamic-
link libraries they call. You must link with LIBIFCOREMD.LIB if you plan to call a DLL.

Additional Notes:

• The /threads option is automatically set when a multithreaded application is specified in the IDE.
• Specify the compiler options /libs=dll and /threads if you are using both multithreaded code and

DLLs.
• You can use the /libs=dll and /threads options only with Fortran Console projects, not QuickWin

applications.

To compile and link your multithreaded program using Visual Studio*

 1 Intel® Fortran Compiler Classic and Intel® Fortran Compiler Developer Guide and Reference

2356

1. Create a new project by clicking File > New > Project.
2. Select the Intel® Fortran project type from Intel® Fortran Projects in the left pane.
3. Add the file containing the source code to the project.

From the Project menu, select Properties. The Property Pages dialog box appears.
4. Choose the Fortran folder, Libraries category, and set the Runtime Library to Multithreaded or

Multithread DLL (or their debug equivalents).
5. Create the executable file by choosing Build Solution from the Build menu.

To compile and link your multithreaded program from the command line:

1. Make sure your LIB environment variable points to the directory containing your library files.
2. Compile and link the program with the /threads option. For example:

ifx /threads mythread.f90

NOTE
To ensure that a threadsafe and/or reentrant runtime library is linked and correctly initialized, option
threads should also be used for the link step and for the compilation of the main routine.

Ahead of Time Compilation
Ahead of Time (AOT) Compilation is a helpful feature for your development lifecycle or distribution time. The
AOT feature provides the following benefits when you know beforehand what your target device is going to
be at application execution time:

• No additional compilation time is done when running your application.
• No just-in-time (JIT) bugs encountered due to compilation for the target. Any bugs should be found

during AOT and resolved.
• Your final code, executing on the target device, can be tested as-is before you deliver it to end-users.

A program built with AOT compilation for specific target device(s) will not run on different device(s). You
must detect the proper target device at runtime and report an error if the targeted device is not present. The
use of exception handling with an asynchronous exception handler is recommended.

SYCL supports AOT compilation for the following targets: Intel® CPUs, Intel® Processor Graphics, and Intel®
FPGA. For details on AOT compilation for Intel FPGAs, refer to the Intel® oneAPI FPGA Handbook.

OpenMP supports AOT compilation for the following targets: Intel® Processor Graphics.

For additional information, watch two videos for a quick overview on how to apply the JIT and AOT
compilation options:

• Debug Just-in-Time and Ahead-of-Time GPU Code with Intel® Distribution for GDB*
• Compilation Options and Debugging: Just-in-Time and Ahead-of-Time GPU Code with Intel® Distribution

for GDB*

Prerequisites
To target a GPU with the AOT feature, you must have the OpenCL™ Offline Compiler (OCLOC) tool installed.
OCLOC can generate binaries that use OpenCL™ (SYCL only) or the Intel® oneAPI Level Zero (Level Zero)
backend.

OCLOC is not packaged with the compiler and must be installed separately. To install OCLOC, you need to
install the GPU drivers (whether or not you have an Intel GPU on your system). Refer to the Installation
Guides for instructions.

Requirements for Accelerators
GPUs:

Intel® Fortran Compiler Classic and Intel® Fortran Compiler Developer Guide and Reference 1

2357

https://www.intel.com/content/www/us/en/docs/oneapi-fpga-add-on/developer-guide/2024-0/intel-oneapi-fpga-handbook.html
https://www.intel.com/content/www/us/en/developer/videos/debug-code-jit-and-aot-with-distribution-for-gdb.html
https://www.intel.com/content/www/us/en/developer/videos/compilation-and-debug-with-distribution-for-gdb.html
https://www.intel.com/content/www/us/en/developer/videos/compilation-and-debug-with-distribution-for-gdb.html
https://dgpu-docs.intel.com/installation-guides/index.html
https://dgpu-docs.intel.com/installation-guides/index.html

• Intel® UDH Graphics for 11th generation Intel processors or newer
• Intel® Iris® Xe graphics
• Intel® Arc™ graphics
• Intel® Data Center GPU Flex Series
• Intel® Data Center GPU Max Series

AOT Compilation Supported Options for OpenMP
Use the following options to target a specific device for AOT compilation for OpenMP:

• -fopenmp-target to specify the device target
• -Xopenmp-target-backend to pass options to the backend tool

Option -Xopenmp-target-backend is a general device target option. If multiple targets are desired (for
example: -fopenmp-targets=spir64,spir64_gen), the options specified with
-Xopenmp-target-backend apply to all targets.

For multiple targets, you can add specificity by using, for example, Xopenmp-target-backend=spir64_gen
<option>.

When using Ahead of Time (AOT) compilation, the options passed with -Xopenmp-target-backend are not
compiler options, but rather options to pass to OCLOC.

To see a list of the options you can pass with -Xopenmp-target-backend when using AOT, specify -fsycl-
help=gen on the command line.

AOT Compilation Supported Options for SYCL
Use the following options to target a specific device for AOT compilation for SYCL:

• -fsycl-target to specify the device target
• -Xsycl-target-backend to pass options to the backend tool

Option -Xsycl-target-backend is a general device target option. If multiple targets are desired (for
example: -fopenmp-targets=spir64,spir64_gen), the options specified with -Xsycl-target-backend
apply to all targets.

For multiple targets, you can add specificity by using, for example, Xsycl-target-backend=spir64_gen
<option>.

When using Ahead of Time (AOT) compilation, the options passed with -Xsycl-target-backend are not
compiler options.

To see a list of the options you can pass with -Xsycl-target-backend when using AOT, specify -fsycl-
help=gen on the command line.

Use AOT for the Target Device (Intel® CPUs)

NOTE
SYCL compilation is only available with the C/C++ compiler.

However, you can link SYCL-generated objects with the Fortran compiler. The use of -fsycl with ifx
allows this, though it is restricted to spir64, spir64_gen, and spir64_x86_64).

Use the following option argument to specify Intel® CPUs as the target device for AOT compilation:

• -fsycl-targets=spir64_x86_64
The following examples tell the compiler to generate code that uses Intel® AVX2 instructions:

 1 Intel® Fortran Compiler Classic and Intel® Fortran Compiler Developer Guide and Reference

2358

Linux

ifx -fsycl -fsycl-targets=spir64_x86_64 -Xsycl-target-backend "-march=avx2" main.o
Windows

ifx -fsycl -fsycl-targets=spir64_x86_64 -Xsycl-target-backend=spir64_x86_64 "-march=avx2"
main.obj

Build an Application with Multiple Source Files for CPU Targeting

NOTE This section is for SYCL only.

Compile your normal files (with no SYCL kernels) to create host objects. Then compile the file with the kernel
code and link it with the rest of the application.

Linux

The following shows an example of C/C++ Linux* compilation code:

icpx -c main.cpp // This creates the host object that is used below.
icpx -c -fsycl-targets=spir64_x86_64 -Xsycl-target-backend "-march=mavx2" mandel.cpp

For C/C++, this would be the next step:

icpx -fsycl-targets=spir64_x86_64 -Xsycl-target-backend "-march=mavx2" mandel.o main.o
Note that Fortran can use the -c compiled variant as follows:

ifx -fsycl -fsycl-targets=spir64_x86_64 -Xsycl-target-backend "-march=mavx2" mandel.o main.o
Windows

The following shows an example of C/C++ Windows* compilation code:

icx /EHsc -c main.cpp
icx /EHsc -c -fsycl-targets=spir64_x86_64 -Xsycl-target-backend "-march=mavx2" mandel.cpp

For C/C++, this would be the next step:

icx -fsycl-targets=spir64_x86_64 -Xsycl-target-backend "-march=mavx2" mandel.obj main.obj
Note that Fortran can use the -c compiled variant as follows:

ifx -fsycl -fsycl-targets=spir64_x86_64 -Xsycl-target-backend "-march=mavx2" mandel.obj main.obj

Use AOT for Integrated Graphics (Intel® GPU)
Use the following option arguments to specify Intel® GPU as the target device for AOT compilation:

OpenMP

Option -Xopenmp-target-backend is a general-purpose option, any arguments supplied with
-Xopenmp-target-backend will be applied to all offline compilation invocations. These are the relevant
options and arguments:

• -Xopenmp-target-backend "-device <arch>", where <arch> is the target device
• -fopenmp-targets=spir64_gen
• -fopenmp-device-code-split=<value> to perform an OpenMP device code split. The <value> is:

• per_kernel, which creates a device code module for each OpenMP kernel

SYCL

Intel® Fortran Compiler Classic and Intel® Fortran Compiler Developer Guide and Reference 1

2359

Option -Xsycl-target-backend is a general-purpose option, any arguments supplied with
-Xsycl-target-backend will be applied to all offline compilation invocations. These are the relevant options
and arguments:

• -Xsycl-target-backend "-device <arch>", where <arch> is the target device
• -fsycl-targets=spir64_gen
• -fsycl-device-code-split=<value> option to perform SYCL device code split. The <value> can be:

• per_kernel, which creates a device code module for each SYCL kernel
• per_source, which creates a device code module for each source (translation unit)
• off, which disables device code split
• auto, which tells the compiler to use a heuristic to select the best way of splitting device code

This is the default, and it is the same as specifying -fsycl-device-code-split with no <value>.

To see the complete list of supported target device types for your installed version of OCLOC, run:

ocloc compile --help
To find supported devices look for -device <device_type> in the online help.

If multiple target devices are listed in the compile command, the compiler will compile for each of these
targets and create a fat-binary that contains all the device binaries produced this way.

Examples of supported -device patterns:

OpenMP for Linux

• To compile for a single target, using skl as an example, use:

ifx -fiopenmp -fopenmp-targets=spir64_gen -Xopenmp-target-backend "-device skl" vector-add.f90
• To compile for two targets, using skl and icllp as examples, use:

ifx -fiopenmp -fopenmp-targets=spir64_gen -Xopenmp-target-backend "-device skl,icllp" vector-
add.f90

• To compile for all the targets known to OCLOC, use:

ifx -fiopenmp -fopenmp-targets=spir64_gen -Xopenmp-target-backend=spir64_gen "-device *" vector-
add.f90

SYCL for Linux

Consider the following C/C++ command:

icpx -fsycl -fsycl-targets=spir64_gen -Xsycl-target-backend "-device *" vector-add.cpp
If vector-add.cpp is compiled with option -c to create vector-add.obj, then Fortran can use this SYCL-
based fat object with the following command:

ifx -fsycl -fsycl-targets=spir64_gen -Xsycl-target-backend "-device *" vector-add.obj
SYCL for Windows

Consider the following C/C++ command:

icpx -fsycl -fsycl-targets=spir64_gen -Xsycl-target-backend "-device *" vector-add.cpp
If vector-add.cpp is compiled with option -c to create vector-add.obj, then Fortran can use this SYCL-
based fat object with the following command:

ifx -fsycl -fsycl-targets=spir64_gen -Xsycl-target-backend "-device *" vector-add.obj
Build an Application with Multiple Source Files for GPU Targeting

Compile your normal files (with no SYCL kernels) to create host objects. Then compile the file with the kernel
code and link it with the rest of the application.

 1 Intel® Fortran Compiler Classic and Intel® Fortran Compiler Developer Guide and Reference

2360

Linux

Consider the following C/C++ command:

icpx -fsycl -fsycl-targets=spir64_gen -Xsycl-target-backend=spir64_gen "-device *" mandel.cpp
main.o

Assuming that mandel.o has been built by the C/C++ compiler, Fortran can use this SYCL-based fat object
with the following command:

ifx -fsycl -fsycl-targets=spir64_gen -Xsycl-target-backend=spir64_gen "-device *" main.o mandel.o
Windows

Consider the following C/C++ command:

icx -fsycl /EHsc -fsycl-targets=spir64_gen -Xsycl-target-backend=spir64_gen "-device *" -c
mandel.cpp

Assuming that mandel.o has been built by the C/C++ compiler, Fortran can use this SYCL-based fat object
with the following command:

ifx -fsycl -fsycl-targets=spir64_gen -Xsycl-target-backend=spir64_gen "-device *" mandel.obj
main.obj

Available GPU Platforms

Device Platform

acm-g10 dg2-g10 Alchemist, Arctic Sound

acm-g11 dg2-g11 Alchemist, Arctic Sound

adl-n Alder Lake

adl-p Alder Lake

adl-s Alder Lake

aml Amber Lake

apl bxt Apollo Lake, Broxton

cfl Coffee Lake

cml Comet Lake

dg1 DG1

ehl jsl Elkhart Lake, Jasper Lake

glk Gemini Lake

icllp Ice Lake

kbl Kaby Lake

rkl Rocket Lake

rpl-s Raptor Lake

skl Intel® microarchitecture code name Skylake

tgllp Tiger Lake

whl Whiskey Lake

See Also
fopenmp-targets compiler option
fsycl-targets compiler option
Xsycl-target compiler option
Xopenmp-target compiler option

Intel® Fortran Compiler Classic and Intel® Fortran Compiler Developer Guide and Reference 1

2361

Linking Tools and Options
This topic describes how to use the Intel linking tools, xild (Linux*) and xilink (Windows*).

The Intel linking tools behave differently on different platforms. The following sections summarize the
primary differences between linking behavior.

Linux* Linking Behavior
The linking tool invokes the Intel Fortran Compiler to perform IPO if objects containing IR (intermediate
representation) are found. These are mock objects. The tool invokes GNU ld to link the application.

The command-line syntax for xild is the same as that of the GNU linker:

xild [<options>] <normal command-line>
where:

• [<options>]: One or more options supported only by xild (optional).
• <normal command-line>: Linker command line containing a set of valid arguments for ld.

To create the file app using IPO, use compiler option o[filename] as shown in the following example:

xild -qipo-fas-oapp a.o b.o c.o
The linking tool calls the compiler to perform IPO for objects containing IR and creates a new list of object(s)
to be linked. The linker then calls ld to link the object files that are specified in the new list and produce the
application with the name specified by the o option. The linker supports the ipo[n] option and
ipo-separate option.

To display a list of the supported link options from xild, use the following command:

$ xild -qhelp

Windows* Linking Behavior
The linking tool invokes the Intel Fortran Compiler to perform multi-file IPO if objects containing IR
(intermediate representation) is found. These are mock objects. It invokes the Microsoft linker link.exe to
link the application.

The command-line syntax for the Intel linker is the same as that of the Microsoft linker:

xilink [<options>] <normal command-line>
where:

• [<options>]: One or more options supported only by xilink (optional).
• <normal command-line>: Linker command line containing a set of valid arguments for the Microsoft

linker.

To place the multifile IPO executable in ipo_file.exe, use the linker option out:[filename] , for example:

xilink -qipo-fas/out:ipo_file.exe a.obj b.obj c.obj
The linker calls the compiler to perform IPO for objects containing IR and creates a new list of object(s) to
be linked. The linker calls Microsoft link.exe to link the object files that are specified in the new list and to
produce the application with the name specified by the out:[filename] linker option.

To display a list of support link options from xilink , use the following command:

>> xilink /qhelp

 1 Intel® Fortran Compiler Classic and Intel® Fortran Compiler Developer Guide and Reference

2362

xilink.exe accepts all the options of link.exe and will pass them on to link.exe at the final linking
stage.

Using the Linking Tools
You must use the Intel linking tools to link your application if the following conditions apply:

• Your source files were compiled with multi-file IPO enabled. Enable Multi-file IPO by specifying compiler
option [Q]ipo.

• Linux: You normally invoke the GNU linker (ld) to link your application.
• Windows: You normally invoke the Microsoft linker (link.exe) to link your application.

Linker Options
The following table provides information on linking options.

Linking Tools
Option

Description

[Q]diag-
[type]=[diag-list]

Controls the display of diagnostic information.

The type is an action to perform on diagnostics. Possible values are:

• disable: Disables one or more warnings or remarks.
• error: Tells the compiler to change warnings or remarks to errors
• warning: Tells the compiler to change remarks to warnings.

The diag-list is a diagnostic group or ID value. Possible values are:

• thread: Specifies diagnostic messages that help in thread-enabling a program.
• vec (ifort only): Specifies diagnostic messages issued by the vectorizer.
• par (ifort only): Specifies diagnostic messages issued by the auto-parallelizer

(parallel optimizer).
• openmp (ifort only): Specifies diagnostic messages issued by the OpenMP*

parallelizer.
• warn: Specifies diagnostic messages that have a "warning" severity level.
• error: Specifies diagnostic messages that have an "error" severity level.
• remark: Specifies diagnostic messages that are remarks or comments.
• cpu-dispatch (ifort only): Specifies the CPU dispatch remarks for diagnostic

messages. These remarks are enabled by default.
• id[,id,...]: Specifies the ID number of one or more messages. If you specify

more than one message number, they must be separated by commas. There can
be no intervening white space between each "id".

• tag[,tag,...]: Specifies the mnemonic name of one or more messages. If you
specify more than one mnemonic name, they must be separated by commas.
There can be no intervening white space between each "tag".

NOTE
Diagnostic messages generated by this option can be affected by other options,
such as /arch (Windows), -m (Linux), or [Q]x.

m64 (Linux)

Qm64 (Windows)

[Q]m64 generates code for Intel® 64 architecture.

For example, when your compilation environment is configured for Intel® 64
architecture, and you use [Q]m64 with the compiler, you also need to use qm64 on
the linker command line to make sure the proper compilation target is set up for any
IPO compilations or the final link.

Intel® Fortran Compiler Classic and Intel® Fortran Compiler Developer Guide and Reference 1

2363

See Also
Using IPO from the command line

Use Configuration Files
You can decrease the time you spend entering command-line options by using the configuration file to
automate command-line entries. Configuration files are automatically processed every time you run the
Intel® Fortran Compiler. You can insert any valid command-line options into the configuration file. The
compiler processes options in the configuration file in the order in which they appear, followed by the
specified command-line options when the compiler is invoked.

NOTE
Options in the configuration file are executed every time you run the compiler. If you have varying
option requirements for different projects, use Using Response Files.

Sample Configuration Files
The default configuration file ifx.cfg (and ifort.cfg) is located in the same directory as the compiler
executable file. If you want to use a different configuration file than the default, you can use the IFXCFG (or
IFORTCFG) environment variable to specify the location of another configuration file.

NOTE
Anytime you instruct the compiler to use a different configuration file, the default configuration file(s)
are ignored.

The following examples illustrate basic configuration files.

In the examples, you can replace ifx.cfg with ifort.cfg.

Linux

Sample ifx.cfg file
Define preprocessor macro MY_PROJECT.
 -DMY_PROJECT

Set extended-length source lines.
 -extend_source

Set maximum floating-point significand precision.
 -pc80

Windows

Sample ifx.cfg file
Define preprocessor macro MY_PROJECT
 /DMY_PROJECT

Set extended-length source lines.
 /extend_source

Additional directories to be searched for include
files, before the default.
 /Ic:\project\include

Use the static, multithreaded runtime library.
 /MT

 1 Intel® Fortran Compiler Classic and Intel® Fortran Compiler Developer Guide and Reference

2364

In the Windows example , the compiler reads the configuration file and invokes the I option every time you
run the compiler, along with any options specified on the command line.

See Also
Supported Environment Variables
Using Response Files

Use Response Files
You can use response files to:

• Specify options used during particular compilations or projects.
• Save this information in individual files.

Response files are invoked as options on the command line. Options in response files are inserted in the
command line at the point where the response file is invoked. Unlike configuration files, which are
automatically processed every time you run the compiler, response files must be invoked as an option on the
command line. If you create a response file without specifying it on the command line, it will not be invoked.

Use response files to decrease the time spent entering command-line options and to ensure consistency by
automating command-line entries. Use individual response files to maintain options for specific projects.

Any number of options or file names can be placed on a line in a response file. Several response files can be
referenced in the same command line. The following example shows how to specify a response file on the
command line:

ifx @ [@responsefile2 ...]

NOTE
An "at" sign (@) must precede the name of the response file on the command line.

See Also
Using Configuration Files

Create Fortran Executables
The simplest way to build an application is to compile all of your Fortran source files, then link the resulting
object files into a single executable. You can build single-file executables using the ifort command. You can
also use the Visual Studio* IDE on Windows*.

The executable file you build with this method contains all of the code needed to execute the program,
including the runtime library. Because the program resides in a single file, it is easy to copy or install. The
project contains all of the source and object files for the routines used to build the application. To use these
routines in other projects, all source and object files must be relinked.

Exceptions to this are as follows:

• If you are using shared libraries, all code will not be contained in the executable file.

Link Debug Information

Linux
Use option g at compile time to tell the compiler to generate symbolic debugging information in the object
file.

Intel® Fortran Compiler Classic and Intel® Fortran Compiler Developer Guide and Reference 1

2365

Use option gsplit-dwarf to create a separate object file containing DWARF debug information. Because the
DWARF object file is not used by the linker, this reduces the amount of debug information the linker must
process and it results in a smaller executable file. See gsplit-dwarf for detailed information.

Windows
Use option Z7 at compile time or option debug at link time to tell the compiler to generate symbolic
debugging information in the object file. Alternately, use option Zi at link time to generate executables with
debug information in the .pdb file.

Debugging
Depending on your operating system and architecture platform, several debuggers may be available to you.

Use the debugger provided by your operating system:

• Linux

Use the gdb debugger.
• Windows

Use the Microsoft Visual Studio* debugger.

On Windows* systems, you can use your local (host) system to debug an application running on a remote
system. For more information, see Using Remote Debugging.

See Also
Using Remote Debugging

Prepare Your Program for Debugging
This section describes preparing your program for debugging.

Prepare to Debug Using the Command Line
To prepare your program for debugging when using the command line:

1. Correct any compilation and linker errors.
2. In a command window, such as the Fortran command window available from the Intel® Fortran program

folder, compile and link the program with full debug information and no optimization:

Linux*

ifort -g file.f90
Windows*

ifort /debug:full file.f90
On Linux, specify the g compiler option to create unoptimized code and provide the symbol table and
traceback information needed for symbolic debugging. The notraceback option cancels the traceback
information.

On Windows, specify the debug compiler option with keyword full to produce full debugging information. It
produces symbol table information needed for full symbolic debugging of unoptimized code and global
symbol information needed for linking.

Prepare to Debug Using Visual Studio*
The following applies to Windows* operating systems only.

 1 Intel® Fortran Compiler Classic and Intel® Fortran Compiler Developer Guide and Reference

2366

To prepare your program for debugging when using the integrated development environment
(IDE):

1. Start the IDE (select the appropriate version of Visual Studio* in the program folder).
2. Open the appropriate solution (using the Solution menu, either Open Solution or Recent Projects).
3. Open the Solution Explorer View.
4. To view the source file to be debugged, double-click on the file name. The screen resembles the

following:

5. In the Build menu, select Configuration Manager and select the Debug configuration.
6. To check your project settings for compiling and linking, select the project name in Solution Explorer .

Now, in the Project menu, select Properties , then click the Fortran folder in the left pane. Similarly,
to check the debug options set for your project (such as command arguments or working directory),
click the Debugging folder in the Property Pages dialog box.

7. To build your application, select Build > Build Solution.
8. Eliminate any compiler diagnostic messages using the text editor to resolve problems detected in the

source code and recompile if needed.
9. Set breakpoints in the source file and debug the program. For more information, see Debugging the

Squares Example Program.

NOTE You must set a breakpoint before starting the program, otherwise the program will run to
completion, and exit.

See Also
Debugging the Squares Example Program

Intel® Fortran Compiler Classic and Intel® Fortran Compiler Developer Guide and Reference 1

2367

Use Breakpoints in the Microsoft Debugger
This topic describes how to use the Microsoft Visual Studio* debugger on Windows* to set file and data
breakpoints.

In addition to file and data breakpoints, the Visual Studio debugger supports the following:

• Address breakpoints
• Function breakpoints
• Tracepoints

For information on these additional features, see the Microsoft documentation for your version of Visual
Studio.

View All Current Breakpoints
You can view all currently set breakpoints in the Breakpoints window. To view all set breakpoints using the
Breakpoints window:

1. In the Debug menu, select Windows > Breakpoints.
2. Scroll up or down in the Breakpoints list to view the breakpoints. Enabled breakpoints have a check

mark in the check box and disabled breakpoints have an empty check box. The window displays all
types of breakpoints.

Use File Breakpoints
Use a file breakpoint to interrupt program execution when the program reaches a specified location within a
file. Several symbols are used to show the status of file breakpoints; these appear in the left margin of the
Source window:

Enabled file breakpoints are identified as a red circle.

Disabled file breakpoints are identified as a hollow circle in the left margin.

During debugging, a currently active breakpoint appears as a red circle containing a
yellow arrow in the left margin of the Source window.

For a walk-through of a sample debugging session using file breakpoints, see Debugging the Squares
Example Program.

To set (enable) a file breakpoint:

1. Open the desired source file in the solution.
2. In the Source window, click the line at which you want to enable a file breakpoint.
3. Do one of the following:

• Click in the left margin of the line or press the F9 key. When you set a breakpoint, it is enabled by
default.

• Right click on the desired line and select Insert Breakpoint from the pop-up menu.

To disable a file breakpoint:

1. In the Source window, click the line containing the file breakpoint you want to disable.
2. Do one of the following:

• Right click on that line, and select Disable Breakpoint from the pop-up menu.
• In the Debug menu, select Windows > Breakpoints, which opens the Breakpoints window.

Select the check box for that breakpoint so it is unchecked (disabled).

 1 Intel® Fortran Compiler Classic and Intel® Fortran Compiler Developer Guide and Reference

2368

To remove a file breakpoint:

1. In the Source window, click the line containing the file breakpoint you want to remove.
2. Do one of the following:

• Click in the left margin of the line or press the F9 key. If the breakpoint was originally disabled,
press F9 again to remove it.

• Right click on that line, and select Delete Breakpoint from the pop-up menu.
• In the Debug menu, select Windows > Breakpoints. In the Breakpoints window, select the

breakpoint in the Name column and click the Delete button (which looks like an "X").

To view the source code where a file breakpoint is set:

1. In the Debug menu, select Windows > Breakpoints.
2. In the Breakpoints window, click a file breakpoint.
3. Click the Go To Source Code button.

This action takes you to the source code for a breakpoint set at a line number or function (or
subroutine) name. In the case of function (or subroutine) names, the debugger must be running for
this to work.

To remove all breakpoints (including data breakpoints):

In the Debug menu, select Delete All Breakpoints.

Add Conditions to File Breakpoints
When you associate a condition with a file breakpoint, the program executes until that location is reached
and the specified condition is met, such as when the value of an array element is greater than 1.

To add a condition to a breakpoint:

1. Set a file breakpoint.
2. Right-click in the associated line and select Breakpoint > Condition....

The Breakpoint Condition dialog box appears.

The condition that you specify in the Breakpoint Condition dialog box must relate to a local variable within
the breakpoint's scoping unit, or to a global variable. You must apply proper Fortran syntax in the Condition
field in order for the specified condition to be properly detected. Consider the following examples:

To break when the local variable RecNum reaches a value of 7520, enter the following condition:

RecNum == 7520
You can also specify joint conditions. To break when RecNum reaches at least 7520 and the variable Var2 is
equal to 90, enter the following condition:

RecNum >= 7520 .and. Var2 == 90
You can also specify an or condition. For example:

Var1 == 3.14 .or. Var2 < 500.0
If the condition that you specify occurs at the chosen location when the program is run, a message box
appears. If the breakpoint is set in part of a loop, continuing execution proceeds until the debugger detects
another specified condition. If no such condition is detected, the debugger continues to the next breakpoint
or, if no more breakpoints are set, until the end of the loop.

To disable, enable, or remove a file breakpoint with a defined condition, follow the general procedures for a
file breakpoint. Use the checkbox for the Condition field to enable or disable the condition setting.

Intel® Fortran Compiler Classic and Intel® Fortran Compiler Developer Guide and Reference 1

2369

Use Data Breakpoints
Use a data breakpoint to interrupt program execution when the value of a certain variable changes. A data
breakpoint displays a message box when the value of a variable changes, or, if a condition has been defined,
when a condition is met. Unlike a file breakpoint, data breakpoints are not associated with a specific source
location.

Use Visual C++ Data Breakpoint Support
The Visual Studio IDE does not provide data breakpoint support specifically for Fortran, but you can still use
data breakpoints in a Fortran program; they are handled using the existing mechanism provided by Microsoft
Visual C++*. This means that you must use Visual C++ syntax; you cannot enter the variable name or
condition using Fortran syntax. The following guidelines apply:

• For scalar variables, enter the variable name in upper case. This allows Visual C++ to find the variable in
the debug information and apply the correct breakpoint.

• For arrays and types, use the Fortran LOC intrinsic function in a Watch window or the Immediate
window to obtain the address of the variable. Use this address in the variable name edit box.

For example, to prepare to set a data breakpoint at an array element a(5), do the following:

1. Select Debug > Windows > Immediate.
2. Enter loc(a(5)) in the immediate window and press Enter.

The result displayed is the address of the array element. The address may be displayed as a decimal
number or a hexadecimal number, depending upon your current display mode. For a decimal number,
you will enter it in the Address: field. For a hexadecimal number, you will use the Visual C++
hexadecimal syntax (0xnnnnnnnn) rather than the Fortran syntax (#nnnnnnnn) in the fields.

The following procedure applies to debugging the current routine (current scope).

To set a data breakpoint:

1. Start debugging.
2. In the Debug menu, select New Breakpoint > New Data Breakpoint...
3. Enter the desired address. Also enter the Byte Count and Language (specify C++).

If you want to associate a condition with this breakpoint, right-click on the breakpoint in the Breakpoints
window and choose Condition...

To disable, enable, or remove a data breakpoint:

1. In the Debug menu, select Windows > Breakpoints.
2. To disable or enable the data breakpoint, use the check box to the left of the data breakpoint (check

indicates enabled).
3. To remove a data breakpoint, select the data breakpoint and click the Delete button.

Under certain conditions, the debugger may disable a data breakpoint. In this case, you should either try to
enable it or remove and set it again.

To remove all breakpoints (including file breakpoints):

In the Debug menu, select Delete All Breakpoints.

See Also
Debugging the Squares Example Program

 1 Intel® Fortran Compiler Classic and Intel® Fortran Compiler Developer Guide and Reference

2370

Debug the Squares Example with Microsoft Debugger
The following example shows a program called SQUARES that requires debugging. The program was compiled
and linked without diagnostic messages from either the compiler or the linker, however, this program
contains a logic error in an arithmetic expression.

 PROGRAM SQUARES
 INTEGER INARR(10), OUTARR(10), I, K
! Read the input array from the data file.
 OPEN(UNIT=8, FILE='datafile.dat', STATUS='OLD')
 READ(8,*,END=5) N, (INARR(I), I=1,N)
 5 CLOSE (UNIT=8)

! Square all nonzero elements and store in OUTARR.
 K = 0
 DO I = 1, N
 IF (INARR(I) .NE. 0) THEN
 OUTARR(K) = INARR(I)**2
 ENDIF
 END DO

! Print the squared output values. Then stop.
 PRINT 20, N
 20 FORMAT (' Total number of elements read is',I4)
 PRINT 30, K
 30 FORMAT (' Number of nonzero elements is',I4)
 DO I=1,K
 PRINT 40, I, OUTARR(K)
 40 FORMAT(' Element', I4, 'Has value',I6)
 END DO
 END PROGRAM SQUARES

The program SQUARES performs the following functions:

• Reads a sequence of integer numbers from a data file and saves these numbers in the array INARR. The
file datafile.dat contains one record with the integer values 4, 3, 2, 5, and 2. The first number
indicates the number of data items that follow.

• Enters a loop in which it copies the square of each nonzero integer into another array OUTARR.
• Prints the number of nonzero elements in the original sequence and the square of each such element.

In the program, the logic error occurs because variable K, which keeps track of the current index into
OUTARR, is not incremented in the loop on lines 9 through 13. The statement K = K + 1 should be inserted
just before line 11.

This example assumes that the program was executed without array bounds checking (set by specifying
nobounds for the check command-line option). When executed with array bounds checking, a runtime error
message appears.

Debug the Squares Program
The following steps show how to debug a Windows*-based program using the Microsoft integrated debugger
within the integrated development environment (see Preparing Your Program for Debugging and Using
Breakpoints in the Debugger). This example assumes a solution already exists.

To debug this program:

1. Start Visual Studio*.
2. In the File menu, select Open Solution. Open the solution containing the file.
3. Edit the file squares.f90: double-click the file name in the Solution Explorer View. The screen

appears as follows:

Intel® Fortran Compiler Classic and Intel® Fortran Compiler Developer Guide and Reference 1

2371

The following toolbars are shown: Build toolbar, Standard toolbar.
4. To change the displayed toolbars, select View > Toolbars. To display the debug toolbar, select Debug.
5. Click the first executable line to set the cursor position. In this case, click the beginning of the OPEN

statement line:

OPEN(UNIT=8, FILE='datafile.dat', STATUS='OLD')
6. Click in the left margin of the first executable line to set a breakpoint. The red circle in the left margin

of the text editor/debugger window shows where a breakpoint is set:

 1 Intel® Fortran Compiler Classic and Intel® Fortran Compiler Developer Guide and Reference

2372

7. This example assumes you have previously built your application (see Preparing Your Program for
Debugging).

In the Debug menu, select Start Debugging.

The debugger is now active. The current position is marked by a yellow arrow at the first executable
line (the initial breakpoint).

8. If needed, you can set another breakpoint. Position the cursor at the line where you want to add a
breakpoint, right click, and select Breakpoint > Insert Breakpoint.

9. Step through the lines of source code. You can do this with Debug > Step Over or with the Step Over
button on the Debug toolbar.

10. Repeat the Step Over action and follow program execution into the DO loop and unto the end of the
program. Position the cursor over the variable K to view its value in a Data Tip box:

Intel® Fortran Compiler Classic and Intel® Fortran Compiler Developer Guide and Reference 1

2373

The error seems related to the value of variable K.
11. In the Text Editor , add the line K = K + 1 as follows:

! Square all nonzero elements and store in OUTARR.
K = 0
DO I = 1, N
IF (INARR(I) .NE. 0) THEN
K = K + 1 ! add this line
OUTARR(K) = INARR(I)**2
ENDIF
END DO

12. Since you have modified the source, you need to rebuild the application:

• In the Debug menu, select Stop Debugging
• In the Build menu, select Build debugtest.
• In the Debug menu, select Start Debugging.

The output screen appears as follows:

13. The program now generates better results. You can examine the values of both the input array INARR
(read from the file) and the output array OUTARR that the program calculates. In the Text Editor
window, the previously set breakpoint remains set.

In the Debug menu, select Start Debugging.
14. To view the values of certain variables as the program executes, display the Locals window. In the

Debug menu, select Windows > Locals.
15. You can view the values of the local variables in the Locals window. Click the plus sign to view array

values.

The Locals window does not let you display module variables or other non-local variables. To display
non-local variables, display one of the Watch windows.

16. Although this example does not use module variables or non-local variables, you can drag a variable
name into the Watch window so the variable can be displayed. The Watch window allows you to
display expressions.

In the Text Editor window, select the variable name INARR (without its subscript syntax), drag it, and
drop it into the Watch window, Name column:

17. Also drag the OUTARR array name to the Watch window. Click the Plus sign (+) to the left of the
OUTARR variable's name to display the values of its array elements.

18. Execute lines of the program by using the Step Over button on the Debug toolbar. As the program
executes, you can view the values of scalar variables with the data tips feature and view the values of
arrays (or other variables) in the Watch window.

If a Disassembly window (shows disassembled code with source-code symbols) unintentionally appears,
click the Step Out button on the debugger toolbar (or select Step Out in the Debug menu) as needed to
dismiss the Disassembly window.

 1 Intel® Fortran Compiler Classic and Intel® Fortran Compiler Developer Guide and Reference

2374

See Also
Preparing Your Program for Debugging
Using Breakpoints in the Debugger

View Fortran Data Types in the Microsoft Debugger
The following general suggestions apply to different types of Fortran data:

• For scalar (nonarray) data, use the data tips (leave pointer on a variable name) feature or use the Locals
window or a Watch window. Intel® Fortran does not support the Autos window.

• For single-dimension array data, derived-type data, record structure data, and COMPLEX data, use the
Locals window or a Watch window.

• For common blocks exported from a DLL, enter the name of the common block in a Watch window. You
will be able to view the common block variables like any other structure.

• By default, values of named constants (parameters) are not visible in the debugger. To make these visible,
add the /debug-parameteres:used option or /debug-parameters:all option when compiling the
sources.

For information on using Data Tips, the Locals window, or a Watch window, see Debugging the Squares
Example Program.

To display a Watch window:

1. In the Debug menu, select Windows > Watch.
2. In the submenu, click Watch 1, 2, 3, or 4.

Specify Array Sections
You can specify array sections in a Watch window. For example, consider an array declared as:

 integer foo(10)
You can specify the following statement in a Watch window to see the 2nd, 5th, and 8th elements:

 foo(2:10:3)
When working with character arrays, this syntax may be combined with a substring specification. Consider
the following array declaration:

 character*8 chr_arr(10)
You can specify the following statement in a Watch window to display the substring made up of character 3
through 8 of array elements 2 through 5:

 chr_arr(2:5)(3:8)
This support is available for arrays of any type, including array pointers, assumed-shape, allocatable, and
assumed-size arrays.

Any valid integer expression can be used when specifying lower bound, upper bound, or stride. If the lower
bound is omitted, the array lower bound is used. If the upper bound is omitted, the array upper bound is
used. For example, consider the following declaration:

 integer foo(10)
To display:

• Elements 1 through 8, specify foo(:8)
• Elements 5 through 10, specify foo(5:)
• All 10 elements, specify foo(:)

Specify Module Variables
To view a module variable in a Watch window, specify the module name, followed by "::", followed by the
variable name.

Intel® Fortran Compiler Classic and Intel® Fortran Compiler Developer Guide and Reference 1

2375

For example, to watch variable "bar" of module "foo", specify the following expression:

foo::bar

Specify Format Specifiers
You can use format specifiers in Watch windows to display variables in different data formats.

For example, given a REAL variable 'foo' in a program, it is now possible to see 'foo' in different floating point
notation (by typing "foo,f" "foo,g" or "foo,e" in a Watch window) or as an integer ("foo,i" or "foo,d"), a
hexadecimal value ("foo,x"), an an octal value ("foo,o"), and so on.

You can change the display format of variables in a Watch window using the formatting symbols in the
following table:

Symbol Format Value Displays

d,i signed decimal integer 0xF000F065 -268373915

o unsigned octal integer 0xF065 0170145

x,X Hexadecimal integer 61541
(decimal)

#0000F065

f signed floating-point 3./2. 1.5000000

e signed scientific notation 3./2. 0.1500000E
+01

g signed floating-point or signed scientific notation, whichever is
shorter

3./2. 1.500000

c Single character 0x0065 'e'

s String 0x0012fde8 "Hello world"

To use a formatting symbol, type the variable name, followed by a comma and the appropriate symbol. For
example, if var has a value of 0x0065, and you want to see the value in character form, type var,c in the
Name column on the tab of the Watch window. When you press ENTER, the character-format value
appears:

 var,c = 'e'
You can use the formatting symbols shown in the following table to format the contents of memory locations:

Symbol Format Displays

ma 64 ASCII characters 0x0012ffac .4...0...".0W&.......1W&.0.:W..1...."..1.J
O&.1.2.."..1...0y....1

m 16 bytes in hexadecimal, followed by 16
ASCII characters

0x0012ffac B3 34 CB 00 84 30 94 80 FF 22 8A 30
57 26 00 00 .4...0...".0W&..

mb 16 bytes in hexadecimal, followed by 16
ASCII characters

0x0012ffac B3 34 CB 00 84 30 94 80 FF 22 8A 30
57 26 00 00 .4...0...".0W&..

mw 8 words 0x0012ffac 34B3 00CB 3084 8094 22FF 308A 2657
0000

md 4 doublewords 0x0012ffac 00CB34B3 80943084 308A22FF
00002657

 1 Intel® Fortran Compiler Classic and Intel® Fortran Compiler Developer Guide and Reference

2376

With the memory location formatting symbols, you can type any value or expression that evaluates to a
location.

A formatting character can also follow an expression:

 rep+1,x
 xloc,g
 count,d

NOTE
You can apply formatting symbols to structures, arrays, pointers, and objects as unexpanded variables
only. If you expand the variable, the specified formatting affects all members. You cannot apply
formatting symbols to individual members.

See Also
Debugging the Squares Example Program

View the Call Stack in the Microsoft Debugger
In most cases, your program will automatically stop at the point where the exception occurs, allowing you to
view the source code and values of variables. If the error is related to an I/O statement, you may want to
view the call stack.

If you want to view where your program is currently executing in the hierarchy of routines , you can display
the Call Stack window in the debugger. For example, you may want to display this window to determine
where in your program an exception occurs.

To view the call stack:

1. Start the debugger and stop at a breakpoint.
2. Select Debug > Windows > Call Stack.

A severe unhandled I/O programming error (such as an End-of-File condition) can occur while the program is
executing in the debugger. When this occurs, the Fortran runtime system will raise a debug event
automatically to stop program execution, allowing display of the Call Stack.

When the severe unhandled I/O error occurs in the debugger:

• An information box is displayed that contains:

User breakpoint called from code at 0xnnnnnnn
• A window appears with your cursor in NTDLL disassembly code

Click OK to dismiss the information box.

Scanning down the Call Stack display, there will be a few frames from NTDLL and the Fortran runtime
system displayed, then the actual Fortran routine with the I/O statement that caused the error. In the call
stack, select the Fortran routine to display the Fortran code and the variables using the Locals window. The
green arrow points to the I/O statement that caused the error.

This action all occurs after the error message and traceback information has been displayed. The error
message and traceback information is available in the program output window. To view the program output
window, either iconize (minimize) the integrated development environment (IDE) or click the icon for the
output window in the task bar. You should not need the stack dump because you have the Call Stack window
in the IDE, but the error message with the file name might be useful to see.

See Also
Locating Runtime Errors
Traceback

Locate Unaligned Data
Unaligned data can slow program execution. You should determine the cause of the unaligned data, fix the
source code (if necessary), and recompile and relink the program.

Intel® Fortran Compiler Classic and Intel® Fortran Compiler Developer Guide and Reference 1

2377

If your program encounters unaligned data at runtime, to make it easier to debug the program, you should
recompile and relink with option -g (Linux) or option /debug:full (Windows) to generate sufficient table
information and debug unoptimized code.

Debug a Program that Encounters a Signal or Exception
If your program encounters a signal (exception) at runtime, you may want to recompile and relink with
certain command-line options before debugging the cause. The following will make it easier to debug the
program:

• Use the fpe[:]n option to control the handling of floating point exceptions.
• To generate sufficient symbol table information and debug unoptimized code, as with other debugging

tasks, use the -g (Linux*) or /debug:full (Windows*) compiler option.

Debug an Exception in the Microsoft Debugger
You can request that the program always stop when a certain type of exception occurs. Because certain
exceptions are caught by default by the Intel® Fortran runtime library, your program stops in the runtime
library code. In most cases, you want the program to stop in your program's source code instead.

To change how an exception is handled in the Microsoft debugger:

1. In the Debug menu, select Exceptions.
2. View the displayed exceptions.
3. Select Windows Exceptions. Select each type of exception to be changed and change its handling

using the radio buttons.
4. Start program execution using Start in the Debug menu.
5. When the exception occurs, you can now view the source line being executed, examine current variable

values, execute the next instruction, and so on, to help you better understand that part of your
program.

6. After you locate the error and correct the program, consider whether you want to reset the appropriate
type of exception to "Use Parent Setting" before you debug the program again.

For machine exceptions, you can use the just-in-time debugging feature to debug your programs as they run
outside of the visual development environment. To do this, set the following items:

• In Tools > Options, select Native in the Debugging Just-In Time category.
• Set the FOR_IGNORE_EXCEPTIONS, as listed in Supported Environment Variables, to TRUE.

See Also
Supported Environment Variables

Debugging and Optimizations
This topic describes the relationship between various command-line options that control debugging and
optimizing.

Whenever you enable debugging with the -g option (Linux*) or /debug:full option (Windows*), you
disable optimizations. You can override this behavior by explicitly specifying compiler options for
optimizations on the command line.

The following summarizes commonly used options for debugging and for optimization.

Option Description

Linux

-O0
Windows

/Od

Disables optimizations so you can debug your program before any optimization is
attempted. This is the default behavior when debugging.

 1 Intel® Fortran Compiler Classic and Intel® Fortran Compiler Developer Guide and Reference

2378

Option Description

NOTE
On Linux, -fno-omit-frame-pointer is set if either option -O0 or -g is
specified.

For more information, see the following topics:

• -O0 (Linux) compiler option
• /Od (Windows) compiler option

Linux

O1, O2, or O3
Windows

O

Specifies the code optimization level for applications. If you use any of these
options, it is recommended that you use -debug extended when debugging.

For more information, see the following topics:

• -O1, -O2, -O3 (Linux) compiler options
• /O (Windows) compiler option

Linux

-g
Windows

/debug:full

Generates symbolic debugging information and line numbers in the object code for
use by the source-level debuggers. Turns off O2 and makes -O0 (Linux) or /Od
(Windows) the default. The exception to this is if options O1, O2, or O3 are explicitly
specified in the command line.

For more information, see the following topics:

• -g (Linux)
• /debug:full (Windows) compiler option

Linux

-debug extended
Specifies settings that enhance debugging.

For more information, see the following topic:

• -debug extended (Linux)

traceback Causes the compiler to generate extra information in the object file, which allows a
symbolic stack traceback.

For more information, see the following topic:

• traceback compiler option

Combine Optimization and Debugging
The compiler lets you generate code to support symbolic debugging when O1, O2, or O3 optimization options
are specified on the command line along with -g (Linux) or /debug:full (Windows); this produces symbolic
debug information in the object file.

NOTE
Note that if you specify an O1, O2, or O3 option with the -g (Linux) or /debug:full (Windows) option,
some of the debugging information returned may be inaccurate as a side-effect of optimization.

To counter this on Linux, you should also specify the -debug extended option.

It is best to make your optimization and/or debugging choices explicit:

• If you need to debug your program excluding any optimization effect, use the -O0 (Linux) or /Od
(Windows) option, which turns off all the optimizations.

Intel® Fortran Compiler Classic and Intel® Fortran Compiler Developer Guide and Reference 1

2379

• If you need to debug your program with optimizations enabled, then you can specify the O1, O2, or O3
option on the command line along with debug extended.

NOTE
When no optimization level is specified, the -g or /debug:full option slows program execution; this
is because this option turns on -O0 or /Od, which causes the slowdown. However, if both O2 and -g
(Linux) or /debug:full (Windows) are specified, for example, the code should not experience much
of a slowdown.

Refer to the following table for the summary of the effects of using the -g or /debug:full option with the
optimization options.

Option Effect

Linux

-g
Windows

/debug:full

Debugging information produced, -O0 (Linux) or /Od (Windows)
enabled (meaning optimizations are disabled).

Linux

-g -O1
Windows

/debug:full /O1

Debugging information produced, O1 optimizations enabled.

Linux

-g -O2
Windows

/debug:full /O2

Debugging information produced, O2 optimizations enabled.

Linux

-g -O2
Windows

/debug:full /O2 /Oy-

Debugging information produced, O2 optimizations enabled.

Linux

-g -O3 -fp
Windows

/debug:full /O3

Debugging information produced, O3 optimizations enabled.

NOTE
Even the use of option debug extended with optimized programs may not allow you to examine all
variables or to set breaks at all lines, due to code movement or removal during the optimization
process.

Debug Mixed-Language Programs
You can debug mixed-language programs with the Visual Studio debugger. Program flow of control across
subprograms written in different languages is transparent.

 1 Intel® Fortran Compiler Classic and Intel® Fortran Compiler Developer Guide and Reference

2380

The debugger uses debug information associated with the program to automatically identify the language of
the current subprogram or code segment.

For example, if program execution is suspended in a subprogram in Fortran, the current language is seen as
Fortran. If the debugger stops the program in a C function, the current language becomes C.

Debug Multithreaded Programs
The debugging of multithreaded programs discussed in this topic applies to both the OpenMP* Fortran API
and the Intel® Fortran parallel compiler directives. When a program uses parallel decomposition directives,
you must take into consideration that the bug might be caused either by an incorrect program statement or
it might be caused by an incorrect parallel decomposition directive. In either case, the program to be
debugged can be executed by multiple threads simultaneously.

To determine the correctness of and debug multithreaded programs, you can use the debugger provided by
your operating system combined with Intel® Fortran Compiler debugging options and methods; in particular,
debug and traceback options.

Linux*

Use the gdb debugger.

Windows*

Use the Microsoft Visual Studio* debugger.

Use Remote Debugging
The following applies to Microsoft* Visual Studio* 2013 and 2015.

Remote debugging lets you use your local (host) system to debug an application running on a remote
system.

Remote Debugging using Microsoft* Visual Studio*
There are two remote connection types available: DCOM ("Remote with Windows authentication") and TCP/IP
("Remote with no authentication"). For more information on initial setup for remote debugging, refer to the
Microsoft* Visual Studio* remote debugging setup topics in the Microsoft* MSDN documentation.

Remote debugging typically requires use of the debugging monitor (msvsmon.exe). Run the monitor in the
correct mode for the remote system's architecture. To do this, on the remote system, select the program
group Microsoft Visual Studio 2013 (or applicable version year), then choose Visual Studio Tools and
select the correct Remote Debugger Folder.

Remote debugging also requires proper set up of the IDE Debugging property page on the host machine.

To set up remote debugging using the IDE property pages:

1. On the host machine, choose Project > Properties > Configuration Properties > Debugging. Your
screen should resemble this image:

Intel® Fortran Compiler Classic and Intel® Fortran Compiler Developer Guide and Reference 1

2381

2. Specify the following:

Connection: Use the drop-down box to select the type of connection.

Remote Server Name: Use the drop-down box to select the name of the remote system.

Remote Command: Type the command you want to issue on the remote machine. Typically, this is a
pathname to an executable file (.exe) on the remote machine; for example: d:\remote\myapp.exe

3. Optionally, set Attach to Yes to attach to an application that is already running on the remote
machine.

To start remote debugging:

1. Make sure you have the necessary remote debugging permissions on the remote machine. For
example, you need Administrator privileges if you want to debug a process running on a remote
machine under another account name.

2. Run the Remote Debugging Monitor on the remote machine.
3. Launch Microsoft* Visual Studio* on the host machine and use it to attach to a program you want to

debug on the remote machine, or launch a program you want to debug on the remote machine.

Remote Debugging Scenario

This topic applies to Fortran applications for Windows only.

The remote debugging scenario described here includes the cross-platform and cross-compilation remote
debugging features. The following parameters apply:

 1 Intel® Fortran Compiler Classic and Intel® Fortran Compiler Developer Guide and Reference

2382

Host platform: IA-32

Remote platform: Intel® 64

Name of host machine: HOST_MACHINE (domain name of host machine)

Name of remote machine: REMOTE_SERVER (domain name of remote machine)

Host OS: Windows* 10 - 32 Bit

Remote OS: Windows 10 - 64 Bit

Executable for debugging: Win64 (x64)

Type of executable: Console application

Microsoft Visual Studio*: Microsoft Visual Studio 2017 or 2019

NOTE Support for Microsoft Visual Studio 2017 is deprecated as of the Intel®
oneAPI 2022.1 release, and will be removed in a future release.

Connection types: Remote with/without Windows authentication

Sessions: Remote debugging, remote execution, attach to process on a remote
machine

1. HOST_MACHINE

Start Microsoft Visual Studio 2019 on the host machine (HOST_MACHINE).
2. Create a new console application; for this example, use remote_2019.
3. Add the following lines to the remote_2019.f90 file:

REAL, DIMENSION(1) :: xxx = 0
PRINT *, 'Type one number: '
READ (*,'(F10.3)') xxx

4. Open Project > Properties and create a new platform configuration for x64 using the Configuration
Manager.

5. Make sure, that current (target) configuration is Debug|x64 and build the solution (Build > Build
Solution). This invokes the cross-compiler and causes the 64-bit executable file remote_2019.exe to
be built.

6. Run the remote_2019.exe application to make sure that it is 64-bit code. An error should result,
explaining that it is not a valid Win32 application.

7. Run the Remote Desktop Connection program (%SystemRoot%\System32\mstsc.exe) and connect to
the remote machine (REMOTE_SERVER).

8. Create C:\remote_dir on REMOTE_SERVER and copy remote_2019.exe from HOST_MACHINE to
REMOTE_SERVER.

9. On the HOST_MACHINE open the remote_2019.f90 source file in the Visual Studio editor.
10. Set a breakpoint at line 27.
11. Open Project > Properties and select Debugging. In the Remote Settings section, set the following

properties:

Connection: Remote with Windows authentication

Remote Machine: REMOTE_SERVER

Remote Command: C:\remote_dir\remote_2019.exe
12. Press F5 to start debugging.

If there is a firewall you will get an Unable to start debugging error message. In this case go to
REMOTE_SERVER, locate, and run the Remote Debugger application (64-but mode). Find msvsmon.exe
in the location where it was installed, or open the Start menu and search for Remote Debugger. Go
back to LOCAL_SERVER and press F5 to start debugging.

13. Go to REMOTE_SERVER and make sure that the remote_2019 application is started.

Intel® Fortran Compiler Classic and Intel® Fortran Compiler Developer Guide and Reference 1

2383

14. Type 5 and press Enter. Go back to HOST_MACHINE.
15. Verify that the Debugger reaches the breakpoint at the line 27.
16. Open the Locals window and make sure that value xxx is 64-bit.
17. Press Shift+F5 to stop debugging and terminate the application on the remote server.
18. Open the project properties again, select Debugging, and set Attach to Yes.
19. Press Ctrl+F5 (remote execution).
20. Press F5 for attaching to a process.
21. Repeat steps 12-17 to check that the attach to process works correctly.
22. Open Project > Properties and set Attach to No.
23. Open Project > Properties and set Connection to Remote with no authentication (Native only).
24. Go to REMOTE_SERVER and switch debugging monitor to No Authentication mode using the Tools >

Options menu.
25. Repeat steps 12-22 to check that Remote with no authentication (Native only) mode works correctly.

Results of Remote Debugging Exercise
The results of this remote debugging exercise for Microsoft Visual Studio 2019 are summarized in the table
below.

Connection Type Session Result Debugging Monitor status

Remote with Windows
authentication

Debug (F5) Works Monitor should be run in Windows
Authentication mode.

Execute (Ctrl
+F5)

Works

Attach to
Process

Works

Remote with no authentication
(Native only)

Debug (F5) Works Monitor should be run in No
Authentication mode.

Execute (Ctrl
+F5)

Works

Attach to
Process

Works

Program Structure
This section contains some information about Fortran program structure.

Use Module Files
A way to reduce potential confusion when you use the same source code in several projects is to organize the
routines into modules and submodules.

A module is a type of program unit that contains specifications of such entities as data objects, parameters,
structures, procedures, and operators. These precompiled specifications and definitions can be used by one
or more program units.

Partial or complete access to the module entities is provided by the program's USE statement. Typical
applications of modules are the specification of global data or the specification of a derived type and its
associated operations.

You can set up separate modules for the following:

• Commonly used routines
• Data definitions specific to certain operating systems
• System-dependent language extensions

 1 Intel® Fortran Compiler Classic and Intel® Fortran Compiler Developer Guide and Reference

2384

Submodules let you separate the interface of procedures from their implementation, making it easier to build
applications and perform maintenance.

To use a module, its source must first be compiled into a .mod file. The name of the .mod file is the module
name, not the source file name. Similarly, submodules are compiled into .smod files; their parent modules or
submodules must be compiled first. Compiling a module or submodule also creates an object file (.o or .obj)
that must be included when linking the application.

When compiling a source that has a USE statement containing a module, the compiler looks for the
corresponding .mod file in the same place it looks for include files. Submodule .smod files are used only
when a child submodule is compiled.

Some programs require modules that are located in multiple directories. You can use compiler option I when
you compile the program to specify the location of the .mod and .smod files that should be included in the
program.

Intrinsic modules, defined by the Fortran standard, are supplied in a system directory alongside the compiler
binaries and libraries. These have a .modintr file type that is searched only when the Fortran source includes
USE, INTRINSIC.

You can use compiler option module path to specify the directory in which to create the module files. If you
do not use this option, module files are created in the current directory.

When the compiler is looking for .mod and .smod files, directories are searched in this order:

1. In the directory of the source file that contains the USE statement
2. In the directories specified by compiler option module path
3. In the current working directory
4. In the directories specified by compiler options -Idir (Linux*) or /include (Windows*)
5. In the directories specified with environment variables CPATH or INCLUDE
6. In the standard system directories

If you are building your program as part of a Microsoft Visual Studio* project that has dependent projects,
the Fortran build system automatically searches the dependent projects for compiled .mod files.

NOTE
You must make sure that the module files are created before they are referenced by another program
or subprogram. If the module and its USE statement are in the same source file, the module must
appear first.

You can specify compiler option gen-dep to create a list of compiled module files that a source file depends
upon. This list can be used with build utilities such as make to specify dependencies and to ensure that files
that use a module are recompiled when the module is modified and recompiled.

Compile Programs with Modules
If a file being compiled has one or more modules defined in it, the compiler generates one or more .mod
or .smod files, along with object files.

For example, consider that file a.f90 contains modules defined as follows:

module test
integer:: a
contains
 subroutine f()
 end subroutine
end module test
module payroll
 ...
end module payroll

Intel® Fortran Compiler Classic and Intel® Fortran Compiler Developer Guide and Reference 1

2385

When the following command is specified:

ifx -c a.f90
It generates the following files:

• test.mod
• payroll.mod
• a.o (Linux*)
• a.obj (Windows*)

The .mod files contain the necessary information about the modules that have been defined in the program
a.f90.

The following example uses the program mod_def.f90, which contains a module defined as follows:

file: mod_def.f90
module definedmod
 ...
end module

When you compile the program as follows:

ifx -c mod_def.f90
It produces the object files mod_def.o (Linux*) or mod_def.obj (Windows*) and also the .mod file
definedmod.mod - all in the current directory.

file: use_mod_def.f90
program usemod
use definedmod
 ...
end program

To compile the above program, use compiler option I or module to specify the path to search and locate the
definedmod.mod file.

Example

Consider that the current directory contains the files mod_def.f90 and use_mod_def.f90, and it also
contains the subdirectory my_modules.

If you execute the following command on Linux*, it creates the file definedmod.mod in the subdirectory
my_modules, and it creates the file mod_def.o in the current directory:

ifx -c -module ./my_modules mod_def.f90
If you then execute either of the following commands, it creates the executable file ./a.out:

ifx -c -module ./my_modules use_mod_def.f90 mod_def.o
ifx -c -I ./my_modules use_mod_def.f90 mod_def.o

See Also
gen-dep compiler option
I compiler option
module compiler option
SUBMODULE statement
USE statement

 1 Intel® Fortran Compiler Classic and Intel® Fortran Compiler Developer Guide and Reference

2386

Use Include Files
Include files are brought into a program with the #include preprocessor directive or a Fortran INCLUDE
statement.

The compiler searches for include files in this order:

1. In the directory of the source file that contains the include
2. In the current working directory
3. In the directories specified by compiler option I
4. In the directory specified by compiler option -isystem (Linux* only)
5. In the directories specified with environment variables CPATH (Linux*) or INCLUDE (Windows*)
6. In the standard system directories

The locations of directories to be searched are known as the include file path. More than one directory can be
specified in the include file path.

Specify and Remove an Include File Path
You can use compiler option I to indicate the location of include files (and also module files).

To prevent the compiler from searching the default path specified by the CPATH or the INCLUDE environment
variable, use compiler option -X or /noinclude.

You can specify these options in the configuration file, ifx.cfg (or ifort.cfg), or on the command line.

For example, to direct the compiler to search a specified path instead of the default path, use the following
command:

Linux

ifx -X -I/alt/include newmain.f
Windows

ifx /noinclude /IC:\Project2\include newmain.f

See Also
I compiler option
INCLUDE statement
isystem compiler option
X compiler option

Advantages of Internal Procedures
Functions or subroutines that are used in only one program can be organized as internal procedures,
following the CONTAINS statement of a program or module.

Internal procedures have the advantage of host association, that is, variables declared and used in the main
program are also available to any internal procedure it may contain. For more information on procedures and
host association, see Program Units and Procedures.

Internal procedures, like modules, provide a means of encapsulation. Modules can be used to store routines
commonly used by many programs; internal procedures separate functions and subroutines whose use is
limited or temporary.

See Also
CONTAINS statement
Program Units and Procedures

Intel® Fortran Compiler Classic and Intel® Fortran Compiler Developer Guide and Reference 1

2387

Implications for Array Copies
Fortran language semantics sometimes require the compiler to make a temporary copy of an array or array
slice. Situations where this can occur include:

• Passing a non-contiguous array to a procedure that does not declare it as assumed-shape
• Array expressions, especially those involving intrinsic functions RESHAPE, PACK, and MERGE
• Assignments of arrays where the array appears on both the left and right-hand sides of the assignment
• Assignments of POINTER arrays

By default, these temporary values are created on the stack and, if large, may result in a stack overflow
error at runtime. The size of the stack can be increased, but with limitations dependent on the operating
system. If you use compiler option heap-arrays, it tells the compiler to use heap allocation, rather than the
stack, for such temporary copies. Heap allocation adds a small amount of overhead when creating and
removing the temporary values, but this is usually inconsequential in comparison to the rest of the code.

Performance can be further improved by entirely eliminating the need for a temporary copy. For the first case
in the above list, passing a non-contiguous array to a procedure expecting a contiguous array, enabling
compiler option check:arg_temp_created will produce a runtime informational message when the compiler
determines that the argument being passed is not contiguous. A runtime test is performed and if the
argument is contiguous, no copy is made. However, this option will not issue a diagnostic message for other
uses of temporary copies.

One way to avoid temporary copies for array arguments is to change the called procedure to declare the
array as assumed-shape, with the DIMENSION(:) attribute. Such procedures require an explicit interface to
be visible to the caller. This is best provided by placing the called procedure in a module or a CONTAINS
section. As an alternative, an INTERFACE block can be declared.

Use of POINTER arrays makes it difficult for the compiler to know if a temporary value can be avoided. Where
possible, replace POINTER with ALLOCATABLE, especially as components of derived types. The language
definition directs the compiler to assume that ALLOCATABLE arrays are contiguous and that they do not
overlap other variables, unlike POINTERs.

Another situation where the temporary values can be created is for automatic arrays, where an array's
bounds are dependent on a routine argument, use or host associated variable, or COMMON variable, and the
array is a local variable in the procedure. As above, these automatic arrays are created on the stack by
default; compiler option heap-arrays creates them on the heap. Consider making such arrays ALLOCATABLE
instead; local ALLOCATABLE variables that do not have the SAVE attribute are automatically deallocated
when the routine exits. For example, replace:

SUBROUTINE SUB (N)
INTEGER, INTENT(IN) :: N
REAL :: A(N)

with:

SUBROUTINE SUB(N)
INTEGER, INTENT(IN) :: N
REAL, ALLOCATABLE :: A(:)
ALLOCATE (A(N))

See Also
ALLOCATABLE statement
check compiler option
DIMENSION statement
heap-arrays compiler option
MERGE intrinsic function
PACK Function
POINTER - Fortran statement
RESHAPE intrinsic function
SAVE statement

 1 Intel® Fortran Compiler Classic and Intel® Fortran Compiler Developer Guide and Reference

2388

Optimization and Programming
This section contains information about features related to code optimization and program performance
improvement.

OpenMP* Support
The Intel® Fortran Compiler Classic and Intel® Fortran Compiler support OpenMP* Fortran compiler directives
that comply with OpenMP Fortran Application Program Interface (API) specification 5.0, most of the OpenMP
Version 5.1 and OpenMP Version 5.2 specifications, and some of the OpenMP 6.0 Version TR12 specifications.

For the complete OpenMP specification, read the specifications available from the OpenMP web site. The
descriptions of OpenMP language characteristics in this documentation often use terms defined in that
specification.

The OpenMP API provides symmetric multiprocessing (SMP) with the following major features:

• Relieves you from implementing the low-level details of iteration space partitioning, data sharing, thread
creation, scheduling, or synchronization.

• Provides the benefit of performance available from shared memory multiprocessor and multi-core
processor systems on all supported Intel architectures, including those processors with Intel® Hyper-
Threading Technology (Intel® HT Technology).

• Provides mechanisms mapping data and offloading code from the CPU to GPUs or other devices.

The compiler performs transformations to generate multithreaded code based on your placement of OpenMP
directives in the source program, making it simple to add threading to existing software. The compiler
compiles parallel programs and supports the industry-standard OpenMP directives.

The compiler provides Intel®-specific extensions to the OpenMP specification including runtime library
routines and environment variables. A summary of the compiler options appear in the OpenMP Options Quick
Reference.

The compiler provides support for many OpenMP directives. For more information, see the OpenMP* Fortran
Compiler Directives section.

Parallel Processing and Device Offloading with OpenMP
To compile with the OpenMP API, add the directives in the form of the Fortran program comments to your
code. For parallel directives, the compiler processes the code and internally produces a multithreaded version
that is then compiled into an executable with the parallelism implemented by threads that execute parallel
regions or constructs.

For offloading, the compiler processes the data mapping and targeting directives, producing the code to
move data to and from the target device, and to generate versions of the code that will execute on the target
device.

Using Other Compilers
The OpenMP specification does not define interoperability of multiple implementations, so the OpenMP
implementation supported by other compilers and OpenMP support in the Intel® Fortran Compiler Classic and
Intel® Fortran Compiler might not be interoperable. Even if you compile and build the entire application with
one compiler, be aware that different compilers might not provide OpenMP source compatibility that enable
you to compile and link the same set of application sources with a different compiler and get the expected
parallel execution results.

Intel® Fortran Compiler
For details about OpenMP features that are implemented in the Intel® Fortran Compiler (ifx) for this release,
refer to Fortran Language and OpenMP* Features Implemented in Intel® Fortran Compiler.

Intel® Fortran Compiler Classic and Intel® Fortran Compiler Developer Guide and Reference 1

2389

http://www.openmp.org
https://www.intel.com/content/www/us/en/developer/articles/technical/fortran-language-and-openmp-features-in-ifx.html

Add OpenMP* Support
To add OpenMP* support to your application, do the following:

1. Add the appropriate OpenMP directives to your source code.
2. Compile the application with option -qopenmp (Linux*) or /Qopenmp (Windows*) to enable recognition

of OpenMP parallel and loop transformation directives.
3. Compile the application with options -qopenmp and -qopenmp-targets (Linux) or options /Qopenmp

and /Qopenmp-targets (Windows) to enable recognition of offloading and data mapping directives to
offload to a specified device (available for ifx only).

4. For applications with large local or temporary arrays, you may need to increase the stack space
available at runtime. In addition, you may need to increase the stack allocated to individual threads by
using the OMP_STACKSIZE environment variable or by setting the corresponding library routines.

You can set other environment variables to control multi-threaded code execution.

OpenMP Directive Syntax
To add OpenMP support to your application, first add appropriate OpenMP directives to your source code.

OpenMP directives use a specific format and syntax. Intel Extension Routines to OpenMP describes the
OpenMP extensions to the specification that have been added to the Intel® Fortran Compiler.

To use directives in your source, use this syntax:

<prefix> <directive> [<clause>[[,]<clause>...]]
where:

• <prefix> - Required for all OpenMP directives. For free format source input, the prefix is !$OMP only; for
fixed format source input, the prefix is !$OMP, *$OMP, or C$OMP. Directives that are extensions to OpenMP
have a free format prefix of !$OMPX and fixed format prefixes of !OMX, COMX, or *$OMX.

• <directive> - A valid OpenMP directive. Must immediately follow the prefix; for example: !$OMP
PARALLEL.

• [<clause>] - Optional. Clauses can be in any order and repeated as necessary, unless otherwise
restricted.

• <newline> - A required component of directive syntax. It precedes the structured block that is enclosed
by this directive.

• [,]: Optional. Commas between more than one <clause> are optional.

The directives are interpreted as comments if you omit the /Qopenmp (Windows) or -qopenmp (Linux)
option.

The OpenMP constructs have one of the following syntax forms:

!$OMP <directive>
 <structured block of code>
!$OMP END <directive>
 # OR
!$OMP <directive>
 <structured block of code>
 # OR
!$OMP <directive>

The following example demonstrates one way of using an OpenMP directive to parallelize a loop:

subroutine simple_omp(a, N)
 use omp_lib
 integer :: N, a(N)
!$OMP PARALLEL DO
 do i = 1, N

 1 Intel® Fortran Compiler Classic and Intel® Fortran Compiler Developer Guide and Reference

2390

 a(i) = i*2
 end do
end subroutine simple_omp

Compile the Application
Options -qopenmp (Linux) and /Qopenmp (Windows) enable the parallelizer to generate multi-threaded code
based on the OpenMP directives in the source. The code can be executed in parallel on single processor,
multi-processor, or multi-core processor systems.

The options -qopenmp with -qopenmp-targets (Linux) and the options /Qopenmp with /Qopenmp-targets
(Windows) enable recognition of device targeting and data mapping directives and generation of code to map
data to and from a specified device, and to generate target code for that device.

These options work with both -O0 (Linux) and /Od (Windows*) and with any optimization level of O1, O2 and
O3.

Specifying -O0 (Linux) or /Od (Windows) with these options helps to debug OpenMP applications.

Compile your application using a command similar to one of the following:

Linux

ifx -qopenmp source_file
Windows

ifx /Qopenmp source_file
For example, to compile the previous code example without generating an executable, use the c option:

Linux

ifx -qopenmp -c parallel.f90
Windows

ifx /Qopenmp /c parallel.f90
To build your application with target offload support (introduced since OpenMP 4.0) use compiler options to
specify the target for which the regions marked with OpenMP "target" directives must be compiled. For
example:

Linux

ifx -qopenmp -fopenmp-targets=spir64 offload.f90
Windows

ifx /Qopenmp /Qopenmp-targets:spir64 offload.f90
For more information, see C/C++ or Fortran with OpenMP* Offload Programming Model.

Configure the OpenMP Environment

Before you run the multi-threaded code, you can set the number of desired threads using the OpenMP
environment variable, OMP_NUM_THREADS.

See Also
c compiler option
O compiler option
OpenMP* Examples
qopenmp, Qopenmp compiler option

Intel® Fortran Compiler Classic and Intel® Fortran Compiler Developer Guide and Reference 1

2391

https://www.intel.com/content/www/us/en/develop/documentation/get-started-with-cpp-fortran-compiler-openmp/top.html

Parallel Processing Model
A program containing OpenMP* directives begins execution as a single thread, called the initial thread of
execution. The initial thread executes sequentially until the first parallel construct is encountered.

The PARALLEL and END PARALLEL directives define the extent of the parallel construct. When the initial
thread encounters a parallel construct, it creates a team of threads, with the initial thread becoming the
primary thread of the team. All program statements enclosed by the parallel construct are executed in
parallel by each thread in the team, including all routines called from within the enclosed statements.

The TARGET and END TARGET directives define a block of code that is to be offloaded for execution on a GPU
device. The DECLARE TARGET directive identifies a procedure that has a GPU device version that is to be
called from a TARGET region.

The statements enclosed lexically within a construct define the static extent of the construct. The dynamic
extent includes all statements encountered during the execution of a construct by a thread, including all
called routines.

When a thread encounters the end of a structured block enclosed by a parallel construct, the thread waits
until all threads in the team have arrived. When that happens the team is dissolved, and only the primary
thread continues execution of the code following the parallel construct. The other threads in the team enter a
wait state until they are needed to form another team. You can specify any number of parallel constructs in a
single program. As a result, thread teams can be created and dissolved many times during program
execution.

The following example illustrates, from a high level, the execution model for the OpenMP constructs. The
comments in the code explain the structure of each construct or section.

PROGRAM MAIN ! Begin serial execution.
 ... ! Only the initial thread executes.
 !$OMP PARALLEL ! Begin a Parallel construct, form a team.
 ... ! This code is executed by each team member.
 !$OMP SECTIONS ! Begin a worksharing construct.
 !$OMP SECTION ! One unit of work.
 ... !
 !$OMP SECTION ! Another unit of work.
 ... !
 !$OMP END SECTIONS ! Wait until both units of work complete.
 ... ! More Replicated Code.
 !$OMP DO ! Begin a worksharing construct,
 DO ! each iteration is a unit of work.
 ... ! Work is distributed among the team.
 END DO !
 !$OMP END DO NOWAIT ! End of worksharing construct, NOWAIT
 ! is specified (threads need not wait).
 ! This code is executed by each team member.
 !$OMP CRITICAL ! Begin critical construct.
 ... ! One thread executes at a time.
 !$OMP END CRITICAL ! End the critical construct.
 ... ! This code is executed by each team member.
 !$OMP BARRIER ! Wait for all team members to arrive.
 ... ! This code is executed by each team member.
 !$OMP END PARALLEL ! End of parallel construct, disband team
 ! and continue with serial execution.
 !$OMP TARGET ! This code is compiled and executed on a GPU device
 ...
 !$OMP END TARGET
 ... ! Possibly more parallel or offload constructs
END PROGRAM MAIN ! End serial execution.

 1 Intel® Fortran Compiler Classic and Intel® Fortran Compiler Developer Guide and Reference

2392

Use Orphaned Directives
In routines called from within parallel constructs, you can also use directives. Directives that are not in the
static extent of the parallel construct, but are in the dynamic extent, are called orphaned directives.
Orphaned directives allow you to execute portions of your program in parallel with only minimal changes to
the sequential version of the program. Using this functionality, you can code parallel constructs at the top
levels of your program call tree and use directives to control execution in any of the called routines. For
example:

subroutine F
...
!$OMP PARALLEL...
 call G
...
subroutine G
!$OMP DO... ! This is an orphaned directive.
...

This is an orphaned DO directive since the parallel region is not lexically present in subroutine G .

Data Environment
You can control the data environment of OpenMP constructs by using data environment clauses supported by
the construct. You can also privatize named global-lifetime objects by using the THREADPRIVATE directive.

Refer to the OpenMP specification for the full list of data environment clauses. Some commonly used ones
include:

• DEFAULT
• SHARED
• PRIVATE
• FIRSTPRIVATE
• LASTPRIVATE
• REDUCTION
• LINEAR
• MAP

You can use several directive clauses to control the data scope attributes of variables for the duration of the
construct in which you specify them; however, if you do not specify a data scope attribute clause on a
directive, the behavior for the variable is determined by the default scoping rules, which are described in the
OpenMP specification, for the variables affected by the directive.

Determine How Many Threads to Use
For applications where the workload depends on application input that can vary widely, delay the decision
about the number of threads to employ until runtime when the input sizes can be examined. Examples of
workload input parameters that affect the thread count include things like matrix size, database size, image/
video size and resolution, depth/breadth/bushiness of tree-based structures, and size of list-based
structures. Similarly, for applications designed to run on systems where the processor count can vary widely,
defer choosing the number of threads to employ until application runtime when the machine size can be
examined.

For applications where the amount of work is unpredictable from the input data, consider using a calibration
step to understand the workload and system characteristics to aid in choosing an appropriate number of
threads. If the calibration step is expensive, the calibration results can be made persistent by storing the
results in a permanent place like the file system.

Avoid simultaneously using more threads than the number of processing units on the system. This situation
causes the operating system to multiplex threads on the processors and typically yields sub-optimal
performance.

Intel® Fortran Compiler Classic and Intel® Fortran Compiler Developer Guide and Reference 1

2393

When developing a library as opposed to an entire application, provide a mechanism whereby the user of the
library can conveniently select the number of threads used by the library, because it is possible that the user
has outer-level parallelism that renders the parallelism in the library unnecessary or even disruptive.

Use the NUM_THREADS clause on parallel regions to control the number of threads employed and use the IF
clause on parallel regions to decide whether to employ multiple threads at all. The
OMP_SET_NUM_THREADS() routine can also be used, but it also affects parallel regions created by the
calling thread. The NUM_THREADS clause is local in its effect, so it does not impact other parallel regions.
The disadvantages of explicitly setting the number of threads are:

1. In a system with a large number of processors, your application will use some but not all of the
processors.

2. In a system with a small number of processors, your application may force over subscription that
results in poor performance.

The Intel OpenMP runtime will create the same number of threads as the available number of logical
processors unless you use the OMP_SET_NUM_THREADS() routine. To determine the actual limits, use
OMP_GET_THREAD_LIMIT() and OMP_GET_MAX_ACTIVE_LEVELS(). Developers should carefully consider
their thread usage and nesting of parallelism to avoid overloading the system. The OMP_THREAD_LIMIT
environment variable limits the number of OpenMP threads to use for the whole OpenMP program. The
OMP_MAX_ACTIVE_LEVELS environment variable limits the number of active nested parallel regions.

Binding Sets and Binding Regions
The binding task set for an OpenMP construct is the set of tasks that are affected by, or provide the context
for, the execution of its region. It can be all tasks, the current team tasks, all tasks of the current team that
are generated in the region, the binding implicit task, or the generating task.

The binding thread set for an OpenMP construct is the set of threads that are affected by, or provide the
context for, the execution of its region. It can be all threads on a device, all threads in a contention group, all
primary threads executing an enclosing teams region, the current team, or the encountering thread.

The binding region for an OpenMP construct is the enclosing region that determines the execution context
and the scope of the effects of the directive:

• The binding region for an ORDERED construct is the innermost enclosing DO loop region.
• The binding region for a TASKWAIT construct is the innermost enclosing TASK region.
• For all other constructs for which the binding thread set is the current team or the binding task set is the

current team tasks, the binding region is the innermost enclosing PARALLEL region.
• For constructs for which the binding task set is the generating task, the binding region is the region of the

generating task.
• A PARALLEL construct need not be active to be a binding region.
• A TASK construct need not be explicit to be a binding region.
• A region never binds to any region outside of the innermost enclosing parallel region.
• See specific directive pages for binding information for additional directives.

Control Thread Allocation
The KMP_HW_SUBSET and KMP_AFFINITY environment variables allow you to control how the OpenMP*
runtime uses the hardware threads on the processors. These environment variables allow you to try different
thread distributions on the cores of the processors and determine how these threads are bound to the cores.
You can use the environment variables to work out what is optimal for your application.

The KMP_HW_SUBSET variable controls the allocation of hardware resources and the KMP_AFFINITY variable
controls how the OpenMP threads are bound to those resources.

 1 Intel® Fortran Compiler Classic and Intel® Fortran Compiler Developer Guide and Reference

2394

Control Thread Distribution
The KMP_HW_SUBSET variable controls the hardware resources that will be used by the program. This variable
often specifies three layers of machine topology: the number of sockets to use, how many cores to use per
socket, and how many threads to use per core. For example, KMP_HW_SUBSET=2s,12c,2t means to use two
sockets, 12 cores per socket, and two threads per core, giving a total of 48 available hardware threads.

When more layers exist (NUMA domain, tile, etc.) in the machine topology, you can specify those layers as
well. For example, KMP_HW_SUBSET=2s,2n,8c,2t means to use two sockets, two NUMA domains per socket,
eight cores per NUMA domain, and two threads per core, giving a total of 64 available hardware threads. For
historical reasons, when a layer is not explicitly specified in KMP_HW_SUBSET, it is assumed you want all the
resources in that unspecified layer. You can use KMP_AFFINITY=verbose to see all the different detected
layers in the machine. For example, KMP_HW_SUBSET=2s,2t is interpreted to mean use two sockets, all cores
per socket (and possibly all resources of other detected layers as well), and two threads per layer.

When available, you can specify core attributes to choose different sets of cores. The core attributes are
appended to the regular core layer specification with a colon (:) and attribute. There are two attributes to
help filter types of cores:

1. Core type, specified as intel_core, or intel_atom.
2. Core efficiency, specified as effnum where num is a non-negative integer from zero to the number of

core efficiencies detected minus one. The larger the efficiency the more performant the core. For
example, KMP_HW_SUBSET=4c:eff0,5c:eff1 will select all sockets, four cores of efficiency 0, five
cores of efficiency 1, and all threads per those cores.

There is also a special syntax to explicitly request all resources at a specific layer. Instead of specifying a
positive integer, you can use an optional asterisk (*). For example, KMP_HW_SUBSET=*c:eff0 or
KMP_HW_SUBSET=c:eff0 will request all the cores of efficiency 0.

Consider a system with 24 cores and four hardware threads per core. While specifying two threads per core
often yields better performance than one thread per core, specifying three or four threads per core may or
may not improve the performance. This variable enables you to conveniently measure the performance of up
to four threads per core.

For example, you can determine the effects of assigning 24, 48, 72, or the maximum 96 OpenMP threads in
a system with 24 cores by specifying the following variable settings:

To Assign This Number of
Threads ...

... Use This Setting

24 KMP_HW_SUBSET=24c,1t

48 KMP_HW_SUBSET=24c,2t

72 KMP_HW_SUBSET=24c,3t

96 KMP_HW_SUBSET=24c,4t

Caution
Take care when using the OMP_NUM_THREADS variable along with this variable. Using the
OMP_NUM_THREADS variable can result in over or under subscription.

Intel® Fortran Compiler Classic and Intel® Fortran Compiler Developer Guide and Reference 1

2395

NOTE
If you use KMP_HW_SUBSET to specify more resources than the system has, the runtime will issue a
warning and ignore the setting. For example, setting KMP_HW_SUBSET=24c,5t will be ignored on a
system where each core has four hardware threads.

Control Thread Bindings
The KMP_AFFINITY variable controls how the OpenMP threads are bound to the hardware resources allocated
by the KMP_HW_SUBSET variable. While this variable can be set to several binding or affinity types, the
following are the recommended affinity types to use to run your OpenMP threads on the processor:

• compact: Distribute the threads sequentially among the cores.
• scatter: Distribute the threads among the cores in a round robin manner. Distribution is one thread per

core initially, followed by repeat distribution among the cores.

The following table shows how the threads are bound to the cores when you want to use three threads per
core on two cores by specifying KMP_HW_SUBSET=2c,3t:

Affinity OpenMP Threads on Core
0

OpenMP Threads on Core 1

KMP_AFFINITY=compact 0, 1, 2 3, 4, 5

KMP_AFFINITY=scatter 0, 2, 4 1, 3, 5

Determine the Best Setting
To determine the best thread distribution and bindings using these variables, use the following:

1. Ensure that your OpenMP code is working properly before using these environment variables.
2. Establish a baseline with your current OpenMP code to compare to the performance when you allocate

the threads to a processor.
3. Measure the performance of distributing one, two, three, or four threads per core by use the

KMP_HW_SUBSET variable.
4. Measure the performance of binding the threads to the cores by using the KMP_AFFINITY variable.

See Also
Thread Affinity Interface
Supported Environment Variables

OpenMP* Library Support
This section provides information about OpenMP* runtime library routines, Intel® compiler extension routines
to OpenMP, OpenMP support libraries and how to use them, and the thread affinity interface. It also provides
information about OpenMP memory spaces and allocators. For a full list of runtime libraries and additional
information about them, see the OpenMP specification.

OpenMP* Runtime Library Routines

OpenMP* provides runtime library routines to help you manage your program in parallel mode. Many of these
runtime library routines have corresponding environment variables that can be set as defaults. The runtime
library routines let you dynamically change these factors to assist in controlling your program. In all cases, a
call to a runtime library routine overrides any corresponding environment variable. These routines are all
external procedures.

 1 Intel® Fortran Compiler Classic and Intel® Fortran Compiler Developer Guide and Reference

2396

Caution
Running OpenMP runtime library routines may initialize the OpenMP runtime environment, which might
cause a situation where subsequent programmatic setting of OpenMP environment variables has no
effect. To avoid this situation, you can use the Intel extension routine kmp_set_defaults() to set
OpenMP environment variables.

The compiler supports all the OpenMP runtime library routines. Refer to the OpenMP API specification for
detailed information about using these routines.

Include the appropriate declarations of the routines in the program unit containing the routine by adding a
statement similar to the following:

use omp_lib
The compiler provides module files in the ../include (Linux*) or ..\include (Windows*) directory of your
compiler installation.

The integer parameter openmp_version in omp_lib.mod (and omp_lib.h, an INCLUDE version of
omp_lib.mod) has the decimal value yyyymm where yyyy and mm are the year and month of the version of
the OpenMP API supported by the current version of the compiler and libraries. See the predefined
preprocessor symbol _OPENMP for more information.

The following table lists the keys that specify the data types of the dummy arguments for each of the listed
routines:

Key OMP_LIB Kind BIND(C) Kind KIND=

INTEGER (int) OMP_INTEGER_KIND C_INT 4

LOGICAL (log) OMP_LOGICAL_KIND 4

REAL (dp) DOUBLE PRECISION C_DOUBLE 8

INTEGER(OMP_LOCK_KIND) C_INTPTR_T intptr_t <<1>>

INTEGER(OMP_NEST_LOCK_KIN
D)

C_INTPTR_T intptr_t <<1>>

INTEGER (OMP_SCHED_KIND) OMP_INTEGER_KIND C_INT 4

INTEGER(OMP_PROC_BIND_KIN
D)

OMP_INTEGER_KIND C_INT 4

INTEGER(OMP_SYNC_HINT_KIND
)

C_INTPTR_T intptr_t <<1>>

intptr_t is an integer that is large enough to hold a pointer (address). With the Intel® Fortran Compiler, this
is INTEGER(4) when building a 32-bit application and INTEGER(8) when building a 64-bit application. It is the
value returned by the Intel Fortran intrinsic INT_PTR_KIND().

Thread Team Routines
Routines that affect and monitor thread teams in the current contention group.

Routine Description

SUBROUTINE OMP_SET_NUM_THREADS(num_threads)
INTEGER(int) num_threads

Sets the number of threads to use for
subsequent parallel regions created by
the calling thread.

Intel® Fortran Compiler Classic and Intel® Fortran Compiler Developer Guide and Reference 1

2397

Routine Description

INTEGER(int) FUNCTION OMP_GET_NUM_THREADS() Returns the number of threads that are
being used in the current parallel region.

This function does not necessarily return
the value inherited by the calling thread
from the OMP_SET_NUM_THREADS()
function.

INTEGER(int) FUNCTION OMP_GET_MAX_THREADS() Returns the number of threads available
to subsequent parallel regions created
by the calling thread.

INTEGER(int) FUNCTION OMP_GET_THREAD_NUM() Returns the thread number of the calling
thread, within the context of the current
parallel region.

LOGICAL(log) FUNCTION OMP_IN_PARALLEL() Returns .TRUE. if called within the
dynamic extent of a parallel region
executing in parallel; otherwise
returns .FALSE..

SUBROUTINE OMP_SET_DYNAMIC(dynamic_threads)
LOGICAL dynamic_threads

Enables or disables dynamic adjustment
of the number of threads used to
execute a parallel region. If
dynamic_threads is .TRUE., dynamic
threads are enabled. If
dynamic_threads is .FALSE., dynamic
threads are disabled. Dynamic threads
are disabled by default.

LOGICAL(log) FUNCTION OMP_GET_DYNAMIC() Returns .TRUE. if dynamic thread
adjustment is enabled, otherwise
returns .FALSE..

LOGICAL(log) FUNCTION OMP_GET_CANCELLATION() Returns .TRUE. if cancellation is
enabled, otherwise returns .FALSE..

This routine can be affected by the setting for
environment variable OMP_CANCELLATION.

Deprecated

SUBROUTINE OMP_SET_NESTED(nested)
LOGICAL(log) nested

Enables or disables nested parallelism. If
nested is .TRUE., nested parallelism is
enabled. If nested is .FALSE., nested
parallelism is disabled. Nested
parallelism is disabled by default.

Deprecated

LOGICAL FUNCTION OMP_GET_NESTED()

Returns .TRUE. if nested parallelism is
enabled, otherwise returns .FALSE..

SUBROUTINE OMP_SET_SCHEDULE(kind,chunk_size)
INTEGER(KIND=omp_sched_kind) kind
INTEGER(int) chunk_size

Determines the schedule of a
worksharing loop that is applied when
'runtime' is used as the schedule kind.

 1 Intel® Fortran Compiler Classic and Intel® Fortran Compiler Developer Guide and Reference

2398

Routine Description

SUBROUTINE OMP_GET_SCHEDULE(kind,chunk_size)
INTEGER(KIND=omp_sched_chunk_size) kind
INTEGER(int) chunk_size

Returns the schedule of a worksharing
loop that is applied when the 'runtime'
schedule is used.

INTEGER FUNCTION OMP_GET_THREAD_LIMIT() Returns the maximum number of
simultaneously executing threads in an
OpenMP program.

INTEGER FUNCTION OMP_GET_SUPPORTED_ACTIVE_LEVELS() Returns the number of active levels of
parallelism supported by the
implementation.

SUBROUTINE
OMP_SET_MAX_ACTIVE_LEVELS(max_active_levels)
INTEGER max_active_levels

Limits the number of nested active
parallel regions. The call is ignored if
negative max_active_levels are
specified.

INTEGER FUNCTION OMP_GET_MAX_ACTIVE_LEVELS() Returns the maximum number of nested
active parallel regions.

INTEGER FUNCTION OMP_GET_LEVEL() Returns the number of nested parallel
regions (whether active or inactive)
enclosing the task that contains the call,
not including the implicit parallel region.

INTEGER FUNCTION
OMP_GET_ANCESTOR_THREAD_NUM(level)
INTEGER level

Returns the thread number of the
ancestor at a given nest level of the
current thread.

INTEGER FUNCTION OMP_GET_TEAM_SIZE(level)
INTEGER level

Returns the size of the thread team to
which the ancestor or the current thread
belongs for the specified nested level of
the current thread.

INTEGER FUNCTION OMP_GET_ACTIVE_LEVEL() Returns the number of nested, active
parallel regions enclosing the task that
contains the call.

The following parameter constants are defined in OMP_LIB.MOD and can be set or returned in the KIND
dummy argument in OMP_SET_SCHEDULE and OMP_GET_SCHEDULE:

integer(omp_sched_kind), parameter :: omp_sched_static = 1
integer(omp_sched_kind), parameter :: omp_sched_dynamic = 2
integer(omp_sched_kind), parameter :: omp_sched_guided = 3
integer(omp_sched_kind), parameter :: omp_sched_auto = 4

Thread Affinity Routines
Routines that affect and access thread affinity policies that are in effect.

Function Description

INTEGER(KIND=OMP_PROC_BIND_KIND)
OMP_GET_PROC_BIND()

Returns the currently active thread affinity policy,
which can be initialized by the environment variable
OMP_PROC_BIND.

Intel® Fortran Compiler Classic and Intel® Fortran Compiler Developer Guide and Reference 1

2399

Function Description

This policy is used for subsequent nested parallel
regions.

INTEGER(int) FUNCTION
OMP_GET_NUM_PLACES()

Returns the number of places available to the
execution environment in the place list of the initial
task, usually threads, cores, or sockets.

INTEGER(int) FUNCTION
OMP_GET_PLACE_NUM_PROCS(place_num)
INTEGER(int) place_num

Returns the number of processors associated with
the place numbered place_num. The routine
returns zero when place_num is negative or is
greater than or equal to OMP_GET_NUM_PLACES().

SUBROUTINE
OMP_GET_PLACE_PROC_IDS(place_num,ids)
INTEGER(int) place_num
INTEGER(int) ids(*)

Returns the numerical identifiers of each processor
associated with the place numbered place_num.
The numerical identifiers are non-negative and their
meaning is implementation defined. The numerical
identifiers are returned in the array ids and their
order in the array is implementation defined.ids
must have at least
OMP_GET_PLACE_NUM_PROCS(place_num)
elements. The routine has no effect when
place_num is negative or greater than or equal to
OMP_GET_NUM_PLACES().

INTEGER(int) FUNCTION OMP_GET_PLACE_NUM() Returns the place number of the place to which the
encountering thread is bound. The returned value is
between 0 and OMP_GET_NUM_PLACES() - 1,
inclusive. When the encountering thread is not
bound to a place, the routine returns -1.

INTEGER FUNCTION
OMP_GET_PARTITION_NUM_PLACES()

Returns the number of places in the place partition
of the innermost implicit task.

SUBROUTINE
OMP_GET_PARTITION_PLACE_NUMS(place_nums)
INTEGER(int) place_nums(*)

Returns the list of place numbers corresponding to
the places in the place-partition-var ICV of the
innermost implicit task. The array place_nums
must be sufficiently large to contain
OMP_GET_PARTITION_NUM_PLACES() elements.

SUBROUTINE
OMP_SET_AFFINITY_FORMAT(format)
CHARACTER(LEN=*),INTENT(IN) :: format

Sets the affinity format to be used on the device by
setting the value of the affinity-format-var ICV.

INTEGER FUNCTION
OMP_GET_AFFINITY_FORMAT(buffer)
CHARACTER(LEN=*),INTENT(OUT) :: buffer

Returns the value of the affinity-format-var ICV on
the device.

SUBROUTINE OMP_DISPLAY_AFFINITY(format)
CHARACTER(LEN=*),INTENT(IN) :: format

Prints the OpenMP thread affinity information using
the format specification provided.

INTEGER FUNCTION
OMP_CAPTURE_AFFINITY(buffer, format)

Prints the OpenMP thread affinity information into a
buffer using the format specification provided.

 1 Intel® Fortran Compiler Classic and Intel® Fortran Compiler Developer Guide and Reference

2400

Function Description

CHARACTER(LEN=*),INTENT(OUT) :: buffer
CHARACTER(LEN=*),INTENT(IN) :: format

The following parameter constants are defined in OMP_LIB.MOD and represent values returned by
OMP_GET_PROC_BIND:

integer (omp_proc_bind_kind), parameter :: omp_proc_bind_false = 0
integer (omp_proc_bind_kind), parameter :: omp_proc_bind_true = 1
integer (omp_proc_bind_kind), parameter :: omp_proc_bind_master = 2
integer (omp_proc_bind_kind), parameter :: omp_proc_bind_close = 3
integer (omp_proc_bind_kind), parameter :: omp_proc_bind_spread = 4

Teams Region Routines
Routines that affect and monitor the league of teams that may execute a TEAMS region.

Function Description

INTEGER(int) FUNCTION OMP_GET_NUM_TEAMS() Returns the number of initial teams in the current
TEAMS region.

INTEGER(int) FUNCTION OMP_GET_TEAM_NUM() Returns the team number of the calling thread.

SUBROUTINE OMP_SET_NUM_TEAMS(num_teams)
INTEGER num_teams

Affects the number of threads to be used for
subsequent TEAMS regions that do not specify a
NUM_TEAMS clause.

INTEGER FUNCTION OMP_GET_MAX_TEAMS() Returns an upper bound on the number of teams
that could be created by a TEAMS construct without
a NUM_TEAMS clause that is encountered after
execution returns from this routine.

SUBROUTINE
OMP_SET_TEAMS_THREAD_LIMIT(thread_limit)
INTEGER thread_limit

Defines the maximum number of OpenMP threads
that can participate in each contention group
created by a TEAMS construct.

INTEGER FUNCTION
OMP_GET_TEAMS_THREAD_LIMIT()

Returns the maximum number of OpenMP threads
available to participate in each contention group
created by a TEAMS construct.

Tasking Routines
Routines that pertain to OpenMP explicit tasks.

Function Description

INTEGER(int) FUNCTION
OMP_GET_MAX_TASK_PRIORITY()

Returns the maximum value that can be specified in
the PRIORITY clause.

LOGICAL(log) FUNCTION
OMP_IN_EXPLICIT_TASK()

Returns .TRUE. if called within an explicit task
region; otherwise returns .FALSE..

LOGICAL(log) FUNCTION OMP_IN_FINAL() Returns .TRUE. if called within a final task region;
otherwise returns .FALSE..

Intel® Fortran Compiler Classic and Intel® Fortran Compiler Developer Guide and Reference 1

2401

Resource Relinquishing Routines
Routines that relinquish resources used by the OpenMP runtime. These routines are only effective on the host
device.

Function Description

INTEGER FUNCTION OMP_PAUSE_RESOURCE(kind,
device_num)
INTEGER (OMP_PAUSE_RESOURCE_KIND) kind
INTEGER device_num

Allows the runtime to relinquish resources used by
OpenMP on the specified device. The routine
returns zero in case of success, and non-zero
otherwise.

INTEGER FUNCTION
OMP_PAUSE_RESOURCE_ALL(kind)
INTEGER (OMP_PAUSE_RESOURCE_KIND) kind

Allows the runtime to relinquish resources used by
OpenMP on all devices. The routine returns zero in
case of success, and non-zero otherwise.

Device Information Routines
Routines that pertain to the set of devices that are accessible to an OpenMP program.

Function Description

INTEGER(int) FUNCTION OMP_GET_NUM_PROCS() Returns the number of processors available to the
program.

SUBROUTINE
OMP_SET_DEFAULT_DEVICE(device_number)
INTEGER(int) device_number

Sets the default device number.

INTEGER(int) FUNCTION
OMP_GET_DEFAULT_DEVICE()

Returns the default device number.

INTEGER(int) FUNCTION
OMP_GET_NUM_DEVICES()

Returns the number of target devices.

INTEGER FUNCTION OMP_GET_DEVICE_NUM() Returns the device number of the device on which
the calling thread is executing.

LOGICAL(log) FUNCTION
OMP_IS_INITIAL_DEVICE()

Returns .TRUE. if the current task is running on
the host device; otherwise, .FALSE..

INTEGER(int) FUNCTION
OMP_GET_INITIAL_DEVICE()

Returns the device number of the host device. The
value of the device number is implementation
defined. If it is between 0 and
OMP_GET_NUM_DEVICES()-1, then it is valid in all
device constructs and routines; if it is outside that
range, then it is only valid in the device memory
routines and not in the DEVICE clause.

Device Memory Routines
This feature is only available for ifx.

 1 Intel® Fortran Compiler Classic and Intel® Fortran Compiler Developer Guide and Reference

2402

Function Description

TYPE(c_ptr) FUNCTION omp_target_alloc
(size, device_num)
USE, INTRINSIC :: ISO_C_BINDING
INTEGER(c_size_t) :: size
INTEGER(c_int) :: device_num

Returns the device address of a storage location
that is size bytes in length. If the allocation
request cannot be satisfied, a null address is
returned. The allocation occurs on the device
specified by device_num.

SUBROUTINE omp_target_free (device_ptr,
device_num)
USE, INTRINISIC :: ISO_C_BINDING
TYPE (c_ptr) :: device_ptr
INTEGER(c_int) :: device_num

Deallocates the previously allocated memory
allocation pointed to by device_ptr on the device
specified by device_num.

Lock Routines
Use these routines to affect OpenMP locks.

Function Description

SUBROUTINE OMP_INIT_LOCK(svar)
INTEGER (KIND=OMP_LOCK_KIND)svar

Initializes the lock to the unlocked state.

SUBROUTINE OMP_INIT_NEST_LOCK(nvar)
INTEGER(KIND=OMP_NEST_LOCK_KIND)nvar

Initializes the nested lock to the unlocked state.
The nesting count for the nested lock is set to zero.

SUBROUTINE OMP_INIT_LOCK_WITH_HINT(svar,
hint)
INTEGER (KIND=OMP_LOCK_KIND)svar
INTEGER (KIND=OMP_SYNC_HINT_KIND)hint

Initializes the lock to the unlocked state, optionally
choosing a specific lock implementation based on
hint.

SUBROUTINE
OMP_INIT_NEST_LOCK_WITH_HINT(nvar, hint)
INTEGER (KIND=OMP_NEST_LOCK_KIND)nvar
INTEGER (KIND=OMP_SYNC_HINT_KIND)hint

Initializes the nested lock to the unlocked state,
optionally choosing a specific lock implementation
based on hint. The nesting count for the nested
lock is set to zero.

SUBROUTINE OMP_DESTROY_LOCK(svar)
INTEGER(KIND=OMP_LOCK_KIND)svar

Changes the state of the lock to uninitialized.

SUBROUTINE OMP_DESTROY_NEST_LOCK(nvar)
INTEGER(KIND=OMP_NEST_LOCK_KIND)nvar

Changes the state of the nested lock to
uninitialized.

SUBROUTINE OMP_SET_LOCK(svar)
INTEGER(KIND=OMP_LOCK_KIND)svar

Forces the executing thread to wait until the lock is
available. The thread is granted ownership of the
lock when it becomes available. The lock must be
initialized.

SUBROUTINE OMP_SET_NEST_LOCK(nvar)
INTEGER(KIND=OMP_NEST_LOCK_KIND)nvar

Forces the executing thread to wait until the nested
lock is available. If the thread already owns the
lock, then the lock nesting count is incremented.
The lock must be initialized.

Intel® Fortran Compiler Classic and Intel® Fortran Compiler Developer Guide and Reference 1

2403

Function Description

SUBROUTINE OMP_UNSET_LOCK(svar)
INTEGER(KIND=OMP_LOCK_KIND)svar

Releases the executing thread from ownership of
the lock. The behavior is undefined if the executing
thread does not own the lock.

SUBROUTINE OMP_UNSET_NEST_LOCK(nvar)
INTEGER(KIND=OMP_NEST_LOCK_KIND)nvar

Decrements the nesting count for the nested lock
and releases the executing thread from ownership
of the nested lock if the resulting nesting count is
zero. Behavior is undefined if the executing thread
does not own the nested lock.

LOGICAL(log) OMP_TEST_LOCK(svar)
INTEGER(KIND=OMP_LOCK_KIND)svar

Attempts to set the lock. If successful,
returns .TRUE., otherwise returns .FALSE.. The
lock must be initialized.

INTEGER(int) OMP_TEST_NEST_LOCK(nvar)
INTEGER(KIND=OMP_NEST_LOCK_KIND)nvar

Attempts to set the nested lock. If successful,
returns the nesting count, otherwise returns zero.

The following parameter constants are defined in OMP_LIB.MOD and can be set in the HINT dummy argument
in OMP_INIT_LOCK_WITH_HINT and OMP_INIT_NEST_LOCK_WITH_HINT:

integer (omp_sync_hint_kind), parameter :: omp_sync_hint_none = 0
integer (omp_sync_hint_kind), parameter :: omp_sync_hint_uncontended = 1
integer (omp_sync_hint_kind), parameter :: omp_sync_hint_contended = 2
integer (omp_sync_hint_kind), parameter :: omp_sync_hint_nonspeculative = 4
integer (omp_sync_hint_kind), parameter :: omp_sync_hint_speculative = 8

The hints can be combined by using the + operator in Fortran. The effect of the combined hint is
implementation defined. Combining omp_sync_hint_none with any other hint is equivalent to specifying the
other hint. The following restrictions apply to combined hints:

• Hints omp_sync_hint_uncontended and omp_sync_hint_contended cannot be combined.
• Hints omp_sync_hint_nonspeculative and omp_sync_hint_nonspeculative cannot be combined.

Timing Routines

Function Description

REAL (dp) FUNCTION OMP_GET_WTIME() Returns a double precision value equal to the
elapsed wall clock time (in seconds) relative to an
arbitrary reference time. The reference time does
not change during program execution.

REAL (dp) FUNCTION OMP_GET_WTICK() Returns a double precision value equal to the
number of seconds between successive clock ticks.

Event Routines

Function Description

SUBROUTINE OMP_FULFILL_EVENT(event)
INTEGER(OMP_EVENT_HANDLE_KIND) event

Fulfills the event associated with the event handle
event and destroys the event.

Memory Management Routines
This feature is only available for ifx.

 1 Intel® Fortran Compiler Classic and Intel® Fortran Compiler Developer Guide and Reference

2404

Function Description

FUNCTION omp_init_allocator(memspace,
ntraits, traits)
INTEGER (KIND=omp_allocator_handle_kind)
omp_init_allocator
INTEGER
(KIND=omp_memspace_handle_kind),INTENT(IN
) :: memspace
INTEGER,INTENT(IN) :: ntraits
TYPE(omp_alloctrait),INTENT(IN) ::
traits(*)

Initialize an allocator and associate it with a
memory space, returning an allocator handle. The
memspace argument must be one of the predefined
memory spaces defined in OpenMP Memory Space
Allocators. The ntraits argument specifies the
number of traits in the traits array argument. If
there are fewer traits than specified by ntraits,
the behavior is undefined. A REQUIRES directive
specifying dynamic_allocators must appear in
the same compilation unit of a target region that
calls this function.

SUBROUTINE omp_destroy_allocator
(allocator)
INTEGER(KIND=omp_allocator_handle_kind),I
NTENT(IN) :: allocator

Releases all resources used by the allocator handle
argument. The allocator argument must not be a
handle for a predefined allocator. A REQUIRES
directive specifying dynamic_allocators must
appear in the same compilation unit of a target
region that calls this function.

SUBROUTINE omp_set_default_allocator
(allocator)
INTEGER(KIND=omp_allocator_handle_kind) :
: allocator

Sets the default memory allocator used for memory
allocations resulting from ALLOCATE clauses and
directives that do not specify an allocator. The
allocator argument must be a valid allocator.

FUNCTION omp_get_default_allocator ()
INTEGER(KIND=omp_allocator_handle_kind) :
: omp_get_default_allocator

Returns the allocator handle of the allocator to be
used for allocations resulting from ALLOCATE
clauses and directives that do not specify an
allocator.

TYPE(c_ptr) FUNCTION omp_alloc (size,
allocator) bind (c)
USE, INTRINSIC ISO_C_BINDING
INTEGER(c_size_t) VALUE :: size
INTEGER(omp_allocator_handle_kind),
value :: allocator

Requests a memory allocation of size bytes from
the specified memory allocator.

The allocator argument must be an integer
constant expression that evaluates to the value of
one of the predefined memory allocator values. If
allocator is OMP_NULL_ALLOCATOR, the allocator
used is the allocator specified by the ICV def-
allocator-var of the binding implicit task.

A pointer to the first word allocated is returned if
the allocation is successful; otherwise, the behavior
is that specified for the fallback trait of the
allocator. If size is zero, C_NULL_PTR (Fortran) or
NULL (C) is returned. Allocated memory is byte
aligned to at least the maximum of the alignment
required by malloc and the alignment trait of the
allocator.

Intel® Fortran Compiler Classic and Intel® Fortran Compiler Developer Guide and Reference 1

2405

Function Description

Calls to omp_alloc that appear in target regions
may not pass OMP_NULL_ALLOCATOR as the
allocator argument, unless a REQUIRES directive
specifying DYNAMIC_ALLOCATORS appears in the
same compilation unit.

TYPE(c_ptr) FUNCTION omp_aligned_alloc
(alignment, size, allocator) bind (c)
USE, INTRINSIC ISO_C_BINDING
INTEGER(c_size_t) VALUE :: alignment,
size
INTEGER(omp_allocator_handle_kind),
value :: allocator

Requests a memory allocation of size bytes from
the specified memory allocator. alignment must be
a power of two, and size must be a multiple of
alignment.

The allocator argument must be an integer
constant expression that evaluates to the value of
one of the predefined memory allocator values. If
allocator is OMP_NULL_ALLOCATOR, the allocator
used is the allocator specified by the ICV def-
allocator-var of the binding implicit task.

A pointer to the first word allocated is returned if
the allocation is successful; otherwise, the behavior
is that specified for the fallback trait of the
allocator. If size is zero, C_NULL_PTR (Fortran) or
NULL (C) is returned. Allocated memory is byte
aligned to at least the maximum of the alignment
required by malloc, the alignment trait of the
allocator, and the value specified for the alignment
argument.

Calls to omp_alloc that appear in target regions
may not pass OMP_NULL_ALLOCATOR as the
allocator argument, unless a REQUIRES directive
specifying DYNAMIC_ALLOCATORS appears in the
same compilation unit.

TYPE(c_ptr) FUNCTION omp_calloc (nmemb,
size, allocator) bind (c)
USE, INTRINSIC :: ISO_C_BINDING
INTEGER(c_size_t) value :: nmemb, size
INTEGER(omp_allocator_handle_t), value ::
allocator

Requests a zero initialized memory allocation of
size bytes from the specified memory allocator.

The allocator argument must be an integer
constant expression whose value is one of the
predefined memory allocators. If omp_calloc is
called from a TARGET region, the value of allocator
must not be OMP_NULL_ALLOCATOR unless
DYNAMIC_ALLOCATORS appears in a REQUIRES
directive in the same compilation unit as the call. If
OMP_NULL_ALLOCATOR is specified, the allocator
used is the allocator specified by the def-allocator-
var ICV of the binding implicit task.

The allocation is an array of nmemb elements; each
element is size bytes. allocator specifies the
memory allocator to use. The allocated memory is
initialized to zero. If the request is unsuccessful,
the behavior is that specified by the FALLBACK trait

 1 Intel® Fortran Compiler Classic and Intel® Fortran Compiler Developer Guide and Reference

2406

Function Description

of the allocator. The allocation is aligned to at least
the maximum of the alignment required by malloc
and the alignment trait of the allocator.

If either nmemb or size has the value 0, the value
NULL (C) or C_NULL_PTR (Fortran) is returned.

The derived type omp_allocator is defined in OMP_LIB.MOD and is used as the type of the traits argument
to the omp_init_allocator function.

type omp_alloctrait
 integer(kind=omp_alloctrait_key_kind) :: key
 integer(kind=omp_alloctrait_val_kind) :: value
end type omp_alloctrait

The following parameter constants are defined in OMP_LIB.MOD and can be used to specify allocator trait
keys in a derived type of type omp_alloctrait.

integer(omp_alloctrait_key_kind), parameter :: omp_atk_sync_hint = 1
integer(omp_alloctrait_key_kind), parameter :: omp_atk_alignment = 2
integer(omp_alloctrait_key_kind), parameter :: omp_atk_access = 3
integer(omp_alloctrait_key_kind), parameter :: omp_atk_pool_size = 4
integer(omp_alloctrait_key_kind), parameter :: omp_atk_fallback = 5
integer(omp_alloctrait_key_kind), parameter :: omp_atk_fb_data = 6
integer(omp_alloctrait_key_kind), parameter :: omp_atk_atk_pinned = 7
integer(omp_alloctrait_key_kind), parameter :: omp_atk_partition = 8

The following parameter constants are defined in OMP_LIB.MOD and can be used to set allocator trait values
in a derived type of type omp_alloctrait.

integer(omp_alloctrait_val_kind), parameter :: omp_atv_false = 0
integer(omp_alloctrait_val_kind), parameter :: omp_atv_true = 1
integer(omp_alloctrait_val_kind), parameter :: omp_atv_default = 2
integer(omp_alloctrait_val_kind), parameter :: omp_atv_contended = 3
integer(omp_alloctrait_val_kind), parameter :: omp_atv_uncontended = 4
integer(omp_alloctrait_val_kind), parameter :: omp_atv_sequential = 5
integer(omp_alloctrait_val_kind), parameter :: omp_atv_private = 6
integer(omp_alloctrait_val_kind), parameter :: omp_atv_all = 7
integer(omp_alloctrait_val_kind), parameter :: omp_atv_thread = 8
integer(omp_alloctrait_val_kind), parameter :: omp_atv_pteam = 9
integer(omp_alloctrait_val_kind), parameter :: omp_atv_cgroup = 10
integer(omp_alloctrait_val_kind), parameter :: omp_atv_default_mem_fb = 11
integer(omp_alloctrait_val_kind), parameter :: omp_atv_null_fb = 12
integer(omp_alloctrait_val_kind), parameter :: omp_atv_abort_fb = 13
integer(omp_alloctrait_val_kind), parameter :: omp_atv_allocator_fb = 14
integer(omp_alloctrait_val_kind), parameter :: omp_atv_environment = 15
integer(omp_alloctrait_val_kind), parameter :: omp_atv_nearest = 16
integer(omp_alloctrait_val_kind), parameter :: omp_atv_blocked = 17
integer(omp_alloctrait_val_kind), parameter :: omp_atv_interleaved = 18

Tool Control Routines

Function Description

INTEGER FUNCTION
OMP_CONTROL_TOOL(command, modifier)

Enables a program to pass commands to an active
tool.

Intel® Fortran Compiler Classic and Intel® Fortran Compiler Developer Guide and Reference 1

2407

Function Description

INTEGER (kind=omp_control_tool_kind)
command
INTEGER modifier

Environment Display Routines

Function Description

SUBROUTINE OMP_DISPLAY_ENV(verbose)
LOGICAL,INTENT(IN) :: verbose

Displays the OpenMP version number and the initial
values of ICVs associated with the environment
variables.

Device Runtime Routines Available on GPU
The following device runtime routines are available on CPU and GPU.

• OMP_GET_DEVICE_NUM
• OMP_GET_MAX_THREADS
• OMP_GET_NUM_DEVICES
• OMP_GET_NUM_PROCS
• OMP_GET_NUM_TEAMS
• OMP_GET_NUM_THREADS
• OMP_GET_TEAM_NUM
• OMP_GET_TEAM_SIZE
• OMP_GET_THREAD_LIMIT
• OMP_GET_THREAD_NUM
• OMP_IN_PARALLEL
• OMP_IS_INITIAL_DEVICE

See Also
Intel Extension Routines to OpenMP*
Predefined Preprocessor Symbols

Intel® Compiler Extension Routines to OpenMP*

The Intel® compiler implements the following group of routines as extensions to the OpenMP* runtime
library:

• Get and set the execution environment
• Get and set the stack size for parallel threads
• Memory allocation
• Get and set the thread sleep time for the throughput execution mode
• Target memory allocation

The Intel® extension routines described in this section can be used for low-level tuning to verify that the
library code and application are functioning as intended. These routines are generally not recognized by other
OpenMP-compliant compilers, which may cause the link stage to fail in the other compiler. To execute these
OpenMP routines, use the /Qopenmp-stubs (Windows*) or -qopenmp-stubs (Linux*) option.

In most cases, environment variables can be used in place of the extension library routines. For example, the
stack size of the parallel threads may be set using the OMP_STACKSIZE environment variable rather than the
KMP_SET_STACKSIZE_S() library routine.

 1 Intel® Fortran Compiler Classic and Intel® Fortran Compiler Developer Guide and Reference

2408

NOTE
A runtime call to an Intel extension routine takes precedence over the corresponding environment
variable setting.

Execution Environment

Function or Subroutine Description

SUBROUTINE KMP_SET_DEFAULTS(STRING)
CHARACTER*(*) STRING

Sets OpenMP environment variables defined as a
list of variables separated by "|" in the argument.

SUBROUTINE KMP_SET_LIBRARY_THROUGHPUT() Sets execution mode to throughput, which is the
default. Allows the application to determine the
runtime environment. Use in multi-user
environments.

SUBROUTINE KMP_SET_LIBRARY_TURNAROUND() Sets execution mode to turnaround. Use in
dedicated parallel (single user) environments.

SUBROUTINE KMP_SET_LIBRARY_SERIAL() Sets execution mode to serial.

SUBROUTINE KMP_SET_LIBRARY(LIBNUM)
INTEGER (KIND=OMP_INTEGER_KIND) LIBNUM

Sets execution mode indicated by the value passed
to the function. Valid values are:

• 1 - serial mode
• 2 - turnaround mode
• 3 - throughput mode

Call this routine before the first parallel region is
executed.

FUNCTION KMP_GET_LIBRARY()
INTEGER (KIND=OMP_INTEGER_KIND)
KMP_GET_LIBRARY

Returns a value corresponding to the current
execution mode:

• 1 - serial
• 2 - turnaround
• 3 - throughput

Stack Size

Function or Subroutine Description

FUNCTION KMP_GET_STACKSIZE_S()
INTEGER (KIND=KMP_SIZE_T_KIND) &
KMP_GET_STACKSIZE_S

Returns the number of bytes that will be allocated
for each parallel thread to use as its private stack.
This value can be changed with
KMP_SET_STACKSIZE_S() routine, prior to the first
parallel region or via the KMP_STACKSIZE
environment variable.

FUNCTION KMP_GET_STACKSIZE()
INTEGER KMP_GET_STACKSIZE

Provided for backwards compatibility only. Use
KMP_GET_STACKSIZE_S() routine for compatibility
across different families of Intel processors.

SUBROUTINE KMP_SET_STACKSIZE_S(size)
INTEGER (KIND=KMP_SIZE_T_KIND) size

Sets to size the number of bytes that will be
allocated for each parallel thread to use as its
private stack. This value can also be set via the

Intel® Fortran Compiler Classic and Intel® Fortran Compiler Developer Guide and Reference 1

2409

Function or Subroutine Description

KMP_STACKSIZE environment variable. In order for
KMP_SET_STACKSIZE_S() to have an effect, it
must be called before the beginning of the first
(dynamically executed) parallel region in the
program.

SUBROUTINE KMP_SET_STACKSIZE_S(size)
INTEGER size

Provided for backward compatibility only. Use
KMP_SET_STACKSIZE_S(size) for compatibility
across different families of Intel® processors.

Memory Allocation
The Intel® compiler implements a group of memory allocation routines as an extension to the OpenMP
runtime library to enable threads to allocate memory from a heap local to each thread. These routines are:
KMP_MALLOC(), KMP_CALLOC(), and KMP_REALLOC().

The memory allocated by these routines must also be freed by the KMP_FREE() routine. While you can
allocate memory in one thread and then free that memory in a different thread, this mode of operation incurs
a slight performance penalty.

Working with the local heap might lead to improved application performance because synchronization is not
required.

Function or Subroutine Description

FUNCTION KMP_MALLOC(size)
INTEGER(KIND=KMP_POINTER_KIND)KMP_MALLOC
INTEGER(KIND=KMP_SIZE_T_KIND size

Allocates memory block of size bytes from thread-
local heap.

FUNCTION KMP_CALLOC(nelem, elsize)
INTEGER(KIND=KMP_POINTER_KIND)KMP_CALLOC
INTEGER(KIND=KMP_SIZE_T_KIND) nelem
INTEGER(KIND=KMP_SIZE_T_KIND) elsize

Allocates array of nelem elements of size elsize
from thread-local heap.

FUNCTION KMP_REALLOC(ptr, size)
INTEGER(KIND=KMP_POINTER_KIND)KMP_REALLOC
INTEGER(KIND=KMP_POINTER_KIND) ptr
INTEGER(KIND=KMP_SIZE_T_KIND) size

Reallocates memory block at address ptr and size
bytes from thread-local heap.

SUBROUTINE KMP_FREE(ptr)
INTEGER (KIND=KMP_POINTER_KIND) ptr

Frees memory block at address ptr from thread-
local heap.

The memory must have been previously allocated
with KMP_MALLOC(), KMP_CALLOC(), or
KMP_REALLOC().

Thread Sleep Time
In the throughput OpenMP* Support Libraries, threads wait for new parallel work at the ends of parallel
regions, and then sleep, after a specified period of time. This time interval can be set by the KMP_BLOCKTIME
environment variable or by the KMP_SET_BLOCKTIME() function.

 1 Intel® Fortran Compiler Classic and Intel® Fortran Compiler Developer Guide and Reference

2410

Function Description

FUNCTION KMP_GET_BLOCKTIME()
INTEGER KMP_GET_BLOCKTIME

Returns the number of milliseconds that a thread
should wait, after completing the execution of a
parallel region, before sleeping, as set either by the
KMP_BLOCKTIME environment variable or by
KMP_SET_BLOCKTIME().

FUNCTION KMP_SET_BLOCKTIME(msec)
INTEGER msec

Sets the number of milliseconds that a thread
should wait, after completing the execution of a
parallel region, before sleeping. This routine affects
the block time setting for the calling thread and any
OpenMP team threads formed by the calling thread.
The routine does not affect the block time for any
other threads.

Target Memory Allocation
This feature is only available for ifx.

Function Description

FUNCTION ompx_target_aligned_alloc (align, size, &
 device_num)
USE,INTRINSIC :: ISO_C_BINDING, ONLY : C_PTR, &
 C_SIZE_T, C_INT
TYPE(C_PTR) :: ompx_target_aligned_alloc
INTEGER(C_SIZE_T) :: align
INTEGER(C_SIZE_T) :: size
INTGER(C_INT) :: device_num

Allocates device memory that is aligned to the
specified alignment argument align for the
specified device device_num. The returned
memory can be accessed only by the specified
device.

FUNCTION ompx_target_aligned_alloc_device (align,
&
 size, device_num)
USE,INTRINSIC :: ISO_C_BINDING, ONLY : C_PTR, &
 C_SIZE_T, C_INT
TYPE(C_PTR) :: ompx_target_aligned_alloc_device
INTEGER(C_SIZE_T) :: align
INTEGER(C_SIZE_T) :: size
INTGER(C_INT) :: device_num

Allocates device memory that is aligned to the
specified alignment argument align for the
specified device device_num. The returned
memory can be accessed only by the specified
device.

FUNCTION ompx_target_aligned_alloc_host (align, &
 size, device_num)
USE,INTRINSIC :: ISO_C_BINDING, ONLY : C_PTR, &
 C_SIZE_T, C_INT
TYPE(C_PTR) :: ompx_target_aligned_alloc_host
INTEGER(C_SIZE_T) :: align
INTEGER(C_SIZE_T) :: size
INTGER(C_INT) :: device_num

Allocates device memory that is aligned to the
specified alignment argument align for the
specified device device_num. The returned
memory can be accessed by the host and all
supported devices.

FUNCTION ompx_target_aligned_alloc_shared (align,
&
 size, device_num)
USE,INTRINSIC :: ISO_C_BINDING, ONLY : C_PTR, &
 C_SIZE_T, C_INT

Allocates device memory that is aligned to the
specified alignment argument align for the
specified device device_num. The returned
memory can be accessed by the host and the
specified device.

Intel® Fortran Compiler Classic and Intel® Fortran Compiler Developer Guide and Reference 1

2411

Function Description

TYPE(C_PTR) :: ompx_target_aligned_alloc_shared
INTEGER(C_SIZE_T) :: align
INTEGER(C_SIZE_T) :: size
INTGER(C_INT) :: device_num

FUNCTION &
 ompx_target_aligned_alloc_shared_with_hint
(align, &
 size, access_hint,
device_num)
USE,INTRINSIC :: ISO_C_BINDING, ONLY : C_PTR, &
 C_SIZE_T, C_INT
USE OMP_LIB_KINDS
TYPE(C_PTR) :: ompx_target_aligned_alloc_shared
INTEGER(C_SIZE_T) :: align
INTEGER(C_SIZE_T) :: size
INTGER(OMP_INTEGER_KIND) :: access_hint
INTGER(OMP_INTEGER_KIND) :: device_num

Allocates device memory that is aligned to the
specified alignment argument align for the
specified device device_num with the specified
access_hint. The returned memory can be
accessed by the host and the specified device.

The following named constants are allowed for
access_hint:

• ompx_mem_hint_read_mostly
• ompx_mem_hint_prefer_device
• ompx_mem_hint_non_atomic_mostly
• ompx_mem_hint_cached
• ompx_mem_hint_uncached

FUNCTION omp_target_alloc_host (size, device_num)
USE, INTRINSIC :: ISO_C_BINDING
TYPE(C_PTR) :: omp_target_alloc_host
INTEGER(c_size_t) :: size
INTEGER(c_int) :: device_num

Returns the address of a storage location that
is size bytes in length allocated in host
memory. The same pointer can be used to
access the memory on the host and all
supported devices.

If the allocation request fails, a null pointer is
returned.

FUNCTION omp_target_alloc_device (size,
device_num)
USE, INTRINSIC :: ISO_C_BINDING
TYPE(C_PTR) :: omp_target_alloc_device
INTEGER(c_size_t) :: size
INTEGER(c_int) :: device_num

Returns the address of a storage allocation
that is size bytes in length. Device allocations
are owned by the device specified by
device_num in device memory if present.
Generally, the allocation can be accessed only
by the device, but it can be copied to other
device or host allocated memory.

If the allocation was not successful, a null
pointer is returned.

FUNCTION omp_target_alloc_shared (size,
device_num)
USE, INTRINSIC :: ISO_C_BINDING
TYPE(C_PTR) :: omp_target_alloc_shared
INTEGER(c_size_t) :: size
INTEGER(c_int) :: device_num

Returns the address of a storage allocation
that is size bytes in length. The same pointer
may be used to access the memory on the
host and the specified device. Shared
allocations are shared by the host and the
specified device, and are intended to migrate
between the host and the device.

If the allocation was not successful, a null
pointer is returned.

 1 Intel® Fortran Compiler Classic and Intel® Fortran Compiler Developer Guide and Reference

2412

Function Description

FUNCTION omp_target_realloc (ptr, size,
device_num)
USE, INTRINSIC :: ISO_C_BINDING, ONLY C_PTR, &
TYPE (C_PTR) :: ompx_target_realloc
TYPE (C_PTR),VALUE :: ptr
INTEGER(C_SIZE_T) :: size
INTEGER(C_INT) :: device_num

Deallocates the device memory specified with
ptr and allocates a new device memory with
the specified size in bytes for the given device
device_num. The returned memory can be
accessed only by the specified device.

The contents of the new memory object are
the same as that of the old object prior to
deallocation up to the minimum size of old
allocated size and size argument.

FUNCTION ompx_target_realloc_device (ptr, size, &
 device_num)
USE,INTRINSIC :: ISO_C_BINDING, ONLY: C_PTR, &
 C_SIZE_T, C_INT
TYPE(C_PTR) :: ompx_target_realloc_device
TYPE(C_PTR) :: ptr
INTEGER(C_SIZE_T) :: size
INTEGER(C_INT) :: device_num

Deallocates the device memory specified with
ptr and allocates a new device memory with
the specified size in bytes for the given device
device_num. The returned memory can be
accessed only by the specified device.

The contents of the new memory object are
the same as that of the old object prior to
deallocation up to the minimum size of old
allocated size and size argument.

FUNCTION ompx_target_realloc_host (ptr, size, &
 device_num)
USE,INTRINSIC :: ISO_C_BINDING, ONLY: C_PTR, &
 C_SIZE_T, C_INT
TYPE(C_PTR) :: ompx_target_realloc_host
TYPE(C_PTR) :: ptr
 INTEGER(C_SIZE_T) :: size
INTEGER(C_INT) :: device_num

Deallocates the device memory specified with
ptr and allocates a new device memory with
the specified size in bytes for the given device
device_num. The returned memory can be
accessed by the host and all supported
devices.

The contents of the new memory object are
the same as that of the old object prior to
deallocation up to the minimum size of old
allocated size and size argument.

FUNCTION ompx_target_realloc_shared (ptr, size, &
 device_num)
USE,INTRINSIC :: ISO_C_BINDING, ONLY: C_PTR, &
 C_SIZE_T, C_INT
TYPE(C_PTR) :: ompx_target_realloc_shared
TYPE(C_PTR) :: ptr
INTEGER(C_SIZE_T) :: size
INTEGER(C_INT) :: device_num

Deallocates the device memory specified with
ptr and allocates a new device memory with
the specified sizein bytes for the given device
device_num. The returned memory can be
accessed by the host and the specified device.

The contents of the new memory object are
the same as that of the old object prior to
deallocation up to the minimum size of old
allocated size and size argument.

Target Offload
This feature is only available for ifx.

Function or Subroutine Description

FUNCTION omp_get_device_from_ptr (ptr)
USE OMP_LIB_KINDS
USE,INTRINSIC :: ISO_C_BINDING, ONLY : C_PTR

Returns OpenMP device number which the specified
device pointer ptr is allocated on. The function
returns a valid OpenMP device number if
successful; otherwise, a negative number.

Intel® Fortran Compiler Classic and Intel® Fortran Compiler Developer Guide and Reference 1

2413

Function or Subroutine Description

INTEGER(OMP_INTEGER_KIND) ::
omp_get_device_from_ptr
TYPE(C_PTR) :: ptr

FUNCTION ompx_get_num_subdevices (device_num,
level)
USE,INTRINSIC :: ISO_C_BINDING, ONLY : C_INT
INTEGER(C_INT) ompx_get_num_subdevices
INTEGER(C_INT) :: device_num
INTEGER(C_INT :: level

Returns the number of subdevices supported by the
given device ID (device_num) at the specified
level.

FUNCTION ompx_target_register_host_pointer
(ptr, size, &
 device_num)
USE omp_lib_kinds
USE, INTRINSIC :: ISO_C_BINDING, ONLY :
C_PTR, C_SIZE_T
INTEGER(omp_integer_kind)
ompx_target_rester_host_pointer
TYPE(C_PTR) :: ptr
INTEGER(C_SIZE_T) :: size
INTEGER(omp_integer_kind) :: device_num

Registers the specified host pointer ptr for efficient
memory copy between ptr and a device pointer
allocated for device_num. The function returns a
non-zero value if successful; otherwise, zero.

NOTE
This is only available for Linux.

SUBROUTINE
ompx_target_unregister_host_pointer (ptr, &
 device)
USE omp_lib_kinds
USE,INTRINSIC :: ISOC_C_BINDING : ONLY C_PTR
TYPE(C_PTR) :: ptr
INTEGER(omp_integer_kind) :: device

Unregisters the specified host pointer ptr.

NOTE
This is only available for Linux.

See Also
openmp-stubs, Qopenmp-stubs compiler option
OpenMP* Runtime Library Routines
OpenMP* Support Libraries

OpenMP* Support Libraries

The Intel® Fortran Compiler provides support libraries for OpenMP*. There are several kinds of libraries:

• Performance: supports parallel OpenMP execution.
• Stubs: supports serial execution of OpenMP applications.

Each kind of library is available for both dynamic and static linking on Linux* operating systems. Only
dynamic linking is supported on Windows* operating systems.

Performance Libraries
To use these libraries, specify the /Qopenmp (Windows*) or -qopenmp (Linux*) option.

Options that use OpenMP are available for both Intel® and non-Intel microprocessors, but these options may
perform additional optimizations on Intel® microprocessors than they perform on non-Intel microprocessors.
The list of major, user-visible OpenMP constructs and features that may perform differently on Intel®
microprocessors than on non-Intel microprocessors includes: locks (internal and user visible), the SINGLE
construct, barriers (explicit and implicit), parallel loop scheduling, reductions, memory allocation, and thread
affinity and binding.

 1 Intel® Fortran Compiler Classic and Intel® Fortran Compiler Developer Guide and Reference

2414

Operating System Dynamic Link Static Link

Linux libiomp5.so libiomp5.a

Windows
libiomp5md.lib
libiomp5md.dll None

Many routines in the OpenMP support libraries are more optimized for Intel® microprocessors than for non-
Intel microprocessors.

Stubs Libraries
To use these libraries, specify /Qopenmp-stubs (Windows*) or -qopenmp-stubs (Linux*) option. These
allow you to compile OpenMP applications in serial mode and provide stubs for OpenMP routines and
extended Intel-specific routines.

Operating System Dynamic Link Static Link

Linux libiompstubs5.so libiompstubs5.a

Windows
libiompstubs5md.lib
libiompstubs5md.dll None

Execution Modes
The compiler enables you to run an application under different execution modes specified at runtime; the
libraries support the turnaround, throughput, and serial modes. Use the KMP_LIBRARY environment variable
to select the modes at runtime.

Mode Description

throughput (default)

The throughput mode allows the program to yield to other running programs
and adjust resource usage to produce efficient execution in a dynamic
environment.

In a multi-user environment where the load on the parallel machine is not
constant or where the job stream is not predictable, it may be better to design
and tune for throughput. This minimizes the total time to run multiple jobs
simultaneously. In this mode, the worker threads yield to other threads while
waiting for more parallel work.

After completing the execution of a parallel region, threads wait for new
parallel work to become available. After a certain period of time has elapsed,
they stop waiting and sleep. Until more parallel work becomes available,
sleeping allows processor and resources to be used for other work by non-
OpenMP threaded code that may execute between parallel regions, or by other
applications.

The amount of time to wait before sleeping is set either by the
KMP_BLOCKTIME environment variable or by the KMP_SET_BLOCKTIME()
function.

A small blocktime value may offer better overall performance if your
application contains non-OpenMP threaded code that executes between parallel
regions. A larger blocktime value may be more appropriate if threads are to be
reserved solely for use for OpenMP execution, but may penalize other
concurrently-running OpenMP or threaded applications.

Intel® Fortran Compiler Classic and Intel® Fortran Compiler Developer Guide and Reference 1

2415

Mode Description

turnaround

The turnaround mode is designed to keep active all processors involved in the
parallel computation, which minimizes execution time of a single job. In this
mode, the worker threads actively wait for more parallel work, without yielding
to other threads (although they are still subject to KMP_BLOCKTIME control).

In a dedicated (batch or single user) parallel environment where all processors
are exclusively allocated to the program for its entire run, it is most important
to effectively use all processors all of the time.

NOTE
Avoid over-allocating system resources. The condition can occur if either too many
threads have been specified, or if too few processors are available at runtime.

If system resources are over-allocated, this mode will cause poor
performance. If this occurs, use the throughput mode.

serial The serial mode forces parallel applications to run as a single thread.

See Also
qopenmp, Qopenmp compiler option
qopenmp-stubs, Qopenmp-stubs compiler option
Supported Environment Variables

Use the OpenMP Libraries

This section describes the steps needed to set up and use the OpenMP Libraries from the command line. On
Windows systems, you can also build applications compiled with the OpenMP libraries in the Microsoft Visual
Studio development environment.

For a list of the options and libraries used by the OpenMP libraries, see OpenMP Support Libraries.

Set Up Environment
Set up your environment for access to the compiler to ensure that the appropriate OpenMP library is
available during linking.

Linux

On Linux systems you can source the appropriate script file (setvars file).

Windows

On Windows systems you can either execute the appropriate batch (.bat) file or use the command-line
window supplied in the compiler program folder that already has the environment set up.

To use the gfortran compiler with the Intel® OpenMP library along with the OpenMP API functions:

1. Use the use omp_lib statement to compile the omp_lib.f90 source file, which is in the include
directory.

2. Add the -I option to the compile command line with appropriate path to the directory containing the
resulting module file.

During compilation, ensure that the version of omp_lib.h or omp_lib.mod used when compiling is the
version provided by that compiler.

 1 Intel® Fortran Compiler Classic and Intel® Fortran Compiler Developer Guide and Reference

2416

Caution
If you are mixing C and Fortran in the same program, be aware that when using the GCC or Microsoft
Compiler, you may inadvertently use inappropriate header or module files. To avoid this, copy the
header or module file(s) to a separate directory and put it in the appropriate include path using the
-I option.

If a program uses data structures or classes that contain members with data types defined in the omp_lib.h
file, then source files that use those data structures should all be compiled with the same omp_lib.h file.

Linux Examples
This section shows several examples of using OpenMP with the Intel Fortran Compiler Classic and Intel
Fortran Compiler from the command line on Linux.

The command for the Intel® Fortran Compiler Classic is ifort. The command for the Intel® Fortran Compiler
is ifx. In all Windows and Linux examples that follow, the command ifx can be substituted for the
command ifort.

Compile and Link OpenMP Libraries

You can compile an application and link the Intel OpenMP libraries with a single command using the
-qopenmp option. For example:

ifort -qopenmp hello.f90
ifx -qopenmp hello.f90

By default, the Intel Fortran Compiler Classic and Intel Fortran Compiler performs a dynamic link of the
OpenMP libraries. To perform a static link (not recommended), add the option -qopenmp-link=static. The
option -qopenmp-link controls whether the linker uses static or dynamic OpenMP libraries on Linux systems
(default is -qopenmp-link=dynamic). See OpenMP Support Libraries for more information about dynamic
and static OpenMP libraries.

Link OpenMP Object Files Compiled with GCC or Intel Fortran Compiler Classic and Intel Fortran
Compiler

You can use the ifort/ifx compilers with the gcc/g++ compilers to compile parts of an application and
create object files that can then be linked (object-level interoperability).

When using gcc or the g++ compiler to link the application with the Intel Fortran Compiler Classic and Intel
Fortran Compiler OpenMP compatibility library, you need to specify the following:

• The Intel OpenMP library name using the -l option
• The Linux pthread library using the -l option
• The path to the Intel libraries where the Intel Fortran Compiler Classic and Intel Fortran Compiler is

installed using the -L option

For example:

1. Compile foo.c and bar.c with gcc, using the -fopenmp option to enable OpenMP support:

gcc -fopenmp -c foo.c bar.c
Option -c prevents linking at this step.

2. Use the gcc compiler to link the application object code with the Intel OpenMP library:

gcc foo.o bar.o -liomp5 -lpthread -L<install_dir>/lib
where <install_dir> is the location of the installed Intel OpenMP library.

Intel® Fortran Compiler Classic and Intel® Fortran Compiler Developer Guide and Reference 1

2417

Alternately, you can use the Intel Fortran Compiler Classic and Intel Fortran Compiler to link the application
so that you don't need to specify the gcc -liomp5 option, -L option, and the -lpthread options.

For example:

1. Compile foo.c with gcc, using the gcc -fopenmp option to enable OpenMP:

gcc -fopenmp -c foo.c
2. Compile bar.c with icx, using the -qopenmp option to enable OpenMP:

icx -qopenmp -c bar.c
3. Use the ifx compiler to link the resulting application object code with the Intel OpenMP library:

ifx -qopenmp -nofor-main foo.o bar.o
Link Mixed C/C++ and Fortran Object Files

You can mix C/C++ and Fortran object files and link the Intel OpenMP libraries using GNU, GCC, or Intel
Fortran Compiler Classic and Intel Fortran Compiler compilers.

This example shows mixed C and Fortran sources, linked using the Intel Fortran Compiler Classic and Intel
Fortran Compiler . Consider the mixed source files ibar.c, gbar.c, and foo.f:

1. Compile ibar.c using the icx compiler:

icx -qopenmp -c ibar.c
2. Compile gbar.c using the gcc compiler:

gcc -fopenmp -c gbar.c
3. Compile foo.f using the ifx compiler:

ifx -qopenmp -c foo.f
4. Use the ifx compiler to link the resulting object files:

ifx -qopenmp foo.o ibar.o gbar.o
When using ifort or ifx, if the main program does not exist in a Fortran object file that is compiled by
either ifort or ifx, specify the -nofor-main option on the command line during linking.

NOTE
Do not mix objects created by the Intel Fortran Compiler Classic and Intel Fortran Compiler with the
GNU Fortran Compiler (gfortran); instead, recompile all Fortran sources with either ifort or ifx, or
recompile all Fortran sources with the GNU Fortran Compiler. The GNU Fortran Compiler is only
available on Linux operating systems.

When using the GNU gfortran Compiler to link the application with the Intel Fortran Compiler Classic and
Intel Fortran Compiler OpenMP compatibility library, you need to specify the following:

• The Intel® OpenMP compatibility library name and the Intel®irc libraries using the -l option
• The Linux pthread library using the -l option
• The path to the Intel® libraries where the is installed using the -L option

You do not need to specify the -fopenmp option on the link line.

For example, consider the mixed source files ibar.c, gbar.c, and foo.f:

1. Compile ibar.c using the icx compiler:

icx -qopenmp -c ibar.c
2. Compile gbar.c using the GCC compiler:

gcc -fopenmp -c gbar.c

 1 Intel® Fortran Compiler Classic and Intel® Fortran Compiler Developer Guide and Reference

2418

3. Compile foo.f using the gfortran compiler:

gfortran -fopenmp -c foo.f
4. Use the gfortran compiler to link the application object code with the Intel OpenMP library. You do not

need to specify the -fopenmp option in the link command:

Component directory layout example:

gfortran foo.o ibar.o gbar.o -lirc -liomp5 -lpthread -lc -L<install_dir>/lib
Unified directory layout example:

gfortran foo.o ibar.o gbar.o -lirc -liomp5 -lpthread -lc -L<install_dir>/<toolkit_version>/lib
where <install_dir> is the location of the installed Intel OpenMP library.

Alternately, you can use the Intel Fortran Compiler Classic and Intel Fortran Compiler . to link the application
object code but need to pass multiple gfortran libraries using the -l options at the link step.

This example shows mixed C and GNU Fortran sources linked using the icx compiler. Consider the mixed
source files ibar.c and foo.f:

1. Compile the C source with the icx compiler:

icx -qopenmp -c ibar.c
2. Compile the GNU Fortran source with gfortran:

gfortran -fopenmp -c foo.f
3. Use ifx to link the resulting object files with the -l option to pass the needed gfortran libraries:

ifx -qopenmp -nofor-main foo.o ibar.o -lgfortran

Windows Examples
This section shows several examples of using OpenMP with the Intel Fortran Compiler Classic and Intel
Fortran Compiler from the command line on Windows.

Compile and Link OpenMP Libraries

You can compile an application and link the Compatibility libraries with a single command using
the /Qopenmp option. By default, the Intel Fortran Compiler Classic and Intel Fortran Compiler performs a
dynamic link of the OpenMP libraries.

For example, to compile source file hello.cpp and link Compatibility libraries using the Intel Fortran
Compiler Classic and Intel Fortran Compiler :

ifx /MD /Qopenmp hello.f90
Mix OpenMP Object Files Compiled with Visual C++ Compiler or Intel Fortran Compiler Classic and
Intel Fortran Compiler

You can use the Intel Fortran Compiler Classic and Intel Fortran Compiler with the Visual C++ Compiler to
compile parts of an application and create object files that can then be linked (object-level interoperability).

For example:

1. Compile f1.c and f2.c with the Visual C++ Compiler, using the /openmp option to enable OpenMP
support:

cl /MD /openmp /c f1.c f2.c
The /c prevents linking at this step.

2. Compile f3.f90 and f4.f90 with the ifx compiler, using the /Qopenmp option to enable OpenMP
support:

ifx /MD /Qopenmp /c f3.f90 f4.f90

Intel® Fortran Compiler Classic and Intel® Fortran Compiler Developer Guide and Reference 1

2419

3. Use the ifxIntel Fortran Compiler Classic and Intel Fortran Compiler compiler to link the resulting
application object code with the Intel C++ Compiler OpenMP library:

ifx /MD /Qopenmp f1.obj f2.obj f3.obj f4.obj /Feapp /link /nodefaultlib:vcomp
The /Fe specifies the generated executable file name.

See Also
qopenmp, Qopenmp compiler option
Using IPO
OpenMP Support Libraries
qopenmp-link, Qopenmp-link compiler option

Thread Affinity Interface

The Intel® runtime library has the ability to bind OpenMP* threads to physical processing units. The interface
is controlled using the KMP_AFFINITY environment variable. Depending on the system (machine) topology,
application, and operating system, thread affinity can have a dramatic effect on the application speed.

Thread affinity restricts execution of certain threads (virtual execution units) to a subset of the physical
processing units in a multiprocessor computer. Depending upon the topology of the machine, thread affinity
can have a dramatic effect on the execution speed of a program.

Thread affinity is supported on Windows* systems and versions of Linux* systems that have kernel support
for thread affinity.

The Intel OpenMP runtime library has the ability to bind OpenMP threads to physical processing units. There
are three types of interfaces you can use to specify this binding, which are collectively referred to as the Intel
OpenMP Thread Affinity Interface:

• The high-level affinity interface uses an environment variable to determine the machine topology and
assigns OpenMP threads to the processors based upon their physical location in the machine. This
interface is controlled entirely by the KMP_AFFINITY environment variable.

• The mid-level affinity interface uses an environment variable to explicitly specifies which processors
(labeled with integer IDs) are bound to OpenMP threads. This interface provides compatibility with the
GCC* GOMP_CPU_AFFINITY environment variable, but you can also invoke it by using the KMP_AFFINITY
environment variable. The GOMP_CPU_AFFINITY environment variable is supported on Linux systems only,
but users on Windows or Linux systems can use the similar functionality provided by the KMP_AFFINITY
environment variable.

• The low-level affinity interface uses APIs to enable OpenMP threads to make calls into the OpenMP
runtime library to explicitly specify the set of processors on which they are to be run. This interface is
similar in nature to sched_setaffinity and related functions on Linux systems or to
SetThreadAffinityMask and related functions on Windows systems.

In addition, you can specify certain options of the KMP_AFFINITY environment variable to affect the
behavior of the low-level API interface. For example, you can set the affinity type KMP_AFFINITY to
disabled, which disables the low-level affinity interface, or you could use the KMP_AFFINITY or
GOMP_CPU_AFFINITY environment variables to set the initial affinity mask, and then retrieve the mask
with the low-level API interface.

The following terms are used in this section:

• The total number of processing elements on the machine is referred to as the number of OS thread
contexts.

• Each processing element is referred to as an Operating System processor, or OS proc.
• Each OS processor has a unique integer identifier associated with it, called an OS proc ID.
• The term package refers to a single or multi-core processor chip.
• The term OpenMP Global Thread ID (GTID) refers to an integer which uniquely identifies all threads

known to the Intel OpenMP runtime library. The thread that first initializes the library is given GTID 0. In
the normal case where all other threads are created by the library and when there is no nested
parallelism, then n-threads-var - 1 new threads are created with GTIDs ranging from 1 to ntheads-var - 1,
and each thread's GTID is equal to the OpenMP thread number returned by function
omp_get_thread_num().

 1 Intel® Fortran Compiler Classic and Intel® Fortran Compiler Developer Guide and Reference

2420

The high-level and mid-level interfaces rely heavily on this concept. Hence, their usefulness is limited in
programs containing nested parallelism. The low-level interface does not make use of the concept of a
GTID and can be used by programs containing arbitrarily many levels of parallelism.

Some environment variables are available for both Intel® microprocessors and non-Intel microprocessors, but
may perform additional optimizations for Intel® microprocessors than for non-Intel microprocessors.

The KMP_AFFINITY Environment Variable

NOTE
You must set the KMP_AFFINITY environment variable before the first parallel region, or certain API
calls including omp_get_max_threads(), omp_get_num_procs() and any affinity API calls, as
described in Low Level Affinity API, below.

The KMP_AFFINITY environment variable uses the following general syntax:

KMP_AFFINITY=[<modifier>,...]<type>[,<permute>][,<offset>]

For example, to list a machine topology map, specify KMP_AFFINITY=verbose,none to use a modifier of
verbose and a type of none.

The following table describes the supported specific arguments.

Argument Default Description

modifier noverbose
respect
granularity=core

Optional. String consisting of
keyword and specifier.

• granularity=<specifier>
takes takes the following
specifiers: fine, thread, core,
tile, die, module, l1_cache,
l2_cache, l3_cache, node (can
also use numa_domain),
group, and socket

• norespect
• noverbose
• nowarnings
• noreset
• proclist={<proc-list>}
• respect
• verbose
• warnings
• reset
The syntax for <proc-list> is
explained in mid-level affinity
interface.

Intel® Fortran Compiler Classic and Intel® Fortran Compiler Developer Guide and Reference 1

2421

Argument Default Description

NOTE On Windows with
multiple processor groups, the
norespect affinity modifier is
assumed when the process
affinity mask equals a single
processor group (which is
default on Windows).
Otherwise, the respect affinity
modifier is used.

type none Required string. Indicates the
thread affinity to use.

• balanced
• compact
• disabled
• explicit
• none
• scatter
• logical (deprecated; instead

use compact, but omit any
permute value)

• physical (deprecated;
instead use scatter,
possibly with an offset
value)

The logical and physical
types are deprecated but
supported for backward
compatibility.

permute 0 Optional. Positive integer value.
Not valid with type values of
explicit, none, or disabled.

offset 0 Optional. Positive integer value.
Not valid with type values of
explicit, none, or disabled.

Affinity Types
Type is the only required argument.

type = none (default)

Does not bind OpenMP threads to particular thread contexts; however, if the operating system supports
affinity, the compiler still uses the OpenMP thread affinity interface to determine machine topology. Specify
KMP_AFFINITY=verbose,none to list a machine topology map.

type = balanced

 1 Intel® Fortran Compiler Classic and Intel® Fortran Compiler Developer Guide and Reference

2422

Places threads on separate cores until all cores have at least one thread, similar to the scatter type.
However, when the runtime must use multiple hardware thread contexts on the same core, the balanced
type ensures that the OpenMP thread numbers are close to each other, which scatter does not do. This
affinity type is supported on the CPU only for single socket systems.

NOTE
The OpenMP* environment variable OMP_PROC_BIND=spread is similar to KMP_AFFINITY=balanced
and is available on all platforms, including multi-socket CPU systems.

type = compact

Specifying compact assigns the OpenMP thread <n>+1 to a free thread context as close as possible to the
thread context where the <n> OpenMP thread was placed. For example, in a topology map, the nearer a
node is to the root, the more significance the node has when sorting the threads.

type = disabled

Specifying disabled completely disables the thread affinity interfaces. This forces the OpenMP runtime
library to behave as if the affinity interface was not supported by the operating system. This includes the
low-level API interfaces such as kmp_set_affinity and kmp_get_affinity, which have no effect and will
return a non-zero error code.

type = explicit

Specifying explicit assigns OpenMP threads to a list of OS proc IDs that have been explicitly specified by
using the proclist= modifier, which is required for this affinity type. See Explicitly Specify OS Processor IDs
(GOMP_CPU_AFFINITY, KMP_AFFINITY).

type = scatter

Specifying scatter distributes the threads as evenly as possible across the entire system. scatter is the
opposite of compact; so the leaves of the node are most significant when sorting through the machine
topology map.

Deprecated Types: logical and physical

Types logical and physical are deprecated and may become unsupported in a future release. Both are
supported for backward compatibility.

For logical and physical affinity types, a single trailing integer is interpreted as an offset specifier
instead of a permute specifier. In contrast, with compact and scatter types, a single trailing integer is
interpreted as a permute specifier.

• Specifying logical assigns OpenMP threads to consecutive logical processors, which are also called
hardware thread contexts. The type is equivalent to compact, except that the permute specifier is not
allowed. Thus, KMP_AFFINITY=logical,n is equivalent to KMP_AFFINITY=compact,0,n (this
equivalence is true regardless of the whether or not a granularity=fine modifier is present).

• Specifying physical assigns threads to consecutive physical processors (cores). For systems where there
is only a single thread context per core, the type is equivalent to logical. For systems where multiple
thread contexts exist per core, physical is equivalent to compact with a permute specifier of 1; that is,
KMP_AFFINITY=physical,n is equivalent to KMP_AFFINITY=compact,1,n (regardless of the whether or
not a granularity=fine modifier is present).

This equivalence means that when the compiler sorts the map it should permute the innermost level of
the machine topology map to the outermost, presumably the thread context level. This type does not
support the permute specifier.

Examples of Types compact and scatter

Intel® Fortran Compiler Classic and Intel® Fortran Compiler Developer Guide and Reference 1

2423

The following figure illustrates the topology for a machine with two processors, and each processor has two
cores; further, each core has Intel® Hyper-Threading Technology (Intel® HT Technology) enabled.

The following figure also illustrates the binding of OpenMP thread to hardware thread contexts when
specifying KMP_AFFINITY=granularity=fine,compact.

Specifying scatter on the same system as shown in the figure above, the OpenMP threads would be
assigned the thread contexts as shown in the following figure, which shows the result of specifying
KMP_AFFINITY=granularity=fine,scatter.

permute and offset Combinations
For both compact and scatter, permute and offset are allowed; however, if you specify only one integer,
the compiler interprets the value as a permute specifier. Both permute and offset default to 0.

The permute specifier controls which levels are most significant when sorting the machine topology map. A
value for permute forces the mappings to make the specified number of most significant levels of the sort the
least significant, and it inverts the order of significance. The root node of the tree is not considered a
separate level for the sort operations.

The offset specifier indicates the starting position for thread assignment.

The following figure illustrates the result of specifying KMP_AFFINITY=granularity=fine,compact,0,5.

 1 Intel® Fortran Compiler Classic and Intel® Fortran Compiler Developer Guide and Reference

2424

Consider the hardware configuration from the previous example, running an OpenMP application which
exhibits data sharing between consecutive iterations of loops. We would therefore like consecutive threads to
be bound close together, as is done with KMP_AFFINITY=compact, so that communication overhead, cache
line invalidation overhead, and page thrashing are minimized.

Now, suppose the application also had a number of parallel regions which did not use all of the available
OpenMP threads. It is desirable to avoid binding multiple threads to the same core and leaving other cores
not utilized, since a thread normally executes faster on a core where it is not competing for resources with
another active thread on the same core. Since a thread normally executes faster on a core where it is not
competing for resources with another active thread on the same core, you might want to avoid binding
multiple threads to the same core while leaving other cores unused. The following figure illustrates this
strategy of using KMP_AFFINITY=granularity=fine,compact,1,0 as a setting.

The OpenMP thread n+1 is bound to a thread context as close as possible to OpenMP thread n, but on a
different core. Once each core has been assigned one OpenMP thread, the subsequent OpenMP threads are
assigned to the available cores in the same order, but they are assigned on different thread contexts.

Modifier Values for Affinity Types
Modifiers are optional arguments that precede type. If you do not specify a modifier, the noverbose,
respect, and granularity=core modifiers are used automatically.

Intel® Fortran Compiler Classic and Intel® Fortran Compiler Developer Guide and Reference 1

2425

Modifiers are interpreted in order from left to right, and they may conflict. Following conflicting modifier is
ignored. For example, specifying KMP_AFFINITY=verbose,noverbose,scatter is therefore equivalent to
setting KMP_AFFINITY=verbose,scatter.

modifier = noverbose (default)

Does not print verbose messages.

modifier = verbose

Prints messages concerning the supported affinity. The messages include information about the number of
packages, number of cores in each package, number of thread contexts for each core, and OpenMP thread
bindings to physical thread contexts.

Information about binding OpenMP threads to physical thread contexts is indirectly shown in the form of the
mappings between hardware thread contexts and the operating system (OS) processor (proc) IDs. The
affinity mask for each OpenMP thread is printed as a set of OS processor IDs.

For example, specifying KMP_AFFINITY=verbose,scatter on a dual core system with two processors, with
Intel® Hyper-Threading Technology (Intel® HT Technology) disabled, results in a message listing similar to the
following when then program is executed:

...
KMP_AFFINITY: Initial OS proc set respected: 0,1,2,3
KMP_AFFINITY: affinity capable, using hwloc.
KMP_AFFINITY: 4 available OS procs
KMP_AFFINITY: Uniform topology
KMP_AFFINITY: 2 sockets x 2 cores/socket x 1 threads/core (4 total cores)
KMP_AFFINITY: OS proc to physical thread map:
KMP_AFFINITY: OS proc 0 maps to socket 0 core 0 thread 0
KMP_AFFINITY: OS proc 2 maps to socket 0 core 1 thread 0
KMP_AFFINITY: OS proc 1 maps to socket 3 core 0 thread 0
KMP_AFFINITY: OS proc 3 maps to socket 3 core 1 thread 0
KMP_AFFINITY: pid 79739 tid 79739 thread 0 bound to OS proc set 0
KMP_AFFINITY: pid 79739 tid 79740 thread 2 bound to OS proc set 2
KMP_AFFINITY: pid 79739 tid 79741 thread 3 bound to OS proc set 3
KMP_AFFINITY: pid 79739 tid 79742 thread 1 bound to OS proc set 1

The verbose modifier generates several standard, general messages. The following table summarizes how to
read the messages.

Message String Description

"affinity capable" Indicates that all components (compiler, operating system, and hardware)
support affinity, so thread binding is possible.

"decoding x2APIC ids" Indicates that the machine topology was discovered by binding a thread to
each operating system processor and decoding the output of the cpuid
instruction.

"using hwloc" Indicates that the Portable Hardware Locality* (hwloc) library used to
determine machine topology.

"using /proc/cpuinfo" Linux only. Indicates that cpuinfo is being used to determine machine
topology.

"using flat" Operating system processor ID is assumed to be equivalent to physical
package ID. This method of determining machine topology is used if none of
the other methods will work, but may not accurately detect the actual
machine topology.

 1 Intel® Fortran Compiler Classic and Intel® Fortran Compiler Developer Guide and Reference

2426

Message String Description

"uniform topology" The machine topology map is a full tree with no missing leaves at any level.

The mapping from the operating system processors to thread context ID is printed next. The binding of
OpenMP thread context ID is printed next unless the affinity type is none. For more information, see
Determining Machine Topology.

modifier = granularity

Binding OpenMP threads to particular packages and cores will often result in a performance gain on systems
with Intel processors with Intel® Hyper-Threading Technology (Intel® HT Technology) enabled; however, it is
usually not beneficial to bind each OpenMP thread to a particular thread context on a specific core.
Granularity describes the lowest levels that OpenMP threads are allowed to float within a topology map.

This modifier supports the following additional specifiers.

Specifier Description

core Default. Allows all the OpenMP threads bound to a core to float
between the different thread contexts.

fine or thread The finest granularity level. Causes each OpenMP thread to be bound
to a single thread context. The two specifiers are functionally
equivalent.

tile, die, module, node (can also
use numa_domain), group,
l1_cache, l2_cache, l3_cache,
socket

NOTE Only available when
Intel® Hybrid Technology is
detected in the machine
topology: core_type or
core_efficiency

Allows all OpenMP threads bound to the specified resource to float
between the different hardware thread contexts which represent that
resource. For example, granularity=socket allows all the OpenMP
threads bound to a socket to move between the hardware threads
that represent that socket

Specifying KMP_AFFINITY=verbose,granularity=core,compact on the same dual core system with two
processors as in the previous section, but with Intel® Hyper-Threading Technology (Intel® HT Technology)
enabled, results in a message listing similar to the following when the program is executed:

KMP_AFFINITY: Initial OS proc set respected: 0-7
KMP_AFFINITY: decoding x2APIC ids.
KMP_AFFINITY: 8 available OS procs
KMP_AFFINITY: Uniform topology
KMP_AFFINITY: 2 sockects x 2 cores/socket x 2 threads/core (4 total cores)
KMP_AFFINITY: OS proc to physical thread map:
KMP_AFFINITY: OS proc 0 maps to socket 0 core 0 thread 0
KMP_AFFINITY: OS proc 4 maps to socket 0 core 0 thread 1
KMP_AFFINITY: OS proc 2 maps to socket 0 core 1 thread 0
KMP_AFFINITY: OS proc 6 maps to socket 0 core 1 thread 1
KMP_AFFINITY: OS proc 1 maps to socket 3 core 0 thread 0
KMP_AFFINITY: OS proc 5 maps to socket 3 core 0 thread 1
KMP_AFFINITY: OS proc 3 maps to socket 3 core 1 thread 0
KMP_AFFINITY: OS proc 7 maps to socket 3 core 1 thread 1
KMP_AFFINITY: pid 40880 tid 40880 thread 0 bound to OS proc set 0,4
KMP_AFFINITY: pid 40880 tid 40881 thread 1 bound to OS proc set 0,4

Intel® Fortran Compiler Classic and Intel® Fortran Compiler Developer Guide and Reference 1

2427

KMP_AFFINITY: pid 40880 tid 40882 thread 2 bound to OS proc set 2,6
KMP_AFFINITY: pid 40880 tid 40883 thread 3 bound to OS proc set 2,6
KMP_AFFINITY: pid 40880 tid 40884 thread 4 bound to OS proc set 1,5
KMP_AFFINITY: pid 40880 tid 40885 thread 5 bound to OS proc set 1,5
KMP_AFFINITY: pid 40880 tid 40886 thread 6 bound to OS proc set 3,7
KMP_AFFINITY: pid 40880 tid 40887 thread 7 bound to OS proc set 3,7

The affinity mask for each OpenMP thread is shown in the listing (above) as the set of operating system
processor to which the OpenMP thread is bound.

The following figure illustrates the machine topology map, for the above listing, with OpenMP thread
bindings.

In contrast, specifying KMP_AFFINITY=verbose,granularity=fine,compact or
KMP_AFFINITY=verbose,granularity=thread,compact binds each OpenMP thread to a single hardware
thread context when the program is executed:

KMP_AFFINITY: Initial OS proc set respected: 0-7
KMP_AFFINITY: decoding x2APIC ids.
KMP_AFFINITY: 8 available OS procs
KMP_AFFINITY: Uniform topology
KMP_AFFINITY: 2 sockets x 2 cores/socket x 2 threads/core (4 total cores)
KMP_AFFINITY: OS proc to physical thread map:
KMP_AFFINITY: OS proc 0 maps to socket 0 core 0 thread 0
KMP_AFFINITY: OS proc 4 maps to socket 0 core 0 thread 1
KMP_AFFINITY: OS proc 2 maps to socket 0 core 1 thread 0
KMP_AFFINITY: OS proc 6 maps to socket 0 core 1 thread 1
KMP_AFFINITY: OS proc 1 maps to socket 3 core 0 thread 0
KMP_AFFINITY: OS proc 5 maps to socket 3 core 0 thread 1
KMP_AFFINITY: OS proc 3 maps to socket 3 core 1 thread 0
KMP_AFFINITY: OS proc 7 maps to socket 3 core 1 thread 1
KMP_AFFINITY: pid 40895 tid 40895 thread 0 bound to OS proc set 0
KMP_AFFINITY: pid 40895 tid 40896 thread 1 bound to OS proc set 4
KMP_AFFINITY: pid 40895 tid 40897 thread 2 bound to OS proc set 2
KMP_AFFINITY: pid 40895 tid 40898 thread 3 bound to OS proc set 6
KMP_AFFINITY: pid 40895 tid 40899 thread 4 bound to OS proc set 1
KMP_AFFINITY: pid 40895 tid 40900 thread 5 bound to OS proc set 5
KMP_AFFINITY: pid 40895 tid 40901 thread 6 bound to OS proc set 3
KMP_AFFINITY: pid 40895 tid 40902 thread 7 bound to OS proc set 7

The OpenMP to hardware context binding for this example was illustrated in the first example.

 1 Intel® Fortran Compiler Classic and Intel® Fortran Compiler Developer Guide and Reference

2428

Specifying granularity=fine will always cause each OpenMP thread to be bound to a single OS processor.
This is equivalent to granularity=thread, currently the finest granularity level.

modifier = respect (Default)

Respect the process' original affinity mask, or more specifically, the affinity mask in place for the thread that
initializes the OpenMP runtime library. The behavior differs between Linux and Windows:

• Linux

Respect the affinity mask for the thread that initializes the OpenMP runtime library.
• Windows

Respect original affinity mask for the process.

NOTE On Windows with multiple processor groups, the norespect affinity modifier is the default
when the process affinity mask equals a single processor group (which is default on Windows).
Otherwise, the respect affinity modifier is the default.

Specifying KMP_AFFINITY=verbose,compact for the same system used in the previous example, with Intel®
Hyper-Threading Technology (Intel® HT Technology) enabled, and invoking the library with an initial affinity
mask of {4,5,6,7} (thread context 1 on every core) causes the compiler to model the machine as a dual
core, two-processor system with Intel® HT Technology disabled.

KMP_AFFINITY: Initial OS proc set respected: 4-7
KMP_AFFINITY: decoding x2APIC ids.
KMP_AFFINITY: 4 available OS procs
KMP_AFFINITY: Uniform topology
KMP_AFFINITY: 2 sockets x 2 cores/socket x 1 threads/core (4 total cores)
KMP_AFFINITY: OS proc to physical thread map:
KMP_AFFINITY: OS proc 4 maps to socket 0 core 0 thread 1
KMP_AFFINITY: OS proc 6 maps to socket 0 core 1 thread 1
KMP_AFFINITY: OS proc 5 maps to socket 3 core 0 thread 1
KMP_AFFINITY: OS proc 7 maps to socket 3 core 1 thread 1
KMP_AFFINITY: pid 41032 tid 41032 thread 0 bound to OS proc set 4
KMP_AFFINITY: pid 41032 tid 41033 thread 1 bound to OS proc set 6
KMP_AFFINITY: pid 41032 tid 41034 thread 2 bound to OS proc set 5
KMP_AFFINITY: pid 41032 tid 41035 thread 3 bound to OS proc set 7

Because there are four thread contexts accessible on the machine, by default the compiler created four
threads for an OpenMP parallel construct.

The following figure illustrates the corresponding machine topology map and threads placement in case eight
OpenMP threads requested via OMP_NUM_THREADS=8

Intel® Fortran Compiler Classic and Intel® Fortran Compiler Developer Guide and Reference 1

2429

When using the local cpuid information to determine the machine topology, it is not always possible to
distinguish between a machine that does not support Intel® Hyper-Threading Technology (Intel® HT
Technology) and a machine that supports it, but has it disabled. Therefore, the compiler does not include a
level in the map if the elements (nodes) at that level had no siblings, with the exception that the package
level is always modeled. As mentioned earlier, the package level will always appear in the topology map,
even if there only a single package in the machine.

modifier = norespect

Do not respect original affinity mask for the process. Binds OpenMP threads to all operating system
processors.

In early versions of the OpenMP runtime library that supported only the physical and logical affinity
types, norespect was the default and was not recognized as a modifier.

The default was changed to respect when types compact and scatter were added; therefore, thread
bindings may have changed with the newer compilers in situations where the application specified a partial
initial thread affinity mask.

modifier = nowarnings

Do not print warning messages from the affinity interface.

modifier = warnings (Default)

Print warning messages from the affinity interface (default).

modifier = noreset (Default)

Do not reset the primary thread's affinity after each outermost parallel region is complete. This setting
preserves the primary thread's OpenMP affinity setting between parallel regions. For example, if
KMP_AFFINITY=compact,granularity=core, then the primary thread's affinity is set to the first core for
the first parallel region and kept that way for the thread's lifetime, even during serial regions.

modifier = reset

Reset the primary thread's affinity after each outermost parallel region is complete. This setting will reset the
primary thread's affinity back to the initial affinity before OpenMP was initialized after each outermost parallel
region is complete.

Determine Machine Topology
If the package has an APIC (Advanced Programmable Interrupt Controller), the compiler will use the cpuid
instruction to obtain the package id, core id, and thread context id. Under normal conditions, each
thread context on the system is assigned a unique APIC ID at boot time. The compiler obtains other pieces of

 1 Intel® Fortran Compiler Classic and Intel® Fortran Compiler Developer Guide and Reference

2430

information obtained by using the cpuid instruction, which together with the number of OS thread contexts
(total number of processing elements on the machine), determine how to break the APIC ID down into the
package ID, core ID, and thread context ID.

There are several ways to specify the APIC ID in the cpuid instruction - the legacy method in leaf 4, and the
more modern method in leaf 11 and leaf 31. Only 256 unique APIC IDs are available in leaf 4. Leaf 11 and
leaf 31 have no such limitation.

Normally, all core ids on a package and all thread context ids on a core are contiguous; however,
numbering assignment gaps are common for package ids, as shown in the figure above.

If the compiler cannot determine the machine topology using any other method, but the operating system
supports affinity, a warning message is printed, and the topology is assumed to be flat. For example, a flat
topology assumes the operating system process N maps to package N, and there exists only one thread
context per core and only one core for each package.

If the machine topology cannot be accurately determined as described above, the user can manually copy /
proc/cpuinfo to a temporary file, correct any errors, and specify the machine topology to the OpenMP
runtime library via the environment variable KMP_CPUINFO_FILE=<temp_filename>, as described in the
section KMP_CPUINFO_FILE and /proc/cpuinfo.

Regardless of the method used in determining the machine topology, if there is only one thread context per
core for every core on the machine, the thread context level will not appear in the topology map. If there is
only one core per package for every package in the machine, the core level will not appear in the machine
topology map. The topology map need not be a full tree, because different packages may contain a different
number of cores, and different cores may support a different number of thread contexts.

The package level will always appear in the topology map, even if there only a single package in the
machine.

KMP_CPUINFO_FILE and /proc/cpuinfo
One of the methods the OpenMP runtime library can use to detect the machine topology on Linux systems is
to parse the contents of /proc/cpuinfo. If the contents of this file (or a device mapped into the Linux file
system) are insufficient or erroneous, you can consider copying its contents to a writable temporary file
<temp_file>, correct it or extend it with the necessary information, and set
KMP_CPUINFO_FILE=<temp_file>.

If you do this, the OpenMP runtime library will read the <temp_file> location pointed to by
KMP_CPUINFO_FILE instead of the information contained in /proc/cpuinfo or attempting to detect the
machine topology by decoding the APIC IDs. That is, the information contained in the <temp_file> overrides
these other methods. You can use the KMP_CPUINFO_FILE interface on Windows systems, where /proc/
cpuinfo does not exist.

The content of /proc/cpuinfo or <temp_file> should contain a list of entries for each processing element
on the machine. Each processor element contains a list of entries (descriptive name and value on each line).
A blank line separates the entries for each processor element. Only the following fields are used to determine
the machine topology from each entry, either in <temp_file> or /proc/cpuinfo:

Field Description

processor : Specifies the OS ID for the processing element. The
OS ID must be unique. The processor and
physical id fields are the only ones that are
required to use the interface.

Intel® Fortran Compiler Classic and Intel® Fortran Compiler Developer Guide and Reference 1

2431

Field Description

physical id : Specifies the package ID, which is a physical chip
ID. Each package may contain multiple cores. The
package level always exists in the compiler's
OpenMP runtime library model of the machine
topology.

core id : Specifies the core ID. If it does not exist, it defaults
to 0. If every package on the machine contains only
a single core, the core level will not exist in the
machine topology map (even if some of the core ID
fields are non-zero).

apicid : Specifies the thread ID. If it does not exist, it
defaults to 0. If every core on the machine contains
only a single thread, the thread level will not exist
in the machine topology map (even if some thread
ID fields are non-zero).

node_n id : This is a extension to the normal contents of /
proc/cpuinfo that can be used to specify the
nodes at different levels of the memory
interconnect on Non-Uniform Memory Access
(NUMA) systems. Arbitrarily many levels n are
supported. The node_0 level is closest to the
package level; multiple packages comprise a node
at level 0. Multiple nodes at level 0 comprise a node
at level 1, and so on.

Each entry must be spelled exactly as shown, in lowercase, followed by optional whitespace, a colon (:),
more optional whitespace, then the integer ID. Fields other than those listed are simply ignored.

NOTE
It is common for the thread id field to be missing from /proc/cpuinfo on many Linux variants, and
for a field labeled siblings to specify the number of threads per node or number of nodes per
package. However, the Intel OpenMP runtime library ignores fields labeled siblings so it can
distinguish between the thread id and siblings fields. When this situation arises, the warning
message Physical node/pkg/core/thread ids not unique appears (unless the type
specified is nowarnings).

Windows Processor Groups
On a 64-bit Windows operating system, it is possible for multiple processor groups to accommodate more
than 64 processors. Each group is limited in size, up to a maximum value of sixty-four (64) processors.

If multiple processor groups are detected, the default is to model the machine as a 2-level tree, where level
0 are for the processors in a group, and level 1 are for the different groups. Threads are assigned to a group
until there are as many OpenMP threads bound to the groups as there are processors in the group.
Subsequent threads are assigned to the next group, and so on.

By default, threads are allowed to float among all processors in a group, that is to say, granularity equals the
group [granularity=group]. You can override this binding and explicitly use another affinity type like compact,
scatter, and so on. If you do so, the granularity must be sufficiently fine to prevent a thread from being
bound to multiple processors in different groups.

 1 Intel® Fortran Compiler Classic and Intel® Fortran Compiler Developer Guide and Reference

2432

Use a Specific Machine Topology Modeling Method (KMP_TOPOLOGY_METHOD)
You can set the KMP_TOPOLOGY_METHOD environment variable to force OpenMP to use a particular machine
topology modeling method.

Value Description

cpuid_leaf31 Decodes the APIC identifiers as specified by leaf 31
of the cpuid instruction.

cpuid_leaf11 Decodes the APIC identifiers as specified by leaf 11
of the cpuid instruction.

cpuid_leaf4 Decodes the APIC identifiers as specified in leaf 4 of
the cpuid instruction.

cpuinfo If KMP_CPUINFO_FILE is not specified, forces
OpenMP to parse /proc/cpuinfo to determine the
topology (Linux only).

If KMP_CPUINFO_FILE is specified as described
above, uses it (Windows or Linux).

group Models the machine as a 2-level map, with level 0
specifying the different processors in a group, and
level 1 specifying the different groups (Windows
64-bit only) .

flat Models the machine as a flat (linear) list of
processors.

hwloc Models the machine as the Portable Hardware
Locality* (hwloc) library does. This model is the
most detailed and includes, but is not limited to:
numa nodes, packages, cores, hardware threads,
caches, and Windows processor groups.

Explicitly Specify OS Processor IDs (GOMP_CPU_AFFINITY, KMP_AFFINITY)

NOTE
You must set the GOMP_CPU_AFFINITY or KMP_AFFINITY environment variable

• before the first parallel region,
• before certain API calls, including omp_get_max_threads(), omp_get_num_procs(), and any

affinity API calls, as described in Low Level Affinity API.

Instead of allowing the library to detect the hardware topology and automatically assign OpenMP threads to
processing elements, the user may explicitly specify the assignment by using a list of operating system (OS)
processor (proc) IDs. However, this requires knowledge of which processing elements the OS proc IDs
represent.

On Linux systems, when using the Intel OpenMP compatibility libraries enabled by the compiler option
-qopenmp-lib=compat, you can use the GOMP_CPU_AFFINITY environment variable to specify a list of OS
processor IDs. Its syntax is identical to that accepted by libgomp (assume that <proc_list> produces the
entire GOMP_CPU_AFFINITY environment string):

Intel® Fortran Compiler Classic and Intel® Fortran Compiler Developer Guide and Reference 1

2433

Value Description

<proc_list> := <entry> | <elem> , <list> | <elem>
<whitespace> <list>

<elem> := <proc_spec> | <range>

<proc_spec> := <proc_id>

<range> := <proc_id> - <proc_id> | <proc_id> - <proc_id> :
<int>

<proc_id> := <positive_int>

OS processors specified in this list are then assigned to OpenMP threads, in order of OpenMP Global Thread
IDs. If more OpenMP threads are created than there are elements in the list, then the assignment occurs
modulo the size of the list. That is, OpenMP Global Thread ID n is bound to list element n mod <list_size>.

Consider the machine previously mentioned: a dual core, dual-package machine without Intel® Hyper-
Threading Technology (Intel® HT Technology) enabled, where the OS proc IDs are assigned in the same
manner as the example in a previous figure. Suppose that the application creates six OpenMP threads
instead of 4 (the default), oversubscribing the machine. If GOMP_CPU_AFFINITY=3,0-2, then OpenMP
threads are bound as shown in the figure below, just as should happen when compiling with gcc and linking
with libgomp:

The same syntax can be used to specify the OS proc ID list in the proclist=[<proc_list>] modifier in the
KMP_AFFINITY environment variable string. There is a slight difference: in order to have strictly the same
semantics as in the gcc OpenMP runtime library libgomp: the GOMP_CPU_AFFINITY environment variable
implies granularity=fine. If you specify the OS proc list in the KMP_AFFINITY environment variable
without a granularity= specifier, then the default granularity is not changed. That is, OpenMP threads
are allowed to float between the different thread contexts on a single core. Thus
GOMP_CPU_AFFINITY=<proc_list> is an alias for
KMP_AFFINITY="granularity=fine,proclist=[<proc_list>],explicit".

 1 Intel® Fortran Compiler Classic and Intel® Fortran Compiler Developer Guide and Reference

2434

In the KMP_AFFINITY environment variable string, the syntax is extended to handle operating system
processor ID sets. The user may specify a set of operating system processor IDs among which an OpenMP
thread may execute ("float") enclosed in brackets:

Value Description

<proc_list> := <proc_id> | { <float_list> }

<float_list> := <proc_id> | <proc_id> , <float_list>

This allows functionality similarity to the granularity= specifier, but it is more flexible. The OS
processors on which an OpenMP thread executes may exclude other OS processors nearby in the machine
topology, but include other distant OS processors. Building upon the previous example, we may allow
OpenMP threads 2 and 3 to "float" between OS processor 1 and OS processor 2 by using
KMP_AFFINITY="granularity=fine,proclist=[3,0,{1,2},{1,2}],explicit", as shown in the figure
below:

If verbose were also specified, the output when the application is executed would include:

KMP_AFFINITY: Initial OS proc set respected: 0,1,2,3
KMP_AFFINITY: decoding x2APIC ids.
KMP_AFFINITY: 4 available OS procs
KMP_AFFINITY: Uniform topology
KMP_AFFINITY: 2 sockets x 2 cores/socket x 1 threads/core (4 total cores)
KMP_AFFINITY: OS proc to physical thread map:
KMP_AFFINITY: OS proc 0 maps to socket 0 core 0 thread 0
KMP_AFFINITY: OS proc 2 maps to socket 0 core 1 thread 0
KMP_AFFINITY: OS proc 1 maps to socket 3 core 0 thread 0
KMP_AFFINITY: OS proc 3 maps to socket 3 core 1 thread 0
KMP_AFFINITY: pid 41464 tid 41464 thread 0 bound to OS proc set 3
KMP_AFFINITY: pid 41464 tid 41465 thread 1 bound to OS proc set 0
KMP_AFFINITY: pid 41464 tid 41466 thread 2 bound to OS proc set 1,2
KMP_AFFINITY: pid 41464 tid 41467 thread 3 bound to OS proc set 1,2
KMP_AFFINITY: pid 41464 tid 41468 thread 4 bound to OS proc set 3
KMP_AFFINITY: pid 41464 tid 41469 thread 5 bound to OS proc set 0

Intel® Fortran Compiler Classic and Intel® Fortran Compiler Developer Guide and Reference 1

2435

Low Level Affinity API
Instead of relying on the user to specify the OpenMP thread to OS proc binding by setting an environment
variable before program execution starts (or by using the kmp_settings interface before the first parallel
region is reached), each OpenMP thread can determine the desired set of OS procs on which it is to execute
and bind to them with the kmp_set_affinity API call.

Caution
When you use this affinity interface you take complete control of the hardware resources on which
your threads run. To do that sensibly you need to understand in detail how the logical CPUs, the
enumeration of hardware threads controlled by the OS, map to the physical hardware of the specific
machine on which you are running. That mapping can be, and likely is, different on different machines,
so you risk binding machine-specific information into your code, which can result in explicitly forcing
bad affinities when your code runs on a different machine. And if you are concerned with optimization
at this level of detail, your code is probably valuable, and therefore will probably move to another
machine.

This interface may also allow you to ignore the resource limitations that were set by the program
startup mechanism, such as Message Passing Interface (MPI), specifically to prevent multiple OpenMP
processes on the same node from using the same hardware threads. Again, this can result in explicitly
forcing affinities that cause bad performance, and the OpenMP runtime will neither prevent this from
happening, nor warn you when it does. These are expert interfaces and you must use them with
caution.

Therefore, it is recommended that you use the higher level affinity settings if you possibly can,
because they are more portable and do not require this low level knowledge.

The Fortran API interfaces follow, where the type name kmp_affinity_mask_kind is defined in omp_lib.h
or omp_lib.mod:

Syntax Description

integer function kmp_set_affinity(mask)
integer (kind=kmp_affinity_mask_kind)
mask

Sets the affinity mask for the current OpenMP
thread to mask, where mask is a set of OS proc IDs
that has been created using the API calls listed
below, and the thread will only execute on OS procs
in the set. Returns either a zero (0) upon success
or a non-zero error code.

integer function kmp_get_affinity(mask)
integer (kind=kmp_affinity_mask_kind)
mask

Retrieves the affinity mask for the current OpenMP
thread, and stores it in mask, which must have
previously been initialized with a call to
kmp_create_affinity_mask(). Returns either a
zero (0) upon success or a non-zero error code.

integer function
kmp_get_affinity_max_proc()

Returns the maximum OS proc ID that is on the
machine, plus 1. All OS proc IDs are guaranteed to
be between 0 (inclusive) and
kmp_get_affinity_max_proc() (exclusive).

subroutine kmp_create_affinity_mask(mask)
integer (kind=kmp_affinity_mask_kind)
mask

Allocates a new OpenMP thread affinity mask, and
initializes mask to the empty set of OS procs. The
implementation is free to use an object of
kmp_affinity_mask_t either as the set itself, a

 1 Intel® Fortran Compiler Classic and Intel® Fortran Compiler Developer Guide and Reference

2436

Syntax Description

pointer to the actual set, or an index into a table
describing the set. Do not make any assumption as
to what the actual representation is.

subroutine
kmp_destroy_affinity_mask(mask)
integer (kind=kmp_affinity_mask_kind)
mask

Deallocates the OpenMP thread affinity mask. For
each call to kmp_create_affinity_mask(), there
should be a corresponding call to
kmp_destroy_affinity_mask().

integer function
kmp_set_affinity_mask_proc(proc, mask)
integer proc
integer (kind=kmp_affinity_mask_kind)
mask

Adds the OS proc ID proc to the set mask, if it is
not already. Returns either a zero (0) upon success
or a non-zero error code.

integer function
kmp_unset_affinity_mask_proc(proc, mask)
integer proc
integer (kind=kmp_affinity_mask_kind)
mask

If the OS proc ID proc is in the set mask, it
removes it. Returns either a zero (0) upon success
or a non-zero error code.

integer function
kmp_get_affinity_mask_proc(proc,
mask)integer proc
integer (kind=kmp_affinity_mask_kind)
mask

Returns 1 if the OS proc ID proc is in the set mask;
if not, it returns 0.

Once an OpenMP thread has set its own affinity mask via a successful call to kmp_set_affinity(), then
that thread remains bound to the corresponding OS proc set until at least the end of the parallel region,
unless reset via a subsequent call to kmp_set_affinity().

Between parallel regions, the affinity mask (and the corresponding OpenMP thread to OS proc bindings) can
be considered thread private data objects, and have the same persistence as described in the OpenMP
Application Program Interface. For more information, see the OpenMP API specification (http://
www.openmp.org), some relevant parts of which are provided below:

In order for the affinity mask and thread binding to persist between two consecutive active parallel regions,
all three of the following conditions must hold:

• Neither parallel region is nested inside another explicit parallel region.
• The number of threads used to execute both parallel regions is the same.
• The value of the dyn-var internal control variable in the enclosing task region is false at entry to both

parallel regions."

Therefore, by creating a parallel region at the start of the program whose sole purpose is to set the affinity
mask for each thread, you can mimic the behavior of the KMP_AFFINITY environment variable with low-level
affinity API calls, if program execution obeys the three aforementioned rules from the OpenMP specification.

The following example shows how these low-level interfaces can be used. This code binds the executing
thread to the specified logical CPU:

! Force the executing thread to execute on logical CPU i
! Returns .TRUE. on success, .FALSE. on failure

function forceAffinity (i)
 use omp_lib

Intel® Fortran Compiler Classic and Intel® Fortran Compiler Developer Guide and Reference 1

2437

 logical forceAffinity
 integer, intent(in) :: i

 integer(kmp_affinity_mask_kind) :: mask

 call kmp_create_affinity_mask(mask)
 forceAffinity = (kmp_set_affinity_mask_proc(i, mask) == 0)
 if (.not. forceAffinity) return
 forceAffinity = (kmp_set_affinity_mask(mask) == 0)
 return
 end function forceAffinity

This program fragment was written with knowledge about the mapping of the OS proc IDs to the physical
processing elements of the target machine. On another machine, or on the same machine with a different OS
installed, the program would still run, but the OpenMP thread to physical processing element bindings could
differ and you might be explicitly force a bad distribution.

OpenMP* Memory Spaces and Allocators

This feature is only available for ifx.

For storage and retrieval variables, OpenMP* provides memory known as memory spaces. Different memory
spaces have different traits. Depending on how a variable is to be used and accessed determines which
memory space is appropriate for allocation of the variable.

Each memory space has a unique allocator that is used to allocate and deallocate memory in that space. The
allocators allocate variables in contiguous space that does not overlap any other allocation in the memory
space. Multiple memory spaces with different traits may map to a single memory resource.

The behavior of the allocator is affected by the allocator traits that you specify. The allocator traits, their
possible values, and their default values are shown in the following table:

Allocator Trait Values That Can Be
Specified

Default Value

access • all
• cgroup
• pteam
• thread

All

alignment A positive integer value that
is a power of 2 specifying
number of bytes

1 byte

fallback • abort_fb
• allocator_fb
• default_mem_fb
• null_fb

default_mem_fb

fb_data An allocator handle None

partition • blocked
• environment
• interleaved
• nearest

environment

pinned • true
• false

false

pool_size a positive integer value Implementation defined

 1 Intel® Fortran Compiler Classic and Intel® Fortran Compiler Developer Guide and Reference

2438

Allocator Trait Values That Can Be
Specified

Default Value

sync_hint • contended
• uncontended
• private
• serialized

contended

The access trait specifies the accessibility of the allocated memory. The following are values you can specify
for access:

• all
This value indicates that the allocated memory must be accessible by all threads in the device where the
memory allocation occurs.

This is the default setting.
• cgroup

This value indicates that the allocated memory must be accessible by all threads of the same contention
group as the thread that requested the allocation. Accessing the allocated memory thread that is not part
of the same contention group results in undefined behavior.

• pteam
This value indicates that the allocated memory is accessible by all threads that bind to the same parallel
region as the thread that requests the allocations. Access to the memory by a thread that does not bind
to the same parallel region as the thread that allocated the memory results in undefined behavior.

• thread
This value indicates that the memory allocated is accessible only by the thread that allocated it. Attempts
to allocate the memory by another thread result in undefined behavior.

The alignment trait specifies how allocated variables will be aligned. Variables will be byte-aligned to at
least the value specified for this trait. The default setting is 1 byte. Alignment can also be affected by
directives and OpenMP runtime allocator routines that specify alignment requirements.

The fallback trait indicates how an allocator behaves if it is unable to satisfy an allocation request. The
following are values you can specify for fallback:

• abort_fb
This value indicates that the program terminates if the allocation request fails.

• allocator_fb
If this value is specified and the allocation request fails, the allocation will be tried by the allocator
specified by the fb_data trait.

• default_mem_fb
This value indicates that a failed allocation request will be retried in the omp_default_mem_space
memory space. All traits for the omp_default_mem_space allocator should be set to the default trait
values, except the fallback trait should be set to null_fb. This is the default setting.

• null_fb
This value indicates the allocator returns a zero value when an allocation request fails.

The fb_data trait lets you specify a fall back allocator to be used if the requested allocator fails to satisfy the
allocation request. The fallback trait of the failing allocator must be set to allocator_fb in order for the
allocator specified by the fb_data trait to be used.

The partition trait describes the partitioning of allocated memory over the storage resources represented
by the memory space of the allocator. The following are values you can specify for partition:

• blocked
This value indicates the allocated memory is partitioned into blocks of memory of approximately equal
size with one block per storage resource.

• environment

Intel® Fortran Compiler Classic and Intel® Fortran Compiler Developer Guide and Reference 1

2439

This value indicates the allocated memory placement is determined by the runtime execution
environment. This is the default setting.

• interleaved
This value indicates the allocated memory is distributed in a round-robin fashion across the storage
resources.

• nearest
This value indicates that the allocated memory will be placed in the storage resource nearest to the thread
that requested the allocation.

If the pinned trait has the value true, the allocator ensures each allocation made by the allocator will
remain in the storage resource at the same location where it was allocated until it is deallocated. The default
setting is false.

The value of pool_size is the total number of bytes of storage available to an allocator when there have
been no allocations. The following affect pool_size:

• If the access trait has the value all, the value of pool_size is the limit for all allocations for all threads
having access to the allocator.

• If the access trait of the allocator has the value cgroup, the value of pool_size is the limit for
allocations made from the threads within the same contention group.

• For allocators with the access access trait value of pteam, the value of pool_size is the limit for
allocations made within the same parallel team.

• If the access trait has the value thread, the value of pool_size is the limit for allocations made from
each thread using the allocator.

• An allocation request for more space than the value of pool_size results in the allocator not fulfilling the
allocation request.

The sync_hint trait describes the way that multiple threads can access an allocator. The following are values
you can specify for sync_hint:

• contended or uncontended
Value contended indicates that many threads are anticipated to make simultaneous allocation requests
while the value uncontended indicates that few threads are anticipated to make simultaneous allocation.
The default setting is contended.

• private
This value indicates that all allocation requests will come from the same thread. Specifying private when
this is not the case and two or more threads make allocation requests by the same allocator results in
undefined behavior.

• serialized
This value indicates that only one thread will request an allocation at a given time. The behavior is
undefined if two threads request an allocation simultaneously by an allocator whose sync_hint value is
serialized.

There are five predefined memory spaces in OpenMP:

• The system default memory is referred to as omp_default_mem_space.
• Large capacity memory is referred to as omp_large_cap_mem_space.
• High bandwidth memory is referred to as omp_high_bw_mem_space.
• Low latency memory is referred to as omp_low_lat_mem_space.
• Memory designed for optimal storage of constant values is referred to as omp_const_mem_space.

It can be initialized with compile-time constant expressions or by using a firstprivate clause.

Writing to variables in omp_const_mem_space results in undefined behavior.

There are three additional predefined memory spaces that are extensions to the OpenMP standard:

• omp_target_host_mem_space is host memory that is accessible by the device.
• omp_target_shared_mem_space is memory that can migrate between the host and the device.
• omp_target_device_mem_space is memory that is accessible to the device.

 1 Intel® Fortran Compiler Classic and Intel® Fortran Compiler Developer Guide and Reference

2440

The following table shows the predefined memory allocators, the memory space they are associated with,
and the non-default memory trait values they possess.

NOTE ifx does not recognize the allocator names that are listed in the table as implementation/system
defined. omp_large_cap_mem_space, omp_low_lat_mem_space, omp_high_bw_mem_space, and
omp_const_mem_space have the same effect as specifying omp_default_mem_space.

Allocator Name Associated Memory Space Non-Default Trait Values

omp_default_mem_alloc omp_default_mem_space fallback=null_fb

omp_large_cap_mem_alloc omp_large_cap_mem_spac
e

none

omp_low_lat_mem_alloc omp_low_lat_mem_space none

omp_high_bw_mem_alloc omp_high_bw_mem_space none

omp_const_mem_alloc omp_const_mem_space none

omp_cgroup_mem_alloc implementation/system
defined

access=cgroup

omp_pteam_mem_alloc implementation/system
defined

access=pteam

omp_thread_mem_alloc implementation/system
defined

access=thread

omp_target_host_mem_alloc omp_target_host_mem_sp
ace

none

omp_target_shared_mem_alloc omp_target_shared_mem_
space

none

omp_target_device_mem_alloc omp_target_device_mem_
space

none

See Also
ALLOCATE Clause
ALLOCATE Directive
OpenMP* Runtime Library Routines

OpenMP* Contexts
This feature is only available for ifx.

At each point of an OpenMP* program, an OpenMP context exists that describes the following traits: the
devices where parts of the program execute, the implementation supported functionality, such as target
instruction sets, the active OpenMP constructs, and the available dynamic values.

A number of trait sets exist: construct, dynamic, device, implementation, and target_device. The category of
the trait determines the syntax of the context selector used to match the trait.

At minimum, the following traits must be defined for each device and for all target device trait sets:

• The CONSTRUCT trait set

This is the set of directive names of all enclosing constructs at that point in the program up to a TARGET
construct. Each enclosing directive name is a trait. Composite and combined constructs are added to the
trait set as distinct constructs in the same nesting order specified by the construct.

Intel® Fortran Compiler Classic and Intel® Fortran Compiler Developer Guide and Reference 1

2441

It is implementation defined if an implementation adds a DISPATCH construct to the trait set. If a
DISPATCH trait is added, it is only added for the target call of the code. Constructs are ordered c1, … cN,
with c1 being the outermost nested construct, and cN being the innermost nested construct. At a point in
the program not enclosed in a TARGET construct, the following rules are applied in the order shown:

1.Procedures with the DECLARE SIMD directive have the SIMD trait added as the construct trait c1 for
generated SIMD versions, increasing the size of the trait set by one.

2.Procedures that are function variants generated by a DECLARE VARIANT directive have the constructs
c1 to cM added to the beginning of their set of construct traits as c1, … cM, increasing their construct
trait set size by M.

3.The TARGET trait is added to the beginning of a device routine as c1 for versions of the procedure
generated for TARGET regions, increasing their construct trait set size by one.

The clause list trait SIMD is defined with properties matching the clauses accepted in a DECLARE SIMD
directive with the same names and semantics as the clauses. The SIMD trait minimally defines the
SIMDLEN property, and either the INBRANCH or the NOTINBRANCH property. Construct traits other than
SIMD are non-property traits.

• The DEVICE trait set

This is the set that defines the characteristics of the device targeted by the compiler at that point in the
program. A target-device set exists for each target device supported by an implementation, and includes
traits that specify the characteristics of that device. The following traits must be defined for the DEVICE
and TARGET_DEVICE trait sets:

• The KIND (kind-name-list) trait indicates the kind of the device. Defined kind-name values are as
follows:

• ANY, which has the same effect as if no KIND selector was specified
• HOST, which indicates that the device is the host device
• NOHOST, which indicates that the device is not the host device
• Additional values defined in the OpenMP Additional Definitions document

• The ARCH (architecture-name-list) specifies implementation defined architectures supported by the
device.

• The ISA (isa-name-list) lists the implementation-defined instruction set architectures supported by the
device.

• The VENDOR (vendor-name-list)) is a supported vendor-name value defined in OpenMP Additional
Definitions document.

• The TARGET_DEVICE set also must include the DEVICE_NUM trait, which specifies the device number
of the device.

ARCH, ISA, KIND, and VENDOR traits in the device and target device traits are name-list traits.
• The IMPLEMENTATION trait set

This is the set that contains traits that describe the supported functionality of the OpenMP implementation
at that point in the program. The following traits can be defined:

• EXTENSION (extension-name-list), which lists implementation-specific extensions to the OpenMP
specification. Extension names are implementation defined.

• VENDOR (vendor-name-list)).
• A REQUIRES (requires-clause-list) trait, which is a clause-list trait whose properties are the clauses

that have been specified in the REQUIRES directive prior to the point in the program, including any
implementation-defined implicit requirements.

The VENDOR and EXTENSION implementation set traits are name-list traits.

An implementation may define additional DEVICE, TARGET_DEVICE, and IMPLEMENTATION traits. These
additional traits are extension traits.

The dynamic properties of a program at any point in its execution are specified by the dynamic trait set. The
DATA STATE trait is a dynamic trait that refers to the complete data state of the program that can be
accessed at runtime.

OpenMP* Context Selectors

This feature is only available for ifx.

 1 Intel® Fortran Compiler Classic and Intel® Fortran Compiler Developer Guide and Reference

2442

https://www.openmp.org/wp-content/uploads/OpenMP-API-Additional-Definitions-2-0.pdf
https://www.openmp.org/wp-content/uploads/OpenMP-API-Additional-Definitions-2-0.pdf
https://www.openmp.org/wp-content/uploads/OpenMP-API-Additional-Definitions-2-0.pdf

Context selectors define properties that can match an OpenMP* context. OpenMP defines different selectors
sets, each set contains one or more different selectors.

Syntax

context-selector Is trait-set-selector [, trait-set-selector [, . . .]]

trait-set-selector Is trait-set-selector-name= {trait-selector [, trait-selector [, . . .]]}

Note that the curly braces are part of the required syntax.

trait-set-selector-name Is CONSTRUCT, DEVICE, IMPLEMENTATION, TARGET_DEVICE, or
USER.

trait-selector Is trait-set-selector-name [([trait-score :] trait-property [, trait-
property [, . . .]])]

trait-score Is SCORE (score-expression)

score-expression Is a scalar-integer-constant-expression with a non-negative value.

trait-property Is trait-property-name

or trait-property-clause

or trait-property-expression

or trait-property-extension

trait-property-name Is KIND, ISA, ARCH, or VENDOR

or a default-character-constant

trait-property-clause Is a clause, as defined in the OpenMP 5.2 Specification.

trait-property-expression Is a scalar-logical-expression

or a scalar-integer-expression

trait-property-extension Is trait-property-name

or identifier (trait-property-extension [, trait-property-extension
[, . . .]])

or a constant-integer-expression

For trait-selectors that are name-list traits (KIND, ISA, and ARCH in the DEVICE and TARGET_DEVICE trait
sets), a specified trait-property should be trait-property-name. For these trait-selectors, at least one trait-
property must be specified.

For trait-selectors that correspond to clause-list traits (a SIMD trait in the construct trait set, or a REQUIRES
clause in the implementation trait set), a trait-property should be a trait-property-clause. The trait-property-
clause syntax is the same as for a matching OpenMP clause. At least one trait-property must be specified for
a REQUIRES selector.

The ISA construct context selector set specifies the construct traits that should be active in the OpenMP
context. The trait selectors that can be specified in a CONSTRUCT context selector are OpenMP directive
names of context-matching constructs.

The syntax of a trait-property-clause for a trait-property of a SIMD trait-selector-name in a CONSTRUCT
trait-selector set is that of a valid clause for a DECLARE SIMD directive with the same restriction for that
clause.

The DEVICE and IMPLEMENTATION selector sets define the traits that should be active in the trait sets of the
OpenMP context. The TARGET_DEVICE selector set specifies traits that should be active in the target device
trait set for the device identified by the DEVICE_NUM selector. If the DEVICE_NUM selector is specified for
TARGET_DEVICE, only one trait-property-expression can be specified.

The KIND selector of the DEVICE and the TARGET_DEVICE selector sets can specify HOST, NOHOST, or ANY.
If ANY is specified, neither HOST nor NOHOST can appear in the same selector.

Intel® Fortran Compiler Classic and Intel® Fortran Compiler Developer Guide and Reference 1

2443

https://www.openmp.org/specifications/

ATOMIC_DEFAULT_MEM_ORDER can be specified as a selector for the IMPLEMENTATION trait set. In this
case, only a single trait-property can appear and it must be an identifier that is one of the valid arguments to
the ATOMIC_DEFAULT_MEM_ORDER clause in a REQUIRES directive.

The REQUIRES selector can also be specified as a selector of the IMPLEMENTATION set. In this case, the
syntax is the same as for a valid clause of a REQUIRES directive, and the same restrictions apply.

The USER selector defines a CONDITION selector that specifies additional user-defined conditions. The
CONDITION selector must contain one trait-property-expression that is a logical expression; it must evaluate
to .TRUE for the selector to be true. If the expression is not a constant expression, the selector is dynamic;
otherwise, it is static.

The dynamic part of a context selector is its USER selector set (if is it not static) and its TARGET_DEVICE
selector set. All other parts of the context selector are static.

In the MATCH clause of a DECLARE VARIANT directive, the following are rules for a context selector
expression:

• A reference to a dummy argument of the base procedure is a reference to the actual argument associated
with the dummy argument.

• Otherwise, a reference to a variable or procedure in an context selector expression is a reference to the
variable or procedure that is accessible in the scope of the directive in which the context selector appears.

Except in a CONSTRUCT selector set, each trait-property can be specified only once. Each trait-set-selector-
name can appear once in context selector. A given trait-selector-name can appear only once in a context
selector.

A trait-score cannot be specified for CONSTRUCT, DEVICE, or TARGET_DEVICE trait selector sets.

The expression specified for DEVICE_NUM must evaluate to a non-negative integer value that is less than or
equal to the value returned by a call to OMP_GET_NUM_DEVICES ().

See Also
OpenMP* Contexts
Score and Match Context Selectors

Score and Match Context Selectors

This feature is only available for ifx.

An OpenMP* context is compatible with a context selector if the following conditions are met:

• All conditions specified in the USER trait set evaluate to .TRUE.
• All traits and trait properties defined by IMPLEMENTATION, DEVICE, and CONSTRUCT sets are active in

the corresponding trait set of the context.
• All trait and trait properties defined by the TARGET_DEVICE set are active in the target-device trait set for

the device corresponding to the DEVICE_NUM selector.
• Selectors in the CONSTRUCT set of the selector specify the same construct ordering as the construct trait

set of the context.
• For each selector in the context selector, the properties specified are a subset of the properties of the

corresponding trait of the context.
• No implementation-defined selector specified is ignored by the implementation.

The following additional rules apply to matching certain SIMD selector properties with the SIMD trait:

• The ALIGNED (list:N) property of the selector matches the ALIGNED (list:M) trait of the context if N is a
multiple of M.

• The SIMDLEN (N) property specified in the selector matches the SIMDLEN (M) property of the context if M
is a multiple of N.

The following algorithm is used to score compatible context selectors:

• Trait selectors that specify a trait-score are given the value of the trait-score expression.
• Each specified CONSTRUCT trait selector that matches the construct trait in the context is given the value

2p-1, where p is the position of the corresponding trait cp in the context trait set specified by the context
selector. The highest valued subset of context traits containing all selectors in the same order is used if
the traits that correspond to the construct selector set appear multiple times in the context.

 1 Intel® Fortran Compiler Classic and Intel® Fortran Compiler Developer Guide and Reference

2444

• If specified, the KIND, ARCH, and ISA selectors are given the values 2n, 2n+1, and 2n+2 respectively,
where n is the number of traits in the construct set.

• Other selectors are given the value of zero.
• Values given to implementation-defined selectors are defined by the implementation.
• A context selector that is a strict subset of another context selector is given a score of zero. For other

selectors, their final value is the sum of the values of the specified selector plus 1.

See Also
OpenMP* Contexts
OpenMP* Context Selectors

OpenMP* Advanced Issues
This topic discusses how to use the OpenMP* library functions and environment variables and discusses some
guidelines for enhancing performance with OpenMP.

OpenMP provides specific function calls, and environment variables. See the following topics to refresh your
memory about the primary functions and environment variable used in this topic:

• OpenMP Runtime Library Routines
• OpenMP Environment Variables

To use the function calls, include the omp_lib.h header file or specify use omp_lib to use the Fortran90
module file. These files are installed in the INCLUDE directory during the compiler installation and compile
the application using the /Qopenmp (Windows*) or -qopenmp (Linux*) option.

The following example demonstrates how to use the OpenMP functions to print the alphabet and illustrates
several important concepts:

1. When using functions instead of directives, your code must be rewritten; rewrites can mean extra
debugging, testing, and maintenance efforts.

2. It becomes difficult to compile without OpenMP support.
3. It is very easy to introduce simple bugs, as in the loop (shown in example) that fails to print all the

letters of the alphabet when the number of threads is not a multiple of 26.
4. You lose the ability to adjust loop scheduling without creating your own work-queue algorithm, which is

a lot of extra effort. You are limited by your own scheduling, which is mostly likely static scheduling as
shown in the example.

 include "omp_lib.h"
 integer i
 integer LettersPerThread, ThisThreadNum, StartLetter, EndLetter

 call omp_set_num_threads(4)
!$OMP PARALLEL PRIVATE(i)

 ! OMP_NUM_THREADS is not a multiple of 26,
 ! which can be considered a bug in this code.
 LettersPerThread = 26 / omp_get_num_threads()
 ThisThreadNum = omp_get_thread_num()
 StartLetter = 'a'+ThisThreadNum*LettersPerThread
 EndLetter = 'a'+ThisThreadNum*LettersPerThread+LettersPerThread

 DO i = StartLetter, EndLetter - 1
 write(*,FMT='(A)',ADVANCE='NO') char(i)
 END DO

!$OMP END PARALLEL
 write(*,*)
 end

Intel® Fortran Compiler Classic and Intel® Fortran Compiler Developer Guide and Reference 1

2445

Debugging threaded applications is a complex process because debuggers change the runtime performance,
which can mask race conditions. Even print statements can mask issues, because they use synchronization
and operating system functions. OpenMP itself also adds some complications, because it introduces additional
structure by distinguishing private variables and shared variables and inserts additional code. A debugger
that supports OpenMP can help you to examine variables and step through threaded code. You can use Intel®
Inspector to detect many hard-to-find threading errors analytically. Sometimes, a process of elimination can
help identify problems without resorting to sophisticated debugging tools.

NOTE Intel® Inspector has been deprecated. See Intel® Inspector End of Life Announcement for more
information.

Remember that most mistakes are race conditions. Most race conditions are caused by shared variables that
really should have been declared private. Start by looking at the variables inside the parallel regions and
make sure that the variables are declared private when necessary. Next, check functions called within parallel
constructs.

The DEFAULT(NONE) clause can be used to help find those hard-to-spot variables. If you specify
DEFAULT(NONE), then every variable must be declared with a data-sharing attribute clause. For example:

!$OMP PARALLEL DO DEFAULT(NONE) PRIVATE(x,y) SHARED(a,b)
Another common mistake is using uninitialized variables. Remember that private variables do not have initial
values upon entering a parallel construct. Use the FIRSTPRIVATE and LASTPRIVATE clauses to initialize them
only when necessary, because doing so adds extra overhead.

If you still can't find the bug, then consider the possibility of reducing the scope. Try a binary-hunt. Another
method is to force large chunks of a parallel region to be critical sections. Pick a region of the code that you
think contains the bug and place it within a critical section. Try to find the section of code that suddenly
works when it is within a critical section and fails when it is not. Now look at the variables, and see if the bug
is apparent. If that still doesn't work, try setting the entire program to run in serial by setting the compiler-
specific environment variable KMP_LIBRARY=serial.

If the code is still not working, and you are not using any OpenMP API function calls, compile it without
the /Qopenmp (Windows) or -qopenmp (Linux) option to make sure the serial version works. If you are using
OpenMP API function calls, use the /Qopenmp-stubs (Windows) or -qopenmp-stubs (Linux) option.

Performance
OpenMP threaded application performance is largely dependent upon the following things:

• The underlying performance of the single-threaded code.
• CPU utilization, idle threads, and load balancing.
• The percentage of the application that is executed in parallel by multiple threads.
• The amount of synchronization and communication among the threads.
• The overhead needed to create, manage, destroy, and synchronize the threads, made worse by the

number of single-to-parallel or parallel-to-single transitions called fork-join transitions.
• Performance limitations of shared resources such as memory, bus bandwidth, and CPU execution units.
• Memory conflicts caused by shared memory or falsely shared memory.

Performance always begins with a properly constructed parallel algorithm or application. For example,
parallelizing a bubble-sort, even one written in hand-optimized assembly language, is not a good place to
start. Keep scalability in mind; creating a program that runs well on two CPUs is not as efficient as creating
one that runs well on n CPUs. With OpenMP, the number of threads is chosen by the compiler, so programs
that work well regardless of the number of threads are highly desirable. Producer/consumer architectures are
rarely efficient, because they are made specifically for two threads.

Once the algorithm is in place, make sure that the code runs efficiently on the targeted Intel® architecture; a
single-threaded version can be a big help. Turn off the /Qopenmp (Windows) or -qopenmp (Linux) option to
generate a single-threaded version, or build with the /Qopenmp-stubs (Windows) or -qopenmp-stubs
(Linux) option, and run the single-threaded version through the usual set of optimizations.

 1 Intel® Fortran Compiler Classic and Intel® Fortran Compiler Developer Guide and Reference

2446

https://www.intel.com/content/www/us/en/developer/articles/technical/inspector-deprecation.html

Once you have gotten the single-threaded performance, it is time to generate the multi-threaded version and
start doing some analysis.

Optimizations are really a combination of patience, experimentation, and practice. Make little test programs
that mimic the way your application uses the computer resources to get a feel for what things are faster than
others. Be sure to try the different scheduling clauses for the parallel sections of code. If the overhead of a
parallel region is large compared to the compute time, you may want to use an IF clause to execute the
section serially.

See Also
OpenMP* Runtime Library Routines
Supported Environment Variables
qopenmp, Qopenmp
qopenmp-stubs, Qopenmp-stubs

OpenMP* Implementation-Defined Behaviors
This topic summarizes some of the behaviors that are described as implementation-defined in the OpenMP*
API specification. See the OpenMP API specification for the full list.

NOTE
Internal Control Variables (ICVs) mentioned below are discussed in the OpenMP API specification.

Name Description

single construct The first thread that encounters the single
construct executes the structured block.

teams construct The number of teams that are created is equal to 1
if you don't specify the num_teams clause.

dist_schedule clause, distribute construct If you don't specify the dist_schedule clause,
then the schedule for the distribute construct is
static.

omp_set_num_threads routine If the argument is not a positive integer, then
Intel's OpenMP implementation sets the value of
the first element of the nthreads-var ICV of the
current task to 1.

omp_set_max_active_levels routine If the argument is a negative integer this call is
ignored and the last valid setting is used.

omp_get_max_active_levels routine When called from within any explicit parallel region
the binding thread set, and binding region, if
required, for the omp_get_max_active_levels
region is the current task region.

OMP_SCHEDULE environment variable If the value of the variable does not conform to the
specified format then the value of the run-sched-
var ICV is set to static.

OMP_NUM_THREADS environment variable If any value of the list specified in the environment
variable is negative then the whole list is ignored. If
any value of the list is zero then this value is set to
1.

Intel® Fortran Compiler Classic and Intel® Fortran Compiler Developer Guide and Reference 1

2447

Name Description

OMP_PROC_BIND environment variable If the value is not true, false, or a comma
separated list of master (deprecated), primary,
close, or spread, then Intel's OpenMP
implementation sets the value of bind-var ICV to
false.

OMP_DYNAMIC environment variable If the value is neither true nor false, then the
implementation sets the value of dyn-var ICV to
false.

OMP_NESTED environment variable If the value is neither true nor false, then the
implementation sets the value of nest-var ICV to
false.

OMP_STACKSIZE environment variable If the value does not conform to the specified
format or the implementation cannot provide a
stack of the specified size, then Intel's OpenMP
implementation sets the value of stacksize-var
ICV to the default size, which is specified as being
from 1MB to 4MB depending on the architecture.

On Linux*, the implementation can set the value of
stacksize-var ICV up to 256MB, respecting the
operating system's stack size limit.

OMP_MAX_ACTIVE_LEVELS environment variable If the value is a negative integer or is greater than
the number of parallel levels an implementation can
support, then Intel's OpenMP implementation sets
the value of the max-active-levels-var ICV to
1.

OMP_THREAD_LIMIT environment variable If the requested value is greater than the number
of threads an implementation can support, or if the
value is a negative integer, then Intel's OpenMP
implementation sets the value of the thread-
limit-var ICV to the maximum number of threads
supported on a particular platform.

If the requested value is zero then the
implementation sets the value of the thread-
limit-var ICV to 1.

Runtime library definitions Intel's OpenMP implementation provides both the
include file omp_lib.h and the module omp_lib.

OpenMP* Examples
The following examples show how to use OpenMP* features.

A Simple Difference Operator
This example shows a simple parallel loop where the amount of work in each iteration is different. Dynamic
scheduling is used to improve load balancing.

The END DO directive has a NOWAIT clause because there is an implicit barrier at the end of the parallel
region. Therefore it is not necessary to also have a barrier at the end of the DO region.

subroutine do_1(a,b,n)
 real a(n,n), b(n,n)
 !$OMP PARALLEL SHARED(A,B,N)

 1 Intel® Fortran Compiler Classic and Intel® Fortran Compiler Developer Guide and Reference

2448

 !$OMP DO SCHEDULE(DYNAMIC,1) PRIVATE(I,J)
 do i = 2, n
 do j = 1, i
 b(j,i) = (a(j,i) + a(j,i-1)) / 2.0
 end do
 end do
 !$OMP END DO NOWAIT
!$OMP END PARALLEL
end

Two Difference Operators: DO Loop Version
This example uses two parallel loops fused to reduce fork/join overhead. The first DO directive has a NOWAIT
clause because all the data used in the second loop is different than all the data used in the first loop.

subroutine do_2(a,b,c,d,m,n)
 real a(n,n), b(n,n), c(m,m), d(m,m)
 !$OMP PARALLEL SHARED(A,B,C,D,M,N) PRIVATE(I,J)
 !$OMP DO SCHEDULE(DYNAMIC,1) NOWAIT
 do i = 2, n
 do j = 1, i
 b(j,i) = (a(j,i) + a(j,i-1)) / 2.0
 end do
 end do
 !$OMP DO SCHEDULE(DYNAMIC,1)
 do i = 2, m
 do j = 1, i
 d(j,i) = (c(j,i) + c(j,i-1)) / 2.0
 end do
 end do
 !$OMP END DO NOWAIT
 !$OMP END PARALLEL
end

Two Difference Operators: SECTIONS Version
This example demonstrates the use of the SECTIONS directive. The logic is identical to the preceding DO
directive example, but it uses a SECTIONS directive instead of a DO directive. Here the speedup is limited to
two because there are only two units of work whereas in the example above there are (n-1) + (m-1) units
of work.

subroutine sections_1(a,b,c,d,m,n)
 real a(n,n), b(n,n), c(m,m), d(m,m)
 !$OMP PARALLEL SHARED(A,B,C,D,M,N) PRIVATE(I,J)
 !$OMP SECTIONS
 !$OMP SECTION
 do i = 2, n
 do j = 1, i
 b(j,i)=(a(j,i) + a(j,i-1)) / 2.0
 end do
 end do
 !$OMP SECTION
 do i = 2, m
 do j = 1, i
 d(j,i)=(c(j,i) + c(j,i-1)) / 2.0
 end do
 end do

Intel® Fortran Compiler Classic and Intel® Fortran Compiler Developer Guide and Reference 1

2449

 !$OMP END SECTIONS NOWAIT
 !$OMP END PARALLEL
end

Update a Shared Scalar
This example demonstrates how to use a SINGLE construct to update an element of the shared array a. The
optional !$OMP DO NOWAIT after the first loop is omitted because it is necessary to wait at the end of the
loop before proceeding into the SINGLE construct to avoid a race condition.

subroutine sp_1a(a,b,n)
 real a(n), b(n)
 !$OMP PARALLEL SHARED(A,B,N) PRIVATE(I)
 !$OMP DO
 do i = 1, n
 a(i) = 1.0 / a(i)
 end do
 !$OMP SINGLE
 a(1) = min(a(1), 1.0)
 !$OMP END SINGLE
 !$OMP DO NOWAIT
 do i = 1, n
 b(i) = b(i) / a(i)
 end do
 !$OMP END DO
 !$OMP END PARALLEL
end

More Samples
Additional OpenMP code samples for the Intel® Fortran Compiler are available in the oneAPI Samples GitHub*
repository. See also the OpenMP API Examples document available on the OpenMP website.

Coarrays
This section contains information about using arrays and how to debug a coarray application on Linux*.

Use Coarrays
Intel® Fortran supports coarray programs that run using shared memory on a multicore or multiprocessor
system. Coarray programs can also be built to run using distributed memory across a Linux* or Windows*
cluster.

Coarrays are only supported on 64-bit architectures. For more details, see the product system requirements
in the Release Notes.

Coarrays, a data sharing concept standardized in Fortran 2008 and extended in Fortran 2018 and 2023,
enable parallel processing using multiple copies of a single program. Each copy, called an image, has
ordinary local variables and also shared variables called coarrays or covariables.

A covariable, which can be either an array or a scalar, is a variable whose storage spans all the images of the
team that was current when the covariable was established. In this Partitioned Global Address Space (PGAS)
model, each image can access its own piece of a covariable as a local variable and can access those pieces
that live on other images using coindices, which are enclosed in square brackets.

For more information on how to write programs using coarrays, see books on the Fortran 2008 and later
language versions, or the ISO Fortran 2008 and later standards versions.

 1 Intel® Fortran Compiler Classic and Intel® Fortran Compiler Developer Guide and Reference

2450

https://github.com/oneapi-src/oneAPI-samples/tree/master/DirectProgramming/Fortran
https://www.openmp.org/Specifications
https://www.intel.com/content/www/us/en/developer/articles/release-notes/fortran-compiler-release-notes.html

Use Coarray Program Syntax
The additional syntax required by Fortran 2008 coarrays includes:

• The CODIMENSION attribute and [cobounds] to declare an object a coarray (covariable)
• The [coindices] notation to reference covariables on other images
• The SYNC ALL, SYNC IMAGES, and SYNC MEMORY statements to provide points where images must

communicate to synchronize shared data
• The CRITICAL and END CRITICAL statements to form a block of code executed by one image at a time
• The LOCK and UNLOCK statements to control objects called locks, used to synchronize actions on specific

images
• The ERROR STOP statement to end all images
• The ALLOCATE and DEALLOCATE statements to specify coarrays
• Intrinsic procedures IMAGE_INDEX, LCOBOUND, NUM_IMAGES, THIS_IMAGE, and UCOBOUND
• Atomic subroutines ATOMIC_DEFINE and ATOMIC_REF to define and reference an atomic variable

The following Fortran 2018 coarray extensions are also supported:

• The CHANGE TEAM and END TEAM statements to change the current team on which the image is
executing

• The EVENT POST and EVENT WAIT statements to synchronize execution between two images
• The FAIL IMAGE statement to simulate a failed image
• The FORM TEAM statement to create one or more teams of images from the current team
• The SYNC TEAM statement to synchronize a team of images
• Intrinsic procedures COSHAPE, EVENT_QUERY, FAILED_IMAGES, GET_TEAM, IMAGE_STATUS, STOPPED

IMAGES, and TEAM_NUMBER
• New forms of the IMAGE_INDEX, NUM_IMAGES, and THIS_IMAGE with optional TEAM and/or

TEAM_NUMBER arguments
• Atomic subroutines ATOMIC_ADD, ATOMIC_AND, ATOMIC_CAS, ATOMIC_FETCH_ADD,

ATOMIC_FETCH_AND, ATOMIC_FETCH_OR, ATOMIC_FETCH_XOR, ATOMIC_OR, and ATOMIC_XOR
• Collective subroutines CO_BROADCAST, CO_MAX, CO_MIN, CO_REDUCE, and CO_SUM
• Optional STAT= and ERRMSG= specifiers on a CRITICAL construct, optional arguments STAT and ERRMSG

for the MOVE_ALLOC intrinsic, and optional STAT=, TEAM=, and TEAM_NUMBER specifiers on image
selectors, and an optional STAT argument to ATOMIC_DEFINE and ATOMIC_REF subroutines

• TYPE TEAM_TYPE defined in the intrinsic module ISO_FORTRAN_ENV allows creation of team variables
• The constants INITIAL_TEAM, CURRENT_TEAM, and PARENT_TEAM defined in the intrinsic module

ISO_FORTRAN_ENV
• An image selector that has a TEAM=, TEAM_NUMBER= or a STAT= specifier.

Use the Coarray Compiler Options
You must specify the -coarray (Linux) or /Qcoarray (Windows) compiler option (hereafter referred to as
[Q]coarray) to enable the compiler to recognize coarray syntax. If you do not specify this compiler option, a
program that uses coarray syntax or features produces a compile-time error.

Only one [Q]coarray option is valid on the command line. If multiple coarray compiler options are specified,
the last one specified is used. An exception to this rule is the [Q]coarray compiler option using keyword
single; if specified, this option takes precedence regardless of where it appears on the command line.

The following describes the option keywords:

• Using [Q]coarray causes the underlying Intel® MPI Library parallelization to run on multiple cores.
• Using [Q]coarray-config-file:file can extend the execution to other nodes in a distributed system.
• Using [Q]coarray with keyword single creates an executable that will not be replicated, resulting in a

single running image. This is in contrast to the self-replicating behavior that occurs when any other
coarray keyword is specified. This option is useful for debugging purposes.

• Using [Q]coarray-num-images allows you to specify the number of images that can be used to run a
coarray executable.

Intel® Fortran Compiler Classic and Intel® Fortran Compiler Developer Guide and Reference 1

2451

No special procedure is necessary to run a program that uses coarrays. You simply run the executable file.

The underlying parallelization implementation uses the Intel® MPI Library. Installation of the compiler
automatically installs the necessary runtime libraries to run on shared memory. Products supporting clusters
will also install the necessary runtime libraries to run on distributed memory. Use of coarray applications with
any other Intel® MPI Library implementation, or with OpenMP*, is not supported.

NOTE The conda package for the Intel® Fortran Compiler runtime no longer has a runtime dependency
on the Intel® MPI Library, which is needed to enable coarrays. If you maintain a conda package that
has a runtime dependency on the Intel Fortran Compiler runtime and your application uses the Intel®
MPI Library, you need to explicitly add the impi_rt conda package for the Intel® MPI Library to the
list of runtime dependencies in your project's meta.yaml file.

By default, the number of images created is equal to the number of execution units on the current system.
You can override this by specifying a number using the [Q]coarray-num-images compiler option on the
command line that compiles the main program. You can also specify the number of images at execution time
in the environment variable FOR_COARRAY_NUM_IMAGES.

Use a Configuration File
Using a configuration file by specifying compiler option [Q]coarray-config-file is useful if you are
looking for more control of your image placement, especially in multi-node systems.

The main reason is if you want to take advantage of Intel® MPI Library features in the coarray environment.
To do so, specify the command line segments used by mpiexec -config filename in a file named filename
and pass that file name to the Intel® MPI Library using the [Q]coarray-config-file compiler option.

If the [Q]coarray-num-images compiler option also appears on the command line, it will be overridden by
what is in the configuration file.

Rules for using an Intel® MPI Library configuration files are as follows:

• The format of a configuration file is described in the Intel® MPI Library documentation. You will need to
add the Intel® MPI Library option -genv FOR_ICAF_STATUS launched in the configuration file in order for
coarrays to work on multi-node (distributed memory) systems.

• You can also set the environment variable FOR_COARRAY_CONFIG_FILE to be the filename and path of
the Intel® MPI Library configuration file you want to use at execution time.

Use Configuration Environment Variables
Intel Fortran uses Intel® MPI Library as the transport layer for the coarray feature. Intel® MPI Library can be
tuned to a particular usage pattern with environment variables.

Intel Fortran has chosen to set some Intel® MPI Library control variables to values that are good for most
users and many patterns of coarray usage. However, you may want to experiment with other variables that
Intel® Fortran does not set. They are not set by Intel Fortran because they may reduce performance with
other usage patterns or because they may cause errors when used with older versions of Intel® MPI Library.

Applications running on shared memory with Intel® MPI Library version 2019 Update 5 or greater may benefit
from setting the following variable to shm.

I_MPI_FABRICS

NOTE When the above environment variables are set on Linux systems, there may be hangs on Red
Hat 7.2 and Ubuntu because they cause increased use of shared memory. Therefore, please note that
you may need to increase the size of /dev/shm to avoid Linux bus error (SIGBUS).

 1 Intel® Fortran Compiler Classic and Intel® Fortran Compiler Developer Guide and Reference

2452

Applications which over-subscribe (have more coarray images running than there are actual processors in the
machine) may benefit from setting the following variable to 1:

I_MPI_WAIT_MODE
Applications which over-subscribe a great deal (more than four images per processor) may benefit from
setting the following variable to 3:

I_MPI_THREAD_YIELD
This is just an introduction to using configuration environment variables. There are many other environment
variables that you can use to tune Intel® MPI Library. For more information, see:

• Intel® MPI Library Developer Reference for Linux* OS
• Intel® MPI Library Developer Reference for Windows* OS

Examples
Linux

• -coarray -coarray-num-images=8
This runs a coarray program on a single node using 8 images.

• -coarray -coarray-config-file=filename -coarray-num-images=8
This runs a coarray program using the Intel® MPI Library configuration detailed in filename to customize
the number of nodes and other options. Uses 8 images unless a different number is specified in filename.

Windows

• /Qcoarray /Qcoarray-num-images:8
This runs a coarray program on a single node using 8 images.

• /Qcoarray /Qcoarray-config-file:filename/Qcoarray-num-images=8
This runs a coarray program using the Intel® MPI Library configuration detailed in filename to customize
the number of nodes and other options. Uses 8 images unless a different number is specified in filename.

See Also
Feature Requirements

coarray, Qcoarray compiler option
coarray-config-file, Qcoarray-config-file compiler option
coarray-num-images, Qcoarray-num-images compiler option
Coarray constructs

Debug a Coarray Application
To debug a coarray application, you need an application with shared variables or coarrays whose storage
spans all the images in a program.

Linux

Follow these steps to debug your coarray application:

1. Add a stall loop to your application before the area of code you wish to debug:

LOGICAL VOLATILE :: WAIT_FOR_DEBUGGER
LOGICAL, VOLATILE :: TICK
!
! Other code may be here
!
DO WHILE(WAIT_FOR_DEBUGGER)
TICK = .NOT. TICK

Intel® Fortran Compiler Classic and Intel® Fortran Compiler Developer Guide and Reference 1

2453

https://www.intel.com/content/www/us/en/docs/mpi-library/developer-reference-linux/current/other-environment-variables.html
https://www.intel.com/content/www/us/en/docs/mpi-library/developer-reference-windows/current/other-environment-variables.html

END DO
!
! Code you want to debug is here

Specify VOLATILE to ensure that the loop will not be removed by the compiler.

If the problem is only found on one image, you can wrap the loop in code such as the following:

IF (THIS_IMAGE() .EQ. 4) THEN
2. Specify compiler option -g to compile and link with debug enabled.
3. Create at least N+1 terminal windows on the machine where the application will be running, where N is

the number of images your application will have.
4. In a terminal window, start the application:

linuxprompt> ./my_app
5. In each of the other terminal windows, set your default directory to be the same as the location of the

application executable. Use the ps command in one of the windows to find out which processes are
running your application:

linuxprompt> ps –ef | grep 'whoami' | grep my_app
There will be several processes.

The oldest is the one you started in step 4 – it has run the Message Passing Interface (MPI) launcher
and is now waiting for the others to terminate. Do not debug it.

The others will look like this:

<your-user-name> 25653 25650 98 15:06 ? 00:00:49 my_app
<your-user-name> 25654 25651 97 15:06 ? 00:00:48 my_app
<your-user-name> 25655 25649 98 15:06 ? 00:00:49 my_app

The first number is the PID of the process (for example, 25653 in the first line). In the steps below, the
PIDs of these N processes are referred to as P1, P2, and so on.

When you type the commands, replace the text <P1> with the actual value of the PID for process 1,
and so on.

6. In each window other than the first, start your debugger and set it to stop processes when attached:

linuxprompt> gdb
7. Attach to one of the processes. For example, attach to P1 in window 1, attach to P2 in window 2, and

so on:

(gdb) attach <P1>
8. Get execution out of the stall loop:

(gdb) set WAIT_FOR_DEBUGGER = .false.
To debug your coarray application, examine the data and code paths in the various images.

Windows

For information about debugging coarray applications started in the Visual Studio* debugger, see article How
to Gain Control of Debugging a Fortran Coarray Application.

Automatic Parallelization
The auto-parallelization feature of the Intel® Fortran Compiler automatically translates serial portions of the
input program into equivalent multithreaded code. Automatic parallelization determines the loops that are
good worksharing candidates, performs the dataflow analysis to verify correct parallel execution, and
partitions the data for threaded code generation as needed in programming with OpenMP directives. The
OpenMP and auto-parallelization functionality provides the performance gains from shared memory on
multiprocessor and dual core systems.

The auto-parallelizer analyzes the dataflow of the loops in the application source code and generates
multithreaded code for those loops which can safely and efficiently be executed in parallel.

 1 Intel® Fortran Compiler Classic and Intel® Fortran Compiler Developer Guide and Reference

2454

https://www.intel.com/content/www/us/en/developer/articles/training/how-to-debug-fortran-coarray-applications-on-windows.html
https://www.intel.com/content/www/us/en/developer/articles/training/how-to-debug-fortran-coarray-applications-on-windows.html

This behavior enables the potential exploitation of the parallel architecture found in symmetric multiprocessor
(SMP) systems.

Automatic parallelization frees developers from having to:

• Find loops that are good worksharing candidates.
• Perform the dataflow analysis to verify correct parallel execution.
• Partition the data for threaded code generation as is needed in programming with OpenMP directives.

Although OpenMP directives enable serial applications to transform into parallel applications quickly, you
must explicitly identify specific portions of your application code that contain parallelism and add the
appropriate compiler directives. During compilation, the compiler automatically attempts to deconstruct the
code sequences into separate threads for parallel processing. No other effort is needed.

NOTE
Using this option enables parallelization for both Intel® microprocessors and non-Intel microprocessors.
The resulting executable may get additional performance gain on Intel® microprocessors than on non-
Intel microprocessors. The parallelization can also be affected by certain options, such as /arch
(Windows), -m (Linux), or [Q]x.

Serial code can be divided so that the code can execute concurrently on multiple threads. For example,
consider the following serial code example:

subroutine ser(a, b, c)
 integer, dimension(100) :: a, b, c
 do i=1,100
 a(i) = a(i) + b(i) * c(i)
 enddo
end subroutine ser

The following example illustrates one method showing how the loop iteration space, shown in the previous
example, might be divided to execute on two threads:

subroutine par(a, b, c)
 integer, dimension(100) :: a, b, c
 ! Thread 1
 do i=1,50
 a(i) = a(i) + b(i) * c(i)
 enddo
 ! Thread 2
 do i=51,100
 a(i) = a(i) + b(i) * c(i)
 enddo
end subroutine par

Auto-Vectorization and Parallelization
Auto-vectorization detects low-level operations in the program that can be done in parallel, and then converts
the sequential program to process 2, 4, 8, or (up to) 16 elements in one operation, depending on the data
type. In some cases, auto-parallelization and vectorization can be combined for better performance results.
For example, in the code below, thread-level parallelism can be exploited in the outermost loop, while
instruction-level parallelism can be exploited in the innermost loop:

DO I = 1, 100 ! Execute groups of iterations in different threads (TLP)
 DO J = 1, 32 ! Execute in SIMD style with multimedia extension (ILP)
 A(J,I) = A(J,I) + 1
 ENDDO
ENDDO

Intel® Fortran Compiler Classic and Intel® Fortran Compiler Developer Guide and Reference 1

2455

With the relatively small effort of adding OpenMP directives to existing code you can transform a sequential
program into a parallel program. The [Q]openmp option must be specified to enable the OpenMP directives.
The following example shows OpenMP directives within the code:

!OMP$ PARALLEL PRIVATE(NUM), SHARED (X,A,B,C)
! Defines a parallel region
!OMP$ PARALLEL DO
! Specifies a parallel region that
! implicitly contains a single DO directive
DO I = 1, 1000
 NUM = FOO(B(i), C(I))
 X(I) = BAR(A(I), NUM)
! Assume FOO and BAR have no other effect
ENDDO

NOTE
Options that use OpenMP are available for both Intel® and non-Intel microprocessors, but these
options may perform additional optimizations on Intel® microprocessors than they perform on non-
Intel microprocessors. The list of major, user-visible OpenMP constructs and features that may perform
differently on Intel® microprocessors than on non-Intel microprocessors includes: locks (internal and
user visible), the SINGLE construct, barriers (explicit and implicit), parallel loop scheduling, reductions,
memory allocation, and thread affinity and binding.

Using Parallelism Reports
To generate a parallelism report, use the -qopt-report-phase=par (Linux) or
the /Qopt-report-phase:par option along with the qopt-report=n or /Qopt-report:n option
(Windows). By default, the auto-parallelism report generates a medium level of detail, where n=2. You can
use the [q or Q]opt-report option along with the [q or Q]opt-report-phase option if you want a
greater or lesser level of detail. To generate the maximum diagnostic details, specify 5 for ifort or 3 for ifx.

Run the report by entering commands similar to the following:

Linux

ifx -c -parallel qopt-report:3 sample.f90
Windows

ifx sample.f90 /c /Qparallel /Qopt-report:3

NOTE
Compiler option c prevents linking and instructs the compiler to stop compilation after the object file is
generated. The example is compiled without generating an executable.

The output, by default, produces a file with the same name as the object file, with .yaml extension, and is
written into the same directory as the object file. Using the above command-line entries, you will obtain an
output file called sample.yaml. Use the [q or Q]opt-report-file option to specify any other name for
the output file that captures the report results.

For more information on options to generate reports, see Optimization Report Options.

See Also
parallel, Qparallel compiler option (ifort only)
parallel, Qparallel compiler option (ifx only)
par-runtime-control, Qpar-runtime-control

 1 Intel® Fortran Compiler Classic and Intel® Fortran Compiler Developer Guide and Reference

2456

 compiler option
par-threshold, Qpar-threshold
 compiler option
qopt-report-phase, Qopt-report-phase,
 compiler option
qopt-report, Qopt-report
 compiler option (ifort)
qopt-report, Qopt-report
 compiler option (ifx)

Enable Auto-Parallelization
To enable the auto-parallelizer, use the [Q]parallel option. This option detects parallel loops capable of
being executed safely in parallel, and automatically generates multi-threaded code for these loops.

NOTE You may need to set the KMP_STACKSIZE environment variable to an appropriately large size to
enable parallelization with this option.

NOTE
Using this option enables parallelization for both Intel® microprocessors and non-Intel microprocessors.
The resulting executable may get additional performance gain on Intel® microprocessors than on non-
Intel microprocessors. The parallelization can also be affected by certain options, such as /arch
(Windows), -m (Linux), or [Q]x.

An example of the command using auto-parallelization is as follows:

Linux

ifx -c -parallel myprog.f90
Windows

ifx /c /Qparallel myprog.f90
Auto-parallelization uses two specific directives: !DIR$ PARALLEL and !DIR$ NOPARALLEL .

The format of an auto-parallelization compiler directive is below:

!DIR$ <directive>
Because auto-parallelization directives begin with an exclamation point, the directives take the form of
comments if you omit the [Q]parallel option.

The !DIR$ PARALLEL directive instructs the compiler to ignore dependencies that it assumes may exist and
that would prevent correct parallelization in the immediately following loop. However, if dependencies are
proven, they are not ignored. In addition, PARALLEL [ALWAYS] overrides the compiler heuristics that
estimate the likelihood that parallelization of a loop increases performance. It allows a loop to be parallelized
even if the compiler thinks parallelization may not improve performance. If the ASSERT keyword is added, as
in !DIR$ PARALLEL [ALWAYS [ASSERT]], the compiler generates an error-level assertion message saying
that the compiler analysis and cost model indicate that the loop cannot be parallelized.

The !DIR$ NOPARALLEL directive disables auto-parallelization.

For example, in the following code, the NOPARALLEL directive disables auto-parallelization.

program main
parameter (n=100
integer x(n),a(n)
!DIR$ NOPARALLEL
do i=1,n

Intel® Fortran Compiler Classic and Intel® Fortran Compiler Developer Guide and Reference 1

2457

 x(i) = i
enddo
!DIR$ PARALLEL
do i=1,n
 a(x(i)) = i
enddo
end

See Also
parallel, Qparallel compiler option (ifort only)
parallel, Qparallel compiler option (ifx only)

Program with Auto-Parallelization
The auto-parallelization feature implements some concepts of OpenMP*, such as the worksharing construct
(with the PARALLEL DO directive). This section provides details on auto-parallelization.

Guidelines for Effective Auto-Parallelization Usage
A loop can be parallelized if it meets the following criteria:

• The loop is countable at compile time: This means that an expression representing how many times the
loop will execute (loop trip count) can be generated just before entering the loop.

• There are no FLOW (READ after WRITE), OUTPUT (WRITE after WRITE) or ANTI (WRITE after READ)
loop-carried data dependencies. A loop-carried data dependency occurs when the same memory location
is referenced in different iterations of the loop. At the compiler's discretion, a loop may be parallelized if
any assumed inhibiting loop-carried dependencies can be resolved by runtime dependency testing.

The compiler may generate a runtime test for the profitability of executing in parallel for loop, with loop
parameters that are not compile-time constants.

Coding Guidelines

Enhance the power and effectiveness of the auto-parallelizer by following these coding guidelines:

• Expose the trip count of loops whenever possible; use constants where the trip count is known and save
loop parameters in local variables.

• Avoid placing structures inside loop bodies that the compiler may assume to carry dependent data, for
example, procedure calls, ambiguous indirect references or global references.

• Insert the !DIR$ PARALLEL directive to disambiguate assumed data dependencies.
• Insert the !DIR$ NOPARALLEL directive before loops known to have insufficient work to justify the

overhead of sharing among threads.

Auto-Parallelization Data Flow
For auto-parallelization processing, the compiler performs the following steps:

1. Data flow analysis: Computing the flow of data through the program.
2. Loop classification: Determining loop candidates for parallelization based on correctness and

efficiency, as shown by Enabling Auto-parallelization.
3. Dependency analysis: Computing the dependency analysis for references in each loop nest.
4. High-level parallelization: Analyzing the dependency graph to determine loops that can execute in

parallel, and computing runtime dependency.
5. Data partitioning: Examining data reference and partition based on the following types of access:

SHARED, PRIVATE, and FIRSTPRIVATE.
6. Multithreaded code generation: Modifying loop parameters, generating entry/exit per threaded task,

and generating calls to parallel runtime routines for thread creation and synchronization.

 1 Intel® Fortran Compiler Classic and Intel® Fortran Compiler Developer Guide and Reference

2458

NOTE
Options that use OpenMP are available for both Intel® and non-Intel microprocessors, but these
options may perform additional optimizations on Intel® microprocessors than they perform on non-
Intel microprocessors. The list of major, user-visible OpenMP constructs and features that may perform
differently on Intel® microprocessors than on non-Intel microprocessors includes: locks (internal and
user visible), the SINGLE construct, barriers (explicit and implicit), parallel loop scheduling, reductions,
memory allocation, and thread affinity and binding.

See Also
Enable Auto-Parallelization

Enable Further Loop Parallelization for Multicore Platforms
Parallelizing loops for multicore platforms is subject to certain conditions. Three requirements must be met
for the compiler to parallelize a loop:

• The number of iterations must be known before entry into a loop to ensure that the work can be divided
in advance. A DO WHILE loop, for example, usually cannot be made parallel.

• There can be no jumps into or out of the loop.
• The loop iterations must be independent (no cross-iteration dependencies).

Correct results must not logically depend on the order in which the iterations are executed. There may be
slight variations in the accumulated rounding error, for example, when the same quantities are added in a
different order. In some cases, such as summing an array or other uses of temporary scalars, the compiler
may be able to remove an apparent dependency by a simple transformation.

Potential aliasing of pointers or array references is another common impediment to safe parallelization. Two
pointers are aliased if both point to the same memory location. The compiler may not be able to determine
whether two pointers or array references point to the same memory location. For example, if they depend on
function arguments, runtime data, or the results of complex calculations.

If the compiler cannot prove that pointers or array references are safe, it will not parallelize the loop. In
limited cases, when it is deemed worthwhile to generate alternative code paths to test explicitly for aliasing
at runtime, the compiler will still parallelize the loop.

If you know parallelizing a particular loop is safe and that potential aliases can be ignored, you can instruct
the compiler to parallelize the loop using the !DIR$ PARALLEL directive.

Parallelize Loops with Cross-iteration Dependencies
Before the compiler can auto-parallelize a loop, it must prove that the loop does not have potential cross-
iteration dependencies that prevent parallelization. A cross-iteration dependency exists if a memory location
is written to in an iteration of a loop and accessed (read from or written to) in another iteration of the loop.
Cross-iteration dependencies often occur in loops that access overlapping array ranges, such as a loop that
reads from a(1:100) and writes to a(0:99).

Sometimes, even though a loop does not have cross-iteration dependencies, the compiler does not have
enough information to prove it and does not parallelize the loop. In such cases, you can assist the compiler
by providing additional information about the loop using the !DIR$ PARALLEL directive. Adding the !DIR$
PARALLEL directive before a DO loop informs the compiler that the loop does not have cross-iteration
dependencies. Auto-parallelization analysis ignores potential dependencies that it assumes could exist.
However, the compiler may not parallelize the loop if heuristics estimate parallelization is unlikely to increase
performance of the loop.

The Fortran DO CONCURRENT construct also specifies that there are no cross-iteration dependencies.

The !DIR$ PARALLEL ALWAYS directive has the same effect to ignore potential dependencies as the !DIR$
PARALLEL directive, but it also overrides the compiler heuristics that estimate the likelihood that
parallelization of a loop would increase performance. It allows a loop to be parallelized even when the
compiler estimates that parallelization might not improve performance.

Intel® Fortran Compiler Classic and Intel® Fortran Compiler Developer Guide and Reference 1

2459

The !DIR$ NOPARALLEL directive prevents auto-parallelization of the immediately following DO loop. Unlike !
DIR$ PARALLEL, which is a hint, the NOPARALLEL directive is guaranteed to prevent parallelization of the
following loop.

These directives take effect only if auto-parallelization is enabled by the option [Q]parallel.

Parallelize Loops with Private Clauses
When you use the Guided Auto Parallelism feature, the compiler’s auto-parallelizer gives you advice on where
to alter your program to enhance parallelization. For instance, you may get advice to check if a condition
(that the compiler could not prove) is true. If the condition is true, the compiler inserts !DIR$ PARALLEL in
your source code so that the associated loop is parallelized when you recompile.

To specify that it is legal for each thread to create a new, private copy (not visible by other threads) of a
variable, and replace the original variable in the loop with the new private variable, use the !DIR$ PARALLEL
directive with the PRIVATE clause. The PRIVATE clause allows you to list scalar and array type variables and
specify the number of array elements to privatize.

Use the FIRSTPRIVATE clause to specify private variables that need to be initialized with the original value
before entering the parallel loop.

Use the LASTPRIVATE clause to specify those variables with a value you want to reuse after it exits a
parallelized loop. When you use the LASTPRIVATE clause to handle a particular privatized variable, the value
is copied to the original variable when it exits from the parallelized loop.

NOTE
Do not use the same variable in both PRIVATE and LASTPRIVATE clauses for the same loop. You will
get an error message.

Parallelize Loops with External Function Calls
The compiler can only effectively analyze loops with a relatively simple structure. For example, the compiler
cannot determine the thread safety of a loop containing external function calls because it does not know
whether the function call might have side effects that introduce dependencies. Fortran programmers can use
the PURE attribute to assert that subroutines and functions contain no side effects. You can invoke
interprocedural optimization with the [Q]ipo option. Using this option allows the compiler to analyze the
called function for side effects.

Parallelize Loops with OpenMP
When the compiler is unable to automatically parallelize loops you know to be parallel, use OpenMP. OpenMP
is the preferred solution because you understand the code better than the compiler and can express
parallelism at a coarser granularity. Alternatively, automatic parallelization can be effective for nested loops,
such as those in a matrix multiply. Moderately coarse-grained parallelism results from threading of the outer
loop, allowing the inner loops to be optimized for fine-grained parallelism using vectorization or software
pipelining.

Threshold Parameter to Parallelize Loops
If a loop can be parallelized, it does not necessarily mean that it should be parallelized.

The compiler will report which loops could not be parallelized and indicate probable reason(s) why. See
OpenMP and Parallel Processing Options for more information on using parallel compiler options.

ifort:

 1 Intel® Fortran Compiler Classic and Intel® Fortran Compiler Developer Guide and Reference

2460

The compiler uses a threshold parameter to decide whether to parallelize a loop. The [Q]par-threshold
compiler option adjusts this behavior. The threshold ranges from 0 to 100 , where 0 instructs the compiler to
always parallelize a safe loop and 100 instructs the compiler to only parallelize those loops for which a
performance gain is highly probable. Use the -qopt-report-phase=par (Linux) or /Qopt-report-phase:par
(Windows) option to determine which loops were parallelized.

Consider the following example:

subroutine add(k, a, b)
 integer :: k
 real :: a(10000), b(10000)
 DO i = 1, 10000
 a(i) = a(i+k) + b(i)
 end do
end subroutine add

Because the compiler does not know the value of k, the compiler assumes the iterations depend on each
other, for example if k equals -1, even if the actual case is otherwise. You can override the compiler by
inserting the !DIR$ PARALLEL directive:

subroutine add(k, a, b)
 integer :: k
 real :: a(10000), b(10000)
 !DIR$ PARALLEL
 do i = 1, 10000
 a(i) = a(i+k) + b(i)
 end do
end subroutine add

See Also
PARALLEL
 directive

Offload Compilation, OpenMP*, and Parallel Processing Options
qopt-report-phase, Qopt-report-phase compiler option
par-threshold, Qpar-threshold
 compiler option (ifort)
qopt-report, Qopt-report
 compiler option (ifort)
qopt-report, Qopt-report
 compiler option (ifx)
ipo, Qipo
 compiler option

Vectorization
Vectorization is the process of converting an algorithm from a scalar implementation, which does an
operation one pair of operands at a time, to a vector process where a single instruction can refer to a vector
(a series of adjacent values).

Automatic Vectorization
The automatic vectorizer (also called the auto-vectorizer) is a component of the compiler that automatically
uses SIMD instructions in the Intel® Streaming SIMD Extensions (Intel® SSE, Intel® SSE2, Intel® SSE3 and
Intel® SSE4), Supplemental Streaming SIMD Extensions (SSSE3) instruction sets, Intel® Advanced Vector
Extensions (Intel® AVX, Intel® AVX2) instruction sets, and Intel® Advanced Vector Extensions 512 (Intel®
AVX-512) instruction set. The vectorizer detects operations in the program that can be done in parallel and
converts the sequential operations to parallel; for example, the vectorizer converts the sequential SIMD
instruction that processes up to 16 elements into a parallel operation, depending on the data type.

Intel® Fortran Compiler Classic and Intel® Fortran Compiler Developer Guide and Reference 1

2461

Automatic vectorization occurs when the compiler generates packed SIMD instructions to unroll a loop.
Because the packed instructions operate on more than one data element at a time, the loop executes more
efficiently. This process is referred to as auto-vectorization only to emphasize that the compiler identifies and
optimizes suitable loops on its own, without external input. However, it is useful to note that in some cases,
certain keywords or directives may be applied in the code for auto-vectorization to occur.

The compiler supports a variety of auto-vectorizing hints that can help the compiler to generate effective
vector instructions. Automatic vectorization is supported on Intel® 64 architectures. Intel® Advisor, a separate
tool included in the Intel® oneAPI Base Toolkit, provides a Vectorization Advisor feature that can analyze the
compiler's optimization reports and make recommendations for enhancing vectorization.

NOTE
This option enables vectorization at default optimization levels for both Intel® microprocessors and
non-Intel microprocessors. Vectorization may call library routines that can result in additional
performance gain on Intel® microprocessors than on non-Intel microprocessors. The vectorization can
also be affected by certain options, such as -arch or -x (Linux), or /arch or /Qx (Windows).

Vectorization Programming Guidelines

The goal of including the vectorizer component in the Intel® Fortran Compiler is to exploit single-instruction
multiple data (SIMD) processing automatically. Users can help by supplying the compiler with additional
information; for example, by using auto-vectorizer hints or directives.

NOTE
This option enables vectorization at default optimization levels for both Intel® microprocessors and
non-Intel microprocessors. Vectorization may call library routines that can result in additional
performance gain on Intel® microprocessors than on non-Intel microprocessors. The vectorization can
also be affected by certain options, such as -arch or -x (Linux), or /arch or /Qx (Windows).

Guidelines to Vectorize Innermost Loops
Follow these guidelines to vectorize innermost loop bodies.

Use:

• Straight-line code (a single basic block).
• Vector data only (arrays and invariant expressions on the right-hand side of assignments). Array

references can appear on the left-hand side of assignments.
• Only assignment statements.

Avoid:

• Function calls (other than math library calls).
• Non-vectorizable operations (either because the loop cannot be vectorized, or because an operation is

emulated through a number of instructions).
• Mixing vectorizable types in the same loop (leads to lower resource utilization).
• Data-dependent loop exit conditions (leads to loss of vectorization).

To make your code vectorizable, you need to edit your loops. You should only make changes that enable
vectorization, and avoid these common changes:

• Loop unrolling, which the compiler performs automatically.
• Decomposing one loop with several statements in the body into several single-statement loops.

Restrictions
There are a number of restrictions that you should consider. Vectorization depends on two major factors:
hardware and style of source code.

 1 Intel® Fortran Compiler Classic and Intel® Fortran Compiler Developer Guide and Reference

2462

Factor Description

Hardware The compiler is limited by restrictions imposed by the underlying hardware. For
example, Intel® Streaming SIMD Extensions (Intel® SSE) has vector memory
operations that are limited to stride-1 accesses with a preference to 16-byte-aligned
memory references. This means that if the compiler abstractly recognizes a loop as
vectorizable, it still might not vectorize it for a distinct target architecture.

Style of source
code

The style in which you write source code can inhibit vectorization. For example,
avoid using a pointer unless its association with a variable is established within the
same procedure. Otherwise, the compiler may not be able to prove that two
memory references refer to distinct locations.

Many stylistic issues that prevent automatic vectorization by compilers are found in loop structures. The
ambiguity arises from the complexity of the keywords, operators, data references, pointer arithmetic, and
memory operations within the loop bodies.

By understanding these limitations and by knowing how to interpret diagnostic messages, you can modify
your program to overcome the known limitations and enable effective vectorization.

Guidelines for Writing Vectorizable Code
Follow these guidelines to write vectorizable code:

• Use simple DO loops. Avoid complex loop termination conditions – the upper iteration limit must be
invariant within the loop. For the innermost loop in a nest of loops, you could set the upper limit iteration
to be a function of the outer loop indices.

• Write straight-line code. Avoid branches such as DO, GOTO, and function calls other than math library
calls. Complicated IF conditions in loops may also prevent your code from vectorizing.

• Avoid dependencies between loop iterations or at the least, avoid read-after-write dependencies.
• Try to use array notations instead of the using pointers. Without help, the compiler often cannot tell

whether it is safe to vectorize code containing pointers.
• Wherever possible, use the loop index directly in array subscripts instead of incrementing a separate

counter for use as an array address.
• Access memory efficiently:

• Favor inner loops with unit stride.
• Minimize indirect addressing.
• Align your data to 16-byte boundaries (for Intel® SSE instructions).

• Choose a suitable data layout with care. Most multimedia extension instruction sets are rather sensitive to
alignment.

For example, the data movement instructions of Intel® SSE operate much more efficiently on data that is
aligned at a 16-byte boundary in memory. Therefore, the success of a vectorizing compiler also depends
on its ability to select an appropriate data layout which, in combination with code restructuring (like loop
peeling), results in aligned memory accesses throughout the program.

• Use aligned data structures: Data structure alignment is the adjustment of any data object in relation with
other objects.

Caution Use this hint with care. Incorrect usage of aligned data movements result in an exception
when using Intel® SSE.

Intel® Fortran Compiler Classic and Intel® Fortran Compiler Developer Guide and Reference 1

2463

• Use structure of arrays (SoA) instead of array of structures (AoS): An array is the most common type of
data structure that contains a contiguous collection of data items that can be accessed by an ordinal
index. You can organize this data as an array of structures (AoS) or as a structure of arrays (SoA). While
AoS organization is excellent for encapsulation, it can be a hindrance for use of vector processing. To
make vectorization of the resulting code more effective, you can also select appropriate data structures.

Dynamic Alignment Optimizations
Dynamic alignment optimizations can improve the performance of vectorized code, especially for long trip
count loops. Disabling such optimizations can decrease performance, but it may improve bitwise
reproducibility of results, factoring out data location from possible sources of discrepancy.

To enable or disable dynamic data alignment optimizations, specify the option /Qopt-dynamic-align[-]
(Windows) or -q[no-]opt-dynamic-align (Linux).

Use Aligned Data Structures
Data structure alignment is the adjustment of any data object with relation to other objects. The Intel®
Fortran Compiler may align individual variables to start at certain addresses to speed up memory access.
Misaligned memory accesses can incur large performance losses on certain target processors that do not
support them in hardware.

Alignment is a property of a memory address, expressed as the numeric address modulo of powers of two. In
addition to its address, a single datum also has a size. A datum is called naturally aligned if its address is
aligned to its size; otherwise, it is called misaligned. For example, an 8-byte floating-point datum is naturally
aligned if the address used to identify it is aligned to eight (8).

A data structure is a way of storing data in a computer so that it can be used efficiently. Often, a carefully
chosen data structure allows a more efficient algorithm to be used. A well-designed data structure allows a
variety of critical operations to be performed, using as little resources (execution time and memory space) as
possible. Example:

type mytype
 integer(kind=2):: Data1
 integer(kind=2):: Data2
 integer(kind=2):: Data3
end type mytype

In the example data structure above, if the type integer(kind=2) is stored in two bytes of memory then
each member of the data structure is aligned to a boundary of two bytes. Data1 would be at offset 0, Data2
at offset 2 and Data3 at offset 4. The size of this structure is six bytes. The type of each member of the
structure usually has a required alignment, meaning that it is aligned on a pre-determined boundary, unless
you request otherwise. In cases where the compiler has taken sub-optimal alignment decisions, you can use
the declaration !DIR$ ATTRIBUTES ALIGN : n :: var, to indicate that var must be allocated with
alignment n. For example:

real (kind=8) :: A(N), B(N)

do I=1, N-1
 A(I+1) = B(I) * 3
end do

…
If the first element of both arrays is aligned at a 16-byte boundary, then either an unaligned load of elements
from B or an unaligned store of elements into A must be used after vectorization.

 1 Intel® Fortran Compiler Classic and Intel® Fortran Compiler Developer Guide and Reference

2464

The compiler will decide whether it is more cost-effective to generate a loop that aligns the vectorized stores
to A or the vectorized load from B. If aligning the stores is deemed more important, the compiler will peel the
first iterations of the loop to enable this. In order for the compiler to make this choice, you can inform the
compiler of the alignment as follows:

!DIR$ ATTRIBUTE ALIGN : 16 :: A
!DIR$ ATTRIBUTE ALIGN : 16 :: B

Runtime optimization provides a generally effective way to obtain aligned access patterns at the expense of a
slight increase in code size and testing. If incoming access patterns are aligned at a 16-byte boundary, you
can avoid this overhead with the hint !DIR$ ASSUME_ALIGNED X:16 in the function to convey this
information to the compiler.

For example, suppose you can introduce an optimization in the case where a block of memory with address
n2 is aligned on a 16-byte boundary. You could use !DIR$ ASSUME_ALIGNED n2:16.

Caution Incorrect use of aligned data movements results in an exception for Intel® SSE.

Use Structure of Arrays Versus Array of Structures
The most common and well-known data structure is the array that contains a contiguous collection of data
items, which can be accessed by an ordinal index. This data can be organized as an array of structures (AoS)
or as a structure of arrays (SoA). While AoS organization works excellently for encapsulation, for vector
processing it works poorly.

You can select appropriate data structures to make vectorization of the resulting code more effective. To
illustrate this point, compare the traditional array of structures (AoS) arrangement for storing the r, g, b
components of a set of three-dimensional points with the alternative structure of arrays (SoA) arrangement
for storing this set.

With the AoS arrangement, a loop that visits all components of an RGB point before moving to the next point
exhibits a good locality of reference. This is because all elements in the fetched cache lines are used. The
disadvantage of the AoS arrangement is that each individual memory reference in such a loop exhibits a non-

Intel® Fortran Compiler Classic and Intel® Fortran Compiler Developer Guide and Reference 1

2465

unit stride, which, in general, adversely affects vector performance. Furthermore, a loop that visits only one
component of all points exhibits less satisfactory locality of reference because many of the elements in the
fetched cache lines remain unused.

With the SoA arrangement, the unit-stride memory references are more amenable to effective vectorization
and still exhibit good locality of reference within each of the three data streams. Consequently, an application
that uses the SoA arrangement may outperform an application based on the AoS arrangement when
compiled with a vectorizing compiler. This performance difference may not be obviously apparent during the
early implementation phase.

Before you start vectorization, try out some simple rules:

• Make your data structures vector-friendly.
• Make sure that the inner loop indices correspond to the leftmost array index (column-major order).
• Make sure that the outer loop indices correspond to the rightmost array index.
• Use structure of arrays over array of structures.

For instance, when dealing with three-dimensional coordinates, use three separate arrays for each
component (SoA), instead of using one array of three-component structures (AoS). To avoid dependencies
between loops that will eventually prevent vectorization, use three separate arrays for each component
(SoA), instead of one array of three-component structures (AoS).

When you use the AoS arrangement, each iteration produces one result by computing XYZ, but it can at best
use only 75% of the SSE unit because the fourth component is not used. Sometimes, the compiler may use
only one component (25%).

When you use the SoA arrangement, each iteration produces four results by computing XXXX, YYYY and
ZZZZ, using 100% of the SSE unit. A drawback for the SoA arrangement is that your code will likely be three
times as long.

If your original data layout is in AoS format, you may want to consider a conversion to SoA before the critical
loop:

• Use the smallest data types that give the needed precision to maximize potential SIMD width. (If only 16-
bits are needed, using a integer(kind=2) rather than an integer(kind=4) can make the difference
between 8-way or four-way SIMD parallelism.)

• Avoid mixing data types to minimize type conversions.
• Avoid operations not supported in SIMD hardware.
• Use all the instruction sets available for your processor. Use the appropriate command line option for your

processor type, or select the appropriate IDE option (Windows only):

• Project > Properties > Fortran > Code Generation > Intel Processor-Specific Optimization, if
your application runs only on Intel® processors.

• Project > Properties > Fortran > Code Generation > Enable Enhanced Instruction Set, if your
application runs on compatible, non-Intel processors.

• Vectorizing compilers usually have some built-in efficiency heuristics to decide whether vectorization is
likely to improve performance. The Intel® Fortran Compiler disables vectorization of loops with many
unaligned or non-unit stride data access patterns. If experimentation reveals that vectorization improves
performance, you can override this behavior using the !DIR$ VECTOR ALWAYS hint before the loop. The
compiler vectorizes any loop regardless of the outcome of the efficiency analysis (provided that
vectorization is safe).

See Also
Vectorization and Loops

Loop Constructs

qopt-dynamic-align, Qopt-dynamic-align
 compiler option

 1 Intel® Fortran Compiler Classic and Intel® Fortran Compiler Developer Guide and Reference

2466

Use Automatic Vectorization

The information below will guide you in setting up the auto-vectorizer.

Vectorization Speedup
Where does the vectorization speedup come from? Consider the following sample code, where a, b, and c are
integer arrays:

do I=1,MAX
 C(I)=A(I)+B(I)
end do

If vectorization is not enabled, and you compile using the O1, -no-vec (Linux), or /Qvec- (Windows) option,
the compiler processes the code with unused space in the SIMD registers, even though each register can
hold three additional integers. If vectorization is enabled (compiled using O2 or higher options), the compiler
may use the additional registers to perform four additions in a single instruction. The compiler looks for
vectorization opportunities whenever you compile at default optimization (O2) or higher.

NOTE
This option enables vectorization at default optimization levels for both Intel® microprocessors and
non-Intel microprocessors. Vectorization may call library routines that can result in additional
performance gain on Intel® microprocessors than on non-Intel microprocessors. The vectorization can
also be affected by certain options, such as -arch or -x (Linux), or /arch or /Qx (Windows).

Tip
This tip is only for the Intel®Fortran (ifort) Classic Compiler. To allow comparisons between vectorized
and non-vectorized code, disable vectorization using the -no-vec (Linux) or /Qvec- (Windows)
option; enable vectorization using the O2 option.

To learn if a loop was vectorized or not, enable generation of the optimization report using the options
qopt-report=1 qopt-report-phase=vec (Linux) or Qopt-report:1 Qopt-report-phase:vec
(Windows) options. These options generate a separate report in an *.optrpt file that includes optimization
messages. In Microsoft Visual Studio, the program source is annotated with the report's messages, or you
can read the resulting .optrpt file using a text editor. A message appears for every loop that is vectorized,
for example:

ifort /Qopt-report:1 matvec.f90
type matvec.optrpt
…
 LOOP BEGIN at C:\Projects\vec_samples\matvec.f90(38,6)
 remark #15300: LOOP WAS VECTORIZED
 LOOP END

The source line number (38 in the above example) refers to either the beginning or the end of the loop.

To get details about the type of loop transformations and optimizations that took place, use the
[Q]opt-report-phase option by itself or along with the [Q]opt-report option.

Linux

To evaluate performance enhancement, run Vectorize VecMatMult:

1. Download and run the driver.f90 and matvec.f90 samples from Vectorize VecMatMul src folder on
GitHub.

Intel® Fortran Compiler Classic and Intel® Fortran Compiler Developer Guide and Reference 1

2467

https://github.com/oneapi-src/oneAPI-samples/tree/master/DirectProgramming/Fortran/DenseLinearAlgebra/vectorize-vecmatmult
https://github.com/oneapi-src/oneAPI-samples/tree/master/DirectProgramming/Fortran/DenseLinearAlgebra/vectorize-vecmatmult

2. This application multiplies a vector by a matrix using the following loop:

do i=1,size1
 c(i) = c(i) + a(i,j) * b(j)
end do

3. Compile and run the application, first without enabling auto-vectorization. The default O2 optimization
enables vectorization, so you need to disable it with a separate option.

ifx -no-vec driver.f90 matvec.f90 -o NoVectMult
./NoVectMult

4. Build and run the application, this time with auto-vectorization.

ifx driver.f90 matvec.f90 -o VectMult
./VectMult

Windows

To evaluate performance enhancement, run Vectorize VecMatMult:

1. Select Start > Intel oneAPI <version> > Intel oneAPI Command Prompt for Intel 64 for
Visual Studio <version>.

2. Download and run the driver.f90 and matvec.f90 samples from the Vectorize VecMatMul src folder on
GitHub.

3. This application multiplies a vector by a matrix using the following loop:

do i=1,size1
 c(i) = c(i) + a(i,j) * b(j)
end do

4. Compile and run the application, first without enabling auto-vectorization. The default O2 optimization
enables vectorization, so you need to disable it with a separate option.

ifx /Qvec- driver.f90 matvec.f90 /exe:NoVectMult
NoVectMult

5. Build and run the application, this time with auto-vectorization.

ifx driver.f90 matvec.f90 /exe:VectMult
VectMult

When you compare the timing of the two runs, you may see that the vectorized version runs faster. The time
for the non-vectorized version is only slightly faster than would be obtained by compiling with the O1 option.

Obstacles to Vectorization
The following issues do not always prevent vectorization, but frequently cause the compiler to decide that
vectorization would not be worthwhile.

• Non-contiguous memory access: Four consecutive integers or floating-point values, or two consecutive
doubles, may be loaded directly from memory in a single SSE instruction. But if the four integers are not
adjacent, they must be loaded separately using multiple instructions, which is considerably less efficient.
The most common examples of non-contiguous memory access are loops with non-unit stride or with
indirect addressing, shown in the examples below. The compiler rarely vectorizes these loops, unless the
amount of computational work is larger compared to the overhead from non-contiguous memory access.

! arrays accessed with non-unit stride 2
do I=1,SIZE,2
 B(I)=B(I)+(A(I)*X(I))
end do

! inner loop accesses matrix A with non-unit stride SIZE2

 1 Intel® Fortran Compiler Classic and Intel® Fortran Compiler Developer Guide and Reference

2468

https://github.com/oneapi-src/oneAPI-samples/tree/master/DirectProgramming/Fortran/DenseLinearAlgebra/vectorize-vecmatmult
https://github.com/oneapi-src/oneAPI-samples/tree/master/DirectProgramming/Fortran/DenseLinearAlgebra/vectorize-vecmatmult

do J=1,SIZE1
 do I=1,SIZE2
 B(I)=B(I)+(A(J,I)*X(J))
 end do
end do

! indirect addressing of X using index array INDX
do I=1,SIZE,2
 B(I)=B(I)+(A(I)*X(INDX(I)))
end do

The typical message from the vectorization report is: vectorization possible but seems
inefficient, although indirect addressing may also result in the following report: existence of
vector dependence.

• Data dependencies: Vectorization entails changes in the order of operations within a loop, since each
SIMD instruction operates on several data elements at once. Vectorization is only possible if this change of
order does not change the results of the calculation.

• The simplest case is when data elements that are written (stored to) do not appear in any other
iteration of the individual loop. In this case, all the iterations of the original loop are independent of
each other, and can be executed in any order, without changing the result. The loop may be safely
executed using any parallel method, including vectorization.

• When a variable is written in one iteration and read in a subsequent iteration, there is a read-after-
write dependency, also known as a flow dependency, for example:

do J=2,5
 A(J)=A(J-1)+1
end do

The value of A(1) is propagated to all A(J). This cannot safely be vectorized: if the first two iterations
are executed simultaneously by a SIMD instruction, the value of A(2) is used by the second iteration
before it has been calculated by the first iteration.

• When a variable is read in one iteration and written in a subsequent iteration, this is a write-after-read
dependency, also known as an anti-dependency, for example:

do J=2,5
 A(J-1)=A(J)+1
end do
! this is equivalent to:
A(1)=A(2)+1
A(2)=A(3)+1
A(3)=A(4)+1
A(4)=A(5)+1

This write-after-read dependency is not safe for general parallel execution, since the iteration with the
write may execute before the iteration with the read. No iteration with a higher value of J can
complete before an iteration with a lower value of J, and so vectorization is safe (it gives the same
result as non-vectorized code).

The following example may not be safe, since vectorization might cause some elements of A to be
overwritten by the first SIMD instruction A(J-1)=A(J)+1 before being used for B in the second SIMD
instruction B(J)=B(J)+A(J).

do J=2,5
 A(J-1)=A(J)+1
 B(J)=B(J)+A(J)
end do

Intel® Fortran Compiler Classic and Intel® Fortran Compiler Developer Guide and Reference 1

2469

! this is equivalent to:
A(1)=A(2)+1
B(2)=B(2)+A(2)
A(2)=A(3)+1
B(3)=B(3)+A(3)
A(3)=A(4)+1
B(4)=B(4)+A(4)
A(4)=A(5)+1
B(4)=B(4)+A(4)

• Read-after-read situations are not really dependencies, and do not prevent vectorization or parallel
execution. If a variable is unwritten, it does not matter how often it is read.

• Write-after-write, or output dependencies, where the same variable is written to in more than one
iteration, are generally unsafe for parallel execution, including vectorization.

• One important exception that contains all of the above types of dependency is:

MYSUM=0
do J=1,MAX
 MYSUM = MYSUM + A(J)*B(J)
end do

Although MYSUM is both read and written in every iteration, the compiler recognizes such reduction
idioms, and is able to vectorize them safely. The loop in the first example was another example of a
reduction, with a loop-invariant array element in place of a scalar.

These types of dependencies between loop iterations are sometimes known as loop-carried
dependencies.

The above examples are of proven dependencies. The compiler cannot safely vectorize a loop if there is
even a potential dependency. For example:

real, pointer :: A(:),B(:),C(:)
...
do I=1,SIZE
 C(I)=A(I)*B(I)
end do
...

In the above example, the compiler needs to determine whether, for some iteration I, C(I) might
refer to the same memory location as A(I) or B(I) for a different iteration. Such memory locations
are sometimes said to be aliased. For example, if A(I) pointed to the same memory location as
C(I-1), there would be a read-after-write dependency. If the compiler cannot exclude this possibility,
it will not vectorize the loop unless you provide the compiler with hints. You can also avoid this
problem by making the arrays ALLOCATABLE instead of POINTER, as the compiler knows these cannot
be aliased.

See Also
ansi-alias/Qansi-alias
 compiler option

qopt-report, Qopt-report compiler option (ifort)
qopt-report, Qopt-report compiler option (ifx)
qopt-report-phase, Qopt-report-phase compiler option

Vectorization and Loops

This topic provides more information on the interaction between the auto-vectorizer and loops.

 1 Intel® Fortran Compiler Classic and Intel® Fortran Compiler Developer Guide and Reference

2470

Interactions with Loop Parallelization
Combine the [Q]parallel and [Q]x options to instruct the Intel® Fortran Compiler to attempt both Automatic
Parallelization and automatic loop vectorization in the same compilation.

NOTE
Using this option enables parallelization for both Intel® microprocessors and non-Intel microprocessors.
The resulting executable may get additional performance gain on Intel® microprocessors than on non-
Intel microprocessors. The parallelization can also be affected by certain options, such as /arch
(Windows), -m (Linux), or [Q]x.

NOTE
This option enables vectorization at default optimization levels for both Intel® microprocessors and
non-Intel microprocessors. Vectorization may call library routines that can result in additional
performance gain on Intel® microprocessors than on non-Intel microprocessors. The vectorization can
also be affected by certain options, such as -arch or -x (Linux), or /arch or /Qx (Windows).

In most cases, the compiler will consider outermost loops for parallelization and innermost loops for
vectorization. If deemed profitable, however, the compiler may even apply loop parallelization and
vectorization to the same loop.

See Programming Guidelines for Vectorization.

In some rare cases, a successful loop parallelization (either automatically or by means of OpenMP directives)
may affect the messages reported by the compiler for a non-vectorizable loop in a non-intuitive way.

Types of Vectorized Loops
For integer loops, the 128-bit Intel® Streaming SIMD Extensions (Intel® SSE) and the Intel® Advanced Vector
Extensions (Intel® AVX) provide SIMD instructions for most arithmetic and logical operators on 32-bit, 16-bit,
and 8-bit integer data types, with limited support for the 64-bit integer data type.

Vectorization may proceed if the final precision of integer wrap-around arithmetic is preserved. A 32-bit shift-
right operator, for instance, is not vectorized in 16-bit mode if the final stored value is a 16-bit integer. Also,
note that because the Intel® SSE and the Intel® AVX instruction sets are not fully orthogonal (shifts on byte
operands, for instance, are not supported), not all integer operations can actually be vectorized.

For loops that operate on 32-bit single-precision and 64-bit double-precision floating-point numbers, Intel®
SSE provides SIMD instructions for the following arithmetic operators:

• Addition (+)
• Subtraction (-)
• Multiplication (*)
• Division (/)

Additionally, Intel® SSE provide SIMD instructions for the binary MIN and MAX and unary SQRT operators.
SIMD versions of several other mathematical operators (like the trigonometric functions SIN, COS, and TAN)
are supported in software in a vector mathematical runtime library that is provided with the compiler.

To be vectorizable, loops must be:

• Countable: The loop trip count must be known at entry to the loop at runtime, though it need not be
known at compile time (that is, the trip count can be a variable but the variable must remain constant for
the duration of the loop). This implies that exit from the loop must not be data-dependent.

• Innermost loop of a nest: The only exception is if an original outer loop is transformed into an inner
loop as a result of some other prior optimization phase, such as unrolling, loop collapsing or interchange,
or an original outermost loop is transformed to an innermost loop due to loop materialization.

Intel® Fortran Compiler Classic and Intel® Fortran Compiler Developer Guide and Reference 1

2471

• Without function calls: Even a print statement is sufficient to prevent a loop from getting vectorized.
The vectorization report message is typically: non-standard loop is not a vectorization candidate. The two
major exceptions are for intrinsic math functions and for functions that may be inlined.

Intrinsic math functions are allowed, because the compiler runtime library contains vectorized versions of
these functions. See below for a list of these functions; most exist in both float and double versions:

• acos
• acosh
• anint
• asin
• asinh
• atan
• atan2
• atanh
• ceiling
• cos
• cosh
• erf
• erfc
• exp
• exp2
• floor
• log
• log10
• sin
• sinh
• sqrt
• tan
• tanh

Statements in the Loop Body
The vectorizable operations are different for floating-point and integer data.

Integer Array Operations

The statements within the loop body may be arithmetic or logical operations (again, typically for arrays).
Arithmetic operations are limited to such operations as addition, subtraction, ABS, MIN, and MAX. Logical
operations include bitwise AND, OR, and XOR operators. You can mix data types but this may potentially cost
you in terms of lowering efficiency.

Other Operations
No statements other than the preceding floating-point and integer operations are valid. The loop body cannot
contain any function calls other than the ones described above.

Data Dependency
Data dependency relations represent the required ordering constraints on the operations in serial loops.
Because vectorization rearranges the order in which operations are executed, any auto-vectorizer must have
at its disposal some form of data dependency analysis.

 1 Intel® Fortran Compiler Classic and Intel® Fortran Compiler Developer Guide and Reference

2472

An example where data dependencies prohibit vectorization is shown below. In this example, the value of
each element of an array is dependent on the value of its neighbor that was computed in the previous
iteration.

subroutine dep(data, n)
 real :: data(n)
 integer :: i
 do i = 1, n-1
 data(i) = data(i-1)*0.25 + data(i)*0.5 + data(i+1)*0.25
 end do
end subroutine dep

The loop in the above example is not vectorizable because the WRITE to the current element data(i) is
dependent on the use of the preceding element data(i-1), which has already been written to and changed
in the previous iteration. To see this, look at the access patterns of the array for the first two iterations as
shown below.

i=1: READ data[0]
 READ data[1]
 READ data[2]
 WRITE data[1]
i=2: READ data[1]
 READ data[2]
 READ data[3]
 WRITE data[2]

In the normal sequential version of this loop, the value of DATA(1) read from during the second iteration was
written to in the first iteration. For vectorization, it must be possible to do the iterations in parallel, without
changing the semantics of the original loop.

do i=1,100
 a(i)=b(i)
end do

! which has the following access pattern
 read b(1)
 write a(1)
 read b(2)
 write b(2)

Data Dependency Analysis
Data dependency analysis involves finding the conditions under which two memory accesses may overlap.
Given two references in a program, the conditions are defined by:

• The referenced variables may be aliases for the same (or overlapping) regions in memory.
• For array references, the relationship between the subscripts.

The data dependency analyzer for array references is organized as a series of tests, which progressively
increase in power as well as in time and space costs.

First, a number of simple tests are performed in a dimension-by-dimension manner, since independency in
any dimension will exclude any dependency relationship. Multidimensional arrays references that may cross
their declared dimension boundaries can be converted to their linearized form before the tests are applied.

Intel® Fortran Compiler Classic and Intel® Fortran Compiler Developer Guide and Reference 1

2473

Some of the simple tests that can be used are the fast greatest common divisor (GCD) test and the extended
bounds test. The GCD test proves independency if the GCD of the coefficients of loop indices cannot evenly
divide the constant term. The extended bounds test checks for potential overlap of the extreme values in
subscript expressions.

If all simple tests fail to prove independency, the compiler will eventually resort to a powerful hierarchical
dependency solver that uses Fourier-Motzkin elimination to solve the data dependency problem in all
dimensions.

Product and Performance Information

Performance varies by use, configuration and other factors. Learn more at www.Intel.com/
PerformanceIndex.

Notice revision #20201201

See Also
Automatic Parallelization
Programming with Auto-parallelization
Programming Guidelines for Vectorization
qopt-report-phase, Qopt-report-phase
 compiler option

x, Qx compiler option
parallel, Qparallel compiler option (ifort only)
parallel, Qparallel compiler option (ifx only)

Loop Constructs

Loops can be formed with the DO...END DO and DO WHILE...END DO constructs. Sometimes, loops are also
formed by using an IF or GOTO statement that specifies a label, but that method is rarely used.

Loops must have a single entry and a single exit to be vectorized. The following examples show loop
constructs that can and cannot be vectorized. The non-vectorizable structure example shows a loop that
cannot be vectorized because of the inherent potential for an early exit from the loop.

Vectorizable structure:

subroutine vec(a, b, c)
 dimension a(100), b(100), c(100)
 integer i
 i = 1
 do while (i .le. 100)
 a(i) = b(i) * c(i)
 if (a(i) .lt. 0.0) a(i) = 0.0
 i = i + 1
 end do
end subroutine vec

Non-vectorizable structure:

subroutine no_vec(a, b, c)
 dimension a(100), b(100), c(100)
 integer i
 i = 1
 do while (i .le. 100)
 a(i) = b(i) * c(i)
! The next statement allows early
! exit from the loop and prevents

 1 Intel® Fortran Compiler Classic and Intel® Fortran Compiler Developer Guide and Reference

2474

https://www.intel.com/PerformanceIndex
https://www.intel.com/PerformanceIndex

! vectorization of the loop.
 if (a(i) .lt. 0.0) exit
 i = i + 1
 end do
end subroutine no_vecN
END

Loop Exit Conditions
Loop exit conditions determine the number of iterations a loop executes. For example, fixed indexes for loops
determine the iterations. The loop iterations must be countable and the number of iterations must be
expressed as one of the following:

• A constant
• A loop invariant expression
• A linear function of outermost loop indices

In the case where a loop's exit depends on computation, the loops are not countable. The examples below
show loop constructs that are countable and non-countable. The non-countable loop example demonstrates a
loop construct that is non-countable due to dependency loop variant count value.

Countable loop, example one:

subroutine cnt1 (a, b, c, n, lb)
 dimension a(n), b(n), c(n)
 integer n, lb, i, count
! Number of iterations is "n - lb + 1"
 count = n
 do while (count .ge. lb)
 a(i) = b(i) * c(i)
 count = count - 1
 i = i + 1
 end do ! lb is not defined within loop
end

Countable loop, example two:

! Number of iterations is (n-m+2)/2
subroutine cnt2 (a, b, c, m, n)
 dimension a(n), b(n), c(n)
 integer i, l, m, n
 i = 1;
 do l = m,n,2
 a(i) = b(i) * c(i)
 i = i + 1
 end do
end

Non-countable loop:

! Number of iterations is dependent on a(i)
subroutine foo (a, b, c)
 dimension a(100),b(100),c(100)
 integer i
 i = 1
 do while (a(i) .gt. 0.0)
 a(i) = b(i) * c(i)

Intel® Fortran Compiler Classic and Intel® Fortran Compiler Developer Guide and Reference 1

2475

 i = i + 1
 end do
end

Strip-mining and Cleanup
Strip-mining, also known as loop sectioning, is a loop transformation technique for enabling SIMD-encoding
of loops, as well as a means of improving memory performance. By fragmenting a large loop into smaller
segments or strips, this technique transforms the loop structure in two ways:

• By increasing the temporal and spatial locality in the data cache if the data is reusable in different passes
of an algorithm.

• By reducing the number of iterations of the loop by a factor of the length of each vector, or number of
operations being performed per SIMD operation. With the Intel® Streaming SIMD Extensions (Intel® SSE),
the vector or strip-length is reduced by four times: four floating-point data items per single Intel® SSE
single-precision floating-point SIMD operation are processed.

First introduced for vectorizers, this technique consists of the generation of code when each vector operation
is done for a size less than or equal to the maximum vector length on a given vector machine.

The compiler automatically strip-mines your loop and generates a cleanup loop. For example, assume the
compiler attempts to strip-mine the loop before vectorization. After vectorization, the compiler might handle
the strip mining and loop cleaning by restructuring the loop.

Before vectorization:

i = 1
do while (i<=n)
 a(i) = b(i) + c(i) ! Original loop code
 i = i + 1
end do

After vectorization:

! The vectorizer generates the following two loops
i = 1
do while (i < (n - mod(n,4)))
! Vector strip-mined loop
 a(i:i+3) = b(i:i+3) + c(i:i+3)
 i = i + 4
end do
do while (i <= n)
 a(i) = b(i) + c(i) ! Scalar clean-up loop
 i = i + 1
end do

Loop Blocking

It is possible to treat loop blocking as strip-mining in two or more dimensions. Loop blocking is a useful
technique for memory performance optimization. The main purpose of loop blocking is to eliminate as many
cache misses as possible. This technique transforms the memory domain into smaller chunks rather than
sequentially traversing through the entire memory domain. Each chunk should be small enough to fit all the
data for a given computation into the cache, maximizing data reuse.

Consider the following example. The two-dimensional array A is referenced in the j (column) direction and
then in the i (row) direction (column-major order); array B is referenced in the opposite manner (row-major
order). Assume that the memory layout is in column-major order; therefore, the access strides of array A
and B for the code would be 1 and MAX, respectively. BS = block_size; MAX must be evenly divisible by
BS.

 1 Intel® Fortran Compiler Classic and Intel® Fortran Compiler Developer Guide and Reference

2476

The arrays could be blocked into smaller chunks so that the total combined size of the two blocked chunks is
smaller than the cache size, which can improve data reuse. One way of doing this is shown in the
transformed loop after blocking example.

Original loop:

REAL A(MAX,MAX), B(MAX,MAX)
DO I = 1, MAX
 DO J = 1, MAX
 A(I,J) = A(I,J) + B(J,I)
 ENDDO
ENDDO

Transformed loop after blocking:

REAL A(MAX,MAX), B(MAX,MAX)
DO I = 1, MAX, BS
 DO J = 1, MAX, BS
 DO II = I, I+MAX, BS-1
 DO JJ = J, J+MAX, BS-1
 A(II,JJ) = A(II,JJ) + B(JJ,II)
 END DO
 END DO
 END DO
END DO

Loop Interchange and Subscripts with Matrix Multiply
Loop interchange is often used for improving memory access patterns. Matrix multiplication is commonly
written as shown in the typical matrix multiplication example.

The use of B(K,J) is not a stride-1 reference and therefore will not be vectorized efficiently.

If the loops are interchanged, all the references become stride-1 as shown in the matrix multiplication with
stride-1 example.

Typical matrix multiplication:

subroutine matmul_slow(a, b, c)
 integer :: i, j, k
 real :: a(100,100), b(100,100), c(100,100)
 do i = 1, n
 do j = 1, n
 do k = 1, n
 c(i,j) = c(i,j) + a(i,k)*b(k,j)
 end do
 end do
 end do
end subroutine matmul_slow

Matrix multiplication with stride -1:

subroutine matmul_fast(a, b, c)
 integer :: i, j, k
 real :: a(100,100), b(100,100), c(100,100)
 do j = 1, n
 do k = 1, n
 do i = 1, n
 c(i,j) = c(i,j) + a(i,k)*b(k,j)
 end do

Intel® Fortran Compiler Classic and Intel® Fortran Compiler Developer Guide and Reference 1

2477

 end do
 end do
end subroutine matmul_fast

Interchanging is not always possible because of dependencies, which can lead to different results.

Explicit Vector Programming

This section contains information about explicit vector programming.

User-Mandated or SIMD Vectorization

User-mandated or SIMD vectorization supplements automatic vectorization just like OpenMP parallelization
supplements automatic parallelization. The following figure illustrates this relationship. User-mandated
vectorization is implemented as a single-instruction-multiple-data (SIMD) feature and is referred to as SIMD
vectorization.

NOTE
The SIMD vectorization feature is available for both Intel® microprocessors and non-Intel
microprocessors. Vectorization may call library routines that can result in additional performance gain
on Intel® microprocessors than on non-Intel microprocessors. The vectorization can also be affected by
certain options, such as /arch (Windows), -m (Linux), or [Q]x.

SIMD vectorization uses the !$OMP SIMD directive to effect loop vectorization. You must add this directive to
a loop and recompile to vectorize the loop using the option -qopenmp-simd (Linux) or Qopenmp-simd
(Windows).

For example, if the following code appears in example1.f90, the compiler does not automatically vectorize
the loop because of the unknown data dependence distance between I and 2*I .

subroutine add(A, N, X)
integer N, X
real A(N)
DO I=X, N
 A(I) = A(I) + A(2*I)
END DO
End

The example is compiled with the following command:

ifx example1.f90 -c -nologo -qopt-report -qopt-report-file=stderr
The example gives output like the following, reporting that vectorization did not occur:

Global optimization report for: add_

LOOP BEGIN at exmaple1.f90 (4, 1)

 1 Intel® Fortran Compiler Classic and Intel® Fortran Compiler Developer Guide and Reference

2478

 remark #15344: Loop was not vectorized: vector dependence prevents vectorization
 remark #15346: vector dependence: assumed FLOW dependence between a (5:3) and a (5:3)
 remark #25439: Loop unrolled with remainder by 4
LOOP END

LOOP BEGIN at example1.f90 (4, 1)
<Remainder loop>
LOOP END
===

Using the previous example, if you know that X is large enough that data A(I) and A(2*I) do not overlap
within a reasonable number of iterations you can enforce vectorization of the loop using !$OMP SIMD. If you
know that they do not overlap in at least 8 iterations you may additionally specify !$OMP SIMD SIMDLEN(8)
to avoid vectorization that is too wide, which might lead to overlap.

You can update your code from the previous example to use !$OMP SIMD:

subroutine add(A, N, X)
integer N, X
real A(N)
! X may be 8 or more, so on overlap with 8 iterations at least
!$OMP SIMD SIMDLEN(8)
DO I=X, N
 A(I) = A(I) + A(2*I)
END DO
End

The example is compiled with the following command:

ifx example1.f90 -c -nologo -qopt-report -qopt-report-file=stderr –qopenp-simd
The example gives output like the following, reporting that vectorization did occur:

Global optimization report for: add_

LOOP BEGIN at example1.f90 (5, 1)
 remark #15301: SIMD LOOP WAS VECTORIZED
 remark #15305: vectorization support: vector length 8
LOOP END

LOOP BEGIN at example1.f90 (5, 1)
<Remainder loop for vectorization>
LOOP END
===

The difference between using !$OMP SIMD and auto-vectorization hints is that with !$OMP SIMD, the
compiler generates a warning when it is unable to vectorize the loop. With auto-vectorization hints, actual
vectorization is still under the discretion of the compiler, even when you use the hint !DIR$ VECTOR ALWAYS.

!$OMP SIMD has optional clauses to guide the compiler on how vectorization must proceed. Use these
clauses appropriately so that the compiler obtains enough information to generate correct vector code. For
more information on the clauses, see the !$OMP SIMD description.

Additional Semantics
Note the following points when using the !$OMP SIMD directive.

• A variable may belong to zero or one of the following clauses: private, linear, or reduction.

Intel® Fortran Compiler Classic and Intel® Fortran Compiler Developer Guide and Reference 1

2479

• Within the vector loop, an expression is evaluated as a vector value if it is private, linear, reduction, or it
has a sub-expression that is evaluated to a vector value. Otherwise, it is evaluated as a scalar value (that
is, broadcast the same value to all iterations). Scalar value does not necessarily mean loop invariant,
although that is the most frequently seen usage pattern of scalar value.

• A vector value may not be assigned to a scalar L-value. It is an error.
• A scalar L-value may not be assigned under a vector condition. It is an error.

Using a vector Declaration
The following Intel® Fortran example code shows how a program can compare serial and vector computations
using a user-defined function, foo().

NOTE In the following examples, the programs work on Linux, but we only show the Windows
compiler commands.

This example shows you code where the user-defined function is not vectorized:

!! file simdmain.f90
program simdtest
use IFPORT
! Test vector function in external file.
implicit none
interface
 integer function foo(a, b)
 integer a, b
 end function foo
end interface

integer, parameter :: M = 48, N = 64

 integer i, j
 integer, dimension(M,N) :: a1
 integer, dimension(M,N) :: a2
 integer, dimension(M,N) :: s_a3
 integer, dimension(M,N) :: v_a3
logical :: err_flag = .false.

! compute random numbers for arrays
do j = 1, N
 do i = 1, M
 a1(i,j) = rand() * M
 a2(i,j) = rand() * M
 end do
end do

! compute serial results
do j = 1, N
!dir$ novector
 do i = 1, M
 s_a3(i,j) = foo(a1(i,j), a2(i,j))
 end do
end do

! compute vector results
 do j = 1, N
 do i = 1, M
 v_a3(i,j) = foo(a1(i,j), a2(i,j))

 1 Intel® Fortran Compiler Classic and Intel® Fortran Compiler Developer Guide and Reference

2480

 end do
 end do

! compare serial and vector results
do j = 1, N
 do i = 1, M
 if (s_a3(i,j) .ne. v_a3(i,j)) then
 err_flag = .true.
 print *, s_a3(i, j), v_a3(i,j)
 end if
 end do
 end do
if (err_flag .eq. .true.) then
 write(*,*) "FAILED"
 else
 write(*,*) "PASSED"
end if
end program

!! file: vecfoo.f90
integer function foo(a, b)
implicit none
integer, intent(in) :: a, b
 foo = a - b
end function

This example gives output like the following, reporting that vectorization did not occur:

[49 C:/temp] ifx -nologo -qopt-report -qopt-report-file=stderr simdmain.f90 vecfoo.f90

Global optimization report for : MAIN__

LOOP BEGIN at simdmain.f90 (22, 1)
 LOOP BEGIN at simdmain.f90 (23, 3)
 LOOP END
LOOP END

LOOP BEGIN at simdmain.f90 (30, 1)
 LOOP BEGIN at foo.f90 (32, 3)
 LOOP END
LOOP END

LOOP BEGIN at simdmain.f90 (38, 3)
 LOOP BEGIN at simdmain.f90 (39, 4)
 LOOP END
LOOP END

LOOP BEGIN at simdmain.f90 (46, 3)
 remark #25567: 2 loops have been collapsed
 remark #15527: Loop was not vectorized: function call to foo cannot be vectorized
LOOP END
===

When you compile the above code, the loop containing the foo() function is not auto-vectorized because the
auto-vectorizer does not know what foo() does unless it is inlined to this call site.

Intel® Fortran Compiler Classic and Intel® Fortran Compiler Developer Guide and Reference 1

2481

In such cases where the function call is not inlined, you can use the !DIR$ ATTRIBUTES
VECTOR::function-name-list declaration to vectorize the loop and the function foo(). All you need to do
is add the vector declaration to the function declaration and recompile the code. The loop and function are
vectorized.

For example, a loop with a user-defined function where the vector declaration is auto-vectorized:

!! file simdmain.f90
program simdtest
! Test vector function in external file.
use IFPORT
implicit none
interface
 integer function foo(a, b)
!$omp declare simd
 integer a, b
 end function foo
end interface

 integer, parameter :: M = 48, N = 64

 integer i, j
 integer, dimension(M,N) :: a1
 integer, dimension(M,N) :: a2
 integer, dimension(M,N) :: s_a3
 integer, dimension(M,N) :: v_a3
logical :: err_flag = .false.

! compute random numbers for arrays
do j = 1, N
 do i = 1, M
 a1(i,j) = rand() * M
 a2(i,j) = rand() * M
 end do
end do

! compute serial results
do j = 1, N
!dir$ novector
 do i = 1, M
 s_a3(i,j) = foo(a1(i,j), a2(i,j))
 end do
end do

! compute vector results
 do j = 1, N
 do i = 1, M
 v_a3(i,j) = foo(a1(i,j), a2(i,j))
 end do
 end do

! compare serial and vector results
do j = 1, N
 do i = 1, M
 if (s_a3(i,j) .ne. v_a3(i,j)) then
 err_flag = .true.
 print *, s_a3(i, j), v_a3(i,j)
 end if
 end do

 1 Intel® Fortran Compiler Classic and Intel® Fortran Compiler Developer Guide and Reference

2482

 end do
if (err_flag .eq. .true.) then
 write(*,*) "FAILED"
 else
 write(*,*) "PASSED"
end if
end program

!! file: vecfoo.f90
integer function foo(a, b)
!$omp declare simd
implicit none
integer, intent(in) :: a, b
 foo = a - b
end function

This example gives output like the following, reporting that vectorization did occur:

[49 C:/temp] ifx -nologo -qopt-report -qopt-report-file=stderr simdmain.f90 vecfoo.f90 –qopenmp

Global optimization report for: MAIN__

LOOP BEGIN at simdmain.f90 (23, 1)
 LOOP BEGIN at simdmain.f90 (24, 3)
 LOOP END
LOOP END

LOOP BEGIN at simdmain.f90 (31, 1)
 remark #15553: loop was not vectorized: outer loop is not an auto-vectorization candidate.

 LOOP BEGIN at simdmain.f90 (33, 3)
 remark #15319: Loop was not vectorized: novector directive used
 remark #25436: Loop completely unrolled by 48
 LOOP END
LOOP END

LOOP BEGIN at simdmain.f90 (39, 3)
 remark #15553: loop was not vectorized: outer loop is not an auto-vectorization candidate.

 LOOP BEGIN at simdmain.f90 (40, 4)
 remark #15300: LOOP WAS VECTORIZED
 remark #15305: vectorization support: vector length 4
 LOOP END
LOOP END

LOOP BEGIN at simdmain.f90 (47, 3)
 remark #25567: 2 loops have been collapsed
 remark #15527: Loop was not vectorized: function call to cannot be vectorized
LOOP END
===
Global optimization report for: foo_
===

Global optimization report for: _ZGVeN16vv_foo_

LOOP BEGIN at foo.f90 (6, 3)
 remark #15301: SIMD LOOP WAS VECTORIZED
 remark #15305: vectorization support: vector length 16

Intel® Fortran Compiler Classic and Intel® Fortran Compiler Developer Guide and Reference 1

2483

 remark #25436: Loop completely unrolled by 1
LOOP END
===

Global optimization report for: _ZGVcM4vv_foo_

LOOP BEGIN at foo.f90 (6, 3)
 remark #15301: SIMD LOOP WAS VECTORIZED
 remark #15305: vectorization support: vector length 4
 remark #25436: Loop completely unrolled by 1
LOOP END
===

Global optimization report for: _ZGVdN8vv_foo_

LOOP BEGIN at foo.f90 (6, 3)
 remark #15301: SIMD LOOP WAS VECTORIZED
 remark #15305: vectorization support: vector length 8
 remark #25436: Loop completely unrolled by 1
LOOP END
===

Global optimization report for: _ZGVdM8vv_foo_

LOOP BEGIN at foo.f90 (6, 3)
 remark #15301: SIMD LOOP WAS VECTORIZED
 remark #15305: vectorization support: vector length 8
 remark #25436: Loop completely unrolled by 1
LOOP END
===

Global optimization report for: _ZGVcN4vv_foo_

LOOP BEGIN at foo.f90 (6, 3)
 remark #15301: SIMD LOOP WAS VECTORIZED
 remark #15305: vectorization support: vector length 4
 remark #25436: Loop completely unrolled by 1
LOOP END
===

Global optimization report for: _ZGVeM16vv_foo_

LOOP BEGIN at foo.f90 (6, 3)
 remark #15301: SIMD LOOP WAS VECTORIZED
 remark #15305: vectorization support: vector length 16
 remark #25436: Loop completely unrolled by 1
LOOP END
===

Global optimization report for: _ZGVbM4vv_foo_

LOOP BEGIN at foo.f90 (6, 3)
 remark #15301: SIMD LOOP WAS VECTORIZED
 remark #15305: vectorization support: vector length 4
 remark #25436: Loop completely unrolled by 1
LOOP END
===

 1 Intel® Fortran Compiler Classic and Intel® Fortran Compiler Developer Guide and Reference

2484

Global optimization report for: _ZGVbN4vv_foo_

LOOP BEGIN at foo.f90 (6, 3)
 remark #15301: SIMD LOOP WAS VECTORIZED
 remark #15305: vectorization support: vector length 4
 remark #25436: Loop completely unrolled by 1
LOOP END
===

Restrictions on Using an !$OMP DECLARE SIMD Declaration
Vectorization depends on two major factors: hardware and the style of source code. When using the vector
declaration, the following features are not allowed:

• Locks, barriers, atomic construct, critical sections
• Computed and assigned GOTO and SELECT CASE, SELECT TYPE, and SELECT RANK constructs (in some

cases these may be supported and converted to IF statements)
• The GOTO statement, into or out of a function
• An ENTRY statement

Non-vector function calls are generally allowed within vector functions but calls to such functions are
serialized lane-by-lane and so might perform poorly. Also, for SIMD-enabled functions it is not allowed to
have side effects except writes by their arguments. This rule can be violated by non-vector function calls, so
be careful executing such calls in SIMD-enabled functions and subroutines.

Formal parameters must be of the following data types:

• (un)signed 8, 16, 32, or 64-bit integer
• 32- or 64-bit floating point
• 64- or 128-bit complex

See Also
SIMD Directive for OpenMP
Function Annotations and the SIMD Directive for Vectorization

Function Annotations and the SIMD Directive for Vectorization

Certain Fortran language features provide help when vectorizing code.

NOTE
The SIMD vectorization feature is available for both Intel® microprocessors and non-Intel
microprocessors. Vectorization may call library routines that can result in additional performance gain
on Intel® microprocessors than on non-Intel microprocessors. The vectorization can also be affected by
certain options, such as /arch (Windows), -m (Linux), or [Q]x.

The !DIR$ ATTRIBUTES ALIGN directive lets you overcome hardware alignment constraints. The auto-
vectorization hints address the stylistic issues caused by lexical scope, data dependency, and ambiguity
resolution. The SIMD feature's directive lets you enforce vectorization of loops.

You can use the !DIR$ ATTRIBUTES VECTOR directive to vectorize user-defined functions and loops. For SIMD
usage, a function with the VECTOR attribute is called from a loop that is being vectorized.

The usage model of the VECTOR attribute takes a small section of code (indicated by the VECTORLENGTH
clause in the ATTRIBUTES VECTOR directive) generated for the function of the array and exploits SIMD
parallelism.

The following table summarizes the language features that help vectorize your code:

Intel® Fortran Compiler Classic and Intel® Fortran Compiler Developer Guide and Reference 1

2485

Language Feature Description

!DIR$ ATTRIBUTES ALIGN : n :: obj Directs the compiler to align an object to an n-byte
boundary. Address of the variable is address mod
n=0.

!DIR$ ATTRIBUTES VECTOR [: clauses] ::
routine-name-list

Provides data parallel semantics by combining with
the vectorized operations or loops at the call site.
When multiple instances of the vector declaration
are invoked in a parallel context, the execution
order among them is not sequenced. The clauses
are:
• LINEAR
• [NO]MASK
• PROCESSOR
• UNIFORM
• VECTORLENGTH
• VECTORLENGTHFOR

!DIR$ ASSUME_ALIGNED a:n Instructs the compiler to assume that array a is
aligned on an n-byte boundary; used in cases
where the compiler has failed to obtain alignment
information.

!DIR$ ASSUME (scalar-logical-expression)) Instructs the compiler to assume that the condition
represented by scalar-logical-expression is true
where the keyword appears. This is typically used
to convey properties that the compiler can take
advantage of for generating more efficient code,
such as alignment information.

The following table summarizes the auto-vectorization hints that help vectorize your code:

Hint Description

!DIR$ IVDEP Instructs the compiler to ignore assumed vector
dependencies.

!DIR$ VECTOR [ALWAYS] Specifies how to vectorize the loop and indicates
that efficiency heuristics should be ignored.

Using the ASSERT keyword in an ALWAYS clause of
a VECTOR directive generates an error-level
assertion message if the compiler efficiency
heuristics indicate that the loop cannot be
vectorized.

Use !DIR$ IVDEP to ignore the assumed
dependencies.

!DIR$ NOVECTOR Specifies that the loop should never be vectorized.

NOTE
Some directives are available for both Intel® microprocessors and non-Intel microprocessors, but may
perform additional optimizations for Intel® microprocessors than for non-Intel microprocessors.

The following table summarizes the user-mandated directives that help vectorize your code:

 1 Intel® Fortran Compiler Classic and Intel® Fortran Compiler Developer Guide and Reference

2486

User-Mandated Directive Description

!DIR$ SIMD (ifort; deprecated) Enforces vectorization of loops.

SIMD Directive (OpenMP) Requires and controls SIMD vectorization of loops.

See Also
IVDEP directive
VECTOR ALWAYS and NOVECTOR directive
ATTRIBUTE directive
User-mandated or SIMD Vectorization

Profile-Guided Optimization
Profile-guided Optimization (PGO) improves application performance by shrinking code size, reducing branch
mispredictions, and reorganizing code layout to reduce instruction-cache problems. PGO provides information
to the compiler about areas of an application that are most frequently executed. By knowing these areas, the
compiler is able to be more selective and specific in optimizing the application.

NOTE This section describes profile-guided optimization (PGO) for ifort. ifx implements PGO using
certain Clang fprofile options. We do not document Clang options. For more information about
Clang options, see the Clang documentation.

PGO consists of three phases or steps.

1. Instrument the program. The compiler creates and links an instrumented program from your source
code and special code from the compiler.

2. Run the instrumented executable. Each time you execute the instrumented code, the instrumented
program generates a dynamic information file, which is used in the final compilation.

3. Final compilation. When you compile a second time, the dynamic information files are merged into a
summary file. Using the summary of the profile information in this file, the compiler attempts to
optimize the execution of the most heavily traveled paths in the program.

Intel® Fortran Compiler Classic and Intel® Fortran Compiler Developer Guide and Reference 1

2487

https://clang.llvm.org/docs/ClangCommandLineReference.html

See Profile-Guided Optimization Options for information about the supported options and Profile an
Application for specific details about using PGO from the command line.

PGO provides the following benefits:

• Use profile information for register allocation to optimize the location of spill code.
• Improve branch prediction for indirect function calls by identifying the most likely targets. Some

processors have longer pipelines, which improves branch prediction and translates into high performance
gains.

• Detect and do not vectorize loops that execute only a small number of iterations, reducing the runtime
overhead that vectorization might otherwise add.

Interprocedural optimization (IPO) and PGO can affect each other; using PGO can often enable the compiler
to make better decisions about inline function expansion, which increases the effectiveness of interprocedural
optimizations. Unlike other optimizations, such as those strictly for size or speed, the results of IPO and PGO
vary. This variability is due to the unique characteristics of each program, which often include different
profiles and different opportunities for optimizations.

Performance Improvements with PGO
PGO works best for code with many frequently executed branches that are difficult to predict at compile time.
An example is the code with intensive error-checking in which the error conditions are false most of the time.
The infrequently executed (cold) error-handling code can be relocated so the branch is rarely predicted
incorrectly. Minimizing cold code interleaved into the frequently executed (hot) code improves instruction
cache behavior.

When you use PGO, consider the following guidelines:

• Minimize changes to your program after you execute the instrumented code and before feedback
compilation. During feedback compilation, the compiler ignores dynamic information for functions
modified after that information was generated. If you modify your program, the compiler can issue a
warning that the dynamic information does not correspond to a modified function when PGO remarks are
enabled or found in the optimization report.

 1 Intel® Fortran Compiler Classic and Intel® Fortran Compiler Developer Guide and Reference

2488

• Repeat the instrumentation compilation if you make many changes to your source files after execution
and before feedback compilation.

• Know the sections of your code that are the most heavily used. If the data set provided to your program
is very consistent and displays similar behavior on every execution, then PGO can probably help optimize
your program execution.

• Different data sets can result in different algorithms being called. The difference can cause the behavior of
your program to vary for each execution. In cases where your code behavior differs greatly between
executions, PGO may not provide noticeable benefits. If it takes multiple data sets to accurately
characterize application performance, execute the application with all data sets then merge the dynamic
profiles; this technique should result in an optimized application.

You must insure that the benefit of the profiled information is worth the effort required to maintain up-to-
date profiles.

Profile an Application with Instrumentation
This topic provides detailed information on how to profile an application by providing sample commands for
each of the three phases.

Instrumentation Compilation and Linking (Phase One)
Use [Q]prof-gen to produce an executable with instrumented information included.

Linux

ifort -prof-gen -prof-dir /usr/profiled a1.f90 a2.f90 a3.f90
ifort -o a1 a1.o a2.o a3.o

Windows

ifort /Qprof-gen /Qprof-dir:c:\profiled a1.f90 a2.f90 a3.f90
ifort a1.obj a2.obj a3.obj

Use /Qcov-gen option to obtain minimum instrumentation only for code coverage.

ifort /Qcov-gen /Qcov-dir:c:\cov_data a1.f90 a2.f90 a3.f90
ifort a1.obj a2.obj a3.obj

Use the [Q]prof-dir or /Qcov-dir option if the application includes the source files in multiple directories;
using the option insures the profile information is generated in one consistent place. The example commands
demonstrate how to combine these options on multiple sources.

The compiler gathers extra information when you use the -prof-gen=srcpos or /Qprof-gen:srcpos
option. The extra information is collected to support specific Intel tools, including the code coverage tool. If
you do not expect to use such tools, do not specify -prof-gen=srcpos or /Qprof-gen:srcpos. The
extended option does not provide better optimization and could slow parallel compile times. If you are
interested in using the instrumentation only for code coverage, use the /Qcov-gen option, instead of
the /Qprof-gen:srcpos option, to minimize instrumentation overhead.

PGO data collection is optimized for collecting data on serial applications at the expense of some loss of
precision on areas of high parallelism. However, you can specify the threadsafe keyword with the
-prof-gen or the /Qprof-gen compiler option for files or applications that contain parallel constructs using
OpenMP features, for example. Using the threadsafe keyword produces instrumented object files that
support the collection of PGO data on applications that use a high level of parallelism but may increase the
overhead for data collection.

NOTE
Unlike serial programs, parallel programs using OpenMP may involve dynamic scheduling of code
paths, and counts collected may not be perfectly reproducible for the same training data set.

Intel® Fortran Compiler Classic and Intel® Fortran Compiler Developer Guide and Reference 1

2489

Instrumented Execution (Phase Two)
Run your instrumented program with a representative set of data to create one or more dynamic information
files.

Linux

./a1.out
Windows

a1.exe
Executing the instrumented applications generates a dynamic information file that has a unique name
and .dyn suffix. A new dynamic information file is created every time you execute the instrumented
program.

You can run the program more than once with different input data.

By default, the .dyn filename follows this naming convention: <timestamp>_<pid>.dyn. The .dyn file is
either placed into a directory specified by an environment variable, a compile-time specified directory, or the
current directory.

To make it easy to distinguish files from different runs, you can specify a prefix for the .dyn filename in the
environment variable, INTEL_PROF_DYN_PREFIX. In such a case, executing the instrumented application
generates a .dyn filename, like <prefix>_<timestamp>_<pid>.dyn, where <prefix> is the identifier that
you have specified. Be sure to set the INTEL_PROF_DYN_PREFIX environment variable before starting your
instrumented application.

NOTE
The value specified in INTEL_PROF_DYN_PREFIX environment variable must not contain < > : " / \
| ? * characters. The default naming scheme will be used if an invalid prefix is specified.

Feedback Compilation (Phase Three)
Before this step, copy all .dyn and .dpi files into the same directory. Compile and link the source files with
[Q]prof-use; the option instructs the compiler to use the generated dynamic information to guide the
optimization:

Linux

ifort -prof-use -ipo -prof-dir /usr/profiled a1.f90 a2.f90 a3.f90
Windows

ifort /Qprof-use /Qipo /Qprof-dir:c:\profiled a1.f90 a2.f90 a3.f90
This final phase compiles and links the sources files using the data from the dynamic information files
generated during instrumented execution (phase 2).

In addition to the optimized executable, the compiler produces a pgopti.dpi file.

Most of the time, you should specify the default optimizations,O2, for phase one, and specify more advanced
optimizations, [Q]ipo, during the phase three compilation. The example in phase one used the O2 option
and used the [Q]ipo option with phase three.

NOTE
The compiler ignores the [Q]ipo or [Q]ip option during phase 1 with [Q]prof-gen.

 1 Intel® Fortran Compiler Classic and Intel® Fortran Compiler Developer Guide and Reference

2490

Profile-Guided Optimization Report
The Profile-Guided Optimization (PGO) report can help identify where and how the compiler used profile
information to optimize the source code. The PGO report can also identify where profile information was
discarded due to source code changes made between the time of instrumentation and feedback steps. The
PGO report is most useful when combined with the PGO compilation steps outlined in the topic, Profile an
Application with Instrumentation. You must enable the profiling data, generated during the application
profiling process, for the report to be useful.

Combine the final PGO step with the reporting options by including -prof-use or /Qprof-use. The following
syntax examples demonstrate how to run the report using the combined options.

Linux

ifort -prof-use -qopt-report-phase=pgo pgotools_sample.c
Windows

ifort pgotools_sample.c /Qprof-use /Qopt-report-phase=pgo
By default the PGO report generates a medium level of detail (where the [q or Q]opt-report argument
n=2). You can use the -qopt-report=n or /Qopt-report:n option along with the
[q or Q]opt-report-phase option if you want a greater or lesser level of diagnostic detail.

The output, by default, comes out to a file with the same name as the object file but with an .optrpt
extension and is written into the same directory as the object file. Using the entries in the example above,
the output file will be pgotools_sample.optrpt. Use the -qopt-report-file or the /Qopt-report-file
option to specify any other name for the output file that captures the report results, or to specify that the
output should go to stdout or stderr.

See Also
qopt-report-phase, Qopt-report-phase
 compiler option
qopt-report, Qopt-report
 compiler option (ifort)
qopt-report-file, Qopt-report-file
 compiler option
prof-use, Qprof-use
 compiler option

Profile an Application

PGO Tools
This section describes the tools that take advantage of or support the Profile-guided Optimizations (PGO)
available in the compiler.

Code Coverage Tool

The code coverage tool provides software developers with a view of how much application code is exercised
when a specific workload is applied to the application. To determine which code is used, the code coverage
tool uses Profile-Guided Optimization (PGO) options and optimizations. The following lists the major features
of the code coverage tool:

• Visually presenting code coverage information for an application with a customizable code coverage
coloring scheme

• Displaying dynamic execution counts of each basic block of the application
• Providing differential coverage, or comparison, profile data for two runs of an application

Intel® Fortran Compiler Classic and Intel® Fortran Compiler Developer Guide and Reference 1

2491

The tool analyzes static profile information generated by the compiler, as well as dynamic profile information
generated by running an instrumented form of the application binaries on the workload. The tool can
generate an HTML-formatted report and export data in both text-, and XML-formatted files. The reports can
be further customized to show color-coded, annotated, source-code listings that distinguish between used
and unused code.

The code coverage tool is available on all supported Intel architectures on Linux and Windows operating
systems.

You can use the tool in a number of ways to improve development efficiency, reduce defects, and increase
application performance:

• During the project testing phase, the tool can measure the overall quality of testing by showing how much
code is actually tested.

• When applied to the profile of a performance workload, the code coverage tool can reveal how well the
workload exercises the critical code in an application. High coverage of performance-critical modules is
essential to taking full advantage of PGO that Intel Compilers offer.

• The tool provides an option useful for both coverage and performance tuning, enabling developers to
display the dynamic execution count for each basic block of the application.

• The code coverage tool can compare the profile of two different application runs. This feature can help
locate portions of the code in an application that are unrevealed during testing but are exercised when the
application is used outside the test space, for example, when used by a customer.

Code Coverage Tool Requirements
To run the code coverage tool on an application, you must have following items:

• The application sources.
• The .spi file generated by the Intel® compiler when compiling the application for the instrumented

binaries using the -prof-gen=srcpos (Linux) or /Qprof-gen:srcpos (Windows) option.

NOTE
Use the –[Q]prof-gen:srcpos option if you intend to use the collected data for code coverage and
profile feedback.

If you are only interested in using the instrumentation for code coverage, use the /Qcov-gen option.
Using the /Qcov-gen option saves time and improves performance. This option can be used only on
Windows platform for all architectures.

• A pgopti.dpi file that contains the results of merging the dynamic profile information (.dyn) files, which
is most easily generated by the profmerge tool. This file is also generated implicitly by the Intel®
compilers when compiling an application with [Q]prof-use options with available .dyn and .dpi files.

Use the Tool
The tool uses the following syntax:

codecov [-codecov_option]
where -codecov_option is one or more optional parameters specifying the tool option passed to the tool.
The available tool options are listed in the code coverage tools Options section. If you do not use any
additional tool options, the tool will provide the top-level code coverage for the entire application.

In general, you must perform the following steps to use the code coverage tool:

1. Compile the application using -prof-gen=srcpos (Linux) or /Qprof-gen:srcpos (Windows),
and/or /Qcov-gen (Windows) option.

This step generates an instrumented executable and a corresponding static profile information
(pgopti.spi) file when the [Q]prof-gen=srcpos option is used. When the /Qcov-gen option is used,
minimum instrumentation only for code coverage and generation of .spi file is enabled.

 1 Intel® Fortran Compiler Classic and Intel® Fortran Compiler Developer Guide and Reference

2492

NOTE
You can specify both the /Qprof-gen=srcpos and /Qcov-gen options on the command line. The
higher level of instrumentation needed for profile feedback is enabled along with the profile option for
generating the .spi file, regardless of the order the options are specified on the command line.

2. Run the instrumented application.

This step creates the dynamic profile information (.dyn) file. Each time you run the instrumented
application, the compiler generates a unique .dyn file either in the current directory or the directory
specified in by the -prof-dir (Linux) or /Qprof-dir (Windows) option, or PROF_DIR environment
variable. On Windows, you can use the /Qcov-dir or COV_DIR environment variable. These have the
same meaning as /Qprof-dir and PROF_DIR.

3. Use the profmerge tool to merge all the .dyn files into one .dpi (pgopti.dpi) file.

This step consolidates results from all runs and represents the total profile information for the
application, generates an optimized binary, and creates the dpi file needed by the code coverage tool.

You can use the profmerge tool to merge the .dyn files into a .dpi file without recompiling the
application. The profmerge tool can also merge multiple .dpi files into one .dpi file using the
profmerge -a option. Select an alternate name for the output .dpi file using the profmerge -
prof_dpi option.

Caution
The profmerge tool merges all .dyn files that exist in the given directory. Confirm that unrelated .dyn
files, which may remain from unrelated runs, are not present. Otherwise, the profile information will
be skewed with invalid profile data, which can result in misleading coverage information and adverse
performance of the optimized code.

4. Run the code coverage tool. The valid syntax and tool options are shown below.

This step creates a report or exported data as specified. If no other options are specified, the code
coverage tool creates a single HTML file (CODE_COVERAGE.HTML) and a subdirectory (CodeCoverage) in
the current directory. Open the file in a web browser to view the reports.

NOTE
Windows only: Unlike the compiler options, which are preceded by forward slash ("/"), the tool options
are preceded by a hyphen ("-").

The code coverage tool allows you to name the project and specify paths to specific, necessary files. The
following example demonstrates how to name a project and specify .dpi and .spi files to use:

codecov -prj myProject -spi pgopti.spi -dpi pgopti.dpi
The tool can add a contact name and generate an email link for that contact at the bottom of each HTML
page. This provides a way to send an electronic message to the named contact. The following example
demonstrates how to add specify a contact and the email links:

codecov -prj myProject -mname JoeSmith -maddr js@company.com
The following example demonstrates how to use the tool to specify the project name, specify the dynamic
profile information file, and specify the output format and file name:

codecov -prj test1 -dpi test1.dpi -txtbcvrg test1_bcvrg.txt

Intel® Fortran Compiler Classic and Intel® Fortran Compiler Developer Guide and Reference 1

2493

Code Coverage Tool Options

Option Default Description

-bcolorcolor #FFFF99 Specifies the HTML color name for code in the uncovered
blocks.

-beginblkdsblstring Specifies the comment that marks the beginning of the code
fragment to be ignored by the coverage tool.

-blockcounts When used with -txtlcov, reports individual bloc counts for
lines that involved multiple blocks.

-ccolorcolor #FFFFFF Specifies the HTML color name or code of the covered code.

-compfile Specifies the file name that contains the list of files being (or
not) displayed.

-counts Generates dynamic execution counts.

-demang Demangles both function names and their arguments.

-dpifile pgopti.dpi Specifies the file name of the dynamic profile information file
(.dpi).

-endblkdsblstring Specifies the comment that marks the end of the code
fragment to be ignored by the coverage tool.

-fcolorcolor #FFCCCC Specifies the HTML color name for code of the uncovered
functions.

-help, -h Prints tool option descriptions.

-icolorcolor #FFFFFF Specifies the HTML color name or code of the information
lines, such as basic-block markers and dynamic counts.

-include-nonexec Block details will also be listed for functions that did not
execute, when used with -xmlbcvrg[full] or
-txtbcvrg[full] options.

-maddrstring Nobody Sets the email address of the web-page owner

-mnamestring Nobody Sets the name of the web-page owner.

-nopartial Treats partially covered code as fully covered code.

-nopmeter Turns off the progress meter. The meter is enabled by default.

-nounwind Ignores compiler-generated unwind handlers for exception
handling cleanup when computing and displaying basic-block
coverage.

-onelinedsblstring Specifies the comment that marks individual lines of code or
the whole functions to be ignored by the coverage tool.

-pcolorcolor #FAFAD2 Specifies the HTML color name or code of the partially covered
code.

-prjstring Sets the project name.

 1 Intel® Fortran Compiler Classic and Intel® Fortran Compiler Developer Guide and Reference

2494

Option Default Description

-ref Finds the differential coverage with respect to ref_dpi_file.

-showdirnames Displays the full path name for source files in the HTML report,
instead of just the base filename.

-spifile pgopti.spi Specifies the file name of the static profile information file
(.spi).

-srcrootdir Specifies a different top level project directory than was used
during compiler instrumentation run to use for relative paths
to source files in place of absolute paths.

NOTE
In order for the substitution to take place, the sources need to be
compiled with one of the following options:
[Q]prof-src-root, [Q]prof-src-root-cwd. This option
specifies the base directory that is to be treated as the project
root directory.

An example of use is:

C:> ifort -Qprof-gen:srcpos -Qprof-src-root
c:\workspaces\orig_project_dir test1.f90 test2.f90
C:> test1.exe
C:> profmerge
C:> cd \workspaces\
C:> mv orig_project_dir new_project_dir
C:> cd new_project_dir\src
C:> codecov -srcroot C:\workspaces\new_project_dir

Now, C:\workspaces\new_project_dir will be
substituted for c:\workspaces\orig_project_dir when
looking for the source files.

For use of [Q]prof-src-root, [Q]prof-src-root-cwd
options, refer to prof-src-root/Qprof-src-root, prof-src-
root-cwd/Qprof-src-root-cwd

-txtbcvrgfile Export block-coverage for covered functions as text format.
The file parameter must be in the form of a valid file name.

-txtbcvrgfullfile Export block-coverage for entire application in text and HTML
formats. The file parameter must be in the form of a valid file
name.

-txtdcgfile Generates the dynamic call-graph information in text format.
The file parameter must be in the form of a valid file name.

-txtfcvrgfile Export function coverage for covered function in text format.
The file parameter must be in the form of a valid file name.

-txtlcovfile Generates line coverage in text format output files, instead of
block coverage in HTML output files.

-ucolorcolor #FFFFFF Specifies the HTML color name or code of the unknown code.

Intel® Fortran Compiler Classic and Intel® Fortran Compiler Developer Guide and Reference 1

2495

Option Default Description

-xcolorcolor #90EE90 Specifies the HTML color of the code ignored.

-xmlbcvrgfile Export the block-coverage for the covered function in XML
format. The file parameter must be in the form of a valid file
name.

-xmlbcvrgfullfile Export function coverage for entire application in XML format
in addition to HTML output. The file parameter must be in the
form of a valid file name.

-xmlfcvrgfile Export function coverage for covered function in XML format.
The file parameter must be in the form of a valid file name.

Visually Present Code Coverage for an Application
Based on the profile information collected from running the instrumented binaries when testing an
application, the Intel® compiler will create HTML-formatted reports using the code coverage tool. These
reports indicate portions of the source code that were or were not exercised by the tests. When applied to
the profile of the performance workloads, the code coverage information shows how well the training
workload covers the application's critical code. High coverage of performance-critical modules is essential to
taking full advantage of PGO.

The code coverage tool can create two levels of coverage:

• Top level (for a group of selected modules)
• Individual module source views

Top-Level Coverage

The top-level coverage reports the overall code coverage of the modules that were selected. The following
options are provided:

• Select the modules of interest.
• For the selected modules, the tool generates a list with their coverage information. The information

includes the total number of functions and blocks in a module and the portions that were covered.
• By clicking the title of columns in the reported tables, the lists may be sorted in ascending or descending

order based on:

• Basic-block coverage
• Function coverage
• Function name

By default, the code coverage tool generates a single HTML file (CODE_COVERAGE.HTML) and a subdirectory
(CodeCoverage) in the current directory. The HTML file defines a frameset to display all of the other
generated reports. Open the HTML file in a web-browser. The tool places all other generated report files in a
CodeCoverage subdirectory.

If you choose to generate the html-formatted version of the report, you can view coverage source of that
particular module directly from a browser.

The coverage tool creates a frameset that allows quick browsing through the code to identify uncovered
code. The top frame displays the list of uncovered functions while the bottom frame displays the list of
covered functions. For uncovered functions, the total number of basic blocks of each function is also
displayed. For covered functions, both the total number of blocks and the number of covered blocks as well
as their ratio (that is, the coverage rate) are displayed.

 1 Intel® Fortran Compiler Classic and Intel® Fortran Compiler Developer Guide and Reference

2496

For example, 66.67(4/6) indicates that four out of the six blocks of the corresponding function were covered.
The block coverage rate of that function is thus 66.67%. These lists can be sorted based on the coverage
rate, number of blocks, or function names. Function names are linked to the position in source view where
the function body starts. With one click you can see the least-covered function in the list, and with another
click you can see the body of the function. You can scroll down in the source view and browse through the
function body.

Individual Module Source View

Within the individual module source views, the tool provides the list of uncovered functions as well as the list
of covered functions. The lists are reported in two distinct frames that provide easy navigation of the source
code. The lists can be sorted based on:

• Number of blocks within uncovered functions
• Block coverage in the case of covered functions
• Function names

Set the Coloring Scheme for the Code Coverage

The tool provides a visible coloring distinction of the following coverage categories: covered code, uncovered
basic blocks, uncovered functions, partially covered code, and unknown code. The default colors that the tool
uses for presenting the coverage information are shown in the tables that follows:

Category Default Description

Covered code #FFFFFF Indicates that code was exercised by the tests. You can
override the default color with the -ccolor tool option.

Uncovered basic block #FFFF99 Indicates the basic blocks that were not exercised by any of
the tests. However, these blocks were within functions that
were executed during the tests. You can override the default
color with the -bcolor tool option.

Uncovered function #FFCCCC Indicates functions that were never called during the tests.
You can override the default color with the -fcolor tool
option.

Partially covered code #FAFAD2 Indicates that more than one basic block was generated for
the code at this position. Some of the blocks were covered and
some were not. You can override the default color with the
-pcolor tool option.

Ignored code #90EE90 Indicates code specifically marked to be ignored. You can
override this default color using the -xcolor tool option.

Information lines #FFFFFF Indicates basic-block markers and dynamic counts. You can
override the default color with the -icolor tool option.

Unknown #FFFFFF Indicates that no code was generated for this source line. Most
probably, the source at this position is a comment, a header-
file inclusion, or a variable declaration. You can override the
default color with the -ucolor tool option.

The default colors can be customized to be any valid HTML color name or hexadecimal value using the
options mentioned for each coverage category in the previous table.

Intel® Fortran Compiler Classic and Intel® Fortran Compiler Developer Guide and Reference 1

2497

For code coverage colored presentation, the coverage tool uses the following heuristic: source characters are
scanned until reaching a position in the source that is indicated by the profile information as the beginning of
a basic block. If the profile information for that basic block indicates that a coverage category changes, then
the tool changes the color corresponding to the coverage condition of that portion of the code, and the
coverage tool inserts the appropriate color change in the HTML-formatted report files.

NOTE
You need to interpret the colors in the context of the code. For example, comment lines that follow a
basic block that was never executed would be colored in the same color as the uncovered blocks.

Dynamic Counters

The coverage tool can be configured to generate the information about the dynamic execution counts. This
ability can display the dynamic execution count of each basic block of the application and is useful for both
coverage and performance tuning.

The custom configuration requires using the -counts option. The counts information is displayed under the
code after a "^" sign precisely under the source position where the corresponding basic block begins.

If more than one basic block is generated for the code at a source position (for example, for macros), then
the total number of such blocks and the number of the blocks that were executed are also displayed in front
of the execution count. For example, line 11 in the following example code is an IF statement:

11 IF ((N .EQ. 1).OR. (N .EQ. 0))
 ^ 10 (1/2)
12 PRINT N
 ^ 7

The coverage lines under code lines 11 and 12 contain the following information:

• The IF statement in line 11 was executed 10 times.
• Two basic blocks were generated for the IF statement in line 11.
• Only one of the two blocks was executed, resulting in the partial coverage color.
• Only seven out of the ten times variable n had a value of 0 or 1.

In certain situations, it may be desirable to consider all the blocks generated for a single source position as
one entity. In such cases, it is necessary to assume that all blocks generated for one source position are
covered when at least one of the blocks is covered. This assumption can be configured with the -nopartial
option. When this option is specified, decision coverage is disabled, and the related statistics are adjusted
accordingly. The code lines 11 and 12 indicate that the print statement in line 12 was covered. However,
only one of the conditions in line 11 was ever true. With the -nopartial option, the tool treats the partially
covered code (like the code on line 11) as covered.

Differential Coverage

Using the code coverage tool, you can compare the profiles from two runs of an application: a reference run,
and a new run identifying the code that is covered by the new run but not covered by the reference run. Use
this feature to find the portion of the applications code that is not covered by the applications tests but is
executed when the application is run by a customer. It can also be used to find the incremental coverage
impact of newly added tests to an applications test space.

Generate Reference Data

Create the dynamic profile information for the reference data, which can be used in differential coverage
reporting later, by using the -ref option. The following command demonstrates a typical command for
generating the reference data:

codecov -prj Project_Name -dpi customer.dpi -ref appTests.dpi

 1 Intel® Fortran Compiler Classic and Intel® Fortran Compiler Developer Guide and Reference

2498

The coverage statistics of a differential-coverage run shows the percentage of the code exercised on a new
run but missed in the reference run. In such cases, the tool shows only the modules that included the code
that was not covered. Keep this in mind when viewing the coloring scheme in the source views.

The code with the same coverage property (covered or not covered) on both runs is considered covered
code. Otherwise, if the new run indicates that the code was executed, while in the reference run the code
was not executed, then the code is treated as uncovered. Alternately, if the code is covered in the reference
run but not covered in the new run, the differential-coverage source view shows the code as covered.

Run Differential Coverage

To run the code coverage tool for differential coverage, you must have the application sources, the .spi file,
and the .dpi file, as described in the code coverage tool Requirements section.

Once the required files are available, enter a command similar to the following to begin the process of
differential coverage analysis:

codecov -prj Project_Name -spi pgopti.spi -dpi pgopti.dpi
Specify the .dpi and .spi files using the -spi and -dpi options.

Exclude Code from Coverage Analysis
The code coverage tool allows you to exclude portions of your code from coverage analysis. This ability can
be useful during development; for example, certain portions of code might include functions used for
debugging only. The test case should not include tests for functionality that will be unavailable in the final
application.

Another example of code that can be excluded is code that might be designed to deal with internal errors
unlikely to occur in the application. In such cases, lack of a test case is preferred. You may want to ignore
infeasible (dead) code in the coverage analysis. The code coverage tool provides several options for marking
portions of the code infeasible and ignoring the code at the file level, function level, line level, and arbitrary
code boundaries indicated by user-specific comments.

Include and Exclude Coverage at the File Level

The code coverage tool provides the ability to selectively include or exclude files for analysis. Create a
component file and add the appropriate string values that indicate the file and directory name for code you
want included or excluded. Pass the file name as a parameter of the -comp option. The following example
shows the general command:

codecov -comp file
where file is the name of a text file containing strings that act as file/directory name masks for including and
excluding file-level analysis. For example, assume the following:

• You want to include all files with the string source in the file name or directory name.
• You create a component text file named myComp.txt with the selective inclusion string source.

Once you have a component file, enter a command similar to the following:

codecov -comp myComp.txt
In this example, filenames with string source (like source1.f and source2.f) and all files within directories
where the directory name contains the string source (like source/file1.f and source2\file2.f) are
included in the analysis.

Intel® Fortran Compiler Classic and Intel® Fortran Compiler Developer Guide and Reference 1

2499

To exclude files or directories, add the tilde (~) prefix to the string. You can specify inclusion and exclusion in
the same component file. For example, assume you want to analyze all individual files or files in a directory
where the file/directory name includes the string source, and you want to exclude all individual files and files
in directories where the file/directory name includes the string skip. You add content similar to the following
to the component file (myComp.txt) and pass it to the -comp option:

source
~skip

Entering the codecov -comp myComp.txt command with both instructions in the component file,
myComp.txt, instructs the tool to:

• Include files with filename containing source (like source1.f and source2.f)
• Include all files in directories with the directory name containing source (like source/file1.f and

source2\file2.f)
• Exclude all files with filename containing skip (like skipthis1.f and skipthis2.f)
• Exclude all files in directories with the directory name containing skip (like skipthese1\debug1.f and

skipthese2\debug2.f)

Exclude Coverage at the Line and Function Level

You can mark individual lines for exclusion by passing string values to the -onelinedsbl option. For
example, assume that you have some code similar to the following:

print*, "ERROR: n = ", n ! NO_COVER
print*, " n2 = ", n2 ! INF IA-32 architecture

If you wanted to exclude all functions marked with the comments NO_COVER or INF IA-32 architecture, you
would enter a command similar to the following:

codecov -onelinedsbl NO_COVER -onelinedsbl "INF IA-32 architecture"
You can specify multiple exclusion strings simultaneously, and you can specify any string values for the
markers; however, you must remember the following guidelines when using this option:

• Inline comments must occur at the end of the statement.
• The string must be a part of an inline comment.

An entire function can be excluded from coverage analysis using the same methods. For example, the
following function will be ignored from the coverage analysis when you issue the previous example
command:

subroutine dumpInfo (n)
integer n ! NO_COVER
...
end subroutine

Additionally, you can use the code coverage tool to color the infeasible code with any valid HTML color code
by combining the -onelinedsbl and -xcolor options. The following example commands demonstrate the
combination:

codecov -onelinedsbl INF -xcolor lightgreen
codecov -onelinedsbl INF -xcolor #CCFFCC

Exclude Code by Defining Arbitrary Boundaries

The code coverage tool provides the ability to exclude code from coverage analysis. This feature is most
useful where the excluded code either occur inside of a function or spans several functions.

Use the -beginblkdsbl and -endblkdsbl options to mark the beginning and end (respectively) of any
arbitrarily defined boundary to exclude code from analysis. Remember the following guidelines when using
these options:

 1 Intel® Fortran Compiler Classic and Intel® Fortran Compiler Developer Guide and Reference

2500

• Inline comments must occur at the end of the statement.
• The string must be a part of an inline comment.

For example, assume that you have the following code:

integer n, n2
n = 123
n2 = n*n
if (n2 .lt. 0) then
! /* BINF */
 print*, "ERROR: n = ", n
 print*, " n2 = ", n2
! // EINF
else if (n2 .eq. 0) then
 print*, "zero: n = ", n, " n2 = ", n2
else
 print*, "positive: n = ", n, " n2 = ", n2
endif
end

The following example commands demonstrate how to use the -beginblkdsbl option to mark the beginning
and the -endblkdsbl option to mark the end of code to exclude from the previous sample:

codecov -xcolor #ccFFCC -beginblkdsbl BINF -endblkdsbl EINF
codecov -xcolor #ccFFCC -beginblkdsbl "BEGIN_INF" -endblkdsbl "END_INF"

Notice that you can combine these options in combination with the -xcolor option.

Export Coverage Data
The code coverage tool provides specific options to extract coverage data from the dynamic profile
information (.dpi files) that result from running instrumented application binaries under various workloads.
The tool can export the coverage data in various formats for post-processing and direct loading into
databases: the default HTML, text, and XML. You can choose to export data at the function and basic block
levels.

There are two basic methods for exporting the data: quick export and combined export. Each method has
associated options supported by the tool:

• Quick export: The first method is to export the data coverage to text- or XML-formatted files without
generating the default HTML report. The application sources are not required for this method. The code
coverage tool creates reports and provides statistics only about the portions of the application executed.
The resulting analysis and reporting occurs quickly, which makes it practical to apply the coverage tool to
the dynamic profile information (the .dpi file) for every test case in a given test space instead of applying
the tool to the profile of individual test suites or the merge of all test suites. The -xmlfcvrg, -txtfcvrg,
-xmlbcvrg and -txtbcvrg options support the first method.

• Combined export: The second method is to generate the default HTML and simultaneously export the
data to text- and XML-formatted files. This process is slower than first method since the application
sources are parsed and reports generated. The -xmlbcvrgfull and -txtbcvrgfull options support the
second method.

These export methods provide the means to quickly extend the code coverage reporting capabilities by
supplying consistently formatted output from the code coverage tool. You can extend these by creating
additional reporting tools on top of these report files.

Quick Export

Intel® Fortran Compiler Classic and Intel® Fortran Compiler Developer Guide and Reference 1

2501

The profile of covered functions of an application can be exported quickly using the -xmlfcvrg, -txtfcvrg,
-xmlbcvrg, and -txtbcvrg options. When using any of these options, specify the output file that will
contain the coverage report. For example, enter a command similar to the following to generate a report of
covered functions in XML formatted output:

codecov -prj test1 -dpi test1.dpi -xmlfcvrg test1_fcvrg.xml
The resulting report will show how many times each function was executed and the total number of blocks of
each function, together with the number of covered blocks and the block coverage of each function. The
following example shows some of the content of a typical XML report:

<PROJECT name = "test1">
 <MODULE name = "D:\SAMPLE.F">
 <FUNCTION name="f0" freq="2">
 <BLOCKS total="6" covered="5" coverage="83.33%"></BLOCKS>
 </FUNCTION>
 ...
 </MODULE>
 <MODULE name = "D:\SAMPLE2.F">
 ...
 </MODULE>
</PROJECT>

In the previous example, we note that function f0, which is defined in file sample.f, has been executed twice.
It has a total number of six basic blocks, five of which are executed, resulting in an 83.33% basic-block
coverage.

You can also export the data in text format using the -txtfcvrg option. The generated text report, using
this option, for the previous example would be similar to the following example:

In the text formatted version of the report, each line of the report should be read in the following manner:

Covered Functions in File: "D:\SAMPLE.F"
"f0" 2 6 5 83.33
"f1" 1 6 4 66.67
"f2" 1 6 3 50.00
...

Column 1 Column 2 Column 3 Column 4 Column 5

Function
name

Execution
frequency

Line number
of the start of
the function
definition

Column
number of
the start of
the function
definition

Percentage of basic-block coverage of
the function

Additionally, the tool supports exporting the block level coverage data using the -xmlbcvrg option. For
example, enter a command similar to the following to generate a report of covered blocks in XML formatted
output:

codecov -prj test1 -dpi test1.dpi -xmlbcvrg test1_bcvrg.xml
The previous example command generates XML-formatted results similar to the following:

<PROJECT name = "test1">
 <MODULE name = "D:\SAMPLE.cF90">
 <FUNCTION name="f0" freq="2">
 ...
 <BLOCK line="11" col="2">
 <INSTANCE id="1" freq="1"> </INSTANCE>
 </BLOCK>

 1 Intel® Fortran Compiler Classic and Intel® Fortran Compiler Developer Guide and Reference

2502

 <BLOCK line="12" col="3">
 <INSTANCE id="1" freq="2"> </INSTANCE>
 <INSTANCE id="2" freq="1"> </INSTANCE>
 </BLOCK>

In the sample report, notice that one basic block is generated for the code in function f0 at the line 11,
column 2 of the file sample.f90. This particular block has been executed only once. Also notice that there are
two basic blocks generated for the code that starts at line 12, column 3 of file. One of these blocks, which
has id = 1, has been executed two times, while the other block has been executed only once. A similar report
in text format can be generated through the -txtbcvrg option.

Combined Exports

The code coverage tool has also the capability of exporting coverage data in the default HTML format while
simultaneously generating the text- and XML-formatted reports.

Use the -xmlbcvrgfull and -txtbcvrgfull options to generate reports in all supported formats in a single
run. These options export the basic-block level coverage data while simultaneously generating the HTML
reports. These options generate complete reports since they include analysis on functions that were not
executed at all. However, exporting the coverage data using these options requires access to application
source files and take much longer to run.

Dynamic Call Graphs

Using the -txtdcg option the tool can provide detailed information about the dynamic call graphs in an
application. Specify an output file for the dynamic call-graph report. The resulting call graph report contains
information about the percentage of static and dynamic calls (direct, indirect, and virtual) at the application,
module, and function levels.

Test Prioritization Tool

The test prioritization tool, also known as the tselect tool, enables the profile-guided optimizations on all
supported Intel® architectures, on LinuxPGO and WindowsPGO operating systems, to select and prioritize
tests for an application based on prior execution profiles.

The tool offers a potential of significant time saving in testing and developing large-scale applications where
testing is the major bottleneck.

Development often requires changing applications modules. As applications change, developers can have a
difficult time retaining the quality of their functional and performance tests so they are current and on-
target. The test prioritization tool lets software developers select and prioritize application tests as application
profiles change.

Features and Benefits
The test prioritization tool provides an effective testing hierarchy based on the code coverage for an
application. The following list summarizes the advantages of using the tool:

• Minimizing the number of tests that are required to achieve a given overall coverage for any subset of the
application. The tool defines the smallest subset of the application tests that achieve the same code
coverage as the entire set of tests.

• Reducing the turn-around time of testing. Instead of spending a long time on finding a possibly large
number of failures, the tool enables the users to find a small number of tests that expose the defects
associated with the regressions caused by a change set.

• Selecting and prioritizing the tests to achieve certain level of code coverage in a minimal time based on
the data of the tests' execution time.

Test Prioritization Tool Requirements
The test prioritization tool needs the following items to work:

Intel® Fortran Compiler Classic and Intel® Fortran Compiler Developer Guide and Reference 1

2503

• The .spi file generated by Intel® compilers when compiling the application for the instrumented binaries
with the -prof-gen=srcpos (LinuxPGO) or /Qprof-gen:srcpos (WindowsPGO) option.

• The .dpi files generated by the profmerge tool as a result of merging the dynamic profile
information .dyn files of each of the application tests. Run the profmerge tool on all .dyn files that are
generated for each individual test and name the resulting .dpi in a fashion that uniquely identifies the
test.

• User-generated file containing the list of tests to be prioritized. For successful instrumented code run, you
should:

• Name each test .dpi file so the file names uniquely identify each test.
• Create a .dpi list file, which is a text file that contains the names of all .dpi test files.

Each line of the .dpi list file should include a single .dpi file name. The name can optionally be followed
by the duration of the execution time for a corresponding test in the dd:hh:mm:ss format.

For example: Test1.dpi 00:00:60:35 states that Test1 lasted 0 days, 0 hours, 60 minutes, and 35
seconds.

The execution time is optional. However, if it is not provided, then the tool will not prioritize the test for
minimizing execution time. It will prioritize to minimize the number of tests only.

Caution
The profmerge tool merges all .dyn files that exist in the given directory. Make sure unrelated .dyn
files, which may remain from unrelated runs, are not present. Otherwise, the profile information will
be skewed with invalid profile data, which can result in misleading coverage information and adverse
performance of the optimized code. The tool uses the following general syntax:

tselect -dpi_list file

The -dpi_list option is required and sets the path to the list file containing the list of the all .dpi files. All
other tool commands are optional.

NOTE
WindowsPGO only: Unlike the compiler options, which are preceded by forward slash ("/"), the tool
options are preceded by a hyphen ("-").

Usage Model
The following figure illustrates a typical test prioritization tool usage model.

 1 Intel® Fortran Compiler Classic and Intel® Fortran Compiler Developer Guide and Reference

2504

Test Prioritization Tool Options
The tool uses the options that are listed in the following table:

Option Description

-help Prints tool option descriptions.

-dpi_listfile Required. Specifies the name of the file that
contains the names of the dynamic profile
information (.dpi) files. Each line of the file must
contain only one .dpi file name, which can be
followed by its execution time (optional). The name
must uniquely identify the test.

-spifile Specifies the file name of the static profile
information file (.spi). Default is pgopti.spi

-ofile Specifies the file name of the output report file.

-compfile Specifies the file name that contains the list of files
of interest.

-cutoffvalue Instructs the tool to terminate when the cumulative
block coverage reaches a preset percentage, as
specified by value, of pre-computed total
coverage. The value must be greater than 0.0 (for
example, 99.00) but not greater than 100. The
value can be set to 100.

Intel® Fortran Compiler Classic and Intel® Fortran Compiler Developer Guide and Reference 1

2505

Option Description

-nototal Instructs the tool to ignore the pre-compute total
coverage process.

-mintime Instructs the tool to minimize testing execution
time. The execution time of each test must be
provided on the same line of dpi_list file, after
the test name in dd:hh:mm:ss format.

-srcbasedirdir Specifies a different top-level project directory than
was used during compiler instrumentation run with
the prof-src-root compiler option to support
relative paths to source files in place of absolute
paths.

-verbose Instructs the tool to generate more logging
information about program progress.

Running the Tool
The following steps demonstrate one simple example for running the tool on IA-32 architectures.

1. Specify the directory by entering a command similar to the following:

set PROF_DIR=c:\myApp\prof-dir
2. Compile the program and generate instrumented binary by issuing commands similar to the ones

following. These commands compile the program and generate instrumented binary myApp, as well as
the corresponding static profile information pgopti.spi:

• Linux

ifort -prof-gen=srcpos myApp.f90
• Windows

ifort /Qprof-gen:srcpos myApp.f90
3. Confirm that unrelated .dyn files are not present by issuing a command similar to the following:

rm prof-dir *.dyn
4. Run the instrumented files by issuing a command similar to the following:

myApp < data1
The command runs the instrumented application and generates one or more new dynamic profile
information files that have an extension .dyn in the directory specified by the -prof-dir step.

5. Merge all .dyn file into a single file by issuing a command similar to the following:

profmerge -prof_dpi Test1.dpi
The profmerge tool merges all the .dyn files into one file (Test1.dpi) that represents the total profile
information of the application on Test1.

6. Confirm again there are no unrelated .dyn files present a second time by issuing a command similar to
the following:

rm prof-dir *.dyn
7. Run the instrumented application, and generate one or more new dynamic profile information files that

have an extension .dyn in the directory specified in the prof-dir previous step by issuing a command
similar to the following:

myApp < data2

 1 Intel® Fortran Compiler Classic and Intel® Fortran Compiler Developer Guide and Reference

2506

8. Merge all .dyn files into a single file by issuing a command similar to the following:

profmerge -prof_dpi Test2.dpi
At this step, the profmerge tool merges all the .dyn files into one file (Test2.dpi) that represents the
total profile information of the application on Test2.

9. Confirm that there are no unrelated .dyn files present for the final time by issuing a command similar
to the following:

rm prof-dir *.dyn
10. Run the instrumented application and generate one or more new dynamic profile information files that

have an extension .dyn in the directory specified by -prof-dir by issuing a command similar to the
following:

myApp < data3
11. Merge all .dyn files into a single file, by issuing a command similar to the following:

profmerge -prof_dpi Test3.dpi
At this step, the profmerge tool merges all the .dyn files into one file (Test3.dpi) that represents the
total profile information of the application on Test3.

12. Create a file named tests_list with three lines. The first line contains Test1.dpi, the second line
contains Test2.dpi, and the third line contains Test3.dpi.

Tool Usage Examples

When these items are available, the test prioritization tool may be launched from the command line in the
prof-dir directory as described in the following examples.

Example 1: Minimizing the Number of Tests
The following example describes how to minimize the number of test runs:

tselect -dpi_list tests_list -spi
 pgopti.spi

where the -spi option specifies the path to the .spi file.

The following sample output shows typical results:

Total number of tests = 3
Total block coverage ~ 52.17
Total function coverage ~ 50.00
 num %RatCvrg %BlkCvrg %FncCvrg Test Name @ Options
 --- -------- -------- -------- -------------------
 1 87.50 45.65 37.50 Test3.dpi
 2 100.50 52.17 50.00 Test2.dpi

In this example, the results provide the following information:

• By running all three tests, you achieve 52.17% block coverage and 50.00% function coverage.
• Test3 alone covers 45.65% of the basic blocks of the application, which is 87.50% of the total block

coverage that can be achieved from all three tests.
• By adding Test2, you achieve a cumulative block coverage of 52.17% or 100% of the total block coverage

of Test1, Test2, and Test3.
• Elimination of Test1 has no negative impact on the total block coverage.

Intel® Fortran Compiler Classic and Intel® Fortran Compiler Developer Guide and Reference 1

2507

Example 2: Minimizing Execution Time
Assume you have the following execution time of each test in the tests_list file:

Test1.dpi 00:00:60:35
Test2.dpi 00:00:10:15
Test3.dpi 00:00:30:45

The following command minimizes the execution time by passing the -mintime option:

tselect -dpi_list tests_list -spi pgopti.spi
 -mintime

The following sample output shows possible results:

Total number of tests = 3
Total block coverage ~ 52.17
Total function coverage ~ 50.00
Total execution time = 1:41:35
 num elaspedTime %RatCvrg %BlkCvrg %FncCvrg Test Name @ Options
 1 10:15 75.00 39.13 25.00 Test2.dpi
 2 41:00 100.00 52.17 50.00 Test3.dpi

In this case, the results indicate that running all tests sequentially would require one hour, 45 minutes, and
35 seconds, while the selected tests would achieve the same total block coverage in only 41 minutes.

The order of tests when based on minimizing time (first Test2, then Test3) may be different than when
prioritization is done based on minimizing the number of tests. In Example 2, Test2 is the test that gives the
highest coverage per execution time, so Test2 is picked as the first test to run.

Using Other Options
The -cutoff enables the tool to exit when it reaches a given level of basic block coverage. The following
example demonstrates how to use the option:

tselect -dpi_list tests_list -spi pgopti.spi
 -cutoff 85.00

If the tool is run with the cutoff value of 85.00, as in the previous example, only Test3 will be selected, as it
achieves 45.65% block coverage, which corresponds to 87.50% of the total block coverage that is reached
from all three tests.

The tool does an initial merging of all the profile information to figure out the total coverage that is obtained
by running all the tests. The -cutoff enables you to skip this step. In such a case, only the absolute
coverage information will be reported, as the overall coverage remains unknown.

Profmerge and Proforder Tools

Profmerge Tool
Use the profmerge tool to merge dynamic profile information (.dyn) files and any specified summary files
(.dpi). The compiler executes profmerge automatically during the feedback compilation phase when you
specify the [Q]prof-use option.

The command-line syntax for profmerge is as follows:

profmerge [-prof_dir dir_name]
The tool merges all .dyn files in the current directory, or the directory specified by -prof_dir, and produces
a summary file: pgopti.dpi.

 1 Intel® Fortran Compiler Classic and Intel® Fortran Compiler Developer Guide and Reference

2508

NOTE
The spelling of tools options may differ slightly from compiler options. Tools options use an underscore
(for example -prof_dir) instead of the hyphen used by compiler options (for example [Q]prof-dir) to
join words. Also, on Windows* systems, the tool options are preceded by a hyphen ("-") unlike
Windows* compiler options, which are preceded by a forward slash ("/").

You can use profmerge tool to merge .dyn files into a .dpi file without recompiling the application. You can
run the instrumented executable file on multiple systems to generate .dyn files, and optionally use
profmerge with the -prof_dpi option to name each summary .dpi file created from the multiple .dyn files.

Because the profmerge tool merges all the .dyn files that exist in the given directory, confirm that
unrelated .dyn files are not present; otherwise, profile information will be based on invalid profile data,
which can negatively impact the performance of optimized code.

Profmerge Options

The profmerge tool supports the following options:

Tool Option Description

-dump Displays profile information.

-help Lists supported options.

-nologo Disables version information. This option is
supported on Windows* only.

-exclude_filesfiles Excludes functions from the profile if the function
comes from one of the listed files. The list items
must be separated by a comma (","); you can use a
period (".") as a wild card character in function
names.

-exclude_funcsfunctions Excludes functions from the profile. The list items
must be separated by a comma (","); you can use a
period (".") as a wild card character in function
names.

-prof_dirdir Specifies the directory from which to read .dyn
and .dpi files, and write the .dpi file.
Alternatively, you can set the environment
variablePROF_DIR.

-prof_dpifile Specifies the name of the .dpi file being
generated.

-prof_filefile Merges information from file matching:
dpi_file_and_dyn_tag.

-src_olddir-src_newdir Changes the directory path stored within the .dpi
file.

-no_src_dir Uses only the file name and not the directory name
when reading dyn/dpi records. If you specify
-no_src_dir, the directory name of the source file

Intel® Fortran Compiler Classic and Intel® Fortran Compiler Developer Guide and Reference 1

2509

Tool Option Description

will be ignored when deciding which profile data
records correspond to a specific application routine,
and the -src-root option is ignored.

-src-rootdir Specifies a directory path prefix for the root
directory where the user's application files are
stored. This option is ignored if you specify
-no_src_dir.

-afile1.dpi...fileN.dpi Specifies and merges available .dpi files.

-verbose Instructs the tool to display full information during
merge.

-weighted Instructs the tool to apply an equal weighting
(regardless of execution times) to the .dyn file
values to normalize the data counts. This keyword
is useful when the execution runs have different
time durations and you want them to be treated
equally.

-gen_weight_spec file Instructs the tool to generate a text file containing
a list of the .dyn and .dpi file that were merged
with default weight=1/run_count.

The text file is created in the directory specified by
the prof_dir option.

-weight_spec weight_spec.txt Instructs the profmerge tool to generate and use
the text file, weight_spec.txt, listing
individual .dyn/.dpi files or directory names along
with weight values for them.

When the -weight_spec option is used:

• A new .dpi file is always created
• Only files called out by the specification file are

merged
• .dyn timestamps are ignored and merge always

takes place

The prof_dir option controls where the input/
output weight_spec.txt is located, and the
destination of the .dpi file.

The -weight_spec option overrides:

• Any values of -a option
• Any computation from using -weighted option

Weight the Runs

Using the -weight_spec option results in a new .dpi file. Only the files listed in the text file are merged. No
files in the current directory are used unless they are included in the text file.

Relocate Source Files Using profmerge

 1 Intel® Fortran Compiler Classic and Intel® Fortran Compiler Developer Guide and Reference

2510

The Intel® Fortran Compiler uses the full path to the source file for each routine to look up the profile
summary information associated with that routine. By default, this prevents you from:

• Using the profile summary file (.dpi) if you move your application sources.
• Sharing the profile summary file with another user who is building identical application sources that are

located in a different directory.

You can disable the use of directory names when reading .dyn/.dpi file records by specifying the
profmerge option -no_scr_dir. This profmerge option is the same as the compiler option
-no-prof-src-dir (Linux*) and /Qprof-src-dir- (Windows*).

To enable the movement of application sources, as well as the sharing of profile summary files, you can use
the profmerge option -src-root to specify a directory path prefix for the root directory where the
application files are stored. Alternatively, you can specify the option pair -src_old-src_new to modify the
data in an existing summary dpi file. For example:

profmerge -prof_dir <dir1> -src_old <dir2> -src_new <dir3>
where <dir1> is the full path to dynamic information file (.dpi), <dir2> is the old full path to source files, and
<dir3> is the new full path to source files. The example command (above) reads the pgopti.dpi file, in the
location specified in <dir1>. For each routine represented in the pgopti.dpi file, whose source path begins
with the <dir2> prefix, profmerge replaces that prefix with <dir3>. The pgopti.dpi file is updated with the
new source path information.

You can run profmerge more than once on a given pgopti.dpi file. You may need to do this if the source
files are located in multiple directories. For example:

Linux*

profmerge -prof_dir -src_old /src/prog_1 -src_new /src/prog_2
profmerge -prof_dir -src_old /proj_1 -src_new /proj_2

Windows*

profmerge -src_old "c:/program files" -src_new "e:/program files"
profmerge -src_old c:/proj/application -src_new d:/app

In the values specified for -src_old and -src_new, uppercase and lowercase characters are treated as
identical in Windows. Likewise, forward slash (/) and backward slash (\) characters are treated as identical.

NOTE
Because the source relocation feature of profmerge modifies the pgopti.dpi file, consider making a
backup copy of the file before performing the source relocation.

Proforder Tool
The proforder tool is used as part of the feedback compilation phase, to improve program performance. Use
proforder to generate a function order list for use with the /ORDER linker option in Windows. The tool uses
the following syntax:

proforder [-prof_dir dir] [-o file]
where dir is the directory containing the profile files (.dpi and .spi), and file is the optional name of the
function order list file. The default name is proford.txt .

Intel® Fortran Compiler Classic and Intel® Fortran Compiler Developer Guide and Reference 1

2511

NOTE
The spelling of tools options may differ slightly from compiler options. Tools options use an underscore
(for example -prof_dir) instead of the hyphen used by compiler options (for example [Q]prof-dir)
to join words. Also, on Windows* systems, the tool options are preceded by a hyphen ("-") unlike
Windows* compiler options, which are preceded by a forward slash ("/").

Proforder Options

The proforder tool supports the following options:

Tool Option Default Description

-help Lists supported options.

-nologo Disables version information. This option is
supported on Windows* only.

-omit_static Instructs the tool to omit static functions
from function ordering.

-prof_dirdir Specifies the directory where the .spi
and .dpi file reside.

-prof_dpifile Specifies the name of the .dpi file.

-prof_filestring Selects the .dpi and .spi files that
include the substring value in the file name
matching the values passed as string.

-prof_spifile Specifies the name of the .spi file.

-ofile proford.txt Specifies an alternate name for the output
file.

See Also
Supported Environment Variables

Use Function Order Lists, Function Grouping, Function Ordering, and Data Ordering Optimizations

Instead of doing a full multi-file interprocedural build of your application by using the compiler option
[Q]ipo, you can obtain some of the benefits by having the compiler and linker work together to make global
decisions about where to place the procedures and data in your application.

The following table lists each optimization, the type of procedures or global data it applies to, and the
operating systems and architectures that it is supported on.

Optimization Type of Procedure or Data Supported OS and
Architectures

Function Order Lists: Specifies
the order in which the linker
should link the non-static
routines (procedures) of your
program. This optimization can
improve application performance
by improving code locality and
reduce paging. Also see
Comparison of Function Order
Lists and IPO Code Layout.

EXTERNAL procedures and library
procedures only (not other types
of static procedures).

Windows: all Intel architectures

Linux: not supported

 1 Intel® Fortran Compiler Classic and Intel® Fortran Compiler Developer Guide and Reference

2512

Optimization Type of Procedure or Data Supported OS and
Architectures

Function Grouping: Specifies
that the linker should place the
extern and static routines
(procedures) of your program
into hot or cold program sections.
This optimization can improve
application performance by
improving code locality and
reduce paging.

NOTE This option will cause
functions to be placed into the
linker sections
named .text.hot
and .text.unlikely. If you
are using a custom linker
script, you will need to specify
memory placement for these
sections.

EXTERNAL procedures and static
procedures only (not library
procedures).

Linux: IA-32 and Intel 64
architectures

Windows: not supported

Function Ordering: Enables
ordering of static and extern
routines using profile
information. Specifies the order
in which the linker should link the
routines (procedures) of your
program. This optimization can
improve application performance
by improving code locality and
reduce paging.

EXTERNAL procedures and static
procedures only (not library
procedures)

Linux and Windows: all Intel
architectures

Data Ordering: Enables
ordering of static global data
items (data in common blocks,
module variables, and variables
for which the compiler applied
the SAVE attribute or statement)
based on profiling information.
Specifies the order in which the
linker should link global data of
your program. This optimization
can improve application
performance by improving the
locality of static global data,
reduce paging of large data sets,
and improve data cache use.

Static global data (data in
common blocks, module
variables, and variables for which
the compiler applied the SAVE
attribute or statement) only

Linux and Windows: all Intel
architectures

You can only use one of the function-related ordering optimizations listed on each application. However, you
can use the Data Ordering optimization with any one of the function-related ordering optimizations listed
previously, such as Data Ordering with Function Ordering, or Data Ordering with Function Grouping. In this
case, specify the prof-gen option keyword globdata (needed for Data Ordering) instead of srcpos (needed
for function-related ordering).

The following sections show the commands needed to implement each of these optimizations: function order
list, function grouping, function ordering, and data ordering. For all of these optimizations, omit the [Q]ipo
or equivalent compiler option.

Intel® Fortran Compiler Classic and Intel® Fortran Compiler Developer Guide and Reference 1

2513

Generate a Function Order List on Windows
This section provides an example of the process for generating a function order list. Assume you have a
Fortran program that consists of the following files: file1.f90 and file2.f90. Additionally, assume you
have created a directory for the profile data files called c:\profdata. You would enter commands similar to
the following to generate and use a function order list for your Windows application.

1. Compile your program using the /Qprof-gen:srcpos option. Use the /Qprof-dir option to specify
the directory location of the profile files. This step creates an instrumented executable:

ifort /exe:myprog /Qprof-gen:srcpos /Qprof-dir c:\profdata file1.f90 file2.f90
2. Run the instrumented program with one or more sets of input data. Change your directory to the

directory where the executables are located. The program produces a .dyn file each time it is
executed:

myprog.exe
3. Before this step, copy all .dyn and .dpi files into the same directory. Merge the data from one or more

runs of the instrumented program by using the profmerge tool to produce the pgopti.dpi file. Use
the /prof_dir option to specify the directory location of the .dyn files:

profmerge /prof_dir c:\profdata
4. Generate the function order list using the proforder tool. By default, the function order list is produced

in the file proford.txt:

proforder /prof_dir c:\profdata /o myprog.txt
5. Compile the application with the generated profile feedback by specifying the ORDER option to the linker.

Use the /Qprof-dir option to specify the directory location of the profile files:

ifort /exe:myprog Qprof-dir c:\profdata file1.f90 file2.f90 /link /ORDER:@MYPROG.txt

Use Function Grouping on Linux
This section provides a general example of the process for using the function grouping optimization. Assume
you have a Fortran program that consists of the following files: file1.f90 and file2.f90. Additionally,
assume you have created a directory for the profile data files called profdata. You would enter commands
similar to the following to use a function grouping for your Linux application.

1. Compile your program using the -prof-gen option. Use the -prof-dir option to specify the directory
location of the profile files. This step creates an instrumented executable:

ifort -o myprog -prof-gen -prof-dir ./profdata file1.f90 file2.f90
2. Run the instrumented program with one or more sets of input data. Change your directory to the

directory where the executables are located. The program produces a .dyn file each time it is
executed:

./myprog
3. Copy all .dyn and .dpi files into the same directory. If needed, you can merge the data from one or

more runs of the instrumented program by using the profmerge tools to produce the pgopti.dpi file.
4. Compile the application with the generated profile feedback by specifying the -prof-func-group

option to request the function grouping as well as the -prof-use option to request feedback
compilation. Again, use the -prof-dir option to specify the location of the profile files:

ifort /exe:myprog file1.f90 file2.f90 -prof-func-group -prof-use -prof-dir ./profdata

NOTE On Linux, the –prof-func-group option is on by default when –prof-use is selected.

 1 Intel® Fortran Compiler Classic and Intel® Fortran Compiler Developer Guide and Reference

2514

Finer grain control over the number of functions placed into the hot region can be controlled with the
-prof-hotness-threshold compiler option. See the command line reference for more details.

Use Function Ordering
This section provides an example of the process for using the function ordering optimization. Assume you
have a Fortran program that consists of the following files: file1.f90 and file2.f90, and that you have
created a directory for the profile data files called c:\profdata (on Windows) or ./profdata (on Linux).
You would enter commands similar to the following to generate and use function ordering for your
application.

1. Compile your program using the -prof-gen=srcpos (Linux) or /Qprof-gen:srcpos (Windows)
option. Use the [Q]prof-dir option to specify the directory location of the profile files. This step
creates an instrumented executable:

Linux

ifort -o myprog -prof-gen=srcpos -prof-dir ./profdata file1.f90 file2.f90
Windows

ifort /exe:myprog /Qprof-gen:srcpos /Qprof-dir c:\profdata file1.f90 file2.f90
2. Run the instrumented program with one or more sets of input data. Change your directory to the

directory where the executables are located. The program produces a .dyn file each time it is
executed:

Linux

./myprog
Windows

myprog.exe
3. Copy all .dyn and .dpi files into the same directory. If needed, you can merge the data from one or

more runs of the instrumented program by using the profmerge tools to produce the pgopti.dpi file.
4. Compile the application with the generated profile feedback by specifying the [Q]prof-func-order

option to request the function ordering, as well as the [Q]prof-use option to request feedback
compilation. Again, use the [Q]prof-dir option to specify the location of the profile files:

Linux

ifort -o myprog -prof-dir ./profdata file1.f90 file2.f90 -prof-func-order -prof-use
Windows

ifort /exe:myprog /Qprof-dir c:\profdata file1.f90 file2.f90 /Qprof-func-order /Qprof-use

Use Data Ordering
This section provides an example of the process for using the data order optimization. Assume you have a
Fortran program that consists of the following files: file1.f90 and file2.f90, and that you have created a
directory for the profile data files called c:\profdata (on Windows) or ./profdata (on Linux). You would
enter commands similar to the following to use data ordering for your application.

1. Compile your program using the -prof-gen=globdata (Linux) or /Qprof-gen:globdata (Windows)
option. Use the -prof-dir (Linux) or /Qprof-dir (Windows) option to specify the directory location of
the profile files. This step creates an instrumented executable.

Linux

ifort -o myprog -prof-gen=globdata -prof-dir ./profdata file1.f90 file2.f90

Intel® Fortran Compiler Classic and Intel® Fortran Compiler Developer Guide and Reference 1

2515

Windows

ifort /exe:myprog /Qprof-gen:globdata /Qprof-dir c:\profdata file1.f90 file2.f90
2. Run the instrumented program with one or more sets of input data. If you specified a location other

than the current directory, change your directory to the directory where the executables are located.
The program produces a .dyn file each time it is executed.

Linux

./myprog
Windows

myprog.exe
3. Copy all .dyn and .dpi files into the same directory. If needed, you can merge the data from one or

more runs of the instrumented program by using the profmerge tools to produce the pgopti.dpi file.
4. Compile the application with the generated profile feedback by specifying the [Q]prof-data-order

option to request the data ordering as well as the [Q]prof-use option to request feedback compilation.
Again, use the [Q]prof-dir option to specify the location of the profile files:

Linux

ifort -o myprog -prof-dir ./profdata file1.f90 file2.f90 -prof-data-order -prof-use
Windows

ifort /exe:myprog Qprof-dir c:\profdata file1.f90 file2.f90 /Qprof-data-order /Qprof-use

Comparison of Function Order Lists and IPO Code Layout

The Intel® compiler provides two methods of optimizing the layout of functions in the executable:

• Using a function order list
• Using the -ipo (Linux) or /Qipo (Windows) compiler option

Each method has advantages. A function order list, created with proforder, lets you optimize the layout of
non-static functions (external and library functions whose names are exposed to the linker).

The compiler cannot affect the layout order for functions it does not compile, such as library functions. The
function layout optimization is performed automatically when IPO is active.

Function Order List Effects

Function Type IPO Code Layout Function Ordering with
proforder

Static X No effect

Extern X X

Library No effect X

Use the following guidelines to create a function order list:

• The order list only affects the order of non-static functions.
• You must compile with /Gy to enable function-level linking. (This option is active if you specify either

option /O1 or /O2.)

 1 Intel® Fortran Compiler Classic and Intel® Fortran Compiler Developer Guide and Reference

2516

High-Level Optimization
High-level Optimizations (HLO) exploit the properties of source code constructs (for example, loops and
arrays) in applications developed in high-level programming languages. While the default optimization level,
option O2, performs some high-level optimizations, specifying the O3 option provides the best chance for
performing loop transformations to optimize memory accesses.

NOTE
Loop optimizations may result in calls to library routines that can result in additional performance gain
on Intel® microprocessors than on non-Intel microprocessors. The optimizations performed can also be
affected by certain options, such as /arch (Windows), -m (Linux), or [Q]x and [Q]ax options.
Additional HLO transformations may be performed for Intel® microprocessors than for non-Intel
microprocessors.

Within HLO, loop transformation techniques include:

• Loop Permutation or Interchange
• Loop Distribution
• Loop Fusion
• Loop Unrolling
• Data Prefetching
• Scalar Replacement
• Unroll and Jam
• Loop Blocking or Tiling
• Partial-Sum Optimization
• Predicate Optimization
• Loop Reversal
• Profile-Guided Loop Unrolling
• Loop Peeling
• Data Transformation: Memset Combining, Memory Layout Change
• Loop Rerolling
• Memset and Memcpy Recognition
• Statement Sinking for Creating Perfect Loopnests
• Multiversioning: Checks include Dependency of Memory References, and Trip Counts
• Loop Collapsing

Interprocedural Optimization
Interprocedural Optimization (IPO) is an automatic, multi-step process that allows the compiler to analyze
your code to determine where you can benefit from specific optimizations.

The compiler may apply the following optimizations:

• Address-taken analysis
• Array dimension padding
• Alias analysis
• Automatic array transposition
• Automatic memory pool formation
• Common block variable coalescing
• Common block splitting
• Constant propagation
• Dead call deletion
• Dead formal argument elimination
• Dead function elimination
• Formal parameter alignment analysis
• Forward substitution

Intel® Fortran Compiler Classic and Intel® Fortran Compiler Developer Guide and Reference 1

2517

• Indirect call conversion
• Inlining
• Mod/ref analysis
• Partial dead call elimination
• Passing arguments in registers to optimize calls and register usage
• Points-to analysis
• Routine key-attribute propagation
• Specialization
• Stack frame alignment
• Structure splitting and field reordering
• Symbol table data promotion
• Un-referenced variable removal
• Whole program analysis

IPO Compilation Models
IPO supports two compilation models: single-file compilation and multi-file compilation.

Single-file compilation uses the [Q]ip compiler option, and results in one, real object file for each source file
being compiled. During single-file compilation the compiler performs inline function expansion for calls to
procedures defined within the current source file.

The compiler performs some single-file interprocedural optimization at the O2 default optimization level;
additionally the compiler may perform some inlining for the O1 optimization level, such as inlining functions
marked with inlining directives.

Multi-file compilation uses the [Q]ipo option, and results in one or more mock object files rather than
normal object files. (See the Compilation section below for information about mock object files.) Additionally,
the compiler collects information from the individual source files that make up the program. Using this
information, the compiler performs optimizations across functions and procedures in different source files.

NOTE
Inlining and other optimizations are improved by profile information. For a description of how to use
IPO with profile information for further optimization, see Profile an Application.

Compile with IPO
As each source file is compiled with IPO, the compiler stores an intermediate representation (IR) of the
source code in a mock object file. The mock object files contain the IR instead of the normal object code.
Mock object files can be ten times or more larger than the size of normal object files.

During the IPO compilation phase only the mock object files are visible.

Link with IPO
When you link with the [Q]ipo compiler option the compiler is invoked a final time. The compiler performs
IPO across all mock object files. The mock objects must be linked with the compiler or by using Intel® linking
tools (or LLVM linking tools with ifx). While linking with IPO, the compiler and other linking tools compile
mock object files as well as invoke the real/true object files linkers provided on the user's platform.

Link-time optimization using the -ffat-lto-objects compiler option is provided for GCC compatibility.
During IPO compilation, you can specify -ffat-lto-objects option, for the compiler to generate a fat link-
time optimization (LTO) object that has both a real/true object and a discardable intermediate language
section. This enables both link-time optimization linking and normal linking.

 1 Intel® Fortran Compiler Classic and Intel® Fortran Compiler Developer Guide and Reference

2518

You can specify the -fno-fat-lto-objects option for the compiler to generate a link-time optimization
object that only has a discardable intermediate language section; no real/true object is generated. These
files are inserted into archives in the form in which they were created. Using this option may improve
compilation time and save space for objects.

If you use ld rather than xild to link objects or ar instead of xiar to create an archive, the real/true
object, generated during fat link-time optimization guarantees that there will be no impediment to linking/
building the archive. However, cross-file optimizations are lost in this case. The extra true object also takes
additional space and takes compile time to generate it, so using -fno-fat-lto-objects compiler option is
an advantage provided that you link the IPO mock object files with xild and archive them with xiar.

Whole Program Analysis
The compiler supports a large number of IPO optimizations that can be applied or have its effectiveness
greatly increased when the whole program condition is satisfied.

During the analysis process, the compiler reads all Intermediate Representation (IR) in the mock file, object
files, and library files to determine if all references are resolved and whether or not a given symbol is defined
in a mock object file. Symbols that are included in the IR in a mock object file for both data and functions are
candidates for manipulation based on the results of whole program analysis.

There are two types of whole program analysis - object reader method and table method. Most optimizations
can be applied if either type of whole program analysis determines that the whole program conditions exists;
however, some optimizations require the results of the object reader method, and some optimizations require
the results of table method.

Object reader method

In the object reader method, the object reader emulates the behavior of the native linker and attempts to
resolve the symbols in the application. If all symbols are resolved, the whole program condition is satisfied.
This type of whole program analysis is more likely to detect the whole program condition.

Table method

In the table method the compiler analyzes the mock object files and generates a call-graph.

The compiler contains detailed tables about all of the functions for all important language-specific libraries,
like the Fortran runtime libraries. In this second method, the compiler constructs a call-graph for the
application. The compiler then compares the function table and application call-graph. For each unresolved
function in the call-graph, the compiler attempts to resolve the calls by finding an entry for each unresolved
function in the compiler tables. If the compiler can resolve the functions call, the whole program condition
exists.

See Also
ax, Qax

Interprocedural Optimization Options

ip, Qip

ipo, Qipo

ipo-c, Qipo-c

Linking Tools and Options

O

x, Qx

Intel® Fortran Compiler Classic and Intel® Fortran Compiler Developer Guide and Reference 1

2519

Use Interprocedural Optimization
This topic discusses how to use IPO from the command line.

Compile and Link Using IPO
To enable IPO, you first compile each source file, then link the resulting source files.

Linux

1. Compile your source files with the ipo compiler option:

ifx -ipo -c a.f90 b.f90 c.f90
The command produces a.o, b.o, and c.o object files.

Use the c compiler option to stop compilation after generating object files. The output files contain
compiler intermediate representation (IR) corresponding to the compiled source files.

2. Link the resulting files. The following example command will produce an executable named app:

ifx -ipo -o app a.o b.o c.o
The command invokes the compiler on the objects containing IR and creates a new list of objects to be
linked.

The separate compile and link commands from the previous steps can be combined into a single command,
for example:

ifx -ipo -o app a.f90 b.f90 c.f90
The ifx command, shown in the examples, calls GCC ld to link the specified object files and produce the
executable application, which is specified by the -o option.

Windows

1. Compile your source files with the /Qipo compiler option:

 ifx /Qipo /c a.f90 b.f90 c.f90
The command produces a.obj, b.obj, and c.obj object files.

Use the c compiler option to stop compilation after generating .obj files. The output files contain
compiler intermediate representation (IR) corresponding to the compiled source files.

2. Link the resulting files. The following example command will produce an executable named app:

ifx /Qipo /exe:app a.obj b.obj c.obj
The command invokes the compiler on the objects containing IR and creates a new list of objects to be
linked.

The separate compile and link commands from the previous steps can be combined into a single command,
for example:

ifx /Qipo /exe:app a.f90 b.f90 c.f90
The ifx command, shown in the examples, calls link.exe to link the specified object files and produce the
executable application, which is specified by the /exe option.

Capture Intermediate IPO Output
The [Q]ipo-c and [Q]ipo-S compiler options are useful for analyzing the effects of multi-file IPO, or when
experimenting with multi-file IPO between modules that do not make up a complete program.

 1 Intel® Fortran Compiler Classic and Intel® Fortran Compiler Developer Guide and Reference

2520

• Use the [Q]ipo-c compiler option to optimize across files and produce an object file. The option performs
optimizations as described for the [Q]ipo option but stops prior to the final link stage, leaving an
optimized object file. The default name for this file is ipo_out.o (Linux) or ipo_out.obj (Windows).

• Use the [Q]ipo-S compiler option to optimize across files and produce an assembly file. The option
performs optimizations as described for [Q]ipo, but stops prior to the final link stage, leaving an
optimized assembly file. The default name for this file is ipo_out.s (Linux) or ipo_out.asm (Windows).

For both options, you can use the -o (Linux) or /exe (Windows) option to specify a different name.

These options generate multiple outputs if multi-object IPO is being used. The name of the first file is taken
from the value of the -o (Linux) or /exe (Windows) option.

The names of subsequent files are derived from the first file with an appended numeric value to the file
name. For example, if the first object file is named foo.o (Linux) or foo.obj (Windows), the second object
file will be named foo1.o or foo1.obj.

You can use the object file generated with the [Q]ipo-c option, but you will not get the full benefit of whole
program optimizations if you use this option.

The object file created using the [Q]ipo-c option is a real object file, in contrast to the mock file normally
generated using IPO; however, the generated object file is significantly different than the mock object file.
Whole program optimizations, which require a knowledge of how the real object file will be linked in with
other files to produce and object, are not applied.

The compiler generates a message indicating the name of each object or assembly file it generates. These
files can be added to the real link step to build the final application.

See Also
c compiler option
o compiler option
ipo, Qipo compiler option
ipo-c, Qipo-c compiler option
ipo-S, Qipo-S compiler option
O compiler option

Performance and Large Program Considerations

IPO-Related Performance Issues
There are some general optimization guidelines for using IPO that you should keep in mind:

• Using IPO on very large programs might trigger internal limits of other compiler optimization phases.
• Applications where the compiler does not have sufficient intermediate representation (IR) coverage to do

whole program analysis might not perform as well as those where IR information is complete.

In addition to these general guidelines, there are some practices to avoid while using IPO. The following list
summarizes the activities to avoid:

• Do not use the link phase of an IPO compilation using mock object files produced for your application by a
different compiler. Intel® compilers cannot inspect mock object files generated by other compilers for
optimization opportunities.

Make sure to update make files to call the LLVM linker when using IPO from scripts. You can use the option
-fuse-ld=lld to tell the compiler to use the lld linker.

IPO for Large Programs
In most cases, IPO generates a single true object file for the link-time compilation. This behavior is not
optimal for very large programs, perhaps even making it impossible to use [Q]ipo compiler option on the
application.

Intel® Fortran Compiler Classic and Intel® Fortran Compiler Developer Guide and Reference 1

2521

The compiler provides two methods to avoid this problem. The first method is an automatic size-based
heuristic, which causes the compiler to generate multiple true object files for large link-time compilations.
The second method is to manually instruct the compiler to perform multi-object IPO.

• Use the [Q]ipoN compiler option and pass an integer value in the place of N.
• Use the [Q]ipo-separate compiler option.

The number of true object files generated by the link-time compilation is invisible to you unless the
[Q]ipo-c or [Q]ipo-S compiler option is used.

Regardless of the method used, it is best to use the compiler defaults first and examine the results. If the
defaults do not provide the desired results then experiment with generating a different number of object
files.

You can use the [Q]ipo-jobs compiler option to control the number of processes, or jobs, executed during
parallel IPO builds.

Use [Q]ipoN to Create Multiple Object Files
If you specify [Q]ipo0, which is the same as not specifying a value, the compiler uses heuristics to
determine whether to create one or more object files based on the expected size of the application. The
compiler generates one object file for small applications, and two or more object files for large applications. If
you specify any value greater than 0, the compiler generates that number of object files, unless the value
you pass a value that exceeds the number of source files. In that case, the compiler creates one object file
for each source file then stops generating object files. The generated object files follow OS-specific naming
conventions.

The following example commands demonstrate how to use [Q]ipo2 option to compile large programs.

Linux

ifort -ipo2 -c a.f90 b.f90
The resulting object files are ipo_out.o, ipo_out1.o, and ipo_out2.o.

Windows

ifort /Qipo2 /c a.f90 b.f90
The resulting object files are ipo_out.obj, ipo_out1.obj, and ipo_out2.obj.

Link the resulting object files as shown in Use Interprocedural Optimization or Linking Tools and Options..

Create the Maximum Number of Object Files
Using [Q]ipo-separate allows you to force the compiler to generate the maximum number of true object
files that the compiler will support during multiple object compilation. The maximum number of true object
files is the equal to the number of mock object files passed on the link line.

For example, you can pass example commands similar to the following:

Linux

ifort a.o b.o c.o -ipo-separate -ipo-c
Windows

ifort a.obj b.obj c.obj /Qipo-separate /Qipo-c
The compiler generates multiple object files that use the same naming convention discussed above.

Link the resulting object files as shown in Using IPO or Linking Tools and Options.

 1 Intel® Fortran Compiler Classic and Intel® Fortran Compiler Developer Guide and Reference

2522

Code Layout and Multi-Object IPO
One of the optimizations performed during an IPO compilation is code layout. The analysis performed by the
compiler during multi-file IPO determines a layout order for all of the routines for which it has intermediate
representation (IR) information. For a multi-object IPO compilation, the compiler must tell the linker about
the desired order.

The compiler first puts each routine in a named text section that varies depending on the operating system:

Linux

The first routine is placed in .text00001, the second is placed in .text00002, and so on.

Windows

The first routine is placed in .text$00001, the second is placed in .text$00002, and so on.

See Also
O compiler option
prof-use, Qprof-use compiler option
ipo, Qipo compiler option
ipo-c, Qipo-c
 compiler option

ipo-jobs, Qipo-jobs
 compiler option

ipo-S, Qipo-S
 compiler option

ipo-separate,Qipo-separate
 compiler option

Request Compiler Reports with the xi* Tools
The compiler options qopt-report (Linux*) and [Q]opt-report (Windows*) generate optimization reports
with different levels of detail. Related compiler options, listed under Optimization Report Options, allow you
to specify the phase, direct output to a file (instead of stderr), and request reports from all routines with
names containing a specific string as part of their name.

The xi* tools are used with interprocedural optimization (IPO) during the final stage of IPO compilation. You
can request compiler reports to be generated during the final IPO compilation by using certain options. The
supported xi* tools are:

Linux

• Linker: xild
Windows

• Linker: xilink
• Library: xilib
The following table lists the compiler report options that can be used with the xi* tools during the final IPO
compilation:

Linux Windows Description

-qopt-report[=n
]

/Qopt-report[:n] Enables optimization report generation with different levels of
detail. Valid values for n are 0 through 5. By default, when you
specify this option without passing a value the compiler will
generate a report with a medium level of detail. Higher
numbers give greater levels of detail.

Intel® Fortran Compiler Classic and Intel® Fortran Compiler Developer Guide and Reference 1

2523

Linux Windows Description

-qopt-report-file
=filename

/Qopt-report-file
:filename

Generates an optimization report and directs the report output
to the specified file name. If you omit the path, the file is
created in the current directory. To create the file in a different
directory, specify the full path to the output file and its file
name.

-qopt-report-phase
[=list]

/Qopt-report-phase
[:list]

Specifies a comma separated list of optimization phases to use
when generating reports. If you do not specify a phase the
compiler defaults to all. You can request a list of all available
phases by using the [Q]opt-report-help option.

To generate a report for the IPO phase, use
-qopt-report-phase=ipo or /Qopt-report-phase:ipo .

Available for ifort only.

-qopt-report-routine
=substring

/Qopt-report-routine
:substring

Generates reports for all routines with names containing
substring as part of their name. You can also specify a
sequence of substrings separated by commas. If you do this,
the compiler generates an optimization report for each of the
routines whose name contains one or more of these
substrings.

If substring is not specified, the compiler generates reports on
all routines.

Available for ifort only.

-qopt-report-filter
=string

/Qopt-report-filter
:string

Tells the compiler to find the indicated parts of your application
specified by string, and generate optimization reports for
them.

If both -qopt-report-routines=string1 and
qopt-report-filter=string2 are specified, it is treated as
-qopt-report-filter=string1;string2.

Available for ifort only.

-qopt-report-help /Qopt-report-help Displays the optimization phases available to use when using
the -qopt-report-phase (Linux) or
[q or Q]opt-report-phase (Windows) option.

Available for ifort only.

-qopt-report-names/Qopt-report-namesSpecifies whether mangled or unmangled names appear in the
optimization report. If this option is not specified, unmangled
names are used by default.

If you specify mangled, encoding (also known as decoration) is
added to names in the optimization report. This is appropriate
when you want to match annotations with the assembly
listing. If you specify unmangled, no encoding (or decoration)
is added to names in the optimization report. This is
appropriate when you want to match annotations with the
source listing. If you use this option, you do not have to
specify the -qopt-report (Linux) or /Qopt-report
(Windows) option.

Available for ifort only.

See Also
qopt-report, Qopt-report
 compiler option

 1 Intel® Fortran Compiler Classic and Intel® Fortran Compiler Developer Guide and Reference

2524

qopt-report-file, Qopt-report-file
 compiler option

qopt-report-help,Qopt-report-help
 compiler option

qopt-report-phase, Qopt-report-phase
 compiler option

qopt-report-routine, Qopt-report-routine
 compiler option

qopt-report-filter, Qopt-report-filter
 compiler option

Inline Expansion of Functions
Inline function expansion does not require that the applications meet the criteria for whole program analysis
normally required by IPO; so this optimization is one of the most important optimizations done in
Interprocedural Optimization (IPO). For function calls that the compiler believes are frequently executed, the
compiler often decides to replace the instructions of the call with code for the function itself.

In the compiler, inline function expansion is performed on relatively small user functions more often than on
functions that are relatively large. This optimization improves application performance by performing the
following:

• Removing the need to set up parameters for a function call
• Eliminating the function call branch
• Propagating constants

Function inlining can improve execution time by removing the runtime overhead of function calls; however,
function inlining can increase code size, code complexity, and compile times. In general, when you instruct
the compiler to perform function inlining, the compiler can examine the source code in a much larger
context, and the compiler can find more opportunities to apply optimizations.

Specifying the [Q]ip compiler option, single-file IPO, causes the compiler to perform inline function
expansion for calls to procedures defined within the current source file; in contrast, specifying the [Q]ipo
compiler option, multi-file IPO, causes the compiler to perform inline function expansion for calls to
procedures defined in other files.

Caution
Using the [Q]ip and[Q]ipo (Windows*) options can, in some cases, significantly increase compile
time and code size.

The compiler does a certain amount of inlining at the default level. Although such inlining is similar to what is
done when you use the [Q]ip option, the amount of inlining done is generally less than when you use the
option.

Select Routines for Inlining
The compiler attempts to select the routines whose inline expansions provide the greatest benefit to program
performance. The selection is done using default heuristics. The inlining heuristics used by the compiler differ
based on whether or not you use options for Profile-Guided Optimizations (PGO): [Q]prof-use compiler
option.

When you use PGO with [Q]ip or[Q]ipo, the compiler uses the following guidelines for applying heuristics:

• The default heuristic focuses on the most frequently executed call sites, based on the profile information
gathered for the program.

• The default heuristic always inlines very small functions that meet the minimum inline criteria.

Use IPO with PGO

Intel® Fortran Compiler Classic and Intel® Fortran Compiler Developer Guide and Reference 1

2525

Combining IPO and PGO typically produces better results than using IPO alone. PGO produces dynamic
profiling information that can usually provide better optimization opportunities than the static profiling
information used in IPO.

The compiler uses characteristics of the source code to estimate which function calls are executed most
frequently. It applies these estimates to the PGO-based guidelines described above. The estimation of
frequency, based on static characteristics of the source, is not always accurate.

Compiler-Directed Inline Expansion of Functions
Without directions from the user, the compiler attempts to estimate what functions should be inlined to
optimize application performance.

The following options are useful in situations where an application can benefit from user function inlining but
does not need specific direction about inlining limits.

Option Effect

inline-level(Linux*) or Ob (Windows*) Specifies the level of inline function expansion.

Note that the option /Ob2 on Windows* is
equivalent to -inline-level=2 on Linux*. Allowed
values are 0, 1, and 2.

[Q]ip-no-inlining Disables only inlining enabled by the [Q]ip,
[Q]ipo, or Ob2 options.

[Q]ip-no-pinlining Disables partial inlining enabled by the [Q]ip or
[Q]ipo options.

No other IPO optimizations are disabled.

-debug inline-debug-info (Linux)
or /debug:inline-debug-info (Windows)

Indicates that the source position information for an
inlined function should be retained, rather than replaced,
by that of the call which is being inlined.

Developer-Directed Inline Expansion of User Functions
In addition to the options that support compiler directed inline expansion of user functions, the compiler also
provides compiler options and directives that allow you to more precisely direct when and if inline function
expansion should occur.

The compiler measures the relative size of a routine in an abstract value of intermediate language units,
which is approximately equivalent to the number of instructions that will be generated. The compiler uses the
intermediate language unit estimates to classify routines and functions as relatively small, medium, or large
functions. The compiler then uses the estimates to determine when to inline a function; if the minimum
criteria for inlining is met and all other things are equal, the compiler has an affinity for inlining relatively
small functions and not inlining relative large functions.

Typically, the compiler targets functions that have been marked for inlining based on the following:

• Procedure-specific inlining directives: Tells the compiler to inline calls within the targeted procedure if
it is legal to do so. For example, !DIR$ ATTRIBUTES INLINE, !DIR$ ATTRIBUTES FORCEINLINE.

The following developer directed inlining options and directives provide the ability to change the boundaries
used by the inliner to distinguish between small and large functions.

In general, you should use the [Q]inline-factor option before using the individual inlining options listed
below; this single option effectively controls several other upper-limit options.

 1 Intel® Fortran Compiler Classic and Intel® Fortran Compiler Developer Guide and Reference

2526

If your code hits an inlining limit, the compiler issues a warning at the highest warning level. The warning
specifies which of the inlining limits have been hit, and the compiler option and/or directives needed to get a
full report. For example, you could get a message as follows:

Inlining inhibited by limit max-total-size. Use -qopt-report -qopt-report-phase=ipo for full
report.

Messages in the report refer directly to the command line options or directives that can be used to overcome
the limits.

The following table lists the options you can use to fine-tune inline expansion of functions. The directives
associated with the options are documented in the Effect column.

Option Effect

[Q]inline-factor Controls the multiplier applied to all inlining options
that define upper limits: inline-max-size, inline-
max-total-size, inline-max-per-routine, and
inline-max-per-compile. While you can specify an
individual increase in any of the upper-limit options,
this single option provides an efficient means of
controlling all of the upper-limit options with a single
command.

By default, this option uses a multiplier of 100, which
corresponds to a factor of 1. Specifying 200 implies a
factor of 2, and so on. Experiment with the multiplier
carefully. You could increase the upper limits to allow
too much inlining, which might result in your system
running out of memory.

[Q]inline-force-inline Instructs the compiler to force inlining of functions
suggested for inlining whenever the compiler is
capable doing so.

Without this option, the compiler treats functions
declared with the ATTRIBUTES INLINE directive as
merely being recommended for inlining. When this
option is used, it is as if they were declared with the
ATTRIBUTES FORCEINLINE directive.

[Q]inline-min-size Redefines the maximum size of small routines;
routines that are equal to or smaller than the value
specified are more likely to be inlined.

[Q]inline-max-size Redefines the minimum size of large routines;
routines that are equal to or larger than the value
specified are less likely to be inlined.

[Q]inline-max-total-size Limits the expanded size of inlined functions.

You can also use !DIR$ ATTRIBUTES
OPTIMIZATION_PARAMETER:"INLINE_MAX_TOTAL_SI
ZE=N” to control the size an individual routine can
grow through inlining.

[Q]inline-max-per-routine Limits the number of times inlining can be applied
within a routine.

Intel® Fortran Compiler Classic and Intel® Fortran Compiler Developer Guide and Reference 1

2527

Option Effect

You can also use !DIR$ ATTRIBUTES
OPTIMIZATION_PARAMETER:"INLINE_MAX_PER_ROU
TINE=N” to control the number of times inlining may
be applied to a routine.

[Q]inline-max-per-compile Limits the number of times inlining can be applied
within a compilation unit.

The compilation unit limit depends on the whether or
not you specify the [Q]ipo compiler option. If you
enable IPO, all source files that are part of the
compilation are considered one compilation unit. For
compilations not involving IPO each source file is
considered an individual compilation unit.

See Also
fpic compiler option
ip, Qip compiler option
ipo, Qipo compiler option
prof-use, Qprof-use compiler option
debug (Linux* OS) compiler option
debug (Windows* OS) compiler option
Zi, Z7, Zl compiler option
inline-level, Ob compiler option
ip-no-pinlining, Qip-no-pinlining compiler option
inline-factor, Qinline-factor compiler option
inline-forceinline, Qinline-forceinline compiler option
inline-max-per-compile, Qinline-max-per-compile compiler option
inline-max-per-routine, Qinline-max-per-routine compiler option
inline-max-total-size, Qinline-max-total-size compiler option
inline-max-size, Qinline-max-size compiler option
inline-min-size, Qinline-min-size compiler option

Inlining Report
Function inlining can improve execution time by removing the runtime overhead of function calls; however,
function inlining can increase code size, code complexity, and compile times. In general, when you instruct
the compiler to perform function inlining, the compiler examines the source code in a much larger context,
and the compiler can find more opportunities to apply optimizations.

The Inlining Report is part of the Opt Report. The compiler options -qopt-report (Linux*) and /Qopt-
report (Windows*) generate optimization reports with different levels of detail. Related compiler options,
listed under Optimization Report Options, allow you to specify the phase, direct output to a specific file,
stdout or stderr, and request reports from all routines with names containing a specific string as part of
their name.

The inlining report is a description of the inlining choices that were made for each routine that is compiled in
the program. It is produced as part of the opt report. To restrict the opt report to contain ONLY the inlining
report, use the option -qopt-report-phase=ipo (Linux*) or /Qopt-report-phase:ipo (Windows*).

The user can control the amount of information by specifying a level for the inlining report. The level is
shown by a number from 1 to 5. Level 1 contains the smallest amount of information, and each level adds
information to the report. Level 2 is the default report.

 1 Intel® Fortran Compiler Classic and Intel® Fortran Compiler Developer Guide and Reference

2528

Level Summary

Level 1 Shows each call that was inlined
Level 2 (default report) Shows the values of the key inlining options
Level 3 Shows the calls to routines with external linkage
Level 4 Shows:

• Whole program information
• Size (sz) of the each routine inlined and the

increase in application size (isz) due to each
instance of inlining

• Routine percentages
• Calls that are not inlined

Level 5 Shows inlining footnotes, which contain advice on how to
change the inlining to potentially improve application
performance

The inlining report gives you an in-depth overview of the compiler's inlining decisions, which occur within five
levels of granularity. You can specify levels with -qopt-report=1, -qopt-report=2, etc., (Linux*) or /
Qopt-report=1, /Qopt-report=2, etc. (Windows*). See below for specific level details.

Level 1
The Inlining Report is activated when you run the Optimization Report, using [q or Q]qopt-report.

For each routine you compile, you get one report with the title INLINE REPORT that shows the calls inlined
into that routine.

For example, a Level 1 report for a typical routine:

INLINE REPORT: (APPLU)
 -> INLINE: (295,12) SETBV
 -> INLINE: (398,18) EXACT
 -> INLINE: (399,18) EXACT
 -> INLINE: (409,18) EXACT
 -> INLINE: (410,18) EXACT
 -> INLINE: (420,18) EXACT
 -> INLINE: (421,18) EXACT
 -> INLINE: (299,12) SETIV
 -> (303,12) ERHS
 -> (307,12) SSOR
 -> INLINE: (311,12) ERROR
 -> INLINE: (1518,24) EXACT
 -> INLINE: (1552,24) EXACT
 -> INLINE: (315,12) PINTGR
 -> (319,12) VERIFY

The report gives the name of the compiled routine (APPLU), and contains one line for each call that the
compiler decided to inline or not inline. In the above report, the compiler made 15 inlining decisions for calls
in the routine APPLU. It decided to inline 12 of the calls. These decisions are indicated by the lines which
start with -> INLINE. It decided not to inline three of the calls. These decisions are indicated by the lines
without the word INLINE.

On each line, the position of the call in the source code is given in parentheses, followed by the name of the
routine being called. For example:

-> INLINE: (398,18) EXACT
This refers to a call at line 398 column 18 to a routine called EXACT.

Intel® Fortran Compiler Classic and Intel® Fortran Compiler Developer Guide and Reference 1

2529

Level 2
Level 2 includes the values of important compiler options related to inlining. Unless the user specifies one of
these values by using the option on the command line, the default value of the option in shown. You can read
more about the meaning of the individual inlining options in the Inlining Options section.

The following example shows a Level 2 report listing the values of inlining options:

INLINING OPTION VALUES:
 -inline-factor: 100
 -inline-min-size: 30
 -inline-max-size: 230
 -inline-max-total-size: 2000
 -inline-max-per-routine: 10000
 -inline-max-per-compile: 500000

Level 3
Level 3 contains one additional line for each call to an external routine made in the application. Such calls are
not candidates for inlining, because the code for these routines is not present in the file or files being
compiled. For example, a Level 3 report listing external linkage:

Begin optimization report for: APPLU
 Report from: Interprocedural optimizations [ipo]
INLINE REPORT: (APPLU) [1] applu.f (1,16)
 -> EXTERN: (1,16) for_set_reentrancy
 -> EXTERN: (80,7) for_read_seq_lis

Level 4
Level 4 adds four additional pieces of information. The following examples show the additional information.

• Whole Program values:

WHOLE PROGRAM [SAFE] [EITHER METHOD]: false
WHOLE PROGRAM [SEEN] [TABLE METHOD]: true
WHOLE PROGRAM [READ] [OBJECT READER METHOD]: false

An application for which whole program is determined is subject to a higher degree of optimization than
one which is not. The Intel compiler uses two methods of determining whole program, a TABLE METHOD
and an OBJECT READER METHOD.

• The size of the routine [sz] and the inlined size of the routine [isz]. Usually isz is less than sz:

 -> INLINE: (295,12) SETBV (isz = 752) (sz = 755)
 -> INLINE: (398,18) EXACT (isz = 98) (sz = 109)

In the above example, the routine SETBV was inlined into the routine that called it. The size of SETBV,
before inlining, was 755 units. After inlining, the calling routine was increased by 752 units. The increase
in the size of the calling routine is slightly less than the size of SETBV, because some of the overhead of
calling SETBV was removed when SETBV was inlined.

• The percentage of time that has passed in the process of compiling the file:

INLINE REPORT: (APPLU) [1/16=6.2%] applu.f (1,16)
For example, on the line above, [1/16 = 6.2%] indicates that APPLU is the first routine out of 16 to be
compiled, and when this routine is done being compiled, 6.2% of the compilation is finished. You can use
these numbers to estimate how long the compilation is going to take.

• The calls that did not get inlined and the reason why they did not get inlined. The reason is shown in
double brackets [[]].

-> (303,12) ERHS (isz = 2125) (sz = 2128)
 [[Inlining would exceed –inline-max-size value (2128>253)]]

 1 Intel® Fortran Compiler Classic and Intel® Fortran Compiler Developer Guide and Reference

2530

In the above example, the routine ERHS is not inlined, because the size of the routine (2128 units) is
larger than the allowable size (253 units). If you wish to inline routines that are this large, you can use
the option -inline-max-size=2128 (or larger).

Level 5
Level 5 adds the inlining footnotes. For example:

-> (303,12) ERHS (isz = 2058) (sz = 2061)
 [[Inlining would exceed –inline-max-size-value (2061>230) <1>]]

The inlining footnotes explain the text found in the double brackets [[]]. They include a description for why
an inlining call did not happen, and what you can do to make the inlining of this call happen.

The footnote annotation <1> refers to the first footnote in the INLINING FOOTNOTES section at the bottom
of the inlining report, which is produced when the user selects Level 5. For example, the footnote produced
for annotation <1> above is:

<1> The subprogram is larger than the inliner would normally inline.
Use the option –inline-max-size to increase the size of any subprogram
that would normally be inlined, add "!DIR$ATTRIBUTES FORCELINE" to the
declaration of the called function, or add "!DIR$ FORCELINE" before
the call site.

Fortran Language Extensions
Intel® Fortran provides a number of additional implementation features designed to simplify or enhance
application development. The features in the section are varied; your choice to employ each feature depends
on your application and development needs.

The Intel® Fortran Language Reference contains a section showing a summary of all the language extensions
(non-standard features).

Support for 64-bit Architecture on Linux

Applications designed to take advantage of Intel® 64 architecture can be built with one of three memory
models:

• small (-mcmodel=small)
This causes code and data to be restricted to the first 2GB of address space so that all accesses of code
and data can be done with Instruction Pointer (IP)-relative addressing.

• medium (-mcmodel=medium)
This causes code to be restricted to the first 2GB; however, there is no restriction on data. Code can be
addressed with IP-relative addressing, but access of data must use absolute addressing.

• large (-mcmodel=large)
There are no restrictions on code or data; access to both code and data uses absolute addressing.

IP-relative addressing requires only 32-bits, whereas absolute addressing requires 64-bits. This difference
can affect code size and performance. (IP-relative addressing is somewhat faster.)

Additional Notes on Memory Models and Large Data Objects
• When you specify option -mcmodel=medium or -mcmodel=large, it sets option -shared-intel. This

ensures that the correct dynamic versions of the Intel runtime libraries are used.
• When you build shared objects (.so), Position-Independent Code (PIC) is specified (that is, -fpic is

added by the compiler driver) so that a single .so can support all three memory models.

Intel® Fortran Compiler Classic and Intel® Fortran Compiler Developer Guide and Reference 1

2531

However, code that is to be placed in a static library, or linked statically, must be built with the proper
memory model specified. Note that there is a performance impact to specifying the medium or large
memory models.

• The use of the memory model (medium, large) option and the -shared-intel option is required as a by-
product of the code models stipulated in the 64-bit Application Binary Interface (ABI), which is written
specifically for processors with the 64-bit memory extensions.

Both the compiler and the GNU linker (ld) are responsible for generating the proper code and necessary
relocations on this platform according to the chosen memory model.

• The 2GB restriction on Intel® 64 architecture involves not only arrays greater than 2GB, but also COMMON
blocks and local data with a total size greater than 2GB.

The Compiler Options reference contains additional discussion of the supported memory models and offers
details about the 2GB restrictions for each model (see the description for option mcmodel).

• If, during linking, you fail to use the appropriate memory model and dynamic library options, an error
message, such as the following, occurs:

<some lib.a library>(some .o): In Function <function>:
 : relocation truncated to fit: R_X86_64_PC32 <some symbol>

Traceback
When a Fortran program terminates due to a severe error condition, the Fortran runtime system displays
additional diagnostic information after the runtime message.

The Fortran runtime system attempts to walk back up the call chain and produce a report of the calling
sequence leading to the error as part of the default diagnostic message report. This is known as traceback.
The minimum information displayed includes:

• The standard Fortran runtime Runtime Message Display and Format text that explains the error condition.
• A tabular report that contains one line per call stack frame. This information includes at least the image

name and a hexadecimal PC in that image.

The information displayed under the Routine, Line, and Source columns depends on whether your program
was compiled with the traceback option.

For example, if option traceback is specified, the displayed information may resemble the following:

 forrtl: severe (24): end-of-file during read, unit 10, file E:\USERS\xxx.dat
 Image PC Routine Line Source
 libifcorert.dll 1000A3B2 Unknown Unknown Unknown
 libifcorert.dll 1000A184 Unknown Unknown Unknown
 libifcorert.dll 10009324 Unknown Unknown Unknown
 libifcorert.dll 10009596 Unknown Unknown Unknown
 libifcorert.dll 10024193 Unknown Unknown Unknown
 teof.exe 004011A9 AGAIN 21 teof.for
 teof.exe 004010DD GO 15 teof.for
 teof.exe 004010A7 WE 11 teof.for
 teof.exe 00401071 HERE 7 teof.for
 teof.exe 00401035 TEOF 3 teof.for
 teof.exe 004013D9 Unknown Unknown Unknown
 teof.exe 004012DF Unknown Unknown Unknown
 KERNEL32.dll 77F1B304 Unknown Unknown Unknown

If the same program is not compiled with the traceback option:

• The Routine name, Line number, and Source file columns would be reported as "Unknown."
• A link map file is usually needed to locate the cause of the error.

The traceback option provides program counter (PC) to source file line correlation information to appear in
the displayed error message information, which simplifies the task of locating the cause of severe runtime
errors.

 1 Intel® Fortran Compiler Classic and Intel® Fortran Compiler Developer Guide and Reference

2532

For Fortran objects generated with the traceback option, the compiler generates additional information used
by the Fortran runtime system to automatically correlate PC values to the routine name in which they occur,
Fortran source file, and line number in the source file. This information is displayed in the runtime error
diagnostic report.

Automatic PC correlation is only supported for Fortran code. For non-Fortran code, only the hexadecimal PC
locations are reported.

See Also
traceback compiler option

Traceback Tradeoffs and Restrictions

This topic describes tradeoffs and restrictions that apply to using traceback.

Effect on Image Size
When you use the traceback option to get automatic Program Counter correlation, it increases the size of
an image. For any application, you must decide if the increase in image size is worth the benefit of automatic
Program Counter correlation or if manually correlating Program Counters with a map file is acceptable.

The approach of providing automatic correlation information in the image was used so that no runtime
penalty is incurred by building the information "on the fly" as your application executes. No runtime
diagnostic code is invoked unless your application is terminating due to a severe error.

C Compiler Omit Frame Pointer Option on Systems Using IA-32 Architecture
The following routines are used to walk the stack:

• Linux

_Unwind_ForcedUnwind(), _Unwind_GetIP(), _Unwind_GetRegionStart() and _Unwind_GetGr()
routines in libunwind.so

• Windows

The Windows API routine StackWalk() in imagehlp.dll

When using IA-32 architecture, there are no firm software calling standards documented. Compiler
developers are under no constraints to use machine registers in any particular way or to hook up procedures
in any particular way. The stack walking routines listed above use a set of heuristics to determine how to
walk the call stack. That is, they make a "best guess" to determine how a program reached a particular point
in the call chain. With C code that has been compiled with Visual C++* using the Omit Frame Pointer option
-fomit-frame-pointer, this "best guess" is not usually the correct one.

If you are mixing Fortran and C code and you are concerned about stack tracing, consider disabling the
-fomit-frame-pointer option in your C compilations. Otherwise, traceback will most likely not work for
you.

Inlined Routines Will Not Be Displayed
Inlining can cause some routines not to be realized as separate stack frames, so the traceback will not show
inlined routines.

Stack Trace Failure
Programs can fail for a number of reasons, often with unpredictable consequences. Memory corruption by
erroneously executing code is one possibility. Stack memory can be corrupted in such a way that the attempt
to trace the call stack will result in access violations or other undesirable consequences. The stack-tracing
runtime code is guarded with a local exception filter.

Intel® Fortran Compiler Classic and Intel® Fortran Compiler Developer Guide and Reference 1

2533

If the traceback attempt fails due to a hard detectable condition, the runtime will report this condition in its
diagnostic output message as follows:

Stack trace terminated abnormally
Be forewarned that it is also possible for memory to be corrupted in such a way that a stack trace can seem
to complete successfully with no hint of a problem. The bit patterns it finds in corrupted memory where the
stack used to be, and then uses to access memory, may constitute perfectly valid memory addresses for the
program to be accessing. However, they do not happen to have any connection to what the stack used to
look like. So, if it appears that the stack walk completed normally, but the reported Program Counters make
no sense to you, then consider ignoring the stack trace output in diagnosing your problem.

Another condition that will disable the stack trace process is your program exiting because it has exhausted
virtual memory resources.

The stack trace can fail if the runtime system cannot dynamically load libunwind.so (Linux) or imagehlp.dll
(Windows) or cannot find the necessary routines from that library. In this case, you still get the basic runtime
diagnostic message; you will not get any call stack information.

Linker /incremental:no Option on Windows
When incremental linking is enabled, automatic Program Counter correlation does not work. Use of
incremental linking always disables automatic Program Counter correlation even if you specify /traceback
during compilation.

When you use incremental linking, the default hexadecimal (hex) Program Counter values will still appear in
the output. To correlate from the hexadecimal Program Counter values to routine containing the Program
Counter addresses requires use of a linker map file. However, if you request a map file during linking,
incremental linking becomes disabled. Thus to allow any Program Counter values generated for a runtime
problem to be helpful, incremental linking must be disabled.

In the Integrated Development Environment, you can use the Call stack display so incremental linking is not
a problem.

Sample Programs and Traceback Information

The following sections provide sample programs that show the use of traceback to locate the cause of the
error:

• Example: End-of-File Condition, Program teof
• Example: Machine Exception Condition, Program ovf

The hex program counters (PCs) and contents of registers displayed in these program outputs are meant as
representative examples of typical output. The program counters will change over time, as the libraries and
other tools used to create an image change.

Example: End-of-File Condition, Program teof
In the following example, a READ statement creates an End-Of-File error, which the application has not
handled:

 program teof
 integer*4 i,res
 i=here()
 end
 integer*4 function here()
 here = we()
 end
 integer*4 function we()
 we = go()
 end
 integer*4 function go()

 1 Intel® Fortran Compiler Classic and Intel® Fortran Compiler Developer Guide and Reference

2534

 go = again()
 end
 integer*4 function again()
 integer*4 a
 open(10,file='xxx.dat',form='unformatted',status='unknown')
 read(10) a
 again=a
 end

The diagnostic output that results when this program is built with traceback enabled, optimization disabled,
and linked against the shared Fortran runtime library on the Intel® 64 architecture platform is similar to the
following:

forrtl: severe (24): end-of-file during read, unit 10, file E:\USERS\xxx.dat
Image PC Routine Line Source
libifcorert.dll 000007FED2B232D9 Unknown Unknown Unknown
libifcorert.dll 000007FED2B6CEE0 Unknown Unknown Unknown
teof.exe 000000013F931193 AGAIN 17 teof.f90
teof.exe 000000013F93109B GO 12 teof.f90
teof.exe 000000013F931072 WE 9 teof.f90
teof.exe 000000013F931049 HERE 6 teof.f90
teof.exe 000000013F93101E MAIN__ 3 teof.f90
teof.exe 000000013F96ADCE Unknown Unknown Unknown
teof.exe 000000013F96B64C Unknown Unknown Unknown
kernel32.dll 0000000076CC59BD Unknown Unknown Unknown
ntdll.dll 0000000076EFA2E1 Unknown Unknown Unknown

If optimization is not disabled by option /Od (Windows) or option -O0 (Linux), procedure inlining may
collapse the call stack and make it more difficult to locate a problem.

The first line of the output is the standard Fortran runtime error message. What follows is the result of
walking the call stack in reverse order to determine where the error originated. Each line of output
represents a call frame on the stack. Since the application was compiled with the traceback option, the
Program Counters that fall in Fortran code are correlated to their matching routine name, line number and
source module. Program Counters that are not in Fortran code are not correlated and are reported as
Unknown.

The first two frames show the calls to routines in the Fortran runtime library (in reverse order). Since the
application was linked against the shared version of the library, the image name reported is either libifcore.so
(Linux) or libifcorert.dll (Window*). These are the runtime routines that were called to do the READ and upon
detection of the EOF condition, were invoked to report the error. In the case of an unhandled I/O
programming error, there will always be a few frames on the call stack down in runtime code like this.

The stack frame of real interest to the Fortran developer is the first frame in image teof.exe, which shows
that the error originated in the routine named AGAIN in source module teof.f90 at line 17. Looking in the
source code at line 21, you can see the Fortran READ statement that incurred the end-of-file condition.

The next four frames show the trail of calls in the Fortran user code that led to the routine that got the error
(TEOF->HERE->WE->GO->AGAIN).

Finally, the bottom four frames are routines which handled the startup and initialization of the program.

If this program had been linked against the static Fortran runtime library, the output would then look like:

forrtl: severe (24): end-of-file during read, unit 10, file E:\USERS\xxx.dat
Image PC Routine Line Source
teof.exe 000000013F941FFB Unknown Unknown Unknown
teof.exe 000000013F9380A0 Unknown Unknown Unknown
teof.exe 000000013F931193 AGAIN 17 teof.f90
teof.exe 000000013F93109B GO 12 teof.f90
teof.exe 000000013F931072 WE 9 teof.f90

Intel® Fortran Compiler Classic and Intel® Fortran Compiler Developer Guide and Reference 1

2535

teof.exe 000000013F931049 HERE 6 teof.f90
teof.exe 000000013F93101E MAIN__ 3 teof.f90
teof.exe 000000013F96ADCE Unknown Unknown Unknown
teof.exe 000000013F96B64C Unknown Unknown Unknown
kernel32.dll 0000000076CC59BD Unknown Unknown Unknown
ntdll.dll 0000000076EFA2E1 Unknown Unknown Unknown

Note that the initial two stack frames now show routines in image teof.exe, not libifcore.so (Linux) or
libifcorert.dll (Windows).

The routines are the same two runtime routines as previously reported for the shared library case but since
the application was linked against the archive library libifcore.a (Linux) or the static Fortran runtime library
libifcore.lib (Windows), the object modules containing these routines were linked into the application
image (teof.exe). You can use Generating Listing and Map Files to determine the locations of uncorrelated
program counters.

Now suppose the application was compiled without traceback enabled and, once again, linked against the
static Fortran library. The diagnostic output would appear as follows:

forrtl: severe (24): end-of-file during read, unit 10, file E:\USERS\xxx.dat
Image PC Routine Line Source
teof.exe 000000013F851FFB Unknown Unknown Unknown
teof.exe 000000013F8480A0 Unknown Unknown Unknown
teof.exe 000000013F841193 Unknown Unknown Unknown
teof.exe 000000013F84109B Unknown Unknown Unknown
teof.exe 000000013F841072 Unknown Unknown Unknown
teof.exe 000000013F841049 Unknown Unknown Unknown
teof.exe 000000013F84101E Unknown Unknown Unknown
teof.exe 000000013F87ADCE Unknown Unknown Unknown
teof.exe 000000013F87B64C Unknown Unknown Unknown
kernel32.dll 0000000076CC59BD Unknown Unknown Unknown
ntdll.dll 0000000076EFA2E1 Unknown Unknown Unknown

Without the correlation information in the image that option traceback previously supplied, the Fortran
runtime system cannot correlate Program Counters to routine name, line number, and source file. You can
still use the Generating Listing and Map Files to at least determine the routine names and what modules they
are in.

Remember that compiling with the traceback option increases the size of your application's image because
of the extra Program Counter correlation information included in the image. You can see if the extra
traceback information is included in an image (checking for the presence of a .trace section) by entering:

objdump -h your_app.exe ! Linux
link -dump -summary your_app.exe ! Windows

Build your application with and without traceback and compare the file size of each image. Check the file size
with a simple directory command.

For this simple teof.exe example, the traceback correlation information adds about 512 bytes to the image
size. In a real application, this would probably be much larger. For any application, the developer must decide
if the increase in image size is worth the benefit of automatic Program Counter correlation or if manually
correlating Program Counters with a map file is acceptable.

If an error occurs when traceback was requested during compilation, the runtime library will produce the
correlated call stack display.

If an error occurs when traceback was disabled during compilation, the runtime library will produce the
uncorrelated call stack display.

 1 Intel® Fortran Compiler Classic and Intel® Fortran Compiler Developer Guide and Reference

2536

If you do not want to see the call stack information displayed, you can set the Supported Environment
Variable FOR_DISABLE_STACK_TRACE to true. You will still get the Fortran runtime error message:

forrtl: severe (24): end-of-file during read, unit 10, file E:\USERS\xxx.dat

Example: Machine Exception Condition, Program ovf
The following program generates a floating-point overflow exception when compiled with the fpe option
value 0:

 program ovf
 real*4 a
 a=1e37
 do i=1,10
 a=hey(a)
 end do
 print *, 'a= ', a
 end
 real*4 function hey(b)
 real*4 b
 hey = watch(b)
 end
 real*4 function watch(b)
 real*4 b
 watch = out(b)
 end
 real*4 function out(b)
 real*4 b
 out = below(b)
 end
 real*4 function below(b)
 real*4 b
 below = b*10.0e0
 end

Assume this program is compiled with the following:

• Option fpe value 0
• Option traceback
• Option -O0 (Linux) or /Od (Windows)

On a system based on IA-32 architecture, the traceback output is similar to the following:

forrtl: error (72): floating overflow
Image PC Routine Line Source
ovf.exe 001211A3 _BELOW 23 ovf.f90
ovf.exe 0012116F _OUT 19 ovf.f90
ovf.exe 0012113D _WATCH 15 ovf.f90
ovf.exe 0012110B _HEY 11 ovf.f90
ovf.exe 0012104E _MAIN__ 5 ovf.f90
ovf.exe 0015B31F Unknown Unknown Unknown
ovf.exe 0015BADD Unknown Unknown Unknown
kernel32.dll 7515338A Unknown Unknown Unknown
ntdll.dll 770E9902 Unknown Unknown Unknown
ntdll.dll 770E98D5 Unknown Unknown Unknown

Notice that unlike the previous example of an unhandled I/O programming error, the stack walk can begin
right at the point of the exception. There are no runtime routines on the call stack to dig through. The
overflow occurs in routine BELOW at PC 001211A3, which is correlated to line 23 of the source file ovf.f90.

Intel® Fortran Compiler Classic and Intel® Fortran Compiler Developer Guide and Reference 1

2537

When the program is compiled at a higher optimization level of O2, along with option fpe value 0 and the
traceback option, the traceback output appears as follows:

forrtl: error (72): floating overflow
Image PC Routine Line Source
ovf.exe 00AE1059 _MAIN__ 7 ovf.f90
ovf.exe 00B1B75F Unknown Unknown Unknown
ovf.exe 00B1BADD Unknown Unknown Unknown
kernel32.dll 7515338A Unknown Unknown Unknown
ntdll.dll 770E9902 Unknown Unknown Unknown
ntdll.dll 770E98D5 Unknown Unknown Unknown

With option O2 in effect, the entire program has been inlined.

The main program, OVF, no longer calls routine HEY. While the output is not quite what one might have
expected intuitively, it is still entirely correct. You need to keep in mind the effects of compiler optimization
when you interpret the diagnostic information reported for a failure in a release image.

If the same image were executed again, this time with the environment variable called
TBK_ENABLE_VERBOSE_STACK_TRACE set to True, you would also see a dump of the exception context record
at the time of the error. Here is an excerpt of how that might appear on a system using IA-32 architecture:

forrtl: error (72): floating overflow
Hex Dump Of Exception Record Context Information:
Exception Context: Processor Control and Status Registers.
EFlags: 00010212
CS: 0000001B EIP: 00401161 SS: 00000023 ESP: 0012FE38 EBP: 0012FE60
Exception Context: Processor Integer Registers.
EAX: 00444488 EBX: 00000009 ECX: 00444488 EDX: 00000002
ESI: 0012FBBC EDI: F9A70030
Exception Context: Processor Segment Registers.
DS: 00000023 ES: 00000023 FS: 00000038 GS: 00000000
Exception Context: Floating Point Control and Status Registers.
ControlWord: FFFF0262 ErrorOffset: 0040115E DataOffset: 0012FE5C
StatusWord: FFFFF8A8 ErrorSelector: 015D001B DataSelector: FFFF0023
TagWord: FFFF3FFF Cr0NpxState: 00000000
Exception Context: Floating Point RegisterArea.
RegisterArea[00]: 4080BC143F4000000000 RegisterArea[10]: F7A0FFFFFFFF77F9D860
RegisterArea[20]: 00131EF0000800060012 RegisterArea[30]: 00000012F7C002080006
RegisterArea[40]: 02080006000000000000 RegisterArea[50]: 0000000000000012F7D0
RegisterArea[60]: 00000000000000300000 RegisterArea[70]: FBBC000000300137D9EF
...

See Also
traceback compiler option
fpe compiler option
O compiler option
Od compiler option

Allocate Common Blocks
Use option [Q]dyncom to dynamically allocate common blocks at runtime.

This option designates a common block to be dynamic. The space for its data is allocated at runtime rather
than at compile time. On entry to each routine containing a declaration of the dynamic common block, a
check is performed to see whether space for the common block has been allocated. If the dynamic common
block is not yet allocated, space is allocated at that time.

 1 Intel® Fortran Compiler Classic and Intel® Fortran Compiler Developer Guide and Reference

2538

The following command-line example specifies the dynamic common option with the names of the common
blocks to be allocated dynamically at runtime:

ifx -dyncom "blk1,blk2,blk3" test.f ! Linux
ifx /Qdyncom "blk1,blk2,blk3" test.f ! Windows

where blk1, blk2, and blk3 are the names of the common blocks to be made dynamic.

Guidelines for the [Q]dyncom Option
The following are some limitations that you should be aware of when using option [Q]dyncom:

• An entity in a dynamic common cannot be initialized in a DATA statement.
• Only named common blocks can be designated as dynamic COMMON.
• An entity in a dynamic common block must not be used in an EQUIVALENCE expression with an entity in a

static common block or a DATA-initialized variable.

Advantage of a Dynamic Common Block
Dynamic common blocks let you supply your own allocation routine to control common block allocation. To
use your own allocation routine, you should link it ahead of the Fortran runtime library.

The C function prototype is:

void _FTN_ALLOC(void **mem, int *size, char *name);
where

• mem is the location of the base pointer of the common block that must be set by the routine to point to
the block of memory allocated.

• size is the integer number of bytes of memory that the compiler has determined are necessary to allocate
for the common block as it was declared in the program.

You can ignore this value and use whatever value is necessary for your purpose. You must return the size
in bytes of the space you allocate. The library routine that calls the default or Fortran runtime function
ensures that all other occurrences of this common block fit in the space you allocated. You can return the
size in bytes of the space you allocate by modifying size.

• name is the name of the common block being dynamically allocated.

The equivalent Fortran INTERFACE specification is the following:

interface
subroutine my_ftn_alloc (mem, size, name) bind (C, name="_FTN_ALLOC")
 use, intrinsic :: ISO_C_BINDING
 implicit none

 type(C_PTR), intent(OUT) :: mem
 integer(C_INT), intent(INOUT) :: size
 character, dimension(*), intent(IN) :: name
end subroutine my_ftn_alloc
end interface

You can also use the Fortran runtime function FOR__SET_FTN_ALLOC to specify your own allocation routine.
This method is especially helpful when you are using shared libraries. If you choose this method, it overrides
the default routine _FTN_ALLOC.

Allocate Memory to Dynamic Common Blocks
The runtime library routine f90_dyncom performs memory allocation. The compiler calls this routine at the
beginning of each routine in a program that contains a dynamic common block. In turn, this library routine
calls _FTN_ALLOC to allocate memory.

Intel® Fortran Compiler Classic and Intel® Fortran Compiler Developer Guide and Reference 1

2539

By default, the compiler passes the size in bytes of the common block as declared in each routine to
f90_dyncom, and then on to _FTN_ALLOC. The Fortran runtime library contains a default version of
_FTN_ALLOC, which simply allocates the requested number of bytes and returns.

If you use the nonstandard extension having the common block of the same name declared with different
sizes in different routines, you may get a runtime error depending on the order in which the routines
containing the common block declarations are invoked.

Creating your own routine to dynamically allocate common blocks is especially useful when you are sharing
libraries. To use your own routine, you must specify the runtime function FOR__SET_FTN_ALLOC.

See Also
dyncom, Qdyncom compiler option
FOR__SET_FTN_ALLOC

Generate Listing and Map Files
Compiler-generated assembler output listings and linker-generated map files can help you understand the
effects of compiler optimizations and see how your application is laid out in memory. They may also help you
interpret the information provided in a stack trace at the time of an error.

How to Generate Assembler Output
When compiling from the command line, specify the S option:

ifx -S file.f90 ! Linux
ifx file.f90 /S ! Windows

Linux

The resulting assembly file name has an .s suffix.

Windows

The resulting assembly file name has an .asm suffix.

You can also use the Microsoft Visual Studio* Integrated Development Environment to generate assembler
output:

1. Select Project > Properties.
2. Click the Fortran tab.
3. In the Output Files category, change the Assembler Output settings according to your needs. You

can choose from a number of options such as No Listing, Assembly-only Listing, and Assembly,
Machine Code and Source.

How to Generate a Link Map (.map) File
When compiling from the command line, specify the -Xlinker and -M options (Linux) or the /map
(Windows) option:

ifx file.f90 -Xlinker -M ! Linux
ifx file.f90 /map ! Windows

Windows

You can also use the Microsoft Visual Studio* Integrated Development Environment to generate a link map:

1. Select Project>Properties.
2. Click the Linker tab.
3. In the Debug category, select Generate Map File.

 1 Intel® Fortran Compiler Classic and Intel® Fortran Compiler Developer Guide and Reference

2540

How to Generate a Source File Listing
You can use the list compiler option to create a listing of the source file. The listing can contain the
following information: a display of INCLUDE files, a symbol list with a line number cross reference for each
routine, and a list of compiler options used for the compilation.

Use the show compiler option to control the contents of the listing file.

Windows

You can also use the Microsoft Visual Studio* Integrated Development Environment to create a source file
listing:

1. Select Project > Properties.
2. Click the Fortran tab.
3. In the Output Files category, change the Source Listing setting to Yes.

See Also
show compiler option
list compiler option

Create Shared Libraries
You can create a shareable library by using one of the following compiler options:

Compiler Option OS Support Library

-shared Linux mylib.so

/libs:dll Windows mylib.dll

When you use any of these options, do not specify the c option.

See Also
shared compiler option
libs:dll compiler option
Create Libraries
Storing Routines in Shareable Libraries

Specify Alternative Tools and Locations
The default tools are summarized in the table below.

Tool Default OS Support Provided with Intel®
Fortran Compiler

Assembler Operating system
assembler as

Linux No

Microsoft* assembler
(MASM)

Linux

Windows

No

Linker System linker ld(1) Linux No

Microsoft* linker Windows No

The compiler lets you specify alternatives to default tools and locations for preprocessing, compilation,
assembly, and linking. In addition, you can invoke options specific to the alternate tools on the command
line. This functionality is provided by the compiler options Qlocation and Qoption..

Intel® Fortran Compiler Classic and Intel® Fortran Compiler Developer Guide and Reference 1

2541

See Also
Qlocation compiler option
Qoption compiler option

Temporary Files Created by the Compiler or Linker
Temporary files created by the compiler or linker reside in the directory used by the operating system to
store temporary files.

To store temporary files, the driver first checks for the TMP environment variable. If defined, the directory
that TMP points to is used to store temporary files.

If the TMP environment variable is not defined, the driver then checks for the TMPDIR environment variable.
If defined, the directory that TMPDIR points to is used to store temporary files.

If the TMPDIR environment variable is not defined, the driver then checks for the TEMP environment variable.
If defined, the directory that TEMP points to is used to store temporary files.

The following occurs if the TEMP environment variable is not defined:

Linux

The /tmp directory is used to store temporary files.

Windows

The current working directory is used to store temporary files.

Temporary files are usually deleted. Specify option [Q]save-temps to save temporary files created by the
compiler in the current working directory. This option only saves intermediate files that are normally created
during compilation.

For better performance, use a local drive (rather than a network drive) to contain temporary files.

To view the file name and directory where each temporary file is created, specify the all keyword for option
watch.

To create object files in your current working directory, specify option c.

Any object files that you specify on the command line are retained.

See Also
save-temps, Qsave-temps compiler option
watch compiler option
c compiler option

Use the Intel® Fortran COM Server on Windows
The Component Object Model (COM) supports a model of client server interaction between a user of an
object, the client, and the implementor of the object, the server.

This section discusses creating a COM server using Intel Fortran.

The following section, Use the Intel(R) Fortran Module Wizard (COM Client), discusses using COM and
Automation objects from an Intel® Fortran application, using the Fortran COM Server.

Advantages of a COM Server

This topic only applies to Windows.

A COM server consists of the implementation of one or more object classes. An object class is a type that
describes the complete public calling interface (the signature) of an object. It describes the functionality that
you want to make available to the users of the object. The COM server creates instances of the class, called
objects, at the request of clients.

Some of the advantages of implementing your Fortran code as a COM server include:

 1 Intel® Fortran Compiler Classic and Intel® Fortran Compiler Developer Guide and Reference

2542

• A COM server is a reusable component that allows multiple applications to use the server. The classes
specified by the server define a contract between the server and its clients. The server can change the
specific implementation of the functionality without breaking the contract. That is, without requiring
clients to be changed or rebuilt.

• A COM server is programming-language independent. Multiple development tools can be used to access
the server's functionality, including Microsoft Visual Basic*, C++, and Fortran.

• A COM server is self-describing. The server provides a type library that describes the classes and
interfaces. Many tools can take advantage of this information and relieve the client programmer from
needing to understand low-level invocation details, such as calling conventions. This is a great
improvement over multi-language programming with DLLs, where the client programmer has to
understand the details of data types and calling conventions.

• A COM server is self-registering. The clients do not need to worry about where the server is located on
their system, as COM finds this information in the system registry.

• A COM server can be implemented as an in-process server. Like a DLL, it is loaded into the client's
process. A COM server can also be implemented as a separate application and can even reside on a
separate machine.

Intel Fortran provides the Fortran COM Server application wizard and special editor for modifying the COM
Server structure and generating Fortran code necessary to implement a COM server. This allows you to
concentrate on the code that is specific to the functionality that your server provides to its clients.

As explained in COM and Automation Objects, COM supports two types of servers: COM servers and
Automation servers. The Fortran COM Server Wizard can only create a COM server or a server that supports
dual interfaces. The wizard cannot create an Automation-only interface.

For more information about creating COM servers, see Create the Fortran COM Server.

COM Server Concepts

This topic only applies to Windows.

The Fortran COM Server application wizard generates an initial Visual Studio project and creates a COM
Hierarchy file, which describes the infrastructure of a COM server. You can modify this file with the COM
Server Hierarchy Editor to define the implementation of one or more object classes, including its interface(s),
and method(s).

When you save the hierarchy file, the Fortran source files are generated. You then need to write code to
implement each method.

What Information You Need to Provide
When you create the COM Server project, you will need to describe the COM server classes that you want to
implement.

A class implements one or more COM interfaces. In COM terminology, an interface is a semantically related
set of functions. The interface as a whole represents a feature, or a set of related functionality, which is
implemented by the class. An interface contains methods, otherwise known as member functions. A method
is a routine that performs one of the actions that make up the feature. As far as the Fortran COM Server is
concerned, methods are Fortran functions that take arguments and return a value like any other Fortran
function.

Consider a simple example of a class that you will create using the Fortran COM Server Application Wizard,
called AddingMachine. The class contains a single interface that we call IAdd. By convention, all interface
names begin with a capital letter I. You can define three methods in the IAdd interface:

• Clear, which takes no arguments and sets the current value of the adding machine to 0.
• Add, which takes a single REAL argument, the amount to add to the current value.
• GetValue, which returns the current value.

These methods allow you to perform specific, distinct tasks with the IAdd interface from any language that
supports a COM client. The Fortran COM Server Editor provides a user interface to enter this information
about the class (in this case the AddingMachine class), which is discussed later in Create the Fortran COM
Server.

Intel® Fortran Compiler Classic and Intel® Fortran Compiler Developer Guide and Reference 1

2543

An interface can also contain properties. Properties are method pairs that set or return information about the
state of an object. Properties must currently be implemented using the get_Method and put_Method and the
same DISPID property.

In terms of the data associated with an object, a key concept of object-oriented programming is
encapsulation. Encapsulation means that all of the details about how the object is implemented, including the
data that it uses, and the logic that it uses to perform its work, is hidden from the client. The client's only
access to the object is through the interfaces that the object supports.

You need to define the data that the object uses and code the logic of the methods. For the data, the Fortran
COM Server Application Wizard uses the model that each instance of the object has an associated instance of
a Fortran derived type. The code generated by the wizard takes care of creating and destroying the instances
of the derived type as objects are created and destroyed.

You define the fields of the derived type. For example, with our AddingMachine class, each AddingMachine
object needs to store the current value. The derived type associated with each AddingMachine object would
contain a single field of type REAL. We name it CurrentValue.

Note that each instance of the AddingMachine object has its own instance of the derived type and its own
CurrentValue. This means that the server could support multiple clients simultaneously and each client
would see its own AddingMachine. That is, each client is unaffected by the existence of other clients. The
derived type associated with each object is discussed in detail in Create the Fortran COM Server.

To summarize, this is what you need to do to create a COM server:

• Create the COM Server project using the COM Server Application Wizard.
• Define the classes, interfaces, methods, and properties using the COM Server Hierarchy Editor to create

the Hierarchy file.
• Define the fields in the derived type that is associated with each instance of a class.
• Write code that initializes the fields in the derived type (if necessary), and code that releases any

resources used by the fields in the derived type (if necessary).
• Write the code that implements the methods.

What the COM Server Will Provide
The Fortran COM Server Editor generates source files that implement all of the infrastructure, or plumbing, of
the COM server. The generated files take care of such tasks as follow:

• Defining the GUIDs that uniquely identify your classes and interfaces.

For a discussion of GUIDs, see Get a Pointer to an Objects Interface.
• Registering the server and your classes and interfaces on the system.
• Implementing the class factory that creates instances of your object.
• Creating the Interface Definition Library (IDL) and type library that describes your classes and interfaces.

For a discussion of type libraries, see Use the Module Wizard to Generate Code.
• Implementing the IUnknown and IDispatch interfaces for your object.

All of the interfaces created by the Fortran COM Server Editor are derived from IUnknown or IDispatch
(dual interfaces).

• Creating and destroying instances of the derived type associated with your object.
• Invoking the Fortran routines that implement your object's methods.

The majority of these source files are generated fully by the Fortran COM Server Editor and are not modified
by you. Other files contain the skeleton or template of your derived type and methods. You edit these Fortran
source files to fill in your implementation.

Create the Fortran COM Server provides a walk-through of the AddingMachine example. It will show you
how it's done.

 1 Intel® Fortran Compiler Classic and Intel® Fortran Compiler Developer Guide and Reference

2544

Create the Fortran COM Server

This topic only applies to Windows.

This topic shows how to create a project, specify the COM server characteristics, generate code for, and
implement a sample Fortran COM server project called Adder.

The first step in creating a Fortran COM Server is to create a new project.

Create a Fortran COM Server Project using the Visual Studio* IDE
1. Start the Visual Studio IDE. Choose File > New > Project.
2. In the New Project dialog box:

a. Set Language to Fortran.
b. Set Platform to Windows.
c. Set Project Type to COM.

To create the sample project, select project template In-process Server (DLL) and click Next.

Now do the following:

1. Enter Adder as the name of the project.
2. Accept or modify the project folder location.
3. Click Create.

You can use the project AppWizard once per project to create the project files and skeleton template. The
Fortran COM Server AppWizard displays default text for the interface name and class derived type name.

Now do the following:

1. Enter class name AddingMachine.
2. Shorten the default interface name to IAdd.
3. Accept the default class derived type name.
4. Click Finish.

Note that if you click Cancel, project creation is terminated.

The project is created and the COM Server Hierarchy file (adder.hie) is opened in the COM Hierarchy Editor.

Use the COM Hierarchy Editor to Define your COM Server
The COM Hierarchy Editor lets you interactively define the attributes (for example, classes, interfaces, and
methods) for your COM server. The user interface contains two panes:

• The top pane is a tree control that displays attribute information in a hierarchy.
• The bottom pane is a panel that displays the IDL definition for a selected element in the hierarchy.

You can use "right-click" context menus to insert, delete, and modify items in the hierarchy. Context menus
also let you change item properties. For example, you can right-click the IAdd element and select
Properties to see the IAdd interface properties. You could then change the Is Dual property value to
False; this value indicates that the Adder example only supports a COM server interface.

An explanation of the hierarchy follows:

• The root is the COM server itself.
• The immediate children of the COM server are classes. The hierarchy initially contains a single class,

AddingMachine. You can add additional classes to the COM server.
• The immediate children of a class are interfaces and the class derived-type. In the example, the hierarchy

contains the interface IAdd and the class derived-type AddingMachine_InstanceData. Each class
contains one, and only one, class derived-type. You can add additional interfaces to the class.

• The immediate children of an interface are methods (one or more).
• The immediate children of a method are the method arguments (one or more).

Intel® Fortran Compiler Classic and Intel® Fortran Compiler Developer Guide and Reference 1

2545

To add a class, interface, method, property, or argument:

1. Select the parent item, right-click and select the appropriate Add... item.

To delete an item:

1. Select the item to be deleted, right-click and select Delete.
2. Click the Delete button.

Continuing with the Adder COM server example, add methods to the IAdd interface:

1. Right-click the IAdd interface and select Add Method.
2. Enter Clear as the name of the method.
3. Repeat steps 1 and 2, this time entering the name of Add.

The Add method requires an argument. To add the Operand argument named Operand:

1. Right-click on the Add method and select Add Argument.
2. Enter the argument name, Operand.

The default data type of an argument is INTEGER(4).

Proceeding with this example, use the Properties Window to change the Fortran Type property value to
REAL(4).

To add a third (and in this example, the last) method:

1. Right-click on the IAdd interface and select Add Method.
2. Enter GetValue as the name for the method.

The GetValue method requires an argument, CurrentValue. To add the CurrentValue argument:

1. Right-click on the GetValue method and select Add Argument.
2. Enter CurrentValue as the name of the argument.

For the CurrentValue argument:

1. Set Fortran Type property value to REAL(4).
2. Set Intent property values to [out,retval].

The server definition is now complete for this example. When you save the file using File > Save adder.hie,
the Fortran sources will be regenerated.

For detailed information about the property pages (right pane) for the server, class, interface, method,
argument, or instance properties, see Description of Property Pages.

To change the definition of your server, open adder.hie in the Editor.

Work with the Hierarchy Pane

As you have seen in the AddingMachine example, the hierarchy pane represents the definition of your
server; that is, the classes, interfaces, methods, and so on. The hierarchy pane's user interface supports the
following functionality:

Function Description

Expand/contract
an area

Click the plus sign (+) next to an item to display its children and the - to hide the
children.

Add a new entry Select the entry that will precede the new entry in the hierarchy, right-click and
select one of the New... menu options.

Delete an entry Select the item to be deleted, right-click and select Delete. All of an item's children
are deleted when the item is deleted.

 1 Intel® Fortran Compiler Classic and Intel® Fortran Compiler Developer Guide and Reference

2546

Function Description

Rename a member Select the item to be renamed, right-click and select Rename.

Change the
order of items

The hierarchy pane supports drag-and-drop to allow you to change the order of
items.

The order of some of the entries in the hierarchy is very important. In particular:

• The order of the methods in an interface defines the order of the methods in the
class' VTBL. Changing the order of the methods will break an existing client.

• The order of the arguments in a method defines the order of the arguments in
the method's interface. Changing the order of the arguments will break an
existing client.

Description of Property Pages

Property pages appear in the Properties Window. Property pages are available for the following:

• Server Properties
• Class Properties
• Interface Properties
• Method Properties
• Argument Properties
• Instance Type Properties

Server Property Description

Type Library
GUID

The unique identifier of the server's type library. In general, use the default value
generated by the Fortran COM Server Wizard.

Type Library
Version

The current version of the Type Library.

HelpString A string used to set the library's help string attribute in the IDL file.

Class Property Description

ProgID The version independent program ID (or text alias) for the class. The ProgID can be
used in calls such as COMCreateObjectByProgID.

Version The current version of the class. This value is appended to the ProgID to define the
version-specific ProgID.

Short name A short name for the class. This value is used in some of the generated file names.

Description A string used as the default value of the class' ProgID keys in the registry. This
string is often used by tools that display a list of the objects that are registered on
the system, such as the OLE-COM Object Viewer.

Help String A string used to set the class' help string attribute in the IDL file.

Threading model The threading model of the class. The two choices are Apartment and Single. See
Threading Models in Advanced COM Server Topics for information about the
implications of this choice.

CLSID The unique identifier of the class. In general, use the default value generated by the
Wizard.

Intel® Fortran Compiler Classic and Intel® Fortran Compiler Developer Guide and Reference 1

2547

Interface
Property

Description

Is Dual If true, then the dual interface attribute is set in the IDL file. A dual interface
supports both COM and Automation clients.

Is
OleAutomation

If true, then the interface uses only Automation-compatible data types as described
in Fortran COM Server Interface Design Considerations.

Is Default If true, then the default interface attribute is set for this interface in the IDL file. The
default attribute represents the default programmability interface of the object, and
is intended for use by macro languages.

Help String A string used to set the interface's help string attribute in the IDL file.

IID The unique identifier of the interface. In general, use the default value generated by
the Wizard.

Method Property Description

DISPID The identifier of the method used by Automation clients.

Help string A string used to set the method's help string attribute in the IDL file.

Property Method If checked, then the method is the get_ or put_ method of a property.

Argument
Property

Description

Fortran data
type

The Fortran data type of the argument. Select one of the data types from the list, or
type in the data type. See Fortran COM Server Interface Design Considerations for a
discussion of the implications of your choice.

IDL type The IDL data type. If you select one of the Fortran data types from the predefined
list, then this field defaults to the corresponding IDL data type. Select one of the
data types from the list, or type in the data type. See Fortran COM Server Interface
Design Considerations for a discussion of the implications of your choice.

Intent The INTENT of the argument, which is one of the following:

• [in] - the argument value is read but not modified by the method.
• [out] - the argument value is not read, but is modified by the method.
• [in, out] - the argument value is both read and modified by the method.
• [out, retval] - the argument represents the return value of the method.

By Reference Indicates that an argument is passed by reference rather than by value. Only valid
with Intent In. Intent Out and Intent InOut are automatically passed by reference.

Is Optional If true, then the argument is optional. Optional arguments are passed using the
Variant data type.

Dimensions Number of array dimensions (0 if the argument is scalar).

 1 Intel® Fortran Compiler Classic and Intel® Fortran Compiler Developer Guide and Reference

2548

Instance Type
Property

Description

Module name The name used for the module defined in the UclassnameTY.f90 file.

Constructor
name

The name used for the class constructor defined in the UclassnameTY.f90 file.

Destructor name The name used for the class destructor defined in the UclassnameTY.f90 file.

Modify the Generated Code

When you save the hierarchy file, Fortran sources are generated (or regenerated). Source files are stored as
follows:

• Source files that you will need to modify are placed in the Source Files folder.
• Files that are complete and need no modification are placed in the Do Not Edit folder.

Modify the following files in the Source Files folder:

• UAddingMachineTY.f90, which contains a module that defines your class derived-type.
• UIAdd.f90, which contains the implementation of the IAdd methods.

The file UAddingMachineTY.f90 contains the code.

The file contains a module named AddingMachine_USE (in the form classname_USE).

There are three places in this module where you may need to add code specific to your class:

• The first entry in the module, marked by <BnDEF> and <EnDEF>, is your class derived-type. Initially it
contains an "integer dummy" field to allow the module to be compiled without error. If your class has per-
object data, remove the integer dummy field line and add your data to the derived-type. For the
AddingMachine class, we add the following where the object stores the current value:

real (4) CurrentValue
• The module also contains two module procedures, AddingMachine_CONSTRUCTOR and

AddingMachine_DESTRUCTOR (referred to as classname_CONSTRUCTOR and classname_DESTRUCTOR
below). The former delineated with <BnCON> and <EnCON>; the latter is delineated with <BnDES> and
<EnDES>.

• The classname_CONSTRUCTOR procedure is called immediately after an instance of the class derived-type
is created because of the creation of a new object. This function is where you initialize the fields of the
class derived-type, if necessary. The new derived-type is passed as an argument to the function. For the
AddingMachine class, initialize the current value to 0 by adding the following statement:

ObjectData%CurrentValue = 0
• The classname_DESTRUCTOR procedure is called immediately before an instance of the class derived-type

is destroyed because an object is being destroyed. This function is where you release any resources used
by the fields of the class derived-type, if necessary. The derived-type is passed as an argument to the
function. For the AddingMachine class, there is nothing that needs to be added.

Now modify the other source file called UIAdd.f90. The original file UIAdd.f90 contains the code.

A file by the name Uinterfacename.f90 (for example UIadd.f90) is created for each interface defined by the
class. The file contains the methods of the class. Each method is named interfacename_methodname, for
example: IAdd_Clear. Each method is a function that is passed to the class derived-type as the first
argument. It gives the function access to the per-object data.

Each function returns a 32-bit COM status code called an HRESULT. S_OK is a parameter that defines a
success status. For additional information on COM status codes, see Fortran COM Server Interface Design
Considerations.

Intel® Fortran Compiler Classic and Intel® Fortran Compiler Developer Guide and Reference 1

2549

Replace the ! TODO: Add implementation line in each method with the code for the method. For the IAdd
interface, the implementation of its three methods is as follows:

For IAdd_Clear: ObjectData%CurrentValue = 0
For IAdd_Add: ObjectData%CurrentValue = ObjectData%CurrentValue + Operand
For IAdd_GetValue: CurrentValue = ObjectData%CurrentValue
Save the file and, from the Build menu, click Build Solution to build the server. The COM server is now
complete.

COM Server Projects and the Microsoft* Interface Definition Language (MIDL) Compiler
During the creation of a COM Server project -- either In-process Server (DLL) or Out-of-process Server
(EXE), as described in this section -- the application wizard determines whether Visual C++* is installed. If it
is installed, the Microsoft* Interface Definition Language (MIDL) compiler uses the Visual C++ preprocessor.
This setting is both the default and recommended setting. If Visual C++ is not installed, the application
wizard specifies that the MIDL compiler use the Fortran preprocessor for preprocessing MIDL source files.

It does this by setting the Additional Options property of the MIDL command line to include the following:

/cpp_cmdifort /cpp_opt"/nologo /fpp /P /E /Qoption,fpp,/no-fort-cont"
If, later, you install Visual C++ and want to specify that MIDL should use the Visual C++ preprocessor,
remove these options from the MIDL compiler Additional Options property.

Fortran COM Server Interface Design Considerations

This topic only applies to Windows.

This topic provides information that should be considered when designing a Fortran COM server. It contains
the following topics:

• Method and Property Data Types
• COM Status Codes: HRESULT
• Visual Basic*, Visual C++*, and Intel® C++ Client Notes

Method and Property Data Types
COM places some restrictions on the data types used in COM methods and properties. The reason for the
restrictions is that COM can pass arguments between threads, processes and machines. This behavior raises
issues that are not present in older technologies, such as DLLs, that always run in the same address space as
the caller.

COM defines set of data types called Automation-compatible data types. Automation-compatible data types
are the only data types that can be used in Automation and Dual interfaces. The following are two
advantages to restricting your COM interface to these data types:

• Your server will be usable from clients written in the largest set of languages, including Intel® Fortran,
Visual Basic, and Visual C++.

• COM will automatically handle the passing of arguments between threads, processes and machines. This
is called Type Library Marshalling. For more information, see Marshalling, Proxies and Stubs in Advanced
COM Server Topics.

To restrict your server to Automation-compatible data types:

1. Select Use only Automation data types on the Interface property page. When defining a dual interface,
this selection is automatically set.

2. Use only the following combinations of Fortran data type and Interface data type on the Argument
property page.

Note that Intel Fortran does not support the Currency, Decimal, or User Defined Type, Automation-
compatible data types.

 1 Intel® Fortran Compiler Classic and Intel® Fortran Compiler Developer Guide and Reference

2550

Fortran Date Type Interface Data Type

INTEGER(1) unsigned char

INTEGER(2) short

INTEGER(4) long

SCODE

Int

INTEGER(INT_PTR_KIND()) IUnknown*
IDispatch*

REAL(4) float

REAL(8) double

DATE

LOGICAL(2) VARIANT_BOOL

LOGICAL(4) long

CHARACTER(1) unsigned char

CHARACTER(*) BSTR

BYTE unsigned char

TYPE(VARIANT) VARIANT (containing one of the above types or SafeArray)

If you decide not to restrict your interface to Automation-compatible data types, the next approach is to
restrict your interface to data types that can be described in the Interface Description Language (IDL).

The Fortran COM Server Application Wizard automatically generates the IDL file from the description of your
server. The Microsoft Interface Definition Language (MIDL) compiler compiles the IDL file into a type library.
MIDL can also automatically generate the code needed handle the passing of arguments between threads,
processes and machines. Note, however, that a C compiler is required to use this option. For more
information, see Discussion of Wizard Code Generation in Advanced COM Server Topics.

If you decide not to restrict your interface to IDL data types, your only remaining options are as follows:

• Implement Custom Marshalling

For more information, see Marshalling, Proxies and Stubs in Advanced COM Server Topics.
• Decide that you will never use your server across apartment, thread, or process boundaries. The server

will not be usable in this manner because there is no way to pass the arguments across these boundaries.

COM Status Codes: HRESULT
Each function returns a 32-bit COM status code called an HRESULT. An HRESULT is divided into fields:

• The top bit (31) indicates whether the function succeeded or failed. The bit is set if the function failed. In
Fortran, you can compare the HRESULT to < 0 as a test to see if a function failed.

• Bits 16 to 27 contain a facility code to indicate the facility that issued the HRESULT. Microsoft predefines a
number of facility codes for its own use. If you create your own status codes, use FACILITY_ITF. All other
facility codes are reserved by Microsoft.

• The first 16 bits, or low word, contain the error code specific to the error that occurred.

Intel® Fortran Compiler Classic and Intel® Fortran Compiler Developer Guide and Reference 1

2551

A typical HRESULT error value could be a value such as 0x80070057. The first hex digit, 8, indicates that bit
31 is set and that this value is an error value. Bits 16 to 27 contain the value 7. This value indicates the
facility FACILITY_WIN32. The low word contains the value 0057. This value is the specific code that identifies
the error as E_INVALIDARG.

To view the text description that corresponds to a system HRESULT value, use the Error Lookup tool in the
Intel® Fortran program folder. For example, entering the value 0x80070057 retrieves the text message "The
parameter is incorrect.".

You can also search for HRESULT values in the WINERROR.H file in the \VC\INCLUDE directory.

Visual Basic*, Visual C++*, and Intel® C++ Client Notes
To use an object from Visual Basic, you must add a reference to the object to the Visual Basic project. Use
the References item in the Project menu to display a list of the registered objects. Select the object in the list
to inform Visual Basic that you will be using the object.

Here are some rules to be aware of when writing a server that can be used with Visual Basic clients:

• Use only the Automation-compatible data types (see Method and Property Data Types).
• Arguments to a method can be passed ByVal, ByRef, or they can be the function return value.
• An argument to be passed ByVal, must be defined with Intent set to In.
• An argument to be passed ByRef, must be defined with Intent set to InOut.
• A function return value must be defined with Intent set to Out. It must have the Return Value field

checked. The argument must be the final argument of the method.
• An array is always passed as a SafeArray ByRef. Therefore, it must be defined with Intent set to InOut.
• To use an argument of the Visual Basic Boolean data type, set the Fortran data type to LOGICAL(2) and

set the Interface data type to VARIANT_BOOL.

To use an object from C++, use the #import directive. The syntax of the #import directive is:

 #import "filename" [attributes]
 #import <filename> [attributes]

The file name is the name of the file containing the type library information. The directive makes the
information in the type library available to your source file as a set of C++ classes.

Advanced COM Server Topics

This topic only applies to Windows.

Advanced topics about Fortran COM Servers described in this section include:

• Choose Between DLL or EXE COM Servers
• DLL Server Surrogates
• Discussion of Wizard Code Generation
• Threading Models
• Marshalling, Proxies and Stubs
• A Map of the Generated Do Not Edit Code

Choose Between DLL or EXE COM Servers
The basic tradeoff in choosing between a DLL (in-process) COM server and an EXE (out-of-process) COM
server is one of performance vs. robustness:

• A DLL server provides the advantage of performance over an EXE server. Since the DLL server is loaded
into the client's address space, there is less overhead involved in method calls. If the client code and the
server object live in the same COM apartment, method calls are as efficient as DLL routine calls.

• An EXE server provides the advantage of robustness over a DLL server. Since the server object lives in a
separate address space, the object cannot be affected by client memory handling bugs, and vice versa. If
the server crashes, the client doesn't necessarily crash – as long as the client checks the results of all
method calls and takes steps to recover from a dead object.

 1 Intel® Fortran Compiler Classic and Intel® Fortran Compiler Developer Guide and Reference

2552

In addition to the tradeoff between performance and robustness, the following factors should also be
considered:

• With an EXE server, the object can run in a separate security context from the client. With a DLL server,
the code of the object's methods executes using the client's access token.

• An EXE server can be run on a remote machine using COM distributed object support.

You can load a DLL server into a surrogate to gain the benefits of an EXE server. This behavior is explained in
the next section.

DLL Server Surrogates
An in-process DLL server can be run in a separate process with the help of a surrogate. A surrogate runs as a
separate process, loads the DLL server, and provides all of the mechanism that allows the DLL server to act
as a local server. Windows provides a standard surrogate named DLLHOST.EXE.

The primary advantage of using a surrogate is fault isolation. That is, if the server crashes it does not crash
the client, and vice versa. The disadvantage is performance. Significant performance overhead occurs in
executing methods in a separate application, as opposed to in a DLL.

A DLL server is associated with a surrogate via entries in the system registry. This action is done by
associating the DLL server with an AppID. An AppID is a GUID. When using the standard surrogate, you can
use the CLSID of a class in the DLL as the AppID, or a newly generated GUID. To generate a new GUID, use
GUIDGEN.EXE in the Developer Studio Tools subdirectory:

1. Under the HKEY_CLASSES_ROOT\CLSID\{xxxxxxxx-xxxx-xxxx-xxxx-xxxxxxxxxxx} key of the class,
add an AppID entry with the value of the CLSID. Using the AddingMachine class as an example, the
registry key would be HKEY_CLASSES_ROOT\CLSID\{904245FC-DD6D-11D3-9835-0000F875E193}
and the AppID value would be {904245FC-DD6D-11D3-9835-0000F875E193}.

2. Under the HKEY_CLASSES_ROOT\AppID key, add a key using the AppID. Using the AddingMachine
class as an example, the registry key would be HKEY_CLASSES_ROOT\AppID\{904245FC-
DD6D-11D3-9835-0000F875E193}. Use the class name for the default value of the key, for example,
"AddingMachine Class". Add a "DllSurrogate" entry with an empty string for the value.

The client must request CLSCTX_LOCAL_SERVER rather than CLSCTX_INPROC_SERVER to use the surrogate
rather than loading the DLL server in-process. Using a surrogate requires that the DLL server have a proxy/
stub registered since the method invocations are between different processes. For information on proxies/
stubs, see Marshalling, Proxies and Stubs.

You can also write a custom surrogate. See the Windows Platform SDK documentation for information.

Discussion of Wizard Code Generation
The COM Server Application Wizard generates the code for your project from the files in the subdirectory of
your project named templates. The project-name.hie file contains the definition of your COM server in an
undocumented text language. You should not manually edit the project-name.hie file; the Wizard will do
that.

Most of the other files in the templates directory are templates of the source files generated for your
project. These templates contain source code that is copied "as-is" to the generated sources, and embedded
directives that guide the Wizard in generating the code specific to the COM server that you define. The
directives use the information in the project-name.hie file. The directives are undocumented and subject
to change.

When you create a new Fortran COM Server project, the AppWizard creates the templates directory and
copies the templates from the Fortran COM Server templates directory, ...\Intel Fortran\Templates
\COMServer.

Intel® Fortran Compiler Classic and Intel® Fortran Compiler Developer Guide and Reference 1

2553

The files in the templates directory may change with each release, but the templates in your templates
directory are never automatically updated. For example, if you create a COM server using Intel® Fortran
Version 19.0 and the next release of Intel® Fortran (such as Version 19.1) contains updated templates, the
templates for your COM server are not automatically updated to the new 19.1 templates. If you modify the
definition of your server, your project continues to use the templates that it was created with. This behavior
has the advantage of not introducing different code into a project that you have developed and tested.

However, there are two cases where you may want to modify the templates that are used by your project:

• When a new release of Intel® Fortran contains additional features that can be used in your COM server
project.

Some of the new features may depend on the new templates. These features will not be available to a
pre-existing project unless you update the templates in the templates directory. You do this by copying
all of the files in the Fortran COM Server templates directory ...\Intel Fortran\Templates
\COMServer into the templates directory, replacing all files with the same name. Your project will then
use the new templates the next time that the definition of your server is modified and the project sources
are regenerated.

• When you want to modify the code generated by the Wizard. You may edit a template in your templates
directory. Editing code that is copied as-is is straightforward. Attempting to modify the embedded
directives is unsupported and could cause the Wizard to fail when using the modified template. The
embedded directives begin with an @ (at-sign) character. The next character determines the type of
directive.

The end of many directives is also delimited by an @ character followed by the matching end character for
the type of directive. For example, @[and @] are the delimiters for one type of directive.

The advantage of modifying a template is that you can customize the code generated by the Wizard. The
disadvantages of modifying a template are:

• You must be very careful not to modify a template in a manner that causes the Wizard to generate bad
code or fail.

• You will not be able to update the project templates with the templates from a new release of Intel®
Fortran without having to re-apply your modifications to the new templates.

Threading Models
The Wizard supports two COM threading models for the classes that you create in a DLL COM server,
Apartment and Single. The Wizard uses the Apartment threading model, also known as the Single Threaded
Apartment model (STA), by default. The basic rules of the Apartment threading model are:

• If two objects, A and B, are created in the same STA thread, and A is processing a method call, no other
client can call either A or B until A completes.

• If B is created in a different thread from A, B can accept a method call while A is still processing and vice
versa.

This means that if the class shares any global data among its objects, the global data must be protected
from simultaneous access using thread synchronization primitives. This is because two instances of the class
could be running in different threads. However the per-object instance data, that is, the fields in the class
derived-type, are protected from simultaneous access by COM mechanisms. This is true except in the case
where an object calls out to another object that triggers a reentrant invocation of the first object.

A class using the Single threading model need not worry about simultaneous access to class global data, as
well as per-object data. All objects of the class are created in a single thread and therefore only a single
object of the class can be executing at any time.

An EXE COM server generated by the wizard is single threaded. All method invocations are serialized by the
server's message queue. Therefore, with an EXE server, you need not worry about simultaneous access to
class global data, as well as per-object data.

 1 Intel® Fortran Compiler Classic and Intel® Fortran Compiler Developer Guide and Reference

2554

Explaining the COM threading models in detail is beyond the scope of this documentation. See the Windows
Platform SDK documentation for additional information.

Marshalling, Proxies and Stubs
COM supports the use of objects in separate processes (as when using an EXE server or a DLL surrogate),
and the threading models described above, by the use of marshalling, proxies and stubs. This section
presents an overview of marshalling, proxies and stubs.

Marshalling is the process of reading the parameters for a method call and preparing them for transmission
to another execution context (for example, thread, process, or machine). Marshalling is done by a proxy.
From the client's perspective, a proxy has the same interface as the object itself. The proxy's job is to make
the object look like an object in the same execution context as the client.

Proxies allow client code to be unconcerned about where the object actually lives. A proxy marshalls the
method parameters and transmits them to a stub associated with the object in the server. The stub
unmarshalls the parameters and invokes the method in the server. From the server's perspective, this
behavior is no different from when it is called from a client in the same execution context.

A server that is not an in-process DLL server always requires a proxy/stub pair. An in-process DLL server
requires a proxy/stub pair when the client and object are in different apartments.

The following are the three ways to assign a proxy/stub pair to a server:

Marshalling
Method

Description

Type Library
Marshalling:

If you use only Automation-compatible data types in your methods and properties,
COM can automatically use the Universal Marshaller as the proxy/stub for the server.

The Universal Marshaller uses the description of the server in the type library to
decide how to marshall the parameters. This behavior is known as type library
marshalling.

Using type library marshalling requires no effort on your part, other than restricting
your server to Automation-compatible data types.

MIDL-based
Marshalling:

Your project uses the Microsoft Interface Definition Language (MIDL) compiler to
compile the IDL description of the server into a type library. At the same time, the
MIDL compiler also generates the C source code necessary to build a proxy/stub DLL
for the server.

You must have a C compiler to build a proxy/stub DLL from the MIDL generated
code. The proxy/stub DLL is itself an in-process DLL server and needs to be
registered with the system.

You need to use MIDL-based marshalling if your server uses non-Automation-
compatible data types, and is used by a client in a different execution context.

Custom
Marshalling:

Your server can implement its own marshalling by implementing the IMarshall
interface.

This approach typically involves a lot of work and is usually done for performance
reasons.

A Map of the Generated Do Not Edit Code
This section presents an overview of which parts of the COM server functionality are implemented as Do Not
Edit source files generated by the application wizard:

Intel® Fortran Compiler Classic and Intel® Fortran Compiler Developer Guide and Reference 1

2555

File Name Description

server.idl Contains the IDL description of the server. It is compiled by the MIDL compiler to
produce the server's type library.

servernameglobal.f
90

Contains the global data and functions for the server.

dllmain.f90

(DLL server)

Contains the exported functions that are required of all COM Server DLLs. These
functions include DllMain, DLLRegisterServer, DLLUnregisterServer,
DllGetClassObject, and DllCanUnloadNow.

exemain.f90

(EXE server)

Contains the main entry point of an EXE server. It also processes the command-line
argument.

serverhelper.f90 Contains helper functions for the server.

clsfactty.f90 Contains definitions of the IClassFactory interface that is used to create instances of
the classes defined by the server.

clsfact.f90 Contains methods of the IClassFactory interface that is used to create instances of
the classes defined by the server.

classnameTY.f90 Defines a module that contains definitions of parameters and types used in the
implementation of the class. It also contains the implementation of the IUnknown
methods of the class.

A separate instance of this file is generated for each class defined in the server.

interfacename.f90 Defines a module that contains the Fortran interfaces of the methods in the
interface. It also contains the implementation of the Fortran wrappers that are called
directly from the class VTBL and call the methods implemented by the user.

A separate instance of this file is generated for each interface defined in the class.

Deploy the COM Server on Another System

This topic only applies to Windows.

When you have finished developing the COM server, you may want to deploy it on another system. Besides
the server itself, you need to install the Fortran runtime DLLs and register the server:

1. Install (or copy) the COM server to an appropriate directory.
2. Register the server:

• To register a DLL server, use the REGSVR32.EXE system tool, a command-line tool. To register the
DLL server, specify the path to the DLL and its file name (dll_path) by typing the following
command:

REGSVR32 dll_path
• The file REGSVR32.EXE is in your system directory, such as the \Winnt\System32 on Windows NT*

or Windows 2000 systems. If this directory is not in your PATH, include its path before the
REGSVR32 command.

• To register an EXE server, run the server with the /REGSERVER command-line option. For example:

exe_path /REGSERVER
If you are using Microsoft Interface Definition Language (MIDL) based Marshalling or Custom Marshalling,
then the marshalling DLL also needs to be installed and registered. For information on marshalling, see
Advanced COM Server Topics.

 1 Intel® Fortran Compiler Classic and Intel® Fortran Compiler Developer Guide and Reference

2556

Use the Intel® Fortran Module Wizard (COM Client) on Windows
Intel® Fortran provides a wizard to simplify the use of Component Object Model (COM) and Automation
(formerly called OLE Automation) objects. The Intel® Fortran Module Wizard generates Standard Fortran
modules that simplify calling COM and Automation services from Fortran programs. This Fortran code lets you
invoke methods of an Automation object and member functions of a Component Object Model (COM) object.

The following sections describe the use of COM and Automation objects as clients with Intel Fortran.

COM and Automation Objects

This topic only applies to Windows.

This section provides a brief overview of:

• COM Objects
• Automation Objects
• Object Servers

COM Objects
The Component Object Model (COM) provides mechanisms for creating reusable software components. COM
is an object-based programming model designed to promote software interoperability; that is, to allow two or
more applications or components to easily cooperate with one another, even if they were written by different
vendors at different times, in different programming languages, or if they are running on different machines
running different operating systems.

With COM, components interact with each other and with the system through collections of function calls,
also known as methods or member functions or requests, called interfaces. An interface is a semantically
related set of member functions. The interface as a whole represents a feature of an object. The member
functions of an interface represent the operations that make up the feature. In general, an object can
support multiple interfaces and you can use COMQueryInterface to get a pointer to any of them.

The Intel Fortran COM routines provide a Fortran interface to basic COM functions.

Automation Objects
The capabilities of an Automation objectresemble those of a COM object. An Automation object is in fact a
COM object that implements the interface IDispatch. An Automation object exposes:

• Methods, which are functions that perform an action on an object. These are very similar to the member
functions of COM objects.

• Properties, which hold information about the state of an object. A property can be represented by a pair
of methods; one for getting the property's current value, and one for setting the property's value.

The AUTO routines provide a Fortran interface to invoking an automation object's methods and setting and
getting its properties.

Object Servers
COM and Automation objects are made available to users by COM and Automation servers. A COM or
Automation server can be implemented either as:

• A DLL that is loaded into your process
• A separate executable program. The separate executable program can reside on the same system as your

application or on a different system.

The Role of the Module Wizard

This topic only applies to Windows.

Follow these steps to use COM and Automation objects from a Fortran program:

Intel® Fortran Compiler Classic and Intel® Fortran Compiler Developer Guide and Reference 1

2557

1. Find or install the object server on the system

COM and Automation objects can be registered by other programs you install, or by creating the object
server yourself, for example, by using Visual C++*, or Visual Basic*.

For example, the Microsoft visual development environment registers certain objects during installation
(see the Microsoft documentation).

Creating an object server involves deciding what type of object and what type of interfaces or methods
should be available. The object's server must be designed, coded, and tested like any other application.

For information about object server creation, see Create the Fortran COM Server.
2. Determine the following about the object:

• Whether it has a COM interface, Automation interface, or both.
• Where the object's type information is located.

You should be able to obtain this information from the object's documentation. You can use the
OLE/COM Object Viewer tool from the development environment Tools menu to determine the
characteristics of an object on your system.

3. Use the Intel® Fortran Module Wizard to generate code.

The module wizard is an application that allows you to select a COM or Automation object and set
generated code options. The information collected by the module wizard is used in the generated code.

To learn about using the Intel® Fortran module wizard, see Use the Module Wizard to Generate Code.
4. Write a Fortran program to invoke the code generated by the Intel® Fortran module wizard.

To understand more about calling the interfaces and jacket routines created by the module wizard, see
Call the Routines Generated by the Module Wizard.

Use the Module Wizard to Generate Code

This topic only applies to Windows.

To run the Intel® Fortran Module Wizard:

• Select Tools > Intel Compiler > Intel® Fortran Module Wizard.

The module wizard displays a series of dialog boxes allowing you to select the COM or Automation object
and provide additional information.

COM and automation objects are self-describing, using type information. An object's type information
contains programming language independent descriptions of the object's interfaces. Type information can
be obtained from the object's type library.

A type library is a collection of type information for any number of object classes, interfaces, and so on.
You can store a type library in a file of its own (usually with an extension of .TLB) or it can be part of
another file. For example, the type library that describes a DLL can be stored in the DLL itself.

• After you start the module wizard, the COM tab of the dialog box displays the list of type libraries that are
registered on your system. There is also a .NET tab, which is explained in Use .NET Components.

The list in the module wizard has three columns:

• The component name
• The component version number
• The path to the type library

You can select a single component from the list, or click the Browse for Type Library… button to find a
type library on your system.

The dialog box also provides the Generate code that uses Automation interfaces option. If the option is
not selected, the Wizard will generate code to use the COM interfaces of the component.

The documentation of the component should tell you whether the component implements COM interfaces,
Automation interfaces, or dual interfaces. A dual interface supports both COM and Automation interfaces.
For a component that supports dual interfaces, you can check the Generate code that uses Automation
interfaces option, or leave it unchecked. The COM interfaces tend to be more efficient (better runtime
performance).

 1 Intel® Fortran Compiler Classic and Intel® Fortran Compiler Developer Guide and Reference

2558

ActiveX controls implement an Automation interface. When using an ActiveX control, check the Generate
code that uses Automation interfaces option.

• After you select a component from the list or by browsing using the Browse for Type Library… button,
click Next>.

This dialog box lists the members that are defined in the type library. Click the Select All button to select
all of the members of the type library, or select individual members from the list. The Wizard uses the
selected members.

This dialog box also contains two options regarding the code to be generated by the Wizard:

• Select Generate DLLEXPORT statements if you plan to place the generated module in a DLL for use
by other projects. The Wizard will generate the DLLEXPORT statements to make the routines in the
module visible outside of the DLL.

• Check for exception return status (Automation only) is active if you checked the Generate code
that uses Automation interfaces option in the first dialog box. Select this option if you want the Wizard
to generate code to check the return status of each Automation method or property invocation, and to
display a dialog box when an error is generated.

• Change the module name if desired and select Finish.

Use .NET Components
The .NET tab is available on the first dialog box. The module wizard cannot directly read the type information
of a .NET component. However, the .NET Framework Tools (provided with Visual Studio*) contain the Type
Library Exporter (Tlbexp.exe). The Type Library Exporter generates a COM type library that describes the
types defined in a .NET component (also known as a common language runtime assembly).

Select the .NET tab to view the assemblies that are registered in your system’s Global Assembly Cache
(GAC). The list contains the same three columns as the COM tab, as well as a Browse for Assembly button.
Select a .NET component from the list, or use the Browse for Assembly button to select a .NET component
on your system.

Click Next > to run the Type Library Exporter tool to create a type library from the .NET component. If the
tool returns an error message, the message is displayed in a dialog box and the Wizard returns to its first
dialog box. In this case, no Fortran module is generated. If the tool succeeds, the second Wizard dialog box
is displayed with the members found in the type library.

There are restrictions on the .NET components that can be used with the Type Library Exporter tool. For
example, a common error message returned by Type Library Exporter tool is the following:

You cannot use Tlbexp.exe to produce a type library from an assembly that was imported
using the Type Library Importer (Tlbimp.exe). Instead, you should refer to the original
type library that was imported with Tlbimp.exe.
In this case, the .NET assembly was created from the information in a type library, and you must obtain the
original type library from the assembly provider in order to use it with the Module Wizard.

The Wizard runs the Type Library Exporter tool with the /nologo /silent options. You can also run the tool
to create a type library before running the Module Wizard if you prefer.

Intel® Fortran Module Wizard Command Line Interface
The Intel® Fortran Module Wizard also has a command-line interface. The MODWIZ command has the following
form:

MODWIZ [options] typeinfo-name
To see a list of MODWIZ command options and an explanation of typeinfo-names, type the following command
in a Fortran command prompt (available from the Intel® Fortran Compiler program folder):

MODWIZ /?

Intel® Fortran Compiler Classic and Intel® Fortran Compiler Developer Guide and Reference 1

2559

Call the Routines Generated by the Module Wizard

This topic only applies to Windows.

Although Standard Fortran does not support objects, it does provide Standard Fortran modules. A module is
a set of declarations that are grouped together under a global name, and are made available to other
program units by using the USE statement.

The Intel® Fortran Module Wizard generates a source file containing one or more modules. The types of
information placed in the modules include:

• Derived-type definitions are Fortran equivalents of data structures that are found in the type information.
• Constant definitions are Fortran PARAMETER declarations that include identifiers and enumerations found

in the type information.
• Procedure interface definitions are Fortran interface blocks that describe the procedures found in the type

information.
• Procedure definitions are Fortran functions and subroutines that are jacket routines for the procedures

found in the type information.

The jacket routines make the external procedures easier to call from Fortran by handling data conversion and
low-level invocation details.

The use of modules allows the Intel® Fortran Module Wizard to encapsulate the data structures and
procedures exposed by an object or DLL in a single place. You can then share these definitions in multiple
Fortran programs.

The appropriate USE statement needs to be added in your program, as well as function invocations or
subroutine calls.

The routines generated by the Intel® Fortran Module Wizard are designed to be called from Fortran. These
routines in turn call the appropriate system routines (not designed to be called from Fortran), thereby
simplifying the coding needed to use COM and Automation objects.

Intel® Fortran provides a set of runtime routines that present to the Fortran programmer a higher level
abstraction of the COM and Automation functionality. The Fortran interfaces that the wizard generates hide
most of the differences between Automation objects and COM objects.

Depending on the options specified, the IFCOM and IFAUTO routines can be present in the generated code.

The following table summarizes the IFCOM routines:

IFCOM Routines Description

COMAddObjectReference Adds a reference to an object's interface.

COMCLSIDFromProgID Passes a programmatic identifier and returns the corresponding class identifier.

COMCLSIDFromString Passes a class identifier string and returns the corresponding class identifier.

COMCreateObject A generic routine that executes either COMCreateObjectByProgID or
COMCreateObjectByGUID.

COMCreateObjectByGUI
D

Passes a class identifier and creates an instance of an object. It returns a
pointer to the object's interface.

COMCreateObjectByProg
ID

Passes a programmatic identifier and creates an instance of an object. It
returns a pointer to the object's IDispatch interface.

COMGetActiveObjectByG
UID

Pass a class identifier and returns a pointer to the interface of a currently
active object.

COMGetActiveObjectByP
rogID

Passes a programmatic identifier and returns a pointer to the IDispatch
interface of a currently active object.

COMInitialize Initializes the COM library. You must initialize the library before calling any
other COM or AUTO routine.

COMIsEqualGUID Determines if two GUIDs are the same.

 1 Intel® Fortran Compiler Classic and Intel® Fortran Compiler Developer Guide and Reference

2560

IFCOM Routines Description

COMGetFileObject Passes a file name and returns a pointer to the IDispatch interface of an
Automation object that can manipulate the file.

COMQueryInterface Passes an interface identifier and it returns a pointer to an object's interface.

COMReleaseObject Indicates that the program is done with a reference to an object's interface.

COMStringFromGUID Passes a GUID and returns the corresponding string representation.

COMUninitialize Uninitializes the COM library. This must be the last COM routine that you call.

The following table summarizes the IFAUTO routines:

IFAUTO Automation
Routines

Description

AUTOAddArg Passes an argument name and value and adds the argument to the argument
list data structure.

AUTOAllocateInvokeArgs Allocates an argument list data structure that holds the arguments that you will
pass to AUTOInvoke.

AUTODeallocateInvokeA
rgs

Deallocates an argument list data structure.

AUTOGetExceptInfo Retrieves the exception information when a method has returned an exception
status.

AUTOGetProperty Passes the name or identifier of the property and gets the value of the
Automation object's property.

AUTOGetPropertyByID) Passes the member ID of the property and gets the value of the Automation
object's property into the argument list's first argument.

AUTOGetPropertyInvoke
Args

Passes an argument list data structure and gets the value of the Automation
object's property specified in the argument list's first argument.

AUTOInvoke Passes the name or identifier of an object's method and an argument list data
structure. It invokes the method with the passed arguments.

AUTOSetProperty Passes the name or identifier of the property and a value. It sets the value of
the Automation object's property.

AUTOSetPropertyByID Passes the member ID of the property and sets the value of the Automation
object's property using the argument list's first argument.

AUTOSetPropertyInvoke
Args

Passes an argument list data structure and sets the value of the Automation
object's property specified in the argument list's first argument.

The following code shows an annotated version of a portion of the code generated by the Intel® Fortran
Module Wizard. This code is generated from the COM type information for the Save method of the IGeneric
Document interface.

 INTERFACE
 ! Saves the document to disk.
 !
 ! If the type information provides a comment that describes the member
 ! function, then the comment is placed before the beginning of the procedure.

 INTEGER*4 FUNCTION IGenericDocument_Save($OBJECT, vFilename, &
 vBoolPrompt, pSaved)
 !

Intel® Fortran Compiler Classic and Intel® Fortran Compiler Developer Guide and Reference 1

2561

 ! The first argument to the procedure is always $OBJECT. It is a pointer to
 ! the object'sinterface. The remaining argument names are determined from the
 ! type information.
 !
 USE IFWINTY
 INTEGER (INT_PTR_KIND()), INTENT(IN) :: $OBJECT ! Object Pointer

 !DIR$ ATTRIBUTES VALUE :: $OBJECT
 !
 ! This is an example of an ATTRIBUTES directive statement used to specify the
 ! calling convention of an argument.
 !
 TYPE (VARIANT), INTENT(IN), OPTIONAL :: vFilename ! (Optional Arg)
 !
 ! A VARIANT is a data structure that can contain any type of Automation data.
 ! It contains a field that identifies the type of data and a union that holds
 ! the data value. The use of aVARIANT argument allows the caller to use any
 ! data type that can be converted into the datatype expected by the member
 ! function.

 !DIR$ ATTRIBUTES REFERENCE :: vFilename
 TYPE (VARIANT), INTENT(IN), OPTIONAL :: vBoolPrompt ! (Optional Arg)
 !DIR$ ATTRIBUTES REFERENCE :: vBoolPrompt
 INTEGER, INTENT(OUT) :: pSaved ! DsSaveStatus
 !
 ! Nearly every COM member function returns a status of type HRESULT. Because
 ! of this, if a COM member function produces output, it uses output arguments
 ! to return the values. In thisexample, pSaved returns a routine specific
 ! status value.

 !DIR$ ATTRIBUTES REFERENCE :: pSaved
 !DIR$ ATTRIBUTES STDCALL :: IGenericDocument_Save
 END FUNCTION IGenericDocument_Save
 END INTERFACE
 POINTER(IGenericDocument_Save_PTR, IGenericDocument_Save) ! routine pointer
 !
 ! The interface of a COM member function looks very similar to the interface
 ! for a dynamic link library function with one major exception. Unlike a DLL
 ! function, the address of a COM member function is never known at program link
 ! time. You must get a pointer to an object's interface at runtime, and the
 ! address of a particular member function is computed from that.

For information on how to get a pointer to an object's interface, see Get a Pointer to an Objects Interface.

The following code shows an annotated version of the wrapper generated by the Module Wizard for the Save
function. The name of a wrapper is the same as the name of the corresponding member function, prefixed
with a $ character.

 ! Saves the document to disk.
 INTEGER*4 FUNCTION $IGenericDocument_Save($OBJECT, vFilename, &
 !
 ! The wrapper takes the same argument names as the member function
 ! interface.
 !
 vBoolPrompt, pSaved)
 IMPLICIT NONE
 INTEGER(INT_PTR_KIND()), INTENT(IN) :: $OBJECT ! Object Pointer
 !DIR$ ATTRIBUTES VALUE :: $OBJECT

 1 Intel® Fortran Compiler Classic and Intel® Fortran Compiler Developer Guide and Reference

2562

 TYPE (VARIANT), INTENT(IN), OPTIONAL :: vFilename
 !DIR$ ATTRIBUTES REFERENCE :: vFilename
 TYPE (VARIANT), INTENT(IN), OPTIONAL :: vBoolPrompt
 !DIR$ ATTRIBUTES REFERENCE :: vBoolPrompt
 INTEGER, INTENT(OUT) :: pSaved ! DsSaveStatus
 !DIR$ ATTRIBUTES REFERENCE :: pSaved
 INTEGER(4) $RETURN
 INTEGER(INT_PTR_KIND()) $VTBL ! Interface Function Table
 !
 ! The wrapper computes the address of the member function from the interface
 ! pointer and an offset found in the interface's type information.
 ! In implementation terms, an interface pointer is a pointer to a pointer
 ! to an array of function pointers called an Interface Function Table.
 !
 POINTER($VPTR, $VTBL)
 TYPE (VARIANT) :: $VAR_vFilename
 TYPE (VARIANT) :: $VAR_vBoolPrompt
 IF (PRESENT(vFilename)) THEN
 !
 ! Arguments to a COM or Automation routine can be optional. The wrapper
 ! handles the invocation details for specifying an optional argument that
 ! is not present in the call.
 !
 $VAR_vFilename = vFilename
 ELSE
 $VAR_vFilename = OPTIONAL_VARIANT
 END IF
 IF (PRESENT(vBoolPrompt)) THEN
 $VAR_vBoolPrompt = vBoolPrompt
 ELSE
 $VAR_vBoolPrompt = OPTIONAL_VARIANT
 END IF
 $VPTR = $OBJECT ! Interface Function Table
 !
 ! The offset of the Save member function is 84. The code assigns the
 ! computed address to the function pointer IGenericDocument_Save_PTR,
 ! which was declared with the interface shown above, and then calls
 ! the function.
 !
 $VPTR = $VTBL + 84 ! Add routine table offset
 IGenericDocument_Save_PTR = $VTBL
 $RETURN = IGenericDocument_Save($OBJECT, $VAR_vFilename, &
 $VAR_vBoolPrompt, pSaved)
 $IGenericDocument_Save = $RETURN
 END FUNCTION $IGenericDocument_Save

The following code shows an annotated version of a portion of the code generated by the Module Wizard from
Automation type information for the Rebuild All method of the IApplication interface.

 ! Rebuilds all files in a specified configuration.
 SUBROUTINE IApplication_RebuildAll($OBJECT, Configuration, $STATUS)
 !
 ! The first argument to the procedure is always $OBJECT. It is a pointer
 ! to an Automation object's IDispatch interface. The last argument to
 ! the procedure is always $STATUS. It is an optional argument that you
 ! can specify if you wish to examine the return status of the method.
 !
 ! The IDispatch Invoke member function returns a status of type HRESULT.
 ! An HRESULT is a 32-bit value. It has the same structure as a Windows

Intel® Fortran Compiler Classic and Intel® Fortran Compiler Developer Guide and Reference 1

2563

 ! error code. In between the $OBJECT and $STATUS arguments are the
 ! method argument names determined from the type information.
 ! Sometimes, the type information does not provide a name for an
 ! argument. In this case, the Module Wizard creates a $ARGn name.

 IMPLICIT NONE
 INTEGER(INT_PTR_KIND()), INTENT(IN) :: $OBJECT ! Object Pointer
 !DIR$ ATTRIBUTES VALUE :: $OBJECT
 TYPE (VARIANT), INTENT(IN), OPTIONAL :: Configuration
 !DIR$ ATTRIBUTES REFERENCE :: Configuration
 INTEGER(4), INTENT(OUT), OPTIONAL :: $STATUS ! Method status
 !DIR$ ATTRIBUTES REFERENCE :: $STATUS
 INTEGER(4) $$STATUS
 INTEGER (INT_PTR_KIND) invokeargs
 invokeargs = AUTOALLOCATEINVOKEARGS()
 !
 ! AUTOALLOCATEINVOKEARGS allocates a data structure that is used to
 ! collect the arguments that you will pass to the method.
 ! AUTOAddArg adds an argument to this data structure.
 !
 IF (PRESENT(Configuration)) CALL AUTOADDARG(invokeargs, '$ARG1', &
 Configuration, AUTO_ARG_IN)
 $$STATUS = AUTOINVOKE($OBJECT, 28, invokeargs)
 !
 ! AUTOINVOKE invokes the named method passing the argument list.
 ! This returns a status result.
 !
 IF (PRESENT($STATUS)) $STATUS = $$STATUS
 !
 ! If the caller supplied a status argument, the code copies the
 ! status result to it.
 !
 CALL AUTODEALLOCATEINVOKEARGS (invokeargs)
 !
 ! AUTODEALLOCATEINVOKEARGS deallocates the memory used by the argument
 ! list data structure.
 !
 END SUBROUTINE IApplication_RebuildAll

Get a Pointer to an Object's Interface

This topic only applies to Windows.

To get a pointer to an object's interface, you need to know the object's unique identifier.

Object Identification
Object identification enables the use of COM objects created by disparate groups of developers. To provide a
method of uniquely identifying an object class regardless of where it came from, COM uses globally unique
identifiers (GUIDs). A GUID is a 16-byte integer value that is guaranteed (for all practical purposes) to be
unique across space and time. COM uses GUIDs to identify object classes, interfaces, and other things that
require unique identification.

To create an instance of an object, you need to tell COM what the GUID of the object is. While using 16-byte
integers for identification is fine for computers, it poses a challenge for the typical developer. So, COM also
supports the use of a less precise, textual name called a programmatic identifier (ProgID). A ProgID takes
the form:

application_name .object_name .object_version

 1 Intel® Fortran Compiler Classic and Intel® Fortran Compiler Developer Guide and Reference

2564

Obtain the Pointer to an Object's Interface
To use the routines generated by the Module Wizard, your application must get a pointer to an object's
interface. This pointer is used as the value of the $OBJECT argument, which is the first argument of every
interface generated by the Module Wizard.

Typically, your application obtains its first pointer to an object's interface by calling the COM routine
COMCreateObject. COMCreateObject creates a new instance of an object class and returns a pointer to it.
COMCreateObject is the generic name of the two subroutines COMCreateObjectByProgID and
COMCreateObjectByGUID:

• Use COMCreateObjectByProgID to create Automation objects. It accepts the progID of an object and
returns a pointer to the object's IDispatch interface.

• Use COMCreateObjectByGUID to create both COM and Automation objects. It takes a GUID and returns a
pointer to the object's interface (either Automation or COM - see below)

The arguments to COMCreateObjectByGUID are as follows:

• The first argument is a class identifier (CLSID) that uniquely identifies the object's class. The Module
Wizard defines a GUID parameter for each class selected from the Type library. These parameters are
given the name in the form: CLSID_class-name.

• The second argument allows you to limit the type(s) of server that the call will accept. Most of the time
you can use CLSCTX_ALL to accept any type of server.

• The third argument is an interface identifier (IID) that specifies the particular object interface you are
requesting:

• To request an Automation interface, use IID_IDispatch.
• To request a COM interface, the Module Wizard defines a GUID parameter for each interface selected

from the type library. These parameters are given a name in the form: IID_interface-name.
• The fourth argument is an output parameter that returns the object's interface pointer.

The COMCreateObjectByProgID and COMCreateObjectByGUID subroutines return an interface pointer of an
object that the server has defined as being externally creatable. However, not all objects are externally
creatable. Often, a server implements a hierarchy of objects, or object model.

COMCreateObject is called to obtain a pointer to an interface of the root object in the hierarchy. Methods
and/or properties of the root object are used to obtain pointers to child objects, and so on, down the
hierarchy.

All objects must implement the IUnknown interface. Every object also implements one or more additional
interfaces.

You can always get a pointer to any of the object's interfaces from any of the object's interface pointers by
using the COMQueryInterface subroutine. It is important that you have a pointer to the correct object
interface when calling a routine generated by the Module Wizard. If not, your application will likely terminate
unexpectedly.

Release the Pointer to an Object's Interface
When you have finished using an object's interface pointer, you must call COMReleaseObject with the pointer.
This includes releasing object pointers that you have received using any method, including COMCreateObject,
COMQueryInterface, or by calling an object's method.

Additional Resources about COM and Automation

This topic only applies to Windows.

A number of published books and articles exist about COM and Automation. Some of these are listed here as
additional resources to assist customers who want to learn more about the subject matter. This list does not
comment -- either negatively or positively -- on any documents listed or not yet listed. Books and related
resources about COM and Automation include:

Intel® Fortran Compiler Classic and Intel® Fortran Compiler Developer Guide and Reference 1

2565

• Inside COM+ Base Services by Guy Eddon, Henry Eddon. Published by Microsoft Press (Redmond,
Washington) 1999

• Understanding COM+ by David S. Platt. Published by Microsoft Press (Redmond, Washington) 1999
• Inside Distributed COM by Guy Eddon; Henry Eddon. Published by Microsoft Press (Redmond, Washington)

1998
• Inside COM by Dale Rogerson. Published by Microsoft Press (Redmond, Washington) 1996
• Understanding ActiveX and OLE by David Chappell. Published by Microsoft Press (Redmond, Washington)

1996
• Automation Programmer's Reference by Microsoft. Published by Microsoft Press (Redmond, Washington)

1997
• ActiveX Controls Inside Out, Second Edition by Adam Denning. Published by Microsoft Press (Redmond,

Washington) 1997
• Platform SDK online version. Relevant titles include Platform SDK, COM and ActiveX Object Services.
• Visual C++ User's Guide online version

IFPORT Portability Library
Intel® Fortran includes functions and subroutines that ease porting of code to or from a PC, or allow you to
write code on a PC that is compatible with other platforms.

The portability library is called LIBIFPORT.LIB (Windows*) or libifport.a (Linux*). Frequently used
functions are included in a portability module called IFPORT.

The portability library also contains IEEE* POSIX library functions. These functions are included in a module
called IFPOSIX.

You can use the portability library in one of two ways:

• Add the statement USE IFPORT to your program. This statement includes the IFPORT module.
• Call portability routines using the correct parameters and return value.

The portability library is passed to the linker by default during linking. To prevent this behavior, specify the
fpscomp compiler option with the nolibs keyword.

Using the IFPORT mod file provides interface blocks and parameter definitions for the routines, as well as
compiler verification of calls.

See Also
Portability Library Routines
fpscomp
 compiler option

fpp Preprocessing
The Intel® Fortran Compiler includes the preprocessor fpp. When you use a preprocessor for Intel Fortran
source files, the generated output files are used as input source files by the compiler.

Preprocessing performs tasks such as preprocessor symbol (macro) substitution, conditional compilation, and
file inclusion. Intel® Fortran predefined symbols are described in topic Predefined Preprocessor Symbols.

fpp has some of the capabilities of the ANSI C preprocessor and supports a similar set of preprocessor
directives. Preprocessor directives can begin in any column of a Fortran source file. Preprocessor directives
are not part of the Fortran language and not subject to the rules for Fortran statements. Syntax for
preprocessor directives is based on that of the C preprocessor.

The compiler includes a limited conditional compilation capability, based on directives, that does not require
use of fpp. The IF directive construct provides the capability of limited conditional compilation.

Note that you can also specify an alternate Fortran preprocessor instead of the fpp preprocessor. For more
information, see compiler option fpp-name.

 1 Intel® Fortran Compiler Classic and Intel® Fortran Compiler Developer Guide and Reference

2566

Automatic Preprocessing by the Compiler
By default, the preprocessor is not run on files before compilation. However, the Intel Fortran Compiler
automatically calls fpp when compiling source files that have file extension .FPP, .fpp, .F, .F90, .FOR, or .FTN
on Linux, and file extension .fpp on Windows.

For example, the following command preprocesses a source file that contains fpp preprocessor directives,
then passes the preprocessed file to the compiler and linker:

ifx source.fpp
If you want to preprocess files that have other Fortran extensions than those listed, you have to explicitly
specify the preprocessor by using compiler option fpp.

The fpp preprocessor can process both free-format and fixed-format Fortran source files. By default, file
names with the extension .f or .F, .for or .FOR, .ftn or .FTN, and .fpp or .FPP are assumed to be fixed format.
File names with a suffix of .F90 or .f90 (or any other suffix not specifically mentioned here) are assumed to
be free format. You can explicitly indicate free format by specifying compiler option free. You can explicitly
indicate fixed format by specifying compiler option fixed.

The fpp preprocessor recognizes tab format in a source line in fixed form.

Run fpp to Preprocess Files
You can explicitly run fpp in the following ways:

• On the command line, use the ifx or ifort command with the fpp compiler option. By default, the
specified files are then compiled and linked. To retain the intermediate (.i or .i90) file, specify the
[Q]save-temps compiler option.

• On the command line, use the fpp command. In this case, the compiler is not invoked. When using fpp
on the command line, you need to specify the input file and the intermediate (.i or .i90) output file. For
more information, type fpp -help (Linux) or fpp /help (Windows) on the command line.

• In the Microsoft Visual Studio* IDE, set the Preprocess Source File option to Yes in the Fortran
Preprocessor Option Category. To retain the intermediate files, add /Qsave-temps to Additional
Options in the Fortran Command Line Category.

The following table lists some common cpp features that are supported by fpp and some common cpp
features that are not supported.

Supported cpp Features Unsupported cpp Features

#define, #undef, #ifdef, #ifndef, #if, #elif, #else, #endif,
#include, #error, #warning, #line

#pragma and #ident

(stringsize) and ## (concatenation) operators spaces or tab characters preceding the
initial "#" character

followed by empty line

! as negation operator \ backslash-newline

Unlike cpp, fpp does not merge continued lines into a single line when possible.

You do not usually need to specify preprocessing for Fortran source programs unless your program uses fpp
preprocessing commands, such as those listed above.

Intel® Fortran Compiler Classic and Intel® Fortran Compiler Developer Guide and Reference 1

2567

Caution
Using a preprocessor that does not support Fortran can damage your Fortran code.

For example, consider the following code:

FORMAT (\\I4)
In this case, most C++ and C preprocessors will change the meaning of the program by interpreting
the double backslash "\\" as end-of-record.

fpp Source Files
A source file can contain fpp tokens in the following forms:

• fpp preprocessor directive names

For more information on fpp preprocessor directives, see topic fpp Preprocessor Directives.
• Symbolic names

fpp permits the same characters in names as Fortran. For more information on symbolic names, see topic
Predefined Preprocessor Symbols.

• Constants

Integer, real, double, and quadruple precision real, binary, octal, hexadecimal (including alternate
notation), character, and Hollerith constants are allowed.

• Special characters, space, tab, and newline characters
• Fortran language comments

A fixed-form source line containing one of the symbols C, c, *, d, or D in the first position is considered a
comment line.

The ! symbol is interpreted as the beginning of a comment extending to the end of the line, except when
the ! occurs within a constant-expression in an #if or #elif directive. Within such comments, macro
expansions are not performed, but they can be switched ON by specifying -f-com=no.

• fpp comments

These comments appear between symbols /* and */. They are excluded from the output and macro
expansions are not performed within these symbols. fpp comments can be nested: for each /* there
must be a corresponding */.

fpp comments are useful for excluding from the compilation large portions of source instead of
commenting every line with a Fortran comment symbol.

• C++-like line comments

These comments begin with symbol // (double-slash)

A string that is a token can occupy several lines, but only if its input includes continued line characters using
the Fortran continuation character &. fpp will not merge such lines into one line.

fpp always places identifiers on one line. For example, if an input identifier occupies several lines, it will be
merged by fpp into one line.

fpp Output
Output consists of a modified copy of the input, plus lines of the following form:

#line_number file_name
These lines indicate the original source line number and file name of the output line that follows. Use the fpp
preprocessor option P to disable the generation of these lines.

 1 Intel® Fortran Compiler Classic and Intel® Fortran Compiler Developer Guide and Reference

2568

Diagnostics
There are three kinds of fpp diagnostic messages:

• Warnings

fpp preprocessing continues but the return value is set to zero.
• Errors

fpp preprocessing continues but the return value is set to a nonzero value indicating the number of
errors.

• Fatal errors

fpp stops preprocessing and returns a nonzero value.

The messages produced by fpp are intended to be self-explanatory. The line number and file name where
the error occurred are displayed along with the diagnostic on stderr.

See Also
File Extensions
fixed compiler option
fpp compiler option
fpp-name compiler option
free compiler option
IF Directive Construct
save-temps, Qsave-temps compiler option

fpp Preprocessor Directives
All fpp preprocessor directives start with the number sign (#) as the first character on a line. White space
(blank or tab characters) can appear after the initial # for indentation.

fpp preprocessor directives can be placed anywhere in source code, but they usually appear before a Fortran
continuation line. However, fpp preprocessor directives within a macro call can not be divided among several
lines by means of continuation symbols.

fpp preprocessor directives can be grouped according to their purpose.

Preprocessor Directives for String Substitution
The following fpp preprocessor directives cause substitutions in your program:

Preprocessor Directive Result

__FILE__ Replaces a string with the input file name (a character string
literal).

__LINE__ Replaces a string with the current line number in the input file
(an integer constant).

__DATE__ Replaces a string with the date that fpp processed the input file
(a character string literal in the form Mmm dd yyyy).

__TIME__ Replaces a string with the time that fpp processed the input file
(a character string literal in the form hh:mm:ss).

Intel® Fortran Compiler Classic and Intel® Fortran Compiler Developer Guide and Reference 1

2569

Preprocessor Directive Result

__TIMESTAMP__ Replaces a string with the timestamp that fpp processed the
input file (a character string literal in the form day date time
year, where day is a 3-letter abbreviation, date is Mmm dd,
time is hh:mm:ss and year is yyyy).

Preprocessor Directive for Inclusion of External Files
To include external files, preprocessor directive #include can be specified in one of the following forms:

#include "filename"
#include <filename>

#include reads in the contents of the named file into the specified or default location in the source. The lines
read in from the file are processed by fpp as if they were part of the current file.

When the <filename> notation is used, the compiler only searches for the file name in the standard include
directories. They are searched for in the following order:

• In the directories specified by the I or Y preprocessor option
• In the default directory

When the "filename" notation is used, file names are searched for in the following order:

• In the directory in which the source file resides
• In the directories specified by the I or Y preprocessor option
• In the default directory

For more information, see the fpp preprocessor options Idir and Ydir options. No additional tokens are
allowed on the directive line after the final quote symbol or >.

Preprocessor Directive for Line Control
The preprocessor directive #line-number generates line control information for the compiler. It takes the
following form:

#line-number "filename"
#line-number is an integer constant that is the line number of the next line. filename is the name of the file
containing the line. If filename is not provided, the current file name is assumed.

Preprocessor Directive for fpp Variable and Macro Definitions
The preprocessor directive #define can be used to define both simple string variables and more complicated
macros. It can take two forms.

• Definition of an fpp variable:

#define nametoken-string
In the above, occurrences of name in the source file will be replaced by token-string.

• Definition of an fpp macro:

#define name(argument[,argument] ...) token-string
In the above, occurrences of the macro name followed by the comma-separated list of actual arguments
within parentheses, will be replaced by token-string. Each occurrence of argument in token-string is
replaced by the token sequence representing the corresponding actual argument in the macro call.

 1 Intel® Fortran Compiler Classic and Intel® Fortran Compiler Developer Guide and Reference

2570

An error occurs if the number of macro call arguments is not the same as the number of arguments in the
corresponding macro definition. For example, consider this macro definition:

#define INTSUB(m, n, o) call mysub(m, n, o)
Any use of the macro INTSUB must have three arguments. In macro definitions, spaces between the
macro name and the open parenthesis symbol "(" are prohibited to prevent the directive from being
interpreted as an fpp variable definition with the rest of the line beginning with the open parenthesis
symbol "(" being interpreted as its token-string.

An fpp variable or macro definition can be of any length and is limited only by the newline symbol. It can
be defined in multiple lines by continuing it to the next line with the insertion of "\". For example:

#define long_macro_name(x,\
 y) x*y

The occurrence of a newline without a macro-continuation signifies the end of the macro definition.

The scope of a definition begins from the #define and encloses all the source lines (and source lines from
#include files) to the end of the current file, except for the following:

• Files included by Fortran INCLUDE statements
• fpp and Fortran comments
• Fortran IMPLICIT statements that specify a single letter
• Fortran FORMAT statements
• Numeric, typeless, and character constants

Preprocessor Directive to Undefine a Macro
The preprocessor directive #undef takes the following form:

#undef name
This preprocessor directive removes any definition for name produced by the D preprocessor option, the
#define preprocessor directive, or by default. No additional tokens are permitted on the directive line after
name.

If name has not been previously defined, then #undef has no effect.

Preprocessor Directive for Macro Expansion
If, during expansion of a macro, the column width of a line exceeds column 72 (for fixed format) or column
132 (for free format), fpp inserts appropriate Fortran continuation lines.

For fixed format, there is a limit on macro expansions in label fields (positions 1-5):

• A macro call (together with possible arguments) should not extend beyond column 5.
• A macro call whose name begins with one of the Fortran comment symbols is considered to be part of a

comment.
• A macro expansion may produce text extending beyond column 5. In this case, a warning will be issued.

In fixed format, when the fpp preprocessor option Xw has been specified, an ambiguity may occur if a macro
call occurs in a statement position and a macro name begins or coincides with a Fortran keyword. For
example, consider the following:

#define callp(x) call f(x)
 call p(0)

In this case, fpp cannot determine how to interpret the callp token sequence. It could be considered to be
a macro name. The current implementation does the following:

Intel® Fortran Compiler Classic and Intel® Fortran Compiler Developer Guide and Reference 1

2571

• The longer identifier is chosen (callp in this case)
• From this identifier the longest macro name or keyword is extracted
• If a macro name has been extracted, a macro expansion is performed. If the name begins with some

keyword, fpp issues an appropriate warning
• The rest of the identifier is considered a whole identifier

In the previous example, the macro expansion is performed, and the following warning is produced:

warning: possibly incorrect substitution of macro callp
This situation appears only when preprocessing fixed-format source code and when the space symbol is not
interpreted as a token delimiter.

In the following case, a macro name coincides with a beginning of a keyword:

 #define INT INTEGER*8
 INTEGER k

The INTEGER keyword will be found earlier than the INT macro name. There will be no warning when
preprocessing such a macro definition.

Preprocessor Directives for Conditional Selection of Source Text
The following three preprocessor directives are conditional constructs that you can use to select source text.

• #if preprocessor directive

When #if is specified, subsequent lines up to the matching #else, #elif, or #endif preprocessor directive
appear in the output only if condition evaluates to .TRUE..

The following shows an example:

#if condition_1block_1
#elif condition_2block_2
#elif ...
#else
 block_n
#endif

• #ifdef preprocessor directive

When #ifdef is specified, subsequent lines up to the matching #else, #elif, or #endif preprocessor
directive appear in the output only if name has been defined, either by a #define preprocessor directive or
by the D preprocessor option, with no intervening #undef preprocessor directive. No additional tokens are
permitted on the preprocessor directive line after name.

The following shows an example:

#ifdef nameblock_1
#elif conditionblock_2
#elif ...
#else
 block_n
#endif

• #ifndef preprocessor directive

When #ifndef is specified, subsequent lines up to the matching #else, #elif, or #endif preprocessor
directive appear in the output only if name has not been defined, or if its definition has been removed
with an #undef preprocessor directive. No additional tokens are permitted on the directive line after
name.

 1 Intel® Fortran Compiler Classic and Intel® Fortran Compiler Developer Guide and Reference

2572

The following shows an example:

#ifndef nameblock_1
#elif conditionblock_2
#elif ...
#else
 block_n
#endif

The #else, #elif, or #endif preprocessor directives are optional. They can be used in the above preprocessor
directives.

Subsequent lines up to the matching #else, #elif, or #endif appear in the output only if all of the following
occur:

• The condition in the preceding #if directive evaluates to .FALSE., the name in the preceding #ifdef
directive is not defined, or the name in the preceding #ifndef directive is defined

• The conditions in all of the preceding #elif directives evaluate to .FALSE.
• The condition in the current #elif evaluates to .TRUE.

Any condition allowed in an #if directive is allowed in an #elif directive. Any number of #elif directives may
appear between an #if, #ifdef, or #ifndef directive and a matching #else or #endif directive.

Conditional Expressions

condition_1, condition_2, etc. are logical expressions involving fpp constants, macros, and intrinsic
functions. The following items are permitted in conditional expressions:

• C language operations: <, >, ==, !=, >=, <=, +, -, /, *, %, <<, >>, &, ~, |, &&, and ||

They are interpreted by fpp in accordance to the C language semantics. This facility is provided for
compatibility with older Fortran programs using cpp.

• Fortran language operations: .AND., .OR., .NEQV., .XOR., .EQV., .NOT., .GT., .LT., .LE., .GE., .NE., .EQ., **
(power).

• Fortran logical constants: .TRUE. , .FALSE.
• The fpp intrinsic function defined: defined(name) or defined name, which returns .TRUE. if name is

defined as an fpp variable or a macro. It returns .FALSE. if the name is not defined.

#ifdef is shorthand for #if defined(name) and #ifndef is shorthand for #if .not. defined(name).

Only these items, integer constants, and names can be used within a constant expression.

A name that has not been defined with the D preprocessor option, a #define preprocessor directive, or
defined by default, has a value of zero.

The C operation != (not equal) can be used in the #if or #elif preprocessor directive, but not in the #define
preprocessor directive, where the symbol ! is considered to be the Fortran comment symbol by default.

See Also
D compiler option
fpp compiler option
Fortran Preprocessor Options

Predefined Preprocessor Symbols
Preprocessor symbols (macros) let you substitute values in a program before it is compiled. The substitution
is performed in the preprocessing phase.

The preprocessor symbols shown in the table below are predefined by the compiler system and are available
to compiler directives and to fpp. If you want to use other symbol names, you need to specify them on the
command line.

You can use the D compiler option to define the symbol names to be used during preprocessing. This option
performs the same function as the #define preprocessor directive.

Intel® Fortran Compiler Classic and Intel® Fortran Compiler Developer Guide and Reference 1

2573

Preprocessing with fpp replaces every occurrence of the defined symbol name with the specified value.
Preprocessing compiler directives only allow IF and IF DEFINED.

If you want to disable symbol replacement (also known as macro expansion) during the preprocessor step,
you can specify the macro=no preprocessor option for fpp.

Disabling preprocessor symbol replacement is useful for running fpp to perform conditional compilation
(using #ifdef, etc.) without replacement.

You can use the U preprocessor option to suppress an automatic definition of a preprocessor symbol. This
option suppresses any symbol definition currently in effect for the specified name. This option also performs
the same function as an #undef preprocessor directive.

The symbols in the following table can be used in both fpp and Fortran compiler conditional compilations.

IA-32 is deprecated and will be removed in a future release.
Symbol OS Support Description

__amd64
__amd64__

Linux Defined as 1.

__AVX512BW__ Linux

Windows

Defined as 1 for processors that
support Intel® Advanced Vector
Extensions 512 (Intel® AVX-512)
Byte and Word Instructions
(BWI).

__AVX512BW__ is also defined as
1 when option
[Q]xCORE-AVX512 or higher
processor-targeting options are
specified.

__AVX512CD__ Linux

Windows

Defined as 1 for processors that
support Intel® Advanced Vector
Extensions 512 (Intel® AVX-512)
Conflict Detection Instructions
(CDI).

__AVX512CD__ is also defined as
1 when option
[Q]xCORE-AVX512,
[Q]xCOMMON-AVX512, or higher
processor-targeting options are
specified.

__AVX512DQ__ Linux

Windows

Defined as 1 for processors that
support Intel® Advanced Vector
Extensions 512 (Intel® AVX-512)
Doubleword and Quadword
Instructions (DQI).

__AVX512DQ__ is also defined as
1 when option [Q]xCORE-AVX512
or higher processor-targeting
options are specified.

__AVX512ER__ Linux

Windows

Defined as 1 for processors that
support Intel® Advanced Vector
Extensions 512 (Intel® AVX-512)
Exponential and Reciprocal
Instructions.

 1 Intel® Fortran Compiler Classic and Intel® Fortran Compiler Developer Guide and Reference

2574

Symbol OS Support Description

__AVX512F__ Linux

Windows

Defined as 1 for processors that
support Intel® Advanced Vector
Extensions 512 (Intel® AVX-512)
Foundation instructions.

__AVX512ER__ is also defined as
1 when option
[Q]xCORE-AVX512,
[Q]xCOMMON-AVX512, or higher
processor-targeting options are
specified.

__AVX512PF__ Linux

Windows

Defined as 1 for processors that
support Intel® Advanced Vector
Extensions 512 (Intel® AVX-512)
PreFetch Instructions (PFI).

__AVX512VL__ Linux

Windows

Defined as 1 for processors that
support Intel® Advanced Vector
Extensions 512 (Intel® AVX-512)
Vector Length Extensions (VLE).

It is also defined as 1 when
option [Q]xCORE-AVX512 or
higher processor-targeting
options are specified.

_DEBUG Windows Defined as 1 only if option
dbglibs, MT[d], or MD[d] is
specified.

_DLL Windows Defined as 1 only if one of the
following options is specified or
implied:
• libs:dll
• MD
• MDd

__ELF__ Linux Defined as 1 at the start of
compilation.

__gnu_linux__ Linux Defined as 1 at the start of
compilation.

__i386__
__i386
i386

Linux Defined as 1 for compilations
targeting IA-32 architecture (C+
+ only).

This symbol is only available for
ifort.

IA-32 is deprecated and will be
removed in a future release.

__INTEL_COMPILER Linux

Windows

ifx: The version of the compiler in
the form VVVVMMUU, where
VVVV is the major release
version, MM is the minor release
version, and UU is the update
number. For example, Version

Intel® Fortran Compiler Classic and Intel® Fortran Compiler Developer Guide and Reference 1

2575

Symbol OS Support Description

2023.1.2 is indicated by a value
of 20230102. See also symbol
__INTEL_LLVM_COMPILER.

ifort: The version of the compiler
in the form VVVV, where VVVV is
the major version. For example,
Version 2021.1.2 is indicated by
a value of 2021.

__INTEL_COMPILER_BUILD_DATE Linux

Windows

The compiler build date. It takes
the form YYYYMMDD, where YYYY
is the year, MM is the month, and
DD is the day.

__INTEL_COMPILER_UPDATE Linux

Windows

The compiler update number
within a version (example: 1 for
Update 1). See also symbol
__INTEL_COMPILER.

__INTEL_LLVM_COMPILER Linux

Windows

The version of the compiler in the
form VVVVMMUU 1, where VVVV
is the major release version, MM
is the minor release version, and
UU is the update number. For
example, the base release of
2023.1 is represented by the
value 20230100.

This symbol is also recognized by
CMake, and it is only available for
ifx.

__INTEL_LLVM_COMPILER_UPDAT
E

Linux

Windows

The compiler update number
within a version (example: 1 for
Update 1).

This symbol is only available for
ifx.

See also symbol
__INTEL_LLVM_COMPILER.

__INTEL_PREVIEW_BREAKING_CH
ANGES

Linux

Windows

This symbol is only available for
ifx.

Lets a user tell the compiler that
they are willing to give up
backward compatibility
guarantees and lets the compiler
enable new backward breaking
changes that will appear in the
next major release.

This is set automatically when
compiler option
-fpreview-breaking-changes
is specified.

 1 Intel® Fortran Compiler Classic and Intel® Fortran Compiler Developer Guide and Reference

2576

Symbol OS Support Description

The breaking changes specified
will be the default in the next
major compiler release. So this
option lets you prepare for that
release should you want to do so.

__linux__
__linux
linux

Linux Defined as 1 at the start of
compilation.

_M_AMD64 Windows Defined as 1.

_M_X64 Windows Defined as 100.

_MT Windows Defined as 1 when
option /threads or /MT is
specified.

_OPENMP Linux

Windows

Defined when OpenMP processing
has been requested (that is,
option [q or Q]openmp has
been specified and preprocessing
occurs).

The value takes the form
YYYYMM, where YYYY is the year
and MM is the month of the
supported OpenMP Fortran
specification.

__PIC__
__pic__

Linux Defined as 1 only if the code
requested compilation as
position-independent code.

unix
__unix
__unix__

Linux Defined as 1.

_WIN32 Windows Defined as 1.

_WIN64 Windows Defined as 1.

__x86_64
__x86_64__

Linux Defined as 1.

Footnotes:
1 The 2021.1 Intel® Fortran Compiler (ifx) produces the __INTEL_COMPILER format for this macro.
Subsequent releases use the format as documented.

See Also
arch compiler option
march compiler option
m compiler option
D compiler option
U compiler option
dll compiler option

Intel® Fortran Compiler Classic and Intel® Fortran Compiler Developer Guide and Reference 1

2577

fpp compiler option
libs compiler option
qopenmp, Qopenmp compiler option
threads compiler option
x, Qx compiler option

Fortran Preprocessor Options
The Fortran preprocessor fpp can be invoked automatically or by specifying compiler option fpp.

The following preprocessor options are available if you use the fpp compiler option.

Linux

Preprocessor options must start with a dash (-); for example, -macro=no.

Windows

Preprocessor options must start with a slash (/); for example, /macro=no.

Preprocessor Option Description

B Specifies that C++-style comments should not be recognized.

C Specifies that C-style comments should not be recognized. This is the
same as specifying c_com=no.

c_com={yes|no} Determines whether C-style comments are recognized. If you specify
c_com=no or C, C-style comments are not recognized. By default, C-style
comments are recognized; that is, c_com=yes.

Dname Defines the preprocessor variable name as 1 (one). This is the same as if
a Dname=1 option appeared on the fpp command line. This is also the
same as specifying the following line in the source file processed by fpp:

#define name 1

Dname=val Defines name as if by a #define directive. This is the same as specifying
the following line in the source file processed by fpp:

#define name var
Dname=val will be ignored if there are any non-alphabetic, non-numeric
characters in name.

The D option has lower precedence than the U option. That is, if the same
name is used in both a U option and a D option, the name will be
undefined regardless of the order of the options.

e For fixed-format source files, tells the compiler to accept extended source
lines, up to 132 characters long.

e80 For fixed-format source files, tells the compiler to accept extended source
lines, up to 80 characters long.

f_com={yes|no} Determines whether Fortran-style end-of-line comments are recognized
or ignored by fpp. If you specify f_com=no, Fortran style end-of-line
comments are processed as part of the preprocessor directive.

 1 Intel® Fortran Compiler Classic and Intel® Fortran Compiler Developer Guide and Reference

2578

Preprocessor Option Description

By default, Fortran style end-of-line comments are identified by fpp on
preprocessor lines and are then ignored by fpp; that is, f_com=yes. For
example:

#define max 100 ! max number
do i = 1, max + 1
If you specify f_com=yes, fpp will output the following:

do i = 1, 100 + 1
If you specify f_com=no, fpp will output the following:

do i = 1, 100 ! max number + 1

f77 Tells the compiler to assume FORTRAN 77 (fixed format) language input
source.

f90 Tells the compiler to assume Fortran 90 (free format) language input
source.

fixed Tells the compiler to assume fixed format in the source file.

free Tells the compiler to assume free format in the source file.

help Displays information about fpp options.

Idir Inserts directory dir into the search path for files with names not
beginning with /.

The #include dir is inserted ahead of the standard list of include
directories so that #include files with names enclosed in double-quotes
(") are searched for first in the directory of the file with the #include line,
then in directories named with I options, and lastly, in directories from
the standard list.

For #include files with names enclosed in angle-brackets (< >), the
directory of the file with the #include line is not searched.

M Generates make dependencies.

m Expands macros everywhere. This is the same as specifying macro=yes.

macro={yes|no_com|no} Determines the behavior of macro expansion. If you specify
macro=no_com, macro expansion is turned off in comments. If you
specify macro=no, no macro expansion occurs anywhere. By default,
macros are expanded everywhere; that is, macro=yes.

macro_expand={vc|cpp} Determines the mode of macro expansion. If you specify
macro_expand=vc, macros are expanded in Microsoft Visual C/C++
order. If you specify macro_expand=cpp, macros are expanded in GNU
CPP order.

MF=file Makes fpp append dependencies to file.

noB Specifies that C++-style comments should be recognized.

Intel® Fortran Compiler Classic and Intel® Fortran Compiler Developer Guide and Reference 1

2579

Preprocessor Option Description

noC Specifies that C-style comments should be recognized. This is the same
as c_com=yes.

noJ Specifies that F90-style comments should be recognized in a #define line.
This is the same as f_com=no.

no-fort-cont Specifies that IDL-style format should be recognized. This option is only
for the IDE.

Note that macro arguments in IDL may have a C-like continuation
character \, which is different from the Fortran continuation character &.
The fpp preprocessor should recognize the C-like continuation character
and process some other non-Fortran tokens so that the IDL processor can
recognize them.

P Tells the compiler that line-numbering directives should not be added to
the output file. This line-numbering directive appears as follows:

#line-number file-name

Uname Removes any initial definition of name, where name is an fpp variable
that is predefined on a particular preprocessor.

The following shows an example of symbols that may be predefined,
depending upon the architecture of the system:

Operating System: __unix and __linux
Hardware: __x86_64

undef Removes initial definitions for all predefined symbols.

V Displays the fpp version number.

w[0] Prevents warnings from being output. By default, warnings are output to
standard error stream (stderr).

what Displays detailed version information.

Xu Converts uppercase letters to lowercase, except within character-string
constants. The default is to leave the case as is.

Xw Tells the compiler that in fixed-format source files, the blank or space
symbol (" ") is insignificant. By default, the space symbol is the delimiter
of tokens for this format.

Ydir Adds directory dir to the end of the system include paths.

Methods to Optimize Code Size
This section provides some guidance on how to achieve smaller object and smaller executable size when
using the optimizing features of Intel compilers.

There are two compiler options that are designed to prioritize code size over performance:

 1 Intel® Fortran Compiler Classic and Intel® Fortran Compiler Developer Guide and Reference

2580

Option Result Notes

Os Favors size over speed This option enables optimizations
that do not increase code size; it
produces smaller code size than
option O2.

Option Os disables some
optimizations that may increase
code size for a small speed
benefit.

O1 Minimizes code size Compared to option Os, option
O1 disables even more
optimizations that are generally
known to increase code size.
Specifying option O1 implies
option Os.

As an intermediate step in
reducing code size, you can
replace option O3 with option O2
before specifying option O1.

Option O1 may improve
performance for applications with
very large code size, many
branches, and execution time not
dominated by code within loops.

For more information about compiler options mentioned in this topic, see their full descriptions in the
Compiler Reference.

The rest of this topic briefly discusses other methods that may help you further improve code size even when
compared to the default behaviors of options Os and O1.

Things to remember:

• Some of these methods may already be applied by default when options Os and O1 are specified. All the
methods mentioned in this topic can be applied at higher optimization levels.

• Some of the options referred to in this topic will not necessarily cause code size reduction, and they may
provide varying results (good, bad, or neutral) based on the characteristics of the target code. Still, these
are the recommended things to try to see if they cause your binaries to become smaller while maintaining
acceptable performance.

Disable or Decrease the Amount of Inlining
Inlining replaces a call to a function with the body of the function. This lets the compiler optimize the code
for the inlined function in the context of its caller, usually yielding more specialized and better performing
code. This also removes the overhead of calling the function at runtime.

However, replacing a call to a function by the code for that function usually increases code size. The code size
increase can be substantial. To eliminate this code size increase, at the cost of the potential performance
improvement, inlining can be disabled.

As an alternative to completely disabling inlining, the default amount of inlining can be decreased by using an
inline factor less than the default value of 100. It corresponds to scaling the default values of the main
inlining parameters by n%.

• Advantage: Disabling or reducing this optimization can reduce code size.
• Disadvantage: Performance is likely to be sacrificed by disabling or reducing inlining especially for

applications with many small functions.

Use options:

Intel® Fortran Compiler Classic and Intel® Fortran Compiler Developer Guide and Reference 1

2581

Linux

fno-inline
Windows

Ob0
Use options to disable inlining:

Linux

fno-inline
Windows

Ob0
Use options to reduce inlining and factor the main inlining parameters:

Linux

inline-factor=n

Windows

Qinline-factor:n

Use options to fine tune the main inlining parameters:

NOTE This option is only for ifort.

Linux

• inline-factor
• inline-max-per-compile
• inline-max-per-routine
• inline-max-size
• inline-max-total-size
• inline-min-size
Windows

• Qinline-factor
• Qinline-max-per-compile
• Qinline-max-per-routine
• Qinline-max-size
• Qinline-max-total-size
• Qinline-min-size

Strip Symbols from Your Binaries
You can specify a compiler option to omit debugging and symbol information from the executable without
sacrificing its operability.

• Advantage: This method noticeably reduces the size of the binary.
• Disadvantage: It may be very difficult to debug a stripped application.

Linux

Use options Wl, --strip-all
Windows

 1 Intel® Fortran Compiler Classic and Intel® Fortran Compiler Developer Guide and Reference

2582

None

Dynamically Link Intel-provided Libraries
By default, some of the Intel support and performance libraries are linked statically into an executable. As a
result, the library codes are linked into every executable being built. This means that codes are duplicated.

It may be more profitable to link them dynamically.

• Advantage: Performance of the resulting executable is normally not significantly affected. Library codes
that are otherwise linked in statically into every executable will not contribute to the code size of each
executable with this option. These codes will be shared between all executables using them, and they will
be available independent of those executables.

• Disadvantage: The libraries on which the resulting executable depends must be re-distributed with the
executable for it to work properly. When libraries are linked statically, only library content that is actually
used is linked into the executable. Dynamic libraries contain all the library content. Therefore, it may not
be beneficial to use this option if you only need to build and/or distribute a single executable. The
executable itself may be much smaller when linked dynamically, compared to a statically linked
executable. However, the total size of the executable plus shared libraries or DLLs may be much larger
than the size of the statically linked executable.

Linux

Use option shared-intel
Windows

Use option MD or libs:dll

NOTE Option MD affects all libraries, not only the Intel-provided ones.

Disable Inline Expansion of Standard Library or Intrinsic Functions
In some cases, disabling the inline expansion of standard library or intrinsic functions may noticeably
improve the size of the produced object or binary.

Linux

Use option nolib-inline
Windows

None

Disable Passing Arguments in Registers Instead of on the Stack
This content is specific to ifort; it does not apply to ifx.

You can specify an option that causes the compiler to pass arguments in registers rather than on the stack.
This can yield faster code.

However, doing this may require the compiler to create an additional entry point for any function that can be
called outside the code being compiled.

In many cases, this will lead to an increase in code size. To prevent this increase in code size, you can
disable this optimization.

• Advantage: Disabling this optimization can reduce code size.
• Disadvantage: The amount of code size saved may be small when compared to the corresponding

performance loss of disabling the optimization.

Linux

Intel® Fortran Compiler Classic and Intel® Fortran Compiler Developer Guide and Reference 1

2583

Use option qopt-args-in-regs=none
Windows

Use option Qopt-args-in-regs:none
Additional information:

• Specify none for option [q or Q]opt-args-in-regs. The default behavior for the option is that
parameters are passed in registers when they are passed to routines whose definition is seen in the same
compilation unit.

• Depending on code characteristics, this option can sometimes increase binary size.

Disable Loop Unrolling
Unrolling a loop increases the size of the loop proportionally to the unroll factor.

Disabling (or limiting) this optimization may help reduce code size at the expense of performance.

• Advantage: Code size is reduced.
• Disadvantage: Performance of otherwise unrolled loops may noticeably degrade because this limits other

possible loop optimizations.

Linux

Use option unroll=0
Windows

Use option Qunroll:0
Additional information:

This option is already the default if you specify option Os or option O1.

Disable Automatic Vectorization
The compiler finds possibilities to use SIMD (Intel® Streaming SIMD Extensions (Intel® SSE)/Intel® Advanced
Vector Extensions (Intel® AVX)) instructions to improve performance of applications. This optimization is
called automatic vectorization.

In most cases, this optimization involves transformation of loops and increases code size, in some cases
significantly.

Disabling this optimization may help reduce code size at the expense of performance.

• Advantage: Compile-time is also improved significantly.
• Disadvantage: Performance of otherwise vectorized loops may suffer significantly. If you care about the

performance of your application, you should use this option selectively to suppress vectorization on
everything except performance-critical parts.

Linux

Use option no-vec
Windows

Use option Qvec-
Additional information:

Depending on code characteristics, this option can sometimes increase binary size.

Avoid Unnecessary 16-Byte Alignment
This topic only applies to Linux systems on IA-32 architecture.

 1 Intel® Fortran Compiler Classic and Intel® Fortran Compiler Developer Guide and Reference

2584

This method should only be used in certain situations that are well understood. It can potentially cause
correctness issues when linking with other objects or libraries that aren't built with this option.

The 32-bit Linux ABI states that stacks need only maintain 4-byte alignment. However, for performance
reasons in modern architectures, GCC and ICC maintain an alignment of 16-bytes on the stack. Maintaining
16-byte alignment may require additional instructions to adjust the stack on function entries where no stack
adjustment would otherwise be needed. This can impact code size, especially in code that consists of many
small routines.

You can specify a compiler option that will revert ICC back to maintaining 4-byte alignment, which can
eliminate the need for extra stack adjust instructions in some cases.

Use this option only if one of the following is true:

• Your code does not call any other object or library that can be built without this option and, therefore,
may rely on the stack being aligned to 16-bytes when called.

• Your code is targeted for architectures that do not have or support SSE instructions; therefore, it would
never need 16-byte alignment for correctness reasons.

• Advantage: Code size can be smaller because you do not need extra instructions to maintain 16-byte
alignment when not needed. This method can improve performance in some cases because of this
reduction of instructions.

• Disadvantage: This method can cause incompatibility when linked with other objects or libraries that rely
on the stack being 16-byte aligned across the calls.

Linux

Use option falign-stack=assume-4-byte
Windows

None

Additional information:

Depending on code characteristics, this option can sometimes increase binary size.

Use Interprocedural Optimization
Using interprocedural optimization (IPO) may reduce code size. It enables dead code elimination and
suppresses generation of code for functions that are always inlined or proven that they are never to be called
during execution.

• Advantage: Depending on the code characteristics, this optimization can reduce executable size and
improve performance.

• Disadvantage: Binary size can increase depending on code/application.

Linux

Use option ipo
Windows

Use option Qipo

NOTE This method is not recommended if you plan to ship object files as part of a final product.

National Language Support Routines
Intel® Fortran provides a complete National Language Support (NLS) library of language-localization routines
and multibyte-character routines. You can use these routines to write applications in many different
languages.

Intel® Fortran Compiler Classic and Intel® Fortran Compiler Developer Guide and Reference 1

2585

In many languages, the standard ASCII character set is not enough because it lacks common symbols and
punctuation (such as the British pound sign), or because the language uses a non-ASCII script (such as
Cyrillic for Russian) or because the language consists of too many characters for each to be represented by a
single byte (such as Chinese).

In the case of many non-ASCII languages, such as Arabic and Russian, an extended single-byte character set
is sufficient. You need only change the language locale and codepage, which can be done at a system level or
within your program. However, Eastern languages such as Japanese and Chinese use thousands of separate
characters that cannot be encoded as single-byte characters. Multibyte characters are needed to represent
them.

Character sets are stored in tables called code sets. There are three components of a code set: the locale,
which is a language and country (since, for instance, the language Spanish may vary among countries), the
codepage, which is a table of characters to make up the computer's alphabet, and the font used to represent
the characters on the screen. These three components can be set independently. Each computer running
Windows operating systems comes with many code sets built into the system, such as English, Arabic, and
Spanish. Multibyte code sets, such as Chinese and Japanese, are not standard but come with special versions
of the operating system (for instance, Windows NT-J comes with the Japanese code set).

The default code set is obtained from the operating system when a program starts up. When you install your
operating system, you should install the system supplied code sets. Thereafter, they are always available.
You can switch among them by:

• Open the Control Panel (available from Settings)
• Click the Regional Settings icon
• Choose from the dropdown list of available locales (languages and countries).

When you select a new locale, it becomes the default system locale, and will remain the default locale until
you change it. Each locale has a default codepage associated with it, and a default currency, number, and
date format.

NOTE
The default codepage does not change when you select a new locale until you reboot your computer.

You can change the currency, number, and date format in the International dialog box or the Regional Setting
dialog box independently of the locale.

The locale determines the character set available to the user. The locale you select becomes the default for
the NLS routines described in this section, but the NLS routines allow you to change locales and their
parameters from within your programs. These routines are useful for creating original foreign-language
programs or different versions of the same program for various international markets. Changes you make to
the locale from within a program affect only the program. They do not change the system default settings.

The codepage you select, which can be set independently, controls the multibyte (MB routines) character
routines described in this section. Only users with special multibyte-character code sets installed on their
computers need to use MB routines. The standard code sets all use single-byte character code sets.

Note that in Intel Fortran source code, multibyte characters can be used only in character strings and source
comments. They cannot be used within variable names or statements. Like program changes to the locale,
program changes to codepages affect only the program, not the system defaults.

To access the routines, the following statement should be present in any program unit that uses NLS or MB
routines:

USE IFNLS

Understand Single and Multibyte Character Sets on Windows
The ASCII character set defines the characters from 0 to 127 and an extended set from 128 to 255. Several
alternative single-byte character sets, primarily European, define the characters from 0 to 127 identically to
ASCII, but define the characters from 128 to 255 differently. With this extension, 8-bit representation is

 1 Intel® Fortran Compiler Classic and Intel® Fortran Compiler Developer Guide and Reference

2586

sufficient for defining the needed characters in most European-derived languages. However, some languages,
such as Japanese Kanji, include many more characters than can be represented with a single byte. These
languages require multibyte coding.

A multibyte character set consists of both one-byte and two-byte characters. A multibyte-character string
can contain a mix of single and double-byte characters. A two-byte character has a lead byte and a trail byte.
In a particular multibyte character set, the lead and trail byte values can overlap, and it is then necessary to
use the byte's context to determine whether it is a lead or trail byte.

See Also
Overview of NLS and MCBS Routines
Program Units and Procedures

Compatibility and Portability
This section contains information about conformance to language standards, language compatibility, and
portability.

Portability Considerations
Topics in this section help you understand how language standards, operating system differences, and
computing hardware influence your use of Intel® Fortran and the portability of your programs.

Your program is portable if you can implement it on one hardware-software platform and then move it to
additional systems with minimum changes to the source code. Correct results on the first system should be
correct on the additional systems. The number of changes you might have to make when moving your
program varies significantly. You might have no changes at all (strictly portable), or enough that it is more
efficient to design or implement a new program (non-portable customization). Most programs in their lifetime
will need to be ported from one system to another, and this section can help you write code that makes this
easy.

Other topics that may be of interest are Format Data for Transportability and IFPORT Portability Library.

Fortran Language Standards
A language standard specifies the form and establishes the interpretation of programs expressed in the
language. Its primary purpose is to promote portability of programs across a variety of systems among
vendors and users.

The vendor-user community has adopted a series of major Fortran language standards. The primary
organizations that develop and publish the standards are the InterNational Committee for Information
Technology Standards (INCITS) and International Standards Organization (ISO).

The major Fortran language standards are:

• Fortran 2023

American National Standard Programming Language Fortran and International Standards Organization,
ISO/IEC 1539-1:2023, Information technology - Programming languages - Fortran. This standard
introduced conditional expressions and arguments, arrays of coarrays, 1,000,000 character statements
and up to 10,000 free-format continuation lines. It also introduced trigonometric functions expressed in
degrees and half revolutions, and bindings to ISO/IEC 60559:2020 floating-point arithmetic. For more
information on supported Fortran 2023 features, see the Intel Fortran Language Reference.

• Fortran 2018

American National Standard Programming Language Fortran and International Standards Organization,
ISO/IEC 1539-1:2018, Information technology – Programming languages – Fortran. This standard
introduced enhancements to coarrays including teams, events, and collective and atomic subroutines,

Intel® Fortran Compiler Classic and Intel® Fortran Compiler Developer Guide and Reference 1

2587

enhanced interoperability with C, and bindings to ISO/IEC/IEEE 60559:2011 (IEEE floating point
arithmetic). For more information on supported Fortran 2018 features, see the Intel® Fortran Language
Reference.

• Fortran 2008

American National Standard Programming Language Fortran and International Standards Organization,
ISO/IEC 1539-1:2010, Information technology -- Programming languages -- Fortran. This standard
introduces support for submodules and coarrays, and includes various performance enhancements such
as the DO CONCURRENT construct. For more information on supported Fortran 2008 language features,
see the Intel® Fortran Language Reference.

• Fortran 2003

American National Standard Programming Language Fortran and International Standards Organization,
ISO/IEC 1539-1:2004, Information technology -- Programming languages -- Fortran. This standard
introduces extended support for floating-point exception handling, object-oriented programming, and
improved interoperability with the C language. For more information on supported Fortran 2003 features,
see the Intel® Fortran Language Reference.

• Fortran 95

American National Standard Programming Language Fortran and International Standards Organization,
ISO/IEC 1539-1: 1997(E), Information technology -- Programming languages -- Fortran. This standard
introduces certain language elements and corrections into Fortran 90. Fortran 95 includes Fortran 90 and
most features of FORTRAN 77. For information about differences between Fortran 95 and Fortran 90, see
the Intel® Fortran Language Reference.

• Fortran 90

American National Standard Programming Language Fortran, ANSI X3.198-1992 and International
Standards Organization, ISO/IEC 1539: 1991, Information technology -- Programming languages --
Fortran. This standard emphasizes modernization of the language by introducing new developments. For
information about differences between Fortran 90 and FORTRAN 77, see the Intel® Fortran Language
Reference.

• FORTRAN 77

American National Standard Programming Language FORTRAN, ANSI X3.9-1978. This standard added
new features based on vendor extensions to FORTRAN 66 and addressed problems associated with large-
scale projects, such as improved control structures.

• FORTRAN 66

American National Standard Programming Language FORTRAN, ANSI X3.9-1966. This was the first
attempt to standardize the languages called FORTRAN by many vendors. The language was based heavily
on IBM's FORTRAN IV language.

Although a language standard seeks to define the form and the interpretation uniquely, a standard may not
cover all areas of interpretation. It may also include some ambiguities. You need to carefully craft your
program in these cases to insure that you get the desired answers when producing a portable program.

Use Standard Features
Use standard language features to achieve the greatest degree of portability for your Intel® Fortran
programs. You can design a robust implementation to improve the portability of your program, or you can
choose to use extensions to the standard to increase the readability, functionality, and efficiency of your
programs.

You can request that the compiler warn you about program syntax that violates the standard's numbered
syntax rules and constraints. While this does not insure that the program as a whole is standard-conforming,
it can help to avoid many possible compatibility issues. The stand compiler option enables this checking, and
you can specify the desired standard to check against. If you do not specify a standard, Fortran 2018 is used.

You can use the standard-semantics compiler option to enable all of the options that implement the
current Fortran Standard behavior of the compiler where those differ from the compiler's default.

 1 Intel® Fortran Compiler Classic and Intel® Fortran Compiler Developer Guide and Reference

2588

Use Standard Extensions
Not all extensions to the Fortran standard cause problems when porting to other platforms. Many extensions
are supported on a wide range of platforms, and if a system you are porting a program to supports an
extension, there is no reason to avoid using it. There is no guarantee, however, that the same feature on
another system will be implemented in the same way as with Intel® Fortran. Only the Fortran standard is
guaranteed to coexist uniformly on all platforms.

The Intel® Fortran Compiler supports many language extensions on multiple platforms, including Linux*, and
Microsoft Windows* operating systems. The Intel®Fortran Language Reference Manual identifies whether
each language element is supported on other platforms.

It is a good programming practice to declare any external procedures either in an EXTERNAL or PROCEDURE
statement or in a procedure interface block, for the following reasons:

• The newer Fortran standards have added many new intrinsic procedures to the language.

Programs that conformed to earlier Fortran Standards (such as FORTRAN 77) may include non-intrinsic
functions or subroutines having the same name as new Fortran Standard procedures.

• Some processors include nonstandard intrinsic procedures that might conflict with procedure names in
your program.

If you do not explicitly declare the external procedures and the name duplicates an intrinsic procedure, the
processor calls the intrinsic procedure, not your external routine. For more information on how the Intel®
Fortran Compiler resolves name definitions, see Resolving Procedure References.

Use Compiler Optimizations
Many Fortran compilers perform code-generation optimizations to increase the speed of execution or to
decrease the required amount of memory for the generated code. Although the behaviors of both the
optimized and non-optimized programs fall within the language standard specification, different behaviors
can occur in areas not covered by the language standard. Compiler optimization can influence floating-point
numeric results.

The Intel® Fortran Compiler can perform optimizations to increase execution speed and to improve floating-
point numerical consistency.

Floating-point consistency refers to obtaining results consistent with the IEEE binary floating-point standards.
For more information, see option fp-model=consistent (Linux) or fp:consistent (Windows).

Product and Performance Information

Performance varies by use, configuration and other factors. Learn more at www.Intel.com/
PerformanceIndex.

Notice revision #20201201

See Also
Language Standards Conformance
stand compiler option
standard-semantics compiler option
Resolving Procedure References
fp-model, fp compiler option

Conformance, Compatibility, and Fortran Features
This section contains information about Fortran language standards conformance, language compatibility, and
supported features.

• Fortran 2023 Features

Intel® Fortran Compiler Classic and Intel® Fortran Compiler Developer Guide and Reference 1

2589

https://www.intel.com/PerformanceIndex
https://www.intel.com/PerformanceIndex

• Fortran 2018 Features
• Fortran 2008 Features
• Fortran 2003 Features

Language Standards Conformance
The Fortran standard has undergone several revisions since its initial publication as FORTRAN 66 (also known
as FORTRAN IV). Subsequent revisions have been FORTRAN 77, Fortran 90, Fortran 95, Fortran 2003, Fortran
2008, Fortran 2018, and Fortran 2023. Each revision has added new features; some revisions have labeled
features as "deprecated" (or obsolescent) or they have removed them. Intel® Fortran continues to support
deprecated and deleted features.

Intel® Fortran conforms to these standards:

• Fortran 2018 standard (ISO/IEC 1539-1:2018)
• Fortran 2008 standard (ISO/IEC 1539-1:2010)
• Fortran 2003 standard (ISO/IEC 1539-1:2004)
• American National Standard Fortran 95 (ANSI X3J3/96-007)

This is the same as International Standards Organization standard ISO/IEC 1539-1:1997 (E).
• American National Standard Fortran 90 (ANSI X3.198-1992).

This is the same as International Standards Organization standard ISO/IEC 1539:1991 (E).

The Fortran Standards committee is currently answering questions of interpretation on Fortran 2018
language features. Any answers given by the committee that are related to features implemented in Intel®
Fortran may result in changes in future releases of the Intel® Fortran Compiler, even if the changes produce
incompatibilities with earlier releases of Intel® Fortran.

Intel Fortran provides a number of extensions to the Fortran 2018 Standard. In the language reference,
extensions (non-standard features) are displayed in this color.

Intel® Fortran also includes support for programs that conform to the previous Fortran standards (ANSI
X3.9-1978 and ANSI X3.0-1966), the International Standards Organization standard ISO 1539-1980 (E), the
Federal Information Processing Institute standard FIPS 69-1, and the Military Standard 1753 Language
Specification.

Language Compatibility
Intel® Fortran is highly source-compatible with Compaq* Visual Fortran on supported systems, and it is
substantially source-compatible with DEC* Fortran 90 and VAX* FORTRAN 77.

Fortran 2023 Features
The following Fortran 2023 features are new in this release:

• Source input lines in free format can have up to 10,000 characters.
• A Fortran statement can contain up to 1,000,000 characters.
• New named constants LOGICAL8, LOGICAL16, LOGICAL32, LOGICAL64, and REAL16 in the intrinsic

module ISO_FORTRAN_ENV.
• New procedures C_F_STRPOINTER and F_C_STRING for C interoperability have been added to the

intrinsic module ISO_C_BINDING.
• Optional argument lower to subroutine C_F_POINTER in the intrinsic module ISO_C_BINDING, which

allows specifying lower bounds for the fptr array pointer argument.
• Two argument form of the intrinsic trigonometric function ATAND (Y, X) whose arguments are in degrees.

The following Fortran 2023 features are also supported:

• The REDUCE locality spec on DO CONCURRENT
• Binary, octal, and hexadecimal (BOZ) constants on the right-hand side of INTEGER and REAL assignment

statements

 1 Intel® Fortran Compiler Classic and Intel® Fortran Compiler Developer Guide and Reference

2590

• BOZ constants as INTEGER and REAL values in PARAMETER statements
• BOZ constants as INTEGER or REAL as array constructor values
• BOZ constants as INTEGER values in ENUMERATION statements
• Intrinsic trigonometric functions returning degrees: ACOSD(X), ASIND(X), ATAND(X), ATAN2D(Y, X),

COSD(X), SIND(X), and TAND(X)

Fortran 2018 Features
Fortran 2018 is fully supported, including the following features:

• Strict F2018 conformance is now enforced for arguments to the C_LOC function.
• Coarray teams have been implemented.
• The derived type TEAM_TYPE has been added to the ISO_FORTRAN_ENV intrinsic module.
• The CHANGE TEAM and END TEAM statements have been implemented.
• The FORM TEAM statement has been implemented.
• The SYNC TEAM statement has been implemented.
• The TEAM_NUMBER intrinsic function has been implemented.
• The GET_TEAM intrinsic function has been implemented.
• The TEAM argument has been added to the intrinsic functions FAILED_IMAGES, IMAGE_STATUS, and

STOPPED_IMAGES.
• The optional TEAM argument has been added to the intrinsic functions STOPPED_IMAGES, NUM_IMAGES,

and IMAGE_STATUS.
• New forms of the intrinsic function IMAGE_INDEX and NUM_IMAGES allow optional TEAM and

TEAM_NUMBER arguments have been implemented.
• A new form of THIS_IMAGE with a TEAM argument has been implemented.
• An optional TEAM or TEAM_NUMBER specifier is now permitted in image selectors.
• Implicit allocation of an unallocated coarray in a variable definition context is now prohibited.
• Nonpolymorphic pointer arguments to the EXTENDS_TYPE_OF and SAME_TYPE_AS intrinsics no longer

need to have defined allocation status.
• Deallocation during finalization has been clarified and now occurs using the semantics defined in Fortran

2018.
• Output from the STOP and ERROR_STOP statement may now be conditionally suppressed.
• STOP and ERROR STOP codes can now be non-constant expressions.
• Named constants of type LOCK_TYPE are no longer allowed.
• The DIM argument to the intrinsic functions ALL, ANY, IALL, IANY, IPARITY, MAXLOC, MAXVAL, MINLOC,

MINVAL, NORM2, PARITY, PRODUCT, SUM, and THIS_IMAGE may now be a present OPTIONAL dummy
argument.

• VALUE dummy arguments to PURE procedures may appear in variable definition contexts.
• The optional ERRMSG argument has been added to the intrinsic procedures GET_COMMAND_ARGUMENT,

GET_ENVIRONMENT_VARIABLE, and GET_COMMAND.
• The OUT_OF_RANGE intrinsic function has been implemented.
• The RANDOM_INIT intrinsic subroutine has been implemented.
• Dummy arguments to defined assignment and operator procedures need not have the INTENT(IN)

attribute if they have the VALUE attribute.
• A dummy argument of PURE procedure may appear in a variable definition context if it has the VALUE

attribute.
• Constant properties of an object can be used in the object's initialization.
• Polymorphic structure constructor components no longer need to have the same dynamic type as their

corresponding structure component expression.
• The RANDOM_INIT intrinsic subroutine has been implemented.
• Several new Fortran 2018 terms have been added to the glossary; for example: current team, ancestor

team, parent team, and established coarrays.
• Non-pointer variables with the PROTECTED attribute may no longer appear as a data-target or as an

initial-data-target.
• VOLATILE variables are now prohibited in PURE procedures and statement functions.

Intel® Fortran Compiler Classic and Intel® Fortran Compiler Developer Guide and Reference 1

2591

• The type and kind of an implied DO loop variable can now be specified in an implied-do loop of array
constructors and data statements.

• Floating point comparisons perform IEEE compareSignaling<relation> operations when the
assume ieee_compares or -standard-semantics compiler option is specified.

• The REDUCE intrinsic that performs user-defined reductions has been implemented.
• Enhancements to the IMPLICIT NONE statement allow specifying that all external procedures must be

declared as EXTERNAL.
• Enhancements to the GENERIC statement permit it to be used to declare generic interfaces.
• You can now specify locality for variables in a DO CONCURRENT statement.
• Enhancements to edit descriptor forms E and D, EN, ES, and G allow a field width of zero, analogous to

the F edit descriptor.
• The exponent width e in a data edit descriptor can now be zero, analogous to a field width of zero.
• The RN edit descriptor now rounds to nearest as specified by Fortran 2018 and ISO/IEC/IEEE

60559:2011.
• The EX edit descriptor allows for hexadecimal format output of floating-point values, and hexadecimal

format floating-point values are allowed on input.
• SIZE= can be specified for non-advancing I/O.
• The values for SIZE= and POS= in an INQUIRE statement for pending asynchronous operations have been

standardized.
• The value assigned to the RECL= specifier in an INQUIRE statement now has standardized values.
• A new form of the intrinsic function CMPLX does not require the KIND= keyword if the first argument is

type COMPLEX.
• The arguments to the SIGN function can be of different kinds.
• The named constants STAT_FAILED_IMAGE and STAT_UNLOCKED_FAILED_IMAGE have been defined in

the intrinsic ISO_FORTRAN_ENV modules.
• The named constant kind type C_PTRDIFF_T has been added to the intrinsic module ISO_C_BINDING.
• The non-block DO statement and the arithmetic IF statement are now deleted in Fortran 2018. Intel®

Fortran fully supports features deleted in the Fortran Standard.
• COMMON, EQUIVALENCE and BLOCKDATA statements are now obsolescent.
• The labeled form of a DO loop is now obsolescent.
• Specific names of intrinsic procedures are now obsolescent.
• The following atomic subroutines have been implemented: ATOMIC_ADD, ATOMIC_AND, ATOMIC_CAS,

ATOMIC_FETCH_ADD, ATOMIC_FETCH_AND, ATOMIC_FETCH_OR, ATOMIC_FETCH_XOR, ATOMIC_OR, and
ATOMIC_XOR.

• The following collective subroutines have been implemented: CO_BROADCAST, CO_MAX, CO_MIN,
CO_REDUCE, and CO_SUM.

• The SELECT RANK construct has been implemented allowing manipulation of assumed rank dummy
arguments..

• The compiler will now diagnose the use of nonstandard intrinsic procedures and modules as required by
Fortran 2018.

• To comply with the latest Fortran 2018 standards, C_F_PROCPOINTER is now IMPURE.
• Transformational intrinsic functions from the intrinsic modules ISO_C_BINDING, IEEE_ARITHMETIC, and

IEEE_EXCEPTIONS are now allowed in specification expressions.
• You can now specify optional argument RADIX for the IEEE_GET_ROUNDING_MODE and

IEEE_SET_ROUNDING_MODE intrinsic module procedures.
• IEEE_ROUND_TYPE and IEEE_AWAY have been added to the IEEE_ARITHMETIC intrinsic module.
• The optional ROUND argument has been added to the IEEE_RINT function defined in the intrinsic module

IEEE_ARITHMETIC.
• The intrinsic module IEEE_ARITHMETIC now includes the functions IEEE_FMA, IEEE_SIGNBIT,

IEEE_NEXT_UP, and IEEE_NEXT_DOWN.
• The intrinsic module IEEE_EXCEPTIONS now contains a new derived type, IEEE_MODES_TYPE, which can

be used to save and restore the IEEE_MODES using the IEEE_GET_MODES and the IEEE_SET_MODES
intrinsic module procedures.

• SUBNORMAL is now synonymous with DENORMAL.

 1 Intel® Fortran Compiler Classic and Intel® Fortran Compiler Developer Guide and Reference

2592

• The following intrinsic module procedures have been implemented:

• IEEE_MAX_NUM, IEEE_MAX_NUM_MAG, IEEE_MIN_NUM, and IEEE_MIN_NUM_MAG
• IEEE_QUIET_EQ, IEEE_QUIET_GE, IEEE_QUIET_GT, IEEE_QUIET_LE, IEEE_QUIET_LT,

IEEE_QUIET_NE, IEEE_SIGNALING_EQ, IEEE_SIGNALING_GE, IEEE_SIGNALING_GT, IEEE_SIGNALING
LE, IEEE_SIGNALING_LT, and IEEE_SIGNALING_NE

• IEEE_SUPPORT_SUBNORMAL
• An optional STAT= specifier has been added to ATOMIC_REF and ATOMIC_DEFINE intrinsic procedures.
• Optional STAT= and ERRMSG= specifiers have been added to the MOVE_ALLOC intrinsic procedure, to

image selectors, and to the CRITICAL statement and construct.
• INTEGER and LOGICAL arguments to intrinsic procedures are no longer required to be of default kind.
• The intrinsic module procedures IEEE_INT and IEEE_REAL have been implemented.
• The FAIL IMAGE statement has been implemented. It allows debugging recovery code for failed images

without having to wait for an actual image failure.
• Intrinsic functions FAILED_IMAGES, IMAGE_STATUS, and STOPPED_IMAGES have been implemented.
• The COSHAPE intrinsic function returns the cobounds of a coarray argument.
• You can now add module names, OpenMP reduction identifiers, and defined I/O generic specs to PUBLIC

and PRIVATE statements.
• Coarray EVENTs provide synchronization capabilities between images:

EVENT_QUERY intrinsic subroutine

EVENT_POST and EVENT_WAIT statements

The derived type EVENT_TYPE is defined in the ISO_FORTRAN_ENV intrinsic module.
• The IMPORT statement can now be used in internal subprograms and BLOCK constructs to control host

association. There are three new forms:

• IMPORT, ALL
• IMPORT, NONE
• IMPORT, ONLY: import-name-list

• A module name that is accessed via used association can appear in a PUBLIC or PRIVATE access-id-list . It
can be used to set the default accessibility for all accessible entities from that module.

• C language interoperability :

• An assumed-rank array is now permitted to be an argument to the C_SIZEOF intrinsic function.
• With the exception of C_F_POINTER, all standard procedures in the ISO_C_BINDING intrinsic module

are now PURE.
• Assumed type variables
• Assumed-rank arrays
• C descriptors
• RANK intrinsic function

• The NON_RECURSIVE keyword declares a procedure as not recursive. The default in previous Fortran
standards was that procedures were non-recursive unless declared RECURSIVE. Fortran 2018 changes
that default. Intel® Fortran has implemented the NON_RECURSIVE keyword, but the default compilation
mode for this release remains non-recursive.

• The ERROR STOP statement is allowed in PURE procedures

Fortran 2008 Features
Fortran 2008 is fully supported, including the following features:

• Specification expressions can now contain user-defined operators.
• Direct access user-defined I/O has been implemented.
• The FINDLOC intrinsic function
• You can specify optional argument BACK in MAXLOC and MINLOC intrinsic functions.
• You can declare multiple type-bound procedures in a PROCEDURE list.

Intel® Fortran Compiler Classic and Intel® Fortran Compiler Developer Guide and Reference 1

2593

• Intrinsic assignment to an allocatable polymorphic variable is allowed if the variable is not a coarray. For
more information, see Examples of Intrinsic Assignment to Polymorphic Variables.

• The intrinsic ISO_FORTRAN_ENV module functions COMPILER_OPTIONS and COMPILER_VERSION
• Subscripts and nested implied-DO limits in a data statement can be any constant expression instead of

being limited to combinations of constants, implied-DO variables, and intrinsic operations.
• The intrinsic functions ACOS, ACOSH, ASIN, ASINH, ATAN, ATANH, COSH, SINH, TAN, and TANH now take

arguments of type COMPLEX. The intrinsic function ATAN (Y, X) is defined as ATAN2 (Y, X).
• A pointer dummy argument with INTENT(IN) can be argument associated with a non-pointer actual

argument with the TARGET attribute.
• A reference to a function that returns a data pointer is treated as a variable and is permitted in any

variable-definition context .
• Allocatable components are allowed to be of recursive type, that is, the type being defined, or of a

forward type, that is, a derived type that is not yet defined.
• In an ALLOCATE statement, you can specify more than one allocate object for a given SOURCE= or

MOLD=. Also, if you do not specify upper and lower bounds in an ALLOCATE statement's s-spec list, the
shape of the array is that of SOURCE=source-expr or MOLD=source-expr.

• Initialization expressions are now referred to as constant expressions.
• An EXIT statement can appear in a BLOCK, IF, ASSOCIATE, SELECT CASE, or SELECT TYPE construct.
• You can specify intrinsic types in a TYPE statement
• You can specify implied-shape array specifications for named constant arrays
• You can specify %re and %im designators for the real and imaginary parts of values of COMPLEX type
• Pointer Initialization
• Binary, octal, and hexadecimal constants are allowed for one or more arguments in intrinsic routines BGE,

BGT, BLE, BLT, CMPLX, DBLE, DSHIFTL, DSHIFTR, IAND, IEOR, INT, IOR, MERGE_BITS, and REAL.
• You can specify an optional integer datatype for the subscript-name in the triplet-spec in the FORALL

statement.
• An ALLOCATE statement can give a polymorphic variable the shape and type of another variable without

copying the value. This is done with MOLD= replacing SOURCE=.
• Except for procedure arguments and pointer dummy arguments, a PURE function may have a dummy

argument with the VALUE attribute without the explicit INTENT(IN) attribute.
• Dummy arguments of ELEMENTAL procedures may appear in specification expressions in the procedure.
• You can specify an optional RADIX argument for the intrinsic function SELECTED_REAL_KIND and the

intrinsic module procedure IEEE_SELECTED_REAL_KIND.
• Submodules
• IMPURE keyword
• The EXECUTE_COMMAND_LINE subroutine
• The BLOCK construct
• The FUNCTION and SUBROUTINE keywords on the END statement are optional for internal procedures

and module procedures.
• A negative value that is not zero but rounds to zero on output is displayed with a leading minus sign
• Generic resolution of procedures where one dummy argument has the ALLOCATABLE attribute and the

other has the POINTER attribute without INTENT (IN), or where one is a procedure and the other is a data
object.

• The ENTRY statement is an obsolescent feature.
• A source statement can begin with one or more semicolon characters.
• Coarray intrinsic routines: ATOMIC_DEFINE and ATOMIC_REF
• A polymorphic MOLD= specifier for ALLOCATE
• Coarrays (Windows* and Linux* only)
• Image control statements: SYNC ALL, SYNC IMAGES, SYNC MEMORY, CRITICAL, LOCK, and UNLOCK
• Coarray intrinsic routines: IMAGE_INDEX, LCOBOUND, NUM_IMAGES, THIS_IMAGE, and UCOBOUND
• CRITICAL construct
• Maximum array rank of 15 (Intel® Fortran allows 31 dimensions)
• G0 and G0.d format edit descriptors
• FINAL routines

 1 Intel® Fortran Compiler Classic and Intel® Fortran Compiler Developer Guide and Reference

2594

• GENERIC, OPERATOR, and ASSIGNMENT overloading in type-bound procedures
• A generic interface may have the same name as a derived type
• Bounds specification and bounds remapping list on a pointer assignment
• In formatting, a * indicates an unlimited repeat count
• NEWUNIT= specifier in OPEN
• A CONTAINS section can be empty
• Attributes CODIMENSION and CONTIGUOUS
• Coarrays can be specified in ALLOCATABLE, ALLOCATE, and TARGET statements
• MOLD keyword in ALLOCATE
• DO CONCURRENT statement
• ERROR STOP statement
• Intrinsic functions BESSEL_J0, BESSEL_J1, BESSEL_JN, BESSEL_Y0, BESSEL_Y1, BESSEL_YN, BGE, BGT,

BLE, BLT, DSHIFTL, DSHIFTR, ERF, ERFC, ERFC_SCALED, GAMMA, HYPOT, IALL, IANY, IPARITY,
IS_CONTIGUOUS, LEADZ, LOG_GAMMA, MASKL, MASKR, MERGE_BITS, NORM2, PARITY, POPCNT,
POPPAR, SHIFTA, SHIFTL, SHIFTR, STORAGE_SIZE, TRAILZ

• ISO_FORTRAN_ENV module constants ATOMIC_INT_KIND, ATOMIC_LOGICAL_KIND, CHARACTER_KINDS,
INTEGER_KINDS, INT8, INT16,INT32, INT64, LOGICAL_KINDS, REAL_KINDS, REAL32, REAL64, REAL128,
STAT_LOCKED, STAT_LOCKED_OTHER_IMAGE, STAT_UNLOCKED

• ISO_FORTRAN_ENV type LOCK_TYPE
• SCALAR keyword for ALLOCATED

Fortran 2003 Features
Fortran 2003 is fully supported, including the following features:

• Parameterized derived types with KIND and LENGTH type parameters and the %KIND and %LEN type
parameter designators

• A polymorphic dummy argument that has the attribute INTENT(OUT) becomes UNDEFINED or it will have
DEFAULT INITIALIZATION applied.

• User-Defined Derived-Type I/O
• A polymorphic SOURCE= specifier for ALLOCATE
• Bounds specification and bounds remapping list on a pointer assignment
• FINAL routines
• GENERIC, OPERATOR, and ASSIGNMENT overloading in type-bound procedures
• Enumerators
• Type extension (not polymorphic)
• Type-bound procedures
• Allocatable scalar variables (not deferred-length character)
• ERRMSG keyword for ALLOCATE and DEALLOCATE
• SOURCE= keyword for ALLOCATE
• Character arguments for MAX, MIN, MAXVAL, MINVAL, MAXLOC, and MINLOC
• Intrinsic modules IEEE_EXCEPTIONS, IEEE_ARITHMETIC and IEEE_FEATURES
• ASSOCIATE construct
• DO CONCURRENT construct
• PROCEDURE declaration
• Procedure pointers
• ABSTRACT INTERFACE
• PASS and NOPASS attributes
• CONTIGUOUS attribute
• Structure constructors with component names and default initialization
• Array constructors with type and character length specifications
• I/O keywords BLANK, DECIMAL, DELIM, ENCODING, IOMSG, PAD, ROUND, SIGN, and SIZE
• Format edit descriptors DC, DP, RD, RC, RN, RP, RU, and RZ
• The COUNT_RATE argument to the SYSTEM_CLOCK intrinsic may be a REAL of any kind.
• NAMELIST I/O for internal files

Intel® Fortran Compiler Classic and Intel® Fortran Compiler Developer Guide and Reference 1

2595

• Intrinsic functions EXTENDS_TYPE_OF and SAME_TYPE_AS
• SELECT TYPE construct
• CLASS declaration
• PUBLIC types with PRIVATE components and PRIVATE types with PUBLIC components
• RECORDTYPE setting STREAM_CRLF
• A file can be opened for stream access (ACCESS='STREAM')
• Specifier POS can be specified in an INQUIRE, READ, or WRITE statement
• BIND attribute and statement
• Language binding can be specified in a FUNCTION or SUBROUTINE statement, or when defining a derived

type
• IS_IOSTAT_END intrinsic function
• IS_IOSTAT_EOR intrinsic function
• INTRINSIC and NONINTRINSIC can be specified for modules in USE statements
• ASYNCHRONOUS attribute and statement
• VALUE attribute and statement
• Specifier ASYNCHRONOUS can be specified in an OPEN, INQUIRE, READ, or WRITE statement
• An ID can be specified for a pending data transfer operation
• FLUSH statement
• WAIT statement
• IMPORT statement
• NEW_LINE intrinsic function
• SELECTED_CHAR_KIND intrinsic function
• Intrinsic modules ISO_C_BINDING and ISO_FORTRAN_ENV
• Specifiers ID and PENDING can be specified in an INQUIRE statement
• User-defined operators can be renamed in USE statements
• MOVE_ALLOC intrinsic subroutine
• PROTECTED attribute and statement
• Pointer objects can have the INTENT attribute
• GET_COMMAND intrinsic
• GET_COMMAND_ARGUMENT intrinsic
• COMMAND_ARGUMENT_COUNT intrinsic
• GET_ENVIRONMENT_VARIABLE intrinsic
• Allocatable components of derived types
• Allocatable dummy arguments
• Allocatable function results
• VOLATILE attribute and statement
• Names of length up to 63 characters
• Statements up to 256 lines
• A named PARAMETER constant may be part of a complex constant
• In all I/O statements, the following numeric values can be of any kind: UNIT=, IOSTAT=
• The following OPEN numeric values can be of any kind: RECL=
• The following READ and WRITE numeric values can be of any kind: REC=, SIZE=
• The following INQUIRE numeric values can be of any kind: NEXTREC=, NUMBER=, RECL=, SIZE=
• Recursive I/O is allowed when the new I/O being started is internal I/O that does not modify any internal

file other than its own
• IEEE infinities and Nans are displayed by formatted output as specified by Fortran 2003
• In an I/O format, the comma after a P edit descriptor is optional when followed by a repeat specifier
• The following intrinsics take an optional KIND= argument: ACHAR, COUNT, IACHAR, ICHAR, INDEX,

LBOUND, LEN, LEN_TRIM, MAXLOC, MINLOC, SCAN, SHAPE, SIZE, UBOUND, VERIFY
• Square brackets [] are permitted to delimit array constructors instead of (/ /)
• The Fortran character set has been extended to contain the 8-bit ASCII characters ~ \ [] ` ^ { } | # @

See Also
New Language Features

 1 Intel® Fortran Compiler Classic and Intel® Fortran Compiler Developer Guide and Reference

2596

Minimize Operating System-Specific Information
The operating system influences your program both externally and internally. For increased portability, you
need to minimize the amount of operating-system-specific information required by your program. The
Fortran language standards do not specify this information.

Operating-system-specific information consists of non-intrinsic extensions to the language, compiler and
linker options, and possibly the graphical user interface of Windows*. Input and output operations use
devices that may be system-specific and may involve a file system with system-specific record and file
structures.

The operating system also governs resource management and error handling. You can depend on default
resource management and error handling mechanisms or provide mechanisms of your own. For information
on special library routines to help port your program from one system to another, see IFPORT Portability
Library.

The minimal interaction with the operating system is for input/output (I/O) operations and usually consists of
knowing the standard units preconnected for input and output. You can use default file units with the asterisk
(*) unit specifier.

To increase the portability of your programs across operating systems, consider the following:

• Do not assume the use of a particular type of file system.
• Do not embed filenames or paths in the body of your program. Define them as constants at the beginning

of the program or read them from input data.
• Do not assume a particular type of standard I/O device or the size of that device (number of rows and

columns).
• Do not assume display attributes for the standard I/O device. Some environments do not support

attributes such as color, underlined text, blinking text, highlighted text, inverse text, protected text, or
dim text.

See Also
IFPORT Portability Library

Store and Represent Data
The Fortran language standard specifies little about the storage of data types.

This loose specification of storage for data types results from a great diversity of computing hardware. This
diversity poses problems in representing data and especially in transporting stored data among a multitude
of systems. The size (as measured by the number of bits) of a storage unit (a word, usually several bytes)
varies from machine to machine. In addition, the ordering of bits within bytes and bytes within words varies
from one machine to another. Furthermore, binary representations of negative integers and floating-point
representations of real and complex numbers take several different forms.

The simplest and most reliable means of transferring data between dissimilar systems is in character and not
binary form. Simple programming practices ensure that your data as well as your program is portable.

See Also
Supported Native and Non-native Numeric Formats

Data Portability
This section contains information about issues related to portability of data.

Format Data for Transportability
You can achieve the highest transportability of your data by formatting it as 8-bit character data. Use a
standard character set, such as the ASCII standard, for encoding your character data. Although this practice
is less efficient than using binary data, it will save you from shuffling and converting your data.

Intel® Fortran Compiler Classic and Intel® Fortran Compiler Developer Guide and Reference 1

2597

If you are transporting your data by means of a record-structured medium, it is best to use the Fortran
sequential files. See Record Types in the reference guide for more information.

Remember also that some systems use a carriage return/linefeed pair as an end-of-record indicator, while
other systems use linefeed only. There might be system-dependent values embedded within your data that
complicate its transport.

Implementing a strictly portable solution requires a careful effort. Maximizing portability may also mean
making compromises to the efficiency and functionality of your solution. If portability is not your highest
priority, you can use some of the techniques that appear in later sections to ease your task of customizing a
solution.

See Also
Specify the Data Format
Porting Non-native Data
Record Types
Supported Native and Non-native Numeric Formats

Supported Native and Non-Native Numeric Formats
Data storage in different computers uses a convention of either little-endian or big-endian storage. The
storage convention generally applies to numeric values that span multiple bytes, as follows:

Little-endian storage occurs when:

• The least significant bit (LSB) value is in the byte with the lowest address.
• The most significant bit (MSB) value is in the byte with the highest address.
• The address of the numeric value is the byte containing the LSB. Subsequent bytes with higher addresses

contain more significant bits.

Big-endian storage occurs when:

• The least significant bit (LSB) value is in the byte with the highest address.
• The most significant bit (MSB) value is in the byte with the lowest address.
• The address of the numeric value is the byte containing the MSB. Subsequent bytes with higher addresses

contain less significant bits.

Intel® Fortran expects numeric data to be in native little-endian order, in which the least-significant, right-
most zero bit (bit 0) or byte has a lower address than the most-significant, left-most bit (or byte).

The following figure shows the difference between the two byte-ordering schemes for the case of storing an
integer value:

The following figure shows the difference between the two conventions for the case of addressing byte order
within words:

 1 Intel® Fortran Compiler Classic and Intel® Fortran Compiler Developer Guide and Reference

2598

Data types stored as subcomponents (bytes stored in words) end up in different locations within
corresponding words of the two conventions. The following figure shows the difference between the
representations of character and integer data types in the two conventions. Letters represent 8-bit character
data, while numbers represent the 8-bit partial contribution to 32-bit integer data.

If you serially transfer bytes now from the big-endian words to the little-endian words (BE byte 0 to LE byte
0, BE byte 1 to LE byte 1, and so on), the left half of the figure shows how the data ends up in the little-
endian words. Note that data of size one byte (characters in this case) is ordered correctly, but that integer
data no longer correctly represents the original binary values. The right half of the figure shows that you
need to swap bytes around the middle of the word to reconstitute the correct 32-bit integer values. After
swapping bytes, the two preceding figures are identical.

Intel® Fortran Compiler Classic and Intel® Fortran Compiler Developer Guide and Reference 1

2599

You can generalize the previous example to include floating-point data types and to include multiple-word
data types.

Moving unformatted data files between big-endian and little-endian computers requires that the data be
converted.

Intel Fortran provides the capability for programs to read and write unformatted data (originally written using
unformatted I/O statements) in several non-native floating-point formats and in big-endian INTEGER or
floating-point format. Supported non-native floating-point formats include Compaq* VAX* little-endian
floating-point formats supported by Digital* FORTRAN for OpenVMS* VAX Systems, standard IEEE big-endian
floating-point format found on most Sun Microsystems* systems and IBM RISC* System/6000 systems, IBM
floating-point formats (associated with the IBM's System/370 and similar systems), and CRAY* floating-point
formats.

Converting unformatted data instead of formatted data is generally faster and is less likely to lose precision
of floating-point numbers. For unformatted files that contain record lengths before and after the data,
specifying big-endian conversion will interpret the lengths as big-endian.

Caution
Intel Fortran support of data conversion applies only to I/O list items of intrinsic type (REAL, INTEGER,
and so on). I/O list items of derived type are not converted.

The native memory format includes little-endian integers and little-endian IEEE floating-point formats, IEEE
binary32 for REAL(KIND=4) and COMPLEX(KIND=4) declarations, IEEE binary64 for REAL(KIND=8) and
COMPLEX(KIND=8) declarations, and IEEE binary128 for REAL(KIND=16) and COMPLEX(KIND=16)
declarations.

The keywords for supported non-native unformatted file formats and their data types are listed in the
following table:

Keyword Description

BIG_ENDIAN Big-endian integer data of the appropriate size (one, two, four, or eight bytes) and big-
endian IEEE floating-point formats for REAL and COMPLEX single-, double-, and extended-
precision numbers. INTEGER(KIND=1) data is the same for little-endian and big-endian.

CRAY Big-endian integer data of the appropriate size (one, two, four, or eight bytes) and big-
endian CRAY proprietary floating-point format for REAL and COMPLEX single- and double-
precision numbers.

FDX Little-endian integer data of the appropriate size (one, two, four, or eight bytes) and the
following little-endian proprietary floating-point formats:
• VAX F_float for REAL (KIND=4) and COMPLEX (KIND=4)
• VAX D_float for REAL (KIND=8) and COMPLEX (KIND=8)
• IEEE binary128 for REAL (KIND=16) and COMPLEX (KIND=16)

FGX Little-endian integer data of the appropriate size (one, two, four, or eight bytes) and the
following little-endian proprietary floating-point formats:
• VAX F_float for REAL (KIND=4) and COMPLEX (KIND=4)
• VAX G_float for REAL (KIND=8) and COMPLEX (KIND=8)
• IEEE binary128 for REAL (KIND=16) and COMPLEX (KIND=16)

IBM Big-endian integer data of the appropriate INTEGER size (one, two, or four bytes) and
big-endian IBM proprietary (System\370 and similar) floating-point format for REAL and
COMPLEX single- and double-precision numbers.

LITTLE_ENDI
AN

Native little-endian integers of the appropriate INTEGER size (one, two, four, or eight
bytes) and the following native little-endian IEEE floating-point formats:
• IEEE binary32 for REAL (KIND=4) and COMPLEX (KIND=4)
• IEEE binary64 for REAL (KIND=8) and COMPLEX (KIND=8)

 1 Intel® Fortran Compiler Classic and Intel® Fortran Compiler Developer Guide and Reference

2600

Keyword Description

• IEEE binary128 for REAL (KIND=16) and COMPLEX (KIND=16)

NATIVE No conversion occurs between memory and disk. This is the default for unformatted files.

VAXD Native little-endian integers of the appropriate INTEGER size (one, two, four, or eight
bytes) and the following little-endian VAX proprietary floating-point formats:
• VAX F_float for REAL (KIND=4) and COMPLEX (KIND=4)
• VAX D_float for REAL (KIND=8) and COMPLEX (KIND=8)
• VAX H_float for REAL (KIND=16) and COMPLEX (KIND=16)

VAXG Native little-endian integers of the appropriate INTEGER size (one, two, four, or eight
bytes) and the following little-endian VAX proprietary floating-point formats:
• VAX F_float for REAL (KIND=4) and COMPLEX (KIND=4)
• VAX G_float for REAL (KIND=8) and COMPLEX (KIND=8)
• VAX H_float for REAL (KIND=16) and COMPLEX (KIND=16)

When reading a non-native format, the non-native format on disk is converted to native format in memory. If
a converted non-native value is outside the range of the native data type, a runtime message is displayed.

See Also
Environment Variable F_UFMTENDIAN Method

Port Non-Native Data
When porting non-native data, consider the following:

• Vendors might use different units for specifying the record length (RECL specifier) of unformatted files.
While formatted files are specified in units of characters (bytes), unformatted files are specified in
longword units for Intel® Fortran (default) and some other vendors.

To allow you to specify RECL units (bytes or longwords) for unformatted files without source file
modification, use the assume byterecl compiler option.

• Certain vendors apply different OPEN statement defaults to determine the record type. The default record
type (RECORDTYPE) with Intel® Fortran depends on the values for the ACCESS and FORM specifiers for
the OPEN statement.

• Certain vendors use a different identifier for the logical data types, such as hex FF and hex 00 instead of
01 to denote .TRUE. and .FALSE. See the fpscomp logicals compiler option.

• Source code being ported may be coded specifically for big endian use.

See Also
assume compiler option
fpscomp compiler option

Specify the Data Format
There are a number of methods for specifying a non-native numeric format for unformatted data:

• Environment Variable FORT_CONVERT.ext or FORT_CONVERT_ext Method

Set an environment variable for a specific file name extension before the file is opened. The environment
variable is named FORT_CONVERT.ext or FORT_CONVERT_ext, where ext is the file name extension (suffix).

• Environment Variable FORT_CONVERTn Method

Set an environment variable for a specific unit number before the file is opened. The environment variable
is named FORT_CONVERTn, where n is the unit number.

• Environment Variable F_UFMTENDIAN Method

Set an environment variable for a set of units before the application is executed. The environment
variable is named F_UFMTENDIAN.

Intel® Fortran Compiler Classic and Intel® Fortran Compiler Developer Guide and Reference 1

2601

• OPEN Statement CONVERT Method

Specify the CONVERT keyword in the OPEN statement for a specific unit number.
• OPTIONS Statement Method

Compile the program with an OPTIONS statement that specifies the CONVERT=keyword qualifier. This
method affects all unit numbers using unformatted data specified by the program.

• Compiler Option -convert or /convert Method

Compile the program with the appropriate compiler option, which affects all unit numbers that use
unformatted data specified by the program. Use the convert compiler option.

If none of these methods are specified, the native LITTLE_ENDIAN format is assumed (no conversion occurs
between disk and memory).

Any keyword listed in Supported Native and Non-native Numeric Formats can be used with any of these
methods, except for the Environment Variable F_UFMTENDIAN Method, which supports only LITTLE_ENDIAN
and BIG_ENDIAN.

If you specify more than one method, the order of precedence when you open a file with unformatted data is
below:

1. Check for an environment variable (FORT_CONVERTn) for the specified unit number (applies to any file
opened on a particular unit).

2. Check for an environment variable (FORT_CONVERT.ext is checked before FORT_CONVERT_ext) for the
specified file name extension (applies to all files opened with the specified file name extension).

3. Check for an environment variable (F_UFMTENDIAN) for the specified unit number (or for all units).

NOTE
This environment variable is checked only when the application starts executing.

4. Check the OPEN statement CONVERT specifier.
5. Check whether an OPTIONS statement with a CONVERT:keyword qualifier was present when the

program was compiled.
6. Check whether the convert compiler option was present when the program was compiled.

Environment Variable FORT_CONVERT.ext or FORT_CONVERT_ext Method
Use this method to specify a non-native numeric format for each specified file name extension (suffix).
Specify the numeric format at runtime by setting the appropriate environment variable before an implicit or
explicit OPEN to one or more unformatted files. Use the format FORT_CONVERT.ext or FORT_CONVERT_ext
(where ext is the file extension or suffix). The FORT_CONVERT.ext environment variable is checked before
FORT_CONVERT_ext environment variable (if ext is the same).

For example, assume you have a previously compiled program that reads numeric data from one file and
writes to another file using unformatted I/O statements. You want the program to read non-native big endian
(IEEE floating-point) format from a file with a .dat file extension and write that data in native little endian
format to a file with an extension of .data. In this case, the data is converted from big endian IEEE format to
native little endian IEEE memory format (IEEE binary32 and IEEE binary64) when read from file.dat, and
then written without conversion in native little endian IEEE format to the file with a suffix of .data, assuming
that environment variables FORT_CONVERT.DATA and FORT_CONVERTn (for that unit number) are not
defined.

Without requiring source code modification or recompilation of a program, the following command sets the
appropriate environment variables before running the program:

Linux*

setenv FORT_CONVERT.DAT BIG_ENDIAN
Windows*

set FORT_CONVERT.DAT=BIG_ENDIAN

 1 Intel® Fortran Compiler Classic and Intel® Fortran Compiler Developer Guide and Reference

2602

The FORT_CONVERTn method takes precedence over this method. When the appropriate environment
variable is set when you open the file, the FORT_CONVERT.ext or FORT_CONVERT_ext environment variable
is used if a FORT_CONVERTn environment variable is not set for the unit number.

The FORT_CONVERTn and the FORT_CONVERT.ext or FORT_CONVERT_ext environment variable methods
take precedence over the other methods. For instance, you might use this method to specify that a unit
number will use a particular format instead of the format specified in the program (perhaps for a one-time
file conversion).

You can set the appropriate environment variable using the format FORT_CONVERT.ext or
FORT_CONVERT_ext. If you also use Intel® Fortran on Linux* systems, consider using the
FORT_CONVERT_ext form, because a dot (.) cannot be used for environment variable names on certain
Linux* command shells. If you do define both FORT_CONVERT.ext and FORT_CONVERT_ext for the same
extension (ext), the file defined by FORT_CONVERT.ext is used.

On Windows* systems, the file name extension (suffix) is not case-sensitive. The extension must be part of
the file name (not the directory path).

Environment Variable FORT_CONVERTn Method
You can use this method to specify a non-native numeric format for each specified unit number. You specify
the numeric format at runtime by setting the appropriate environment variable before an implicit or explicit
OPEN to that unit number.

When the appropriate environment variable is set when you open the file, the environment variable is always
used because this method takes precedence over the other methods. For example, you might use this
method to specify that a unit number will use a particular format instead of the format specified in the
program (perhaps for a one-time file conversion).

For example, assume you have a previously compiled program that reads numeric data from unit 28 and
writes it to unit 29 using unformatted I/O statements. You want the program to read non-native big endian
(IEEE floating-point) format from unit 28 and write that data in native little endian format to unit 29. In this
case, the data is converted from big endian IEEE format to native little endian IEEE memory format when
read from unit 28, and then written without conversion in native little endian IEEE format to unit 29.

Without requiring source code modification or recompilation of this program, the following command
sequence sets the appropriate environment variables before running a program.

Linux

setenv FORT_CONVERT28 BIG_ENDIAN
setenv FORT_CONVERT29 NATIVE

Windows

set FORT_CONVERT28=BIG_ENDIAN
set FORT_CONVERT29=NATIVE

Intel® Fortran Compiler Classic and Intel® Fortran Compiler Developer Guide and Reference 1

2603

The following figure shows the data formats used on disk and in memory when the program is run after the
environment variables are set.

Sample Unformatted File Conversion

This method takes precedence over other methods.

Environment Variable F_UFMTENDIAN Method
This little-endian-big-endian conversion feature is intended for Fortran unformatted input/output operations.
It enables the development and processing of files with little-endian and big-endian data organization.

The F_UFMTENDIAN environment variable is processed once at the beginning of program execution.
Whatever it specifies for specific units or for all units continues for the rest of the execution.

Specify the numbers of the units to be used for conversion purposes by setting F_UFMTENDIAN. Then, the
READ/WRITE statements that use these unit numbers will perform relevant conversions. Other READ/WRITE
statements will work in the usual way.

General Syntax for F_UFMTENDIAN

In the general case, the variable consists of two parts divided by a semicolon. No spaces are allowed inside
the F_UFMTENDIAN value:

F_UFMTENDIAN=MODE | [MODE;] EXCEPTION
where:

MODE = big | little
EXCEPTION = big:ULIST | little:ULIST | ULIST
ULIST = U | ULIST,U
U = decimal | decimal -decimal

• MODE defines current format of data, represented in the files; it can be omitted.

little means that the data has little endian format and will not be converted. This is the default.

big means that the data has big endian format and will be converted.
• EXCEPTION is intended to define the list of exclusions for MODE. EXCEPTION (little or big) defines data

format in the files that are connected to the units from the EXCEPTION list. This value overrides MODE
value for the units listed.

EXCEPTION and the colon can be omitted. The default when the keyword is omitted is big.
• Each list member U is a simple unit number or a number of units. The number of list members is limited

to 64.
• decimal is a non-negative decimal number less than 232.

 1 Intel® Fortran Compiler Classic and Intel® Fortran Compiler Developer Guide and Reference

2604

Converted data should have basic data types or arrays of basic data types. Derived data types are disabled.

Error messages may be issued during the little-endian-to-big-endian conversion. They are all fatal.

On Linux* systems, the command line for the variable setting in the shell is:

Sh: export F_UFMTENDIAN=MODE;EXCEPTION

NOTE
The environment variable value should be enclosed in quotes if the semicolon is present.

The environment variable can also have the following syntax:

F_UFMTENDIAN=u[,u] . . .
Examples

1. F_UFMTENDIAN=big
All input/output operations perform conversion from big-endian to little-endian on READ and from
little-endian to big-endian on WRITE.

2. F_UFMTENDIAN="little;big:10,20"
or F_UFMTENDIAN=big:10,20
or F_UFMTENDIAN=10,20
The input/output operations perform big-endian to little endian conversion only on unit numbers 10 and
20.

3. F_UFMTENDIAN="big;little:8"
No conversion operation occurs on unit number 8. On all other units, the input/output operations
perform big-endian to little-endian conversion.

4. F_UFMTENDIAN=10-20
The input/output operations perform big-endian to little-endian conversion on units 10, 11, 12 , ... 19,
20.

5. Assume you set F_UFMTENDIAN=10,100 and run the following program.

integer*4 cc4
integer*8 cc8
integer*4 c4
integer*8 c8
c4 = 456
c8 = 789

! prepare a little endian representation of data

open(11,file='lit.tmp',form='unformatted')
write(11) c8
write(11) c4
close(11)

! prepare a big endian representation of data

open(10,file='big.tmp',form='unformatted')
write(10) c8
write(10) c4
close(10)

! read big endian data and operate with them on

Intel® Fortran Compiler Classic and Intel® Fortran Compiler Developer Guide and Reference 1

2605

! little endian machine.

open(100,file='big.tmp',form='unformatted')
read(100) cc8
read(100) cc4

! Any operation with data, which have been read

! . . .
close(100)
stop
end

Now compare lit.tmp and big.tmp files with the help of the od utility:

> od -t x4 lit.tmp
0000000 00000008 00000315 00000000 00000008
0000020 00000004 000001c8 00000004
0000034
> od -t x4 big.tmp
0000000 08000000 00000000 15030000 08000000
0000020 04000000 c8010000 04000000
0000034

You can see that the byte order is different in these files.

OPEN Statement CONVERT Method
Use this method to specify a non-native numeric format for each specified unit number. This method requires
an explicit file OPEN statement to specify the numeric format of the file for that unit number.

This method takes precedence over the OPTIONS statement /CONVERT method, but it has a lower
precedence than the environment variable methods.

For example, the following source code shows how the OPEN statement would be coded to read unformatted
VAXD numeric data from unit 15, which might be processed and possibly written in native little endian format
to unit 20. The absence of the CONVERT keyword or environment variables FORT_CONVERT20,
FORT_CONVERT.dat, or FORT_CONVERT_dat indicates native little endian data for unit 20:

 OPEN (CONVERT='VAXD', FILE='graph3.dat', FORM='UNFORMATTED', UNIT=15)
 ...
 OPEN (FILE='graph3_t.dat', FORM='UNFORMATTED', UNIT=20)

A hard-coded OPEN statement specifier CONVERT value cannot be changed after compile time. However, to
allow selection of a particular format at runtime, equate the CONVERT specifier to a variable and provide the
user with a menu that allows selection of the appropriate format (menu choice sets the variable) before the
OPEN occurs.

You can also select a particular format at runtime for a unit number by using one of the environment variable
methods (Environment Variable FORT_CONVERTn Method, Environment Variable FORT_CONVERT.ext or
FORT_CONVERT_ext Method, or Environment Variable F_UFMTENDIAN Method), which take precedence over
the OPEN statement specifier CONVERT method.

OPTIONS Statement Method
You can only specify one numeric file format for all unformatted file unit numbers using this method unless
you also use one of the environment variable methods or OPEN statement CONVERT method.

You specify the numeric format at compile time and must compile all routines under the same OPTIONS
statement CONVERT specifier. You could use one source program and compile it using different compiler
options to create multiple executable programs that each read a certain format.

 1 Intel® Fortran Compiler Classic and Intel® Fortran Compiler Developer Guide and Reference

2606

The environment variable methods and the OPEN statement CONVERT method take precedence over this
method. For example, you might use the FORT_CONVERTn environment variable or OPEN statement
CONVERT method to specify each unit number that will use a format other than that specified using the
compiler option method.

This method takes precedence over the convert compiler option method.

You can use OPTIONS statements to specify the appropriate floating-point formats (in memory and in
unformatted files) instead of using the corresponding option. For example, to use VAX F_floating, G_floating,
and H_floating as the unformatted file format, specify the following OPTIONS statement:

OPTIONS /CONVERT=VAXG
Because this method affects all unit numbers, you cannot read data in one format and write it in another
format, unless you use it in combination with one of the environment variable methods or the OPEN
statement CONVERT method to specify a different format for a particular unit number.

For more information, see the OPTIONS statement.

Compiler Option -convert or /convert Method
You can only specify one numeric format for all unformatted file unit numbers using the convert compiler
option unless you also use one (or more) of the previous data format methods.

You specify the numeric format at compile time and must compile all routines under the same convert
keyword compiler option. You can use the same source program and compile it using different ifort
commands (or the equivalent in the IDE) to create multiple executable programs that each read a certain
format.

If you specify other methods, the other methods take precedence over using this method. For instance, you
might use the environment variable or OPEN statement CONVERT specifier method to specify each unit
number that will use a format different than that specified using the convert compiler option method for all
other unit numbers.

For example, the following command compiles program file.for to use VAX D_floating (and F_floating)
floating-point data for all unit numbers (unless superseded by one of the other methods). Data is converted
between the file format and the little endian memory format (little endian integers, IEEE binary32, IEEE
binary64, and IEEE binary128 little endian IEEE* floating-point format). The created file, vconvert.exe, can
then be run:

Linux

ifx file.for -o vconvert.exe -convert vaxd
Windows

ifx file.for /convert:vaxd /link /out:vconvert.exe
Because this method affects all unformatted file unit numbers, you cannot read data in one format and write
it in another file format using only the convert compiler option. However, you can do this if you use it in
combination with the environment variable methods or the OPEN statement CONVERT method to specify a
different format for a particular unit number.

See Also
convert compiler option
OPEN
OPTIONS Statement
Supported Native and Non-native Numeric Formats

Intel® Fortran Compiler Classic and Intel® Fortran Compiler Developer Guide and Reference 1

2607

Notices and Disclaimers
Intel technologies may require enabled hardware, software or service activation.

No product or component can be absolutely secure.

Your costs and results may vary.
© Intel Corporation. Intel, the Intel logo, and other Intel marks are trademarks of Intel Corporation or its
subsidiaries. Other names and brands may be claimed as the property of others.

Copies of documents which have an order number and are referenced in this document, or other Intel
literature, may be obtained by calling 1-800-548-4725, or go to: http://www.intel.com/design/literature.htm

Product and Performance Information

Performance varies by use, configuration and other factors. Learn more at www.Intel.com/
PerformanceIndex.

Notice revision #20201201

Intel, the Intel logo, Intel Atom, Intel Core, Intel Xeon, Intel Xeon Phi, Pentium, and VTune are trademarks of
Intel Corporation in the U.S. and/or other countries.

*Other names and brands may be claimed as the property of others.

Portions Copyright © 2001, Hewlett-Packard Development Company, L.P.

Microsoft, Windows, and the Windows logo are trademarks, or registered trademarks of Microsoft Corporation
in the United States and/or other countries.
© Intel Corporation.

This software and the related documents are Intel copyrighted materials, and your use of them is governed
by the express license under which they were provided to you (License). Unless the License provides
otherwise, you may not use, modify, copy, publish, distribute, disclose or transmit this software or the
related documents without Intel's prior written permission.

This software and the related documents are provided as is, with no express or implied warranties, other
than those that are expressly stated in the License.

Intel optimizations, for Intel compilers or other products, may not optimize to the same degree for non-Intel
products.

 1 Intel® Fortran Compiler Classic and Intel® Fortran Compiler Developer Guide and Reference

2608

https://www.intel.com/PerformanceIndex
https://www.intel.com/PerformanceIndex

Index
_ symbol

in names 726
__assume_aligned 2485
__INTEL_COMPILER symbols 2573
_FTN _ALLOC 2538
_OPENMP symbol 2573
--sysroot compiler option (Linux* only) 520
-132 compiler option 394
-66 compiler option 461
-72 compiler option 394
-80 compiler option 394
-align compiler option 408
-allow compiler option 373
-allow fpp_comments compiler option 373
-altparam compiler option 374
-ansi-alias compiler option 89
-arch compiler option 137
-assume compiler option 375
-assume old-boz compiler option 765
-auto compiler option 411
-auto-scalar compiler option 413
-autodouble compiler option 443
-ax compiler option 139
-B compiler option 355
-Bdynamic compiler option (Linux* only) 474
-Bstatic compiler option (Linux* only) 475
-Bsymbolic compiler option (Linux* only) 475
-Bsymbolic-functions compiler option (Linux* only) 476
-c compiler option 325
-C compiler option 389
-CB compiler option 389
-ccdefault compiler option 388
-check compiler option 389
-coarray compiler option 90
-coarray-config-file compiler option 91
-coarray-num-images compiler option 92
-common-args compiler option 375
-complex-limited-range compiler option 93
-convert compiler option 414
-cpp compiler option 359
-CU compiler option 389
-cxxlib compiler option 477
-D compiler option 356
-d-lines compiler option 357
-DD compiler option 357
-debug compiler option 325
-debug-parameters compiler option 329
-device-math-lib compiler option 168
-diag compiler option 446
-diag-disable compiler option 446
-diag-disable=all compiler option 446
-diag-dump compiler option 449
-diag-error compiler option 446
-diag-error-limit compiler option 450
-diag-file compiler option 450
-diag-file-append compiler option 451
-diag-id-numbers compiler option 452
-diag-warning compiler option 446
-double-size compiler option 416
-dryrun compiler option 508

-dumpmachine compiler option 508
-dynamic-linker compiler option (Linux* only) 480
-dyncom compiler option 417
-E compiler option 358
-e03 compiler option 455
-e08 compiler option 455
-e18 compiler option 455
-e90 compiler option 455
-e95 compiler option 455
-EP compiler option 358
-error-limit compiler option 450
-extend-source compiler option 394
-f66 compiler option 461
-f77rtl compiler option 461
-Fa compiler option 331
-falias compiler option 77
-falign-functions compiler option 418
-falign-loops compiler option 418
-falign-stack compiler option (Linux* only) 420
-fast compiler option 78
-fast-transcendentals compiler option 265
-fasynchronous-unwind-tables compiler option 142
-fcf-protection compiler option 143
-fcode-asm compiler option 333
-fcommon compiler option 421
-feliminate-unused-debug-types compiler option 335
-fexceptions compiler option 144
-ffat-lto-objects compiler option (Linux* only) 218
-ffnalias compiler option 80
-ffp-accuracy compiler option 267
-FI compiler option 396
-fimf-absolute-error compiler option 268
-fimf-accuracy-bits compiler option 270
-fimf-arch-consistency compiler option 273
-fimf-domain-exclusion compiler option 275
-fimf-force-dynamic-target compiler option 279
-fimf-max-error compiler option 281
-fimf-precision compiler option 284
-fimf-use-svml compiler option 287
-finline compiler option 311
-finline-functions compiler options 312
-finline-limit compiler option 312
-finstrument-functions compiler option 228
-fiopenmp compiler option 169
-fixed compiler option 396
-fkeep-static-consts compiler option 421
-flink-huge-device-code compiler option (Linux* only) 170
-fltconsistency compiler option 290
-flto compiler option 219
-fma compiler option 291
-fmaintain-32-byte-stack-align compiler option 422
-fmath-errno compiler option 423
-fmerge-constants compiler option (Linux* only) 336
-fmerge-debug-strings compiler option (Linux* only) 336
-fminshared compiler option 423
-fmpc-privatize compiler option (Linux* only) 171
-fno-asynchronous-unwind-tables compiler option 142
-fno-exceptions compiler option 144
-fnsplit compiler option (Linux* only) 229
-fomit-frame-pointer compiler option 145
-fopenmp compiler option 172

Index

2609

-fopenmp-concurrent-host-device-compile compiler
option 173
-fopenmp-declare-target-scalar-defaultmap compiler
option 174
-fopenmp-default-allocator compiler option 176
-fopenmp-device-code-split compiler option 178
-fopenmp-device-lib compiler option 179
-fopenmp-do-concurrent-maptype-modifier compiler
option 180
-fopenmp-max-parallel-link-jobs compiler option 182
-fopenmp-target-buffers compiler option 183
-fopenmp-target-default-sub-group-size compiler
option 184
-fopenmp-target-do-concurrent compiler option (ifx) 185
-fopenmp-target-loopopt compiler option 186
-fopenmp-target-simd compiler option 187
-fopenmp-targets compiler option 187
-foptimize-sibling-calls compiler option 80
-fortlib compiler option 482
-fp compiler option 145
-fp-model compiler option 292
-fp-port compiler option 296
-fp-speculation compiler option 297
-fp-stack-check compiler option 298
-fpconstant compiler option 424
-fpe compiler option 299
-fpe-all compiler option 301
-fpic compiler option 425
-fpie compiler option (Linux* only) 426
-fpp compiler option 359
-fpp-name compiler option 360
-fpreview-breaking-changes compiler option 510
-fprofile-ml-use compiler option 230
-fprotect-parens compiler option 81
-fpscomp compiler option 462
-FR compiler option 396
-free compiler option 396
-fsanitize compiler option 397
-fsource-asm compiler option 337
-fstack-protector compiler option 427
-fstack-protector-all compiler option 427
-fstack-protector-strong compiler option 427
-fstack-security-check compiler option 428
-fstrict-overflow compiler option 428
-fsycl compiler option 189
-fsycl-dead-args-optimization compiler option 190
-fsycl-device-code-split compiler option 190
-fsycl-device-lib compiler option 192
-fsycl-instrument-device-code compiler option 193
-fsycl-link-huge-device-code compiler option (Linux*
only) 194
-fsycl-targets compiler option 195
-fsyntax-only compiler option 407
-ftarget-compile-fast compiler option 196
-ftarget-register-alloc-mode compiler option 197
-ftrapuv compiler option 338
-ftz compiler option 302, 543
-funroll-loops compiler option 129
-fuse-ld compiler option 482
-fvar-tracking compiler option 325
-fvar-tracking-assignments compiler option 325
-fvec-peel-loops compiler option 94
-fvec-remainder-loops compiler option 95
-fvec-with-mask compiler option 95
-fverbose-asm compiler option 339
-fvisibility compiler option 430
-fzero-initialized-in-bss compiler option 431
-g compiler option 339

-g0 compiler option 339
-g1 compiler option 339
-g2 compiler option 339
-g3 compiler option 339
-gcc-name compiler option (Linux* only) 469
-gdwarf-2 compiler option 341
-gdwarf-3 compiler option 341
-gdwarf-4 compiler option 341
-gen-dep compiler option 361
-gen-depformat compiler option 362
-gen-depshow compiler option 363
-gen-interfaces compiler option 453
-global-hoist compiler option 511
-grecord-gcc-switches compiler option (Linux* only) 342
-gsplit-dwarf compiler option (Linux* only) 342
-gxx-name compiler option (Linux* only) 470
-heap-arrays compiler option 96
-help compiler option 512
-hotpatch compiler option 147
-I compiler option 364
-i2 compiler option 439
-i4 compiler option 439
-i8 compiler option 439
-idirafter compiler option 365
-implicitnone compiler option 455
-init compiler option 435
-inline-factor compiler option 314
-inline-forceinline compiler option 316
-inline-level compiler option 316
-inline-max-per-compile compiler option 317
-inline-max-per-routine compiler option 318
-inline-max-size compiler option 319
-inline-max-total-size compiler option 320
-inline-min-caller-growth compiler option 321
-inline-min-size compiler option 322
-intconstant compiler option 438
-integer-size compiler option 439
-intel-freestanding compiler option 514
-intel-freestanding-target-os compiler option 515
-ip compiler option 221
-ip-no-inlining compiler option 222
-ip-no-pinlining compiler option 222
-ipo compiler option 223, 2520
-ipo-c compiler option 225
-ipo-jobs compiler option 226
-ipo-S compiler option 227
-ipo-separate compiler option 227
-isystem compiler option 365
-l compiler option 483
-L compiler option 484
-list compiler option 343
-list-line-len compiler option 344
-list-page-len compiler option 345
-logo compiler option 516
-lowercase compiler option 401
-m compiler option 148
-m32 compiler option 149
-m64 compiler option 149
-m80387 compiler option 150
-map-opts compiler option 345
-march compiler option 150
-masm compiler option (Linux* only) 152
-mauto-arch compiler option 153
-mbranches-within-32B-boundaries compiler option 154
-mcmodel compiler option (Linux* only) 440
-mconditional-branch compiler option 155
-mcpu compiler option 160
-mieee-fp compiler option 290

Intel® Fortran Compiler Classic and Intel® Fortran Compiler Developer Guide and Reference

2610

-minstruction compiler option 156
-mixed-str-len-arg compiler option 398
-mno-gather compiler option 98
-mno-scatter compiler option 99
-module compiler option 366
-momit-leaf-frame-pointer 157
-mp1 compiler option 304
-mstringop-inline-threshold compiler option 159
-mstringop-strategy compiler option 159
-mtune compiler option 160
-multiple-processes compiler option 517
-names compiler option 401
-nbs compiler option 375
-no-bss-init compiler option 442
-no-intel-lib compiler option 491
-nodefaultlibs compiler option 489
-nodefine compiler option 356
-nofor-main compiler option 490
-nolib-inline compiler option 83
-nolibsycl compiler option 199
-nostartfiles compiler option 492
-nostdinc compiler option 369
-nostdlib compiler option 492
-o compiler option 347
-O compiler option 83
-Ofast compiler option 87
-Os compiler option 88
-P compiler option 367
-p compiler option (Linux* only) 231
-pad compiler option 100
-pad-source compiler option 402
-par-affinity compiler option 199
-par-num-threads compiler option 201
-par-runtime-control compiler option 201
-par-schedule compiler option 202
-par-threshold compiler option 205
-parallel compiler option (ifort) 206
-parallel compiler option (ifx) 207
-parallel-source-info compiler option 208
-pc compiler option 305
-pg compiler option 231
-pie compiler option 493
-prec-div compiler option 306
-prec-sqrt compiler option 306
-preprocess-only compiler option 367
-print-multi-lib compiler option 350
-prof-data-order compiler option 232
-prof-dir compiler option 233
-prof-file compiler option 233
-prof-func-groups compiler option (Linux* only) 234
-prof-func-order compiler options 235
-prof-gen compiler option 236, 2489
-prof-gen:srcpos compiler option

code coverage tool 2491
test priorization tool 2503

-prof-hotness-threshold compiler option 238
-prof-src-dir compiler option 238
-prof-src-root compiler option 239
-prof-src-root-cwd compiler option 241
-prof-use compiler option

code coverage tool 2491
profmerge utility 2508

-prof-value-profiling compiler option 243
-pthread compiler option 494
-qcf-protection compiler option 143
-qdiag-disable linking option 2362
-qdiag-enable linking option 2362
-qhelp linking option 2362

-Qinstall compiler option 370
-Qlocation compiler option 371
-qmkl compiler option 100
-qmkl-ilp64 compiler option 102
-qmkl-sycl-impl compiler option 103
-qopenmp compiler option

using in apps 2390
-qopenmp-lib compiler option 209
-qopenmp-link compiler option 210
-qopenmp-simd compiler option 212
-qopenmp-stubs compiler option 213
-qopenmp-threadprivate compiler option 214
-qopt-args-in-regs compiler option 104
-qopt-assume-safe-padding compiler option 106
-qopt-block-factor compiler option 106
-qopt-dynamic-align compiler option 107
-qopt-for-throughput compiler option 108
-qopt-jump-tables compiler option 109
-qopt-malloc-options compiler option 110
-qopt-matmul compiler option 111
-qopt-mem-layout-trans compiler option 112
-qopt-multi-version-aggressive compiler option 113
-qopt-multiple-gather-scatter-by-shuffles compiler
option 113
-qopt-prefetch compiler option 114
-qopt-prefetch-distance compiler option 116, 117
-qopt-prefetch-issue-excl-hint compiler option 118
-qopt-prefetch-loads-only compiler option 119
-qopt-ra-region-strategy compiler option 120
-qopt-report compiler option (ifort) 246
-qopt-report compiler option (ifx) 248
-qopt-report-annotate compiler option 249
-qopt-report-annotate-position compiler option 250
-qopt-report-embed compiler option 251
-qopt-report-file compiler option 252
-qopt-report-filter compiler option 253
-qopt-report-format compiler option 254
-qopt-report-help compiler option 255
-qopt-report-names compiler option 256
-qopt-report-per-object compiler option 257
-qopt-report-phase compiler option 258
-qopt-report-routine compiler option 261
-qopt-report-stdout compiler option 262
-qopt-streaming-stores compiler option 121
-qopt-subscript-in-range compiler option 122
-qopt-zmm-usage compiler option 123
-Qoption compiler option 372
-qoverride-limits compiler option 124
-qp compiler option 231
-qsimd-honor-fp-model compiler option 307
-qsimd-serialize-fp-reduction compiler option 308
-r16 compiler option 443
-r4 compiler option 443
-r8 compiler option 443
-rcd compiler option 309
-real-size compiler option 443
-recursive compiler option 310
-reentrancy compiler option 125
-S compiler option 351
-safe-cray-ptr compiler option 126
-save compiler option 444
-save-temps compiler option 518
-scalar-rep compiler option 127
-shared compiler option (Linux* only) 494
-shared-intel compiler option 495
-shared-libgcc compiler option (Linux* only) 496
-show compiler option 352
-simd compiler option 128

Index

2611

-sox compiler option (Linux* only) 519
-stand compiler option 403
-standard-realloc-lhs compiler option 405
-standard-semantics compiler option 406
-static compiler option 497
-static-intel compiler option 498
-static-libgcc compiler option (Linux* only) 499
-static-libstdc++ compiler option (Linux* only) 500
-std compiler option 403
-std03 compiler option 403
-std08 compiler option 403
-std18 compiler option 403
-std90 compiler option 403
-std95 compiler option 403
-syntax-only compiler option 407
-T compiler option (Linux* only) 501
-tcollect compiler option 263
-tcollect-filter compiler option 264
-Tf compiler option 521
-threads compiler option 501
-traceback compiler option 454
-u compiler option 455
-U compiler option 368
-undef compiler option 369
-unroll compiler option 129
-unroll-aggressive compiler option 130
-uppercase compiler option 401
-use-asm compiler option 352
-v compiler option 502
-V compiler option 516
-vec compiler option 130
-vec-guard-write compiler option 131
-vec-threshold compiler option 132
-vecabi compiler option (ifort) 133
-vecabi compiler option (ifx) 135
-vms compiler option 471
-w compiler option 455
-W0 compiler option 455
-W1 compiler option 455
-Wa compiler option 503
-warn compiler option 455
-watch compiler option 522
-WB compiler option 459
-what compiler option 523
-Winline compiler option 460
-Wl compiler option 505
-Wp compiler option 505
-wrap-margin compiler option 408
-x compiler option 163
-X compiler option 369
-xHost compiler option 167
-Xlinker compiler option 506
-Xopenmp-target compiler option 216
-Xsycl-target compiler option 217
-y compiler option 407
-zero compiler option 445
-Zp compiler option 408
,

using to separate input data 988
;

as source statement separator 727
:

in array specifications 777, 820, 823, 824, 826
:: 1966
!

as comment indicator 731
!DIR$ 1049
.a files 556

.AND. 800

.asm files 19

.def files 19

.DLL files 19, 556

.dpi file 2491, 2503, 2508

.dylib files 556

.dyn file 2491, 2503, 2508

.dyn files 2489

.EQ. 799

.EQV. 800

.EXE files
creating 2365

.f files 19

.f90 files 19

.F90 files 19

.for files 19, 2365

.FOR files 19

.fpp files 19

.GE. 799

.GT. 799

.i files 19

.i90 files 19

.LE. 799

.lib files 556

.LT. 799

.MAP files 2540

.MOD files 2384

.NE. 799

.NEQV. 800

.NOT. 800

.o files 19

.obj files 19, 2365

.OBJ files 19

.OR. 800

.rbj files 19

.RES files 19

.so files 556

.spi file 2491, 2503

.XOR. 800
(/.../) 779
[...] 779
*

as comment indicator 731
in CHARACTER statements 817
in unit specifier 567, 920

/
in slash editing 997

// 799, 1329
/= 799
/4I2 compiler option 439
/4I4 compiler option 439
/4I8 compiler option 439
/4L132 compiler option 394
/4L72 compiler option 394
/4L80 compiler option 394
/4Na compiler option 411
/4Naltparam compiler option 374
/4Nd compiler option 455
/4Nf compiler option 396
/4Nportlib compiler option 473
/4Ns compiler option 403
/4R16 compiler option 443
/4R4 compiler option 443
/4R8 compiler option 443
/4Ya compiler option 411
/4Yaltparam compiler option 374
/4Yd compiler option 455
/4Yf compiler option 396

Intel® Fortran Compiler Classic and Intel® Fortran Compiler Developer Guide and Reference

2612

/4Yportlib compiler option 473
/4Ys compiler option 403
/align compiler option 408
/allow compiler option 373
/allow:fpp_comments compiler option 373
/altparam compiler option 374
/arch compiler option 137
/assume compiler option 375
/assume:old-boz compiler option 765
/auto compiler option 411
/bigobj compiler option 507
/bintext compiler option 324
/c compiler option 325
/C compiler option 389
/CB compiler option 389
/ccdefault compiler option 388
/check compiler option 389
/compile-only compiler option 325
/convert compiler option 414
/CU compiler option 389
/D compiler option 356
/d-lines compiler option 357
/dbglibs compiler option 478
/debug compiler option 327
/debug-parameters compiler option 329
/define compiler option 356
/device-math-lib compiler option 168
/dll compiler option 479
/double-size compiler option 416
/E compiler option 358
/EP compiler option 358
/error-limit compiler option 450
/exe compiler option 330
/extend-source compiler option 394
/extfor compiler option 509
/extfpp compiler option 510
/extlnk compiler option 480
/F compiler option 481
/f66 compiler option 461
/f77rtl compiler option 461
/Fa compiler option 331
/FA compiler option (ifort) 332
/FA compiler option (ifx) 333
/fast compiler option 78
/Fd compiler option 334
/Fe compiler option 330
/FI compiler option 396
/fixed compiler option 396
/fltconsistency compiler option 290
/fp compiler option 292
/fpconstant compiler option 424
/fpe compiler option 299
/fpe-all compiler option 301
/fpp compiler option 359
/fpp-name compiler option 360
/fprofile-ml-use compiler option 230
/fpscomp compiler option 462
/FR compiler option 396
/free compiler option 396
/fsanitize compiler option 397
/Ge compiler option 303
/gen-dep compiler option 361
/gen-depformat compiler option 362
/gen-depshow compiler option 363
/gen-interfaces compiler option 453
/GF compiler option 82
/Gm compiler option 398
/Gs compiler option 432

/GS compiler option 433
/guard compiler option 146
/Gz compiler option 398
/heap-arrays compiler option 96
/help compiler option 512
/homeparams compiler option 434
/hotpatch compiler option 147
/I compiler option 364
/iface compiler option 398
/include compiler option 364
/inline compiler option 313
/intconstant compiler option 438
/integer-size compiler option 439
/LD compiler option 479
/libdir compiler option 515
/libs compiler option 485
/list compiler option 343, 505
/list-line-len compiler option 344
/list-page-len compiler option 345
/logo compiler option 516
/map compiler option 487
/MD compiler option 487
/MDd compiler option 487
/MDs compiler option 485
/MDsd compiler option 485
/MG compiler option 504
/module compiler option 366
/MP compiler option 517
/MT compiler option 485, 488
/MTd compiler option 485, 488
/MW compiler option 485
/MWs compiler option 485
/names compiler option 401
/nbs compiler option 375
/nodefine compiler option 356
/noinclude compiler option 369
/O compiler option 83
/Oa compiler option 77
/Ob compiler option 316
/object compiler option 348
/Od compiler option 86
/Os compiler option 88
/Ot compiler option 88
/Ow compiler option 80
/Ox compiler option 83
/P compiler option 367
/pdbfile compiler option 349
/preprocess-only compiler option 367
/Qalign-loops compiler option 418
/Qansi-alias compiler option 89
/Qauto compiler option 411
/Qauto_scalar compiler option 413
/Qauto-arch compiler option 153
/Qautodouble compiler option 443
/Qax compiler option 139
/Qbranches-within-32B-boundaries compiler option 154
/Qcf-protection compiler option 143
/Qcoarray compiler option 90
/Qcoarray-config-file compiler option 91
/Qcoarray-num-images compiler option 92
/Qcommon-args compiler option 375
/Qcomplex-limited-range compiler option 93
/Qconditional-branch compiler option 155
/Qcov-dir compiler option 244
/Qcov-file compiler option 245
/Qcov-gen compiler option

code coverage tool 2491
/Qd-lines compiler option 357

Index

2613

/Qdiag compiler option 446
/Qdiag-disable compiler option 446
/Qdiag-disable:all compiler option 446
/Qdiag-dump compiler option 449
/Qdiag-error compiler option 446
/Qdiag-error-limit compiler option 450
/Qdiag-file compiler option 450
/Qdiag-file-append compiler option 451
/Qdiag-id-numbers compiler option 452
/Qdiag-warning compiler option 446
/Qdyncom compiler option 417
/Qeliminate-unused-debug-types compiler option 335
/Qfast-transcendentals compiler option 265
/Qfma compiler option 291
/Qfnalign compiler option 418
/Qfnsplit compiler option 229
/Qfp-accuracy compiler option 267
/Qfp-port compiler option 296
/Qfp-speculation compiler option 297
/Qfp-stack-check compiler option 298
/Qftz compiler option 302, 543
/Qgather- compiler option 98
/Qglobal-hoist compiler option 511
/QIfist compiler option 309
/Qimf-absolute-error compiler option 268
/Qimf-accuracy-bits compiler option 270
/Qimf-arch-consistency compiler option 273
/Qimf-domain-exclusion compiler option 275
/Qimf-force-dynamic-target compiler option 279
/Qimf-max-error compiler option 281
/Qimf-precision compiler option 284
/Qimf-use-svml compiler option 287
/Qinit compiler option 435
/Qinline-dllimport compiler option 323
/Qinline-factor compiler option 314
/Qinline-forceinline compiler option 316
/Qinline-max-per-compile compiler option 317
/Qinline-max-per-routine compiler option 318
/Qinline-max-size compiler option 319
/Qinline-max-total-size compiler option 320
/Qinline-min-caller-growth compiler option 321
/Qinline-min-size compiler option 322
/Qinstruction compiler option 156
/Qinstrument-functions compiler option 228
/Qiopenmp compiler option 169
/Qip compiler option 221
/Qip-no-inlining compiler option 222
/Qip-no-pinlining compiler option 222
/Qipo compiler option 223, 2520
/Qipo-c compiler option 225
/Qipo-jobs compiler option 226
/Qipo-S compiler option 227
/Qipo-separate compiler option 227
/Qkeep-static-consts compiler option 421
/Qlocation compiler option 371
/Qm compiler option 148
/Qm32 compiler option 149
/Qm64 compiler option 149
/Qmaintain-32-byte-stack-align compiler option 422
/Qmap-opts compiler option 345
/Qmkl compiler option 100
/Qmkl-ilp64 compiler option 102
/Qmkl-sycl-impl compiler option 103
/Qno-intel-lib compiler option 491
/Qnobss-init compiler option 442
/Qopenmp compiler option

using in apps 2390

/Qopenmp-concurrent-host-device-compile compiler
option 173
/Qopenmp-declare-target-scalar-defaultmap compiler
option 174
/Qopenmp-default-allocator compiler option 176
/Qopenmp-device-code-split compiler option 178
/Qopenmp-do-concurrent-maptype-modifier compiler
option 180
/Qopenmp-lib compiler option 209
/Qopenmp-max-parallel-link-jobs compiler option 182
/Qopenmp-simd compiler option 212
/Qopenmp-stubs compiler option 213
/Qopenmp-target-buffers compiler option 183
/Qopenmp-target-default-sub-group-size compiler
option 184
/Qopenmp-target-do-concurrent compiler option (ifx) 185
/Qopenmp-target-loopopt compiler option 186
/Qopenmp-target-simd compiler option 187
/Qopenmp-targets compiler option 187
/Qopenmp-threadprivate compiler option 214
/Qopt-args-in-regs compiler option 104
/Qopt-assume-safe-padding compiler option 106
/Qopt-block-factor compiler option 106
/Qopt-dynamic-align compiler option 107
/Qopt-for-throughput compiler option 108
/Qopt-jump-tables compiler option 109
/Qopt-matmul compiler option 111
/Qopt-mem-layout-trans compiler option 112
/Qopt-multi-version-aggressive compiler option 113
/Qopt-multiple-gather-scatter-by-shuffles compiler
option 113
/Qopt-prefetch compiler option 114
/Qopt-prefetch-distance compiler option 116, 117
/Qopt-prefetch-issue-excl-hint compiler option 118
/Qopt-prefetch-loads-only compiler option 119
/Qopt-ra-region-strategy compiler option 120
/Qopt-report compiler option (ifort) 246
/Qopt-report compiler option (ifx) 248
/Qopt-report-annotate compiler option 249
/Qopt-report-annotate-position compiler option 250
/Qopt-report-embed compiler option 251
/Qopt-report-file compiler option 252
/Qopt-report-filter compiler option 253
/Qopt-report-format compiler option 254
/Qopt-report-help compiler option 255
/Qopt-report-names compiler option 256
/Qopt-report-per-object compiler option 257
/Qopt-report-phase compiler option 258
/Qopt-report-routine compiler option 261
/Qopt-report-stdout compiler option 262
/Qopt-streaming-stores compiler option 121
/Qopt-subscript-in-range compiler option 122
/Qopt-zmm-usage compiler option 123
/Qoption compiler option 372
/Qoverride-limits compiler option 124
/Qpad compiler option 100
/Qpad-source compiler option 402
/Qpar-adjust-stack compiler option 215
/Qpar-affinity compiler option 199
/Qpar-num-threads compiler option 201
/Qpar-runtime-control compiler option 201
/Qpar-schedule compiler option 202
/Qpar-threshold compiler option 205
/Qparallel compiler option (ifort) 206
/Qparallel compiler option (ifx) 207
/Qparallel-source-info compiler option 208
/Qpatchable-addresses compiler option 163
/Qpc compiler option 305

Intel® Fortran Compiler Classic and Intel® Fortran Compiler Developer Guide and Reference

2614

/Qprec compiler option 304
/Qprec-div compiler option 306
/Qprec-sqrt compiler option 306
/Qprof-data-order compiler option 232
/Qprof-dir compiler option 233
/Qprof-file compiler option 233
/Qprof-func-order compiler option 235
/Qprof-gen compiler option 236, 2489
/Qprof-gen:srcpos compiler option

code coverage tool 2491
test priorization tool 2503

/Qprof-hotness-threshold compiler option 238
/Qprof-src-dir compiler option 238
/Qprof-src-root compiler option 239
/Qprof-src-root-cwd compiler option 241
/Qprof-use compiler option

code coverage tool 2491
profmerge utility 2508

/Qprof-value-profiling compiler option 243
/Qprotect-parens compiler option 81
/Qrcd compiler option 309
/Qsafe-cray-ptr compiler option 126
/Qsave compiler option 444
/Qsave-temps compiler option 518
/Qscalar-rep compiler option 127
/Qscatter- compiler option 99
/Qsfalign compiler option 442
/Qsimd compiler option 128
/Qsimd-honor-fp-model compiler option 307
/Qsimd-serialize-fp-reduction compiler option 308
/Qstrict-overflow compiler option 428
/Qstringop-inline-threshold compiler option 159
/Qstringop-strategy compiler option 159
/Qtarget-register-alloc-mode compiler option 197
/Qtcollect compiler option 263
/Qtcollect-filter compiler option 264
/Qtrapuv compiler option 338
/Qunroll compiler option 129
/Qunroll-aggressive compiler option 130
/Quse-asm compiler option 352
/Quse-msasm-symbols compiler option 350
/Qvc compiler option 471
/Qvec compiler option 130
/Qvec-guard-write compiler option 131
/Qvec-peel-loops compiler option 94
/Qvec-remainder-loops compiler option 95
/Qvec-threshold compiler option 132
/Qvec-with-mask compiler option 95
/Qvecabi compiler option (ifort) 133
/Qvecabi compiler option (ifx) 135
/Qx compiler option 163
/QxHost compiler option 167
/Qzero compiler option 445
/Qzero-initialized-in-bss compiler option 431
/real-size compiler option 443
/recursive compiler option 310
/reentrancy compiler option 125
/RTCu compiler option 389
/S compiler option 351
/show compiler option 352
/stand compiler option 403
/standard-realloc-lhs compiler option 405
/standard-semantics compiler option 406
/static compiler option 497
/syntax-only compiler option 407
/Tf compiler option 521
/threads compiler option 501
/traceback compiler option 454

/tune compiler option 160
/u compiler option 367
/U compiler option 368
/undefine compiler option 368
/V compiler option 324
/vms compiler option 471
/w compiler option 455
/W0 compiler option 455
/W1 compiler option 455
/warn compiler option 455
/watch compiler option 522
/WB compiler option 459
/what compiler option 523
/winapp compiler option 504
/wrap-margin compiler option 408
/X compiler option 369
/Z7 compiler option 353
/Zi compiler option 353
/Zl compiler option 515
/Zo compiler option 354
/Zp compiler option 408
/Zs compiler option 407
\ editing 998
%

in non-Fortran procedures 887
%im complex part designator 743
%LOC

using with integer pointers 1761
%re complex part designator 743
%REF 1819
%VAL 1994
< 799
<= 799
<> 1002
== 799
=> 812
> 799
>= 799
$

edit descriptor 998
implicit type in names 772

$ symbol
in names 726

5 unit specifier 567
6 unit specifier 567

A
A

edit descriptor 985
A to Z Reference 1123
ABORT 1182
About box

function specifying text for 2133
ABOUTBOXQQ 2133
ABS 1182
absolute error

option defining for math library function results 268
absolute spacing function 1881
absolute value function 1182, 1862
ABSTRACT INTERFACE 1183
ACCEPT 1185
ACCESS

specifier for INQUIRE 1012
specifier for OPEN 1030

access methods for files 918

Index

2615

access mode function 1856
access of entities

private 1769
public 1783

accessibility attributes
PRIVATE 1769
PUBLIC 1783

accessibility of modules 1769, 1783
accuracy

and numerical data I/O 2598
ACHAR 1186
ACOS 1187
ACOSD 1188
ACOSH 1188
ACTION

specifier for INQUIRE 1013
specifier for OPEN 1030

actual arguments
association with data objects 1075
external procedures as 1452
functions not allowed as 894
intrinsic functions as 1632
option checking before calls 389

adding files 23
additional language features 1088
address

function allocating 1676
function returning 1259
subroutine freeing allocated 1493
subroutine prefetching data from 1702

adjustable arrays 820
ADJUSTL 1189
ADJUSTR 1189
ADVANCE

specifier for READ 1806
specifier for WRITE 2006

ADVANCE specifier 919, 924
advanced PGO options 2489
advancing i/o 924
advancing record I/O 594
advantages of internal procedures 2387
advantages of modules 2384
AIMAG 1189
AIMAX0 1687
AIMIN0 1696
AINT 1190
AJMAX0 1687
AJMIN0 1696
AKMAX0 1687
AKMIN0 1696
ALARM 1191
ALIAS

option for ATTRIBUTES directive 1238
aliases

option specifying hidden in procedure calls 77
aliasing

option specifying assumption in functions 80
align 2485
ALIGN

option for ATTRIBUTES directive 1239
ALIGNED

in DECLARE SIMD directive 1370
in SIMD OpenMP* Fortran directive 1867

aligning data
option for 408

alignment
directive affecting 1730
option affecting 408

ALL 1193
ALLOCATABLE

basic block 2491
code coverage 2491
data flow 2458
option for ATTRIBUTES directive 1240
visual presentation 2491

allocatable arrays
allocation of 834
allocation status of 834
as dynamic objects 833
creating 1199
deallocation of 837
function determining status of 1203
how to specify 826
mixed-language programming 634

allocatable objects
option checking for unallocated 389

allocatable variables
freeing memory associated with 1362

ALLOCATE
clause (ifx) 1196
directive (ifx) 1197
dynamic allocation 833
pointer assignments 812
statement 1199

ALLOCATE clause (ifx) 1196
ALLOCATE directive (ifx) 1197
ALLOCATED 1203
ALLOCATED ARRAY 1203
ALLOCATED SCALAR 1203
allocation

of allocatable arrays 834
of pointer targets 835
of variables 834

allocation status of allocatable arrays 834
ALLOCATORS directive (ifx) 1202
ALLOW_NULL

option for ATTRIBUTES directive 1240
ALOG 1667
alternate compiler options 533
alternate return

specifier for 1286
alternate return arguments 881
ALWAYS

in general PARALLEL directive 1744
ALWAYS ASSERT

in general PARALLEL directive 1744
AMAX0 1687
AMAX1 1687
AMIN0 1696
AMIN1 1696
AMOD 1704
amount of data storage

system parameters for 53
AND 1542
angle brackets

for variable format expressions 1002
ANINT 1204
annotated source listing

option enabling 249
option specifying position of messages 250

ANSI character codes for Windows* OS
chart 1100

ANY 1205
apostrophe editing 1000
APPENDMENUQQ 2134
application

Intel® Fortran Compiler Classic and Intel® Fortran Compiler Developer Guide and Reference

2616

application (continued)
deploying 552

application termination 706
application tests 2503
application types

console 42
overview 40
standard graphics 42
static libraries 44
Windows* OS-based 44

applications
option specifying code optimization for 83

ARC 2169
ARC_W 2169
arccosine

function returning hyperbolic 1188
function returning in degrees 1188
function returning in radians 1187

arcs
drawing elliptical 2169
function testing for endpoints of 2175

arcsine
function returning hyperbolic 1207
function returning in degrees 1206
function returning in radians 1206

arctangent
function returning hyperbolic 1221
function returning in degrees 1221
function returning in degrees (complex) 1220
function returning in radians 1219
function returning in radians (complex) 1219

argument association
inheritance 1084
name 1075
pointer 1081
storage 1081

argument inquiry procedures
table of 1141

argument intent 1624
argument keywords

BACK 896
DIM 896
in intrinsic procedures 896
KIND 896
MASK 896

argument passing
in mixed-language programming 629
using %REF 1819
using %VAL 1994

argument presence function 1766
arguments

actual 875
alternate return 881
array 878
association of 875
assumed-length character 880
character constants as 881
coarray dummy 882
dummy 875, 878
dummy procedure 882
function determining presence of optional 1766
function returning address of 1664
Hollerith constants as 881
intent of 1624
optional 877, 1727
passed-object dummy 879
passing by immediate value 1994
passing by reference 1819

arguments (continued)
pointer 879
subroutine returning command-line 1508
using external and dummy procedures as 1452
using intrinsic procedures as 1632

arithmetic IF 1087, 1595
arithmetic shift

function performing left 1417, 1861
function performing left or right 1639
function performing right 1418, 1861
function performing right with fill 1860

array
copies 2388

array arguments 878
array assignment

masking in 1482, 2003
rules for directives that affect 1053

array association 1084
array conformance violations

option 455
array constructors

implied-DO in 809
array declarations 820
array descriptor

data items passing 823, 826, 1758
subroutine creating in memory 1468

array descriptors 635
array element order 775
array elements

association of 1084
association using EQUIVALENCE 1432
function performing binary search for 1276
function returning location of maximum 1689
function returning location of minimum 1698
function returning maximum value of 1691
function returning minimum value of 1700
function returning product of 1778
function returning sum of 1907
referencing 775
storage of 775

array expressions 809
array functions

categories of 900
for construction 1692, 1740, 1882, 1983
for inquiry 1203, 1341, 1652, 1859, 1877, 1894, 1979
for location 1689, 1698
for manipulation 1347, 1429, 1824, 1964
for reduction 1193, 1205, 1343, 1541, 1543, 1635,
1691, 1700, 1718, 1755, 1778, 1907

array pointers
mixed-language programming 634

array procedures
table of 1146

array sections
assigning values to 809
many-one 779, 809
subscript triplets in 777
vector subscripts in 779

array specifications
assumed-rank 825
assumed-shape 823
assumed-size 824
deferred-shape 826
explicit-shape 820
implied-shape 827

array subscripts 775
array transposition 1964
array type declarations 820

Index

2617

array variables 809
ARRAY_VISUALIZER

option for ATTRIBUTES directive 1240
arrays

adjustable 820
allocatable 1194
allocation of allocatable 834
as structure components 760
as subobjects 770
as variables 770
assigning values to 809
associating group name with 1712
assumed-rank 825
assumed-shape 823
assumed-size 824
automatic 820
bounds of 772
conformable 772
constructors 779
copies of 2388
creating allocatable 1199
data type of 772
deallocation of allocatable 837
declaring 820, 1389
declaring using POINTER 1758
deferred-shape 826
defining constants for 779
determining allocation of allocatable 1203
duplicate elements in 779
dynamic association of 833
elements in 775
explicit-shape 820
extending 1824, 1882
extent of 772
function adding a dimension to 1882
function combining 1692
function counting number of true in 1343
function determining all true in 1193
function determining allocation of 1203
function determining any true in 1205, 1718
function packing 1740
function performing circular shift of 1347
function performing dot-product multiplication of 1412
function performing end-off shift on 1429
function performing general array reduction 1814
function performing matrix multiplication on 1685
function reducing with bitwise AND 1541
function reducing with bitwise exclusive OR 1635
function reducing with bitwise OR 1543
function reducing with exclusive OR 1755
function replicating 1882
function reshaping 1824
function returning codepage in 2118
function returning codimensions of coarrays 1341
function returning language and country combinations
in 2119
function returning location of maximum value in 1689
function returning location of minimum value in 1698
function returning location of specified value in 1460
function returning lower bounds of 1652
function returning maximum value of elements in 1691
function returning minimum value of elements in 1700
function returning shape of 1859
function returning size or extent of 1877
function returning sum of elements in 1907
function returning upper bounds of 1979
function transposing rank-two 1964
function unpacking 1983

arrays (continued)
implied-shape 827
logical test element-by-element of 1482, 2003
making equivalent 828
masked assignment of 1482, 2003
number of storage elements for 1389
properties of 772
rank of 772
referencing 795
sections of 776
shape of 772
size of 772
subroutine performing quick sort on 1791
subroutine sorting one-dimensional 1879
subscript triplets in 777
using POINTER to declare 1758, 1761
vector subscripts in 779
viewing in debugger 2375
volatile 2001
whole 775

ASCII character codes for Linux* 1102
ASCII character codes for Windows* OS

chart 1 1098
chart 2 1099

ASCII location
function returning character in specified position 1309
function returning position of character in 1186

ASIN 1206
ASIND 1206
ASINH 1207
assembler

option passing options to 503
option producing objects through 352

assembler output
generating 2540

assembler output file
option specifying a dialect for 152

assembly files 2540
assembly listing file

option compiling to 351
option producing with compiler comments 339
option specifying generation of 331

assembly listing file (ifort)
option specifying the contents of 332

ASSIGN 1207
assigned GO TO 1535
assigning values to arrays 809
assignment 805
ASSIGNMENT 891
assignment statements

array 809
character 808
defining nonintrinsic 1208
directives that affect array 1053
intrinsic assignment statements 806
logical 808
numeric 807
option determining rules used when interpreting 405

assignments
array 809
defined 812, 1208
derived-type 809
element array 1482
generalized masked array 1482
generic 891
intrinsic 806
intrinsic computational 1210
masked array 2003

Intel® Fortran Compiler Classic and Intel® Fortran Compiler Developer Guide and Reference

2618

assignments (continued)
masked array (generalization of) 1482
pointer 812

ASSOCIATE 1212
ASSOCIATED

using to determine pointer assignment 812
ASSOCIATEVARIABLE

specifier for OPEN 1031
association

additional attributes of construct 1080
argument 875
argument name 1075
argument storage 1081
array 1084
between actual arguments and dummy objects 1075
common 1329
construct 1080
dynamic 833
equivalence 1432
examples of 1074
host 1078
inheritance 1084
linkage 1079
name 1074
pointer 1081
storage 1081, 1082
types of 1074
use 1078

ASSUME
directive 1214

ASSUME_ALIGNED 1215
assumed-length character arguments 875, 880
assumed-length character functions 1087
assumed-length type parameters

for parameterized derived types 759
assumed-rank array 825
assumed-shape arrays 823
assumed-size arrays 824
assumed-type object 1966
ASSUMES

directive (ifx) 1216
ASSUMES directive (ifx) 1216
ASSUMPTION

clause (ifx) 1216
ASSUMPTION clause (ifx) 1216
asterisk

as assumed-length character specifier 817
as CHARACTER length specifier 817
in format specifier 921
in unit specifier 567, 920

asterisk (*)
as alternate return specifier 1905
as assumed-length character specifier 880
as CHARACTER length specifier 880
as dummy argument 881
as function type length specifier 1500
as unit specifier 567

ASYNCHRONOUS
specifier for INQUIRE 1013
specifier for OPEN 1031

asynchronous i/o
attribute and statement denoting 1218

asynchronous I/O 607
ASYNCHRONOUS specifier 919, 924
ATAN 1219
ATAN2 1219
ATAN2D 1220
ATAND 1221

ATANH 1221
ATOMIC 1222
atomic addition

subroutine performing 1228
atomic bitwise AND

subroutine performing 1228
atomic bitwise exclusive OR

subroutine performing 1235
atomic bitwise OR

subroutine performing 1234
ATOMIC CAPTURE 1222
atomic compare and swap

subroutine performing 1229
atomic fetch and addition

subroutine performing 1231
atomic fetch and BITWISE and

subroutine performing 1231
atomic fetch and bitwise exclusive OR

subroutine performing 1233
atomic fetch and bitwise OR

subroutine performing 1232
ATOMIC READ 1222
atomic subroutines

ATOMIC_ADD 1228
ATOMIC_AND 1228
ATOMIC_CAS 1229
ATOMIC_DEFINE 1230
ATOMIC_FETCH_ADD 1231
ATOMIC_FETCH_AND 1231
ATOMIC_FETCH_OR 1232
ATOMIC_FETCH_XOR 1233
ATOMIC_OR 1234
ATOMIC_REF 1234
ATOMIC_XOR 1235
overview of 897
table of 1144

ATOMIC UPDATE 1222
atomic variables

subroutine defining 1230
subroutine letting you reference 1234

ATOMIC WRITE 1222
ATOMIC_ADD 1228
ATOMIC_AND 1228
ATOMIC_CAS 1229
ATOMIC_DEFINE 1230
ATOMIC_FETCH_ADD 1231
ATOMIC_FETCH_AND 1231
ATOMIC_FETCH_OR 1232
ATOMIC_FETCH_XOR 1233
ATOMIC_OR 1234
ATOMIC_REF 1234
ATOMIC_XOR 1235
ATTRIBUTES

ALIAS option 1238
ALIGN option 1239
ALLOCATABLE option 1240
ALLOW_NULL option 1240
C option 1241
CODE_ALIGN option 1242
CONCURRENCY_SAFE option 1243
CVF option 1244
DECORATE option 1245
DEFAULT option 1245
DLLEXPORT option 1246
DLLIMPORT option 1246
EXTERN option 1246
FORCEINLINE option 1247
IGNORE_LOC option 1247

Index

2619

ATTRIBUTES (continued)
in mixed-language programs 638
INLINE option 1247
MIXED_STR_LEN_ARG option 1247
NO_ARG_CHECK option 1248
NOCLONE option 1248
NOINLINE option 1247
NOMIXED_STR_LEN_ARG option 1247
OPTIMIZATION_PARAMETER option 1249
REFERENCE option 1250
STDCALL option 1241
VALUE option 1250
VARYING option 1251
VECTOR option 1252

ATTRIBUTES ALIAS 1238
ATTRIBUTES ALIGN 1239
ATTRIBUTES ALLOCATABLE 1240
ATTRIBUTES ALLOW_NULL 1240
ATTRIBUTES C 1241
ATTRIBUTES CODE_ALIGN 1242
ATTRIBUTES CONCURRENCY_SAFE 1243
ATTRIBUTES CVF 1244
ATTRIBUTES DECORATE 1245
ATTRIBUTES DEFAULT 1245
ATTRIBUTES directive 1235
ATTRIBUTES DLLEXPORT 1246
ATTRIBUTES DLLIMPORT 1246
ATTRIBUTES EXTERN 1246
attributes for data 1966
ATTRIBUTES FORCEINLINE 1247
ATTRIBUTES IGNORE_LOC 1247
ATTRIBUTES INLINE 1247
ATTRIBUTES MIXED_STR_LEN_ARG 1247
ATTRIBUTES NO_ARG_CHECK 1248
ATTRIBUTES NOCLONE 1248
ATTRIBUTES NOINLINE 1247
ATTRIBUTES NOMIXED_STR_LEN_ARG 1247
ATTRIBUTES OPTIMIZATION_PARAMETER 1249
ATTRIBUTES REFERENCE 1250
ATTRIBUTES STDCALL 1241
ATTRIBUTES VALUE 1250
ATTRIBUTES VARYING 1251
ATTRIBUTES VECTOR 1252
AUTO routines

A to Z 2093
AUTOAddArg 2093
AUTOAllocateInvokeArgs 2095
AUTODeallocateInvokeArgs 2095
AUTOGetExceptInfo 2095
AUTOGetProperty 2096
AUTOGetPropertyByID 2097
AUTOGetPropertyInvokeArgs 2097
AUTOInvoke 2098
AUTOSetProperty 2098
AUTOSetPropertyByID 2099
AUTOSetPropertyInvokeArgs 2100
table of 1178

auto-parallelization
enabling 2457
environment variables 2457
guidelines 2458
overview 2454
programming with 2458

auto-parallelizer
option setting threshold for loops 205

auto-parallelizer (ifort)
option enabling generation of multithreaded code 206

auto-parallelizer (ifx)

auto-parallelizer (ifx) (continued)
option enabling generation of multithreaded code 207

auto-vectorization 545
auto-vectorization hints 2485
auto-vectorization of innermost loops 545
auto-vectorizer

AVX 2461
SSE 2461
SSE2 2461
SSE3 2461
SSSE3 2461
using 2467

AUTOAddArg 2093
AUTOAllocateInvokeArgs 2095
AUTODeallocateInvokeArgs 2095
AUTOGetExceptInfo 2095
AUTOGetProperty 2096
AUTOGetPropertyByID 2097
AUTOGetPropertyInvokeArgs 2097
AUTOInvoke 2098
AUTOMATIC 1256
automatic arrays

option putting on heap 96
automation object interface 2557
automation objects

obtaining pointer to 2564
resources for understanding 2565
using 2557

automation routines
table of 1178

AUTOSetProperty 2098
AUTOSetPropertyByID 2099
AUTOSetPropertyInvokeArgs 2100
avoid

inefficient data types 545
mixed arithmetic expressions 545

B
B

edit descriptor 972
BABS 1182
BACK 896
backslash editing 998
BACKSPACE 1258
BADDRESS 1259
BARRIER 1260
base of model

function returning 1795
BBCLR 1545
BBITS 1546
BBSET 1547
BBTEST 1277
BDIM 1388
BEEPQQ 1261
BESJ0 1261
BESJ1 1261
BESJN 1261
Bessel functions

functions computing double-precision values of 1359
functions computing single-precision values of 1261
intrinsic computing first kind and order 0 1262
intrinsic computing first kind and order 1 1262
intrinsic computing second kind and order 0 1263
intrinsic computing second kind and order 1 1264
intrinsics computing first kind 1263
intrinsics computing second kind 1264
portability routines calculating 1113

Intel® Fortran Compiler Classic and Intel® Fortran Compiler Developer Guide and Reference

2620

BESSEL_J0 1262
BESSEL_J1 1262
BESSEL_JN 1263
BESSEL_Y0 1263
BESSEL_Y1 1264
BESSEL_YN 1264
BESY0 1261
BESY1 1261
BESYN 1261
Bezier curves

functions drawing 2212, 2214
BGE 1265
BGT 1265
BIAND 1542
BIC 1266
BIEOR 1593
big endian numeric format

porting notes 2601
BIG_ENDIAN

value for CONVERT specifier 1034
BINARY 1013
binary constants

alternative syntax for 1091
binary direct files 576, 1039
binary editing (B) 972
binary files 576
binary operations 796
binary patterns

functions that shift 898
binary raster operation constants 2250
binary sequential files 576, 1039
binary transfer of data

function performing 1963
binary values

transferring 972
BIND

in mixed-language programming 613
BIOR 1633
BIS 1266
BIT 1268
bit constants 765
bit data

model for 1107
sequence comparisons 1107

bit fields
function extracting 1546
functions operating on 898
references to 898
subroutine copying 1711

bit functions
categories of 900

bit model 1107
bit operation procedures

table of 1154
bit patterns

function performing circular shift on 1641
function performing left shift on 1640
function performing logical shift on 1640
function performing right shift on 1640

bit representation procedures
table of 1154

bit sequences
comparison of 1107

BIT_SIZE 1268
BitBlt 2218
BITEST 1277
bitmap file

function displaying image from 2206

bits
function arithmetically shifting left 1417, 1861
function arithmetically shifting left or right 1639
function arithmetically shifting right 1418, 1861
function arithmetically shifting right with fill 1860
function clearing to zero 1545
function extracting sequences of 1546
function logically shifting left or right 1640, 1642
function performing bitwise greater than 1265
function performing bitwise greater than or equal
to 1265
function performing bitwise less than 1275
function performing bitwise less than or equal to 1269
function performing exclusive OR on 1593
function performing inclusive OR on 1633
function performing logical AND on 1542
function returning number of 1268, 1637
function reversing value of 1545
function rotating left or right 1639
function setting to 1 1547
function testing 1277
function to merge under a mask 1693
model for data 1107
sequence comparisons 1107

bitwise AND
function performing 1542

bitwise complement
function returning 1719

bitwise greater than
function performing 1265

bitwise greater than or equal to
function performing 1265

bitwise less than
function performing 1275

bitwise less than or equal to
function performing 1269

BIXOR 1593
BJTEST 1277
BKTEST 1277
BLANK

specifier for INQUIRE 1014
specifier for OPEN 1031

blank common 1329
blank editing

BN 992
BZ 993

blank interpretation 992
blank padding 576
BLE 1269
BLOCK 1269
block constructs

ASSOCIATE 1212
BLOCK 1269
CASE 1290
CHANGE TEAM 1305
CRITICAL 1346
DO 1403, 1411
FORALL 1482
IF 1598
SELECT RANK 1845
SELECT TYPE 1846
WHERE 2003

BLOCK constructs
immediate termination of 1447

BLOCK DATA
and common blocks 1329

block data program units
and common blocks 1329

Index

2621

block data program units (continued)
effect of using DATA in 1271
in EXTERNAL 1271
overview of 848

block DO
terminal statements for 1403

BLOCK_LOOP 1273
BLOCKSIZE

specifier for INQUIRE 1014
specifier for OPEN 1032

BLT 1275
BMOD 1704
BMVBITS 1711
BN 992
BNOT 1719
bounds

function returning lower 1652
function returning upper 1979
option checking 389

boz-constant 765
branch specifiers

END 651
EOR 651
ERR 651

branch statements 840
branch target statements

in data transfer 923
branching

and CASE 1290
and IF 1598

breakpoints
use in locating source of runtime errors 653

BSEARCHQQ 1276
BSHFT 1640
BSHFTC 1641
BSIGN 1862
BTEST 1277
BUFFERCOUNT 1032
BUFFERED

specifier for INQUIRE 1014
specifier for OPEN 1033

buffers
portability routines that read and write 1113

build dependencies
option generating 361

build environment
selecting 15

build macros
defining 33
in Visual Studio* 33

build options
in Visual Studio* 30
setting for certain files in projects 30
specifying consistent library types 551

built-in functions
%LOC 1664
%REF 1819
%VAL 1994

BYTE 1279
BZ 993

C
C

option for ATTRIBUTES directive 1241
C functions for interoperability

CFI_address 1295
CFI_allocate 1295

C functions for interoperability (continued)
CFI_deallocate 1297
CFI_establish 1297
CFI_is_contiguous 1299
CFI_section 1300
CFI_select_part 1301
CFI_setpointer 1303

C interoperability 609
C runtime exceptions

function returning pointer to 1522
C strings 748
C_ASSOCIATED 1279
C_F_POINTER 1279
C_F_PROCPOINTER 1280
C_F_STRPOINTER 1282
C_FUNLOC 1283
C_LOC 1284
C_SIZEOF 1285
C-style escape sequence 748
C-type character string 748
C/C++ and Fortran

summary of programming issues 628
C/C++ interoperability 628
CABS 1182
cache

function returning size of a level in memory 1285
subroutine prefetching data on 1702

CACHESIZE 1285
CALL

using to invoke a function 1286
callback routines

predefined QuickWin 2134, 2145, 2150
registering for mouse events 2155
unregistering for mouse events 2167

calling conventions
option specifying 398
stack considerations 630

calling conventions and attributes directive
in mixed-language programs 638

calling routines generated by the Intel(R) Fortran Module
Wizard 2560
CANCEL 1288
CANCELLATION POINT 1289
capturing IPO output 2520
carriage control

option specifying for file display 388
specifying 1033

CARRIAGECONTROL
specifier for INQUIRE 1015
specifier for OPEN 1033

CASE 1290
CASE DEFAULT 1290
case index 1290
case-sensitive names 33
CCOS 1339
CDABS 1182
CDCOS 1339
CDEXP 1449
CDEXP10 1450
CDFLOAT 1294
CDLOG 1667
CDSIN 1874
CDSQRT 1883
CDTAN 1916
CEILING 1294
CEXP 1449
CEXP10 1450
CFI_address 1295

Intel® Fortran Compiler Classic and Intel® Fortran Compiler Developer Guide and Reference

2622

CFI_allocate 1295
CFI_cdesc

in mixed-language programming 615
CFI_deallocate 1297
CFI_establish 1297
CFI_is_contiguous 1299
CFI_section 1300
CFI_select_part 1301
CFI_setpointer 1303
CHANGE TEAM 1305
CHANGEDIRQQ 1304
CHANGEDRIVEQQ 1304
CHAR 1309
CHARACTER

data type representation 565
in type declarations 817

character assignment statements 808
character constant arguments 881
character constants

as arguments 881
C strings in 748
in format specifiers 1000

character count editing (Q) 999
character count specifier 924
character data

specifying output of 1000
character data type

C strings 748
constants 747
conversion rules with DATA 1351
default kind 747
representation of 565
storage 1082
substrings 749

character declarations 817
character editing (A) 985
character expressions

comparing values of 799
function returning length of 1655

character functions
categories of 900

character length
specifying 747

character objects
specifying length of 817

character operands 799
character procedures

table of 1153
character sets

ANSI 1099
ASCII 1098
Fortran 2003 726
function scanning for characters in 1837
Intel Fortran 726
key codes 1100

multibyte
NLS routines 2585

single and multibyte 2585
character storage unit 1082
character string

function adjusting to the left 1189
function adjusting to the right 1189
function concatenating copies of 1822
function locating index of last occurrence of substring
in 1829
function locating last nonblank character in 1663
function reading from keyboard 1530
function returning length minus trailing blanks 1656

character string (continued)
function returning length of 1655
function scanning for characters in 1837
function trimming blanks from 1965
option affecting backslash character in 375
subroutine sending to screen (including blanks) 2208,
2209
subroutine sending to screen (special fonts) 2208

character string edit descriptors 1000
character string editing 1000
character strings

as edit descriptors 1000
comparing 2000
function checking for all characters in 2000
mixed-language programming 636

character substrings
making equivalent 829

character type declarations 817
character type functions 1500
character values

transferring 985
character variables 747
CHARACTER*(*) 817, 1087
characters

carriage-control for printing 1033
function returning 1309
function returning next available 1457, 1509
function returning position of 1541, 1548
function writing to file 1492

multibyte
NLS routines 2585

portability routines that read and write 1113
charts for character and key codes 1098
CHDIR

POSIX version of 2021
check

floating-point stacks 544
stacks 544

check compiler option 653
Check floating-point stack state 544
child window

function appending list of names to menu 2165
function making active 2157
function returning unit number of active 2138
function setting properties of 2162

CHMOD
POSIX version of 2022

chunk size
in DO directive 1398

circles
functions drawing 2172

circular shift
function performing 1641

CLASS 1314
CLASS DEFAULT

in SELECT TYPE construct 1846
CLASS IS

in SELECT TYPE construct 1846
clause modifier

ITERATOR (ifx) 1644
clauses

ALIGNED 1193
ALLOCATE (ifx) 1196
ASSUMPTION (ifx) 1216
COLLAPSE 1326
COPYIN 1338
COPYPRIVATE 1339, 1875
data motion 1063

Index

2623

clauses (continued)
data scope attribute 1063
DEFAULT 1379, 1742
DEFAULT FIRSTPRIVATE 1379
DEFAULT NONE 1379
DEFAULT PRIVATE 1379
DEFAULT SHARED 1379
DEPEND 1383
DEVICE 1386
DEVICE_TYPE (ifx) 1386
FINAL 1458
FIRSTPRIVATE 1398, 1463, 1742, 1842, 1875
HINT 1538
IF 1597, 1742
IN_REDUCTION 1611
IS_DEVICE_PTR 1637
LASTPRIVATE 1398, 1650, 1842
LINEAR 1658
MAP (ifx) 1677
MERGEABLE 1694
NOVECREMAINDER 1997
NOWAIT 1398, 1721, 1842, 1875
NUM_THREADS 1742
ORDER (ifx) 1735
ORDERED 1398
PRIORITY 1768
PRIVATE 1398, 1742, 1768, 1842, 1875
PROCESSOR 1775
REDUCTION 1398, 1742, 1816, 1842
SCHEDULE 1398
SHARED 1860
SUBDEVICE (ifx) 1899
TASK_REDUCTION 1939
THREAD_LIMIT (ifx) 1953
UNTIED 1989
USE_DEVICE_PTR 1994
VECREMAINDER 1997

CLEARSCREEN 2170
CLEARSTATUSFPQQ 1314
CLICKMENUQQ 2136
clip region

subroutine setting 2227, 2248
CLOCK 1316
CLOCKX 1316
CLOG 1667
CLOSE 1316
CLOSE statement 592
closing files

CLOSE statement 592
CMPLX 1318
CO_BROADCAST 1319
CO_MAX 1320
CO_MIN 1321
CO_REDUCE 1322
CO_SUM 1323
coarray cobounds

function returning 1980
function returning lower 1653

coarray cosubscripts
function converting to an image index 1605

coarray images
function returning number of 1723
referencing 787
specifying data objects for 787
statements controlling 846

coarray statements
LOCK 1665
SYNC ALL 1908

coarray statements (continued)
SYNC IMAGES 1909
SYNC MEMORY 1910
UNLOCK 1665

coarray-spec 786
coarrays

allocatable 1194
attribute and statement specifying 1325
deferred-coshape 786
established 785
explicit-coshape 786
function returning codimensions of 1341
function returning number of images 1723
image control statements for 846
image selectors 784
option enabling 90
program syntax 2450
using 2450

Coarrays
steps to debug application 2453

cobounds
function returning lower 1653
function returning upper 1980

code
methods to optimize size of 2580
option generating feature-specific 139, 148
option generating feature-specific for Windows*
OS 137
option generating for specified CPU 150
option generating specialized 167
option generating specialized and optimized 163

code coverage tool
color scheme 2491
dynamic counters in 2491
exporting data 2491
including and excluding files 2491
pgopti.dpi file 2491
pgopti.spi file 2491
syntax of 2491

code layout 2521
code size

methods to optimize 2580
option affecting inlining 2580
option disabling expansion of certain functions 2580
option disabling expansion of functions 2580
option disabling loop unrolling 2580
option dynamically linking libraries 2580
option excluding data 2580
option for certain exception handling 2580
option passing arguments in registers 2580
option stripping symbols 2580
option to avoid 16-byte alignment (Linux only) 2580
option to avoid library references 2580
using IPO 2580

CODE_ALIGN
option for ATTRIBUTES directive 1242

codecov tool
option producing an instrumented file for 245
option specifying a directory for profiling output for 244
option specifying a file name for summary files for 245

codepage
function setting current 2132
function setting for current console 2132
subroutine retrieving current 2124

codepage number
function returning for console codepage 2123
function returning for system codepage 2123

codepages

Intel® Fortran Compiler Classic and Intel® Fortran Compiler Developer Guide and Reference

2624

codepages (continued)
function returning array of 2118

CODIMENSION 1325
codimensions of coarray

function returning 1341
COLLAPSE

in OpenMP* DISTRIBUTE directive 1393
in OpenMP* DO directive 1398
in OpenMP* TASKLOOP directive 1940
in SIMD OpenMP* Fortran 1867

collective subroutines
CO_BROADCAST 1319
CO_MAX 1320
CO_MIN 1321
CO_REDUCE 1322
CO_SUM 1323
overview of 897
table of 1144

colon
in array specifications 777, 820, 823, 824, 826, 827

colon editing 998
color index

function returning current 2178
function returning for multiple pixels 2190
function returning for pixel 2188
function returning text 2192
function setting current 2228
function setting for multiple pixels 2240
function setting for pixel 2238

color RGB value
function returning current 2179
function setting current 2229

COM hierarchy editor 2543
COM object interface

determining 2557
COM objects

obtaining pointer to 2564
resources for understanding 2565
using 2557

COM routines
A to Z 2093
COMAddObjectReference 2100
COMCLSIDFromProgID 2100
COMCLSIDFromString 2101
COMCreateObject 2101
COMCreateObjectByGUID 2102
COMCreateObjectByProgID 2102
COMGetActiveObjectByGUID 2103
COMGetActiveObjectByProgID 2103
COMGetFileObject 2104
COMInitialize 2104
COMIsEqualGUID 2105
COMQueryInterface 2105
COMReleaseObject 2106
COMStringFromGUID 2106
COMUninitialize 2107
table of 1178

COM server
advantages 2542
concepts 2543
deploying on another system 2556

COMAddObjectReference 2100
combining arrays 1692
combining source forms 734
COMCLSIDFromProgID 2100
COMCLSIDFromString 2101
COMCreateObject 2101
COMCreateObjectByGUID

COMCreateObjectByGUID (continued)
using to obtain an object pointer 2564

COMCreateObjectByProgID
using to obtain an object pointer 2564

COMGetActiveObjectByGUID 2103
COMGetActiveObjectByProgID 2103
COMGetFileObject 2104
COMInitialize 2104
COMIsEqualGUID 2105
comma

as external field separator 964
using to separate input data 988

command arguments
function returning number of 1326

command interpreter
function sending system command to 1915

command invoking a program
subroutine returning 1511

command line
running applications from 19
subroutine executing 1446
using with Intel® Fortran 15

COMMAND_ARGUMENT_COUNT 1326
command-line arguments

function returning index of 1544
function returning number of 1544, 1714
subroutine returning full 1512
subroutine returning specified 1508

command-line syntax
for make and nmake command 21

command-line window
and using Window applications 18
setting environment 18
setting search paths for .mod files 2384
setting search paths for include files 2387
setting up 18

comment indicator
general rules for 727

comment lines
for fixed and tab source 731
for free source 729

COMMITQQ 1328
COMMON

interaction with EQUIVALENCE 832
common block association 1329
common blocks

allocating 2538
defining initial values for variables in named 1271
directive modifying alignment of data in 1730
directive modifying characteristics of 1782
effect in SAVE 1833
EQUIVALENCE interaction with 832
extending 832
option enabling dynamic allocation of 417
using a routine to dynamically allocate 1479
using derived types in 1851
viewing in debugger 2375
volatile 2001

Compaq Visual Fortran
compatibility with 2589

Compatibility with
Compaq Visual Fortran 2589
VAX FORTRAN 77 2589

Compatiblity with
DEC Fortran 90 2589

compilation control statements 1049
compilation options

option saving in executable or object file 519

Index

2625

compilation units
option to prevent linking as shareable object 423

compile-time bounds check
option changing to warning 459

compile-time messages
option issuing for nonstandard Fortran 403

compiler
overview 10, 12

compiler command-line options
option recording 342

compiler directives
ALIAS 1192
ALLOCATE (ifx) 1197
ALLOCATORS (ifx) 1202
ASSUME 1214
ASSUME_ALIGNED 1215
ASSUMES (ifx) 1216
ATOMIC 1222
ATTRIBUTES 1235
BARRIER 1260
BLOCK_LOOP and NOBLOCK_LOOP 1273
CANCEL 1288
CANCELLATION POINT 1289
CODE_ALIGN 1324
CRITICAL 1345
DECLARE and NODECLARE 1364
DECLARE MAPPER (ifx) 1364
DECLARE REDUCTION 1367
DECLARE SIMD 1370
DECLARE TARGET (ifx) 1371
DECLARE VARIANT (ifx) 1374
DEFINE and UNDEFINE 1379
DEPOBJ (ifx) 1385
DISPATCH (ifx) 1392
DISTRIBUTE 1393
DISTRIBUTE PARALLEL DO 1395
DISTRIBUTE PARALLEL DO SIMD 1395
DISTRIBUTE POINT 1396
DISTRIBUTE SIMD 1397
DO 1398
DO SIMD 1410
ENDIF 1603
ERROR (ifx) 1436
FIXEDFORMLINESIZE 1464
FLUSH 1465
FMA and NOFMA 1467
for vectorization 2461, 2478
FORCEINLINE 1614
FREEFORM and NOFREEFORM 1493
general 1050
GROUPPRIVATE (ifx) 1537
IDENT 1551
IF Construct 1603
IF DEFINED 1603
INLINE and NOINLINE 1614
INTEGER 1623
INTEROP (ifx) 1629
IVDEP 1645
LOOP (ifx) 1670
LOOP COUNT 1673
MASKED (ifx) 1680
MASKED TASKLOOP (ifx) 1681
MASKED TASKLOOP SIMD (ifx) 1682
MASTER 1683
MASTER TASKLOOP (ifx) 1684
MASTER TASKLOOP SIMD (ifx) 1685
MESSAGE 1694
METADIRECTIVE (ifx) 1695

compiler directives (continued)
NOFUSION 1717
NOTHING (ifx) 1720
NOVECTOR 1997
OBJCOMMENT 1724
OpenMP* Fortran 1054
OPTIMIZE and NOOPTIMIZE 1729
OPTIONS 1730
ORDERED 1735
PACK 1739
PARALLEL (general) 1744
PARALLEL (OpenMP*) 1742
PARALLEL DO 1746
PARALLEL DO SIMD 1747
PARALLEL LOOP (ifx) 1748
PARALLEL MASKED (ifx) 1748
PARALLEL MASKED TASKLOOP (ifx) 1749
PARALLEL MASKED TASKLOOP SIMD (ifx) 1750
PARALLEL MASTER (ifx) 1750
PARALLEL MASTER TASKLOOP (ifx) 1751
PARALLEL MASTER TASKLOOP SIMD (ifx) 1752
PARALLEL SECTIONS 1752
PARALLEL WORKSHARE 1753
PREFETCH and NOPREFETCH general 1763
PREFETCH directive for OpenMP (ifx) 1765
prefixes for 1049
PSECT 1782
REAL 1809
REQUIRES (ifx) 1822
rules for 1049
SCAN 1835
SCOPE (ifx) 1839
SECTION 1842
SECTIONS 1842
SIMD loop 1870
SIMD OpenMP* Fortran 1867
SINGLE 1875
STRICT and NOSTRICT 1895
syntax rules for 1049
table of general 1128
table of OpenMP 1128
TARGET (ifx) 1917
TARGET DATA (ifx) 1920
TARGET ENTER DATA (ifx) 1923
TARGET EXIT DATA (ifx) 1924
TARGET PARALLEL 1924
TARGET PARALLEL DO 1925
TARGET PARALLEL DO SIMD 1926
TARGET PARALLEL LOOP (ifx) 1927
TARGET SIMD 1927
TARGET TEAMS 1928
TARGET TEAMS DISTRIBUTE 1929
TARGET TEAMS DISTRIBUTE PARALLEL DO 1930
TARGET TEAMS DISTRIBUTE PARALLEL DO SIMD 1930
TARGET TEAMS DISTRIBUTE SIMD 1931
TARGET TEAMS LOOP (ifx) 1932
TARGET UPDATE (ifx) 1933
TASK 1934
TASKGROUP 1939
TASKLOOP 1940
TASKLOOP SIMD 1942
TASKWAIT 1943
TASKYIELD 1944
TEAMS (ifx) 1946
TEAMS DISTRIBUTE 1948
TEAMS DISTRIBUTE PARALLEL DO 1948
TEAMS DISTRIBUTE PARALLEL DO SIMD 1949
TEAMS DISTRIBUTE SIMD 1950

Intel® Fortran Compiler Classic and Intel® Fortran Compiler Developer Guide and Reference

2626

compiler directives (continued)
TEAMS LOOP (ifx) 1951
THREADPRIVATE 1953
TILE (ifx) 1954
UNROLL (OpenMP*) (ifx) 1985
UNROLL and NOUNROLL (general) 1987
UNROLL_AND_JAM and NOUNROLL_AND_JAM 1988
VECTOR 1997
WORKSHARE 2005

compiler error conditions 643
compiler installation

option specifying root directory for 370
compiler limits 53
compiler messages 643
compiler optimizations 2587
compiler options

affecting DOUBLE PRECISION KIND 416
affecting INTEGER KIND 439
affecting REAL KIND 443
alphabetical list of 57
alternate 533
deprecated and removed 524
general rules for 75
how to display informational lists 533
list of 32
option displaying list of 512
option mapping to equivalents 345
overview of descriptions of 77
setting 32
statement confirming 1733
statement overriding 1733

compiler options used for debugging 2366
compiler reports

requesting with xi* tools 2523
compiler setup 13
compiler version

specifying 25
compiler versions

option displaying 523
option displaying information about 516

COMPILER_OPTIONS 1332
COMPILER_VERSION 1333
compilervars.bat file 643
compilervars.sh file 643
compiling

using makefiles 21
compiling and linking

mixed-language programs 631
compiling large programs 2521
compiling with IPO 2520
COMPL 1335
complementary error function

function returning 1435
function returning scaled 1436

COMPLEX 743, 1334
complex constants

rules for 744
complex data

viewing in debugger 2375
complex data type

constants 744, 745
default kind 743
function converting to 1318, 1361
ranges for 561
storage 1082

complex editing 984
complex maximum values 561
complex number

complex number (continued)
function resulting in conjugate of 1335
function returning the imaginary part of 1189

complex operations
option enabling algebraic expansion of 93

complex types
maximum values for 561

complex values
transferring 975, 984

COMPLEX(16)
constants 745
function converting to 1788

COMPLEX(4)
constants 744
function converting to 1318

COMPLEX(8)
constants 745
function converting to 1361

COMPLEX*16 743
COMPLEX*32 743
COMPLEX*8 743
COMPLINT 1335
COMPLLOG 1335
COMPLREAL 1335
Component Object Module 2557
computed GO TO 1536
COMQueryInterface

using to obtain an object pointer 2564
COMReleaseObject

using to obtain an object pointer 2564
COMStringFromGUID 2106
COMUninitialize 2107
concatenation of strings

function performing 1822
concatenation operator 799
CONCURRENCY_SAFE

option for ATTRIBUTES directive 1243
CONCURRENT 1405
conditional check

option performing in a vectorized loop 131
conditional compilation

directive testing value during 1379
option defining symbol for 356, 2573
option enabling or disabling 375

conditional DO 1411
conditional parallel region execution

inline expansion 2525
configuration files 2364
configurations

in Visual Studio* 30
setting build options for 30

conformable arrays 772
conformance

to language standards 2589
CONJG 1335
conjugate

function calculating 1335
connecting to files 1725
console

allocating 46
limitations for text display 46
option displaying information to 522
setting cursor position 46
using with Fortran Windows applications 46

console application projects 42
console codepage

function returning number for 2123
console event handlers

Index

2627

console event handlers (continued)
suggestions for using 711

console event handling 706
console keystrokes

function checking for 1757
constant expressions

for derived-type components 751
in type declarations 1966

constants
array 779
character 747
COMPLEX(16) 745
COMPLEX(4) 744
COMPLEX(8) 745
DOUBLE COMPLEX 745
DOUBLE PRECISION 742
integer 738
literal 735
logical 747
named 1753
REAL(16) 742
REAL(4) 741
REAL(8) 742

construct association
additional attributes of 1080

constructors
array 779
structure 763

constructs
ASSOCIATE 1212
BLOCK 1269
CASE 1290
CHANGE TEAM 1305
CRITICAL 1346
DO 1403, 1411
FORALL 1482
IF 1598
SELECT RANK 1845
SELECT TYPE 1846
WHERE 2003

CONTAINS
in internal procedures 874
in modules and module procedures 851

CONTIGUOUS 1336
continuation indicator

general rules for 727
continuation lines

for fixed and tab source 731
for free source 729

CONTINUE 1338
continue on errors 37
control

returning to calling program unit 1826
control characters for printing 1004, 1033
control constructs 838
control edit descriptors

backslash 998
BN 992
BZ 993
colon 998
DC 994
decimal 994
dollar sign 998
DP 995
for blanks 992
forms for 989
positional 990
Q 999

control edit descriptors (continued)
RC 994
RD 994
RN 994
round 993
RP 994
RU 993
RZ 994
S 992
Scale factor 995
sign 991
slash 997
SP 992
SS 992
T 990
TL 990
TR 991
X 991

control list 919
control procedures

table of 1138
control statements

table of 1138
control transfer

with arithmetic if 1595
with branch statements 840
with CALL 1286
with CASE 1290
with END 1423
with GO TO 1535–1537
with IF construct 1598
with logical IF 1596
with RETURN 1826

control variables
function setting value of dialog 2280

control word
subroutines returning floating-point 1512, 1840
subroutines setting floating-point 1654, 1851

control-flow enforcement technology protection
option enabling 143

control-list specifiers
defining variable for character count 924
for advancing or nonadvancing i/o 924
for asynchronous i/o 924
for transfer of control 923
identifying the i/o status 922
identifying the record number 922
identifying the unit 920
indicating the format 921
indicating the namelist group 921

controlling expression
using to evaluate block of statements 1290

convention
for language extensions 721

conventions
in the Language Reference 721

conversion
double-precision to single-precision type 1810
effect of data magnitude on G format 982
from integers to RGB color value 2156
from RGB color value to component values 2147
function performing logical 1669
function resulting in complex type 1318
function resulting in COMPLEX(16) type 1788
function resulting in double-complex type 1361
function resulting in integer type 1619
function resulting in quad-precision type 1789, 1790
function resulting in real type 1810, 1830

Intel® Fortran Compiler Classic and Intel® Fortran Compiler Developer Guide and Reference

2628

conversion (continued)
function resulting in single-precision type 1604, 1810
functions resulting in double-precision type 1360,
1387, 1397, 1417, 1551
INTEGER(2) to INTEGER(4) 1670
INTEGER(4) to INTEGER(2) 1862
record structures to derived types 1092
to nearest integer 1294, 1464
to truncated integer 1619

conversion rules for numeric assignment 807
CONVERT

specifier for INQUIRE 1015
specifier for OPEN 1034, 2598, 2601

coordinates
subroutine converting from physical to viewport 2196
subroutine converting from viewport to physical 2187
subroutine returning for current graphics position 2181

coprocessorThread allocation on processor 2394
COPYIN

for THREADPRIVATE common blocks 1953
in PARALLEL directive 1742
in PARALLEL DO directive 1746
in PARALLEL SECTIONS directive 1752

COPYPRIVATE
in SINGLE directive 1875

correct usage of countable loop 2474
COS

correct usage of 2474
COSD 1340
COSH 1340
COSHAPE 1341
cosine

function returning 1339, 1340
function returning hyperbolic 1340
function with argument in degrees 1340
function with argument in radians 1339

cosubscripts
function converting to an image index 1605
function returning for an image 1951

COTAN 1342
COTAND 1342
cotangent

function returning 1342
function with argument in degrees 1342
function with argument in radians 1342

COUNT 1343
country

function setting current 2132
subroutine retrieving current 2124

CPU
option generating code for specified 150

CPU time
DPI lists 2503
for inline function expansion 2525
function returning elapsed 1361, 1419, 1443

CPU_TIME 1344
CQABS 1182
CQCOS 1339
CQEXP 1449
CQEXP10 1450
CQLOG 1667
CQSIN 1874
CQSQRT 1883
CQTAN 1916
CRAY

value for CONVERT specifier 1034
CreateFile

creating a jacket to 595

creating
custom handlers for Fortran DLL applications 709
executable program 37
projects 23, 37

CRITICAL 1345, 1346
critical errors

subroutine controlling prompt for 1855
CSHIFT 1347
CSIN 1874
CSMG 1349
CSQRT 1883
CTAN 1916
CTIME 1349
currency string

function returning for current locale 2119
current date

subroutines returning 1355–1357, 1515, 1549, 1551
current locale

function returning information about 2125
cursor

function controlling display of 2171
function setting the shape of 2160

custom handler
creating for Fortran DLL applications 709
for Fortran Windows* applications 709

CVF
option for ATTRIBUTES directive 1244

CYCLE 1350

D
D

edit descriptor 977
DABS 1182
DACOS 1187
DACOSD 1188
DACOSH 1188
DASIN 1206
DASIND 1206
DASINH 1207
data

compiler option affecting 2538
locating unaligned 2377

DATA 1351
data alignment optimizations

option disabling dynamic 107
data attributes

ALLOCATABLE 1194
ASYNCHRONOUS 1218
AUTOMATIC 1256
BIND 1266
CODIMENSION 1325
CONTIGUOUS 1336
declaring 1966
DIMENSION 1389
directive affecting 1235
EXTERNAL 1452
INTENT 1624
INTRINSIC 1632
OPTIONAL 1727
PARAMETER 1753
POINTER 1758
PRIVATE 1769
PROTECTED 1780
PUBLIC 1783
SAVE 1833
STATIC 1890
summary of compatible 1966

Index

2629

data attributes (continued)
TARGET 1922
VALUE 1996
VOLATILE 2001

data conversion rules
for numeric assignment 807

data edit descriptors
A 985
B 972
D 977
default widths for 987
DT 987
E 977
EN 979
ES 980
EX 981
F 975
forms for 968
G 982
I 971
L 985
O 973
rules for numeric 970
Z 974

data editing
specifying format for 921

data file
converting unformatted files 577
handling I/O errors 647
RECL units for unformatted files 2601

data format
allocatable arrays in mixed-language programming 634
array pointers in mixed-language programming 634
arrays in mixed-language programming 635
big endian unformatted file formats 2598
character strings in mixed-language programming 636
formats for unformatted files 2598
little endian unformatted file formats 2598
methods of specifying 2601
nonnative numeric formats 2598
partitioning 2458
porting non-native data 2601
prefetching 2517
statement controlling 1484
type 2461, 2478
VAX* floating-point formats 2598

data initialization 1351
data motion clauses

MAP (ifx) 1677
data objects

assigning initial values to 1351
associating with group name 1712
association of 1082
association with actual arguments 1075
declaring type of 1966
directive specifying properties of 1235
record structure 1813, 1896
retaining properties of 1833
specifying pointer 1758
storage association of 1432
unpredictable values of 2001

data ordering optimization 2512
data representation

and portability considerations 2597
model for bit 1107
model for integer 1105
model for real 1106

data representation models

data representation models (continued)
intrinsic functions providing data for 1104

data scope attribute clauses 1063
data storage

and portability considerations 2597
association 1081

data transfer
function for binary 1963
indicating end of 997
specifying mode of 1039

data transfer statements
ACCEPT 1185
ADVANCE specifier in 924
ASYNCHRONOUS specifier in 924
components of 919
control list in 919
control specifiers in 919
END specifier in 923
EOR specifier in 923
ERR specifier in 923
FMT specifier in 921
i/o lists in 926
implied-do lists in 928
input 1185, 1806
IOSTAT specifier in 922
list items in 926
NML specifier in 921
output 1767, 1828, 2006
PRINT 1767
READ 1806
REC specifier in 922
REWRITE 1828
SIZE specifier in 924
UNIT specifier in 920
WRITE 2006

data type
declarations 1966
explicit 771
implicit 772
specifying for variables 771

data types
allocatable arrays in mixed-language programming 634
array pointers in mixed-language programming 634
arrays in mixed-language programming 635
big endian unformatted file formats 2598
BYTE 1279
CHARACTER 747, 1310
character representation 565
character strings in mixed-language programming 636
COMPLEX 743, 1334
declaring 1966
derived 750, 1972
DOUBLE COMPLEX 743, 1413
DOUBLE PRECISION 739, 1414
efficiency 545
enumerator 769
explicit 771
formats for unformatted files 2598
Hollerith representation 566
implicit 772
INTEGER 563, 737, 1622
intrinsic 736
little endian unformatted file formats 2598
LOGICAL 564, 746, 1669
methods of using nonnative formats 2601
native data representation 561
noncharacter 816
obtaining unformatted numeric formats 2601

Intel® Fortran Compiler Classic and Intel® Fortran Compiler Developer Guide and Reference

2630

data types (continued)
of scalar variables 771
ranges for denormalized native floating-point data 561
ranges for native numeric types 561
ranking in expressions 797
REAL 739, 1812
statement overriding default for names 1607
storage for 561
storage requirements for 1082
strings in mixed-language programming 636
user-defined 1972
Windows API translated to Fortran 557

dataflow analysis 2454
DATAN 1219
DATAN2 1219
DATAN2D 1220
DATAND 1221
DATANH 1221
DATE

function returning for current locale 2120
function returning Julian 1647
function setting 1853
routine to prevent Year 2000 problem 1357
subroutine unpacking a packed 1984
subroutines returning 1357, 1515, 1549, 1551
subroutines returning current system 1355–1357

date and time
routine returning as ASCII string 1456
subroutine packing values for 1741
subroutine returning 4-digit year 1357
subroutine returning current system 1357

date and time format
for NLS functions 2125

date and time routines
table of 1145

DATE_AND_TIME 1357
DATE4 1357
DAZ flag 543
DBESJ0 1359
DBESJ1 1359
DBESJN 1359
DBESY0 1359
DBESY1 1359
DBESYN 1359
DBLE 1360
DC 994
DC edit descriptor 994
DCLOCK 1361
DCMPLX 1361
DCONJG 1335
DCOS 1339
DCOSD 1340
DCOSH 1340
DCOTAN 1342
DCOTAND 1342
DDIM 1388
DEALLOCATE 1362
deallocation

of variables 836
debug information

in program database file 334
option generating for PARAMETERs used 329
option generating full 353
option generating in DWARF 2 format 341
option generating in DWARF 3 format 341
option generating in DWARF 4 format 341
option generating levels of 339

debug library

debug library (continued)
option searching for unresolved references in 478

debug statements
option compiling 357

debugger
Intel® Debugger (IDB) 2381
limitations 2381
multithreaded programs 2381
use in locating runtime error source 653

debugging
defining conditions in breakpoints 2368
directive specifying string for 1694
exceptions 2378
Fortran data types 2375
Fortran debugging example 2371
mixed-language programs 2380
multithreaded programs 2381
option affecting information generated 325, 327
option specifying settings to enhance 325, 327
preparing Fortran programs for debugging 2366
remote 2381, 2382
signals 2378
using file breakpoints in the debugger 2368

Debugging
Microsoft Debugger 2377
viewing the call stack 2377

Debugging coarray application 2453
debugging Fortran programs

data types 2375
defining conditions for breakpoints 2368
example 2371
using data breakpoints 2368

debugging statement indicator
for fixed and tab source 731
for free source 729

DEC Fortran 90
compatibility with 2589

DECIMAL
specifier for INQUIRE 1016
specifier for OPEN 1036

decimal editing 994
decimal editing during file connections 994
decimal exponents

function returning range of 1805
decimal precision

function returning 1763
declaration statements 814
declarations

CLASS 1314
for arrays 820
for character types 817
for derived types 819
for noncharacter types 816
MAP 1981
parameterized derived-type 756
table of procedures for data 1125
type 1966
UNION 1981

DECLARE
equivalent compiler option for 1067

DECLARE MAPPER (ifx) 1364
DECLARE REDUCTION 1367
DECLARE SIMD 1370
DECLARE TARGET (ifx) 1371
DECLARE VARIANT directive (ifx) 1374
DECODE 1378
DECORATE

option for ATTRIBUTES directive 1245

Index

2631

decorated name 638, 642
DEFAULT

in PARALLEL directive 1742
in PARALLEL DO directive 1746
in PARALLEL SECTIONS directive 1752
in TASK directive 1934
in TASKLOOP directive 1940
in TEAMS directive 1946
option for ATTRIBUTES directive 1245

default console event handling 706
default exception handling 705
default file name 1038
DEFAULT FIRSTPRIVATE 1379
default initialization 751
DEFAULT NONE 1379
Default Options

restoring 32
default pathnames 587
DEFAULT PRIVATE 1379
DEFAULT SHARED 1379
default termination handling 706
default widths for data edit descriptors 987
DEFAULTFILE 1036
DEFAULTMAP

in TARGET directive 1917
deferred-length type parameters

for parameterized derived types 758
deferred-shape arrays 826
DEFINE

equivalent compiler option for 1067
using to detect preprocessor symbols 2573

DEFINE FILE 1380
defined assignment 812, 1208
defined I/O procedures

characteristics of 955
data transfers 956
examples of 958
generic bindings 954
generic interface block 954
recursive 957
resolving references to 957

defined operations 801, 890
defined variables 770
defining generic assignment 891
defining generic operators 890
DELDIRQQ 1381
DELETE

alternative syntax for statement 1091
statement 1381

DELETE value for CLOSE(DISPOSE) or
CLOSE(STATUS) 1316
deleted language features 1085
DELETEMENUQQ 2136
DELFILESQQ 1382
DELIM

specifier for INQUIRE 1016
specifier for OPEN 1037

denormal numbers
See subnormal numbers 542

denormal results
option flushing to zero 302

denormalized numbers (IEEE*)
binary32 range 561
binary64 range 561
double-precision range 561
single-precision range 561

denormals
See subnormals 542

DEPEND
in TARGET directive 1917
in TARGET ENTER DATA directive 1923
in TARGET EXIT DATA directive 1924
in TARGET UPDATE directive 1933
in TASK directive 1934

dependence analysis
directive assisting 1645

dependencies
project build 37

dependency analysis
option excluding features from 363

deploying applications 552
DEPOBJ

directive (ifx) 1385
DEPOBJ directive (ifx) 1385
deprecated compiler options 524
DERF 1434
DERFC 1435
derived data types 750
derived type statement 1972
derived types

assignments with 809
components of 760
declaring 1972
equivalencing 1851
extended 755, 1972
procedure pointer component definition 752
referencing 795
specifying scalar values of 763
storage for 750
using in common blocks 1851

derived types in 859
derived-type assignments 809
derived-type components

default initialization of 751
procedure pointers as 751
referencing 760

derived-type data
components of 750, 751
definition of 751
viewing in debugger 2375

derived-type declarations
parameterized 756

derived-type definition
preserving the storage order of 1851

derived-type i/o
user-defined 952

derived-type items
directive specifying starting address of 1739

designator 770
DEVICE

in TARGET DATA directive 1920
in TARGET directive 1917
in TARGET ENTER DATA directive 1923
in TARGET EXIT DATA directive 1924
in TARGET UPDATE directive 1933

device names as filenames 570
DEVICE_TYPE

clause (ifx) 1386
DEVICE_TYPE clause (ifx) 1386
devices

associating with units 1725
logical 567
physical 570

devices and files 567
DEXP 1449
DEXP10 1450

Intel® Fortran Compiler Classic and Intel® Fortran Compiler Developer Guide and Reference

2632

DFLOAT 1387
DFLOATI 1387
DFLOATJ 1387
DFLOATK 1387
DFLOTI 1387
DFLOTJ 1387
DFLOTK 1387
diag compiler option 643
diagnostic messages

option affecting which are issued 446, 455
option controlling display of 446
option disabling 446
option displaying ID number values of 452
option printing enabled 449
option sending to file 450
option stopping compilation after printing 449

dialog box
creation 50

dialog box messages
subroutine setting 2159

dialog boxes
assigning event handlers to controls in 2282
deallocating memory associated with 2286
displaying modeless 2277
function assigning event handlers to controls 2282
functions displaying 2276
functions initializing 2274
message for modeless 2275

Options
General 51

Options: Advanced 52
Options: Compilers 51
Options: General 51
subroutine closing 2271
subroutine setting title of 2286
subroutine updating the display of 2272

dialog control boxes
function sending a message to 2279

dialog control variable
functions retrieving state of 2273
functions setting value of 2280

dialog routines
DLGEXIT 2271
DLGFLUSH 2272
DLGGET 2273
DLGGETCHAR 2273
DLGGETINT 2273
DLGGETLOG 2273
DLGINIT 2274
DLGINITWITHRESOURCEHANDLE 2274
DLGISDLGMESSAGE 2275
DLGISDLGMESSAGEWITHDLG 2275
DLGMODAL 2276, 2283
DLGMODALWITHPARENT 2276
DLGMODELESS 2277
DLGSENDCTRLMESSAGE 2279
DLGSET 2280
DLGSETCHAR 2280
DLGSETCTRLEVENTHANDLER 2282
DLGSETINT 2280
DLGSETLOG 2280
DLGSETRETURN 2283
DLGSETSUB 2284
DLGSETTITLE 2286
DLGUNINIT 2286
table of 1177

Dialog routines
A to Z 2271

difference operators 2448
differential coverage 2491
DIGITS 1388
DIM 1388
DIMAG 1189
DIMENSION 1389
dimensions

function returning lower bounds of 1652
function returning upper bounds of 1979

DINT 1190
DIRECT 1017
direct access mode 918
direct file access 577
direct-access files

RECL values 601
direct-access READ statements

rules for formatted 942
rules for unformatted 943

direct-access WRITE statements
rules for formatted 951
rules for unformatted 951

direction keys
function determining behavior of 2152

directive prefixes 1049
directives

ALIAS 1192
ALLOCATE (ifx) 1197
ALLOCATORS (ifx) 1202
ASSUME 1214
ASSUME_ALIGNED 1215
ASSUMES (ifx) 1216
ATOMIC 1222
ATTRIBUTES 1235
BARRIER 1260
BLOCK_LOOP 1273
CANCEL 1288
CANCELLATION POINT 1289
CODE_ALIGN 1324
CRITICAL 1345
DECLARE 1364
DECLARE MAPPER (ifx) 1364
DECLARE REDUCTION 1367
DECLARE SIMD 1370
DECLARE TARGET (ifx) 1371
DECLARE VARIANT (ifx) 1374
DEFINE 1379
DEPOBJ (ifx) 1385
DISPATCH (ifx) 1392
DISTRIBUTE 1393
DISTRIBUTE PARALLEL DO 1395
DISTRIBUTE PARALLEL DO SIMD 1395
DISTRIBUTE POINT 1396
DISTRIBUTE SIMD 1397
DO 1398
DO SIMD 1410
ERROR (ifx) 1436
FIXEDFORMLINESIZE 1464
FLUSH 1465
FMA 1467
FORCEINLINE 1614
fpp 2569
FREEFORM 1493
general 1050
GROUPPRIVATE (ifx) 1537
IDENT 1551
IF 1603
IF DEFINED 1603
INLINE and NOINLINE 1614

Index

2633

directives (continued)
INTEGER 1623
INTEROP (ifx) 1629
IVDEP 1645
LOOP (ifx) 1670
LOOP COUNT 1673
MASKED (ifx) 1680
MASKED TASKLOOP (ifx) 1681
MASKED TASKLOOP SIMD (ifx) 1682
MASTER 1683
MASTER TASKLOOP (ifx) 1684
MASTER TASKLOOP SIMD (ifx) 1685
MESSAGE 1694
METADIRECTIVE (ifx) 1695
NOBLOCK_LOOP 1273
NODECLARE 1364
NOFMA 1467
NOFREEFORM 1493
NOFUSION 1717
NOOPTIMIZE 1729
NOPARALLEL loop 1744
NOPREFETCH 1763
NOSTRICT 1895
NOTHING (ifx) 1720
NOUNROLL 1987
NOUNROLL_AND_JAM 1988
NOVECTOR 1997
OBJCOMMENT 1724
OpenMP* Fortran 1054
OPTIMIZE 1729
OPTIONS 1730
ORDERED 1735
PACK 1739
PARALLEL (general) 1744
PARALLEL (OpenMP*) 1742
PARALLEL DO 1746
PARALLEL DO SIMD 1747
PARALLEL LOOP (ifx) 1748
PARALLEL MASKED (ifx) 1748
PARALLEL MASKED TASKLOOP (ifx) 1749
PARALLEL MASKED TASKLOOP SIMD (ifx) 1750
PARALLEL MASTER (ifx) 1750
PARALLEL MASTER TASKLOOP (ifx) 1751
PARALLEL MASTER TASKLOOP SIMD (ifx) 1752
PARALLEL SECTIONS 1752
PARALLEL WORKSHARE 1753
PREFETCH directive for OpenMP (ifx) 1765
PREFETCH general 1763
prefixes for 1049
PSECT 1782
REAL 1809
REQUIRES (ifx) 1822
rules for 1049
rules for placement of 1052
SCAN 1835
SCOPE (ifx) 1839
SECTION 1842
SECTIONS 1842
SIMD loop 1870
SIMD OpenMP* Fortran 1867
SINGLE 1875
STRICT 1895
syntax rules for 1049
TARGET (ifx) 1917
TARGET DATA (ifx) 1920
TARGET ENTER DATA (ifx) 1923
TARGET EXIT DATA (ifx) 1924
TARGET PARALLEL 1924

directives (continued)
TARGET PARALLEL DO 1925
TARGET PARALLEL DO SIMD 1926
TARGET PARALLEL LOOP (ifx) 1927
TARGET SIMD 1927
TARGET TEAMS 1928
TARGET TEAMS DISTRIBUTE 1929
TARGET TEAMS DISTRIBUTE PARALLEL DO 1930
TARGET TEAMS DISTRIBUTE PARALLEL DO SIMD 1930
TARGET TEAMS DISTRIBUTE SIMD 1931
TARGET TEAMS LOOP (ifx) 1932
TARGET UPDATE (ifx) 1933
TASK 1934
TASKGROUP 1939
TASKLOOP 1940
TASKLOOP SIMD 1942
TASKWAIT 1943
TASKYIELD 1944
TEAMS (ifx) 1946
TEAMS DISTRIBUTE 1948
TEAMS DISTRIBUTE PARALLEL DO 1948
TEAMS DISTRIBUTE PARALLEL DO SIMD 1949
TEAMS DISTRIBUTE SIMD 1950
TEAMS LOOP (ifx) 1951
THREADPRIVATE 1953
TILE (ifx) 1954
UNDEFINE 1379
UNROLL (general) 1987
UNROLL (OpenMP*) (ifx) 1985
UNROLL_AND_JAM 1988
VECTOR 1997
WORKSHARE 2005

directory
function changing the default 1311
function creating 1676
function deleting 1381
function returning full path of 1499
function returning path of current working 1514
function specifying current as default 1304
inquiring about properties of 1616
option adding to start of include path 365
option specifying for executables 355
option specifying for includes and libraries 355

directory path
function splitting into components 1881

directory procedures
table of 1161

disabling
inlining 2525

disassociated pointer
function returning 1721

DISP specifier for CLOSE 1316
DISPATCH directive (ifx) 1392
DISPLAYCURSOR 2171
DISPOSE

specifier for OPEN 1037
DISPOSE specifier for CLOSE 1316
DIST_SCHEDULE

clause in DISTRIBUTE directive 1393
DISTRIBUTE

directive 1393
DISTRIBUTE PARALLEL DO 1395
DISTRIBUTE PARALLEL DO SIMD 1395
DISTRIBUTE POINT 1396
DISTRIBUTE SIMD 1397
distributing applications 552
division expansion 2587
DLGEXIT 2271

Intel® Fortran Compiler Classic and Intel® Fortran Compiler Developer Guide and Reference

2634

DLGFLUSH 2272
DLGGET 2273
DLGGETCHAR 2273
DLGGETINT 2273
DLGGETLOG 2273
DLGINIT 2274
DLGINITWITHRESOURCEHANDLE 2274
DLGISDLGMESSAGE 2275
DLGISDLGMESSAGEWITHDLG 2275
DLGMODAL 2276
DLGMODALWITHPARENT 2276
DLGMODELESS 2277
DLGSENDCTRLMESSAGE 2279
DLGSET 2280
DLGSETCHAR 2280
DLGSETCTRLEVENTHANDLER 2282
DLGSETINT 2280
DLGSETLOG 2280
DLGSETRETURN 2283
DLGSETSUB 2284
DLGSETTITLE 2286
DLGUNINIT 2286
DLLEXPORT

option for ATTRIBUTES directive 1246
DLLIMPORT

option for ATTRIBUTES directive 1246
dllimport functions

option controlling inlining of 323
DLLs 50
DLOG 1667
DLOG10 1668
DMAX1 1687
DMIN1 1696
DMOD 1704
DNINT 1204
DNUM 1397
DO

directive 1398
iteration 1403
loop control 842
rules for directives that affect 1053
WHILE 1411

DO CONCURRENT 1405
DO constructs

extended range of 845
immediate termination of 1447
interrupting 1350
nested 843
termination statement for labeled 1338
WHILE 1411

DO loop iterations
option specifying scheduling algorithm for 202

DO loops
concurrent 1405
directive assisting dependence analysis of 1645
directive controlling alignment of data in 1997
directive controlling unrolling and jamming 1988
directive controlling vectorization of 1997
directive enabling inlining of 1614
directive enabling non-streaming stores for 1997
directive enabling prefetching of arrays in 1763
directive facilitating auto-parallelization for 1744
directive preventing fusion 1717
directive specifying distribution for 1396
directive specifying the count for 1673
directive specifying the unroll count for 1987
enabling jamming 1988
limiting loop unrolling 1987

DO loops (continued)
option executing at least once 461
partially unrolling (OpenMP*) 1985
rules for directives that affect 1053
statement terminating 1424
statement to skip iteration of 1350
statement transferring control from 1447
terminal statement for 1338

DO SIMD 1410
DO WHILE 1411
DO WHILE loops

statement terminating 1424
statement transferring control from 1447

doacross loop nest 1398, 1735
dollar sign

in names 726
dollar sign editing 998
DOT_PRODUCT 1412
dot-product multiplication

function performing 1412
double colon separator 1966
DOUBLE COMPLEX

constants 745
function converting to 1361
option specifying default KIND for 416

DOUBLE PRECISION
constants 742
functions converting to 1360, 1387, 1397, 1417, 1551
option specifying default KIND for 416

double-precision product
function producing 1415

double-precision real 739
double-precision real editing (D) 977
DP edit descriptor 995
DPROD 1415
DRAND 1415
DRANDM 1415
DRANSET 1416
DREAL 1417
drive

function returning available space on 1517
function returning path of 1516
function returning total size of 1517
function specifying current as default 1304

drive procedures
table of 1161

driver tool commands
option specifying to show and execute 502
option specifying to show but not execute 508

drives
function returning available 1518

DSHIFTL 1417
DSHIFTR 1418
DSIGN 1862
DSIN 1874
DSIND 1875
DSINH 1876
DSQRT 1883
DT

edit descriptor 953, 987
DT edit descriptor

for user-defined I/O 953
DTAN 1916
DTAND 1916
DTANH 1917
DTIME 1419
dual core thread affinity 2420
dummy arguments

Index

2635

dummy arguments (continued)
characteristics of 850
coarray 882
default initialization of derived-type 751
optional 1727
passed-object 879
specifying argument association for 1996
specifying intended use of 1624
specifying intent for 1624
taking shape from an array 823
taking size from an array 824

dummy procedure arguments 882
dummy procedures

definition of 848
interfaces for 882
statement declaring 1772
using as actual arguments 1452

DWARF debug information
option creating object file containing 342

dyn files 2489
dynamic allocation 833
dynamic association 833
dynamic buffering 939
dynamic information

files 2489
threads 2396, 2438

dynamic linker
option specifying an alternate 480

dynamic memory allocation 833
dynamic objects 833
dynamic shared object

option producing a 494
dynamic type

function asking whether one is the same as
another 1832

dynamic-link libraries (DLLs)
building 45
containing type information 2558
Intel® Fortran projects 45
option searching for unresolved references in 487
option specifying the name of 330
storing routines 45

dynamic-linking of libraries
option enabling 474

E
E

edit descriptor 977
ebp register

option determining use in optimizations 145
edit descriptors

A 985
apostrophe 1000
B 972
backslash 998
BN 992
BZ 993
character string 1000
colon 998
control 989
D 977
data 968
DC 994
dollar sign 998
DP 995
DT 987
E 977

edit descriptors (continued)
EN 979
ES 980
EX 981
F 975
for interpretation of blanks 992
G 982
H 1001
Hollerith 1001
I 971
L 985
O 973
P 995
Q 999
quotation mark 1000
RC 994
RD 994
repeat specifications for 1002
repeatable 968
RN 994
RP 994
RU 993
RZ 994
S 992
scale factor 995
slash 997
SP 992
SS 992
summary 964
T 990
TL 990
TR 991
X 991
Z 974

edit lists 964
efficiency 545
efficient

inlining 2525, 2528
efficient data types 545
element array assignment 1482
ELEMENTAL

in functions 1500
in subroutines 1905

elemental intrinsic procedures
references to 886

elemental user-defined procedures 1419
elements

function returning number of 1877
ELLIPSE 2172
ELLIPSE_W 2172
ellipses

functions drawing 2172
elliptical arcs

drawing 2169
ELSE IF statement 1598
ELSE statement 1598
ELSE WHERE 1421
EN 979
ENCODE 1422
ENCODING

specifier for INQUIRE 1017
specifier for OPEN 1038

END
retaining data after execution of 1833
specifier 923
specifier for READ 1806
using the specifier 651

END DO 1424

Intel® Fortran Compiler Classic and Intel® Fortran Compiler Developer Guide and Reference

2636

END specifier 919, 923
END TEAM 1305
END WHERE 1426
end-of-file condition

function checking for 1428
intrinsic checking for 1637

end-of-file record
function checking for 1428
retaining data after execution of 1833
statement writing 1424

end-of-record condition
i/o specifier for 923
intrinsic checking for 1638

end-off shift on arrays
function performing 1429

ENDFILE 1424
endian

big and little types 2598
endian data

and OpenMP* extension routines 2408
auto-parallelization 2457
for auto-parallelization 2457
loop constructs 2474
routines overriding 2396, 2438
using OpenMP* 2448
using profile-guided optimization 2489

ENDIF directive 1603
engineering-notation editing (EN) 979
enhanced debugging information

option generating 354
Enter index keyword 554, 716, 2357
entities

private 1769
public 1783

ENTRY
in functions 872
in subroutines 873

entry points
for function subprograms 872
for subroutine subprograms 873

ENUM statement 769
enumerations 769
ENUMERATOR statement 769
enumerators 769
environment variables

compile-time 2317
converting nonnative numeric data 2601
F_UFMTENDIAN 2601
FORT_CONVERT_ext 2601
FORT_CONVERT.ext 2601
FORT_CONVERTn 2601
function adding new 1854
function returning value of 1521
function scanning for 1838
function setting value of 1854
Linux* 2317
runtime 2317
setting 18
setting with setvars file 13
subroutine getting the value of 1519
used with traceback information 2532
Windows* 2317

EOF 1428
EOR

specifier for READ 1806
using the specifier 651

EOR specifier 919, 923
EOSHIFT 1429

EPSILON 1431
EQUIVALENCE

interaction with COMMON 832
using with arrays 828
using with substrings 829

equivalence association 1432
equivalent arrays

making 828
equivalent substrings

making 829
ERF 1434
ERFC 1435
ERFC_SCALED 1436
ERR

specifier for READ 1806
specifier for WRITE 2006
using the specifier 651

ERR specifier 919, 923
ERR specifier for CLOSE 1316
errno names 1594
error

subroutine sending last detected to standard error
stream 1758

ERROR (ifx) 1436
error codes 656, 1594
error conditions

i/o specifier for 923
subroutine returning information on 1437

error functions
functions returning 1434, 1435
functions returning scaled complementary 1436

error handling
overriding default 651
processing performed by Intel® Fortran RTL 647
supplementing default 651
user controls in I/O statements 651

error handling procedures
table of 1161

error messages 656
error numbers 1594
ERROR STOP 1892
errors

behavior 37
continue on errors 37
during build process 643
functions returning most recent runtime 1526
list of 656
locating runtime 653
methods of handling 651
option issuing for nonstandard Fortran 403
option specifying maximum number of 450
runtime 646
Runtime Library 647
setting maximum number of 37
subroutine returning message for last detected 1507
when building 643

errors detected by RTL
function letting you specify a handler for 1438

ERRSNS 1437
ES 980
escape sequence

C-style 748
ESTABLISHQQ 1438
ETIME 1443
Euclidean distance

function returning 1540
event handling

console 706

Index

2637

EVENT POST 1444
event variable

subroutine querying event count of 1445
EVENT WAIT 1444
EVENT_QUERY 1445
EVENT_TYPE

in ISO_FORTRAN_ENV module 859
EX 981
example programs

and traceback iinformation 2534
exception handler

overriding 704
when to provide 709

exception handling
default (Fortran) 705
option generating table of 144
overview 705

exceptions
debugging 2378
locating source of 653

exclude code
code coverage tool 2491

exclusive OR
function performing 1593

executable statements 723
EXECUTE_COMMAND_LINE 1446
execution

error termination of 1892
stopping program 1892
subroutine delaying for a program 1879
subroutine suspending for a process 1878

execution control 838
execution environment routines 2396, 2438
execution flow 2458
execution mode 2408
EXIST 1017
EXIT 1447, 1449
exit behavior

function returning QuickWin 2138
function setting QuickWin 2158

exit codes
Fortran 651

exit parameters
function setting QuickWin 2158

EXP 1449
EXP10 1450
explicit format 964
explicit interface

Fortran array descriptor format 635
specifying 1626
when required 888

explicit typing 771
explicit vector programming

array notations 2478
elemental functions 2478
smid 2478

explicit-shape arrays 820
EXPONENT 1451
exponential procedures

table of 1149
exponential values

function returning 1449
function returning base 10 1450

exponents
function returning range of decimal 1805

expressions
character 799
constant 802

expressions (continued)
data type of numeric 797
effect of parentheses in numeric 797
element array 1482
generalized masked array 1482
logical 800
masked array 2003
numeric 796
relational 799
specification 803
variable format 1002

extended intrinsic operators 890
extended types 755, 1972
EXTENDS 755
EXTENDS_TYPE_OF 1452
extension type

function asking whether dynamic type is 1452
extensions

using 2587
extent of arrays

function returning 1877
EXTERN 1246
EXTERNAL

effect of block data program unit in 1271
effect on intrinsic procedures 883
FORTRAN 66 interpretation of 1089

external field separators 988
external files

associating with logical devices 567
overview of 918
specifying in OPEN 1725
unit specifier for 920

external functions
statement specifying entry point for 1426

external linkage with C 1266
external names

option specifying interpretation of 401
external procedures

directive specifying alternate name for 1192
interfaces of 874
statement declaring 1772
using as actual arguments 1452
using to open a file 595

external subprograms 723
external unit buffer

subroutine flushing 1467
external unit number 6

function writing a character to 1787
external user-defined names

option appending underscore to 375
external user-written functions

using to open files 595

F
F

edit descriptor 975
F_C_STRING 1454
F90_dyncom routine 2538
FAIL IMAGE 1454
FAILED_IMAGES 1455
FDATE 1456
FDX

value for CONVERT specifier 1034
feature-specific code

option generating 139
option generating and optimizing 163

FGETC

Intel® Fortran Compiler Classic and Intel® Fortran Compiler Developer Guide and Reference

2638

FGETC (continued)
POSIX version of 2033

FGX
value for CONVERT specifier 1034

field width
for B descriptor 972
for D descriptor 977
for E descriptor 977
for F descriptor 975
for I descriptor 971
for O descriptor 973
for Z descriptor 974

FILE
specifier for OPEN 1038

file access methods 576
file access mode

function setting 1856
file extensions

associated content 2354
option specifying additional Fortran 509
option specifying for FPP 510
option specifying for passage to linker 480
specifying Fortran 30
supported by ifort command 19

file management procedures
table of 1161

file name
default 1038

file names
using device names as 570

file numeric format
specifying 1034

file operation statements
BACKSPACE 1258
DELETE 1381
ENDFILE 1424
INQUIRE 1616
OPEN 1725
REWIND 1828

file operation statements in CLOSE 1316
file path

function splitting into components 1881
file position

functions returning 1498, 1529
specifying in OPEN 1042

file position statements
BACKSPACE 1258
ENDFILE 1424
REWIND 1828

file record length 584
file record types 579
file records 579
file sharing

specifying 1045
file structure

specifying 1039
filenames

specifying default 587
files

accessing with INCLUDE 1612
carriage control for terminal display 1033
combining at compilation 1612
disconnecting 1316
example of specifying name and pathname 651
function changing access mode of 1312
function deleting 1382
function finding specified 1462
function renaming 1820

files (continued)
function repositioning 1494
function returning full path of 1499
function returning information about 1495, 1523, 1674,
1885
function setting modification time for 1857
function using path to delete 1982
functions returning current position of 1498, 1529
input 19
internal 577
opening 1725
option specifying Fortran 521
organization 576
repositioning to first record 1828
routine testing access mode of 1185
scratch 577
statement requesting properties of 1616
temporary 2542
types of 918
types of Microsoft* Fortran PowerStation
compatible 601
using external user-written function to open 595

files and directories
function renaming 1821

files associated with Intel® Fortran 2354
fill mask

functions using 2173, 2174
subroutine setting to new pattern 2230

fill shapes
subroutine returning pattern used to 2182

FINAL
in TASK directive 1934
in TASKLOOP directive 1940

final task 2298
FIND 1460
FINDFILEQQ 1462
FINDLOC 1460
FIRSTPRIVATE

in DEFAULT clause 1379
in DISTRIBUTE directive 1393
in DO directive 1398
in PARALLEL directive 1742
in PARALLEL DO directive 1746
in PARALLEL SECTIONS directive 1752
in SECTIONS directive 1842
in SINGLE directive 1875
in TASK directive 1934
in TASKLOOP directive 1940
in TEAMS directive 1946

fixed source format
directive for specifying 1493
directive setting line length for 1464
lines in 733
option specifying file is 396

fixed-format source lines 733
fixed-length record type 579
FIXEDFORMLINESIZE

equivalent compiler option for 1067
FLOAT 1810
float-to-integer conversion

option enabling fast 309
FLOATI 1810
floating-point array operation 545
Floating-point array: Handling 545
floating-point calculations

option controlling semantics of 292
option enabling consistent results 292

floating-point control procedures

Index

2639

floating-point control procedures (continued)
table of 1152

floating-point control word
subroutines returning 1512, 1840
subroutines setting 1654, 1851

floating-point data types
CRAY* big endian formats 2598
IBM big endian formats 2598
IEEE binary32 2598
IEEE binary64 2598
IEEE* big endian formats 2598
methods of specifying nonnative formats 2601
nonnative formats 2598
normal and denormalized values of native formats 561
obtaining unformatted numeric formats 2601
values for constants 561
VAX* D_float format 2598
VAX* F_float format 2598
VAX* G_float format 2598

Floating-point environment
-fp-model compiler option 543
/fp compiler option 543
pragma fenv_access 543

floating-point exception flags
function returning settings of 1470
function setting 1474

floating-point exception handling for program
option allowing some control over 299

floating-point exception handling for routines
option allowing some control over 301

floating-point exceptions
subnormal exceptions 545

floating-point inquiry procedures
table of 1152

floating-point operations
option controlling semantics of 292
option improving consistency of 290
option rounding results of 296
option specifying mode to speculate for 297

Floating-point Operations
programming tradeoffs 538

Floating-point Optimizations
-fp-model compiler option 540
/fp compiler option 540

floating-point precision
option controlling for significand 305
option improving for divides 306
option improving for square root 306
option improving general 304
option maintaining while disabling some
optimizations 290

floating-point stack
option checking 298

floating-point stacks
check 544

floating-point status word
subroutine clearing exception flags in 1314
subroutines returning 1529, 1885

floating-point traps
in Fortran DLL applications 709

FLOATJ 1810
FLOATK 1810
FLOODFILL 2173
FLOODFILL_W 2173
FLOODFILLRGB 2174
FLOODFILLRGB_W 2174
FLOOR 1464
fltconsistency compiler option 2587

FLUSH 1465–1467
FMA 1467
FMA instructions

directive affecting generation of 1467
option enabling 291

FMT
specifier for READ 1806
specifier for WRITE 2006

FMT specifier 919, 921
focus

determining which window has 2144
setting 2137

FOCUSQQ 2137
font

function setting for OUTGTEXT 2232
function setting orientation angle for OUTGTEXT 2235

font characteristics
function returning 2182

font-related library functions 2182, 2184, 2202, 2208, 2232
fonts

function initializing 2202
function returning characteristics of 2182
function returning orientation of text for 2184
function returning size of text for 2184
function setting for OUTGTEXT 2232
function setting orientation angle for text 2235

FOR_DESCRIPTOR_ASSIGN 1468
FOR_GET_FPE 1470
FOR_IFCORE_VERSION 1471
FOR_IFPORT_VERSION 1472
for_iosdef.for file 651
FOR_LFENCE 1473
FOR_MFENCE 1473
for_rtl_finish_ 1473
for_rtl_init_ 1474
FOR_SET_FPE 1474
FOR_SET_FTN_ALLOC 1479
FOR_SET_REENTRANCY 1481
FOR_SFENCE 1482
FORALL 1482
FORCEINLINE

option for ATTRIBUTES directive 1247
FORM

specifier for INQUIRE 1017
specifier for OPEN 1039

form for output
option specifying 362

FORM TEAM 1488
FORMAT

specifications 964
format control

terminating 998
format lists 964
format of data

default for list-directed output 946
explicit 964
implicit 963
list-directed input 931
list-directed output 946
namelist input 933
namelist output 948
rules for numeric 970
specifying file numeric 1034
using character string edit descriptors 1000
using control edit descriptors 989
using data edit descriptors 968

format specifications
character 964

Intel® Fortran Compiler Classic and Intel® Fortran Compiler Developer Guide and Reference

2640

format specifications (continued)
interaction with i/o lists 1005
summary of edit descriptors 964

format specifier 921
FORMATTED

specifier for INQUIRE 1018
formatted direct files 576
formatted direct-access READ statements 942
formatted direct-access WRITE statements 951
formatted files

direct-access 576
formatted i/o

list-directed input 931
list-directed output 946
namelist input 933
namelist output 948

formatted records
overview of 918
printing of 1004

formatted sequential files 576
formatted sequential READ statements 930
formatted sequential WRITE statements 945
forms for control edit descriptors 989
forms for data edit descriptors 968
FORT_CONVERT environment variable 2601
FORT_CONVERT_ext environment variable 2601
FORT_CONVERT.ext environment variable 2601
FORT_CONVERTn environment variable 2601
Fortran

handlers for application types 706
option forcing compliance with current Standard 406
Project Types 40
providing handlers 709
summary of programming issues 628

Fortran 2003
option forcing compliance with 406

Fortran 2003 character set 726
FORTRAN 66

option applying semantics of 461
FORTRAN 66 interpretation of EXTERNAL 1089
FORTRAN 77

option using runtime behavior of 461
option using semantics for kind parameters 438

Fortran 90
directive enabling or disabling extensions to 1895

Fortran 95
directive enabling or disabling extensions to 1895

Fortran and C/C++
mixed-language programs 632
summary of programming issues 628
using compatible libraries 632

Fortran and C/C++*
legacy extensions 642

Fortran array descriptor format 635
Fortran COM Server

advanced topics 2552
advantages 2542
concepts 2543
creating 2545
deploying on another system 2556
interface design considerations 2550
overview 2542

Fortran deleted features 1085
Fortran DLL applications

containing errors in 709
custom handlers for 709

Fortran dynamic-link libraries 45
Fortran executables

Fortran executables (continued)
creating 2365

Fortran file extensions
custom 30
in Visual Studio* 30

Fortran language standard 2587
Fortran Language Standards 2587
Fortran Module Wizard

see Intel(R) Fortran Module Wizard 2557
Fortran obsolescent features in 1087
Fortran pointers 1758
Fortran PowerStation

compatibility with 601
Fortran preprocessor

option specifying an alternate 360
Fortran preprocessor (FPP)

list of options 2578
option affecting end-of-line comments 373
option defining symbol for 356, 2573
option passing options to 505
option running on files 359
option sending output to a file 367
option sending output to stdout 358

Fortran programs
data types in the debugger 2375
debugging 2366

Fortran record structures
viewing in debugger 2375

Fortran source files
specifying a non-standard 30

Fortran Standard type aliasability rules
option affecting adherence to 89

Fortran standards
and extensions 2587

Fortran static libraries
debugging 44
using 44

Fortran Windowing application projects 44
Fortran Windowing applications

custom handler for 709
FP_CLASS 1491
fpe compiler option 653
fpp

directives 2569
introduction 2566
using predefined preprocessor symbols 2573

fpp compiler option
fpp options you can specify by using 2578

fpp files
option to keep 2566

fpp options
list of 2578

FPUTC
POSIX version of 2037

FRACTION 1492
frame pointer

option affecting leaf functions 157
FREE 1493
free source format

directive specifying 1493
option specifying file is 396

FREEFORM
equivalent compiler option for 1067

FROM
clause in TARGET UPDATE directive 1933

FSEEK
POSIX version of 2037

FSTAT

Index

2641

FSTAT (continued)
POSIX version of 2038

FTELL
POSIX version of 2038

FTELLI8 1498
FTZ flag 543
FULLPATHQQ 1499
FUNCTION 1500
Function annotations

!DIR$ ATTRIBUTES ALIGN 2485
function entry and exit points

option determining instrumentation of 228
function expansion 2525
function grouping

option enabling or disabling 234
function grouping optimization 2512
function order list 2516
function order lists 2512
function ordering optimization 2512
function preemption 2525
function profiling

option compiling and linking for 231
function references 871
function result

as explicit-shape array 820
specifying different name for 1825

function results
characteristics of 850

function splitting
option enabling or disabling 229

functions
defining in a statement 1889
definition of 848
effect of ENTRY in 872
elemental intrinsic 894
ELEMENTAL keyword in 1500
EXTERNAL 1452
general rules for 870
generic 894
IMPURE keyword in 1500
inquiry 894
invoking 871
invoking in a CALL statement 1286
module 1707
NON_RECURSIVE keyword in 1813
not allowed as actual arguments 894
PURE keyword in 1500
RECURSIVE keyword in 1500, 1813
references to 871
RESULT keyword in 1500, 1825
specific 894
statement 1889
that apply to arrays 894
transformational 894

functions not allowed as actual arguments
table of 894

fused multiply-add instructions
option enabling 291

G
G

edit descriptor 982
effect of data magnitude on format conversions 982

g++ compiler
option specifying name of 470

GAMMA 1505
gamma value

gamma value (continued)
function returning 1505

gather and scatter type vector memory references
option enabling optimization for 113

gcc C++ run-time libraries
include file path 365
option adding a directory to second 365

gcc C++ runtime libraries
option specifying to link to 477

gcc compiler
option specifying name of 469

gen-interfaces compiler option 643
general compiler directives

for auto-parallelization 2458
for inlining functions 2525
for profile-guided optimization 2487
for vectorization 2462
syntax rules for 1049
table of 1128

general default exception handling 705
general directives

ALIAS 1192
ASSUME 1214
ASSUME_ALIGNED 1215
ATTRIBUTES 1235
BLOCK_LOOP 1273
CODE_ALIGN 1324
DECLARE 1364
DEFINE 1379
DISTRIBUTE POINT 1396
ENDIF 1603
FIXEDFORMLINESIZE 1464
FMA 1467
FORCEINLINE 1614
FREEFORM 1493
IDENT 1551
IF 1603
IF DEFINED 1603
INLINE and NOINLINE 1614
INTEGER 1623
IVDEP 1645
LOOP COUNT 1673
MESSAGE 1694
NOBLOCK_LOOP 1273
NODECLARE 1364
NOFMA 1467
NOFREEFORM 1493
NOFUSION 1717
NOOPTIMIZE 1729
NOPARALLEL 1744
NOPREFETCH 1763
NOSTRICT 1895
NOUNROLL 1987
NOUNROLL_AND_JAM 1988
NOVECTOR 1997
OBJCOMMENT 1724
OPTIMIZE 1729
OPTIONS 1730
PACK 1739
PARALLEL 1744
PREFETCH 1763
PSECT 1782
REAL 1809
rules for placement of 1052
SIMD 1870
STRICT 1895
UNDEFINE 1379
UNROLL 1987

Intel® Fortran Compiler Classic and Intel® Fortran Compiler Developer Guide and Reference

2642

general directives (continued)
UNROLL_AND_JAM 1988
VECTOR 1997

general rules for numeric editing 970
generalized editing (G) 982
GENERIC 1506
generic assignment 891
generic identifier 1626
generic interface 889, 1626
generic intrinsic functions

references to 883
generic name

references to 1072
generic operators 890
generic procedures

references to 883
references to intrinsic 883
unambiguous references to 1071

generic references 1072
GERROR 1507
GET_COMMAND 1511
GET_COMMAND_ARGUMENT 1512
GET_ENVIRONMENT_VARIABLE 1519
GET_TEAM 1531
GETACTIVEQQ 2138
GETARCINFO 2175
GETARG

POSIX version of 2039
GETBKCOLOR 2176
GETBKCOLORRGB 2177
GETC

POSIX version of 2039
GETCHARQQ 1510
GETCOLOR 2178
GETCOLORRGB 2179
GETCONTROLFPQQ 1512
GETCURRENTPOSITION 2181
GETCURRENTPOSITION_W 2181
GETCWD

POSIX version of 2040
GETDAT 1515
GETDRIVEDIRQQ 1516
GETDRIVESIZEQQ 1517
GETDRIVESQQ 1518
GETENV 1519
GETENVQQ 1521
GETEXCEPTIONPTRSQQ

effect with SIGNALQQ 711
GETEXITQQ 2138
GETFILEINFOQQ 1523
GETFILLMASK 2182
GETFONTINFO 2182
GETGID 1526
GETGTEXTEXTENT 2184
GETGTEXTROTATION 2184
GETHWNDQQ 2139
GETIMAGE

function returning memory needed for 2201
GETIMAGE_W 2185
GETLASTERROR 1526
GETLASTERRORQQ 1526
GETLINESTYLE 2186
GETLINEWIDTHQQ 2187
GETLOG 1528
GETPHYSCOORD 2187
GETPID 1528
GETPIXEL 2188
GETPIXEL_W 2188

GETPIXELRGB 2189
GETPIXELRGB_W 2189
GETPIXELS 2190
GETPIXELSRGB 2191
GETPOS 1529
GETPOSI8 1529
GETSTATUSFPQQ 1529
GETSTRQQ 1530
GETTEXTCOLOR 2192
GETTEXTCOLORRGB 2193
GETTEXTPOSITION 2194
GETTEXTWINDOW 2195
GETTIM 1532
GETTIMEOFDAY 1533
GETUID 1533
GETUNITQQ 2139
GETVIEWCOORD 2196
GETVIEWCOORD_W 2196
GETWINDOWCONFIG 2140
GETWINDOWCOORD 2197
GETWRITEMODE 2197
GETWSIZEQQ 2142
global entities 726
global function symbols

option binding references to shared library
definitions 476

global scope 1068
global symbols

option binding references to shared library
definitions 475

glossary
A 2287
B 2290
C 2291
D 2294
E 2297
F 2298
G 2300
H 2300
I 2301
K 2302
L 2303
M 2304
N 2305
O 2306
P 2307
Q 2309
R 2309
S 2311
T 2315
U 2316
V 2316
W 2317
Z 2317

GMTIME 1534
GO TO

assigned 1535
computed 1536
unconditional 1537

GOTO 1535–1537
GRAINSIZE

in TASKLOOP directive 1940
graphics applications

creating with ifort command 41
option creating and linking 504
QuickWin 43
standard 42

graphics output

Index

2643

graphics output (continued)
function returning background color index for 2176
function returning background RGB color for 2177
function setting background color index for 2225
function setting background RGB color for 2226
subroutine limiting to part of screen 2227

graphics position
subroutine moving to a specified point 2207
subroutine returning coordinates for current 2181

graphics routines
ARC and ARC_W 2169
CLEARSCREEN 2170
DISPLAYCURSOR 2171
ELLIPSE and ELLIPSE_W 2172
FLOODFILL and FLOODFILL_W 2173
FLOODFILLRGB and FLOODFILLRGB_W 2174
function returning status for 2198
GETARCINFO 2175
GETBKCOLOR 2176
GETBKCOLORRGB 2177
GETCOLOR 2178
GETCOLORRGB 2179
GETCURRENTPOSITION and
GETCURRENTPOSITION_W 2181
GETFILLMASK 2182
GETFONTINFO 2182
GETGTEXTEXTENT 2184
GETGTEXTROTATION 2184
GETIMAGE and GETIMAGE_W 2185
GETLINESTYLE 2186
GETLINEWIDTHQQ 2187
GETPHYSCOORD 2187
GETPIXEL and GETPIXEL_W 2188
GETPIXELRGB and GETPIXELRGB_W 2189
GETPIXELS 2190
GETPIXELSRGB 2191
GETTEXTCOLOR 2192
GETTEXTCOLORRGB 2193
GETTEXTPOSITION 2194
GETTEXTWINDOW 2195
GETVIEWCOORD and GETVIEWCOORD_W 2196
GETWINDOWCOORD 2197
GETWRITEMODE 2197
GRSTATUS 2198
IMAGESIZE and IMAGESIZE_W 2201
INITIALIZEFONTS 2202
LINETO and LINETO_W 2203
LINETOAR 2204
LINETOAREX 2205
LOADIMAGE and LOADIMAGE_W 2206
MOVETO and MOVETO_W 2207
OUTGTEXT 2208
OUTTEXT 2209
PIE and PIE_W 2210
POLYBEZIER and POLYBEZIER_W 2212
POLYBEZIERTO and POLYBEZIERTO_W 2214
POLYGON and POLYGON_W 2215
POLYLINEQQ 2217
PUTIMAGE and PUTIMAGE_W 2218
RECTANGLE and RECTANGLE_W 2220
REMAPALLPALETTERGB and REMAPPALETTERGB 2221
SAVEIMAGE and SAVEIMAGE_W 2223
SCROLLTEXTWINDOW 2224
SETBKCOLOR 2225
SETBKCOLORRGB 2226
SETCLIPRGN 2227
SETCOLOR 2228
SETCOLORRGB 2229

graphics routines (continued)
SETFILLMASK 2230
SETFONT 2232
SETGTEXTROTATION 2235
SETLINESTYLE 2236
SETLINEWIDTHQQ 2237
SETPIXEL and SETPIXEL_W 2238
SETPIXELRGB and SETPIXELRGB_W 2239
SETPIXELS 2240
SETPIXELSRGB 2241
SETTEXTCOLOR 2242
SETTEXTCOLORRGB 2243
SETTEXTCURSOR 2244
SETTEXTPOSITION 2245
SETTEXTWINDOW 2246
SETVIEWORG 2247
SETVIEWPORT 2248
SETWINDOW 2249
SETWRITEMODE 2250
table of 1157
WRAPON 2251

Graphics routines
A to Z 2169

graphics viewport
subroutine redefining 2248

Greenwich mean time
function returning seconds and milliseconds since 1533
function returning seconds since 1831
subroutine returning 1534

group ID
function returning 1526

GROUPPRIVATE
directive (ifx) 1537

GROUPPRIVATE directive (ifx) 1537
GRSTATUS 2198
GUID

for COM objects 2564

H
H

edit descriptor 1001
HABS 1182
handle

function returning unit number of window 2139
handlers

function establishing for IEEE exceptions 1561
providing in Fortran applications 709
structure in Fortran applications 706

HBCLR 1545
HBITS 1546
HBSET 1547
HDIM 1388
help

getting online 11
heuristics

affecting software pipelining 1247
for inlining functions 1247
overriding vectorizer efficiency 1997

hexadecimal constants
alternative syntax for 1091

hexadecimal editing (Z) 974
hexadecimal values

transferring 974
hexadecimal-significand editing (EX) 981
HFIX 1619
HIAND 1542
hidden-length character arguments

Intel® Fortran Compiler Classic and Intel® Fortran Compiler Developer Guide and Reference

2644

hidden-length character arguments (continued)
option specifying convention for passing 398

HIEOR 1593
high performance programming

applications for 2517
high-level optimizer 2517
HINT

clause 1538
HINT clause 1538
HIOR 1633
HIXOR 1593
HLO 2517
HMOD 1704
HMVBITS 1711
HNOT 1719
Hollerith arguments 881
Hollerith constants

representation of 566
Hollerith editing 1001
Hollerith values

transferring 985
host association

overview of 1077
host computer name

function returning 1539
HOSTNAM 1539
HOSTNM 1539
hot patching

option preparing a routine for 147
hotness threshold

option setting 238
HSHFT 1640
HSHFTC 1641
HSIGN 1862
HTEST 1277
HUGE 1540
hyperbolic arccosine

function returning 1188
hyperbolic arcsine

function returning 1207
hyperbolic arctangent

function returning 1221
hyperbolic cosine

function returning 1340
hyperbolic sine

function returning 1876
hyperbolic tangent

function returning 1917
HYPOT 1540

I
I

edit descriptor 971
I/O

asynchronous 607
choosing optimal record type 579
data formats for unformatted files 2598
file sharing 593
list-directed input 931
list-directed output 946
namelist input 933
namelist output 948
record 579
specifying record length for efficiency 579

I/O buffers
flushing and closing 1182

I/O control list

I/O control list (continued)
advance specifier 924
asynchronous specifier 924
branch specifiers 923
character count specifier 924
error message specifier 925
format specifier 921
I/O status specifier 922
id specifier 925
namelist specifier 921
pos specifier 925
record specifier 922
unit specifier in 920

I/O control list specifiers 919
I/O editing

overview of 963
I/O error conditions

subroutine returning information on 1437
I/O formatting 963
I/O lists

how to specify 926
implied-do lists in 928
interaction with format specifications 1005
simple list items in 926

I/O procedures
defined 953
table of 1127

I/O statement specifiers 592
I/O statements

ACCEPT 1185
BACKSPACE 1258
DELETE 1381
ENDFILE 1424
forms of 573
INQUIRE 1616
list of 571
OPEN 1725
PRINT 1767
READ 1806
REWIND 1828
REWRITE 1828
WRITE 2006

I/O statements in CLOSE 1316
I/O status specifier 922
I/O units 920
IA-32 architecture based applications

HLO 2517
IABS 1182
IACHAR 1541
IADDR 1259
IALL 1541
IAND 1542
IANY 1543
IARG 1544
IARGC 1544
IBCHNG 1545
IBCLR 1545
IBITS 1546
IBM

value for CONVERT specifier 1034
IBM* character set 1099
IBSET 1547
ICHAR 1548
ICV 2447
ID

specifier 925
specifier for READ 1806
specifier for WRITE 2006

Index

2645

ID specifier 919
IDATE 1549, 1550
IDATE4 1551
IDB

and mixed-language programs 2380
IDB (see Intel® Debugger) 2366
IDE property pages 32
IDE windows 23
IDENT 1551
IDFLOAT 1551
IDIM 1388
IDINT 1619
IDNINT 1716
IEEE binary128 format 745
IEEE binary32 format 741
IEEE binary64 format 742
IEEE equivalent functions

IEEE compareQuietEqual 1570
IEEE compareQuietGreater 1571
IEEE compareQuietGreaterEqual 1571
IEEE compareQuietLess 1572
IEEE compareQuietLessEqual 1572
IEEE compareQuietNotEqual 1573
IEEE compareSignalingEqual 1580
IEEE compareSignalingGreater 1581
IEEE compareSignalingGreaterEqual 1581
IEEE compareSignalingLess 1582
IEEE compareSignalingLessEqual 1582
IEEE compareSignalingNotEqual 1583
IEEE logb function 1565
IEEE nextafter function 1568
IEEE rem function 1574
IEEE scalb function 1575
IEEE unordered 1591

IEEE intrinsic modules
IEEE_ARITHMETIC 863
IEEE_EXCEPTIONS 864
IEEE_FEATURES 865
Quick Reference Tables 865

IEEE intrinsic modules and procedures 861
IEEE_ARITHMETIC 863
IEEE_CLASS 1552
IEEE_COPY_SIGN 1552
IEEE_EXCEPTIONS 864
IEEE_FEATURES 865
IEEE_FLAGS 1553
IEEE_FMA 1557
IEEE_GET_FLAG 1558
IEEE_GET_HALTING_MODE 1558
IEEE_GET_MODES 1559
IEEE_GET_ROUNDING_MODE 1559
IEEE_GET_STATUS 1560
IEEE_GET_UNDERFLOW_MODE 1561
IEEE_HANDLER 1561
IEEE_INT 1563
IEEE_IS_FINITE 1563
IEEE_IS_NAN 1564
IEEE_IS_NEGATIVE 1564
IEEE_IS_NORMAL 1565
IEEE_LOGB 1565
IEEE_MAX_NUM 1566
IEEE_MAX_NUM_MAG 1567
IEEE_MIN_NUM 1567
IEEE_MIN_NUM_MAG 1568
IEEE_NEXT_AFTER 1568
IEEE_NEXT_DOWN 1569
IEEE_NEXT_UP 1570
IEEE_QUIET_EQ 1570

IEEE_QUIET_GE 1571
IEEE_QUIET_GT 1571
IEEE_QUIET_LE 1572
IEEE_QUIET_LT 1572
IEEE_QUIET_NE 1573
IEEE_REAL 1573
IEEE_REM 1574
IEEE_RINT 1575
IEEE_SCALB 1575
IEEE_SELECTED_REAL_KIND 1576
IEEE_SET_FLAG 1577
IEEE_SET_HALTING_MODE 1577
IEEE_SET_MODES 1578
IEEE_SET_ROUNDING_MODE 1578
IEEE_SET_STATUS 1579
IEEE_SET_UNDERFLOW_MODE 1580
IEEE_SIGNALING_EQ 1580
IEEE_SIGNALING_GE 1581
IEEE_SIGNALING_GT 1581
IEEE_SIGNALING_LE 1582
IEEE_SIGNALING_LT 1582
IEEE_SIGNALING_NE 1583
IEEE_SIGNBIT 1583
IEEE_SUPPORT_DATATYPE 1584
IEEE_SUPPORT_DENORMAL 1584
IEEE_SUPPORT_DIVIDE 1585
IEEE_SUPPORT_FLAG 1585
IEEE_SUPPORT_HALTING 1586
IEEE_SUPPORT_INF 1587
IEEE_SUPPORT_IO 1587
IEEE_SUPPORT_NAN 1588
IEEE_SUPPORT_ROUNDING 1588
IEEE_SUPPORT_SQRT 1589
IEEE_SUPPORT_STANDARD 1589
IEEE_SUPPORT_SUBNORMAL 1590
IEEE_SUPPORT_UNDERFLOW_CONTROL 1591
IEEE_UNORDERED 1591
IEEE_VALUE 1592
IEEE*

binary32 data ranges 561
binary64 data ranges 561
nonnative big endian data 2598

IEEE* exceptions
function clearing status of 1553
function establishing a handler for 1561
function getting or setting status of 1553

IEEE* flags
function clearing 1553
function getting or setting 1553

IEEE* intrinsic modules
function an integer value rounded according to the
current rounding mode 1575
function assigning a value to an exception flag. 1577
function converting to INTEGER 1563
function converting to REAL 1573
function creating IEEE value 1592
function restoring state of the floating-point
environment 1579
function restoring the floating-point modes 1578
function returning adjacent higher machine
number 1570
function returning argument with copied sign 1552
function returning exponent of radix-independent
floating-point number 1575
function returning FP value equal to unbiased exponent
of argument 1565
function returning IEEE class 1552

Intel® Fortran Compiler Classic and Intel® Fortran Compiler Developer Guide and Reference

2646

IEEE* intrinsic modules (continued)
function returning next lower adjacent machine
number 1569
function returning next representable value after X
toward Y 1568
function returning result from an exact remainder
operation 1574
function returning the maximum magnitude of two
values 1567
function returning the maximum of two values 1566
function returning the minimum magnitude of two
values 1568
function returning the minimum of two values 1567
function returning the result of a fused multiply-add
operation 1557
function returning value of the kind parameter of an
IEEE REAL data type 1576
function returning whether expection flag is
signaling 1558
function returning whether IEEE value is finite 1563
function returning whether IEEE value is negative 1564
function returning whether IEEE value is normal 1565
function returning whether IEEE value is Not-a-
number(NaN) 1564
function returning whether one or more of the
arguments is Not-a-Number (NaN) 1591
function returning whether processor supports ability to
control the underflow mode 1591
function returning whether processor supports IEEE
arithmetic 1584
function returning whether processor supports IEEE
base conversion rounding during formatted I/O 1587
function returning whether processor supports IEEE
denormalized numbers 1584
function returning whether processor supports IEEE
divide 1585
function returning whether processor supports IEEE
exceptions 1585
function returning whether processor supports IEEE
features defined in the standard 1589
function returning whether processor supports IEEE
halting 1586
function returning whether processor supports IEEE
infinities 1587
function returning whether processor supports IEEE
Not-a-Number feature 1588
function returning whether processor supports IEEE
rounding mode 1588
function returning whether processor supports IEEE
SQRT 1589
function returning whether processor supports IEEE
subnormal numbers 1590
function setting current underflow mode 1580
function storing current rounding mode 1559
function storing current state of floating-point
environment 1560
function storing current underflow mode 1561
function storing halting mode for exception 1558
function storing the floating-point modes 1559
function testing to determine if the sign bit is set 1583
function that controls halting or continuation after an
exception. 1577
function that sets rounding mode. 1578
non-signaling function comparing for equality 1570
non-signaling function comparing for greater than 1571
non-signaling function comparing for greater than or
equal 1571
non-signaling function comparing for inequality 1573

IEEE* intrinsic modules (continued)
non-signaling function comparing for less than 1572
non-signaling function comparing for less than or
equal 1572
signaling function comparing for equality 1580
signaling function comparing for greater than 1581
signaling function comparing for greater than or
equal 1581
signaling function comparing for inequality 1583
signaling function comparing for less than 1582
signaling function comparing for less than or
equal 1582

IEEE* numbers
function testing for NaN values 1643

IEOR 1593
IERRNO

subroutine returning message for last error detected
by 1507

IF
arithmetic 1595
clause for OpenMP* directives 1597
construct 1598
directive for conditional compilation 1603
logical 1596

IF DEFINED 1603
IFIX 1619
IFLOATI 1604
IFLOATJ 1604
ifort command

requesting listing file using 2540
selecting project types 41

IFPORT portability module
overview 2566

IFWIN library module
in Fortran Windowing application projects 44

IGNORE_LOC
option for ATTRIBUTES directive 1247

IIABS 1182
IIAND 1542
IIBCLR 1545
IIBITS 1546
IIBSET 1547
IIDIM 1388
IIDINT 1619
IIDNNT 1716
IIEOR 1593
IIFIX 1619
IINT 1619
IIOR 1633
IIQINT 1619
IIQNNT 1716
IISHFT 1640
IISHFTC 1641
IISIGN 1862
IIXOR 1593
IJINT 1619
ILEN 1605
IMAG 1189
image control statements

LOCK 1665
segments in 848
STAT= and ERRMSG= specifiers in 847
SYNC ALL 1908
SYNC IMAGES 1909
SYNC MEMORY 1910
UNLOCK 1665

image cosubscripts
function returning 1951

Index

2647

image segments 848
image selectors 784
IMAGE_INDEX 1605
IMAGE_STATUS 1606
images

function displaying from bitmap file 2206
function returning array of failed 1455
function returning array of normally terminated 1894
function returning execution status value of 1606
function returning storage size of 2201
function saving into Windows bitmap file 2223
statement simulating image failure 1454
subroutine broadcasting a value to 1319
subroutine calculating maximum value across 1320
subroutine calculating minimum value across 1321
subroutine performing generalized reduction
across 1322
subroutine performing sum reduction across 1323
transferring from memory to screen 2218

IMAGESIZE 2201
IMAGESIZE_W 2201
IMAX0 1687
IMAX1 1687
IMIN0 1696
IMIN1 1696
IMOD 1704
IMPLICIT

effect on intrinsic procedures 883
implicit format 963
implicit interface 887, 1626
IMPLICIT NONE 1607
implicit typing

overriding default 1607
implied-DO lists 928
implied-DO loop

list in i/o lists 928
implied-shape

for named constants 827
implied-shape arrays 827
IMPORT 1609
IMPURE

in functions 1500
in subroutines 1905

impure procedures 870, 1610
IMVBITS 1711
in Visual Studio* 23
IN_REDUCTION

in TASK directive 1934
in TASKLOOP directive 1940

INBRANCH
in DECLARE SIMD directive 1370

INCHARQQ 2143
INCLUDE

directory searched for filenames 2387
INCLUDE directory 32
include file path

option adding a directory to 364
option removing standard directories from 369

INCLUDE files
searching for 2387
using 2387

INCLUDE lines 1612
included task 2301
including files during compilation 1612
inclusive OR

function performing 1633
incremental linking

linker option specifying treatment of 2533

INDEX 1614
index for last occurrence of substring

function locating 1829
inheritance association 1084
ININT 1716
initialization expressions

see constant expressions 802
INITIALIZEFONTS 2202
initializing variables 1351
INITIALSETTINGS 2144
INLINE

option for ATTRIBUTES directive 1247
inline function expansion

option disabling 83
option specifying level of 313, 316

inlining
compiler directed 2525
developer directed 2525
option disabling full and partial 222
option disabling partial 222
option forcing 316
option specifying lower limit for large routines 319
option specifying maximum size of function for 312
option specifying maximum times for a routine 318
option specifying maximum times for compilation
unit 317
option specifying total size routine can grow 320
option specifying upper limit for small routine 322
preemption 2525

inlining options
option specifying percentage multiplier for 314

inlining report 2528
INMAX 1616
INOT 1719
input and output files 19
input and output procedures

table of 1127
input data

terminating short fields of 988
input file extensions 19
input statements for data transfer

ACCEPT 1185
READ 1806

input/output editing 963
input/output lists 926
input/output statements 1007
INQFOCUSQQ 2144
INQUIRE

ACCESS specifier 1012
ACTION specifier 1013
ASYNCHRONOUS specifier 1013
BINARY specifier 1013
BLANK specifier 1014
BLOCKSIZE specifier 1014
BUFFERED specifier 1014
CARRIAGECONTROL specifier 1015
CONVERT specifier 1015
DECIMAL specifier 1016
DELIM specifier 1016
DIRECT specifier 1017
ENCODING specifier 1017
EXIST specifier 1017
FORM specifier 1017
FORMATTED specifier 1018
IOFOCUS specifier 1018
MODE specifier 1019
NAME specifier 1019
NAMED specifier 1019

Intel® Fortran Compiler Classic and Intel® Fortran Compiler Developer Guide and Reference

2648

INQUIRE (continued)
NEXTREC specifier 1019
NUMBER specifier 1020
OPENED specifier 1020
ORGANIZATION specifier 1020
PAD specifier 1020
PENDING specifier 1021
POS specifier 1021
POSITION specifier 1021
READ specifier 1022
READWRITE specifier 1022
RECL specifier 1022
RECORDTYPE specifier 1023
ROUND specifier 1023
SEQUENTIAL specifier 1024
SHARE specifier 1024
SIGN specifier 1025
SIZE specifier 1026
UNFORMATTED specifier 1026
WRITE specifier 1026

INQUIRE statement 590
inquiry functions

ALLOCATED 1203
ASSOCIATED 1213
BIT_SIZE 1268
CACHESIZE 1285
COMMAND_ARGUMENT_COUNT 1326
COSHAPE 1341
DIGITS 1388
EOF 1428
EPSILON 1431
EXTENDS_TYPE_OF 1452
for argument presence 1766
for arrays 1203, 1341, 1637, 1652, 1859, 1877, 1979
for bits 1268
for character length 1655

for numeric models
DIGITS 1388
EPSILON 1431
HUGE 1540
MAXEXPONENT 1688
MINEXPONENT 1698
PRECISION 1763
RADIX 1795
RANGE 1805
TINY 1959

for pointers 1213
HUGE 1540
IARGC 1544
ILEN 1605
INT_PTR_KIND 1622
IS_CONTIGUOUS 1637
KIND 1649
LBOUND 1652
LEN 1655
LOC 1664
MAXEXPONENT 1688
MINEXPONENT 1698
NARGS 1714
NEW_LINE 1715
PRECISION 1763
PRESENT 1766
RADIX 1795
RANGE 1805
SAME_TYPE_AS 1832
SHAPE 1859
SIZE 1877
SIZEOF 1878

for numeric models (continued)
STORAGE_SIZE 1894
TINY 1959
UBOUND 1979

INSERTMENUQQ 2145
instrumentation

compilation 2489
execution 2489
feedback compilation 2489
option enabling or disabling for specified functions 264
program 2487

instrumented binaries
.spi file 2491

instrumented binaries application
.spi file 2503

INT 1619
INT_PTR_KIND 1622
INT1 1619
INT2 1619
INT4 1619
INT8 1619
INTC 1621
INTEGER

compiler directive 1623
equivalent compiler option for 1067
type 737, 1622

integer constants 737, 738
integer data

function returning kind type parameter for 1849
model for 1105

integer data representations 563
integer data type

constants 738
declarations and options 561, 563
default kind 737
function converting to 1619
methods of specifying endian format 2601
nonnative formats 2598
ranges 737
storage 1082

integer edit descriptors 971
integer editing (I) 971
INTEGER KIND to hold address

function returning 1622
integer maximum values 561
integer model

function returning largest number in 1540
function returning smallest number in 1959

integer pointers
option affecting aliasing of 126

integer types
maximum values for 561

INTEGER(1) 737
INTEGER(2) 737
INTEGER(4) 737
INTEGER(8) 737
INTEGER(KIND=1) representation 563
INTEGER(KIND=2) representation 564
INTEGER(KIND=4) representation 564
INTEGER(KIND=8) representation 564
INTEGER*1 737
INTEGER*2 737
INTEGER*4 737
INTEGER*8 737
integers

converting to RGB values 2156
directive specifying default kind 1623
function converting KIND=2 to KIND=4 1670

Index

2649

integers (continued)
function converting KIND=4 to KIND=2 1862
function converting to quad-precision type 1789
function converting to single-precision type 1604, 1810
function performing bit-level test for 1268
function returning difference between 1388
function returning leading zero bits in 1655
function returning maximum positive 1616
function returning number of 1 bits in 1762
function returning parity of 1762
function returning trailing zero bits in 1963
function returning two's complement length of 1605
functions converting to double-precision type 1387,
1551
models for data 1105
subroutine performing bit-level set and clear for 1266

INTEGERTORGB 2147
Intel-provided libraries

option linking dynamically 495
option linking statically 498

Intel(R) 64 architecture based applications
HLO 2517

Intel(R) Fortran
handling runtime errors 646
intrinsic data types 736
National Language Support routines 2585
portability considerations 2587
using COM and Automation objects 2557

Intel(R) Fortran character set 726
Intel(R) Fortran language extensions 1117
Intel(R) Fortran Module Wizard

using COM and Automation objects 2557
using routines in 2560
using to generate code 2558

Intel(R) Fortran Windows API routines module 557
Intel(R) language extensions 2531
Intel(R) libraries

option disabling linking to 491
Intel(R) linking tools 2517
Intel(R) MIC Architecture features

directive TARGET TEAMS 1928
directive TARGET TEAMS DISTRIBUTE 1929
directive TARGET TEAMS DISTRIBUTE PARALLEL
DO 1930
directive TARGET TEAMS DISTRIBUTE PARALLEL DO
SIMD 1930
directive TARGET TEAMS DISTRIBUTE SIMD 1931

Intel(R) MKL
option letting you link to ILP64 libraries 102
option letting you link to libraries 100

Intel(R) Trace Collector API
option inserting probes to call 263

Intel® 64 applications 2531
Intel® Debugger 2366, 2381
Intel® extension environment variables 2317
Intel® Fortran

command-line environment 18
file extensions passed to compiler 19
input and output files 2354
running Fortran applications 19
types of projects 40
using the debugger 2366

Intel® Fortran Compiler command prompt window 15, 18
Intel® Fortran Compiler extension routines 2408
Intel® Fortran projects

adding files 23
creating 23

Intel® Hyper-Threading Technology

Intel® Hyper-Threading Technology (continued)
parallel loops 2459
thread pools 2459

Intel® Integrated Performance Primitives 35
Intel® Math Kernel Library 35
Intel® Performance Libraries

Intel® Integrated Performance Primitives (Intel® IPP) 35
Intel® Math Kernel Library (Intel® MKL) 35
Intel® Threading Building Blocks (Intel® TBB) 35

Intel® Streaming SIMD Extensions (Intel® SSE) 2462
Intel® Threading Building Blocks 35
INTENT 1624
intent of arguments 1624
interaction between format specifications and i/o lists 1005
INTERFACE 1626
INTERFACE ASSIGNMENT 1626
interface blocks

for generic names 889
generic identifier in 1626
module procedures in 1705, 1708
option generating for routines 453
pure procedures in 1626
using ASSIGNMENT(=) 812
using generic assignment in 891
using generic operators in 890
using generic procedures in 889

interface definitions
for Intel(R) Fortran library routines and Windows
API 557

INTERFACE OPERATOR 1626
INTERFACE TO 1629
interfaces

abstract 1183
and Fortran array descriptor format 635
explicit 887, 1626
generic 889
implicit 887, 1626
of dummy procedures 882
of external procedures 874
of internal procedures 874
procedures that require explicit 888

intermediate files
option saving during compilation 518

intermediate representation (IR) 2517, 2520
internal address

function returning 1664
internal compiler limits

option overriding certain 124
internal files

associating with logical devices 567
overview of 918
unit specifier for 920

internal procedures
advantages of 2387
definition of 848
following CONTAINS 1336

internal READ statements
rules for 944

internal subprograms
following CONTAINS 1336

internal WRITE statements
rules for 952

INTEROP directive (ifx) 1629
interoperability

of procedures and procedure interfaces 892
interoperability with C 609, 1266
interprocedural optimizations

code layout 2521

Intel® Fortran Compiler Classic and Intel® Fortran Compiler Developer Guide and Reference

2650

interprocedural optimizations (continued)
compilation 2517
compiling 2520
considerations 2521
issues 2521
large programs 2521
linking 2517, 2520
option enabling additional 221
option enabling between files 223
option enabling for single file compilation 312
overview 2517
performance 2521
using 2520
whole program analysis 2517

interrupt signal
registering a function to call for 1865

interrupt signal handling
function controlling 1863

INTRINSIC 1632
intrinsic assignment

array 809
character 808
derived-type 809
logical 808
numeric 807
to polymorphic variables 810

intrinsic data types
default formats for list-directed output 946
storage requirements for 1082

intrinsic functions
ABS 1182
ACHAR 1186
ACOS 1187
ACOSD 1188
ACOSH 1188
ADJUSTL 1189
ADJUSTR 1189
AIMAG 1189
AINT 1190
ALL 1193
ALLOCATED 1203
AND 1542
ANINT 1204
ANY 1205
ASIN 1206
ASIND 1206
ASINH 1207
ASSOCIATED 1213
ATAN 1219
ATAN2 1219
ATAN2D 1220
ATAND 1221
ATANH 1221
BADDRESS 1259
BESSEL_J0 1262
BESSEL_J1 1262
BESSEL_JN 1263
BESSEL_Y0 1263
BESSEL_Y1 1264
BESSEL_YN 1264
BGE 1265
BGT 1265
BLE 1269
BLT 1275
BTEST 1277
CACHESIZE 1285
categories of 900
CEILING 1294

intrinsic functions (continued)
CHAR 1309
CMPLX 1318
COMMAND_ARGUMENT_COUNT 1326
COMPILER_OPTIONS 1332
COMPILER_VERSION 1333
CONJG 1335
COS 1339
COSD 1340
COSH 1340
COSHAPE 1341
COTAN 1342
COTAND 1342
COUNT 1343
CSHIFT 1347
DBLE 1360
DCMPLX 1361
DFLOAT 1387
DIGITS 1388
DIM 1388
DNUM 1397
DOT_PRODUCT 1412
DPROD 1415
DREAL 1417
DSHIFTL 1417
DSHIFTR 1418
EOF 1428
EOSHIFT 1429
EPSILON 1431
EXP 1449
EXP10 1450
EXPONENT 1451
EXTENDS_TYPE_OF 1452
FAILED_IMAGES 1455
FLOAT 1810
FLOOR 1464
for data representation models 1104
FP_CLASS 1491
FRACTION 1492
GAMMA 1505
HUGE 1540
HYPOT 1540
IACHAR 1541
IALL 1541
IAND 1542
IANY 1543
IARG 1544
IARGC 1544
IBCHNG 1545
IBCLR 1545
IBITS 1546
IBSET 1547
ICHAR 1548
IEEE_CLASS 1552
IEEE_COPY_SIGN 1552
IEEE_FMA 1557
IEEE_INT 1563
IEEE_IS_FINITE 1563
IEEE_IS_NAN 1564
IEEE_IS_NEGATIVE 1564
IEEE_IS_NORMAL 1565
IEEE_LOGB 1565
IEEE_MAX_NUM 1566
IEEE_MAX_NUM_MAG 1567
IEEE_MIN_NUM 1567
IEEE_MIN_NUM_MAG 1568
IEEE_NEXT_AFTER 1568
IEEE_NEXT_DOWN 1569

Index

2651

intrinsic functions (continued)
IEEE_NEXT_UP 1570
IEEE_QUIET_EQ 1570
IEEE_QUIET_GE 1571
IEEE_QUIET_GT 1571
IEEE_QUIET_LE 1572
IEEE_QUIET_LT 1572
IEEE_QUIET_NE 1573
IEEE_REAL 1573
IEEE_REM 1574
IEEE_RINT 1575
IEEE_SCALB 1575
IEEE_SELECTED_REAL_KIND 1576
IEEE_SET_FLAG 1577
IEEE_SET_HALTING_MODE 1577
IEEE_SIGNALING_EQ 1580
IEEE_SIGNALING_GE 1581
IEEE_SIGNALING_GT 1581
IEEE_SIGNALING_LE 1582
IEEE_SIGNALING_LT 1582
IEEE_SIGNALING_NE 1583
IEEE_SIGNBIT 1583
IEEE_SUPPORT_DATATYPE 1584
IEEE_SUPPORT_DENORMAL 1584
IEEE_SUPPORT_DIVIDE 1585
IEEE_SUPPORT_FLAG 1585
IEEE_SUPPORT_HALTING 1586
IEEE_SUPPORT_INF 1587
IEEE_SUPPORT_IO 1587
IEEE_SUPPORT_NAN 1588
IEEE_SUPPORT_ROUNDING 1588
IEEE_SUPPORT_SQRT 1589
IEEE_SUPPORT_STANDARD 1589
IEEE_SUPPORT_SUBNORMAL 1590
IEEE_SUPPORT_UNDERFLOW_CONT
ROL 1591
IEEE_UNORDERED 1591
IEEE_VALUE 1592
IEOR 1593
IFIX 1619
ILEN 1605
IMAGE_INDEX 1605
IMAGE_STATUS 1606
INDEX 1614
INT 1619
INT_PTR_KIND 1622
INUM 1633
IOR 1633
IPARITY 1635
IS_IOSTAT_END 1637
IS_IOSTAT_EOR 1638
ISHA 1639
ISHC 1639
ISHFT 1640
ISHFTC 1641
ISHL 1642
ISNAN 1643
IXOR 1593
JNUM 1648
KIND 1649
KNUM 1650
LBOUND 1652
LCOBOUND 1653
LEADZ 1655
LEN 1655
LEN_TRIM 1656
LGE 1657
LGT 1657

intrinsic functions (continued)
LLE 1662
LLT 1662
LOC 1664
LOG 1667
LOG_GAMMA 1668
LOG10 1668
LOGICAL 1669
LSHFT 1640
LSHIFT 1640
MALLOC 1676
MASKL 1682
MASKR 1683
MATMUL 1685
MAX 1687
MAXEXPONENT 1688
MAXLOC 1689
MAXVAL 1691
MCLOCK 1692
MERGE 1692
MERGE_BITS 1693
MIN 1696
MINEXPONENT 1698
MINLOC 1698
MINVAL 1700
MOD 1704
MODULO 1709
NARGS 1714
NEAREST 1715
NEW_LINE 1715
NINT 1716
NORM2 1718
NOT 1719
NULL 1721
NUM_IMAGES 1723
NUMARG 1544
OR 1633
OUT_OF_RANGE 1739
PACK 1740
PARITY 1755
POPCNT 1762
POPPAR 1762
PRECISION 1763
PRESENT 1766
PRODUCT 1778
QCMPLX 1788
QEXT 1789
QFLOAT 1789
QNUM 1790
QREAL 1790
RADIX 1795
RAN 1796
RANF 1804
RANGE 1805
RANK 1806
REAL 1810
references to generic 883
REPEAT 1822
RESHAPE 1824
RNUM 1830
RRSPACING 1830
RSHFT 1640
RSHIFT 1640
SAME_TYPE_AS 1832
SCALE 1835
SCAN 1837
SELECTED_CHAR_KIND 1849
SELECTED_INT_KIND 1849

Intel® Fortran Compiler Classic and Intel® Fortran Compiler Developer Guide and Reference

2652

intrinsic functions (continued)
SELECTED_REAL_KIND 1850
SET_EXPONENT 1856
SHAPE 1859
SHIFTA 1860
SHIFTL 1861
SHIFTR 1861
SIGN 1862
SIN 1874
SIND 1875
SINH 1876
SIZEOF 1878
SNGL 1810
SPACING 1881
SPREAD 1882
SQRT 1883
STOPPED_IMAGES 1894
STORAGE_SIZE 1894
SUM 1907
TAN 1916
TAND 1916
TANH 1917
THIS_IMAGE 1951
TINY 1959
TRAILZ 1963
TRANSFER 1963
TRANSPOSE 1964
TRIM 1965
UBOUND 1979
UCOBOUND 1980
UNPACK 1983
VERIFY 2000
XOR 1593

intrinsic modules
IEEE 861
ISO_C_BINDING 854
ISO_FORTRAN_ENV 857

intrinsic procedures
and EXTERNAL 883
and IMPLICIT 883
argument keywords in 896
classes of 894
elemental 894
nonelemental 894
references to elemental 886
references to generic 883
scope of name 883
using as actual arguments 1632

intrinsic subroutines
ATOMIC_ADD 1228
ATOMIC_AND 1228
ATOMIC_CAS 1229
ATOMIC_DEFINE 1230
ATOMIC_FETCH_ADD 1231
ATOMIC_FETCH_AND 1231
ATOMIC_FETCH_OR 1232
ATOMIC_FETCH_XOR 1233
ATOMIC_OR 1234
ATOMIC_REF 1234
ATOMIC_XOR 1235
categories of 916
CO_BROADCAST 1319
CO_MAX 1320
CO_MIN 1321
CO_REDUCE 1322
CO_SUM 1323
CPU_TIME 1344
DATE 1355

intrinsic subroutines (continued)
DATE_AND_TIME 1357
ERRSNS 1437
EVENT_QUERY 1445
EXECUTE_COMMAND_LINE 1446
EXIT 1449
FREE 1493
GET_COMMAND 1511
GET_COMMAND_ARGUMENT 1512
GET_ENVIRONMENT_VARIABLE 1519
GETARG 1508
IDATE 1549
IEEE_GET_FLAG 1558
IEEE_GET_HALTING_MODE 1558
IEEE_GET_MODES 1559
IEEE_GET_ROUNDING_MODE 1559
IEEE_GET_STATUS 1560
IEEE_GET_UNDERFLOW_MODE 1561
IEEE_SET_MODES 1578
IEEE_SET_ROUNDING_MODE 1578
IEEE_SET_STATUS 1579
IEEE_SET_UNDERFLOW_MODE 1580
MM_PREFETCH 1702
MOVE_ALLOC 1709
MVBITS 1711
RANDOM_INIT 1799
RANDOM_NUMBER 1800
RANDOM_SEED 1802
RANDU 1803
SYSTEM_CLOCK 1914
TIME 1957

introduction to the Language Reference 713
INUM 1633
inverse cosine

function returning in degrees 1188
function returning in radians 1187

inverse sine
function returning in degrees 1206
function returning in radians 1206

inverse tangent
function returning in degrees 1221
function returning in degrees (complex) 1219
function returning in radians 1219
function returning in radians (complex) 1220

invoking Intel® Fortran Compiler 15
IOFOCUS

specifier for INQUIRE 1018
specifier for OPEN 1040

IOMSG
specifier 925
specifier for READ 1806
specifier for WRITE 2006

IOMSG specifier 919
IOR 1633
IOSTAT

errors returned to 656
specifier for READ 1806
specifier for WRITE 2006
symbolic definitions in iosdef.for 651
using 651

IOSTAT specifier 919, 922
IOSTAT specifier for CLOSE 1316
IPARITY 1635
IPO

option specifying jobs during the link phase of 226
IPXFARGC 2010
IPXFCONST 2011
IPXFLENTRIM 2011

Index

2653

IPXFWEXITSTATUS 2011
IPXFWSTOPSIG 2012
IPXFWTERMSIG 2013
IQINT 1619
IQNINT 1716
IR 2520
IRAND 1635
IRANDM 1635
IRANGET 1636
IRANSET 1636
IS_CONTIGUOUS 1637
IS_DEVICE_PTR

clause 1637
in TARGET directive 1917

IS_IOSTAT_END 1637
IS_IOSTAT_EOR 1638
ISATTY 1638
ISHA 1639
ISHC 1639
ISHFT 1640
ISHFTC 1641
ISHL 1642
ISIGN 1862
ISNAN 1643
ISO_C_BINDING 854
ISO_C_BINDING derived types 854
ISO_C_BINDING intrinsic module

derived types 854
named constants 854
procedures 856

ISO_C_BINDING named constants 854
ISO_C_BINDING procedures

C_ASSOCIATED 1279
C_F_POINTER 1279
C_F_PROCPOINTER 1280
C_F_STRPOINTER 1282
C_FUNLOC 1283
C_LOC 1284
C_SIZEOF 1285
F_C_STRING 1454

ISO_FORTRAN_ENV
intrinsic function COMPILER_OPTIONS 1332
intrinsic function COMPILER_VERSION 1333

ISO_FORTRAN_ENV derived types 859
ISO_FORTRAN_ENV intrinsic module

procedures 861
ISO_FORTRAN_ENV named constants 857
ISO_FORTRAN_ENV procedures 861
iteration count 1403
iteration loop control 842
ITERATOR

clause modifier (ifx) 1644
ITERATOR clause modifier (ifx) 1644
ITIME 1645
IVDEP

effect when tuning applications 2517
IXOR 1593
IZEXT 2009

J
JABS 1647
jacket routines in Intel(R) Fortran Module Wizard 2560
Japan Industry Standard characters 2112
JDATE 1647
JDATE4 1647
JFIX 1619
JIAND 1542

JIBCLR 1545
JIBITS 1546
JIBSET 1547
JIDIM 1388
JIDINT 1619
JIDNNT 1716
JIEOR 1593
JIFIX 1619
JINT 1619
JIOR 1633
JIQINT 1619
JIS characters

converting to JMS 2112
JISHFT 1640
JISHFTC 1641
JISIGN 1862
JIXOR 1593
JMAX0 1687
JMAX1 1687
JMIN0 1696
JMIN1 1696
JMOD 1704
JMS characters

converting to JIS 2112
JMVBITS 1711
JNINT 1716
JNOT 1719
JNUM 1648
jump tables

option enabling generation of 109
JZEXT 2009

K
KDIM 1388
KEEP value for CLOSE(DISPOSE) or CLOSE(STATUS) 1316
key code charts 1098
key codes

chart 1 1101
chart 2 1102

keyboard character
function returning ASCII value of 2143

keyboard procedures
table of 1145

keystroke
function checking for 1757
function returning next 1510

keywords 725
KIABS 1182
KIAND 1542
KIBCLR 1545
KIBITS 1546
KIBSET 1547
KIDIM 1388
KIDINT 1619
KIDNNT 1716
KIEOR 1593
KIFIX 1619
KILL

POSIX version of 2051
KIND

directive specifying default for integers 1623
directive specifying default for reals 1809

kind type parameter
declaring for data 1966
function changing logical 1669
function returning for character data 1849
function returning for integer data 1849

Intel® Fortran Compiler Classic and Intel® Fortran Compiler Developer Guide and Reference

2654

kind type parameter (continued)
function returning for real data 1850
function returning value of 1649
INTEGER declarations 563
LOGICAL declarations 564
restriction for real constants 740

KINT 1619
KIOR 1633
KIQINT 1619
KIQNNT 1716
KISHFT 1640
KISHFTC 1641
KISIGN 1862
KMAX0 1687
KMAX1 1687
KMIN0 1696
KMIN1 1696
KMOD 1704
KMP_AFFINITY

modifier 2420
offset 2420
permute 2420
type 2420

KMP_LIBRARY 2414
KMP_TOPOLOGY_METHOD 2420
KMP_TOPOLOGY_METHOD environment variable 2420
KMVBITS 1711
KNINT 1716
KNOT 1719
KNUM 1650
KZEXT 2009

L
L

edit descriptor 985
L2 norm of an array

function returning 1718
label assignment 1207
labels

assigning 1207
general rules for 727
in DO constructs 1403
statement transferring control to 1537
statement transferring control to assigned 1535
statement transferring control to one of three 1595
statement transferring control to specified 1536

language and country combinations
function returning array of 2119

language compatibility 2589
language extensions

and portability 2587
built-in functions 1118
C Strings 1117
character sets 1117
compilation control statements 1118
compiler directives 1119
convention for 721
data in expressions 1117
directive enabling or disabling Intel Fortran 1895
dollar sign () allowed in names 1117
file operation statements 1119
for execution control 1118
for source forms 1117
general directives 1119
Hollerith constants 1117
i/o formatting 1118
i/o statements 1118

language extensions (continued)
Intel Fortran 1117
intrinsic procedures 1120
language features for compatibility 1122
runtime library routines 1123
specification statements 1118
summary of 1117
syntax for intrinsic data types 1117

language features for compatibility 1122
Language Reference

overview 713
language standards

and portability 2587
conformance 2589
how extensions are denoted 2589
how non-standard features are denoted 2589

language-binding-spec
syntax for 1772

LASTPRIVATE
in DO directive 1398
in general PARALLEL directive 1744
in PARALLEL DO directive 1746
in PARALLEL SECTIONS directive 1752
in SECTIONS directive 1842
in SIMD OpenMP* Fortran directive 1867
in TASKLOOP directive 1940

LBOUND
in pointer assignment 826

LCOBOUND 1653
LCWRQQ 1654
LEADZ 1655
left shift

function performing arithmetic 1639
function performing circular 1639
function performing logical 1642

LEN
in CHARACTER data type 747
in declarations 817

LEN_TRIM 1656
LEN=

in CHARACTER data type 747
in declarations 817

length
specifying for character objects 817

length specifier in character declarations 817
lexical string comparisons

function determining 1657, 1662
LGE 1657
LGT 1657
libgcc library

option linking dynamically 496
option linking statically 499

libraries
math 559
needed for Intel(R) Fortran/Visual C++ programs 632
OpenMP* runtime routines 2396, 2408, 2438
option enabling dynamic linking of 474
option enabling static linking of 475
option preventing linking with shared 497
option preventing use of standard 489
option printing location of system 350
redistributing 552
shared 547, 2541
specifying consistent library types 551
static 44, 547

libraries used when linking 643
library

option searching in specified directory for 484

Index

2655

library (continued)
option to search for 483

library directory 32
library directory paths when linking 643
library exception handler

overriding 704
library functions

Intel extension 2408
OpenMP* runtime routines 2396, 2438

library math functions
option testing errno after calls to 423

library modules 1108
library routines

AUTO 2093
COM 2093
Dialog 2271
Graphics 2169
how to use 549
Intel® Fortran vs Windows* API routines 550
MCBS 1109
module 1108
NLS 1109, 2107
POSIX* 2010
QuickWin 2133
serial port i/o 2253
using to open files 595

library search path
directive placing in file 1724

libstdc++ library
option linking statically 500

limitations of mixed-language programming 628
limits

Intel® Visual Fortran Compiler 53
line length

directive setting for fixed-source format 1464
line style

function returning 2186
subroutine setting 2236

line width
function returning current 2187

LINEAR
in DECLARE SIMD directive 1370
in DO directive 1398
in SIMD OpenMP* Fortran directive 1867

lines
function drawing 2203
function drawing between arrays 2204, 2205
function drawing within an array 2217

LINETO 2203
LINETO_W 2203
LINETOAR 2204
LINETOAREX 2205
link map file

generating 2540
option generating 487

linkage association 1079
linker

option passing linker option to 506
option passing options to 505
option telling to read commands from file 501
request threaded runtime library 2356
viewing libraries used 643

linker diagnostic messages 643
linker error conditions 643
linker library directory paths 643
linker options for search libraries

option including in object files 515
linking

linking (continued)
option preventing use of startup files and libraries
when 492
option preventing use of startup files when 492
option suppressing 325
suppressing 44

linking debug information 2365
linking options 2362
linking tools

xild 2517, 2521
xilink 2517, 2521

linking tools IR 2517
linking with IPO 2520
list items in i/o lists 926
list-directed formatting

input 931
output 946

list-directed i/o
default formats for output 946
input 931
output 946
restrictions for input 931

list-directed I/O 576
list-directed input 931
list-directed output 946
list-directed statements

READ 931
WRITE 946

list-drected I/O statements 573
listing file

generating 2540
listing of source file

option controlling contents of 352
option creating 343
option specifying line length 344
option specifying page length 345

literal constants 735
LITTLE_ENDIAN

value for CONVERT specifier 1034
LLE 1662
LLT 1662
LNBLNK 1663
LOADIMAGE 2206
LOADIMAGE_W 2206
LOC

using with integer pointers 1761
local scope 1068
local variables

option allocating to static memory 444
option allocating to the runtime stack 411

locale
function returning currency string for current 2119
function returning date for current 2120
function returning information about current 2125
function returning number string for current 2121
function returning time for current 2122

locale (NLS) routines 2585
locating runtime errors

using traceback information 2532
locations

specifying alternative 2541
LOCK 1665
lock routines 2396, 2438
LOCK_TYPE

in ISO_FORTRAN_ENV module 859
LOG 1667
LOG_GAMMA 1668
LOG10 1668

Intel® Fortran Compiler Classic and Intel® Fortran Compiler Developer Guide and Reference

2656

logarithm
function returning base 10 1668
function returning common 1668
function returning natural 1667

logarithm of the absolute gamma value
function returning 1668

logarithmic procedures
table of 1149

LOGICAL 1669
logical AND

function performing 1542
logical assignment statements 808
logical complement

function returning 1719
logical constants 747
logical conversion

function performing 1669
logical data representation 564
logical data type

constants 747
converting nonnative data 2601
declaring 564
default kind 746
differences with nonnative formats 2601
ranges 564
representation 564
storage 1082

logical devices 567
logical editing (L) 985
logical expressions

conditional execution based on value of 1596
evaluating 800

logical IF statement 1596
logical operations

data types resulting from 800
logical operators 800
logical records 576
logical shift

function performing 1640
function performing left 1640
function performing right 1640

logical unit number
function testing whether it's a terminal 1638

logical units
assigning files to 574

logical values
transferring 985

LOGICAL(1) 746
LOGICAL(2) 746
LOGICAL(4) 746
LOGICAL(8) 746
LOGICAL*1 746
LOGICAL*2 746
LOGICAL*4 746
LOGICAL*8 746
login name

subroutine returning 1528
LONG 1670
loop alignment

option enabling 418
loop blocking

directive enabling 1273
loop blocking factor

option specifying 106
loop control 842, 1403
LOOP COUNT 1673
LOOP directive (ifx) 1670
loop directives

loop directives (continued)
DISTRIBUTE POINT 1396
FORCEINLINE 1614
general rules for 1053
INLINE and NOINLINE 1614
IVDEP 1645
LOOP COUNT 1673
NOFUSION 1717
NOVECTOR 1997
PARALLEL and NOPARALLEL 1744
PREFETCH and NOPREFETCH 1763
UNROLL (OpenMP*) 1985
UNROLL and NOUNROLL (general) 1987
UNROLL_AND_JAM and NOUNROLL_AND_JAM 1988
VECTOR 1997

loop unrolling
using the HLO optimizer 2517

loop vectorization
option disabling 130

loops
constructs 2474
controlling number of times unrolled 1987
dependencies 2458
directive controlling vectorization of 1997
distribution 2517
DO 1403
DO CONCURRENT 1405
enabling jamming 1988
general directive controlling SIMD vectorization of 1870
IF 1598
interchange 2517
limiting loop unrolling 1987
nested DO 843
OpenMP* Fortran directive controlling SIMD
vectorization of 1867
option performing runtime checks for 201
option specifying blocking factor for 106
option specifying maximum times to unroll 129
option using aggressive unrolling for 130
parallelization 2458, 2470
partially unrolling (OpenMP*) 1985
skipping DO 1350
terminating DO 1447
transformations 2517
vectorization 2470

lower bounds
function returning 1652

LSHFT 1640
LSHIFT 1640
LST files 2540
LSTAT 1674
LTIME 1674

M
macros

defining 33
in Visual Studio* 33

main cover 2608
main program

overview of 848
statement identifying 1779
statement terminating 1423

main thread
option adjusting the stack size for 215

maintainability
allocation 2408

make command 21

Index

2657

MAKEDIRQQ 1676
makefiles

command-line syntax 21
generating build dependencies for use in 21

MALLOC
using with integer pointers 1761

managed vs unmanaged code 629
manifests

in Visual Studio* 35
mantissa in real model 1106
many-one array section 779, 809
MAP

data motion clause (ifx) 1677
files 2540
in TARGET DATA directive 1920
in TARGET directive 1917
in TARGET ENTER DATA directive 1923
in TARGET EXIT DATA directive 1924
statement 1981

MAP statement
example of 1679

mask
left-justified 1682
right-justified 1683

MASK 896
mask expressions

function combining arrays using 1692
function counting true elements using 1343
function determining all true using 1193
function determining any true using 1205
function finding location of maximum value using 1689
function finding location of minimum value using 1698
function packing array using 1740
function returning maximum value of elements
using 1691
function returning minimum value of elements
using 1700
function returning product of elements using 1778
function returning sum of elements using 1907
function unpacking array using 1983
in ELSEWHERE 2003
in FORALL 1482
in WHERE 2003

mask pattern
subroutine setting newone for fill 2230

MASKED (ifx) 1680
masked array assignment

generalization of 1482
MASKED TASKLOOP directive (ifx) 1681
MASKED TASKLOOP SIMD directive (ifx) 1682
MASKL 1682
MASKR 1683
MASTER 1683
MASTER TASKLOOP directive (ifx) 1684
MASTER TASKLOOP SIMD directive (ifx) 1685
math libraries 559
math library functions

option indicating domain for input arguments 275
option producing consistent results 273
option specifying a level of accuracy for 284

MATMUL 1685
matmul library call

option replacing matrix multiplication loop nests
with 111

matrix multiplication
function performing 1685

matrix multiplication loop nests
option identifying and replacing 111

MAX 1687
MAX0 1687
MAX1 1687
MAXEXPONENT 1688
maximum exponent

function returning 1688
maximum value

function returning 1687
function returning location of 1689

maximum value of array elements
function returning 1691

MAXLOC 1689
MAXREC 1040
MAXVAL 1691
MBCharLen 2107
MBConvertMBToUnicode 2108
MBConvertUnicodeToMB 2109
MBCS characters

Fortran routines that handle 1112
MBCS routines

in NLS library 2585
table of 1170

MBCurMax 2110
MBINCHARQQ 2110
MBINDEX 2111
MBJISToJMS 2112
MBJMSToJIS 2112
MBLead 2112
MBLen 2113
MBLen_Trim 2113
MBLEQ 2114
MBLGE 2114
MBLGT 2114
MBLLE 2114
MBLLT 2114
MBLNE 2114
MBNext 2115
MBPrev 2116
MBSCAN 2116
MBStrLead 2117
MBVERIFY 2118
MCLOCK 1692
memory

dynamically allocating 1199
freeing space associated with allocatable
variables 1362
freeing space associated with pointer targets 1362
function allocating 1676
subroutine freeing allocated 1493

memory allocation procedures
table of 1145

memory cache
function returning size of a level in 1285

memory deallocation procedures
table of 1145

memory layout
option changing variable and array 100

memory layout transformations
option controlling level of 112

memory loads
option enabling optimizations to move 511

memory model
option specifying large 440
option specifying small or medium 440
option to use specific 440

memory space
deallocating 1362

menu command

Intel® Fortran Compiler Classic and Intel® Fortran Compiler Developer Guide and Reference

2658

menu command (continued)
function simulating selection of 2136

menu items
function changing callback routine of 2150
function changing text string of 2151
function deleting 2136
function inserting 2145
function modifying the state of 2149

menu state
constants indicating 2134, 2145, 2149

menus
function appending child window list to 2165
function appending item to 2134
function inserting item in 2145
function setting top-level for append list 2165

MERGE 1692
MERGE_BITS 1693
MERGEABLE

in TASK directive 1934
in TASKLOOP directive 1940

merged task 2304
MESSAGE 1694
message box

function displaying 2148
function specifying text for About 2133

MESSAGEBOXQQ 2148
messages

display of runtime 648
meaning of severity to runtime system 648
runtime error 656
runtime format 648

METADIRECTIVE directive (ifx) 1695
methods of specifying the data format 2601
Microsoft Debugger

viewing the call stack 2377
Microsoft Fortran PowerStation

compatibility with 601
compatible file types 601

Microsoft Visual Studio
Application Wizard 23

Microsoft Visual Studio*
building applications 24
Intel® Performance Libraries 35
setting compiler options 32
source editor enhancements 35

Microsoft* Fortran PowerStation
option specifying compatibility with 462

Microsoft* Visual C++
option specifying linkage to 471

Microsoft* Visual Studio
option specifying linkage to 471

midnight
function returning seconds since 1841

MIN 1696
MIN0 1696
MIN1 1696
MINEXPONENT 1698
minimum exponent

function returning 1698
minimum value

function returning 1696
function returning location of 1698

minimum value of array elements
function returning 1700

MINLOC 1698
MINVAL 1700
miscellaneous runtime procedures

table of 1180

mixed language programming
procedures 627

MIXED_STR_LEN_ARG
option for ATTRIBUTES directive 1247

mixed-language program 630
mixed-language programming

-nofor-main option 642
ALIAS 642
allocatable arrays in 634
array pointers in 634
ATTRIBUTES 638
BIND(C) 613
C descriptors 615
C Typedefs and macros for interoperability 617
C/C++ naming conventions 630
calling subprograms 629
characters 622
data types 620
derived types 624
Fortran/Visual C++ 632
ISO_C_BINDING 612
limitations 628
overview of issues 628
passing arguments in 629
pointers 624
returning character data types 636
scalar types 621
Standard Fortran Interoperability and existing Fortran
extensions 611
summary of issues 628
using common blocks in 625
using modules 625
variables 625

mixed-language programs
compiling and linking 631
debugging 2380

mixed-mode expressions 797
mixing vectorizable types in a loop 2462
MM_PREFETCH 1702
mock object files 2520
MOD 1704
MODE

specifier for INQUIRE 1019
specifier for OPEN 1040

model
for bit data 1107
for integer data 1105
for real data 1106

models for data representation
bit 1107
integer 1105
real 1106

MODIFYMENUFLAGSQQ 2149
MODIFYMENUROUTINEQQ 2150
MODIFYMENUSTRINGQQ 2151
MODULE 1705
module entities

attribute limiting use of 1780
module files

option specifying directory for 366
MODULE FUNCTION 1707
module functions 1707
module naming conventions 634
MODULE PROCEDURE 1708
module procedures

definition of 848
in interface blocks 1626
in modules 1705

Index

2659

module procedures (continued)
internal procedures in 874
separate 851

module subprograms
following CONTAINS 1336

MODULE SUBROUTINE 1708
module subroutines 1708
Module Wizard

see Intel(R) Fortran Module Wizard 2557
modules

accessibility of entities in 1769, 1783, 1989
advantages of 2384
allowing access to 1989
common blocks in 851
defining 1705
for Windows* API routines 557
in program units 848
overview of 723
private entities in 1769
public entities in 1783
USE statement in 1989

MODULO 1709
modulo computation

function returning 1709
mouse cursor

function setting the shape of 2160
mouse events

function registering callback routine for 2155
function unregistering callback routine for 2167
function waiting for 2168

mouse input
function waiting for 2168

MOVBE instructions
option generating 156

MOVE_ALLOC 1709
MOVETO 2207
MOVETO_W 2207
multibyte character set 2585
multibyte characters

function performing context-sensitive test for 2117
function returning first 2112
function returning length for codepage 2110
function returning number and character 2110
functions comparing strings of 2114
incharqq function for 2110
index function for 2111
scan function for 2116
verify function for 2118

multibyte-character string
function converting to codepage 2109
function converting to Unicode 2108
function returning length (including blanks) 2113
function returning length (no blanks) 2113
function returning length of first character in 2107
function returning position of next character in 2115
function returning position of previous character
in 2116

multidimensional arrays
construction of 779, 1824
conversion between vectors and 1740, 1983
storage of 775

Multiple Document Interface 43
multiple processes

option creating 517
multithread applications

option generating reentrant code for 125
multithreaded programs 2381, 2454
multithreading 2414, 2458

multithreading applications
compiling and linking 2356

MVBITS 1711
MXCSR register 543

N
NAME

specifier for INQUIRE 1019
specifier for OPEN 1040

name association
argument 1075
pointer 1081
storage 1081

NAMED 1019
named array constants 1753
named common

defining initial values for variables in 1271
named constants 735, 1753
named constants in 857
NAMELIST 1712
namelist external records

alternative form for 1092
namelist formatting

input 933
output 948

namelist group
prompting for information about 933

namelist I/O
input 933
output 948

namelist input
comments in 933

namelist output 948
namelist records 933
namelist specifier 921
namelist statements

READ 933
WRITE 948

namelists 1712
names

associating with constant value 1753
associating with group 1712
association of 1074
explicit typing of 771
first character in 726
in PARAMETER statements 1753
length allowed 726
of main programs 1779
overriding default data typing of 1607
resolving references to nonestablished 1074
scope of 1068
statement defining default types for user-defined 1607
unambiguous 1071

naming conventions
in mixed-language programs 630, 642

NaN values
function testing for 1643

NARGS 1714
National Language Support

See NLS 2585
NATIVE

value for CONVERT specifier 1034
native and nonnative numeric formats 2598
NEAREST 1715
nearest different number

function returning 1715
nearest integer

Intel® Fortran Compiler Classic and Intel® Fortran Compiler Developer Guide and Reference

2660

nearest integer (continued)
function returning 1716

nested and group repeat specifications 1002
nested DO constructs 843
nested IF constructs 1598
new line character

function returning 1715
NEW_LINE 1715
NEWUNIT

specifier for OPEN 1040
NEXTREC 1019
NINT 1716
NLS

routines
overview 2585

NLS date and time format 2125
NLS functions

date and time format 2125
MBCharLen 2107
MBConvertMBToUnicode 2108
MBConvertUnicodeToMB 2109
MBCurMax 2110
MBINCHARQQ 2110
MBINDEX 2111
MBJISToJMS and MBJMSToJIS 2112
MBLead 2112
MBLen 2113
MBLen_Trim 2113
MBLEQ 2114
MBLGE 2114
MBLGT 2114
MBLLE 2114
MBLLT 2114
MBLNE 2114
MBNext 2115
MBPrev 2116
MBSCAN 2116
MBStrLead 2117
MBVERIFY 2118
NLSEnumCodepages 2118
NLSEnumLocales 2119
NLSFormatCurrency 2119
NLSFormatDate 2120
NLSFormatNumber 2121
NLSFormatTime 2122
NLSGetEnvironmentCodepage 2123
NLSGetLocale 2124
NLSGetLocaleInfo 2125
NLSSetEnvironmentCodepage 2132
NLSSetLocale 2132
table of 1170

NLS language
function setting current 2132
subroutine retrieving current 2124

NLS locale parameters
table of 2125

NLS parameters
table of 2125

NLS routines
A to Z 2107

NLSEnumCodepages 2118
NLSEnumLocales 2119
NLSFormatCurrency 2119
NLSFormatDate 2120
NLSFormatNumber 2121
NLSFormatTime 2122
NLSGetEnvironmentCodepage 2123
NLSGetLocale 2124

NLSGetLocaleInfo 2125
NLSSetEnvironmentCodepage 2132
NLSSetLocale 2132
nmake command 21
NML

specifier 921
specifier for READ 1806
specifier for WRITE 2006

NML specifier 919
NO_ARG_CHECK

option for ATTRIBUTES directive 1248
NOBLOCK_LOOP 1273
NOCLONE 1248
NODECLARE

equivalent compiler option for 1067
NOFMA 1467
NOFREEFORM

equivalent compiler option for 1067
NOFUSION 1717
NOINLINE

option for ATTRIBUTES directive 1247
NOMIXED_STR_LEN_ARG

option for ATTRIBUTES directive 1247
NON_RECURSIVE 1813
non-Fortran procedures

references to 887
referencing with %LOC 1664

nonadvancing i/o 924
nonadvancing I/O 576
nonadvancing record I/O 594
nonblock DO

terminal statements for 1403
noncharacter data types 816
noncharacter type declarations 816
nondecimal numeric constants

determining the data type of 767
nonelemental functions 894
nonexecutable statements 723
nonnative data

porting 2601
nonrepeatable edit descriptors 964, 989
NOOPTIMIZE

equivalent compiler option for 1067
NOPARALLEL 1744
NOPASS 879
NOPREFETCH 1763
NORM2 1718
NOSHARED 1041
NOSTRICT

equivalent compiler option for 1067
NOT 1719
Not-a-Number (NaN)

function testing for 1643
NOTHING

directive (ifx) 1720
NOTHING directive (ifx) 1720
NOTINBRANCH

in DECLARE SIMD directive 1370
NOUNROLL 1987
NOUNROLL_AND_JAM 1988
NOVECREMAINDER 1997
NOVECTOR 1997
NOWAIT

clause 1721
effect on implied FLUSH directive 1465
effect with REDUCTION clause 1816
in END DO directive 1398
in END SECTIONS directive 1842

Index

2661

NOWAIT (continued)
in END SINGLE directive 1875
in TARGET directive 1917
in TARGET ENTER DATA directive 1923
in TARGET EXIT DATA directive 1924
in TARGET UPDATE directive 1933

NUL
predefined QuickWin routine 2134

NULL 1721
NULLIFY

overview of dynamic allocation 833
NUM_IMAGES 1723
NUM_TEAMS

in TEAMS directive 1946
NUM_THREADS

in PARALLEL directive 1742
in PARALLEL DO directive 1746

NUMARG 1544
NUMBER 1020
number string

function returning for current locale 2121
numeric assignment statements 807
numeric constants

complex 744
integer 738
nondecimal 765
real 739

numeric data
size limits for A editing 987

numeric data types
conversion rules with DATA 1351

numeric expressions
comparing values of 799
data type of 797
using parentheses in 797

numeric format
specifying 970, 1034
specifying with /convert 2601
specifying with OPEN(CONVERT=) 2601
specifying with OPTIONS statement 2601

numeric functions
categories of 900
models defining 1104

numeric models
bit 1107
integer 1105
querying parameters in 1540, 1959
real 1106

numeric nondecimal constants
determining the data type of 767

numeric operators
precedence of 796

numeric procedures
table of 1148

numeric routines 900
numeric storage unit 1082

O
O

edit descriptor 973
OBJCOMMENT

equivalent compiler option for 1067
object code

storing in static libraries 44
object file

directive specifying library search path 1724
option generating one per source file 227

object file (continued)
option increasing number of sections in 507
option placing a text string into 324
option specifying name for 348

object module
directive specifying identifier for 1551

objects
automation 25

obsolescent language features 1087
octal constants

alternative syntax for 1091
octal editing (O) 973
octal values

transferring 973
of allocatable arrays 837
of pointer targets 838
OFFLOAD_ATTRIBUTE_TARGET

setting for OPTIONS directive 1730
Offloading directives

REQUIRES (ifx) 1822
OMP directives 1054
OMP_STACKSIZE environment variable 2390
oneMKL

option letting you link to a specific SYCL library 103
ONLY

keyword in USE statement 1989
OPEN

ACCESS specifier 1030
ACTION specifier 1030
ASSOCIATEVARIABLE specifier 1031
ASYNCHRONOUS specifier 1031
BLANK specifier 1031
BLOCKSIZE specifier 1032
BUFFERCOUNT specifier 1032
BUFFERED specifier 1033
CARRIAGECONTROL specifier 1033
CONVERT specifier 1034, 2598, 2601
DECIMAL specifier 1036
DEFAULTFILE specifier 1036
defaults for converting nonnative data 2601
DELIM specifier 1037
DISPOSE specifier 1037
ENCODING specifier 1038
example of ERR specifier 651
example of FILE specifier 651
example of IOSTAT specifier 651
FILE specifier 1038
FORM specifier 1039
IOFOCUS specifier 1040
MAXREC specifier 1040
MODE specifier 1040
NAME specifier 1040
NEWUNIT specifier 1040
NOSHARED specifier 1041
ORGANIZATION specifier 1041
PAD specifier 1041
POSITION specifier 1042
READONLY specifier 1042

RECL specifier
option to specify units 579
units for unformatted files 2601

RECORDSIZE specifier 1044
RECORDTYPE specifier 1044
ROUND specifier 1045
SHARE specifier 1045
SHARED specifier 1046
SIGN specifier 1047
STATUS specifier 1047

Intel® Fortran Compiler Classic and Intel® Fortran Compiler Developer Guide and Reference

2662

RECL specifier (continued)
table of specifiers and values 1026
TITLE specifier 1048
TYPE specifier 1048
USEROPEN specifier 1048

OPEN statement 588
OPENED

specifier for INQUIRE 1020
opening files

OPEN statement 588
OpenMP

support overview 2389
OpenMP Libraries

using 2416
openmp_version 2396, 2438
Openmp*

context selectors 2442
contexts 2441
scoring and matching context selectors 2444

OpenMP*
advanced issues 2445
C/C++ interoperability 2445
compatibility libraries 2414
debugging 2445
environment variables 2420
examples of 2448
Fortran and C/C++ interoperability 2445
header files 2445
Intel® Xeon Phi™ coprocessor support 2394
KMP_AFFINITY 2420
legacy libraries 2414
library file names 2414
omp_lib.h 2445
parallel processing thread model 2392
performance 2445
runtime library routines 2396, 2438
support libraries 2414
using 2390

OpenMP* API
option enabling 209
option enabling programs in sequential mode 213
option specifying threadprivate 214

Openmp* context selectors
scoring and matching 2444

Openmp* contexts 2441
OpenMP* directives

categories for 1059
using 2390

OpenMP* directives summary 1059
OpenMP* Fortran compiler directives 1054
OpenMP* Fortran directives

ALLOCATE (ifx) 1197
ALLOCATORS (ifx) 1202
ASSUMES (ifx) 1216
ATOMIC 1222
BARRIER 1260
CANCEL 1288
CANCELLATION POINT 1289
clauses for 1063
conditional compilation of 1065
CRITICAL 1345
DECLARE MAPPER (ifx) 1364
DECLARE REDUCTION 1367
DECLARE SIMD 1370
DECLARE TARGET (ifx) 1371
DECLARE VARIANT (ifx) 1374
DEPOBJ (ifx) 1385
DISPATCH (ifx) 1392

OpenMP* Fortran directives (continued)
DISTRIBUTE 1393
DISTRIBUTE PARALLEL DO 1395
DISTRIBUTE PARALLEL DO SIMD 1395
DISTRIBUTE SIMD 1397
DO 1398
DO SIMD 1410
ERROR (ifx) 1436
FLUSH 1465
GROUPPRIVATE (ifx) 1537
INTEROP (ifx) 1629
LOOP (ifx) 1670
MASKED (ifx) 1680
MASKED TASKLOOP (ifx) 1681
MASKED TASKLOOP SIMD (ifx) 1682
MASTER 1683
MASTER TASKLOOP (ifx) 1684
MASTER TASKLOOP SIMD (ifx) 1685
METADIRECTIVE (ifx) 1695
nesting and binding rules 1066
NOTHING (ifx) 1720
ORDERED 1735
PARALLEL 1742
PARALLEL DO 1746
PARALLEL DO SIMD 1747
PARALLEL LOOP (ifx) 1748
PARALLEL MASKED (ifx) 1748
PARALLEL MASKED TASKLOOP (ifx) 1749
PARALLEL MASKED TASKLOOP SIMD (ifx) 1750
PARALLEL MASTER (ifx) 1750
PARALLEL MASTER TASKLOOP (ifx) 1751
PARALLEL MASTER TASKLOOP SIMD (ifx) 1752
PARALLEL SECTIONS 1752
PARALLEL WORKSHARE 1753
PREFETCH (ifx) 1765
REQUIRES (ifx) 1822
SCAN 1835
SCOPE (ifx) 1839
SECTION 1842
SECTIONS 1842
SIMD 1867
SINGLE 1875
syntax rules for 1049
table of 1128
TARGET (ifx) 1917
TARGET DATA (ifx) 1920
TARGET ENTER DATA (ifx) 1923
TARGET EXIT DATA (ifx) 1924
TARGET PARALLEL 1924
TARGET PARALLEL DO 1925
TARGET PARALLEL DO SIMD 1926
TARGET PARALLEL LOOP (ifx) 1927
TARGET SIMD 1927
TARGET TEAMS 1928
TARGET TEAMS DISTRIBUTE 1929
TARGET TEAMS DISTRIBUTE PARALLEL DO 1930
TARGET TEAMS DISTRIBUTE PARALLEL DO SIMD 1930
TARGET TEAMS DISTRIBUTE SIMD 1931
TARGET TEAMS LOOP (ifx) 1932
TARGET UPDATE (ifx) 1933
TASK 1934
TASKGROUP 1939
TASKLOOP 1940
TASKLOOP SIMD 1942
TASKWAIT 1943
TASKYIELD 1944
TEAMS (ifx) 1946
TEAMS DISTRIBUTE 1948

Index

2663

OpenMP* Fortran directives (continued)
TEAMS DISTRIBUTE PARALLEL DO 1948
TEAMS DISTRIBUTE PARALLEL DO SIMD 1949
TEAMS DISTRIBUTE SIMD 1950
TEAMS LOOP (ifx) 1951
THREADPRIVATE 1953
TILE (ifx) 1954
UNROLL (ifx) 1985
WORKSHARE 2005

OpenMP* header files 2396, 2438
OpenMP* runtime library

option controlling which is linked to 210
option specifying 209

OpenMP*, loop constructs
numbers 2396, 2438

operands
in logical expressions 800
in numeric expressions 796

operating system
portability considerations 2597

operations
character 799
complex 797
conversion to higher precision 797
defined 801
integer 797
numeric 796
real 797

operator precedence
summary of 802

operators
binary 796
generic 890
logical 800
numeric 796
precedence of 802
relational 799
unary 796

opt report
inlining report 2528

optimization
controlling unrolling and jamming 1988
directive affecting 1729
limiting loop unrolling 1987
loop unrolling 1987
option disabling all 83
option enabling prefetch insertion 114
option generating single assembly file from multiple
files 227
option generating single object file from multiple
files 225
option specifying code 83
preventing with VOLATILE 2001
specified by ATOMIC directive 1222
specified by UNROLL and NOUNROLL directives 1987
specified by UNROLL_AND_JAM and
NOUNROLL_AND_JAM directives 1988

optimization report
option displaying phases for 255
option generating 246
option generating for routine names with specified
substring 261
option generating from subset 253
option generating in separate file per object 257
option including loop annotations 251
option specifying level of detail for 246
option specifying mangled or unmangled names 256
option specifying name for 252

optimization report (continued)
option specifying phase to use for 258
option specifying the format for 254
option specifying what to check for 258

OPTIMIZATION_PARAMETER
option for ATTRIBUTES directive 1249

optimizations
high-level language 2517
option disabling all 86
option enabling all speed 88
option enabling many speed 88
overview of 2487
profile-guided 2487

OPTIMIZE
equivalent compiler option for 1067

OPTIONAL 1727
optional arguments

function determining presence of 1766
optional plus sign in output fields 991
options

precedence using CONVERT 2601
specifying unformatted file floating-point format 2601

OPTIONS 1730, 1733
OR 1633
ORDER

clause (ifx) 1735
ORDER clause (ifx) 1735
order of subscript progression 775
ORDERED

clause in DO directive 1398
clause in PARALLEL DO directive 1746

ORGANIZATION
specifier for INQUIRE 1020
specifier for OPEN 1041

OUT_OF_RANGE 1739
OUTGTEXT

related routines 2184, 2232, 2235
output

displaying to screen 1767
output files

option specifying name for 347
output statements for data transfer

PRINT 1767
REWRITE 1828
WRITE 2006

OUTTEXT
effect of WRAPON 2251

overflow
call to a runtime library routine 2396, 2438

overview
debugging multithreaded programs 2381
IFPORT portability module 2566
portability library 2566
termination handling 705

P
P

edit descriptor 995
PACK

equivalent compiler option for 1067
packed array

function creating 1740
PACKTIMEQQ 1741
PAD

specifier for INQUIRE 1020
specifier for OPEN 1041

padding

Intel® Fortran Compiler Classic and Intel® Fortran Compiler Developer Guide and Reference

2664

padding (continued)
option specifying assumptions for dynamically allocated
memory 106
option specifying assumptions for variables 106

padding for blanks 576
padding short source lines

for fixed and tab source 731
for free source 729

page keys
function determining behavior of 2152

PARALLEL
general directive 1744
OpenMP* Fortran directive 1742

PARALLEL (general) 1744
PARALLEL (OpenMP*) 1742
PARALLEL ALWAYS 1744
PARALLEL ASSERT 1744
PARALLEL directive

enabling further loop parallelization 2459
PARALLEL DO 1746
PARALLEL DO SIMD 1747
PARALLEL LOOP directive (ifx) 1748
PARALLEL MASKED directive (ifx) 1748
PARALLEL MASKED TASKLOOP directive (ifx) 1749
PARALLEL MASKED TASKLOOP SIMD directive (ifx) 1750
PARALLEL MASTER directive (ifx) 1750
PARALLEL MASTER TASKLOOP directive (ifx) 1751
PARALLEL MASTER TASKLOOP SIMD directive (ifx) 1752
parallel processing

thread model 2392
parallel region

directive defining 1742
option specifying number of threads to use in 201

PARALLEL SECTIONS 1752
PARALLEL WORKSHARE 1753
parallelism 35, 2396, 2438, 2454
parallelization 2454, 2458
PARAMETER

option allowing alternative syntax 374
parameterized derived types

assumed-length type parameters 759
deferred-length type parameters 758
structure constructors for 757
type parameter order for 758

parameterized TYPE statement 757
parentheses

effect in character expressions 799
effect in logical expressions 800
effect in numeric expressions 797

parentheses in expressions
option determining interpretation of 81

PARITY 1755
partial association 1082
PASS 879
PASSDIRKEYSQQ 2152
passed-object dummy arguments 879
passing by reference

%REF 1819
path

function splitting into components 1881
PATH directory 32
pathnames

specifying default 587
pattern used to fill shapes

subroutine returning 2182
PAUSE 1756
PEEKCHARQQ 1757
PENDING

PENDING (continued)
specifier for INQUIRE 1021

perfectly nested loops 843
performance 545
performance issues with IPO 2521
PERROR 1758
PGO 2487
PGO reports 2491
PGO tools

code coverage tool 2491
profmerge 2508
proforder 2508
test prioritization tool 2503

pgopti.spi file 2503
physical coordinates

subroutine converting from viewport coordinates 2187
subroutine converting to viewport coordinates 2196

physical device names
predetermined 570

physical devices 570
PIE 2210
pie graphic

function testing for endpoints of 2175
PIE_W 2210
pie-shaped wedge

function drawing 2210
pixel

function returning color index for 2188
function returning RGB color value for 2189
function setting color index for 2238
function setting RGB color value for 2239

pixels
function returning color index for multiple 2190
function returning RGB color value for multiple 2191
function setting color index for multiple 2240
function setting RGB color value for multiple 2241

POINTER
attribute 812, 833, 1722
integer 1761

pointer aliasing
option using aggressive multi-versioning check for 113

pointer arguments
requiring explicit interface 888

pointer assignment
bounds remapping in 812

pointer association 1081
pointer association function 1213
pointer association status 879
pointer targets

allocation of 835
as dynamic objects 833
creating 1199
deallocation of 838
freeing memory associated with 1362

pointers
allocating 1199
assigning values to targets of 806, 1210
assignment of 812
associating with targets 812, 1081, 1922
CRAY-style 1761
derived-type procedure 751
disassociating 1362
disassociating from targets 1722
dynamic association of 833
Fortran 1758
function retuning association status of 1213
function returning disassociated 1721
initial association status of 1722

Index

2665

pointers (continued)
initializing 1721
integer 1761
named procedure 893
nullifying 1722
option checking for disassociated 389
option checking for uninitialized 389
referencing 1758
volatile 2001
when storage space is created for 833

POLYBEZIER 2212
POLYBEZIER_W 2212
POLYBEZIERTO 2214
POLYBEZIERTO_W 2214
POLYGON 2215
POLYGON_W 2215
polygons

function drawing 2215
POLYLINEQQ 2217
polymorphic functions

for inquiry 1452, 1832
polymorphic objects

declaring 1314
polymorphic variables

intrinsic assignment to 810
POPCNT 1762
POPPAR 1762
portability considerations

and data representation 2597
and the operating system 2597
data transportability 2597
overview 2587
recommendations 2587

portability library
overview 2566

portability routines
ABORT 1182
ACCESS 1185
ALARM 1191
BEEPQQ 1261
BESJN 1261
BESYN 1261
BIC 1266
BIS 1266
BIT 1268
BSEARCHQQ 1276
CDFLOAT 1294
CHANGEDIRQQ 1304
CHANGEDRIVEQQ 1304
CHDIR 1311
CHMOD 1312
CLEARSTATUSFPQQ 1314
CLOCK 1316
CLOCKX 1316
COMPLINT 1335
COMPLLOG 1335
COMPLREAL 1335
CSMG 1349
CTIME 1349
DATE 1356
DATE4 1357
DBESJN 1359
DBESYN 1359
DCLOCK 1361
DELDIRQQ 1381
DELFILESQQ 1382
DFLOATI 1387
DFLOATJ 1387

portability routines (continued)
DFLOATK 1387
DRAND 1415
DRANDM 1415
DRANSET 1416
DTIME 1419
ETIME 1443
FDATE 1456
FGETC 1457
FINDFILEQQ 1462
FLUSH 1467
FOR_IFCORE_VERSION 1471
FOR_IFPORT_VERSION 1472
FPUTC 1492
FSEEK 1494
FSTAT 1495
FTELL 1498
FTELLI8 1498
FULLPATHQQ 1499
GETC 1509
GETCONTROLFPQQ 1512
GETCWD 1514
GETDAT 1515
GETDRIVEDIRQQ 1516
GETDRIVESIZEQQ 1517
GETDRIVESQQ 1518
GETENV 1519
GETENVQQ 1521
GETFILEINFOQQ 1523
GETGID 1526
GETLASTERROR 1526
GETLASTERRORQQ 1526
GETLOG 1528
GETPID 1528
GETPOS 1529
GETPOSI8 1529
GETSTATUSFPQQ 1529
GETTIM 1532
GETTIMEOFDAY 1533
GETUID 1533
GMTIME 1534
HOSTNAM 1539
IDATE 1550
IDATE4 1551
IDFLOAT 1551
IEEE_FLAGS 1553
IEEE_HANDLER 1561
IERRNO 1594
IFLOATI 1604
IFLOATJ 1604
INMAX 1616
INTC 1621
IRAND and IRANDM 1635
IRANGET 1636
IRANSET 1636
ISATTY 1638
ITIME 1645
JABS 1647
JDATE 1647
JDATE4 1647
KILL 1648
LCWRQQ 1654
LNBLNK 1663
LONG 1670
LSTAT 1674
LTIME 1674
MAKEDIRQQ 1676
overview 1113

Intel® Fortran Compiler Classic and Intel® Fortran Compiler Developer Guide and Reference

2666

portability routines (continued)
PACKTIMEQQ 1741
PUTC 1787
QRANSET 1790
QSORT 1791
RAISEQQ 1796
RAND 1797
RANDOM function 1797
RANDOM subroutine 1798
RANF 1805
RANGET 1806
RANSET 1806
recommendations 2587
RENAME 1820
RENAMEFILEQQ 1821
RINDEX 1829
RTC 1831
RUNQQ 1831
SCANENV 1838
SCWRQQ 1840
SECNDS 1842
SEED 1843
SETCONTROLFPQQ 1851
SETDAT 1853
SETENVQQ 1854
SETERRORMODEQQ 1855
SETFILEACCESSQQ 1856
SETFILETIMEQQ 1857
SETTIM 1858
SHORT 1862
SIGNAL 1863
SIGNALQQ 1865
SLEEP 1878
SLEEPQQ 1879
SORTQQ 1879
SPLITPATHQQ 1881
SPORT_CANCEL_IO 2253
SPORT_CONNECT 2253
SPORT_CONNECT_EX 2254
SPORT_GET_HANDLE 2256
SPORT_GET_STATE 2256
SPORT_GET_STATE_EX 2257
SPORT_GET_TIMEOUTS
2259
SPORT_PEEK_DATA 2260
SPORT_PEEK_LINE 2261
SPORT_PURGE 2261
SPORT_READ_DATA 2262
SPORT_READ_LINE 2263
SPORT_RELEASE 2264
SPORT_SET_STATE 2264
SPORT_SET_STATE_EX 2265
SPORT_SET_TIMEOUTS
2267
SPORT_SHOW_STATE 2268
SPORT_SPECIAL_FUNC 2269
SPORT_WRITE_DATA 2269
SPORT_WRITE_LINE 2270
SRAND 1884
SSWRQQ 1885
STAT 1885
SYSTEM 1913
SYSTEMQQ 1915
table of 1161
TIME 1958
TIMEF 1958
TTYNAM 1966
UNLINK 1982

portability routines (continued)
UNPACKTIMEQQ 1984

POS
specifier 925
specifier for INQUIRE 1021
specifier for READ 1806
specifier for WRITE 2006

POS specifier 919
POSITION

specifier for INQUIRE 1021
specifier for OPEN 1042

position of file
functions returning 1498, 1529
specifying 1042

position-independent code
option generating 425, 426

positional editing
T 990
TL 990
TR 991
X 991

POSIX* routines
A to Z 2010
IPXFARGC 2010
IPXFCONST 2011
IPXFLENTRIM 2011
IPXFWEXITSTATUS 2011
IPXFWSTOPSIG 2012
IPXFWTERMSIG 2013
PXFACCESS 2017
PXFACHARGET 2015
PXFACHARSET 2016
PXFADBLGET 2015
PXFADBLSET 2016
PXFAGET 2015
PXFAINT8GET 2015
PXFAINT8SET 2016
PXFAINTGET 2015
PXFAINTSET 2016
PXFALARM 2018
PXFALGCLGET 2015
PXFALGCLSET 2016
PXFAREALGET 2015
PXFAREALSET 2016
PXFASET 2016
PXFASTRGET 2015
PXFASTRSET 2016
PXFCALLSUBHANDLE 2019
PXFCFGETISPEED 2019
PXFCFGETOSPEED 2020
PXFCFSETISPEED 2020
PXFCFSETOSPEED 2021
PXFCHARGET 2013
PXFCHARSET 2014
PXFCHDIR 2021
PXFCHMOD 2022
PXFCHOWN 2022
PXFCLEARENV 2022
PXFCLOSE 2023
PXFCLOSEDIR 2023
PXFCONST 2023
PXFCREAT 2024
PXFCTERMID 2025
PXFDBLGET 2013
PXFDBLSET 2014
PXFDUP 2025
PXFDUP2 2025
PXFECHARGET 2025

Index

2667

POSIX* routines (continued)
PXFECHARSET 2026
PXFEDBLGET 2025
PXFEDBLSET 2026
PXFEGET 2025
PXFEINT8GET 2025
PXFEINT8SET 2026
PXFEINTGET 2025
PXFEINTSET 2026
PXFELGCLGET 2025
PXFELGCLSET 2026
PXFEREALGET 2025
PXFEREALSET 2026
PXFESET 2026
PXFESTRGET 2025
PXFESTRSET 2026
PXFEXECV 2027
PXFEXECVE 2028
PXFEXECVP 2029
PXFEXIT 2029
PXFFASTEXIT 2029
PXFFCNTL 2030
PXFFDOPEN 2032
PXFFFLUSH 2033
PXFFGETC 2033
PXFFILENO 2034
PXFFORK 2034
PXFFPATHCONF 2035
PXFFPUTC 2037
PXFFSEEK 2037
PXFFSTAT 2038
PXFFTELL 2038
PXFGET 2013
PXFGETARG 2039
PXFGETC 2039
PXFGETCWD 2040
PXFGETEGID 2040
PXFGETENV 2040
PXFGETEUID 2041
PXFGETGID 2041
PXFGETGRGID 2042
PXFGETGRNAM 2042
PXFGETGROUPS 2043
PXFGETLOGIN 2044
PXFGETPGRP 2045
PXFGETPID 2045
PXFGETPPID 2046
PXFGETPWNAM 2047
PXFGETPWUID 2047
PXFGETSUBHANDLE 2048
PXFGETUID 2048
PXFINT8GET 2013
PXFINT8SET 2014
PXFINTGET 2013
PXFINTSET 2014
PXFISATTY 2049
PXFISBLK 2049
PXFISCHR 2049
PXFISCONST 2050
PXFISDIR 2050
PXFISFIFO 2050
PXFISREG 2051
PXFKILL 2051
PXFLGCLGET 2013
PXFLGCLSET 2014
PXFLINK 2052
PXFLOCALTIME 2052
PXFLSEEK 2053

POSIX* routines (continued)
PXFMKDIR 2054
PXFMKFIFO 2054
PXFOPEN 2055
PXFOPENDIR 2057
PXFPATHCONF 2058
PXFPAUSE 2059
PXFPIPE 2060
PXFPOSIXIO 2060
PXFPUTC 2061
PXFREAD 2061
PXFREADDIR 2061
PXFREALGET 2013
PXFREALSET 2014
PXFRENAME 2062
PXFREWINDDIR 2062
PXFRMDIR 2063
PXFSET 2014
PXFSETENV 2063
PXFSETGID 2064
PXFSETPGID 2065
PXFSETSID 2065
PXFSETUID 2065
PXFSIGACTION 2066
PXFSIGADDSET 2067
PXFSIGDELSET 2067
PXFSIGEMPTYSET 2068
PXFSIGFILLSET 2069
PXFSIGISMEMBER 2069
PXFSIGPENDING 2070
PXFSIGPROCMASK 2070
PXFSIGSUSPEND 2071
PXFSLEEP 2072
PXFSTAT 2072
PXFSTRGET 2013
PXFSTRSET 2014
PXFSTRUCTCOPY 2072
PXFSTRUCTCREATE 2073
PXFSTRUCTFREE 2077
PXFSYSCONF 2077
PXFTCDRAIN 2079
PXFTCFLOW 2079
PXFTCFLUSH 2080
PXFTCGETATTR 2081
PXFTCGETPGRP 2081
PXFTCSENDBREAK 2082
PXFTCSETATTR 2082
PXFTCSETPGRP 2083
PXFTIME 2083
PXFTIMES 2084
PXFTTYNAME 2086
PXFUCOMPARE 2086
PXFUMASK 2087
PXFUNAME 2087
PXFUNLINK 2088
PXFUTIME 2088
PXFWAIT 2088
PXFWAITPID 2089
PXFWIFEXITED 2091
PXFWIFSIGNALED 2092
PXFWIFSTOPPED 2092
PXFWRITE 2092
table of 1172

PRECISION 1763
precision in real model

function querying 1763
preconnected units 567
predefined QuickWin routines 2134, 2145, 2150

Intel® Fortran Compiler Classic and Intel® Fortran Compiler Developer Guide and Reference

2668

preempting functions 2525
PREFETCH

directive for OpenMP (ifx) 1765
PREFETCH directive for OpenMP (ifx) 1765
prefetch distance

option specifying for prefetches inside loops 116, 117
PREFETCH general directive 1763
prefetch insertion

option enabling 114
prefetches of data

subroutine peforming 1702
prefetchW instruction

option supporting 118
preprocessing directives

fpp 2569
preprocessor

fpp 2566
preprocessor definitions

option undefining all previous 367
option undefining for a symbol 367

preprocessor symbols
predefined 2573

PRESENT 1766
pretested DO 1411
primary thread

copying data in 1338
specifying code to be executed by 1680, 1683

PRINT 1767
PRINT value for CLOSE(DISPOSE) or CLOSE(STATUS) 1316
PRINT/DELETE value for CLOSE(DISPOSE) or
CLOSE(STATUS) 1316
printing of formatted records 1004
printing to the screen 1767
prioritizing application tests 2503
PRIORITY

in TASK directive 1934
in TASKLOOP directive 1940

PRIVATE
in DEFAULT clause 1379
in DISTRIBUTE directive 1393
in DO directive 1398
in general PARALLEL directive 1744
in OpenMP* Fortran PARALLEL directive 1742
in PARALLEL DO directive 1746
in PARALLEL SECTIONS directive 1752
in SECTIONS directive 1842
in SIMD OpenMP* Fortran directive 1867
in SINGLE directive 1875
in TASK directive 1934
in TASKLOOP directive 1940
in TEAMS directive 1946

private entities 1769, 1989
privatization of static data for the MPC unified parallel

runtime
option enabling 171

PROC_BIND
clause in PARALLEL directive 1742

PROCEDURE 1772
procedure calls

option specifying hidden aliases in 77
procedure interface

abstract 1183
defining generic assignment 891
defining generic names 889
defining generic operators 890
when explicit is required 888

procedure interfaces
interoperability of 892

procedure pointers
as derived-type components 751
definition of 848
named 893
statement declaring 1772

procedure references
function 871
resolving generic 1072
resolving nonestablished 1074
resolving specific 1073
subroutine 872
unambiguous generic 1071

procedures
abstract interfaces to 1183
BLOCK DATA 1271
characteristics of 850
declaring external 1452
declaring intrinsic 1632
defining generic assignment for 891
defining generic names for 889
defining generic operators for 890
directive specifying properties of 1235
dummy 882
elemental user-defined 1419
external 874
function computing address of 1664
generic 889
impure user-defined 1610
interfaces to 887, 1626
internal 874
interoperability of 892
intrinsic 894
module 851, 1626, 1705, 1708
non-recursive 1813
option aligning on byte boundary 418
overview of 848
overview of intrinsic 894
preventing side effects in 1785
pure user-defined 1785
recursive 1813
references to generic 883
references to non-Fortran 887
requiring explicit interface 888
resolving references to 1072
separate module 851
specifying explicit interface for 1626
specifying intrinsic 1632
specifying pointer 1758
submodule 1900
table of i/o 1127
type bound 752

procedures that require explicit interfaces 888
process

function executing a new 1831
function returning ID of 1528
function returning user ID of 1533

process execution
subroutine suspending 1878

process ID
function returning 1528
function sending signal to 1648

processor
option optimizing for specific 160
parallel directive clause targeting for specific 1775

PROCESSOR clause 1775
processor clock

subroutine returning data from 1914
processor features

Index

2669

processor features (continued)
option telling which to target 163

processor time
function returning 1361
subroutine returning 1344

PRODUCT 1778
product of array elements

function returning 1778
profile data records

option affecting search for 238
option letting you use relative paths when searching
for 239, 241

profile information
.dyn 2508
.dyn file 2508

profile information arrays
.dyn file 2491

profile-guided optimization
data ordering optimization 2512
example of 2489
function grouping optimization 2512
function order lists optimization 2512
function ordering optimization 2512
overview 2487
phases 2489
reports 2491
usage model 2487

profiling
option enabling use of information from 242
option instrumenting a program for 236
option specifying directory for output files 233
option specifying name for summary 233

profiling an application
.dyn 2489

profiling feedback compilation
source 2489

profiling information
option enabling function ordering 235
option using to order static data items 232

profmerge 2508
profmerge tool

.dpi file 2491, 2503

.dyn file 2503
ProgID

for COM objects 2558, 2564
PROGRAM 1779
program control

transferring to CASE construct 1290
program control procedures

table of 1138
program control statements

table of 1138
program execution

statement suspending 1756
stopping 1892
subroutine delaying 1879
subroutine terminating 1449

program loops
parallel processing model 2392

program name 1779
program structure 723
program termination

values returned 650
program unit call procedures

table of 1124
program unit definition procedures

table of 1124
program units

program units (continued)
allowing access to module 1989
block data 1271
external subprograms 869
function 1500
main 850, 1779
module 1705
order of statements in 723
overview of 848
returning control to 1826
scope of 1068
statement terminating 1423
subroutine 1905
types of association for 1074

programming
mixed language 609

programming practices 2587
programs

advantages of internal procedures 2387
advantages of modules 2384
creating 40
creating executable 37
debugging multithread 2381
Fortran executables 2365
mixed-language issues in 628
multithreading 2356
option linking as DLL 479
option maximizing speed in 78
option specifying non-Fortran 490
process used to build 30
program units in 848
project types 40
running within another program 1831
standard graphic applications 42
values returned at termination of 650

project build
dependencies 37

project types
and ifort command 41

projects
adding files 23
creating 23
defining 23
errors during build 643
files in 2354
Fortran console 42
Fortran dynamic-link library 45
Fortran standard graphics 42
Fortran static libraries 44
in Microsoft Visual Studio 23
in Visual Studio* 30
overview of building 30
static libraries for 44
types of 40

prompt
subroutine controlling for critical errors 1855

property pages 32
PROTECTED 1780
PSECT 1782
pseudorandom number generators

RAN 1796
RANDOM 1797, 1798, 1843
RANDOM_INIT 1799
RANDOM_NUMBER 1800
RANDU 1803
subroutine changing seed for 1802, 1843
subroutine querying seed for 1802

PUBLIC 1783

Intel® Fortran Compiler Classic and Intel® Fortran Compiler Developer Guide and Reference

2670

public entities
renaming 1989

PURE
in functions 1500
in subroutines 1905

pure procedures
in FORALLs 1482
in interface blocks 1626
restricted form of 1419

PUTC
POSIX version of 2061

PUTIMAGE 2218
PUTIMAGE_W 2218
PXFACCESS 2017
PXFACHARGET 2015
PXFACHARSET 2016
PXFADBLGET 2015
PXFADBLSET 2016
PXFAGET 2015
PXFAINT8GET 2015
PXFAINT8SET 2016
PXFAINTGET 2015
PXFAINTSET 2016
PXFALARM 2018
PXFALGCLGET 2015
PXFALGCLSET 2016
PXFAREALGET 2015
PXFAREALSET 2016
PXFASET 2016
PXFASTRGET 2015
PXFASTRSET 2016
PXFCALLSUBHANDLE 2019
PXFCFGETISPEED 2019
PXFCFGETOSPEED 2020
PXFCFSETISPEED 2020
PXFCFSETOSPEED 2021
PXFCHARGET 2013
PXFCHARSET 2014
PXFCHDIR 2021
PXFCHMOD 2022
PXFCHOWN 2022
PXFCLEARENV 2022
PXFCLOSE 2023
PXFCLOSEDIR 2023
PXFCONST 2023
PXFCREAT 2024
PXFCTERMID 2025
PXFDBLGET 2013
PXFDBLSET 2014
PXFDUP 2025
PXFDUP2 2025
PXFECHARGET 2025
PXFECHARSET 2026
PXFEDBLGET 2025
PXFEDBLSET 2026
PXFEGET 2025
PXFEINT8GET 2025
PXFEINT8SET 2026
PXFEINTGET 2025
PXFEINTSET 2026
PXFELGCLGET 2025
PXFELGCLSET 2026
PXFEREALGET 2025
PXFEREALSET 2026
PXFESET 2026
PXFESTRGET 2025
PXFESTRSET 2026
PXFEXECV 2027

PXFEXECVE 2028
PXFEXECVP 2029
PXFEXIT 2029
PXFFASTEXIT 2029
PXFFCNTL 2030
PXFFDOPEN 2032
PXFFFLUSH 2033
PXFFGETC 2033
PXFFILENO 2034
PXFFORK 2034
PXFFPATHCONF 2035
PXFFPUTC 2037
PXFFSEEK 2037
PXFFSTAT 2038
PXFFTELL 2038
PXFGET 2013
PXFGETARG 2039
PXFGETC 2039
PXFGETCWD 2040
PXFGETEGID 2040
PXFGETENV 2040
PXFGETEUID 2041
PXFGETGID 2041
PXFGETGRGID 2042
PXFGETGRNAM 2042
PXFGETGROUPS 2043
PXFGETLOGIN 2044
PXFGETPGRP 2045
PXFGETPID 2045
PXFGETPPID 2046
PXFGETPWNAM 2047
PXFGETPWUID 2047
PXFGETSUBHANDLE 2048
PXFGETUID 2048
PXFINT8GET 2013
PXFINT8SET 2014
PXFINTGET 2013
PXFINTSET 2014
PXFISATTY 2049
PXFISBLK 2049
PXFISCHR 2049
PXFISCONST 2050
PXFISDIR 2050
PXFISFIFO 2050
PXFISREG 2051
PXFKILL 2051
PXFLGCLGET 2013
PXFLGCLSET 2014
PXFLINK 2052
PXFLOCALTIME 2052
PXFLSEEK 2053
PXFMKDIR 2054
PXFMKFIFO 2054
PXFOPEN 2055
PXFOPENDIR 2057
PXFPATHCONF 2058
PXFPAUSE 2059
PXFPIPE 2060
PXFPOSIXIO 2060
PXFPUTC 2061
PXFREAD 2061
PXFREADDIR 2061
PXFREALGET 2013
PXFREALSET 2014
PXFRENAME 2062
PXFREWINDDIR 2062
PXFRMDIR 2063
PXFSET 2014

Index

2671

PXFSETENV 2063
PXFSETGID 2064
PXFSETPGID 2065
PXFSETSID 2065
PXFSETUID 2065
PXFSIGACTION 2066
PXFSIGADDSET 2067
PXFSIGDELSET 2067
PXFSIGEMPTYSET 2068
PXFSIGFILLSET 2069
PXFSIGISMEMBER 2069
PXFSIGPENDING 2070
PXFSIGPROCMASK 2070
PXFSIGSUSPEND 2071
PXFSLEEP 2072
PXFSTAT 2072
PXFSTRGET 2013
PXFSTRSET 2014
PXFSTRUCTCOPY 2072
PXFSTRUCTCREATE 2073
PXFSTRUCTFREE 2077
PXFSYSCONF 2077
PXFTCDRAIN 2079
PXFTCFLOW 2079
PXFTCFLUSH 2080
PXFTCGETATTR 2081
PXFTCGETPGRP 2081
PXFTCSENDBREAK 2082
PXFTCSETATTR 2082
PXFTCSETPGRP 2083
PXFTIME 2083
PXFTIMES 2084
PXFTTYNAME 2086
PXFUCOMPARE 2086
PXFUMASK 2087
PXFUNAME 2087
PXFUNLINK 2088
PXFUTIME 2088
PXFWAIT 2088
PXFWAITPID 2089
PXFWIFEXITED 2091
PXFWIFSIGNALED 2092
PXFWIFSTOPPED 2092
PXFWRITE 2092

Q
Q

edit descriptor 999
QABS 1182
QACOS 1187
QACOSD 1188
QACOSH 1188
QARCOS 1187
QASIN 1206
QASIND 1206
QASINH 1207
QATAN 1219
QATAN2 1219
QATAN2D 1220
QATAND 1221
QATANH 1221
QCMPLX 1788
QCONJG 1335
QCOS 1339
QCOSD 1340
QCOSH 1340
QCOTAN 1342

QCOTAND 1342
QDIM 1388
QERF 1434
QERFC 1435
QEXP 1449
QEXT 1789
QEXTD 1789
QFLOAT 1789
QIMAG 1189
QINT 1190
QLOG 1667
QLOG10 1668
QMAX1 1687
QMIN1 1696
QMOD 1704
QNINT 1204
QNUM 1790
QRANSET 1790
QREAL 1790
QSIGN 1862
QSIN 1874
QSIND 1875
QSINH 1876
QSORT 1791
QSQRT 1883
QTAN 1916
QTAND 1916
QTANH 1917
quad-precision product

function producing 1415
quick sort

subroutine performing on arrays 1791
QuickWin

application projects 43
graphics applications
overview 43

initializing with user-defined settings 2144
QuickWin applications

single window 42
QuickWin functions

ABOUTBOXQQ 2133
APPENDMENUQQ 2134
CLICKMENUQQ 2136
DELETEMENUQQ 2136
FOCUSQQ 2137
GETACTIVEQQ 2138
GETEXITQQ 2138
GETHWNDQQ 2139
GETUNITQQ 2139
GETWINDOWCONFIG 2140
GETWSIZEQQ 2142
INCHARQQ 2143
INITIALSETTINGS 2144
INQFOCUSQQ 2144
INSERTMENUQQ 2145
MESSAGEBOXQQ 2148
MODIFYMENUFLAGSQQ 2149
MODIFYMENUROUTINEQQ 2150
MODIFYMENUSTRINGQQ 2151
PASSDIRKEYSQQ 2152
REGISTERMOUSEEVENT 2155
RGBTOINTEGER 2156
SETACTIVEQQ 2157
SETEXITQQ 2158
SETMOUSECURSOR 2160
SETWINDOWCONFIG 2162
SETWINDOWMENUQQ 2165
SETWSIZEQQ 2165

Intel® Fortran Compiler Classic and Intel® Fortran Compiler Developer Guide and Reference

2672

QuickWin functions (continued)
UNREGISTERMOUSEEVENT 2167
WAITONMOUSEEVENT 2168

QuickWin procedures
table of 1156

QuickWin routines
A to Z 2133
predefined 2134, 2145, 2150

QuickWin subroutines
INTEGERTORGB 2147
SETMESSAGEQQ 2159

quotation mark editing 1000

R
RADIX

function returning 1795
in integer model 1105
in real model 1106

RAISEQQ 1796
RAN 1796
RAND 1797
RANDOM 1797, 1798
random access I/O 576
random number generators

IRAND 1884
RAND 1884
subroutine seeding 1884

random number procedures
table of 1143

random numbers
DRAND 1415
DRANDM 1415
function returning double-precision 1415
IRAND 1635
IRANDM 1635
RAN 1796
RAND and RANDOM 1797
RANDOM 1798
RANDOM_NUMBER 1800
RANDU 1803

RANDOM_INIT 1799
RANDOM_NUMBER

initializing the pseudorandom number generator
for 1799
subroutine modifying or querying the seed of 1802

RANDOM_SEED 1802
RANDU 1803
RANF 1804, 1805
RANGE 1805
ranges

for complex constants 561
for integer constants 561
for logical constants 561
for real constants 561

RANGET 1806
RANK 1806
RANSET 1806
RC 994
RC edit descriptor 994
RD 994
RD edit descriptor 994
READ

specifier for INQUIRE 1022
READONLY 1042
READWRITE 1022
REAL

compiler directive 1067, 1809

REAL (continued)
data type 739, 1812
editing 975
function 1810
function converting to double precision 1360

real and complex editing 975
real constants

rules for 740
real conversion

function performing 1810
real data

directive specifying default kind 1809
function returning kind type parameter for 1850
model for 1106

real data type
constants 740–742
default kind 739
function converting to double precision 1360
models for 1106
ranges for 561
storage 1082

real editing
conversion 982
E and D 977
EN 979
engineering notation 979
ES 980
EX 981
F 975
G 982
hexadecimal-significand 981
scientific notation 980
with exponents 977
without exponents 975

real maximum values 561
real model

function returning exponent part in 1451
function returning fractional part in 1492
function returning largest number in 1540
function returning number closest to unity in 1431
function returning smallest number in 1959

real numbers
directive specifying default kind 1809
function resulting in single-precision type 1810
function returning absolute spacing of 1881
function returning ceiling of 1294
function returning class of IEEE 1491
function returning difference between 1388
function returning floor of 1464
function returning fractional part for model of 1856
function returning scale of model for 1835
function rounding 1204
function truncating 1190

real types
maximum values for 561

real values
transferring 975, 982
transferring in exponential form 977
transferring using engineering notation 979
transferring using scientific notation 980

real-coordinate graphics
function converting to double precision 1360
function converting to quad precision 1789

real-time clock
subroutine returning data from 1914

REAL(16)
constants 742

REAL(4)

Index

2673

REAL(4) (continued)
constants 741

REAL(8)
constants 742

REAL*16 739
REAL*4 739
REAL*8 739
REC

specifier for READ 1806
specifier for WRITE 2006

REC specifier 919, 922
reciprocal

function returning 1830
RECL

specifier for INQUIRE 1022
specifier for OPEN 1042

RECORD 1813
record access 584
record I/O 594
record I/O statement specifiers 592
record length 584
record number

identifying for data transfer 922
record position

specifying 594
record specifier

alternative syntax for 1091
record structure fields

references to 1094
record structure items

directive specifying starting address of 1739
record structures

aggregate assignment 1097
converting to Fortran 95/90 derived types 1092
directive modifying alignment of data in 1730
MAP declarations in 1981
UNION declarations in 1981

record transfer 586
record type

converting nonnative data using OPEN defaults 2601
record types 579
records

function checking for end-of-file 1428
option specifying padding for 402
repositioning to first 1828
rewriting 1828
specifying line terminator for formatted files 579
statement to delete 1381
statement writing end-of-file 1424
types of 579, 918

RECORDSIZE 1044
RECORDTYPE

specifier for INQUIRE 1023
specifier for OPEN 1044

RECTANGLE 2220
RECTANGLE_W 2220
rectangles

functions drawing 2220
subroutines storing screen image defined by 2185

recursion 1813
RECURSIVE

in functions 1500
in subroutines 1905

recursive execution
option specifying 310

recursive procedures
as functions 1500
as subroutines 1905

redistributable package 552
redistributing libraries 552
REDUCE 1814
REDUCTION

in DO directive 1398
in PARALLEL directive 1742
in PARALLEL DO directive 1746
in PARALLEL SECTIONS directive 1752
in SECTIONS directive 1842
in SIMD OpenMP* Fortran directive 1867
in TASKLOOP directive 1940
in TEAMS directive 1946

reentrancy protection
function controlling 1481

REFERENCE
option for ATTRIBUTES directive 1250

references
function 869
procedure 869
to elemental intrinsic procedures 886
to generic intrinsic functions 883
to generic procedures 883
to non-Fortran procedures 887
to nonestablished names 1074

references to global function symbols
option binding to shared library definitions 476

references to global symbols
option binding to shared library definitions 475

register allocator
option selecting method for partitioning 120

REGISTERMOUSEEVENT 2155
relational expressions 799
relational operators 799
relative error

option defining for math library function results 270
option defining maximum for math library function
results 281

relative files
statement to delete records from 1381

relative spacing
function returning reciprocal of 1830

remainder
functions returning 1704

REMAPALLPALETTERGB 2221
REMAPPALETTERGB 2221
Remapping RGB values for video hardware 2221
remote debugging 2381, 2382
removed compiler options 524
RENAME 1820
RENAMEFILEQQ 1821
REPEAT 1822
repeat specification

nested and group 1002
repeatable edit descriptors 964, 968
replicated arrays

function creating 1882
report generation

Intel® Compiler extensions 2408
OpenMP* runtime routines 2396, 2438
timing 2396, 2438
using xi* tools 2523

REQUIRES (ifx) 1822
RESHAPE 1824
resolving generic references 1072
resolving procedure references 1072
resolving specific references 1073
response files 2365
Restore Default Options 32

Intel® Fortran Compiler Classic and Intel® Fortran Compiler Developer Guide and Reference

2674

restricted expressions 803
restrictions

in using traceback information 2533
RESULT

defining explicit interface 1813
keyword in functions 1500

result name
in functions 1500

result variables
in ENTRY 1426
requiring explicit interface 888

RETURN
retaining data after execution of 1833

REWIND 1828
REWRITE 1828
RGB color

subroutine converting into components 2147
RGB color values

function converting integer to 2156
function remapping 2221
function returning current 2179
function returning for multiple pixels 2191
function returning for pixel 2189
function returning text 2193
function setting current 2229
function setting for multiple pixels 2241
function setting for pixel 2239
function setting text 2243

RGB components
subroutine converting color into 2147

RGBTOINTEGER 2156
right margin wrapping

option disabling 408
right shift

function performing arithmetic 1639
function performing circular 1639
function performing logical 1642

RINDEX 1829
RN 994
RN edit descriptor 994
RNUM 1830
root procedures

table of 1149
ROUND

specifier for INQUIRE 1023
specifier for OPEN 1045

round editing
DC 994
DP 995
RC 994
RD 994
RN 994
RP 994
RU 993
RZ 994

rounding
function performing 1715

rounding during file connections 993
routine entry

option specifying the stack alignment to use on 420
routine entry and exit points

option determining instrumentation of 228
routines

calling Windows APIs 557
comparing Intel(R) Fortran and Windows API 557
MCBS module 1109
module 1108
NLS module 1109

routines (continued)
option passing parameters in registers 104
storing in shareable libraries 556
that handle MBCS characters 1112

RP 994, 995
RP edit descriptor 994
RRSPACING 1830
RSHFT 1640
RSHIFT 1640
RTC 1831
RTL errors

function letting you specify a handler for 1438
RU 993
RU edit descriptor 993
running applications

from the command line 19
RUNQQ 1831
runtime dispatch

option using in calls to math functions 279
runtime environment

function cleaning up 1473
function initializing 1474

runtime environment variables 2317
runtime error messages

format 648
locating 653
locating cause 653
using traceback information 2532
where displayed 648

runtime error processing
default 647

runtime errors
functions returning most recent 1526

Runtime Library (RTL)
error processing performed by 647
function controlling reentrancy protection for 1481
option searching for unresolved references in
multithreaded 487, 488, 501
option specifying which to link to 485
requesting traceback 2532

runtime performance
improving 545

runtime routines
COMMITQQ 1328
FOR_DESCRIPTOR_ASSIGN 1468
FOR_GET_FPE 1470
FOR_LFENCE 1473
FOR_MFENCE 1473
for_rtl_finish_ 1473
for_rtl_init_ 1474
FOR_SET_FPE 1474
FOR_SET_FTN_ALLOC 1479
FOR_SET_REENTRANCY 1481
FOR_SFENCE 1482
GERROR 1507
GETCHARQQ 1510
GETEXCEPTIONPTRSQQ 1522
GETSTRQQ 1530
PEEKCHARQQ 1757
PERROR 1758
TRACEBACKQQ 1960

RZ 994
RZ edit descriptor 994

S
S

edit descriptor 992

Index

2675

SAFELEN
clause in SIMD OpenMP* Fortran directive 1867

SAME_TYPE_AS 1832
sample code

creating Hello World 42
sample programs

and traceback information 2534
SAVE 1833
SAVE value for CLOSE(DISPOSE) or CLOSE(STATUS) 1316
SAVEIMAGE 2223
SAVEIMAGE_W 2223
scalar replacement

option enabling during loop transformation 127
option using aggressive multi-versioning check for 113

scalar variables
data types of 771
option allocating to the runtime stack 413

scalars
as subobjects 770
as variables 770
function returning shape of 1859
typing of 771, 772

SCALE 1835
scale factor 995
scale factor editing (P) 995
SCAN

directive 1835
function 1837

SCANENV 1838
SCHEDULE

in DO directive 1398
in PARALLEL DO directive 1746

scientific-notation editing (ES) 980
scope

of unambiguous procedure references 1071
SCOPE (ifx) 1839
scoping units

statements restricted in 723
with more than one USE 1989

scratch files 577
screen area

erasing and filling 2170
screen images

subroutines storing rectangle 2185
screen output

displaying 1767
SCROLLTEXTWINDOW 2224
SCWRQQ 1840
SECNDS 1841, 1842
seconds

function returning since Greenwich mean time 1831
function returning since midnight 1841
function returning since TIMEF was called 1958

SECTION 1842
SECTIONS 1842
SEED 1843
seeds

subroutine changing for RAND and IRAND 1884
subroutine changing for RANDOM 1843
subroutine modifying or querying for
RANDOM_NUMBER 1802
subroutine returning 1636, 1806
subroutine setting 1416, 1636, 1806

SEH
See structured exception handling 709

SELECT CASE 1290
SELECT RANK 1845
SELECT TYPE 1846

SELECTED_CHAR_KIND 1849
SELECTED_INT_KIND 1849
SELECTED_REAL_KIND 1850
semicolon

as source statement separator 727
SEQ_CST clause

in ATOMIC directive 1222
SEQUENCE 1851
SEQUENTIAL

specifier for INQUIRE 1024
sequential access mode 918
sequential file access 577
sequential files

positioning at beginning 1258
sequential READ statements

rules for formatted 930
rules for list-directed 931
rules for namelist 933
rules for unformatted 939

sequential WRITE statements
rules for formatted 945
rules for list-directed 946
rules for namelist 948
rules for unformatted 950

serial port I/O routines
SPORT_CANCEL_IO 2253
SPORT_CONNECT 2253
SPORT_CONNECT_EX 2254
SPORT_GET_HANDLE 2256
SPORT_GET_STATE 2256
SPORT_GET_STATE_EX 2257
SPORT_GET_TIMEOUTS 2259
SPORT_PEEK_DATA 2260
SPORT_PEEK_LINE 2261
SPORT_PURGE 2261
SPORT_READ_DATA 2262
SPORT_READ_LINE 2263
SPORT_RELEASE 2264
SPORT_SET_STATE 2264
SPORT_SET_STATE_EX 2265
SPORT_SET_TIMEOUTS 2267
SPORT_SHOW_STATE 2268
SPORT_SPECIAL_FUNC 2269
SPORT_WRITE_DATA 2269
SPORT_WRITE_LINE 2270

Serial port i/o routines
A to Z 2253

SET_EXPONENT 1856
SETACTIVEQQ 2157
SETBKCOLOR 2225
SETBKCOLORRGB 2226
SETCLIPRGN 2227
SETCOLOR 2228
SETCOLORRGB 2229
SETCONTROLFPQQ 1851
SETDAT 1853
SETENVQQ 1854
SETERRORMODEQQ 1855
SETEXITQQ 2158
SETFILEACCESSQQ 1856
SETFILETIMEQQ 1857
SETFILLMASK 2230
SETFONT 2232
SETGTEXTROTATION 2235
SETLINESTYLE 2236
SETLINEWIDTHQQ 2237
SETMESSAGEQQ 2159
SETMOUSECURSOR 2160

Intel® Fortran Compiler Classic and Intel® Fortran Compiler Developer Guide and Reference

2676

SETPIXEL 2238
SETPIXEL_W 2238
SETPIXELRGB 2239
SETPIXELRGB_W 2239
SETPIXELS 2240
SETPIXELSRGB 2241
SETTEXTCOLOR 2242
SETTEXTCOLORRGB 2243
SETTEXTCURSOR 2244
SETTEXTPOSITION 2245
SETTEXTWINDOW 2246
SETTIM 1858
setting

compiler options in the IDE 32
setvars.bat 13
setvars.csh 13
setvars.sh 13
SETVIEWORG 2247
SETVIEWPORT 2248
SETWINDOW 2249
SETWINDOWCONFIG 2162
SETWINDOWMENUQQ 2165
SETWRITEMODE 2250
SETWSIZEQQ 2165
SHAPE 1859
shape of array

function constructing new 1824
function returning 1859
statement defining 1389

shapes
subroutine returning pattern used to fill 2182

SHARE
specifier for INQUIRE 1024
specifier for OPEN 1045

shareable libraries 556
SHARED

clause in PARALLEL directive 1742
clause in PARALLEL DO directive 1746
clause in PARALLEL SECTIONS directive 1752
in TEAMS directive 1946
specification in DEFAULT clause 1379
specifier for OPEN 1046

shared libraries 2541
shared memory access

requesting threaded program execution 2356
shared object

option producing a dynamic 494
shared scalars 2448
sharing

specifying file 1045
shell

function sending system command to 1913
SHIFTA 1860
SHIFTL 1861
SHIFTR 1861
SHORT 1862
short field termination 988
short vector math library

option specifying for math library functions 287
side effects of procedures

preventing 1785
SIGFPE signal number 711
SIGILL signal number 711
SIGN

specifier for INQUIRE 1025
specifier for OPEN 1047

sign editing
S 992

sign editing (continued)
SP 992
SS 992

signal 704
SIGNAL 1863
signal handling 704
signaling NaNs

option initializing a class of variables to 435
SIGNALQQ

using 711
signals

debugging 2378
function changing the action for 1863
function sending to executing program 1796
function sending to process ID 1648

significant digits
function returning number of 1388

SIGSEGV signal number 711
SIMD

general directive 1870
OpenMP* Fortran directive 1867
vectorization 2478

SIMD directives
option disabling compiler interpretation of 128

SIMDLEN
in DECLARE SIMD directive 1370

SIN 1874
SIND 1875
sine

function returning 1874, 1875
function returning hyperbolic 1876
function with argument in degrees 1875
function with argument in radians 1874

SINGLE 1875
single character set 2585
single window applications 42
single-document applications 42
single-precision constants

option evaluating as double precision 424
single-precision real

function converting to truncated integer 1619
SINH 1876
SIZE

of arrays 1877
specifier for INQUIRE 1026
specifier for READ 1806

size of arrays
function returning 1877
system parameters for 53

size of executable programs
system parameters for 53

SIZE specifier 919, 924
SIZEOF 1878
slash editing 997
SLEEP 1878
SLEEPQQ 1879
SMP systems 2454
SNGL 1810
SNGLQ 1810
solutions

in Visual Studio* 30
solutions and projects 30
sorting a one-dimensional array 1879
SORTQQ 1879
source code

fixed and tab form of 731
free form of 729
porting between systems 2587

Index

2677

source code (continued)
useable for all source forms 734

source code format 727
source code useable for all source forms 734
source comments 727
source editor enhancements

in Microsoft Visual Studio* 35
source files

compiling a single 37
linking a single 37
specifying a non-standard 30

source forms
combining 734
fixed and tab 731
free 729
overview of 727

source lines
padding fixed and tab source 731
padding free source 729

SP
edit descriptor 992

space
allocating for arrays and pointer targets 1199
deallocating for variables and pointer targets 1362
disassociating for pointers 1722

SPACING 1881
speaker

subroutine sounding 1261
speaker procedures

table of 1145
specific names

references to 1073
specific references 1073
specification expressions

inquiry functions allowed in 803
transformational functions allowed in 803

specification statements 814
specifications

table of procedures for data 1125
specifying carriage control 1033
specifying directories

INCLUDE 32
libraries 32
PATH 32

specifying file numeric format
precedence 1034

specifying file position 1042
specifying file sharing 1045
specifying file structure 1039
specifying project types

with ifort command options 41
specifying the compiler version 25
specifying variables

table of procedures 1125
SPLITPATHQQ 1881
SPORT procedures 1115
SPORT_CANCEL_IO 2253
SPORT_CONNECT 2253
SPORT_CONNECT_EX 2254
SPORT_GET_HANDLE 2256
SPORT_GET_STATE 2256
SPORT_GET_STATE_EX 2257
SPORT_GET_TIMEOUTS 2259
SPORT_PEEK_DATA 2260
SPORT_PEEK_LINE 2261
SPORT_PURGE 2261
SPORT_READ_DATA 2262
SPORT_READ_LINE 2263

SPORT_RELEASE 2264
SPORT_SET_STATE 2264
SPORT_SET_STATE_EX 2265
SPORT_SET_TIMEOUTS 2267
SPORT_SHOW_STATE 2268
SPORT_SPECIAL_FUNC 2269
SPORT_WRITE_DATA 2269
SPORT_WRITE_LINE 2270
SPREAD 1882
SQRT 1883
square root

function returning 1883
SQUARES debugging example (Fortran) 2371
SRAND 1884
SS

edit descriptor 992
SSWRQQ 1885
stack

considerations in calling conventions 630
option specifying reserve amount 481

stack alignment
option specifying for functions 442

stack checking routine
option controlling threshold for call of 432

stack storage
allocating variables to 1256

stack variables
option initializing to NaN 338

standard directories
option removing from include search path 369

standard error output file 643
standard error stream

subroutine sending a message to 1758
Standard Fortran language standard

using RECL units for unformatted files 2601
standard graphics application projects 42
standards

Fortran 95 or Fortran 90 checking 19, 2587
language 2587

STAT 1885
state messages

subroutine setting 2159
statement field

option specifying the length of 394
statement functions

definition of 848
statement labels 727
statement scope 1068
statement separator 727
statements

ABSTRACT INTERFACE 1183
ACCEPT 1185
ALLOCATABLE 1194
ALLOCATE 1199
arithmetic IF 1595
ASSIGN 1207
assigned GO TO 1535
assignment 805
ASSOCIATE 1212
ASYNCHRONOUS 1218
AUTOMATIC 1256
BACKSPACE 1258
BIND 1266
BLOCK 1269
BLOCK DATA 1271
BYTE 1279
CALL 1286
CASE 1290

Intel® Fortran Compiler Classic and Intel® Fortran Compiler Developer Guide and Reference

2678

statements (continued)
CHANGE TEAM 1305
CHARACTER 1310
classes of 723
CLOSE 1316
CODIMENSION 1325
COMMON 1329
COMPLEX 1334
computed GO TO 1536
conditional execution based on logical expression 1596
conditionally executing groups of 1598
CONTAINS 1336
CONTIGUOUS 1336
CONTINUE 1338
control 838
CRITICAL 1346
CYCLE 1350
DATA 1351
data transfer 918
DEALLOCATE 1362
declaration 814
DECODE 1378
DEFINE FILE 1380
DELETE 1381
derived type 1972
DIMENSION 1389
DO 1403
DO CONCURRENT 1405
DO WHILE 1411
DOUBLE COMPLEX 1413
DOUBLE PRECISION 1414
ELSE WHERE 1421, 2003
ENCODE 1422
END 1423
END DO 1424
END WHERE 1426
ENDFILE 1424
ENTRY 1426
ENUM 769
ENUMERATOR 769
EQUIVALENCE 1432
ERROR STOP 1892
EVENT POST 1444
EVENT WAIT 1444
executable 723
EXIT 1447
EXTERNAL 1452
FAIL IMAGE 1454
FINAL 1458
FIND 1460
FLUSH 1466
FORALL 1482
FORM TEAM 1488
FORMAT 1484
FUNCTION 1500
GENERIC 1506
IF - arithmetic 1595
IF - logical 1596
IF construct 1598
IMPLICIT 1607
IMPORT 1609
input/output 1007
INQUIRE 1616
INTEGER 1622
INTENT 1624
INTERFACE 1626
INTERFACE TO 1629
INTRINSIC 1632

statements (continued)
LOCK 1665
LOGICAL 1669
MAP 1981
MODULE 1705
MODULE FUNCTION 1707
MODULE PROCEDURE 1708
MODULE SUBROUTINE 1708
NAMELIST 1712
nonexecutable 723
NULLIFY 1722
OPEN 1725
OPTIONAL 1727
OPTIONS 1733
order in program units 723
PARAMETER 1753
PAUSE 1756
POINTER 1758
POINTER - Integer 1761
PRINT 1767
PRIVATE 1769
PROCEDURE 1772
PROGRAM 1779
PUBLIC 1783
READ 1806
REAL 1812
RECORD 1813
repeatedly executing 1403
repeatedly executing while true 1411
restricted in scoping units 723
RETURN 1826
REWIND 1828
REWRITE 1828
SAVE 1833
SELECT CASE 1290
SELECT RANK 1845
SELECT TYPE 1846
SEQUENCE 1851
specification 814
statement function 1889
STATIC 1890
STOP 1892
STRUCTURE 1896
SUBMODULE 1900
SUBROUTINE 1905
SYNC ALL 1908
SYNC IMAGES 1909
SYNC MEMORY 1910
SYNC TEAM 1912
TARGET 1922
TYPE 1972
type declaration 1966
unconditional GO TO 1537
UNION 1981
UNLOCK 1665
USE 1989
VALUE 1996
VIRTUAL 2001
VOLATILE 2001
WAIT 2002
WHERE 2003
WRITE 2006

STATIC 1890
static libraries 556
static storage

allocating variables to 1890
STATUS

specifier for OPEN 1047

Index

2679

status messages
subroutine setting 2159

status of graphics routines
function returning 2198

STATUS specifier for CLOSE 1316
status word

subroutine clearing exception flags in floating-
point 1314
subroutines returning floating-point 1529, 1885

STATUS_ACCESS_VIOLATION exception code 711
STATUS_FLOAT_DENORMAL_OPERAND exception code 711
STATUS_FLOAT_DIVIDE_BY_ZERO exception code 711
STATUS_FLOAT_INEXACT_RESULT exception code 711
STATUS_FLOAT_INVALID_OPERATION exception code 711
STATUS_FLOAT_OVERFLOW exception code 711
STATUS_FLOAT_STACK_CHECK exception code 711
STATUS_FLOAT_UNDERFLOW exception code 711
STATUS_ILLEGAL_INSTRUCTION exception code 711
STATUS_PRIVILEGED_INSTRUCTION exception code 711
STDCALL

option for ATTRIBUTES directive 1241
STOP 1892
STOPPED_IMAGES 1894
storage

association 1081, 1082, 1432
defining blocks of 1329
dynamically allocating 1199
freeing 1362
function returning byte-size of 1878
sequence 1082
sharing areas of 1432
units 1082

storage association
using ENTRY 1081

storage in bits
function returning 1894

storage item
function returning address of 1664

storage sequence 1081, 1082
storage units 1082
STORAGE_SIZE 1894
storing object code

in static libraries 44
storing routines

in dynamic-link libraries 45
stream file access 584
stream READ statements 943
stream record type 579
stream WRITE statements 951
Stream_CR records 579
Stream_LF records 579
streaming stores

option generating for optimization 121
STRICT

equivalent compiler option for 1067
stride 777
string edit descriptors

apostrophe 1000
H 1001
quotation mark 1000

strings
function concatenating copies of 1822
function locating last nonblank character in 1663
function returning length minus trailing blanks 1656
function returning length of 1655
writing unknown length to file or device 1001

STRUCTURE 1896
structure components 760

structure constructors
with parameterized derived types 757

structure declarations 1093
structured exception handling 709, 711
structures

derived-type 1972
derived-type extended 1972
record 1092, 1093

SUBDEVICE (ifx) 1899
SUBMIT value for CLOSE(DISPOSE) or
CLOSE(STATUS) 1316
SUBMIT/DELETE value for CLOSE(DISPOSE) or
CLOSE(STATUS) 1316
SUBMODULE 1900
submodules

defining 1900
in program units 848

subnormal exceptions 545
subnormal numbers 542
subobjects 770
subprograms

BLOCK DATA 1271
effect of RETURN in 1826
external 723
function 1500
internal 723
module 1705, 1708
statement returning control from 1423
subroutine 1905
user-written 869
using as actual arguments 1452, 1632

SUBROUTINE 1905
subroutine references 1286
subroutines

definition of 848
effect of ENTRY in 873
ELEMENTAL keyword in 1905
EXTERNAL 1452
function running at specified time 1191
general rules for 870
IMPURE keyword in 1905
intrinsic 894
invoking 1286
module 1708
PURE keyword in 1905
RECURSIVE keyword in 1813, 1905
statement specifying entry point for 1426
transferring control to 1286

subroutines in the OpenMP run-time library
parallel run-time 2454

subroutines in the OpenMP* runtime library
for OpenMP* 2414

subscript list
referencing array elements 775, 776

subscript progression 775
subscript triplets 776, 777
subscripts 775
substrings

function locating index of last occurrence of 1829
function returning starting position of 1614
making equivalent 829

substructure declarations
for record structures 1094

SUM 1907
sum of array elements

function returning 1907
support

for symbolic debugging 2378

Intel® Fortran Compiler Classic and Intel® Fortran Compiler Developer Guide and Reference

2680

suspension
of program execution 1756

symbol names
option using dollar sign when producing 350

symbol visibility
option specifying 430

symbolic names
option associating with an optional value 356

symbols
predefined preprocessor 2573

SYNC ALL 1908
SYNC IMAGES 1909
SYNC MEMORY 1910
SYNC TEAM 1912
synchronization

parallel processing model for 2392
thread sleep time 2408

syntax
option checking for correct 407

SYSTEM 1913
system calls

using to open files 595
system codepage

function returning number for 2123
system command

function sending to command interpreter 1915
function sending to shell 1913

system date
function setting 1853

system errors
subroutine returning information on 1437

system parameters for language elements 53
system procedures

table of 1161
system prompt

subroutine controlling for critical errors 1855
system subprograms

CPU_TIME 1344
DATE 1355
DATE_AND_TIME 1357
EXIT 1449
IDATE 1550
SECNDS 1842
SYSTEM_CLOCK 1914
TIME 1957

system time
function converting to ASCII string 1316, 1349
intrinsic returning 1957
subroutine returning 1958
subroutine setting 1858

SYSTEM_CLOCK 1914
SYSTEMQQ 1915

T
T

edit descriptor 990
tab source format

lines in 733
tab-format source lines 733
TAN 1916
TAND 1916
tangent

function returning 1916
function returning hyperbolic 1917
function with argument in degrees 1916
function with argument in radians 1916

TANH 1917

TARGET
directive (ifx) 1917
statement 1922

TARGET DATA (ifx) 1920
TARGET ENTER DATA (ifx) 1923
TARGET EXIT DATA (ifx) 1924
TARGET PARALLEL 1924
TARGET PARALLEL DO 1925
TARGET PARALLEL DO SIMD 1926
TARGET PARALLEL LOOP directive (ifx) 1927
TARGET SIMD 1927
TARGET TEAMS 1928
TARGET TEAMS DISTRIBUTE 1929
TARGET TEAMS DISTRIBUTE PARALLEL DO 1930
TARGET TEAMS DISTRIBUTE PARALLEL DO SIMD 1930
TARGET TEAMS DISTRIBUTE SIMD 1931
TARGET TEAMS LOOP directive (ifx) 1932
TARGET UPDATE (ifx) 1933
targets

allocation of pointer 835
as variables 812
assigning values to 806, 1210
associating with pointers 812, 1922
creating storage for 1199
deallocation of pointer 838
declaration of 1922
requiring explicit interface 888

TASK 1934
task region

directive defining 1934
TASK_REDUCTION

in TASKGROUP directive 1939
TASKGROUP 1939
TASKLOOP 1940
TASKLOOP SIMD 1942
TASKWAIT 1943
TASKYIELD 1944
team number

function returning 1946
team variable

function returning a copy of 1531
team variables

statement defining 1488
TEAM_NUMBER 1946
TEAMS (ifx) 1946
TEAMS DISTRIBUTE 1948
TEAMS DISTRIBUTE PARALLEL DO 1948
TEAMS DISTRIBUTE PARALLEL DO SIMD 1949
TEAMS DISTRIBUTE SIMD 1950
TEAMS LOOP directive (ifx) 1951
temporary files

option to keep 2542
terminal

subroutine specifying device name for 1966
terminal statements for DO constructs 1403
terminating format control (:) 998
terminating short fields of input data 988
termination handler

when to provide 709
termination handling

default 706
overview 705

ternary raster operation constants 2218
test prioritization tool

examples 2503
options 2503
requirements 2503

text

Index

2681

text (continued)
function controlling truncation of 2251
function controlling wrapping of 2251
function returning orientation of 2184
function returning width for use with OUTGTEXT 2184
subroutine sending to screen (including blanks) 2208,
2209
subroutine sending to screen (special fonts) 2208

text color
function returning RGB value of 2193

text color index
function returning 2192
function returning RGB value of 2193
function setting 2242
function setting RGB value of 2243

text cursor
function setting height and width of 2244

text files
line including 1612

text output
function returning background color index for 2176
function returning background RGB color for 2177
function setting background color index for 2225
function setting background RGB color for 2226

text position
subroutine returning 2194
subroutine setting 2245

text window
subroutine returning boundaries of 2195
subroutine scrolling the contents of 2224
subroutine setting boundaries of 2246

THIS_IMAGE 1951
thread affinity

option specifying 199
thread pooling 2459
THREAD_LIMIT

in TEAMS directive 1946
THREAD_LIMIT (ifx) 1953
threaded program execution

requesting 2356
THREADPRIVATE 1953
threads

compiling and linking multithread applications 2356
threshold control for auto-parallelization

OpenMP* routines for 2396, 2438
reordering 2462

throughput optimization
option determining 108

TILE directive (ifx) 1954
TIME

ALARM function for subroutines 1191
function returning accounting of 1692
function returning for current locale 2122
routines returning current system 1957, 1958
subroutine returning 1357, 1532
subroutine returning Greenwich mean 1534
subroutine returning in array 1645
subroutine returning local zone 1674
subroutine setting system 1858
subroutine unpacking a packed 1984

time and date
routine returning as ASCII string 1456
subroutine packing values for 1741
subroutine returning 4-digit year 1357
subroutine returning current system 1357

TIMEF 1958
TINY 1959
TITLE

TITLE (continued)
specifier for OPEN 1048

TL
edit descriptor 990

TO
clause in TARGET UPDATE directive 1933

to Microsoft Visual Studio projects 23
tool options

code coverage tool 2491
profmerge 2508
proforder 2508
test prioritization 2503

tools
option passing options to 372
option specifying directory for supporting 371
specifying alternative 2541

topology maps 2420
total association 1082
TR

edit descriptor 991
traceback

function returning argument eptr for
TRACEBACKQQ 1522
subroutine aiding in 1960

traceback compiler option 653
traceback information

option providing 454
restrictions in using 2533
sample programs 2534
tradeoffs in using 2533
using 2532

TRACEBACKQQ 1960
tradeoffs

in using traceback information 2533
TRAILZ 1963
transcendental functions

option replacing calls to 265
TRANSFER 1963
transfer of data

function performing binary 1963
transformational functions

ALL 1193
allowed in specification expressions 803
ANY 1205
COUNT 1343
CSHIFT 1347
DOT_PRODUCT 1412
EOSHIFT 1429
FINDLOC 1460
GET_TEAM 1531
IALL 1541
IANY 1543
IPARITY 1635
MATMUL 1685
MAXLOC 1689
MAXVAL 1691
MINLOC 1698
MINVAL 1700
NORM2 1718
NULL 1721
PACK 1740
PARITY 1755
PRODUCT 1778
REDUCE 1814
REPEAT 1822
RESHAPE 1824
SELECTED_CHAR_KIND 1849
SELECTED_INT_KIND 1849

Intel® Fortran Compiler Classic and Intel® Fortran Compiler Developer Guide and Reference

2682

transformational functions (continued)
SELECTED_REAL_KIND 1850
SPREAD 1882
SUM 1907
TEAM_NUMBER 1946
TRANSFER 1963
TRANSPOSE 1964
TRIM 1965
UNPACK 1983

transportability of data 2597
TRANSPOSE 1964
transposed arrays

function producing 1964
trigonometric functions 1149
trigonometric procedures 1149
TRIM 1965
troubleshooting 643
tselect tool

option producing an instrumented file for 245
option specifying a directory for profiling output for 244
option specifying a file name for summary files for 245

TTYNAM 1966
twos complement

function returning length in 1605
TYPE

for derived types 1972
output statement 1767
parameterized 757
specifier for OPEN 1048

type aliasability rules
option affecting adherence to 89

type conversion procedures
table of 1148

type declarations
array 820
attributes in 1966
character 817
constant expressions in 1966
derived 819
double colon separator in 1966
noncharacter 816
within record structures 1093

type extension 755, 1972
TYPE IS

in SELECT TYPE construct 1846
type library

in Intel(R) Fortran Module Wizard 2558
type parameter order

for parameterized derived types 758
type-bound procedures

final 752
generic 752
specific 752

types of projects 40

U
UBOUND

in pointer assignment 826
UCOBOUND 1980
unaligned data

option warning about 455
unambiguous generic procedure references 1071
unambiguous references 1071
unary operations 796
uncalled routines

option warning about 455
unconditional DO 1403

unconditional GO TO 1537
undeclared symbols

option warning about 455
undeferred task 2316
UNDEFINE 1379
undefined variables 770
underscore

in names 726
UNFORMATTED

specifier for INQUIRE 1026
unformatted data

and nonnative numeric formats 2598
unformatted direct files 576
unformatted direct-access READ statements 943
unformatted direct-access WRITE statements 951
unformatted files

converting nonnative data 2601
direct-access 576
methods of specifying endian format 2601
obtaining numeric specifying format 2601
using /convert option to specify format 2601
using environment variable method to specify
format 2601
using OPEN(CONVERT=) method to specify
format 2601
using OPTIONs/CONVERT to specify format 2601

unformatted numeric data
option specifying format of 414

unformatted records
overview of 918

unformatted sequential files 576
unformatted sequential READ statements 939
unformatted sequential WRITE statements 950
UNIFORM

in DECLARE SIMD directive 1370
uninitialized variables

option checking for 389
UNION 1981
UNIT

specifier 920
specifier for READ 1806
specifier for WRITE 2006
using for external files 567
using for internal files 567

unit number
function testing whether it's a terminal 1638

unit number 6
function writing a character to 1787

unit numbers 567
UNIT specifier 919
UNIT specifier for CLOSE 1316
units

disconnecting 1316
opening 1725
statement requesting properties of 1616

UNLINK 1982
UNLOCK 1665
unmanaged vs managed code 629
UNPACK 1983
unpacked array

function creating 1983
UNPACKTIMEQQ 1984
UNREGISTERMOUSEEVENT 2167
UNROLL (general) 1987
UNROLL (OpenMP*) (ifx) 1985
UNROLL_AND_JAM 1988
UNTIED

in TASK directive 1934

Index

2683

UNTIED (continued)
in TASKLOOP directive 1940

unused variables
option warning about 455

unwind information
option determining where precision occurs 142

upper bounds
function returning 1979

USE 1989
use association

overview of 1077
USE_DEVICE_PTR

clause 1994
in TARGET DATA directive 1920

user
function returning group ID of 1526
function returning ID of 1533
subroutine returning login name of 1528

user functions
auto-parallelization 2454
dynamic libraries 2396, 2438
OpenMP* 2448
profile-guided optimization 2489

user ID
function returning 1533

user-defined I/O
edit descriptor for 953

user-defined procedures
elemental 1419
impure 1610
keyword preventing side effects in 1785
pure 1785

user-defined TYPE statement 1972
user-defined types 750
user-written subprograms 869
USEROPEN specifier 595, 1048
using 2364, 2365
using an external user-written function to open files 595
using COM and automation objects 2557
Using OpenMP* 2390
using the Intel(R) Fortran Module Wizard to generate
code 2558
utilities

profmerge 2508
proforder 2508

V
VALUE

option for ATTRIBUTES directive 1250
variable designator 770
variable format expressions 1002
variable-definition context 788
variables

allocating to stack storage 1256
allocating to static storage 1890
allocation of 834
assigning initial values to 1351
assigning value of label to 1207
assigning values to 806, 1210
associating with group name 1712
automatic 1256
character 747
creating allocatable 1199
data types of scalar 771
deallocation of 836
declaring automatic 1256
declaring derived-type 1972

variables (continued)
declaring static 1890
definition context 788
direct sharing of 1329
directive creating symbolic 1379
directive declaring properties of 1235
directive generating warnings for undeclared 1364
directive testing value of 1379
explicit typing of 771
giving initial values to 1351
how they become defined or undefined 770
implicit typing of 772
initializing 1351
length of name 726
namelist 1712
on the stack 1256
option initializing to zero 445
option placing explicitly zero-initialized in DATA
section 431, 442
option placing in static memory 444
option placing uninitialized in DATA section 442
option saving always 421
option specifying default kind for integer 439
option specifying default kind for logical 439
option specifying default kind for real 443
referencing 795
result 1500, 1825
retaining in memory 1890
saving values of 1833
statement defining default types for user-defined 1607
static 1890
storage association of 1329
table of procedures that declare 1125
targets as 812
truncation of values assigned to 806
typing of scalar 771, 772
undefined 1364
using keyword names for 725

VARYING
option for ATTRIBUTES directive 1251

VAX Fortran 77
compatibility 2589

VAXD
value for CONVERT specifier 1034

VAXG
value for CONVERT specifier 1034

VECREMAINDER 1997
VECTOR

general directive 1997
option for ATTRIBUTES directive 1252

VECTOR ALIGNED 1997
VECTOR ALWAYS 1997
vector copy

non-vectorizable copy 2462
programming guidelines 2462

vector function application binary interface (ifort)
option specifying compatibility for 133

vector function application binary interface (ifx)
option specifying compatibility for 135

VECTOR NONTEMPORAL 1997
vector subscripts 776, 779
VECTOR TEMPORAL 1997
VECTOR UNALIGNED 1997
vectorization

compiler directives 2467
compiler options 2467
keywords 2467
obstacles 2467

Intel® Fortran Compiler Classic and Intel® Fortran Compiler Developer Guide and Reference

2684

vectorization (continued)
option setting threshold for loops 132
speed-up 2467
what is 2467

Vectorization
auto-parallelization
reordering threshold control 2462

directive 2485
general compiler directives 2462
Intel® Streaming SIMD Extensions 2462
language support 2485
loop unrolling 2462
SIMD 2478
user-mandated 2478

vector copy
non-vectorizable copy 2462
programming guidelines 2462

vectorizing
loops 2474, 2487

vectors
function performing dot-product multiplication of 1412
subscripts in 776, 779

VERIFY 2000
version

option displaying for driver and compiler 523
option displaying information about 516
option saving in executable or object file 519
specifying compiler 25

viewport area
subroutine erasing and filling 2170
subroutine redefining 2248

viewport coordinates
functions filling (color index) 2173
functions filling (RGB) 2174
subroutine converting to physical coordinates 2187
subroutine converting to Windows coordinates 2197
subroutines converting from physical coordinates 2196

viewport origin
subroutine moving 2247

viewport-coordinate origin
subroutine moving 2247
subroutine setting 2248

VIRTUAL 2001
Visual Basic*

calling subprograms from the main program 629
example program using automation objects 25
rules for servers used with Visual Basic clients 2550

Visual Studio*
Debugger

debugging Fortran programs
defining conditions for breakpoints 2368

dialog boxes
Advanced 52
Compilers 51
General 51

IDE automation objects 25
IDE windows 23
Intel® Fortran 2354
Intel® Fortran project types 40

Visual Studio* 2008
IDE windows 23
using manifests 35

Visual Studio* 2010
IDE windows 23
using manifests 35

VMS* Compatibility
option specifying 471

VOLATILE 2001

W
WAIT 2002
WAITONMOUSEEVENT 2168
warn compiler option 643
warning messages

controlling issue of 643
directive generating for undeclared variables 1364
directive modifying for data alignment 1730

watch compiler option 643
WB compiler option 643
WHERE

ELSE WHERE block in 1421
statement ending 1426

WHILE 1411
whole arrays 775
whole program analysis 2517
width of solid line

subroutine setting 2237
WINABOUT

predefined QuickWin routine 2134
WINARRANGE

predefined QuickWin routine 2134
WINCASCADE

predefined QuickWin routine 2134
WINCLEARPASTE

predefined QuickWin routine 2134
WINCOPY

predefined QuickWin routine 2134
window

function making child active 2157
function returning unit number of active child 2138
subroutine scrolling the contents of text 2224

window area
function defining coordinates for 2249
subroutine erasing and filling 2170

window handle
function returning unit number of 2139

window unit number
function converting to handle 2139

Windowing application projects
Fortran 44

Windows
function converting unit number to handle 2139
function returning position of 2142
function returning properties of 2140
function returning size of 2142
function returning unit number of 2139
function setting position of 2165
function setting properties of child 2162
function setting size of 2165
setting focus to 2137
subroutine returning boundaries of text 2195
subroutine scrolling the contents of text 2224
subroutine setting boundaries of text 2246

Windows* API
BitBlt 2218
CreateFile 595, 2256
CreateFontIndirect 2162, 2232
CreateProcess 1913, 1915
EscapeCommFunction 2269
GetEnvironmentVariable 1521
GetExceptionInformation 1960
PurgeComm 2261
SetEnvironmentVariable 1521
SetFileApisToANSI 2132
SetFileApisToOEM 2132
SetROP2 2250

Index

2685

Windows* API modules 559
Windows* APIs 44, 557
Windows* applications

option creating and linking 504
Windows* bitmap file

function saving an image into 2223
Windows* coordinates

functions filling (color index) 2173
functions filling (RGB) 2174
subroutine converting from viewport coordinates 2197
subroutines converting from physical coordinates 2196

Windows* data types
translated to Fortran types 557

Windows* fonts
initializing 2202

Windows* properties
function returning 2140
function setting 2162, 2165

Windows* structured exception handling 709
Windows* structures

compared to Fortran derived types 557
WINEXIT

predefined QuickWin routine 2134
WINFULLSCREEN

predefined QuickWin routine 2134
WININDEX

predefined QuickWin routine 2134
WININPUT

predefined QuickWin routine 2134
WinMainCRTStartup run-time function 706
WinMainCRTStartup runtime function 711
WINPASTE

predefined QuickWin routine 2134
WINPRINT

predefined QuickWin routine 2134
WINSAVE

predefined QuickWin routine 2134
WINSELECTALL

predefined QuickWin routine 2134
WINSELECTGRAPHICS

predefined QuickWin routine 2134
WINSELECTTEXT

predefined QuickWin routine 2134
WINSIZETOFIT

predefined QuickWin routine 2134
WINSTATE

predefined QuickWin routine 2134
WINSTATUS

predefined QuickWin routine 2134
WINTILE

predefined QuickWin routine 2134
WINUSING

predefined QuickWin routine 2134
worker thread 2414
working directory

function returning path of 1516
WORKSHARE 2005
worksharing 1753, 2005, 2454
WRAPON 2251
WRITE

specifier for INQUIRE 1026
write mode

function returning logical 2197
function setting logical 2250

write operations
function committing to physical device 1328

X
X

edit descriptor 991
xiar 2521
xild 2517, 2521
xilink 2517, 2521
XOR 1593

Y
year

subroutine returning 4-digit 1357

Z
Z edit descriptor 974
ZABS 1182
ZCOS 1339
zero-extend function 2009
zero-size array sections 776
ZEXP 1449
ZEXT 2009
ZLOG 1667
zmm registers usage

option defining a level of 123
ZSIN 1874
ZSQRT 1883
ZTAN 1916

Intel® Fortran Compiler Classic and Intel® Fortran Compiler Developer Guide and Reference

2686

	Contents
	Intel® Fortran Compiler Classic and Intel® Fortran Compiler Developer Guide and Reference
	Intel® Fortran Compiler Classic and Intel® Fortran Compiler Introduction
	Get Help and Support
	Related Information

	Compiler Setup
	Use the Command Line
	Specify Component Locations
	Invoke the Compiler
	Use the Command Line on Windows
	Run Fortran Applications from the Command Line
	File Extensions
	Use Makefiles for Compilation

	Use Microsoft Visual Studio
	Use Microsoft Visual Studio* Solution Explorer
	Create a New Project
	Perform Common Tasks with Microsoft Visual Studio*
	Select a Version of the Intel® Fortran Compiler
	Use Visual Studio* IDE Automation Objects
	Specify Fortran File Extensions
	Understand Solutions, Projects, and Configurations
	Navigate Programmatic Components in a Fortran File
	Specify Path, Library, and Include Directories
	Set Compiler Options in the Microsoft Visual Studio* IDE Property Pages
	Supported Build Macros
	Use Manifests
	Use Intel® Libraries with Microsoft Visual Studio*
	Use Source Editor Enhancements in Microsoft Visual Studio*
	Create the Executable Program
	Convert and Copy Projects
	About Fortran Project Types
	Understand Project Types
	Specify Project Types with ifort Command Options
	Use Fortran Console Application Projects
	Use Fortran Standard Graphics Application Projects
	Use Fortran QuickWin Application Projects
	Use Fortran Windowing Application Projects
	Use Fortran Static Library Projects
	Use Fortran Dynamic-Link Library Projects
	Use the Console
	Create Fortran Applications That Use Windows Features

	Dialog Box Help
	Options: General dialog box
	Options: Compilers dialog box
	Options: Advanced dialog box

	Compiler Reference
	Compiler Limits
	Compiler Options
	Alphabetical Option List
	General Rules for Compiler Options
	What Appears in the Compiler Option Descriptions
	Optimization Options
	falias, Oa
	fast
	ffnalias, Ow
	foptimize-sibling-calls
	fprotect-parens, Qprotect-parens
	GF
	nolib-inline
	O
	Od
	Ofast
	Os
	Ot

	Advanced Optimization Options
	ansi-alias, Qansi-alias
	coarray, Qcoarray
	coarray-config-file, Qcoarray-config-file
	coarray-num-images, Qcoarray-num-images
	complex-limited-range, Qcomplex-limited-range
	fvec-peel-loops, Qvec-peel-loops
	fvec-remainder-loops, Qvec-remainder-loops
	fvec-with-mask, Qvec-with-mask
	heap-arrays
	mno-gather, Qgather-
	mno-scatter, Qscatter-
	pad, Qpad
	qmkl, Qmkl
	qmkl-ilp64, Qmkl-ilp64
	qmkl-sycl-impl, Qmkl-sycl-impl
	qopt-args-in-regs, Qopt-args-in-regs
	qopt-assume-safe-padding, Qopt-assume-safe-padding
	qopt-block-factor, Qopt-block-factor
	qopt-dynamic-align, Qopt-dynamic-align
	qopt-for-throughput, Qopt-for-throughput
	qopt-jump-tables, Qopt-jump-tables
	qopt-malloc-options
	qopt-matmul, Qopt-matmul
	qopt-mem-layout-trans, Qopt-mem-layout-trans
	qopt-multi-version-aggressive, Qopt-multi-version-aggressive
	qopt-multiple-gather-scatter-by-shuffles, Qopt-multiple-gather-scatter-by-shuffles
	qopt-prefetch, Qopt-prefetch
	qopt-prefetch-distance, Qopt-prefetch-distance (ifort)
	qopt-prefetch-distance, Qopt-prefetch-distance (ifx)
	qopt-prefetch-issue-excl-hint, Qopt-prefetch-issue-excl-hint
	qopt-prefetch-loads-only, Qopt-prefetch-loads-only
	qopt-ra-region-strategy, Qopt-ra-region-strategy
	qopt-streaming-stores, Qopt-streaming-stores
	qopt-subscript-in-range, Qopt-subscript-in-range
	qopt-zmm-usage, Qopt-zmm-usage
	qoverride-limits, Qoverride-limits
	reentrancy
	safe-cray-ptr, Qsafe-cray-ptr
	scalar-rep, Qscalar-rep
	simd, Qsimd
	unroll, Qunroll
	unroll-aggressive, Qunroll-aggressive
	vec, Qvec
	vec-guard-write, Qvec-guard-write
	vec-threshold, Qvec-threshold
	vecabi, Qvecabi (ifort)
	vecabi, Qvecabi (ifx)

	Code Generation Options
	arch
	ax, Qax
	fasynchronous-unwind-tables
	fcf-protection, Qcf-protection
	fexceptions
	fomit-frame-pointer
	guard
	hotpatch
	m, Qm
	m32, m64, Qm32, Qm64
	m80387
	march
	masm
	mauto-arch, Qauto-arch
	mbranches-within-32B-boundaries, Qbranches-within-32B-boundaries
	mconditional-branch, Qconditional-branch
	minstruction, Qinstruction
	momit-leaf-frame-pointer
	mstringop-inline-threshold, Qstringop-inline-threshold
	mstringop-strategy, Qstringop-strategy
	mtune, tune
	Qpatchable-addresses
	x, Qx
	xHost, QxHost

	Offload Compilation, OpenMP*, and Parallel Processing Options
	device-math-lib
	fiopenmp, Qiopenmp
	flink-huge-device-code
	fmpc-privatize
	fopenmp, Qopenmp
	fopenmp-concurrent-host-device-compile
	fopenmp-declare-target-scalar-defaultmap, Qopenmp-declare-target-scalar-defaultmap
	fopenmp-default-allocator, Qopenmp-default-allocator
	fopenmp-device-code-split, Qopenmp-device-code-split
	fopenmp-device-lib
	fopenmp-do-concurrent-maptype-modifier, Qopenmp-do-concurrent-maptype-modifier
	fopenmp-max-parallel-link-jobs, Qopenmp-max-parallel-link-jobs
	fopenmp-target-buffers, Qopenmp-target-buffers
	fopenmp-target-default-sub-group-size, Qopenmp-target-default-sub-group-size
	fopenmp-target-do-concurrent, Qopenmp-target-do-concurrent
	fopenmp-target-loopopt, Qopenmp-target-loopopt
	fopenmp-target-simd, Qopenmp-target-simd
	fopenmp-targets, Qopenmp-targets
	fsycl
	fsycl-dead-args-optimization
	fsycl-device-code-split
	fsycl-device-lib
	fsycl-instrument-device-code
	fsycl-link-huge-device-code
	fsycl-targets
	ftarget-compile-fast
	ftarget-register-alloc-mode, Qtarget-register-alloc-mode
	nolibsycl
	par-affinity, Qpar-affinity
	par-num-threads, Qpar-num-threads
	par-runtime-control, Qpar-runtime-control
	par-schedule, Qpar-schedule
	par-threshold, Qpar-threshold
	parallel, Qparallel (ifort)
	parallel, Qparallel (ifx)
	parallel-source-info, Qparallel-source-info
	qopenmp, Qopenmp
	qopenmp-lib, Qopenmp-lib
	qopenmp-link, Qopenmp-link
	qopenmp-simd, Qopenmp-simd
	qopenmp-stubs, Qopenmp-stubs
	qopenmp-threadprivate, Qopenmp-threadprivate
	Qpar-adjust-stack
	Xopenmp-target
	Xsycl-target

	Interprocedural Optimization Options
	ffat-lto-objects
	flto
	ip, Qip
	ip-no-inlining, Qip-no-inlining
	ip-no-pinlining, Qip-no-pinlining
	ipo, Qipo
	ipo-c, Qipo-c
	ipo-jobs, Qipo-jobs
	ipo-S, Qipo-S
	ipo-separate, Qipo-separate

	Profile Guided Optimization Options
	finstrument-functions, Qinstrument-functions
	fnsplit, Qfnsplit
	fprofile-ml-use
	p
	prof-data-order, Qprof-data-order
	prof-dir, Qprof-dir
	prof-file, Qprof-file
	prof-func-groups
	prof-func-order, Qprof-func-order
	prof-gen, Qprof-gen
	prof-hotness-threshold, Qprof-hotness-threshold
	prof-src-dir, Qprof-src-dir
	prof-src-root, Qprof-src-root
	prof-src-root-cwd, Qprof-src-root-cwd
	prof-use, Qprof-use
	prof-value-profiling, Qprof-value-profiling
	Qcov-dir
	Qcov-file
	Qcov-gen

	Optimization Report Options
	qopt-report, Qopt-report (ifort)
	qopt-report, Qopt-report (ifx)
	qopt-report-annotate, Qopt-report-annotate
	qopt-report-annotate-position, Qopt-report-annotate-position
	qopt-report-embed, Qopt-report-embed
	qopt-report-file, Qopt-report-file
	qopt-report-filter, Qopt-report-filter
	qopt-report-format, Qopt-report-format
	qopt-report-help, Qopt-report-help
	qopt-report-names, Qopt-report-names
	qopt-report-per-object, Qopt-report-per-object
	qopt-report-phase, Qopt-report-phase
	qopt-report-routine, Qopt-report-routine
	qopt-report-stdout, Qopt-report-stdout
	tcollect, Qtcollect
	tcollect-filter, Qtcollect-filter

	Floating-Point Options
	fast-transcendentals, Qfast-transcendentals
	ffp-accuracy
	fimf-absolute-error, Qimf-absolute-error
	fimf-accuracy-bits, Qimf-accuracy-bits
	fimf-arch-consistency, Qimf-arch-consistency
	fimf-domain-exclusion, Qimf-domain-exclusion
	fimf-force-dynamic-target, Qimf-force-dynamic-target
	fimf-max-error, Qimf-max-error
	fimf-precision, Qimf-precision
	fimf-use-svml, Qimf-use-svml
	fltconsistency
	fma, Qfma
	fp-model, fp
	fp-port, Qfp-port
	fp-speculation, Qfp-speculation
	fp-stack-check, Qfp-stack-check
	fpe
	fpe-all
	ftz, Qftz
	Ge
	mp1, Qprec
	pc, Qpc
	prec-div, Qprec-div
	prec-sqrt, Qprec-sqrt
	qsimd-honor-fp-model, Qsimd-honor-fp-model
	qsimd-serialize-fp-reduction, Qsimd-serialize-fp-reduction
	rcd, Qrcd
	recursive

	Inlining Options
	finline
	finline-functions
	finline-limit
	inline
	inline-factor, Qinline-factor
	inline-forceinline, Qinline-forceinline
	inline-level, Ob
	inline-max-per-compile, Qinline-max-per-compile
	inline-max-per-routine, Qinline-max-per-routine
	inline-max-size, Qinline-max-size
	inline-max-total-size, Qinline-max-total-size
	inline-min-caller-growth, Qinline-min-caller-growth
	inline-min-size, Qinline-min-size
	Qinline-dllimport

	Output, Debug, and Precompiled Header Options
	bintext
	c
	debug (Linux*)
	debug (Windows*)
	debug-parameters
	exe
	Fa
	FA (ifort only)
	FA (ifx only)
	fcode-asm
	Fd
	feliminate-unused-debug-types, Qeliminate-unused-debug-types
	fmerge-constants
	fmerge-debug-strings
	fsource-asm
	ftrapuv, Qtrapuv
	fverbose-asm
	g
	gdwarf
	grecord-gcc-switches
	gsplit-dwarf
	list
	list-line-len
	list-page-len
	map-opts, Qmap-opts
	o
	object
	pdbfile
	print-multi-lib
	Quse-msasm-symbols
	S
	show
	use-asm, Quse-asm
	Zi, Z7
	Zo

	Preprocessor Options
	B
	D
	d-lines, Qd-lines
	E
	EP
	fpp
	fpp-name
	gen-dep
	gen-depformat
	gen-depshow
	I
	idirafter
	isystem
	module
	preprocess-only
	u (Windows*)
	U
	undef
	X

	Component Control Options
	Qinstall
	Qlocation
	Qoption

	Language Options
	allow
	altparam
	assume
	ccdefault
	check
	extend-source
	fixed
	free
	fsanitize
	iface
	names
	pad-source, Qpad-source
	stand
	standard-realloc-lhs
	standard-semantics
	syntax-only
	wrap-margin

	Data Options
	align
	auto
	auto-scalar, Qauto-scalar
	convert
	double-size
	dyncom, Qdyncom
	falign-functions, Qfnalign
	falign-loops, Qalign-loops
	falign-stack
	fcommon
	fkeep-static-consts, Qkeep-static-consts
	fmaintain-32-byte-stack-align, Qmaintain-32-byte-stack-align
	fmath-errno
	fminshared
	fpconstant
	fpic
	fpie
	fstack-protector
	fstack-security-check
	fstrict-overflow, Qstrict-overflow
	fvisibility
	fzero-initialized-in-bss, Qzero-initialized-in-bss
	Gs
	GS
	homeparams
	init, Qinit
	intconstant
	integer-size
	mcmodel
	no-bss-init, Qnobss-init
	Qsfalign
	real-size
	save, Qsave
	zero, Qzero

	Compiler Diagnostic Options
	diag, Qdiag
	diag-dump, Qdiag-dump
	diag-error-limit, Qdiag-error-limit
	diag-file, Qdiag-file
	diag-file-append, Qdiag-file-append
	diag-id-numbers, Qdiag-id-numbers
	gen-interfaces
	traceback
	warn
	WB
	Winline

	Compatibility Options
	f66
	f77rtl
	fpscomp
	gcc-name
	gxx-name
	Qvc
	vms

	Linking or Linker Options
	4Nportlib, 4Yportlib
	Bdynamic
	Bstatic
	Bsymbolic
	Bsymbolic-functions
	cxxlib
	dbglibs
	dll
	dynamic-linker
	extlnk
	F (Windows*)
	fortlib
	fuse-ld
	l
	L
	libs
	map
	MD
	MT
	nodefaultlibs
	nofor-main
	no-intel-lib
	nostartfiles
	nostdlib
	pie
	pthread
	shared
	shared-intel
	shared-libgcc
	static
	static-intel
	static-libgcc
	static-libstdc++
	T
	threads
	v
	Wa
	winapp
	Wl, link
	Wp
	Xlinker

	Miscellaneous Options
	bigobj
	dryrun
	dumpmachine
	extfor
	extfpp
	fpreview-breaking-changes
	global-hoist, Qglobal-hoist
	help
	intel-freestanding
	intel-freestanding-target-os
	libdir
	logo
	multiple-processes, MP
	save-temps, Qsave-temps
	sox
	sysroot
	Tf
	watch
	what

	Deprecated and Removed Compiler Options
	Display Option Information
	Alternate Compiler Options

	Floating-Point Operations
	Programming Tradeoffs in Floating-Point Applications
	Floating-Point Optimizations
	Subnormal Numbers
	Floating-Point Environment
	Set the FTZ and DAZ Flags
	Check the Floating-Point Stack State
	Tuning Performance

	Libraries
	Create Libraries
	Call Library Routines
	Comparison of Intel® Fortran Compiler and Windows API Routines
	Specify Consistent Library Types on Windows
	Redistribute Libraries When Deploying Applications
	Resolve References to Shared Libraries
	Redistributable Library Considerations
	Store Object Code in Static Libraries
	Store Routines in Shareable Libraries
	Use Windows API Routines
	Include the Intel® Fortran Interface Definitions for Windows API Routines
	Call Windows API Routines
	Supplied Windows API Modules

	Math Libraries

	Data and I/O
	Data Representation
	Integer Data Representations
	INTEGER(KIND=1) Representation
	INTEGER(KIND=2) Representation
	INTEGER(KIND=4) Representation
	INTEGER(KIND=8) Representation

	Logical Data Representations
	Character Representation
	Hollerith Representation

	Fortran I/O
	Logical Devices
	Physical Devices on Windows
	Types of I/O Statements
	Forms of I/O Statements
	Assign Files to Logical Units
	File Organization
	Internal Files and Scratch Files
	File Access and File Structure
	File Records
	Record Types
	Record Length
	Record Access
	Record Transfer
	Specify Default Pathnames and File Names
	Open Files: OPEN Statement
	Obtain File Information: INQUIRE Statement
	Close Files: CLOSE Statement
	Record I/O Statement Specifiers
	File Sharing on Linux
	Specify the Initial Record Position
	Advancing and Nonadvancing Record I/O
	Use USEROPEN to Pass Control To a Routine
	Microsoft Fortran PowerStation Compatible Files
	Use Asynchronous I/O

	Mixed-Language Programming
	Standard Fortran and C Interoperability
	Use Standard Fortran Interoperability Syntax for Existing Fortran Extensions
	Standard Tools for Interoperability
	ISO_C_BINDING
	BIND(C)
	Interoperate with Arguments Using C Descriptors
	C Structures, Typedefs, and Macros for Interoperability
	Data Types
	Scalar Types
	Characters
	Pointers
	Derived Types

	Variables
	Global Data
	Procedures

	Platform Specifics
	Mixed-Language Issues
	Call Subprograms from the Main Program on Windows
	Pass Arguments in Mixed-Language Programming
	Stack Considerations in Calling Conventions on Windows
	Naming Conventions
	C/C++ Naming Conventions
	Compile and Link Intel® Fortran and C/C++ Programs
	Build Intel® Fortran and C Mixed-Language Programs on Windows

	Implementation Specifics
	Fortran Module Naming Conventions
	Handle Fortran Array Pointers and Allocatable Arrays
	Handle Fortran Array Descriptors
	Return Character Data Types

	Legacy Extensions
	ATTRIBUTES Directive Properties
	ALIAS Property for ATTRIBUTES Directive
	Use the -nofor-main Compiler Option

	Error Handling
	Build Process Errors
	Runtime Errors
	Understand Runtime Errors
	Runtime Default Error Processing
	Runtime Message Display and Format
	Values Returned at Program Termination
	Methods of Handling Errors
	Locate Runtime Errors
	List of Runtime Error Messages
	Signal Handling on Linux*
	Override the Default Runtime Library Exception Handler
	Advanced Exception and Termination Handling
	Default Exception Handling
	Default Console Event Handling
	Default Termination Handling
	Handlers for the Application Types
	Provide Your Own Exception or Termination Handler
	Use Windows* Structured Exception Handling
	Establish Console Event Handlers
	Use SIGNALQQ

	Language Reference
	New Features for ifx and ifort
	New Features for ifx Only
	Language Reference Conventions
	Program Elements and Source Forms
	Program Units
	Statements
	Keywords
	Names
	Character Sets
	Source Forms
	Free Source Form
	Fixed and Tab Source Forms
	Fixed-Format Lines
	Tab-Format Lines

	Source Code Useable for All Source Forms

	Data Types, Constants, and Variables
	Intrinsic Data Types
	Integer Data Types
	Integer Constants

	Real Data Types
	General Rules for Real Constants
	REAL(4) Constants
	REAL(8) or DOUBLE PRECISION Constants
	REAL(16) Constants

	Complex Data Types
	General Rules for Complex Constants
	COMPLEX(4) Constants
	COMPLEX(8) or DOUBLE COMPLEX Constants
	COMPLEX(16) Constants

	Logical Data Types
	Logical Constants

	Character Data Type
	Character Constants
	C Strings in Character Constants
	Character Substrings

	Derived Data Types
	Default Initialization
	Procedure Pointers as Derived-Type Components
	Type-Bound Procedures
	Type Extension
	Parameterized Derived-Type Declarations
	Parameterized TYPE Statements
	Structure Constructors for Parameterized Derived Types
	Type Parameter Order for Parameterized Derived Types
	Deferred-Length Type Parameters for Parameterized Derived Types
	Assumed-Length Type Parameters for Parameterized Derived Types

	Structure Components
	Structure Constructors

	Binary, Octal, Hexadecimal, and Hollerith Constants
	Binary Constants
	Octal Constants
	Hexadecimal Constants
	Hollerith Constants
	Determine the Data Type of Nondecimal Constants

	Enumerations and Enumerators
	Variables
	Data Types of Scalar Variables
	Specification of Data Type
	Implicit Typing Rules

	Arrays
	Whole Arrays
	Array Elements
	Array Sections
	Subscript Triplets
	Vector Subscripts

	Array Constructors

	Coarrays
	Image Selectors
	Established Coarrays
	Deferred-Coshape Coarrays
	Explicit-Coshape Coarrays
	Reference Coarray Images
	Specify Data Objects for Coarray Images

	Variable-Definition Context

	Expressions and Assignment Statements
	Expressions
	Numeric Expressions
	Parentheses in Numeric Expressions
	Data Type of Numeric Expressions

	Character Expressions
	Relational Expressions
	Logical Expressions
	Defined Operations
	Summary of Operator Precedence
	Constant and Specification Expressions
	Constant Expressions
	Specification Expressions

	Assignments
	Intrinsic Assignment Statements
	Numeric Assignment Statements
	Logical Assignment Statements
	Character Assignment Statements
	Derived-Type Assignment Statements
	Array Assignment Statements
	Examples of Intrinsic Assignment to Polymorphic Variables

	Defined Assignment Statements
	Pointer Assignments

	Specification Statements
	Type Declarations
	Declarations for Noncharacter Types
	Declarations for Character Types
	Declarations for Derived Types
	Declarations for Arrays
	Explicit-Shape Specifications
	Assumed-Shape Specifications
	Assumed-Size Specifications
	Assumed-Rank Specifications
	Deferred-Shape Specifications
	Implied-Shape Specifications

	Effects of Equivalency and Interaction with COMMON Statements
	Make Arrays Equivalent
	Make Substrings Equivalent
	EQUIVALENCE and COMMON Interaction

	Dynamic Allocation
	Effects of Allocation
	Allocation of Allocatable Variables
	Allocation of Allocatable Arrays
	Allocation of Pointer Targets

	Effects of Deallocation
	Deallocation of Allocatable Variables
	Deallocation of Allocatable Arrays
	Deallocation of Pointer Targets

	Execution Control
	Program Termination
	Branch Statements Overview
	Effects of DO Constructs
	Iteration Loop Control
	Nested DO Constructs
	Extended Range

	Image Control Statements
	STAT= and ERRMSG= Specifiers in Image Control Statements
	Execution Segments for Images

	Program Units and Procedures
	Main Program
	Procedure Characteristics
	Modules and Module Procedures
	Separate Module Procedures

	Intrinsic Modules
	ISO_C_BINDING Module
	Named Constants in the ISO_C_BINDING Module
	Intrinsic Module Procedures - ISO_C_BINDING

	ISO_FORTRAN_ENV Module
	Named Constants in the ISO_FORTRAN_ENV Module
	Derived Types in the ISO_FORTRAN_ENV Module
	Intrinsic Module Procedures - ISO_FORTRAN_ENV

	IEEE Intrinsic Modules and Procedures
	IEEE_ARITHMETIC Intrinsic Module
	IEEE_EXCEPTIONS Intrinsic Module
	IEEE_FEATURES Intrinsic Module
	IEEE Intrinsic Modules Quick Reference Tables

	Block Data Program Units Overview
	Functions, Subroutines, and Statement Functions
	General Rules for Function and Subroutine Subprograms
	Recursive Procedures
	Pure Procedures
	Impure Procedures
	Elemental Procedures

	Functions Overview
	RESULT Keyword Overview
	Function References

	Subroutines Overview
	Statement Functions Overview
	Entry Points in Subprograms
	Entry Points in Function Subprograms
	Entry Points in Subroutine Subprograms

	External Procedures
	Internal Procedures
	Argument Association in Procedures
	Optional Arguments
	Array Arguments
	Pointer Arguments
	Passed-Object Dummy Arguments
	Assumed-Length Character Arguments
	Character Constant and Hollerith Arguments
	Alternate Return Arguments
	Dummy Procedure Arguments
	Coarray Dummy Arguments
	References to Generic Procedures
	References to Generic Intrinsic Functions
	References to Elemental Intrinsic Procedures

	References to Non-Fortran Procedures

	Procedure Interfaces
	Procedures that Require Explicit Interfaces
	Explicit and Abstract Interfaces
	Define Generic Names for Procedures
	Define Generic Operators
	Define Generic Assignment

	Interoperability of Procedures and Procedure Interfaces
	Procedure Pointers

	Intrinsic Procedures
	Argument Keywords in Intrinsic Procedures
	Overview of Atomic Subroutines
	Overview of Collective Subroutines
	Overview of Bit Functions
	Categories and Lists of Intrinsic Procedures
	Categories of Intrinsic Functions
	Intrinsic Subroutines

	Data Transfer I/O Statements
	Records and Files
	Components of Data Transfer Statements
	I/O Control List
	Unit Specifier (UNIT=)
	Format Specifier (FMT=)
	Namelist Specifier (NML=)
	Record Specifier (REC=)
	I/O Status Specifier (IOSTAT=)
	Branch Specifiers (END=, EOR=, ERR=)
	Advance Specifier (ADVANCE=)
	Asynchronous Specifier (ASYNCHRONOUS=)
	Character Count Specifier (SIZE=)
	ID Specifier (ID=)
	POS Specifier (POS=)
	I/O Message Specifier (IOMSG=)

	I/O Lists
	Simple List Items in I/O Lists
	Implied-DO Lists in I/O Lists

	Forms for READ Statements
	Forms for Sequential READ Statements
	Rules for Formatted Sequential READ Statements
	Rules for List-Directed Sequential READ Statements
	Rules for Namelist Sequential READ Statements
	Rules for Unformatted Sequential READ Statements

	Forms for Direct-Access READ Statements
	Rules for Formatted Direct-Access READ Statements
	Rules for Unformatted Direct-Access READ Statements

	Forms for Stream READ Statements
	Forms and Rules for Internal READ Statements

	Forms for WRITE Statements
	Forms for Sequential WRITE Statements
	Rules for Formatted Sequential WRITE Statements
	Rules for List-Directed Sequential WRITE Statements
	Rules for Namelist Sequential WRITE Statements
	Rules for Unformatted Sequential WRITE Statements

	Forms for Direct-Access WRITE Statements
	Rules for Formatted Direct-Access WRITE Statements
	Rules for Unformatted Direct-Access WRITE Statements

	Forms for Stream WRITE Statements
	Forms and Rules for Internal WRITE Statements

	User-Defined Derived-Type I/O
	Specify the User-Defined Derived Type
	DT Edit Descriptor in User-Defined I/O
	Associate a Procedure with Defined I/O
	Defined I/O Procedures
	Generic Bindings
	Generic Interface Block

	Characteristics of Defined I/O Procedures
	Defined I/O Data Transfers
	Resolve Defined I/O Procedure References
	Recursive Defined I/O

	Examples of User-Defined Derived-Type I/O

	I/O Formatting
	Format Specifications
	Data Edit Descriptors
	Forms for Data Edit Descriptors
	General Rules for Numeric Editing
	Integer Editing
	I Editing
	B Editing
	O Editing
	Z Editing

	Real and Complex Editing
	F Editing
	E and D Editing
	EN Editing
	ES Editing
	EX Editing
	G Editing
	Complex Editing

	Logical Editing (L)
	Character Editing (A)
	Defined I/O Editing (DT)
	Default Widths for Data Edit Descriptors
	Terminating Short Fields of Input Data

	Control Edit Descriptors
	Forms for Control Edit Descriptors
	Positional Editing
	T Editing
	TL Editing
	TR Editing
	X Editing

	Sign Editing
	SP Editing
	SS Editing
	S Editing

	Blank Editing
	BN Editing
	BZ Editing

	Round Editing
	RU Editing
	RD Editing
	RZ Editing
	RN Editing
	RC Editing
	RP Editing

	Decimal Editing
	DC Editing
	DP Editing

	Scale-Factor Editing (P)
	Slash Editing (/)
	Colon Editing (:)
	Dollar-Sign ($) and Backslash (\) Editing
	Character Count Editing (Q)

	Character String Edit Descriptors
	Character Constant Editing
	H Editing

	Nested and Group Repeat Specifications
	Variable Format Expressions
	Print Formatted Records
	Interaction Between Format Specifications and I/O Lists

	File Operation I/O Statements
	INQUIRE Statement Specifiers
	ACCESS Specifier
	ACTION Specifier
	ASYNCHRONOUS Specifier
	BINARY Specifier
	BLANK Specifier
	BLOCKSIZE Specifier
	BUFFERED Specifier
	CARRIAGECONTROL Specifier
	CONVERT Specifier
	DECIMAL Specifier
	DELIM Specifier
	DIRECT Specifier
	ENCODING Specifier
	EXIST Specifier
	FORM Specifier
	FORMATTED Specifier
	IOFOCUS Specifier
	MODE Specifier
	NAME Specifier
	NAMED Specifier
	NEXTREC Specifier
	NUMBER Specifier
	OPENED Specifier
	ORGANIZATION Specifier
	PAD Specifier
	PENDING Specifier
	POS Specifier
	POSITION Specifier
	READ Specifier
	READWRITE Specifier
	RECL Specifier
	RECORDTYPE Specifier
	ROUND Specifier
	SEQUENTIAL Specifier
	SHARE Specifier
	SIGN Specifier
	SIZE Specifier
	UNFORMATTED Specifier
	WRITE Specifier

	OPEN Statement Specifiers
	ACCESS Specifier
	ACTION Specifier
	ASSOCIATEVARIABLE Specifier
	ASYNCHRONOUS Specifier
	BLANK Specifier
	BLOCKSIZE Specifier
	BUFFERCOUNT Specifier
	BUFFERED Specifier
	CARRIAGECONTROL Specifier
	CONVERT Specifier
	DECIMAL Specifier
	DEFAULTFILE Specifier
	DELIM Specifier
	DISPOSE Specifier
	ENCODING Specifier
	FILE Specifier
	FORM Specifier
	IOFOCUS Specifier
	MAXREC Specifier
	MODE Specifier
	NAME Specifier
	NEWUNIT Specifier
	NOSHARED Specifier
	ORGANIZATION Specifier
	PAD Specifier
	POSITION Specifier
	READONLY Specifier
	RECL Specifier
	RECORDSIZE Specifier
	RECORDTYPE Specifier
	ROUND Specifier
	SHARE Specifier
	SHARED Specifier
	SIGN Specifier
	STATUS Specifier
	TITLE Specifier
	TYPE Specifier
	USEROPEN Specifier

	Compilation Control Lines and Statements
	Directive Enhanced Compilation
	Syntax Rules for Compiler Directives
	General Compiler Directives
	Rules for Placement of Directives
	Rules for General Directives that Affect DO Loops
	Rules for Loop Directives that Affect Array Assignment Statements

	OpenMP* Fortran Compiler Directives
	Categories for OpenMP* Fortran Directives
	Clauses Used in Multiple OpenMP* Fortran Directives
	Conditional Compilation Rules
	Rules for Nesting and Binding

	Equivalent Compiler Options

	Scope and Association
	Scope
	Unambiguous Generic Procedure References
	Resolve Procedure References
	References to Generic Names
	References to Specific Names
	References to Non-Established Names

	Association
	Name Association
	Argument Association
	Use and Host Association
	Use Association
	Host Association

	Linkage Association
	Construct Association
	Additional Attributes of Associate Names

	Pointer Association
	Storage Association
	Storage Units and Storage Sequence
	Array Association

	Inheritance Association

	Deleted and Obsolescent Language Features
	Deleted Language Features in the Fortran Standard
	Obsolescent Language Features in the Fortran Standard

	Additional Language Features
	FORTRAN 66 Interpretation of the EXTERNAL Statement
	Alternative Syntax for the PARAMETER Statement
	Alternative Syntax for Binary, Octal, and Hexadecimal Constants
	Alternative Syntax for a Record Specifier
	Alternative Syntax for the DELETE Statement
	Alternative Form for Namelist External Records
	Record Structures
	Structure Declarations
	Type Declarations within Record Structures
	Substructure Declarations

	References to Record Fields
	Aggregate Assignment

	Additional Character Sets
	Character and Key Code Charts for Windows*
	ASCII Character Codes for Windows*
	ASCII Character Codes Chart 1
	ASCII Character Codes Chart 2: IBM* Character Set

	ANSI Character Codes for Windows*
	ANSI Character Codes Chart

	Key Codes for Windows*
	Key Codes Chart 1
	Key Codes Chart 2

	ASCII Character Set for Linux*

	Data Representation Models
	Model for Integer Data
	Model for Real Data
	Model for Bit Data
	Bit Sequence Comparisons

	Library Modules and Runtime Library Routines
	Runtime Library Routines
	NLS and MCBS Routines on Windows
	Standard Fortran Routines that Handle MBCS Characters on Windows
	Portability Routines
	Serial Port I/O Routines on Windows

	Summary of Language Extensions
	Source Forms
	Names
	Character Sets
	Intrinsic Data Types
	Constants
	Expressions and Assignment
	Specification Statements
	Execution Control
	Compilation Control Lines and Statements
	Built-In Functions
	I/O Statements
	I/O Formatting
	File Operation Statements
	Compiler Directives
	Intrinsic Procedures
	Additional Language Features
	Runtime Library Routines

	A to Z Reference
	Language Summary Tables
	Statements for Program Unit Calls and Definitions
	Statements Affecting Variables
	Statements and Intrinsic Functions for Input and Output
	Compiler Directives
	Program Control Statements
	Inquiry Intrinsic Functions
	Random Number Intrinsic Procedures
	Atomic Intrinsic Subroutines
	Collective Intrinsic Subroutines
	Date and Time Intrinsic Subroutines
	Keyboard and Speaker Library Routines
	Statements and Intrinsic Procedures for Memory Allocation and Deallocation
	Intrinsic Functions for Arrays and Coarrays
	Intrinsic Functions for Numeric and Type Conversion
	Trigonometric, Exponential, Root, and Logarithmic Intrinsic Procedures
	Intrinsic Functions for Floating-Point Inquiry and Control
	Character Intrinsic Functions
	Intrinsic Procedures for Bit Operation and Representation
	QuickWin Library Routines
	Graphics Library Routines
	Portability Library Routines
	National Language Support Library Routines
	POSIX* Library Procedures Summary
	Dialog Library Routines
	COM and Automation Library Routines
	Miscellaneous Runtime Library Routines

	A to B
	A to B
	ABORT
	ABS
	ABSTRACT INTERFACE
	ACCEPT
	ACCESS
	ACHAR
	ACOS
	ACOSD
	ACOSH
	ADJUSTL
	ADJUSTR
	AIMAG
	AINT
	ALARM
	ALIAS
	ALIGNED Clause
	ALL
	ALLOCATABLE
	ALLOCATE Clause
	ALLOCATE Directive
	ALLOCATE Statement
	ALLOCATORS
	ALLOCATED
	ANINT
	ANY
	ASIN
	ASIND
	ASINH
	ASSIGN - Label Assignment
	Assignment(=) - Defined Assignment
	Assignment - Intrinsic
	ASSOCIATE
	ASSOCIATED
	ASSUME
	ASSUME_ALIGNED
	ASSUMES Directive for OpenMP
	ASSUMPTION Clause
	ASYNCHRONOUS
	ATAN
	ATAN2
	ATAN2D
	ATAND
	ATANH
	ATOMIC
	ATOMIC_ADD
	ATOMIC_AND
	ATOMIC_CAS
	ATOMIC_DEFINE
	ATOMIC_FETCH_ADD
	ATOMIC_FETCH_AND
	ATOMIC_FETCH_OR
	ATOMIC_FETCH_XOR
	ATOMIC_OR
	ATOMIC_REF
	ATOMIC_XOR
	ATTRIBUTES
	ATTRIBUTES ALIAS
	ATTRIBUTES ALIGN
	ATTRIBUTES ALLOCATABLE
	ATTRIBUTES ALLOW_NULL
	ATTRIBUTES C and STDCALL
	ATTRIBUTES CODE_ALIGN
	ATTRIBUTES CONCURRENCY_SAFE
	ATTRIBUTES CVF
	ATTRIBUTES DECORATE
	ATTRIBUTES DEFAULT
	ATTRIBUTES DLLEXPORT and DLLIMPORT
	ATTRIBUTES EXTERN
	ATTRIBUTES INLINE, NOINLINE, and FORCEINLINE
	ATTRIBUTES IGNORE_LOC
	ATTRIBUTES MIXED_STR_LEN_ARG and NOMIXED_STR_LEN_ARG
	ATTRIBUTES NO_ARG_CHECK
	ATTRIBUTES NOCLONE
	ATTRIBUTES OPTIMIZATION_PARAMETER
	ATTRIBUTES REFERENCE and VALUE
	ATTRIBUTES VARYING
	ATTRIBUTES VECTOR

	AUTOMATIC
	BACKSPACE
	BADDRESS
	BARRIER
	BEEPQQ
	BESJ0, BESJ1, BESJN, BESY0, BESY1, BESYN
	BESSEL_J0
	BESSEL_J1
	BESSEL_JN
	BESSEL_Y0
	BESSEL_Y1
	BESSEL_YN
	BGE
	BGT
	BIC, BIS
	BIND
	BIT
	BIT_SIZE
	BLE
	BLOCK
	BLOCK DATA
	BLOCK_LOOP and NOBLOCK_LOOP
	BLT
	BSEARCHQQ
	BTEST
	BYTE

	C to D
	C to D
	C_ASSOCIATED
	C_F_POINTER
	C_F_PROCPOINTER
	C_F_STRPOINTER
	C_FUNLOC
	C_LOC
	C_SIZEOF
	CACHESIZE
	CALL
	CANCEL
	CANCELLATION POINT
	CASE
	CDFLOAT
	CEILING
	CFI_address
	CFI_allocate
	CFI_deallocate
	CFI_establish
	CFI_is_contiguous
	CFI_section
	CFI_select_part
	CFI_setpointer
	CHANGEDIRQQ
	CHANGEDRIVEQQ
	CHANGE TEAM and END TEAM
	CHAR
	CHARACTER
	CHDIR
	CHMOD
	CLASS
	CLEARSTATUSFPQQ
	CLOCK
	CLOCKX
	CLOSE
	CMPLX
	CO_BROADCAST
	CO_MAX
	CO_MIN
	CO_REDUCE
	CO_SUM
	CODE_ALIGN
	CODIMENSION
	COLLAPSE Clause
	COMMAND_ARGUMENT_COUNT
	COMMITQQ
	COMMON
	COMPILER_OPTIONS
	COMPILER_VERSION
	COMPLEX
	COMPLINT, COMPLREAL, COMPLLOG
	CONJG
	CONTAINS
	CONTIGUOUS
	CONTINUE
	COPYIN Clause
	COPYPRIVATE Clause
	COS
	COSD
	COSH
	COSHAPE
	COTAN
	COTAND
	COUNT
	CPU_TIME
	CRITICAL Directive
	CRITICAL Statement
	CSHIFT
	CSMG
	CTIME
	CYCLE
	DATA
	DATE Intrinsic Procedure
	DATE Portability Routine
	DATE4
	DATE_AND_TIME
	DBESJ0, DBESJ1, DBESJN, DBESY0, DBESY1, DBESYN
	DBLE
	DCLOCK
	DCMPLX
	DEALLOCATE
	DECLARE and NODECLARE
	DECLARE MAPPER
	DECLARE REDUCTION
	DECLARE SIMD
	DECLARE TARGET
	DECLARE VARIANT
	DECODE
	DEFAULT
	DEFINE and UNDEFINE
	DEFINE FILE
	DELDIRQQ
	DELETE
	DELFILESQQ
	DEPEND Clause
	DEPOBJ
	DEVICE Clause
	DEVICE_TYPE Clause
	DFLOAT
	DFLOATI, DFLOATJ, DFLOATK
	DIGITS
	DIM
	DIMENSION
	DISPATCH
	DISTRIBUTE
	DISTRIBUTE PARALLEL DO
	DISTRIBUTE PARALLEL DO SIMD
	DISTRIBUTE POINT
	DISTRIBUTE SIMD
	DNUM
	DO Directive
	DO Statement
	DO CONCURRENT
	DO SIMD
	DO WHILE
	DOT_PRODUCT
	DOUBLE COMPLEX
	DOUBLE PRECISION
	DPROD
	DRAND, DRANDM
	DRANSET
	DREAL
	DSHIFTL
	DSHIFTR
	DTIME

	E to F
	E to F
	ELEMENTAL
	ELSE Directive
	ELSE Statement
	ELSEIF Directive
	ELSE IF
	ELSE WHERE
	ENCODE
	END
	END DO
	ENDIF Directive
	END IF
	ENDFILE
	END FORALL
	END INTERFACE
	END TYPE
	END WHERE
	ENTRY
	EOF
	EOSHIFT
	EPSILON
	EQUIVALENCE
	ERF
	ERFC
	ERFC_SCALED
	ERROR Directive for OpenMP
	ERRSNS
	ESTABLISHQQ
	ETIME
	EVENT POST and EVENT WAIT
	EVENT_QUERY
	EXECUTE_COMMAND_LINE
	EXIT Statement
	EXIT Subroutine
	EXP
	EXP10
	EXPONENT
	EXTENDS_TYPE_OF
	EXTERNAL
	F_C_STRING
	FAIL IMAGE
	FAILED_IMAGES
	FDATE
	FGETC
	FINAL Clause
	FINAL Statement
	FIND
	FINDLOC
	FINDFILEQQ
	FIRSTPRIVATE
	FIXEDFORMLINESIZE
	FLOAT
	FLOOR
	FLUSH Directive
	FLUSH Statement
	FLUSH Subroutine
	FMA and NOFMA
	FOR_DESCRIPTOR_ASSIGN
	FOR_GET_FPE
	FOR_IFCORE_VERSION
	FOR_IFPORT_VERSION
	FOR_LFENCE
	FOR_MFENCE
	for_rtl_finish_
	for_rtl_init_
	FOR_SET_FPE
	FOR_SET_FTN_ALLOC
	FOR_SET_REENTRANCY
	FOR_SFENCE
	FORALL
	FORMAT
	FORM TEAM
	FP_CLASS
	FPUTC
	FRACTION
	FREE
	FREEFORM and NOFREEFORM
	FSEEK
	FSTAT
	FTELL, FTELLI8
	FULLPATHQQ
	FUNCTION

	G
	G
	GAMMA
	GENERIC
	GERROR
	GETARG
	GETC
	GETCHARQQ
	GET_COMMAND
	GET_COMMAND_ARGUMENT
	GETCONTROLFPQQ
	GETCWD
	GETDAT
	GETDRIVEDIRQQ
	GETDRIVESIZEQQ
	GETDRIVESQQ
	GETENV
	GET_ENVIRONMENT_VARIABLE
	GETENVQQ
	GETEXCEPTIONPTRSQQ
	GETFILEINFOQQ
	GETGID
	GETLASTERROR
	GETLASTERRORQQ
	GETLOG
	GETPID
	GETPOS, GETPOSI8
	GETSTATUSFPQQ
	GETSTRQQ
	GET_TEAM
	GETTIM
	GETTIMEOFDAY
	GETUID
	GMTIME
	GOTO - Assigned
	GOTO - Computed
	GOTO - Unconditional
	GROUPPRIVATE

	H to I
	H to I
	HINT
	HOSTNAM
	HUGE
	HYPOT
	IACHAR
	IALL
	IAND
	IANY
	IARGC
	IBCHNG
	IBCLR
	IBITS
	IBSET
	ICHAR
	IDATE Intrinsic Procedure
	IDATE Portability Routine
	IDATE4
	IDENT
	IDFLOAT
	IEEE_CLASS
	IEEE_COPY_SIGN
	IEEE_FLAGS
	IEEE_FMA
	IEEE_GET_FLAG
	IEEE_GET_HALTING_MODE
	IEEE_GET_MODES
	IEEE_GET_ROUNDING_MODE
	IEEE_GET_STATUS
	IEEE_GET_UNDERFLOW_MODE
	IEEE_HANDLER
	IEEE_INT
	IEEE_IS_FINITE
	IEEE_IS_NAN
	IEEE_IS_NEGATIVE
	IEEE_IS_NORMAL
	IEEE_LOGB
	IEEE_MAX_NUM
	IEEE_MAX_NUM_MAG
	IEEE_MIN_NUM
	IEEE_MIN_NUM_MAG
	IEEE_NEXT_AFTER
	IEEE_NEXT_DOWN
	IEEE_NEXT_UP
	IEEE_QUIET_EQ
	IEEE_QUIET_GE
	IEEE_QUIET_GT
	IEEE_QUIET_LE
	IEEE_QUIET_LT
	IEEE_QUIET_NE
	IEEE_REAL
	IEEE_REM
	IEEE_RINT
	IEEE_SCALB
	IEEE_SELECTED_REAL_KIND
	IEEE_SET_FLAG
	IEEE_SET_HALTING_MODE
	IEEE_SET_MODES
	IEEE_SET_ROUNDING_MODE
	IEEE_SET_STATUS
	IEEE_SET_UNDERFLOW_MODE
	IEEE_SIGNALING_EQ
	IEEE_SIGNALING_GE
	IEEE_SIGNALING_GT
	IEEE_SIGNALING_LE
	IEEE_SIGNALING_LT
	IEEE_SIGNALING_NE
	IEEE_SIGNBIT
	IEEE_SUPPORT_DATATYPE
	IEEE_SUPPORT_DENORMAL
	IEEE_SUPPORT_DIVIDE
	IEEE_SUPPORT_FLAG
	IEEE_SUPPORT_HALTING
	IEEE_SUPPORT_INF
	IEEE_SUPPORT_IO
	IEEE_SUPPORT_NAN
	IEEE_SUPPORT_ROUNDING
	IEEE_SUPPORT_SQRT
	IEEE_SUPPORT_STANDARD
	IEEE_SUPPORT_SUBNORMAL
	IEEE_SUPPORT_UNDERFLOW_CONTROL
	IEEE_UNORDERED
	IEEE_VALUE
	IEOR
	IERRNO
	IF - Arithmetic
	IF - Logical
	IF Clause
	IF Construct
	IF Directive Construct
	IF DEFINED Directive
	IFIX
	IFLOATI, IFLOATJ
	ILEN
	IMAGE_INDEX
	IMAGE_STATUS
	IMPLICIT
	IMPORT
	IMPURE
	IN_REDUCTION
	INCLUDE
	INDEX
	INLINE, FORCEINLINE, and NOINLINE
	INMAX
	INQUIRE
	INT
	INTC
	INT_PTR_KIND
	INTEGER
	INTEGER Directive
	INTENT
	INTERFACE
	INTERFACE TO
	INTEROP
	INTRINSIC
	INUM
	IOR
	IPARITY
	IRAND, IRANDM
	IRANGET
	IRANSET
	IS_CONTIGUOUS
	IS_DEVICE_PTR Clause
	IS_IOSTAT_END
	IS_IOSTAT_EOR
	ISATTY
	ISHA
	ISHC
	ISHFT
	ISHFTC
	ISHL
	ISNAN
	ITERATOR Clause Modifier
	ITIME
	IVDEP

	J to L
	J to L
	JABS
	JDATE
	JDATE4
	JNUM
	KILL
	KIND
	KNUM
	LASTPRIVATE
	LBOUND
	LCOBOUND
	LCWRQQ
	LEADZ
	LEN
	LEN_TRIM
	LGE
	LGT
	LINEAR Clause
	LLE
	LLT
	LNBLNK
	LOC
	%LOC
	LOCK and UNLOCK
	LOG
	LOG_GAMMA
	LOG10
	LOGICAL Function
	LOGICAL Statement
	LONG
	LOOP
	LOOP COUNT
	LSHIFT
	LSTAT
	LTIME

	M to N
	M to N
	MAKEDIRQQ
	MALLOC
	MAP clause
	MAP and END MAP statements
	MASKED
	MASKED TASKLOOP
	MASKED TASKLOOP SIMD
	MASKL
	MASKR
	MASTER
	MASTER TASKLOOP
	MASTER TASKLOOP SIMD
	MATMUL
	MAX
	MAXEXPONENT
	MAXLOC
	MAXVAL
	MCLOCK
	MERGE
	MERGE_BITS
	MERGEABLE Clause
	MESSAGE
	METADIRECTIVE
	MIN
	MINEXPONENT
	MINLOC
	MINVAL
	MM_PREFETCH
	MOD
	MODULE
	MODULE FUNCTION
	MODULE PROCEDURE
	MODULE SUBROUTINE
	MODULO
	MOVE_ALLOC
	MVBITS
	NAMELIST
	NARGS
	NEAREST
	NEW_LINE
	NINT
	NOFREEFORM
	NOFUSION
	NON_RECURSIVE
	NOOPTIMIZE
	NOPREFETCH
	NORM2
	NOSTRICT
	NOT
	NOTHING
	NOUNROLL
	NOUNROLL_AND_JAM
	NOVECTOR
	NOWAIT
	NULL
	NULLIFY
	NUM_IMAGES

	O to P
	O to P
	OBJCOMMENT
	OPEN
	OPTIONAL
	OPTIMIZE and NOOPTIMIZE
	OPTIONS Directive
	OPTIONS Statement
	OR
	ORDER Clause
	ORDERED
	OUT_OF_RANGE
	PACK Directive
	PACK Function
	PACKTIMEQQ
	PARALLEL Directive for OpenMP
	PARALLEL and NOPARALLEL General Directives
	PARALLEL DO
	PARALLEL DO SIMD
	PARALLEL LOOP
	PARALLEL MASKED
	PARALLEL MASKED TASKLOOP
	PARALLEL MASKED TASKLOOP SIMD
	PARALLEL MASTER
	PARALLEL MASTER TASKLOOP
	PARALLEL MASTER TASKLOOP SIMD
	PARALLEL SECTIONS
	PARALLEL WORKSHARE
	PARAMETER
	PARITY
	PAUSE
	PEEKCHARQQ
	PERROR
	POINTER - Fortran
	POINTER - Integer
	POPCNT
	POPPAR
	PRECISION
	PREFETCH and NOPREFETCH General Directives
	PREFETCH DATA Directive for OpenMP
	PRESENT
	PRINT
	PRIORITY
	PRIVATE Clause
	PRIVATE Statement
	PROCEDURE
	PROCESSOR Clause
	PRODUCT
	PROGRAM
	PROTECTED
	PSECT
	PUBLIC
	PURE
	PUTC

	Q to R
	Q to R
	QCMPLX
	QEXT
	QFLOAT
	QNUM
	QRANSET
	QREAL
	QSORT
	RADIX
	RAISEQQ
	RAN
	RAND, RANDOM
	RANDOM
	RANDOM_INIT
	RANDOM_NUMBER
	RANDOM_SEED
	RANDU
	RANF Intrinsic Procedure
	RANF Portability Routine
	RANGE
	RANGET
	RANK
	RANSET
	READ
	REAL Directive
	REAL Function
	REAL Statement
	RECORD
	RECURSIVE and NON_RECURSIVE
	REDUCE
	REDUCTION
	%REF
	RENAME
	RENAMEFILEQQ
	REPEAT
	REQUIRES
	RESHAPE
	RESULT
	RETURN
	REWIND
	REWRITE
	RINDEX
	RNUM
	RRSPACING
	RSHIFT
	RTC
	RUNQQ

	S
	S
	SAME_TYPE_AS
	SAVE
	SCALE
	SCAN Directive
	SCAN Function
	SCANENV
	SCOPE
	SCWRQQ
	SECNDS Intrinsic Procedure
	SECNDS Portability Routine
	SECTIONS
	SEED
	SELECT CASE and END SELECT
	SELECT RANK
	SELECT TYPE
	SELECTED_CHAR_KIND
	SELECTED_INT_KIND
	SELECTED_REAL_KIND
	SEQUENCE
	SETCONTROLFPQQ
	SETDAT
	SETENVQQ
	SETERRORMODEQQ
	SET_EXPONENT
	SETFILEACCESSQQ
	SETFILETIMEQQ
	SETTIM
	SHAPE
	SHARED
	SHIFTA
	SHIFTL
	SHIFTR
	SHORT
	SIGN
	SIGNAL
	SIGNALQQ
	SIMD Directive for OpenMP
	SIMD Loop Directive
	SIN
	SIND
	SINGLE
	SINH
	SIZE
	SIZEOF
	SLEEP
	SLEEPQQ
	SNGL
	SORTQQ
	SPACING
	SPLITPATHQQ
	SPREAD
	SQRT
	SRAND
	SSWRQQ
	STAT
	Statement Function
	STATIC
	STOP and ERROR STOP
	STOPPED_IMAGES
	STORAGE_SIZE
	STRICT and NOSTRICT
	STRUCTURE and END STRUCTURE
	SUBDEVICE
	SUBMODULE
	SUBROUTINE
	SUM
	SYNC ALL
	SYNC IMAGES
	SYNC MEMORY
	SYNC TEAM
	SYSTEM
	SYSTEM_CLOCK
	SYSTEMQQ

	T to Z
	T to Z
	TAN
	TAND
	TANH
	TARGET
	TARGET DATA
	TARGET Statement
	TARGET ENTER DATA
	TARGET EXIT DATA
	TARGET PARALLEL
	TARGET PARALLEL DO
	TARGET PARALLEL DO SIMD
	TARGET PARALLEL LOOP
	TARGET SIMD
	TARGET TEAMS
	TARGET TEAMS DISTRIBUTE
	TARGET TEAMS DISTRIBUTE PARALLEL DO
	TARGET TEAMS DISTRIBUTE PARALLEL DO SIMD
	TARGET TEAMS DISTRIBUTE SIMD
	TARGET TEAMS LOOP
	TARGET UPDATE
	TASK
	TASK_REDUCTION
	TASKGROUP
	TASKLOOP
	TASKLOOP SIMD
	TASKWAIT
	TASKYIELD
	TEAM_NUMBER
	TEAMS
	TEAMS DISTRIBUTE
	TEAMS DISTRIBUTE PARALLEL DO
	TEAMS DISTRIBUTE PARALLEL DO SIMD
	TEAMS DISTRIBUTE SIMD
	TEAMS LOOP
	THIS_IMAGE
	THREAD_LIMIT
	THREADPRIVATE
	TILE
	TIME Intrinsic Procedure
	TIME Portability Routine
	TIMEF
	TINY
	TRACEBACKQQ
	TRAILZ
	TRANSFER
	TRANSPOSE
	TRIM
	TTYNAM
	Type Declarations
	TYPE Statement for Derived Types
	UBOUND
	UCOBOUND
	UNDEFINE
	UNION and END UNION
	UNLINK
	UNPACK
	UNPACKTIMEQQ
	UNROLL Directive for OpenMP
	UNROLL and NOUNROLL General Directives
	UNROLL_AND_JAM and NOUNROLL_AND_JAM
	UNTIED Clause
	USE
	USE_DEVICE_PTR Clause
	%VAL
	VALUE
	VECREMAINDER Clause
	VECTOR and NOVECTOR
	VERIFY
	VIRTUAL
	VOLATILE
	WAIT
	WHERE
	WORKSHARE
	WRITE
	XOR
	ZEXT

	POSIX* Library Routines
	IPXFARGC
	IPXFCONST
	IPXFLENTRIM
	IPXFWEXITSTATUS
	IPXFWSTOPSIG
	IPXFWTERMSIG
	PXFGET
	PXFSET
	PXFAGET
	PXFASET
	PXFACCESS
	PXFALARM
	PXFCALLSUBHANDLE
	PXFCFGETISPEED
	PXFCFGETOSPEED
	PXFCFSETISPEED
	PXFCFSETOSPEED
	PXFCHDIR
	PXFCHMOD
	PXFCHOWN
	PXFCLEARENV
	PXFCLOSE
	PXFCLOSEDIR
	PXFCONST
	PXFCREAT
	PXFCTERMID
	PXFDUP, PXFDUP2
	PXFEGET
	PXFESET
	PXFEXECV
	PXFEXECVE
	PXFEXECVP
	PXFEXIT, PXFFASTEXIT
	PXFFCNTL
	PXFFDOPEN
	PXFFFLUSH
	PXFFGETC
	PXFFILENO
	PXFFORK
	PXFFPATHCONF
	PXFFPUTC
	PXFFSEEK
	PXFFSTAT
	PXFFTELL
	PXFGETARG
	PXFGETC
	PXFGETCWD
	PXFGETEGID
	PXFGETENV
	PXFGETEUID
	PXFGETGID
	PXFGETGRGID
	PXFGETGRNAM
	PXFGETGROUPS
	PXFGETLOGIN
	PXFGETPGRP
	PXFGETPID
	PXFGETPPID
	PXFGETPWNAM
	PXFGETPWUID
	PXFGETSUBHANDLE
	PXFGETUID
	PXFISATTY
	PXFISBLK
	PXFISCHR
	PXFISCONST
	PXFISDIR
	PXFISFIFO
	PXFISREG
	PXFKILL
	PXFLINK
	PXFLOCALTIME
	PXFLSEEK
	PXFMKDIR
	PXFMKFIFO
	PXFOPEN
	PXFOPENDIR
	PXFPATHCONF
	PXFPAUSE
	PXFPIPE
	PXFPOSIXIO
	PXFPUTC
	PXFREAD
	PXFREADDIR
	PXFRENAME
	PXFREWINDDIR
	PXFRMDIR
	PXFSETENV
	PXFSETGID
	PXFSETPGID
	PXFSETSID
	PXFSETUID
	PXFSIGACTION
	PXFSIGADDSET
	PXFSIGDELSET
	PXFSIGEMPTYSET
	PXFSIGFILLSET
	PXFSIGISMEMBER
	PXFSIGPENDING
	PXFSIGPROCMASK
	PXFSIGSUSPEND
	PXFSLEEP
	PXFSTAT
	PXFSTRUCTCOPY
	PXFSTRUCTCREATE
	PXFSTRUCTFREE
	PXFSYSCONF
	PXFTCDRAIN
	PXFTCFLOW
	PXFTCFLUSH
	PXFTCGETATTR
	PXFTCGETPGRP
	PXFTCSENDBREAK
	PXFTCSETATTR
	PXFTCSETPGRP
	PXFTIME
	PXFTIMES
	PXFTTYNAME
	PXFUCOMPARE
	PXFUMASK
	PXFUNAME
	PXFUNLINK
	PXFUTIME
	PXFWAIT
	PXFWAITPID
	PXFWIFEXITED
	PXFWIFSIGNALED
	PXFWIFSTOPPED
	PXFWRITE

	Automation Server and Component Object Model Library Routines
	AUTOAddArg
	AUTOAllocateInvokeArgs
	AUTODeallocateInvokeArgs
	AUTOGetExceptInfo
	AUTOGetProperty
	AUTOGetPropertyByID
	AUTOGetPropertyInvokeArgs
	AUTOInvoke
	AUTOSetProperty
	AUTOSetPropertyByID
	AUTOSetPropertyInvokeArgs
	COMAddObjectReference
	COMCLSIDFromProgID
	COMCLSIDFromString
	COMCreateObject
	COMCreateObjectByGUID
	COMCreateObjectByProgID
	COMGetActiveObjectByGUID
	COMGetActiveObjectByProgID
	COMGetFileObject
	COMInitialize
	COMIsEqualGUID
	COMQueryInterface
	COMReleaseObject
	COMStringFromGUID
	COMUninitialize

	National Language Support Library Routines
	MBCharLen
	MBConvertMBToUnicode
	MBConvertUnicodeToMB
	MBCurMax
	MBINCHARQQ
	MBINDEX
	MBJISToJMS, MBJMSToJIS
	MBLead
	MBLen
	MBLen_Trim
	MBLGE, MBLGT, MBLLE, MBLLT, MBLEQ, MBLNE
	MBNext
	MBPrev
	MBSCAN
	MBStrLead
	MBVERIFY
	NLSEnumCodepages
	NLSEnumLocales
	NLSFormatCurrency
	NLSFormatDate
	NLSFormatNumber
	NLSFormatTime
	NLSGetEnvironmentCodepage
	NLSGetLocale
	NLSGetLocaleInfo
	NLSSetEnvironmentCodepage
	NLSSetLocale

	QuickWin Library Routines
	ABOUTBOXQQ
	APPENDMENUQQ
	CLICKMENUQQ
	DELETEMENUQQ
	FOCUSQQ
	GETACTIVEQQ
	GETEXITQQ
	GETHWNDQQ
	GETUNITQQ
	GETWINDOWCONFIG
	GETWSIZEQQ
	INCHARQQ
	INITIALSETTINGS
	INQFOCUSQQ
	INSERTMENUQQ
	INTEGERTORGB
	MESSAGEBOXQQ
	MODIFYMENUFLAGSQQ
	MODIFYMENUROUTINEQQ
	MODIFYMENUSTRINGQQ
	PASSDIRKEYSQQ
	REGISTERMOUSEEVENT
	RGBTOINTEGER
	SETACTIVEQQ
	SETEXITQQ
	SETMESSAGEQQ
	SETMOUSECURSOR
	SETWINDOWCONFIG
	SETWINDOWMENUQQ
	SETWSIZEQQ
	UNREGISTERMOUSEEVENT
	WAITONMOUSEEVENT

	Graphics Library Routines
	ARC, ARC_W
	CLEARSCREEN
	DISPLAYCURSOR
	ELLIPSE, ELLIPSE_W
	FLOODFILL, FLOODFILL_W
	FLOODFILLRGB, FLOODFILLRGB_W
	GETARCINFO
	GETBKCOLOR
	GETBKCOLORRGB
	GETCOLOR
	GETCOLORRGB
	GETCURRENTPOSITION, GETCURRENTPOSITION_W
	GETFILLMASK
	GETFONTINFO
	GETGTEXTEXTENT
	GETGTEXTROTATION
	GETIMAGE, GETIMAGE_W
	GETLINESTYLE
	GETLINEWIDTHQQ
	GETPHYSCOORD
	GETPIXEL, GETPIXEL_W
	GETPIXELRGB, GETPIXELRGB_W
	GETPIXELS
	GETPIXELSRGB
	GETTEXTCOLOR
	GETTEXTCOLORRGB
	GETTEXTPOSITION
	GETTEXTWINDOW
	GETVIEWCOORD, GETVIEWCOORD_W
	GETWINDOWCOORD
	GETWRITEMODE
	GRSTATUS
	IMAGESIZE, IMAGESIZE_W
	INITIALIZEFONTS
	LINETO, LINETO_W
	LINETOAR
	LINETOAREX
	LOADIMAGE, LOADIMAGE_W
	MOVETO, MOVETO_W
	OUTGTEXT
	OUTTEXT
	PIE, PIE_W
	POLYBEZIER, POLYBEZIER_W
	POLYBEZIERTO, POLYBEZIERTO_W
	POLYGON, POLYGON_W
	POLYLINEQQ
	PUTIMAGE, PUTIMAGE_W
	RECTANGLE, RECTANGLE_W
	REMAPALLPALETTERGB, REMAPPALETTERGB
	SAVEIMAGE, SAVEIMAGE_W
	SCROLLTEXTWINDOW
	SETBKCOLOR
	SETBKCOLORRGB
	SETCLIPRGN
	SETCOLOR
	SETCOLORRGB
	SETFILLMASK
	SETFONT
	SETGTEXTROTATION
	SETLINESTYLE
	SETLINEWIDTHQQ
	SETPIXEL, SETPIXEL_W
	SETPIXELRGB, SETPIXELRGB_W
	SETPIXELS
	SETPIXELSRGB
	SETTEXTCOLOR
	SETTEXTCOLORRGB
	SETTEXTCURSOR
	SETTEXTPOSITION
	SETTEXTWINDOW
	SETVIEWORG
	SETVIEWPORT
	SETWINDOW
	SETWRITEMODE
	WRAPON

	Serial Port I/O Library Routines
	SPORT_CANCEL_IO
	SPORT_CONNECT
	SPORT_CONNECT_EX
	SPORT_GET_HANDLE
	SPORT_GET_STATE
	SPORT_GET_STATE_EX
	SPORT_GET_TIMEOUTS
	SPORT_PEEK_DATA
	SPORT_PEEK_LINE
	SPORT_PURGE
	SPORT_READ_DATA
	SPORT_READ_LINE
	SPORT_RELEASE
	SPORT_SET_STATE
	SPORT_SET_STATE_EX
	SPORT_SET_TIMEOUTS
	SPORT_SHOW_STATE
	SPORT_SPECIAL_FUNC
	SPORT_WRITE_DATA
	SPORT_WRITE_LINE

	Dialog Library Routines
	DLGEXIT
	DLGFLUSH
	DLGGET, DLGGETINT, DLGGETLOG, DLGGETCHAR
	DLGINIT, DLGINITWITHRESOURCEHANDLE
	DLGISDLGMESSAGE, DLGISDLGMESSAGEWITHDLG
	DLGMODAL, DLGMODALWITHPARENT
	DLGMODELESS
	DLGSENDCTRLMESSAGE
	DLGSET, DLGSETINT, DLGSETLOG, DLGSETCHAR
	DLGSETCTRLEVENTHANDLER
	DLGSETRETURN
	DLGSETSUB
	DLGSETTITLE
	DLGUNINIT

	Glossary
	Glossary A
	Glossary B
	Glossary C
	Glossary D
	Glossary E
	Glossary F
	Glossary G
	Glossary H
	Glossary I
	Glossary K
	Glossary L
	Glossary M
	Glossary N
	Glossary O
	Glossary P
	Glossary Q
	Glossary R
	Glossary S
	Glossary T
	Glossary U
	Glossary V
	Glossary W
	Glossary Z

	Compilation
	Supported Environment Variables
	Use Other Methods to Set Environment Variables
	Files Associated with Intel® Fortran Applications
	Compile and Link Multithreaded Programs
	Ahead of Time Compilation
	Linking Tools and Options
	Use Configuration Files
	Use Response Files
	Create Fortran Executables
	Link Debug Information
	Debugging
	Prepare Your Program for Debugging
	Use Breakpoints in the Microsoft Debugger
	Debug the Squares Example with Microsoft Debugger
	View Fortran Data Types in the Microsoft Debugger
	View the Call Stack in the Microsoft Debugger
	Locate Unaligned Data
	Debug a Program that Encounters a Signal or Exception
	Debugging and Optimizations
	Debug Mixed-Language Programs
	Debug Multithreaded Programs
	Use Remote Debugging
	Remote Debugging Scenario

	Program Structure
	Use Module Files
	Use Include Files
	Advantages of Internal Procedures
	Implications for Array Copies

	Optimization and Programming
	OpenMP* Support
	Add OpenMP* Support
	Parallel Processing Model
	Control Thread Allocation
	OpenMP* Library Support
	OpenMP* Runtime Library Routines
	Intel® Compiler Extension Routines to OpenMP*
	OpenMP* Support Libraries
	Use the OpenMP Libraries
	Thread Affinity Interface
	OpenMP* Memory Spaces and Allocators

	OpenMP* Contexts
	OpenMP* Context Selectors
	Score and Match Context Selectors

	OpenMP* Advanced Issues
	OpenMP* Implementation-Defined Behaviors
	OpenMP* Examples

	Coarrays
	Use Coarrays
	Debug a Coarray Application

	Automatic Parallelization
	Enable Auto-Parallelization
	Program with Auto-Parallelization
	Enable Further Loop Parallelization for Multicore Platforms

	Vectorization
	Automatic Vectorization
	Vectorization Programming Guidelines
	Use Automatic Vectorization
	Vectorization and Loops
	Loop Constructs

	Explicit Vector Programming
	User-Mandated or SIMD Vectorization
	Function Annotations and the SIMD Directive for Vectorization

	Profile-Guided Optimization
	Profile an Application with Instrumentation
	Profile-Guided Optimization Report
	PGO Tools
	Code Coverage Tool
	Test Prioritization Tool
	Profmerge and Proforder Tools
	Use Function Order Lists, Function Grouping, Function Ordering, and Data Ordering Optimizations
	Comparison of Function Order Lists and IPO Code Layout

	High-Level Optimization
	Interprocedural Optimization
	Use Interprocedural Optimization
	Performance and Large Program Considerations
	Request Compiler Reports with the xi* Tools
	Inline Expansion of Functions
	Inlining Report

	Fortran Language Extensions
	Support for 64-bit Architecture on Linux
	Traceback
	Traceback Tradeoffs and Restrictions
	Sample Programs and Traceback Information

	Allocate Common Blocks
	Generate Listing and Map Files
	Create Shared Libraries
	Specify Alternative Tools and Locations
	Temporary Files Created by the Compiler or Linker
	Use the Intel® Fortran COM Server on Windows
	Advantages of a COM Server
	COM Server Concepts
	Create the Fortran COM Server
	Fortran COM Server Interface Design Considerations
	Advanced COM Server Topics
	Deploy the COM Server on Another System

	Use the Intel® Fortran Module Wizard (COM Client) on Windows
	COM and Automation Objects
	The Role of the Module Wizard
	Use the Module Wizard to Generate Code
	Call the Routines Generated by the Module Wizard
	Get a Pointer to an Object's Interface
	Additional Resources about COM and Automation

	IFPORT Portability Library

	fpp Preprocessing
	fpp Preprocessor Directives
	Predefined Preprocessor Symbols
	Fortran Preprocessor Options

	Methods to Optimize Code Size
	National Language Support Routines

	Compatibility and Portability
	Fortran Language Standards
	Conformance, Compatibility, and Fortran Features
	Minimize Operating System-Specific Information
	Store and Represent Data
	Data Portability
	Format Data for Transportability
	Supported Native and Non-Native Numeric Formats
	Port Non-Native Data
	Specify the Data Format

	Notices and Disclaimers

	Index

